1
|
Solomon T, Nwaubani DA, Baral R, Idris S, Iwuji K, Sherchan SP. Long-term surveillance of SARS-CoV-2 RNA in wastewater in Baltimore. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136757. [PMID: 39706022 DOI: 10.1016/j.jhazmat.2024.136757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024]
Abstract
This study was to determine the presence of SARS-CoV-2 RNA in wastewater samples from two wastewater treatment plants in Baltimore over a period of one year. The samples were concentrated by the Polyethylene Glycol 8000 (PEG) method, and RNA fragments were extracted using the QIAamp Viral RNA Mini Kit. RT-PCR and qPCR assays were performed, and Cq values below 40 were analyzed and presented as gene copies/L. N1 and N2 genes were detected in both WWTP samples, with N1 ranging from 1.38 to 3.34 log10 gc/l and N2 ranging from 1.88 to 3.20 log10 gc/l. COVID-19 hospitalization cases in Baltimore County and City were observed to be 40-42 % positively correlated with the copies of N-genes detected in the WWTP-A. On the contrary, the N-genes (N1 and N2) from both WWTPs exhibited a very weak positive and negative relationship with wastewater physical parameters such as pH, electrical conductivity, total dissolved solutes, salinity, and temperature. The reduction in positive correlation with hospitalization cases could be attributed to an increase in immunity amongst the population surveyed. There is a need to ascertain the effect of physical parameters changes from the sampling point to the processing point on the capture and detection of SARS-CoV-2 RNA in wastewater.
Collapse
Affiliation(s)
- Tamunobelema Solomon
- Center of Research Excellence in Wastewater Based Epidemiology, Morgan State University, Baltimore, MD 21251, United States of America; BioEnvironmental Science Program, Morgan State University, Baltimore, MD 21251, United States of America
| | - Daniel A Nwaubani
- BioEnvironmental Science Program, Morgan State University, Baltimore, MD 21251, United States of America
| | - Rakshya Baral
- BioEnvironmental Science Program, Morgan State University, Baltimore, MD 21251, United States of America
| | - Saheeb Idris
- BioEnvironmental Science Program, Morgan State University, Baltimore, MD 21251, United States of America
| | - Keside Iwuji
- BioEnvironmental Science Program, Morgan State University, Baltimore, MD 21251, United States of America
| | - Samendra P Sherchan
- Center of Research Excellence in Wastewater Based Epidemiology, Morgan State University, Baltimore, MD 21251, United States of America; BioEnvironmental Science Program, Morgan State University, Baltimore, MD 21251, United States of America.
| |
Collapse
|
2
|
Azzellino A, Pellegrinelli L, Pedrini R, Turolla A, Bertasi B, Binda S, Castiglioni S, Cocuzza CE, Ferrari F, Franzetti A, Guiso MG, Losio MN, Martinelli M, Martines A, Musumeci R, Oliva D, Sandri L, Primache V, Righi F, Scarazzato A, Schiarea S, Pariani E, Ammoni E, Cereda D, Malpei F. Evaluating Interlaboratory Variability in Wastewater-Based COVID-19 Surveillance. Microorganisms 2025; 13:526. [PMID: 40142419 PMCID: PMC11945948 DOI: 10.3390/microorganisms13030526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 03/28/2025] Open
Abstract
Wastewater-based environmental surveillance enables the monitoring of SARS-CoV-2 dynamics within populations, offering critical epidemiological insights. Numerous workflows for tracking SARS-CoV-2 have been developed globally, underscoring the need for interlaboratory comparisons to ensure data consistency and comparability. An inter-calibration test was conducted among laboratories within the network monitoring SARS-CoV-2 in wastewater samples across the Lombardy region (Italy). The test aimed to evaluate data reliability and identify potential sources of variability using robust statistical approaches. Three wastewater samples were analyzed in parallel by four laboratories using identical pre-analytical (PEG-8000-based centrifugation) and analytical processes (qPCR targeting N1/N3 and Orf-1ab). A two-way ANOVA framework within Generalized Linear Models was applied, and multiple pairwise comparisons among laboratories were performed using the Bonferroni post hoc test. The statistical analysis revealed that the primary source of variability in the results was associated with the analytical phase. This variability was likely influenced by differences in the standard curves used by the laboratories to quantify SARS-CoV-2 concentrations, as well as the size of the wastewater treatment plants. The findings of this study highlight the importance of interlaboratory testing in verifying the consistency of analytical determinations and in identifying the key sources of variation.
Collapse
Affiliation(s)
- Arianna Azzellino
- Department of Civil and Environmental Engineering, Politecnico di Milano, 20133 Milan, Italy; (R.P.); (A.T.); (F.M.)
| | - Laura Pellegrinelli
- Department of Biomedical Sciences of Health, University of Milan, 20133 Milan, Italy; (L.P.); (S.B.); (L.S.); (V.P.); (E.P.)
| | - Ramon Pedrini
- Department of Civil and Environmental Engineering, Politecnico di Milano, 20133 Milan, Italy; (R.P.); (A.T.); (F.M.)
| | - Andrea Turolla
- Department of Civil and Environmental Engineering, Politecnico di Milano, 20133 Milan, Italy; (R.P.); (A.T.); (F.M.)
| | - Barbara Bertasi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna “B. Ubertini”, 25124 Brescia, Italy; (B.B.); (M.N.L.); (F.R.); (A.S.)
| | - Sandro Binda
- Department of Biomedical Sciences of Health, University of Milan, 20133 Milan, Italy; (L.P.); (S.B.); (L.S.); (V.P.); (E.P.)
| | - Sara Castiglioni
- Department of Environmental Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (S.C.); (S.S.)
| | - Clementina E. Cocuzza
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.E.C.); (M.M.); (R.M.)
| | - Fabio Ferrari
- CAP Holding Spa, 20142 Milan, Italy; (F.F.); (M.G.G.); (A.M.); (D.O.)
| | - Andrea Franzetti
- Department of Earth and Environmental, Sciences—DISAT, University of Milano-Bicocca, 20126 Milan, Italy
| | | | - Marina Nadia Losio
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna “B. Ubertini”, 25124 Brescia, Italy; (B.B.); (M.N.L.); (F.R.); (A.S.)
| | - Marianna Martinelli
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.E.C.); (M.M.); (R.M.)
| | - Antonino Martines
- CAP Holding Spa, 20142 Milan, Italy; (F.F.); (M.G.G.); (A.M.); (D.O.)
| | - Rosario Musumeci
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.E.C.); (M.M.); (R.M.)
| | - Desdemona Oliva
- CAP Holding Spa, 20142 Milan, Italy; (F.F.); (M.G.G.); (A.M.); (D.O.)
| | - Laura Sandri
- Department of Biomedical Sciences of Health, University of Milan, 20133 Milan, Italy; (L.P.); (S.B.); (L.S.); (V.P.); (E.P.)
| | - Valeria Primache
- Department of Biomedical Sciences of Health, University of Milan, 20133 Milan, Italy; (L.P.); (S.B.); (L.S.); (V.P.); (E.P.)
| | - Francesco Righi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna “B. Ubertini”, 25124 Brescia, Italy; (B.B.); (M.N.L.); (F.R.); (A.S.)
| | - Annalisa Scarazzato
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna “B. Ubertini”, 25124 Brescia, Italy; (B.B.); (M.N.L.); (F.R.); (A.S.)
| | - Silvia Schiarea
- Department of Environmental Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (S.C.); (S.S.)
| | - Elena Pariani
- Department of Biomedical Sciences of Health, University of Milan, 20133 Milan, Italy; (L.P.); (S.B.); (L.S.); (V.P.); (E.P.)
| | - Emanuela Ammoni
- DG Welfare, Regione Lombardia, 20124 Milan, Italy; (E.A.); (D.C.)
| | - Danilo Cereda
- DG Welfare, Regione Lombardia, 20124 Milan, Italy; (E.A.); (D.C.)
| | - Francesca Malpei
- Department of Civil and Environmental Engineering, Politecnico di Milano, 20133 Milan, Italy; (R.P.); (A.T.); (F.M.)
| |
Collapse
|
3
|
Mercier É, D'Aoust PM, Eid W, Hegazy N, Kabir P, Wan S, Pisharody L, Renouf E, Stephenson S, Graber TE, MacKenzie AE, Delatolla R. Sewer transport conditions and their role in the decay of endogenous SARS-CoV-2 and pepper mild mottle virus from source to collection. Int J Hyg Environ Health 2025; 263:114477. [PMID: 39378553 DOI: 10.1016/j.ijheh.2024.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/06/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
This study presents a comprehensive analysis of the decay patterns of endogenous SARS-CoV-2 and Pepper mild mottle virus (PMMoV) within wastewaters spiked with stool from infected patients expressing COVID-19 symptoms, and hence explores the decay of endogenous SARS-CoV-2 and PMMoV targets in wastewaters from source to collection of the sample. Stool samples from infected patients were used as endogenous viral material to more accurately mirror real-world decay processes compared to more traditionally used lab-propagated spike-ins. As such, this study includes data on early decay stages of endogenous viral targets in wastewaters that are typically overlooked when performing decay studies on wastewaters harvested from wastewater treatment plants that contain already-degraded endogenous material. The two distinct sewer transport conditions of dynamic suspended sewer transport and bed and near-bed sewer transport were simulated in this study at temperatures of 4 °C, 12 °C and 20 °C to elucidate decay under these two dominant transport conditions within wastewater infrastructure. The dynamic suspended sewer transport was simulated over 35 h, representing typical flow conditions, whereas bed and near-bed transport extended to 60 days to reflect the prolonged settling of solids in sewer systems during reduced flow periods. In dynamic suspended sewer transport, no decay was observed for SARS-CoV-2, PMMoV, or total RNA over the 35-h period, and temperature ranging from 4 °C to 20 °C had no noticeable effect. Conversely, experiments simulating bed and near-bed transport conditions revealed significant decreases in SARS-CoV-2 and total RNA concentrations by day 2, and PMMoV concentrations by day 3. Only PMMoV exhibited a clear trend of increasing decay constant with higher temperatures, suggesting that while temperature influences decay dynamics, its impact may be less significant than previously assumed, particularly for endogenous RNA that is bound to dissolved organic matter in wastewater. First order decay models were inadequate for accurately fitting decay curves of SARS-CoV-2, PMMoV, and total RNA in bed and near-bed transport conditions. F-tests confirmed the superior fit of the two-phase decay model compared to first order decay models across temperatures of 4 °C-20 °C. Finally, and most importantly, total RNA normalization emerged as an appropriate approach for correcting the time decay of SARS-CoV-2 exposed to bed and near-bed transport conditions. These findings highlight the importance of considering decay from the point of entry in the sewers, sewer transport conditions, and normalization strategies when assessing and modelling the impact of viral decay rates in wastewater systems. This study also emphasizes the need for ongoing research into the diverse and multifaceted factors that influence these decay rates, which is crucial for accurate public health monitoring and response strategies.
Collapse
Affiliation(s)
- Élisabeth Mercier
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Patrick M D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Walaa Eid
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Nada Hegazy
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Pervez Kabir
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Shen Wan
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Lakshmi Pisharody
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Elizabeth Renouf
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Sean Stephenson
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Alex E MacKenzie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada.
| |
Collapse
|
4
|
Wolfe MK, Varkila MRJ, Zulli A, Parsonnet J, Boehm AB. Detection and quantification of human immunodeficiency virus-1 (HIV-1) total nucleic acids in wastewater settled solids from two California communities. Appl Environ Microbiol 2024; 90:e0147724. [PMID: 39526804 DOI: 10.1128/aem.01477-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
Wastewater surveillance for infectious agents has proved useful in identifying the circulation of viruses within populations. We investigated the presence and concentration of human immunodeficiency virus (HIV)-1 total nucleic acids (including both viral RNA and proviral DNA) in wastewater solids. We retrospectively measured HIV-1 nucleic acids in two samples per week for 26 months at two wastewater treatment plants serving populations with different prevalences of HIV infections in San Francisco and Santa Clara County, California, USA. We detected HIV nucleic acids in a majority of samples with concentrations ranging from non-detect to 3.9 × 105 cp/g (N = 459 samples total). Concentrations of HIV-1 were significantly higher in samples from the wastewater treatment plant serving a population with a higher prevalence of people living with HIV than in the plant serving a population with a lower prevalence. The HIV-1 nucleic acids amplified were primarily DNA and thus represented proviral DNA shedding into wastewater. Additionally, we found that HIV-1 nucleic acid concentrations in wastewater solids were orders of magnitude higher than those in liquid wastewater indicating that the HIV-1 target preferentially sorbs to solids. Whether concentrations of HIV-1 in wastewater solids can be used to identify the number of incident cases remains unknown. Additional work on HIV-1 shedding from individuals with viremia and people living with HIV is needed to translate wastewater measurements into quantitative information on infections. Additional work may also be needed to document non-human sources of HIV-1 nucleic acids in wastewater. IMPORTANCE Human immunodeficiency virus (HIV)-1 has infected nearly 100 million people since it emerged in the 1980s. Antiretroviral therapy prevents transmission of HIV and also allows infected individuals to live healthy lives with normal life expectancy. Consequently, identifying unrecognized cases of HIV is of paramount importance. Since wastewater represents a composite biological sample from a community, it may provide valuable information on HIV-1 prevalence that can be used to inform HIV testing and outreach.
Collapse
Affiliation(s)
- Marlene K Wolfe
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Meri R J Varkila
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Alessandro Zulli
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA
| | - Julie Parsonnet
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
- Department of Epidemiology and Population Health, Stanford University, Stanford, California, USA
| | - Alexandria B Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
5
|
Yang Y, Tan J, Wang F, Sun W, Shi H, Cheng Z, Xie Y, Zhou X. Preconcentration and detection of SARS-CoV-2 in wastewater: A comprehensive review. Biosens Bioelectron 2024; 263:116617. [PMID: 39094290 DOI: 10.1016/j.bios.2024.116617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Severe acute respiratory syndrome coronaviruses 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) affected the health of human beings and the global economy. The patients with SARS-CoV-2 infection had viral RNA or live infectious viruses in feces. Thus, the possible transmission of SARS-CoV-2 through wastewater received great attentions. Moreover, SARS-CoV-2 in wastewater can serve as an early indicator of the infection within communities. We summarized the preconcentration and detection technology of SARS-CoV-2 in wastewater aiming at the complex matrices of wastewater and low virus concentration and compared their performance characteristics. We described the emerging tests that would be possible to realize the rapid detection of SARS-CoV-2 in fields and encourage academics to advance their technologies beyond conception. We concluded with a brief discussion on the outlook for integrating preconcentration and the detection of SARS-CoV-2 with emerging technologies.
Collapse
Affiliation(s)
- Yihan Yang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jisui Tan
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Fan Wang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Weiming Sun
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hanchang Shi
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhao Cheng
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yangcun Xie
- Chinese Academy of Environmental Planning, Beijing, 100043, China.
| | - Xiaohong Zhou
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Boehm AB, Wolfe MK, Bidwell AL, Zulli A, Chan-Herur V, White BJ, Shelden B, Duong D. Human pathogen nucleic acids in wastewater solids from 191 wastewater treatment plants in the United States. Sci Data 2024; 11:1141. [PMID: 39420189 PMCID: PMC11487133 DOI: 10.1038/s41597-024-03969-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
We measured concentrations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants, influenza A and B viruses, respiratory syncytial virus, human metapneumovirus, enterovirus D68, human parainfluenza types 1, 2, 3, 4a, and 4b in aggregate, norovirus genotype II, rotavirus, Candida auris, hepatitis A virus, human adenovirus, mpox virus, H5 influenza A virus, and pepper mild mottle virus nucleic acids in wastewater solids prospectively at 191 wastewater treatment plants in 40 states across the United States plus Washington DC. Measurements were made two to seven times per week from 1 January 2022 to 30 June 2024, depending on wastewater treatment plant staff availability. Measurements were made using droplet digital (reverse-transcription-) polymerase chain reaction (ddRT-PCR) following best practices for making environmental molecular biology measurements. These data can be used to better understand disease occurrence in communities contributing to the wastewater.
Collapse
Affiliation(s)
- Alexandria B Boehm
- Department of Civil & Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, CA, USA.
| | - Marlene K Wolfe
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Amanda L Bidwell
- Department of Civil & Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, CA, USA
| | - Alessandro Zulli
- Department of Civil & Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, CA, USA
| | | | | | | | | |
Collapse
|
7
|
Hayes EK, Gagnon GA. From capture to detection: A critical review of passive sampling techniques for pathogen surveillance in water and wastewater. WATER RESEARCH 2024; 261:122024. [PMID: 38986282 DOI: 10.1016/j.watres.2024.122024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/05/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024]
Abstract
Water quality, critical for human survival and well-being, necessitates rigorous control to mitigate contamination risks, particularly from pathogens amid expanding urbanization. Consequently, the necessity to maintain the microbiological safety of water supplies demands effective surveillance strategies, reliant on the collection of representative samples and precise measurement of contaminants. This review critically examines the advancements of passive sampling techniques for monitoring pathogens in various water systems, including wastewater, freshwater, and seawater. We explore the evolution from conventional materials to innovative adsorbents for pathogen capture and the shift from culture-based to molecular detection methods, underscoring the adaptation of this field to global health challenges. The comparison highlights passive sampling's efficacy over conventional techniques like grab sampling and its potential to overcome existing sampling challenges through the use of innovative materials such as granular activated carbon, thermoplastics, and polymer membranes. By critically evaluating the literature, this work identifies standardization gaps and proposes future research directions to augment passive sampling's efficiency, specificity, and utility in environmental and public health surveillance.
Collapse
Affiliation(s)
- Emalie K Hayes
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Graham A Gagnon
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
8
|
Julian TR, Boehm AB. Advances in Wastewater-Based Epidemiology in the ES&T Family of Journals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11865-11868. [PMID: 38885441 DOI: 10.1021/acs.est.4c04913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Affiliation(s)
- Timothy R Julian
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Duebendorf, Switzerland
| | - Alexandria B Boehm
- Department of Civil & Environmental Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
9
|
Paracchini V, Petrillo M, Arcot Rajashekar A, Robuch P, Vincent U, Corbisier P, Tavazzi S, Raffael B, Suffredini E, La Rosa G, Gawlik BM, Marchini A. EU surveys insights: analytical tools, future directions, and the essential requirement for reference materials in wastewater monitoring of SARS-CoV-2, antimicrobial resistance and beyond. Hum Genomics 2024; 18:72. [PMID: 38937848 PMCID: PMC11210120 DOI: 10.1186/s40246-024-00641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Wastewater surveillance (WWS) acts as a vigilant sentinel system for communities, analysing sewage to protect public health by detecting outbreaks and monitoring trends in pathogens and contaminants. To achieve a thorough comprehension of present and upcoming practices and to identify challenges and opportunities for standardisation and improvement in WWS methodologies, two EU surveys were conducted targeting over 750 WWS laboratories across Europe and other regions. The first survey explored a diverse range of activities currently undertaken or planned by laboratories. The second survey specifically targeted methods and quality controls utilised for SARS-CoV-2 surveillance. RESULTS The findings of the two surveys provide a comprehensive insight into the procedures and methodologies applied in WWS. In Europe, WWS primarily focuses on SARS-CoV-2 with 99% of the survey participants dedicated to this virus. However, the responses highlighted a lack of standardisation in the methodologies employed for monitoring SARS-CoV-2. The surveillance of other pathogens, including antimicrobial resistance, is currently fragmented and conducted by only a limited number of laboratories. Notably, these activities are anticipated to expand in the future. Survey replies emphasise the collective recognition of the need to enhance the accuracy of results in WWS practices, reflecting a shared commitment to advancing precision and effectiveness in WWS methodologies. CONCLUSIONS These surveys identified a lack of standardised common procedures in WWS practices and the need for quality standards and reference materials to enhance the accuracy and reliability of WWS methods in the future. In addition, it is important to broaden surveillance efforts beyond SARS-CoV-2 to include other emerging pathogens and antimicrobial resistance to ensure a comprehensive approach to protecting public health.
Collapse
Affiliation(s)
| | | | | | - Piotr Robuch
- European Commission, Joint Research Centre (JRC), Geel, Belgium
| | - Ursula Vincent
- European Commission, Joint Research Centre (JRC), Geel, Belgium
| | | | - Simona Tavazzi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Barbara Raffael
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Giuseppina La Rosa
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità (ISS), Rome, Italy
| | | | - Antonio Marchini
- European Commission, Joint Research Centre (JRC), Geel, Belgium.
| |
Collapse
|
10
|
Robbins AA, Gallagher TL, Toledo DM, Hershberger KC, Salmela SM, Barney RE, Szczepiorkowski ZM, Tsongalis GJ, Martin IW, Hubbard JA, Lefferts JA. Analytical validation of a semi-automated methodology for quantitative measurement of SARS-CoV-2 RNA in wastewater collected in northern New England. Microbiol Spectr 2024; 12:e0112223. [PMID: 38747589 PMCID: PMC11323974 DOI: 10.1128/spectrum.01122-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/11/2024] [Indexed: 06/06/2024] Open
Abstract
Wastewater-based epidemiology (WBE) can be used to monitor the community presence of infectious disease pathogens of public health concern such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Viral nucleic acid has been detected in the stool of SARS-CoV-2-infected individuals. Asymptomatic SARS-CoV-2 infections make community monitoring difficult without extensive and continuous population screening. In this study, we validated a procedure that includes manual pre-processing, automated SARS-CoV-2 RNA extraction and detection workflows using both reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) and reverse transcriptase droplet digital PCR (RT-ddPCR). Genomic RNA and calibration materials were used to create known concentrations of viral material to determine the linearity, accuracy, and precision of the wastewater extraction and SARS-CoV-2 RNA detection. Both RT-qPCR and RT-ddPCR perform similarly in all the validation experiments, with a limit of detection of 50 copies/mL. A wastewater sample from a care facility with a known outbreak was assessed for viral content in replicate, and we showed consistent results across both assays. Finally, in a 2-week survey of two New Hampshire cities, we assessed the suitability of our methods for daily surveillance. This paper describes the technical validation of a molecular assay that can be used for long-term monitoring of SARS-CoV-2 in wastewater as a potential tool for community surveillance to assist with public health efforts.IMPORTANCEThis paper describes the technical validation of a molecular assay that can be used for the long-term monitoring of SARS-CoV-2 in wastewater as a potential tool for community surveillance to assist with public health efforts.
Collapse
Affiliation(s)
- Ashlee A. Robbins
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Torrey L. Gallagher
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Diana M. Toledo
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- The Broad Institute at MIT and Harvard, Cambridge, Massachusetts, USA
| | - K. Chase Hershberger
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Sabrina M. Salmela
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Rachael E. Barney
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Zbigniew M. Szczepiorkowski
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Gregory J. Tsongalis
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Isabella W. Martin
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jacqueline A. Hubbard
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Joel A. Lefferts
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
11
|
Liu Y, Sapoval N, Gallego-García P, Tomás L, Posada D, Treangen TJ, Stadler LB. Crykey: Rapid identification of SARS-CoV-2 cryptic mutations in wastewater. Nat Commun 2024; 15:4545. [PMID: 38806450 PMCID: PMC11133379 DOI: 10.1038/s41467-024-48334-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
Wastewater surveillance for SARS-CoV-2 provides early warnings of emerging variants of concerns and can be used to screen for novel cryptic linked-read mutations, which are co-occurring single nucleotide mutations that are rare, or entirely missing, in existing SARS-CoV-2 databases. While previous approaches have focused on specific regions of the SARS-CoV-2 genome, there is a need for computational tools capable of efficiently tracking cryptic mutations across the entire genome and investigating their potential origin. We present Crykey, a tool for rapidly identifying rare linked-read mutations across the genome of SARS-CoV-2. We evaluated the utility of Crykey on over 3,000 wastewater and over 22,000 clinical samples; our findings are three-fold: i) we identify hundreds of cryptic mutations that cover the entire SARS-CoV-2 genome, ii) we track the presence of these cryptic mutations across multiple wastewater treatment plants and over three years of sampling in Houston, and iii) we find a handful of cryptic mutations in wastewater mirror cryptic mutations in clinical samples and investigate their potential to represent real cryptic lineages. In summary, Crykey enables large-scale detection of cryptic mutations in wastewater that represent potential circulating cryptic lineages, serving as a new computational tool for wastewater surveillance of SARS-CoV-2.
Collapse
Affiliation(s)
- Yunxi Liu
- Department of Computer Science, Rice University, Houston, TX, 77005, USA
| | - Nicolae Sapoval
- Department of Computer Science, Rice University, Houston, TX, 77005, USA
| | - Pilar Gallego-García
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Laura Tomás
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - David Posada
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, 36310, Vigo, Spain
| | - Todd J Treangen
- Department of Computer Science, Rice University, Houston, TX, 77005, USA.
| | - Lauren B Stadler
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
12
|
Rashid SA, Rajendiran S, Nazakat R, Mohammad Sham N, Khairul Hasni NA, Anasir MI, Kamel KA, Muhamad Robat R. A scoping review of global SARS-CoV-2 wastewater-based epidemiology in light of COVID-19 pandemic. Heliyon 2024; 10:e30600. [PMID: 38765075 PMCID: PMC11098849 DOI: 10.1016/j.heliyon.2024.e30600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024] Open
Abstract
Recently, wastewater-based epidemiology (WBE) research has experienced a strong impetus during the Coronavirus disease 2019 (COVID-19) pandemic. However, a few technical issues related to surveillance strategies, such as standardized procedures ranging from sampling to testing protocols, need to be resolved in preparation for future infectious disease outbreaks. This review highlights the study characteristics, potential use of WBE and overview of methods, as well as methods utilized to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) including its variant in wastewater. A literature search was performed electronically in PubMed and Scopus according to PRISMA guidelines for relevant peer-reviewed articles published between January 2020 and March 2022. The search identified 588 articles, out of which 221 fulfilled the necessary criteria and are discussed in this review. Most global WBE studies were conducted in North America (n = 75, 34 %), followed by Europe (n = 68, 30.8 %), and Asia (n = 43, 19.5 %). The review also showed that most of the application of WBE observed were to correlate SARS-CoV-2 ribonucleic acid (RNA) trends in sewage with epidemiological data (n = 90, 40.7 %). The techniques that were often used globally for sample collection, concentration, preferred matrix recovery control and various sample types were also discussed. Overall, this review provided a framework for researchers specializing in WBE to apply strategic approaches to their research questions in achieving better functional insights. In addition, areas that needed more in-depth analysis, data collection, and ideas for new initiatives were identified.
Collapse
Affiliation(s)
- Siti Aishah Rashid
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Sakshaleni Rajendiran
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Raheel Nazakat
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Noraishah Mohammad Sham
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Nurul Amalina Khairul Hasni
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Mohd Ishtiaq Anasir
- Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Khayri Azizi Kamel
- Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Rosnawati Muhamad Robat
- Occupational & Environmental Health Unit, Public Health Division, Selangor State Health Department, Ministry of Health Malaysia, Malaysia
| |
Collapse
|
13
|
Boehm AB, Wolfe MK, White BJ, Hughes B, Duong D, Banaei N, Bidwell A. Human norovirus (HuNoV) GII RNA in wastewater solids at 145 United States wastewater treatment plants: comparison to positivity rates of clinical specimens and modeled estimates of HuNoV GII shedders. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:440-447. [PMID: 37550566 PMCID: PMC11222142 DOI: 10.1038/s41370-023-00592-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Human norovirus (HuNoV) is a leading cause of disease globally, yet actual incidence is unknown. HuNoV infections are not reportable in the United States, and surveillance is limited to tracking severe illnesses or outbreaks. Wastewater monitoring for HuNoV has been done previously and results indicate it is present in wastewater influent and concentrations are associated with HuNoV infections in the communities contributing to wastewater. However, work has mostly been limited to monthly samples of liquid wastewater at one or a few wastewater treatment plants (WWTPs). OBJECTIVE The objectives of this study are to investigate whether HuNoV GII preferentially adsorbs to wastewater solids, investigate concentrations of HuNoV GII in wastewater solids in wastewater treatment plants across the county, and explore how those relate to clinical measures of disease occurrence. In addition, we aim to develop and apply a mass-balance model that predicts the fraction of individuals shedding HuNoV in their stool based on measured concentrations in wastewater solids. METHODS We measured HuNoV GII RNA in matched wastewater solids and liquid influent in 7 samples from a WWTP. We also applied the HuNoV GII assay to measure viral RNA in over 6000 wastewater solids samples from 145 WWTPs from across the United States daily to three times per week for up to five months. Measurements were made using digital droplet RT-PCR. RESULTS HuNoV GII RNA preferentially adsorbs to wastewater solids where it is present at 1000 times the concentration in influent. Concentrations of HuNoV GII RNA correlate positively with clinical HuNoV positivity rates. Model output of the fraction of individuals shedding HuNoV is variable and uncertain, but consistent with indirect estimates of symptomatic HuNoV infections in the United States. IMPACT STATEMENT Illness caused by HuNoV is not reportable in the United States so there is limited data on disease occurrence. Wastewater monitoring can provide information about the community spread of HuNoV. Data from wastewater can be available within 24 h of sample receipt at a laboratory. Wastewater is agnostic to whether individuals seek medical care, are symptomatic, and the severity of illness. Knowledge gleaned from wastewater may be used by public health professionals to make recommendations on hand washing, surface disinfection, or other behaviors to reduce transmission of HuNoV, or medical doctors to inform clinical decision making.
Collapse
Affiliation(s)
- Alexandria B Boehm
- Department of Civil & Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, CA, USA.
| | - Marlene K Wolfe
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | | | | | | | - Niaz Banaei
- Stanford Health Care Clinical Microbiology Laboratory, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Amanda Bidwell
- Department of Civil & Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, CA, USA
| |
Collapse
|
14
|
Zhang M, Roldan-Hernandez L, Boehm A. Persistence of human respiratory viral RNA in wastewater-settled solids. Appl Environ Microbiol 2024; 90:e0227223. [PMID: 38501669 PMCID: PMC11022535 DOI: 10.1128/aem.02272-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Wastewater-based epidemiology has emerged as a valuable tool for monitoring respiratory viral diseases within communities by analyzing concentrations of viral nucleic-acids in wastewater. However, little is known about the fate of respiratory virus nucleic-acids in wastewater. Two important fate processes that may modulate their concentrations in wastewater as they move from household drains to the point of collection include sorption or partitioning to wastewater solids and degradation. This study investigated the decay kinetics of genomic nucleic-acids of seven human respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), respiratory syncytial virus (RSV), human coronavirus (HCoV)-OC43, HCoV-229E, HCoV-NL63, human rhinovirus (HRV), and influenza A virus (IAV), as well as pepper mild mottle virus (PMMoV) in wastewater solids. Viruses (except for PMMoV) were spiked into wastewater solids and their concentrations were followed for 50 days at three different temperatures (4°C, 22°C, and 37°C). Viral genomic RNA decayed following first-order kinetics with decay rate constants k from 0 to 0.219 per day. Decay rate constants k were not different from 0 for all targets in solids incubated at 4°C; k values were largest at 37°C and at this temperature, k values were similar across nucleic-acid targets. Regardless of temperature, there was limited viral RNA decay, with an estimated 0% to 20% reduction, over the typical residence times of sewage in the piped systems between input and collection point (<1 day). The k values reported herein can be used directly in fate and transport models to inform the interpretation of measurements made during wastewater surveillance.IMPORTANCEUnderstanding whether or not the RNA targets quantified for wastewater-based epidemiology (WBE) efforts decay during transport between drains and the point of sample collection is critical for data interpretation. Here we show limited decay of viral RNA targets typically measured for respiratory disease WBE.
Collapse
Affiliation(s)
- Mengyang Zhang
- Department of Civil and Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, California, USA
| | - Laura Roldan-Hernandez
- Department of Civil and Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, California, USA
| | - Alexandria Boehm
- Department of Civil and Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, California, USA
| |
Collapse
|
15
|
Perry WB, Chrispim MC, Barbosa MRF, de Souza Lauretto M, Razzolini MTP, Nardocci AC, Jones O, Jones DL, Weightman A, Sato MIZ, Montagner C, Durance I. Cross-continental comparative experiences of wastewater surveillance and a vision for the 21st century. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170842. [PMID: 38340868 DOI: 10.1016/j.scitotenv.2024.170842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
The COVID-19 pandemic has brought the epidemiological value of monitoring wastewater into sharp focus. The challenges of implementing and optimising wastewater monitoring vary significantly from one region to another, often due to the array of different wastewater systems around the globe, as well as the availability of resources to undertake the required analyses (e.g. laboratory infrastructure and expertise). Here we reflect on the local and shared challenges of implementing a SARS-CoV-2 monitoring programme in two geographically and socio-economically distinct regions, São Paulo state (Brazil) and Wales (UK), focusing on design, laboratory methods and data analysis, and identifying potential guiding principles for wastewater surveillance fit for the 21st century. Our results highlight the historical nature of region-specific challenges to the implementation of wastewater surveillance, including previous experience of using wastewater surveillance, stakeholders involved, and nature of wastewater infrastructure. Building on those challenges, we then highlight what an ideal programme would look like if restrictions such as resource were not a constraint. Finally, we demonstrate the value of bringing multidisciplinary skills and international networks together for effective wastewater surveillance.
Collapse
Affiliation(s)
| | - Mariana Cardoso Chrispim
- Environmental and Biosciences Department, School of Business, Innovation and Sustainability, Halmstad University, Kristian IV:s väg 3, 30118 Halmstad, Sweden
| | - Mikaela Renata Funada Barbosa
- Environmental Analysis Department, Environmental Company of the São Paulo State (CETESB), Av. Prof. Frederico Hermann Jr., 345, São Paulo CEP 05459-900, Brazil; NARA - Center for Research in Environmental Risk Assessment, School of Public Health, Environmental Health Department, Av. Dr Arnaldo, 715, 01246-904 São Paulo, Brazil
| | - Marcelo de Souza Lauretto
- NARA - Center for Research in Environmental Risk Assessment, School of Public Health, Environmental Health Department, Av. Dr Arnaldo, 715, 01246-904 São Paulo, Brazil; School of Arts, Sciences and Humanities, University of Sao Paulo, Rua Arlindo Bettio, 1000, São Paulo CEP 03828-000, Brazil
| | - Maria Tereza Pepe Razzolini
- NARA - Center for Research in Environmental Risk Assessment, School of Public Health, Environmental Health Department, Av. Dr Arnaldo, 715, 01246-904 São Paulo, Brazil; School of Public Health, University of Sao Paulo, Environmental Health Department, Av. Dr Arnaldo, 715, 01246-904 São Paulo, Brazil
| | - Adelaide Cassia Nardocci
- NARA - Center for Research in Environmental Risk Assessment, School of Public Health, Environmental Health Department, Av. Dr Arnaldo, 715, 01246-904 São Paulo, Brazil; School of Public Health, University of Sao Paulo, Environmental Health Department, Av. Dr Arnaldo, 715, 01246-904 São Paulo, Brazil
| | - Owen Jones
- School of Mathematics, Cardiff University, Cardiff CF24 4AG, UK
| | - Davey L Jones
- Environment Centre Wales, Bangor University, Bangor LL57 2UW, UK; Food Futures Institute, Murdoch University, Murdoch WA 6105, Australia
| | | | - Maria Inês Zanoli Sato
- Environmental Analysis Department, Environmental Company of the São Paulo State (CETESB), Av. Prof. Frederico Hermann Jr., 345, São Paulo CEP 05459-900, Brazil; NARA - Center for Research in Environmental Risk Assessment, School of Public Health, Environmental Health Department, Av. Dr Arnaldo, 715, 01246-904 São Paulo, Brazil
| | - Cassiana Montagner
- Environmental Chemistry Laboratory, Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083970, Brazil
| | - Isabelle Durance
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
16
|
Leisman KP, Owen C, Warns MM, Tiwari A, Bian GZ, Owens SM, Catlett C, Shrestha A, Poretsky R, Packman AI, Mangan NM. A modeling pipeline to relate municipal wastewater surveillance and regional public health data. WATER RESEARCH 2024; 252:121178. [PMID: 38309063 DOI: 10.1016/j.watres.2024.121178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/18/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
As COVID-19 becomes endemic, public health departments benefit from improved passive indicators, which are independent of voluntary testing data, to estimate the prevalence of COVID-19 in local communities. Quantification of SARS-CoV-2 RNA from wastewater has the potential to be a powerful passive indicator. However, connecting measured SARS-CoV-2 RNA to community prevalence is challenging due to the high noise typical of environmental samples. We have developed a generalized pipeline using in- and out-of-sample model selection to test the ability of different correction models to reduce the variance in wastewater measurements and applied it to data collected from treatment plants in the Chicago area. We built and compared a set of multi-linear regression models, which incorporate pepper mild mottle virus (PMMoV) as a population biomarker, Bovine coronavirus (BCoV) as a recovery control, and wastewater system flow rate into a corrected estimate for SARS-CoV-2 RNA concentration. For our data, models with BCoV performed better than those with PMMoV, but the pipeline should be used to reevaluate any new data set as the sources of variance may change across locations, lab methods, and disease states. Using our best-fit model, we investigated the utility of RNA measurements in wastewater as a leading indicator of COVID-19 trends. We did this in a rolling manner for corrected wastewater data and for other prevalence indicators and statistically compared the temporal relationship between new increases in the wastewater data and those in other prevalence indicators. We found that wastewater trends often lead other COVID-19 indicators in predicting new surges.
Collapse
Affiliation(s)
- Katelyn Plaisier Leisman
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA
| | - Christopher Owen
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Maria M Warns
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA
| | - Anuj Tiwari
- Discovery Partners Institute, University of Illinois Chicago, Chicago, IL, USA
| | - George Zhixin Bian
- Department of Computer Science, Northwestern University, Evanston, IL, USA
| | - Sarah M Owens
- Biosciences, Argonne National Laboratory, Lemont, IL, USA
| | - Charlie Catlett
- Discovery Partners Institute, University of Illinois Chicago, Chicago, IL, USA; Computing, Environment, and Life Sciences, Argonne National Laboratory, Lemont, IL, USA
| | - Abhilasha Shrestha
- Division of Environmental and Occupational Health Sciences, School of Public Health, University of Illinois Chicago, Chicago, IL, USA
| | - Rachel Poretsky
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Aaron I Packman
- Center for Water Research, Northwestern University, Evanston, IL, USA; Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
| | - Niall M Mangan
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA; Center for Water Research, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
17
|
Akter J, Smith WJ, Liu Y, Kim I, Simpson SL, Thai P, Korajkic A, Ahmed W. Comparison of adsorption-extraction (AE) workflows for improved measurements of viral and bacterial nucleic acid in untreated wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:167966. [PMID: 38476760 PMCID: PMC10927021 DOI: 10.1016/j.scitotenv.2023.167966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 03/14/2024]
Abstract
The lack of standardized methods and large differences in virus concentration and extraction workflows have hampered Severe Acute Respiratory Syndrome (SARS-CoV-2) wastewater surveillance and data reporting practices. Numerous studies have shown that adsorption-extraction (AE) method holds promise, yet several uncertainties remain regarding the optimal AE workflow. Several procedural components may influence the recovered concentrations of target nucleic acid, including membrane types, homogenization instruments, speed and duration, and lysis buffer. In this study, 42 different AE workflows that varied these components were compared to determine the optimal workflow by quantifying endogenous SARS-CoV-2, human adenovirus 40/41 (HAdV 40/41), and a bacterial marker gene of fecal contamination (Bacteroides HF183). Our findings suggest that the workflow chosen had a significant impact on SARS-CoV-2 concentrations, whereas it had minimal impact on HF183 and no effect on HAdV 40/41 concentrations. When comparing individual components in a workflow, such as membrane type (MF-Millipore™ 0.45 μm MCE vs. Isopore™ 0.40 μm), we found that they had no impact on SARS-CoV-2, HAdV 40/41, and HF183 concentrations. This suggests that at least some consumables and equipment are interchangeable. Buffer PM1 + TRIzol-based workflows yielded higher concentrations of SARS-CoV-2 than other workflows. HF183 concentrations were higher in workflows without chloroform. Similarly, higher homogenization speeds (5000-10,000 rpm) led to increased concentrations of SARS-CoV-2 and HF183 but had no effect on HAdV 40/41. Our findings indicate that minor enhancements to the AE workflow can improve the recovery of viruses and bacteria from the wastewater, leading to improved outcomes from wastewater surveillance efforts.
Collapse
Affiliation(s)
- Jesmin Akter
- Department of Civil and Environmental Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology (KICT), Gyeonggi-do 10223, Republic of Korea
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Wendy J.M. Smith
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Yawen Liu
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Ilho Kim
- Department of Civil and Environmental Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology (KICT), Gyeonggi-do 10223, Republic of Korea
| | | | - Phong Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 4102 Brisbane, Australia
| | - Asja Korajkic
- United States Environmental Protection Agency, Office of Research and Development, 26W Martin Luther King Jr. Drive, Cincinnati, OH 45268, USA
| | - Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| |
Collapse
|
18
|
Deng Y, Xu X, Zheng X, Leung GM, Chui HK, Li Y, Hu Q, Yang M, Huang X, Tang S, Zhang L, Zhang T. Advances and implications of wastewater surveillance for SARS-CoV-2. CHINESE SCIENCE BULLETIN 2024; 69:362-369. [DOI: 10.1360/tb-2022-1315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
19
|
Liu Y, Sapoval N, Gallego-García P, Tomás L, Posada D, Treangen TJ, Stadler LB. Crykey: Rapid Identification of SARS-CoV-2 Cryptic Mutations in Wastewater. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.16.23291524. [PMID: 37986916 PMCID: PMC10659477 DOI: 10.1101/2023.06.16.23291524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
We present Crykey, a computational tool for rapidly identifying cryptic mutations of SARS-CoV-2. Specifically, we identify co-occurring single nucleotide mutations on the same sequencing read, called linked-read mutations, that are rare or entirely missing in existing databases, and have the potential to represent novel cryptic lineages found in wastewater. While previous approaches exist for identifying cryptic linked-read mutations from specific regions of the SARS-CoV-2 genome, there is a need for computational tools capable of efficiently tracking cryptic mutations across the entire genome and for tens of thousands of samples and with increased scrutiny, given their potential to represent either artifacts or hidden SARS-CoV-2 lineages. Crykey fills this gap by identifying rare linked-read mutations that pass stringent computational filters to limit the potential for artifacts. We evaluate the utility of Crykey on >3,000 wastewater and >22,000 clinical samples; our findings are three-fold: i) we identify hundreds of cryptic mutations that cover the entire SARS-CoV-2 genome, ii) we track the presence of these cryptic mutations across multiple wastewater treatment plants and over a three years of sampling in Houston, and iii) we find a handful of cryptic mutations in wastewater mirror cryptic mutations in clinical samples and investigate their potential to represent real cryptic lineages. In summary, Crykey enables large-scale detection of cryptic mutations representing potential cryptic lineages in wastewater.
Collapse
Affiliation(s)
- Yunxi Liu
- Department of Computer Science, Rice University, Houston, TX, 77005, USA
| | - Nicolae Sapoval
- Department of Computer Science, Rice University, Houston, TX, 77005, USA
| | - Pilar Gallego-García
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO
| | - Laura Tomás
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO
| | - David Posada
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, 36310 Vigo, Spain
| | - Todd J. Treangen
- Department of Computer Science, Rice University, Houston, TX, 77005, USA
| | - Lauren B. Stadler
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
20
|
Barrantes K, Chacón-Jiménez L, Rivera-Montero L, Segura-Villalta A, Badilla-Aguilar A, Alfaro-Arrieta E, Rivera-Navarro P, Méndez-Chacón E, Santamaría-Ulloa C. Challenges detecting SARS-CoV-2 in Costa Rican domestic wastewater and river water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165393. [PMID: 37433341 DOI: 10.1016/j.scitotenv.2023.165393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023]
Abstract
This study presents the development of a SARS-CoV-2 detection method for domestic wastewater and river water in Costa Rica, a middle-income country in Central America. Over a three-year period (November to December 2020, July to November 2021, and June to October 2022), 80 composite wastewater samples (43 influent and 37 effluent) were collected from a Wastewater Treatment Plant (SJ-WWTP) located in San José, Costa Rica. Additionally, 36 river water samples were collected from the Torres River near the SJ-WWTP discharge site. A total of three protocols for SARS-CoV-2 viral concentration and RNA detection and quantification were analyzed. Two protocols using adsorption-elution with PEG precipitation (Protocol A and B, differing in the RNA extraction kit; n = 82) were used on wastewater samples frozen prior to concentration, while wastewater (n = 34) collected in 2022 were immediately concentrated using PEG precipitation. The percent recovery of Bovine coronavirus (BCoV) was highest using the Zymo Environ Water RNA (ZEW) kit with PEG precipitation executed on the same day as collection (mean 6.06 % ± 1.37 %). It was lowest when samples were frozen and thawed, and viruses were concentrated using adsorption-elution and PEG concentration methods using the PureLink™ Viral RNA/DNA Mini (PLV) kit (protocol A; mean 0.48 % ± 0.23 %). Pepper mild mottle virus and Bovine coronavirus were used as process controls to understand the suitability and potential impact of viral recovery on the detection/quantification of SARS-CoV-2 RNA. Overall, SARS-CoV-2 RNA was detected in influent and effluent wastewater samples collected in 2022 but not in earlier years when the method was not optimized. The burden of SARS-CoV-2 at the SJ-WWTP decreased from week 36 to week 43 of 2022, coinciding with a decline in the national COVID-19 prevalence rate. Developing comprehensive nationwide surveillance programs for wastewater-based epidemiology in low-middle-income countries involves significant technical and logistical challenges.
Collapse
Affiliation(s)
- Kenia Barrantes
- Health Research Institute, University of Costa Rica, P.O. Box: 11501-2060, San José, Costa Rica.
| | - Luz Chacón-Jiménez
- Health Research Institute, University of Costa Rica, P.O. Box: 11501-2060, San José, Costa Rica.
| | - Luis Rivera-Montero
- Health Research Institute, University of Costa Rica, P.O. Box: 11501-2060, San José, Costa Rica.
| | | | - Andrei Badilla-Aguilar
- National Water Laboratory of the Costa Rican Institute of Aqueducts and Sewerage, P.O.Box 1097-1200, Cartago, Costa Rica.
| | - Ernesto Alfaro-Arrieta
- National Water Laboratory of the Costa Rican Institute of Aqueducts and Sewerage, P.O.Box 1097-1200, Cartago, Costa Rica.
| | - Pablo Rivera-Navarro
- National Water Laboratory of the Costa Rican Institute of Aqueducts and Sewerage, P.O.Box 1097-1200, Cartago, Costa Rica.
| | - Ericka Méndez-Chacón
- School of Statistics, University of Costa Rica, P.O. Box 11501-2060, San José, Costa Rica.
| | | |
Collapse
|
21
|
Williams BB, Newborn A, Karamat A, Zamcho F, Salerno JL, Gillevet PM, Farris D, Wintermeyer SF, Van Aken B. Detection of SARS-CoV-2 RNA in wastewater from dormitory buildings in a university campus: comparison with individual testing results. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2364-2377. [PMID: 37966188 PMCID: wst_2023_348 DOI: 10.2166/wst.2023.348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Wastewater-based epidemiology (WBE) for monitoring COVID-19 has been largely used to detect the spread of the disease at the community level. From February to December 2022, we collected 24-h composite sewage samples from dormitory buildings in George Mason University (Fairfax, Virginia, USA) housing approximately 5,200 resident students. SARS-CoV-2 RNA extraction was achieved using an automated system based on magnetic nanoparticles. Analysis of SARS-CoV-2 RNA was performed using reverse transcription quantitative PCR based on the Centers for Disease Control and Prevention (CDC) N1 and N2 assays. From the 362 samples collected, 86% showed positive detection of SARS-CoV-2 RNA. Wastewater monitoring was able to detect SARS-CoV-2 RNA in 96% of the samples from buildings housing students with COVID-19. Over the period of study, we observed significant correlations between the SARS-CoV-2 concentration (copy number mL-1) in wastewater and the number of positive cases on campus based on individual saliva testing. Although several reports have been published on the wastewater monitoring of COVID-19 in university campuses, our study is one of the very few that provides results that were obtained during the last phase of the pandemic (roughly the year 2022), when the large majority of students were vaccinated and back on campus.
Collapse
Affiliation(s)
- Brandi B Williams
- Department of Chemistry & Biochemistry, George Mason University, Fairfax, Virginia, USA E-mail:
| | - Aaron Newborn
- Department of Chemistry & Biochemistry, George Mason University, Fairfax, Virginia, USA
| | - Ayesha Karamat
- Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia, USA
| | - Fanella Zamcho
- Department of Chemistry & Biochemistry, George Mason University, Fairfax, Virginia, USA
| | - Jennifer L Salerno
- Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia, USA
| | | | - David Farris
- Environmental Health and Safety, George Mason University, Fairfax, Virginia, USA
| | | | - Benoit Van Aken
- Department of Chemistry & Biochemistry, George Mason University, Fairfax, Virginia, USA
| |
Collapse
|
22
|
Ahmed W, Smith WJM, Tiwari A, Bivins A, Simpson SL. Unveiling indicator, enteric, and respiratory viruses in aircraft lavatory wastewater using adsorption-extraction and Nanotrap® Microbiome A Particles workflows. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165007. [PMID: 37348715 DOI: 10.1016/j.scitotenv.2023.165007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/17/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023]
Abstract
The effective detection of viruses in aircraft wastewater is crucial to establish surveillance programs for monitoring virus spread via aircraft passengers. This study aimed to compare the performance of two virus concentration workflows, adsorption-extraction (AE) and Nanotrap® Microbiome A Particles (NMAP), in detecting the prevalence and concentrations of 15 endogenous viruses including ssDNA, dsDNA, ssRNA in 24 aircraft lavatory wastewater samples. The viruses tested included two indicator viruses, four enteric viruses, and nine respiratory viruses. The results showed that cross-assembly phage (crAssphage), human polyomavirus (HPyV), rhinovirus A (RhV A), and rhinovirus B (RhV B) were detected in all wastewater samples using both workflows. However, enterovirus (EV), human norovirus GII (HNoV GII), human adenovirus (HAdV), bocavirus (BoV), parechovirus (PeV), epstein-barr virus (EBV). Influenza A virus (IAV), and respiratory syncytial virus B (RsV B) were infrequently detected by both workflows, and hepatitis A virus (HAV), influenza B virus (IBV), and respiratory syncytial virus B (RsV A) were not detected in any samples. The NMAP workflow had greater detection rates of RNA viruses (EV, PeV, and RsV B) than the AE workflow, while the AE workflow had greater detection rates of DNA viruses (HAdV, BoV, and EBV) than the NMAP workflow. The concentration of each virus was also analyzed, and the results showed that crAssphage had the highest mean concentration (6.76 log10 GC/12.5 mL) followed by HPyV (5.46 log10 GC/12.5 mL using the AE workflow, while the mean concentrations of enteric and respiratory viruses ranged from 2.48 to 3.63 log10 GC/12.5 mL. Using the NMAP workflow, the mean concentration of crAssphage was 5.18 log10 GC/12.5 mL and the mean concentration of HPyV was 4.20 log10 GC/12.5 mL, while mean concentrations of enteric and respiratory viruses ranged from 2.55 to 3.74 log10 GC/12.5 mL. Significantly higher (p < 0.05) mean concentrations of crAssphage and HPyV were observed when employing the AE workflow in comparison to the NMAP workflow. Conversely, the NMAP workflow yielded significantly greater (p < 0.05) concentrations of RhV A, and RhV B compared to the AE workflow. The findings of this study can aid in the selection of an appropriate concentration workflow for virus surveillance studies and contribute to the development of efficient virus detection methods.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Wendy J M Smith
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Ananda Tiwari
- Expert Microbiology Research Unit, Finnish Institute for Health and Welfare, Kuopio 70701, Finland
| | - Aaron Bivins
- Department of Civil & Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | | |
Collapse
|
23
|
Harrison K, Snead D, Kilts A, Ammerman ML, Wigginton KR. The Protective Effect of Virus Capsids on RNA and DNA Virus Genomes in Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13757-13766. [PMID: 37656816 PMCID: PMC10516120 DOI: 10.1021/acs.est.3c03814] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023]
Abstract
Virus concentrations measured in municipal wastewater help inform both the water treatment necessary to protect human health and wastewater-based epidemiology. Wastewater measurements are typically PCR-based, and interpreting gene copy concentrations requires an understanding of the form and stability of the nucleic acids. Here, we study the persistence of model virus genomes in wastewater, the protective effects provided by the virus capsids, and the relative decay rates of the genome and infectious viruses. In benchtop batch experiments in wastewater influent at 25 °C, extraviral (+)ssRNA and dsDNA amplicons degraded by 90% within 15-19 min and 1.6-1.9 h, respectively. When encapsidated, the T90 for MS2 (+)ssRNA increased by 424× and the T90 for T4 dsDNA increased by 52×. The (+)ssRNA decay rates were similar for a range of amplicon sizes. For our model phages MS2 and T4, the nucleic acid signal in untreated wastewater disappeared shortly after the viruses lost infectivity. Combined, these results suggest that most viral genome copies measured in wastewater are encapsidated, that measured concentrations are independent of assay amplicon sizes, and that the virus genome decay rates of nonenveloped (i.e., naked) viruses are similar to inactivation rates. These findings are valuable for the interpretation of wastewater virus measurements.
Collapse
Affiliation(s)
- Katherine
R. Harrison
- Department of Civil &
Environmental Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | - Delaney Snead
- Department of Civil &
Environmental Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | - Anna Kilts
- Department of Civil &
Environmental Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | - Michelle L. Ammerman
- Department of Civil &
Environmental Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | - Krista R. Wigginton
- Department of Civil &
Environmental Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
24
|
Kumblathan T, Liu Y, Pang X, Hrudey SE, Le XC, Li XF. Quantification and Differentiation of SARS-CoV-2 Variants in Wastewater for Surveillance. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2023; 1:203-213. [PMID: 37736345 PMCID: PMC10510104 DOI: 10.1021/envhealth.3c00089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 09/23/2023]
Abstract
Wastewater surveillance plays an important role in the monitoring of infections of SARS-CoV-2 at the community level. We report here the determination of SARS-CoV-2 and differentiation of its variants of concern in 294 wastewater samples collected from two major Canadian cities from May 2021 to March 2023. The overall method of analysis involved extraction of the virus and viral components using electronegative membranes, in situ stabilization and concentration of the viral RNA onto magnetic beads, and direct analysis of the viral RNA on the magnetic beads. Multiplex reverse transcription quantitative polymerase chain reaction (RT-qPCR) assays, targeting specific and naturally selected mutations in SARS-CoV-2, enabled detection and differentiation of the Alpha, Beta, Gamma, Delta, and Omicron variants. An Omicron triplex RT-qPCR assay targeting three mutations, HV 69-70 deletion, K417N, and L452R, was able to detect and differentiate the Omicron BA.1/BA.3, BA.2/XBB, and BA.4/5. This assay had efficiencies of 90-104% for all three mutation targets and a limit of detection of 28 RNA copies per reaction. Analyses of 294 wastewater samples collected over a two-year span showed the concentrations and trends of Alpha, Beta, Gamma, Delta, and Omicron variants as they emerge in two major Canadian cities participating in the wastewater surveillance program. The trends of specific variants were consistent with clinical reports for the same period. At the beginning of each wave, the corresponding variants were detectable in wastewater. For example, RNA concentrations of the BA.2 variant were as high as 104 copies per 100 mL of wastewater collected in January 2022, when approximately only 50-60 clinical cases of BA.2 infection were reported in Canada. These results show that the strategy and highly sensitive assays for the variants of concern in wastewater are potentially useful for the detection of newly emerging SARS-CoV-2 variants and other viruses for future community biomonitoring.
Collapse
Affiliation(s)
- Teresa Kumblathan
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | - Yanming Liu
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | - Xiaoli Pang
- Division
of Diagnostic and Applied Microbiology, Department of Laboratory Medicine
and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2B7
- Public
Health Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, Canada T6G 2J2
| | - Steve E. Hrudey
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | - X. Chris Le
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
- Division
of Diagnostic and Applied Microbiology, Department of Laboratory Medicine
and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2B7
- Public
Health Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, Canada T6G 2J2
| | - Xing-Fang Li
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| |
Collapse
|
25
|
Roldan-Hernandez L, Boehm AB. Adsorption of Respiratory Syncytial Virus, Rhinovirus, SARS-CoV-2, and F+ Bacteriophage MS2 RNA onto Wastewater Solids from Raw Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13346-13355. [PMID: 37647137 PMCID: PMC10501194 DOI: 10.1021/acs.est.3c03376] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
Despite the widespread adoption of wastewater surveillance, more research is needed to understand the fate and transport of viral genetic markers in wastewater. This information is essential for optimizing monitoring strategies and interpreting wastewater surveillance data. In this study, we examined the solid-liquid partitioning behavior of four viruses in wastewater: SARS-CoV-2, respiratory syncytial virus (RSV), rhinovirus (RV), and F+ coliphage/MS2. We used two approaches: (1) laboratory partitioning experiments using lab-grown viruses and (2) distribution experiments using endogenous viruses in raw wastewater. Partition experiments were conducted at 4 and 22 °C. Wastewater samples were spiked with varying concentrations of each virus, solids and liquids were separated via centrifugation, and viral RNA concentrations were quantified using reverse-transcription-digital droplet PCR (RT-ddPCR). For the distribution experiments, wastewater samples were collected from six wastewater treatment plants and processed without spiking exogenous viruses; viral RNA concentrations were measured in wastewater solids and liquids. In both experiments, RNA concentrations were higher in the solid fraction than the liquid fraction by approximately 3-4 orders of magnitude. Partition coefficients (KF) ranged from 2000-270,000 mL·g-1 across viruses and temperature conditions. Distribution coefficients (Kd) were consistent with results from partitioning experiments. Further research is needed to understand how virus and wastewater characteristics might influence the partitioning of viral genetic markers in wastewater.
Collapse
Affiliation(s)
- Laura Roldan-Hernandez
- Department of Civil &
Environmental Engineering, School of Engineering and Doerr School
of Sustainability, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| | - Alexandria B. Boehm
- Department of Civil &
Environmental Engineering, School of Engineering and Doerr School
of Sustainability, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| |
Collapse
|
26
|
Kumblathan T, Liu Y, Qiu Y, Pang L, Hrudey SE, Le XC, Li XF. An efficient method to enhance recovery and detection of SARS-CoV-2 RNA in wastewater. J Environ Sci (China) 2023; 130:139-148. [PMID: 37032030 PMCID: PMC9554329 DOI: 10.1016/j.jes.2022.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 05/25/2023]
Abstract
Wastewater surveillance (WS) of SARS-CoV-2 currently requires multiple steps and suffers low recoveries and poor sensitivity. Here, we report an improved analytical method with high sensitivity and recovery to quantify SARS-CoV-2 RNA in wastewater. To improve the recovery, we concentrated SARS-CoV-2 viral particles and RNA from both the solid and aqueous phases of wastewater using an electronegative membrane (EM). The captured viral particles and RNA on the EM were incubated in our newly developed viral inactivation and RNA preservation (VIP) buffer. Subsequently, the RNA was concentrated on magnetic beads and inhibitors removed by washing. Without eluting, the RNA on the magnetic beads was directly detected using reverse transcription quantitative polymerase chain reaction (RT-qPCR). Analysis of SARS-CoV-2 pseudovirus (SARS-CoV-2 RNA in a noninfectious viral coat) spiked to wastewater samples showed an improved recovery of 80%. Analysis of 120 wastewater samples collected twice weekly between May 2021 and February 2022 from two wastewater treatment plants showed 100% positive detection, which agreed with the results independently obtained by a provincial public health laboratory. The concentrations of SARS-CoV-2 RNA in these wastewater samples ranged from 2.4×102 to 2.9×106 copies per 100 mL of wastewater. Our method's capability of detecting trace and diverse concentrations of SARS-CoV-2 in complex wastewater samples is attributed to the enhanced recovery of SARS-CoV-2 RNA and efficient removal of PCR inhibitors. The improved method for the recovery and detection of viral RNA in wastewater is important for wastewater surveillance, complementing clinical diagnostic tests for public health protection.
Collapse
Affiliation(s)
- Teresa Kumblathan
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Yanming Liu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Yuanyuan Qiu
- Division of Diagnostic and Applied Microbiology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2G3, Canada
| | - Lilly Pang
- Division of Diagnostic and Applied Microbiology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2G3, Canada; Public Health Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, T6G 2G3, Canada
| | - Steve E Hrudey
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada.
| |
Collapse
|
27
|
Zhao L, Geng Q, Corchis-Scott R, McKay RM, Norton J, Xagoraraki I. Targeting a free viral fraction enhances the early alert potential of wastewater surveillance for SARS-CoV-2: a methods comparison spanning the transition between delta and omicron variants in a large urban center. Front Public Health 2023; 11:1140441. [PMID: 37546328 PMCID: PMC10400354 DOI: 10.3389/fpubh.2023.1140441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Wastewater surveillance has proven to be a valuable approach to monitoring the spread of SARS-CoV-2, the virus that causes Coronavirus disease 2019 (COVID-19). Recognizing the benefits of wastewater surveillance as a tool to support public health in tracking SARS-CoV-2 and other respiratory pathogens, numerous wastewater virus sampling and concentration methods have been tested for appropriate applications as well as their significance for actionability by public health practices. Methods Here, we present a 34-week long wastewater surveillance study that covers nearly 4 million residents of the Detroit (MI, United States) metropolitan area. Three primary concentration methods were compared with respect to recovery of SARS-CoV-2 from wastewater: Virus Adsorption-Elution (VIRADEL), polyethylene glycol precipitation (PEG), and polysulfone (PES) filtration. Wastewater viral concentrations were normalized using various parameters (flow rate, population, total suspended solids) to account for variations in flow. Three analytical approaches were implemented to compare wastewater viral concentrations across the three primary concentration methods to COVID-19 clinical data for both normalized and non-normalized data: Pearson and Spearman correlations, Dynamic Time Warping (DTW), and Time Lagged Cross Correlation (TLCC) and peak synchrony. Results It was found that VIRADEL, which captures free and suspended virus from supernatant wastewater, was a leading indicator of COVID-19 cases within the region, whereas PEG and PES filtration, which target particle-associated virus, each lagged behind the early alert potential of VIRADEL. PEG and PES methods may potentially capture previously shed and accumulated SARS-CoV-2 resuspended from sediments in the interceptors. Discussion These results indicate that the VIRADEL method can be used to enhance the early-warning potential of wastewater surveillance applications although drawbacks include the need to process large volumes of wastewater to concentrate sufficiently free and suspended virus for detection. While lagging the VIRADEL method for early-alert potential, both PEG and PES filtration can be used for routine COVID-19 wastewater monitoring since they allow a large number of samples to be processed concurrently while being more cost-effective and with rapid turn-around yielding results same day as collection.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States
| | - Qiudi Geng
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Ryland Corchis-Scott
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Robert Michael McKay
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
- Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, OH, United States
| | - John Norton
- Great Lakes Water Authority, Detroit, MI, United States
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
28
|
Boehm AB, Wolfe MK, Wigginton KR, Bidwell A, White BJ, Hughes B, Duong D, Chan-Herur V, Bischel HN, Naughton CC. Human viral nucleic acids concentrations in wastewater solids from Central and Coastal California USA. Sci Data 2023; 10:396. [PMID: 37349355 PMCID: PMC10287720 DOI: 10.1038/s41597-023-02297-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
We measured concentrations of SARS-CoV-2, influenza A and B virus, respiratory syncytial virus (RSV), mpox virus, human metapneumovirus, norovirus GII, and pepper mild mottle virus nucleic acids in wastewater solids at twelve wastewater treatment plants in Central California, USA. Measurements were made daily for up to two years, depending on the wastewater treatment plant. Measurements were made using digital droplet (reverse-transcription-) polymerase chain reaction (RT-PCR) following best practices for making environmental molecular biology measurements. These data can be used to better understand disease occurrence in communities contributing to the wastewater.
Collapse
Affiliation(s)
- Alexandria B Boehm
- Department of Civil & Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, CA, USA.
| | - Marlene K Wolfe
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Krista R Wigginton
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, 48109, Michigan, USA
| | - Amanda Bidwell
- Department of Civil & Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, CA, USA
| | | | | | | | | | - Heather N Bischel
- Department of Civil and Environmental Engineering, University of California Davis, Davis, CA, 95616, USA
| | - Colleen C Naughton
- Department of Civil and Environmental Engineering, University of California Merced, Merced, CA, 95343, USA
| |
Collapse
|
29
|
Torabi S, Amirsoleimani A, Dehghan Banadaki M, Strike WD, Rockward A, Noble A, Liversedge M, Keck JW, Berry SM. Stabilization of SARS-CoV-2 RNA in wastewater via rapid RNA extraction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162992. [PMID: 36948314 PMCID: PMC10028336 DOI: 10.1016/j.scitotenv.2023.162992] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/21/2022] [Accepted: 03/17/2023] [Indexed: 05/13/2023]
Abstract
Wastewater-based Epidemiology (WBE) has contributed to surveillance of SARS-CoV-2 in communities across the world. Both symptomatic and asymptomatic patients with COVID-19 can shed the virus through the gastrointestinal tract, enabling the quantification of the virus in stool and ultimately in wastewater (WW). Unfortunately, instability of SARS-CoV-2 RNA in wastewater limits the utility of WBE programs, particularly in remote/rural regions where reliable cold storage and/or rapid shipping may be unavailable. This study examined whether rapid SARS-CoV-2 RNA extraction on the day of sample collection could minimize degradation. Importantly, the extraction technology used in these experiments, termed exclusion-based sample preparation (ESP), is lightweight, portable, and electricity-free, making it suitable for implementation in remote settings. We demonstrated that immediate RNA extraction followed by ambient storage significantly increased the RNA half-life compared to raw wastewater samples stored at both 4 °C or ambient temperature. Given that RNA degradation negatively impacts both the sensitivity and precision of WBE measurements, efforts must be made to mitigate degradation in order to maximize the potential impact of WBE on public health.
Collapse
Affiliation(s)
- Soroosh Torabi
- Department of Mechanical Engineering, College of Engineering, University of Kentucky, United States of America
| | - Atena Amirsoleimani
- Department of Mechanical Engineering, College of Engineering, University of Kentucky, United States of America
| | - Mohammad Dehghan Banadaki
- Department of Mechanical Engineering, College of Engineering, University of Kentucky, United States of America
| | - William Dalton Strike
- Department of Biomedical Engineering, College of Engineering, University of Kentucky, United States of America
| | - Alexus Rockward
- Department of Biomedical Engineering, College of Engineering, University of Kentucky, United States of America
| | - Ann Noble
- Department of Mechanical Engineering, College of Engineering, University of Kentucky, United States of America
| | - Matthew Liversedge
- Department of Family and Community Medicine, College of Medicine, University of Kentucky, United States of America
| | - James W Keck
- Department of Family and Community Medicine, College of Medicine, University of Kentucky, United States of America
| | - Scott M Berry
- Department of Mechanical Engineering, College of Engineering, University of Kentucky, United States of America; Department of Biomedical Engineering, College of Engineering, University of Kentucky, United States of America.
| |
Collapse
|
30
|
Reyes-Calderón A, Mindreau-Ganoza E, Pardo-Figueroa B, Garcia-Luquillas KR, Yufra SP, Romero PE, Antonini C, Renom JM, Mota CR, Santa-Maria MC. Evaluation of low-cost SARS-CoV-2 RNA purification methods for viral quantification by RT-qPCR and next-generation sequencing analysis: Implications for wider wastewater-based epidemiology adoption. Heliyon 2023; 9:e16130. [PMID: 37228686 PMCID: PMC10188194 DOI: 10.1016/j.heliyon.2023.e16130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/09/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
Based Epidemiology (WBE) consists of quantifying biomarkers in sewerage systems to derive real-time information on the health and/or lifestyle of the contributing population. WBE usefulness was vastly demonstrated in the context of the COVID-19 pandemic. Many methods for SARS-CoV-2 RNA determination in wastewater were devised, which vary in cost, infrastructure requirements and sensitivity. For most developing countries, implementing WBE for viral outbreaks, such as that of SARS-CoV-2, proved challenging due to budget, reagent availability and infrastructure constraints. In this study, we assessed low-cost methods for SARS-CoV-2 RNA quantification by RT-qPCR, and performed variant identification by NGS in wastewater samples. Results showed that the effect of adjusting pH to 4 and/or adding MgCl2 (25 mM) was negligible when using the adsorption-elution method, as well as basal physicochemical parameters in the sample. In addition, results supported the standardized use of linear rather than plasmid DNA for a more accurate viral RT-qPCR estimation. The modified TRIzol-based purification method in this study yielded comparable RT-qPCR estimation to a column-based approach, but provided better NGS results, suggesting that column-based purification for viral analysis should be revised. Overall, this work provides evaluation of a robust, sensitive and cost-effective method for SARS-CoV-2 RNA analysis that could be implemented for other viruses, for a wider WEB adoption.
Collapse
Affiliation(s)
- Alonso Reyes-Calderón
- Centro de Investigación y Tecnología del Agua - CITA, Universidad de Ingenieria y Tecnologia – UTEC, Jr. Medrano Silva 165, Lima, 15063, Peru
| | - Elías Mindreau-Ganoza
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Germán Amézaga s/n, Lima, 15081, Peru
| | - Braulio Pardo-Figueroa
- Centro de Investigación y Tecnología del Agua - CITA, Universidad de Ingenieria y Tecnologia – UTEC, Jr. Medrano Silva 165, Lima, 15063, Peru
| | - Katherine R. Garcia-Luquillas
- Centro de Investigación y Tecnología del Agua - CITA, Universidad de Ingenieria y Tecnologia – UTEC, Jr. Medrano Silva 165, Lima, 15063, Peru
| | - Sonia P. Yufra
- Departamento de Ingeniería Metalúrgica e Ingeniería Ambiental, Universidad Nacional de San Agustín, Av. Independencia s/n, Arequipa, 04001, Peru
| | - Pedro E. Romero
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Germán Amézaga s/n, Lima, 15081, Peru
| | - Claudia Antonini
- Departamento de Ingeniería Industrial, Universidad de Ingenieria y Tecnologia - UTEC, Jr. Medrano Silva 165, Lima, 15063, Peru
| | - Jose-Miguel Renom
- Departamento de Ciencias, Universidad de Ingenieria y Tecnologia - UTEC, Jr. Medrano Silva 165, Lima, 15063, Peru
| | - Cesar R. Mota
- Departamento de Engenharia Sanitária e Ambiental, Escola de Engenharia, Universidade Federal de Minas Gerais (UFMG), Av. Antonio Carlos, Belo Horizonte, 6.627, 31270-901, Brazil
| | - Monica C. Santa-Maria
- Centro de Investigación y Tecnología del Agua - CITA, Universidad de Ingenieria y Tecnologia – UTEC, Jr. Medrano Silva 165, Lima, 15063, Peru
| |
Collapse
|
31
|
Jiang G, Liu Y, Tang S, Kitajima M, Haramoto E, Arora S, Choi PM, Jackson G, D'Aoust PM, Delatolla R, Zhang S, Guo Y, Wu J, Chen Y, Sharma E, Prosun TA, Zhao J, Kumar M, Honda R, Ahmed W, Meiman J. Moving forward with COVID-19: Future research prospects of wastewater-based epidemiology methodologies and applications. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2023; 33:100458. [PMID: 37034453 PMCID: PMC10065412 DOI: 10.1016/j.coesh.2023.100458] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Wastewater-based epidemiology (WBE) has been demonstrated for its great potential in tracking of coronavirus disease 2019 (COVID-19) transmission among populations despite some inherent methodological limitations. These include non-optimized sampling approaches and analytical methods; stability of viruses in sewer systems; partitioning/retention in biofilms; and the singular and inaccurate back-calculation step to predict the number of infected individuals in the community. Future research is expected to (1) standardize best practices in wastewater sampling, analysis and data reporting protocols for the sensitive and reproducible detection of viruses in wastewater; (2) understand the in-sewer viral stability and partitioning under the impacts of dynamic wastewater flow, properties, chemicals, biofilms and sediments; and (3) achieve smart wastewater surveillance with artificial intelligence and big data models. Further specific research is essential in the monitoring of other viral pathogens with pandemic potential and subcatchment applications to maximize the benefits of WBE beyond COVID-19.
Collapse
Affiliation(s)
- Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health (NIEH), Chinese Center for Disease Control and Prevention (China CDC), Chaoyang District, Beijing 100021, China
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sudipti Arora
- Dr. B. Lal Institute of Biotechnology, 6-E, Malviya Industrial Area, Malviya Nagar, Jaipur, 302017, India
| | - Phil M Choi
- Water Unit, Health Protection Branch, Queensland Public Health and Scientific Services, Queensland Health, Australia
| | - Greg Jackson
- Water Unit, Health Protection Branch, Queensland Public Health and Scientific Services, Queensland Health, Australia
| | - Patrick M D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Shuxin Zhang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ying Guo
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jiangping Wu
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yan Chen
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Elipsha Sharma
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Tanjila Alam Prosun
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jiawei Zhao
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, Japan
| | - Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Jon Meiman
- Wisconsin Department of Health Services, Madison, WI 53701, USA
| |
Collapse
|
32
|
Jarvie MM, Reed-Lukomski M, Southwell B, Wright D, Nguyen TNT. Monitoring of COVID-19 in wastewater across the Eastern Upper Peninsula of Michigan. ENVIRONMENTAL ADVANCES 2023; 11:100326. [PMID: 36471702 PMCID: PMC9714184 DOI: 10.1016/j.envadv.2022.100326] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/01/2022] [Accepted: 11/29/2022] [Indexed: 05/12/2023]
Abstract
Wastewater-based epidemiology is being used as a tool to monitor the spread of COVID-19 and provide an early warning for the presence or increase of clinical cases in a community. The majority of wastewater-based epidemiology for COVID-19 tracking has been utilized in sewersheds that service populations in the tens-to-hundreds of thousands. Few studies have been conducted to assess the usefulness of wastewater in predicting COVID-19 clinical cases specifically in rural areas. This study collected samples from 16 locations across the Eastern Upper Peninsula of Michigan from June to December 2021. Sampling locations included 12 rural municipalities, a Tribal housing community and casino, a public university, three municipalities that also contained a prison, and a small island with heavy tourist traffic. Samples were analyzed for SARS-CoV-2 N1, N2, and variant gene copies using reverse transcriptase droplet digital polymerase chain reaction (RT-ddPCR). Wastewater N1 and N2 gene copies and clinical case counts were correlated to determine if wastewater results were predictive of clinical cases. Significant correlation between N1 and N2 gene copies and clinical cases was found for all sites (⍴= 0.89 to 0.48). N1 and N2 wastewater results were predictive of clinical case trends within 0-7 days. The Delta variant was detected in the Pickford and St. Ignace samples more than 12-days prior to the first reported Delta clinical cases in their respective counties. Locations with low correlation could be attributed to their high rates of tourism. This is further supported by the high correlation seen in the public university, which is a closed population. Long-term wastewater monitoring over a large, rural geographic area is useful for informing the public of potential outbreaks in the community regardless of asymptomatic cases and access to clinical testing.
Collapse
Affiliation(s)
- Michelle M Jarvie
- School of Science and Medicine, Lake Superior State University, 650 W. Easterday Ave., Sault Ste, Marie, MI 49783, USA
| | - Moriah Reed-Lukomski
- School of Science and Medicine, Lake Superior State University, 650 W. Easterday Ave., Sault Ste, Marie, MI 49783, USA
| | - Benjamin Southwell
- School of Science and Medicine, Lake Superior State University, 650 W. Easterday Ave., Sault Ste, Marie, MI 49783, USA
| | - Derek Wright
- School of Natural Resources and Environment, Lake Superior State University, 650 W. Easterday Ave., Sault Ste. Marie, MI 49783, USA
| | - Thu N T Nguyen
- School of Science and Medicine, Lake Superior State University, 650 W. Easterday Ave., Sault Ste, Marie, MI 49783, USA
| |
Collapse
|
33
|
Baldwin WM, Dayton RD, Bivins AW, Scott RS, Yurochko AD, Vanchiere JA, Davis T, Arnold CL, Asuncion JET, Bhuiyan MAN, Snead B, Daniel W, Smith DG, Goeders NE, Kevil CG, Carroll J, Murnane KS. Highly socially vulnerable communities exhibit disproportionately increased viral loads as measured in community wastewater. ENVIRONMENTAL RESEARCH 2023; 222:115351. [PMID: 36709030 PMCID: PMC9877155 DOI: 10.1016/j.envres.2023.115351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/12/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Wastewater surveillance has proven to be a useful tool for evidence-based epidemiology in the fight against the SARS-CoV-2 virus. It is particularly useful at the population level where acquisition of individual test samples may be time or cost-prohibitive. Wastewater surveillance for SARS-CoV-2 has typically been performed at wastewater treatment plants; however, this study was designed to sample on a local level to monitor the spread of the virus among three communities with distinct social vulnerability indices in Shreveport, Louisiana, located in a socially vulnerable region of the United States. Twice-monthly grab samples were collected from September 30, 2020, to March 23, 2021, during the Beta wave of the pandemic. The goals of the study were to examine whether: 1) concentrations of SARS-CoV-2 RNA in wastewater varied with social vulnerability indices and, 2) the time lag of spikes differed during wastewater monitoring in the distinct communities. The size of the population contributing to each sample was assessed via the quantification of the pepper mild mottle virus (PMMoV), which was significantly higher in the less socially vulnerable community. We found that the communities with higher social vulnerability exhibited greater viral loads as assessed by wastewater when normalized with PMMoV (Kruskal-Wallis, p < 0.05). The timing of the spread of the virus through the three communities appeared to be similar. These results suggest that interconnected communities within a municipality experienced the spread of the SARS-CoV-2 virus at similar times, but areas of high social vulnerability experienced more intense wastewater viral loads.
Collapse
Affiliation(s)
- William M Baldwin
- Department of Pharmacology, Toxicology & Neuroscience, School of Graduate Studies, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA; Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA; Center of Excellence for Emerging Viral Threats, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | - Robert D Dayton
- Department of Pharmacology, Toxicology & Neuroscience, School of Graduate Studies, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA; Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA; Center of Excellence for Emerging Viral Threats, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | - Aaron W Bivins
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Rona S Scott
- Center of Excellence for Emerging Viral Threats, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA; Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | - Andrew D Yurochko
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA; Center of Excellence for Emerging Viral Threats, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA; Division of Health Disparities, Department of Medicine, School of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | - John A Vanchiere
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA; Center of Excellence for Emerging Viral Threats, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA; Division of Infectious Diseases, Department of Pediatrics, School of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | - Terry Davis
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA; Center of Excellence for Emerging Viral Threats, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA; Division of Health Disparities, Department of Medicine, School of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | - Connie L Arnold
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA; Center of Excellence for Emerging Viral Threats, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA; Division of Health Disparities, Department of Medicine, School of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | - Jose E T Asuncion
- Department of Public Health, School of Allied Health Professions, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | - Mohammad A N Bhuiyan
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA; Center of Excellence for Emerging Viral Threats, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA; Division of Clinical Informatics, Department of Medicine, School of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | - Brandon Snead
- Department of Water and Sewage, City of Shreveport, Shreveport, Louisiana, USA
| | - William Daniel
- Department of Water and Sewage, City of Shreveport, Shreveport, Louisiana, USA
| | - Deborah G Smith
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA; Department of Public Health, School of Allied Health Professions, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | - Nicholas E Goeders
- Department of Pharmacology, Toxicology & Neuroscience, School of Graduate Studies, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA; Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA; Department of Psychiatry & Behavioral Medicine, School of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | - Christopher G Kevil
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA; Center of Excellence for Emerging Viral Threats, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA; Department of Pathology, School of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA; Department of Molecular and Cellular Physiology, School of Graduate Studies, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA; Department of Cell Biology and Anatomy, School of Graduate Studies, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | - Jennifer Carroll
- Center of Excellence for Emerging Viral Threats, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | - Kevin S Murnane
- Department of Pharmacology, Toxicology & Neuroscience, School of Graduate Studies, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA; Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA; Center of Excellence for Emerging Viral Threats, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA; Department of Psychiatry & Behavioral Medicine, School of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA; Department of Cell Biology and Anatomy, School of Graduate Studies, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA.
| |
Collapse
|
34
|
Babler KM, Sharkey ME, Abelson S, Amirali A, Benitez A, Cosculluela GA, Grills GS, Kumar N, Laine J, Lamar W, Lamm ED, Lyu J, Mason CE, McCabe PM, Raghavender J, Reding BD, Roca MA, Schürer SC, Stevenson M, Szeto A, Tallon JJ, Vidović D, Zarnegarnia Y, Solo-Gabriele HM. Degradation rates influence the ability of composite samples to represent 24-hourly means of SARS-CoV-2 and other microbiological target measures in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161423. [PMID: 36623667 PMCID: PMC9817413 DOI: 10.1016/j.scitotenv.2023.161423] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The utility of using severe-acute respiratory syndrome coronavirus-2 (SARS-CoV-2) RNA for assessing the prevalence of COVID-19 within communities begins with the design of the sample collection program. The objective of this study was to assess the utility of 24-hour composites as representative samples for measuring multiple microbiological targets in wastewater, and whether normalization of SARS-CoV-2 by endogenous targets can be used to decrease hour to hour variability at different watershed scales. Two sets of experiments were conducted, in tandem with the same wastewater, with samples collected at the building, cluster, and community sewershed scales. The first set of experiments focused on evaluating degradation of microbiological targets: SARS-CoV-2, Simian Immunodeficiency Virus (SIV) - a surrogate spiked into the wastewater, plus human waste indicators of Pepper Mild Mottle Virus (PMMoV), Beta-2 microglobulin (B2M), and fecal coliform bacteria (FC). The second focused on the variability of these targets from samples, collected each hour on the hour. Results show that SARS-CoV-2, PMMoV, and B2M were relatively stable, with minimal degradation over 24-h. SIV, which was spiked-in prior to analysis, degraded significantly and FC increased significantly over the course of 24 h, emphasizing the possibility for decay and growth within wastewater. Hour-to-hour variability of the source wastewater was large between each hour of sampling relative to the variability of the SARS-CoV-2 levels calculated between sewershed scales; thus, differences in SARS-CoV-2 hourly variability were not statistically significant between sewershed scales. Results further provided that the quantified representativeness of 24-h composite samples (i.e., statistical equivalency compared against hourly collected grabs) was dependent upon the molecular target measured. Overall, improvements made by normalization were minimal within this study. Degradation and multiplication for other targets should be evaluated when deciding upon whether to collect composite or grab samples in future studies.
Collapse
Affiliation(s)
- Kristina M Babler
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Mark E Sharkey
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Samantha Abelson
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ayaaz Amirali
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Aymara Benitez
- Miami-Dade Water and Sewer Department, Miami, FL 33149, USA
| | - Gabriella A Cosculluela
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - George S Grills
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Naresh Kumar
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jennifer Laine
- Environmental Health and Safety, University of Miami, Miami, FL 33136, USA
| | - Walter Lamar
- Division of Occupational Health, Safety & Compliance, University of Miami Health System, Miami, FL 33136, USA
| | - Erik D Lamm
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Jiangnan Lyu
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York City, NY 10021, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Philip M McCabe
- Department of Psychology, University of Miami, Coral Gables, FL 33146, USA; Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
| | | | - Brian D Reding
- Environmental Health and Safety, University of Miami, Miami, FL 33136, USA
| | - Matthew A Roca
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Stephan C Schürer
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Institute for Data Science & Computing, University of Miami, Coral Gables, FL, USA
| | - Mario Stevenson
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Angela Szeto
- Department of Psychology, University of Miami, Coral Gables, FL 33146, USA
| | - John J Tallon
- Facilities and Operations, University of Miami, Coral Gables, FL 33146, USA
| | - Dusica Vidović
- Department of Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yalda Zarnegarnia
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Helena M Solo-Gabriele
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
35
|
Zhao L, Zou Y, David RE, Withington S, McFarlane S, Faust RA, Norton J, Xagoraraki I. Simple methods for early warnings of COVID-19 surges: Lessons learned from 21 months of wastewater and clinical data collection in Detroit, Michigan, United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161152. [PMID: 36572285 PMCID: PMC9783093 DOI: 10.1016/j.scitotenv.2022.161152] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 05/12/2023]
Abstract
Wastewater-based epidemiology (WBE) has drawn great attention since the Coronavirus disease 2019 (COVID-19) pandemic, not only due to its capability to circumvent the limitations of traditional clinical surveillance, but also due to its potential to forewarn fluctuations of disease incidences in communities. One critical application of WBE is to provide "early warnings" for upcoming fluctuations of disease incidences in communities which traditional clinical testing is incapable to achieve. While intricate models have been developed to determine early warnings based on wastewater surveillance data, there is an exigent need for straightforward, rapid, broadly applicable methods for health departments and partner agencies to implement. Our purpose in this study is to develop and evaluate such early-warning methods and clinical-case peak-detection methods based on WBE data to mount an informed public health response. Throughout an extended wastewater surveillance period across Detroit, MI metropolitan area (the entire study period is from September 2020 to May 2022) we designed eight early-warning methods (three real-time and five post-factum). Additionally, we designed three peak-detection methods based on clinical epidemiological data. We demonstrated the utility of these methods for providing early warnings for COVID-19 incidences, with their counterpart accuracies evaluated by hit rates. "Hit rates" were defined as the number of early warning dates (using wastewater surveillance data) that captured defined peaks (using clinical epidemiological data) divided by the total number of early warning dates. Hit rates demonstrated that the accuracy of both real-time and post-factum methods could reach 100 %. Furthermore, the results indicate that the accuracy was influenced by approaches to defining peaks of disease incidence. The proposed methods herein can assist health departments capitalizing on WBE data to assess trends and implement quick public health responses to future epidemics. Besides, this study elucidated critical factors affecting early warnings based on WBE amid the COVID-19 pandemic.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, USA
| | - Yangyang Zou
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, USA
| | - Randy E David
- Detroit Health Department, 100 Mack Ave, Detroit, MI 48201, USA
| | | | - Stacey McFarlane
- Macomb County Health Division, 43525 Elizabeth Rd, Mount Clemens, MI 48043, USA
| | - Russell A Faust
- Oakland County Health Division, 1200 Telegraph Rd, Pontiac, MI 48341, USA
| | - John Norton
- Great Lakes Water Authority, 735 Randolph, Detroit, MI 48226, USA
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct, East Lansing, MI 48823, USA.
| |
Collapse
|
36
|
Davis A, Keely SP, Brinkman NE, Bohrer Z, Ai Y, Mou X, Chattopadhyay S, Hershey O, Senko J, Hull N, Lytmer E, Quintero A, Lee J. Evaluation of intra- and inter-lab variability in quantifying SARS-CoV-2 in a state-wide wastewater monitoring network. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2023; 9:1053-1068. [PMID: 37701755 PMCID: PMC10494892 DOI: 10.1039/d2ew00737a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
In December 2019, SARS-CoV-2, the virus that causes coronavirus disease 2019, was first reported and subsequently triggered a global pandemic. Wastewater monitoring, a strategy for quantifying viral gene concentrations from wastewater influents within a community, has served as an early warning and management tool for the spread of SARS-CoV-2 in a community. Ohio built a collaborative statewide wastewater monitoring network that is supported by eight labs (university, government, and commercial laboratories) with unique sample processing workflows. Consequently, we sought to characterize the variability in wastewater monitoring results for network labs. Across seven trials between October 2020 and November 2021, eight participating labs successfully quantified two SARS-CoV-2 RNA targets and human fecal indicator virus targets in wastewater sample aliquots with reproducible results, although recovery efficiencies of spiked surrogates ranged from 3 to 75%. When SARS-CoV-2 gene fragment concentrations were adjusted for recovery efficiency and flow, the proportion of variance between laboratories was minimized, serving as the best model to account for between-lab variance. Another adjustment factor (alone and in different combinations with the above factors) considered to account for sample and measurement variability includes fecal marker normalization. Genetic quantification variability can be attributed to many factors, including the methods, individual samples, and water quality parameters. In addition, statistically significant correlations were observed between SARS-CoV-2 RNA and COVID-19 case numbers, supporting the notion that wastewater surveillance continues to serve as an effective monitoring tool. This study serves as a real-time example of multi-laboratory collaboration for public health preparedness for infectious diseases.
Collapse
Affiliation(s)
- Angela Davis
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, 1841 Neil Avenue, Columbus, OH 43210, USA
| | - Scott P Keely
- United States Environmental Protection Agency, Office of Research and Development, USA
| | - Nichole E Brinkman
- United States Environmental Protection Agency, Office of Research and Development, USA
| | | | - Yuehan Ai
- Department of Food Science & Technology, The Ohio State University, USA
| | - Xiaozhen Mou
- Department of Biological Sciences, Kent State University, USA
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, Department of Biology and Department of Geosciences, University of Toledo, USA
| | - Olivia Hershey
- Department of Geosciences and Biology, University of Akron, USA
| | - John Senko
- Department of Geosciences and Biology, University of Akron, USA
| | - Natalie Hull
- Department of Civil, Environmental and Geodetic Engineering and Sustainability Institute, The Ohio State University, USA
| | - Eva Lytmer
- Department of Biological Sciences, Bowling Green State University, USA
| | | | - Jiyoung Lee
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, 1841 Neil Avenue, Columbus, OH 43210, USA
- Department of Food Science & Technology, The Ohio State University, USA
- Infectious Diseases Institute, The Ohio State University, USA
| |
Collapse
|
37
|
Zheng X, Wang M, Deng Y, Xu X, Lin D, Zhang Y, Li S, Ding J, Shi X, Yau CI, Poon LLM, Zhang T. A rapid, high-throughput, and sensitive PEG-precipitation method for SARS-CoV-2 wastewater surveillance. WATER RESEARCH 2023; 230:119560. [PMID: 36623382 PMCID: PMC9803703 DOI: 10.1016/j.watres.2022.119560] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
The effective application of wastewater surveillance is dependent on testing capacity and sensitivity to obtain high spatial resolution testing results for a timely targeted public health response. To achieve this purpose, the development of rapid, high-throughput, and sensitive virus concentration methods is urgently needed. Various protocols have been developed and implemented in wastewater surveillance networks so far, however, most of them lack the ability to scale up testing capacity or cannot achieve sufficient sensitivity for detecting SARS-CoV-2 RNA at low prevalence. In the present study, using positive raw wastewater in Hong Kong, a PEG precipitation-based three-step centrifugation method was developed, including low-speed centrifugation for large particles removal and the recovery of viral nucleic acid, and medium-speed centrifugation for the concentration of viral nucleic acid. This method could process over 100 samples by two persons per day to reach the process limit of detection (PLoD) of 3286 copies/L wastewater. Additionally, it was found that the testing capacity could be further increased by decreasing incubation and centrifugation time without significantly influencing the method sensitivity. The entire procedure uses ubiquitous reagents and instruments found in most laboratories to obtain robust testing results. This high-throughput, cost-effective, and sensitive tool will promote the establishment of nearly real-time wastewater surveillance networks for valuable public health information.
Collapse
Affiliation(s)
- Xiawan Zheng
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Mengying Wang
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xiaoqing Xu
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Danxi Lin
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yulin Zhang
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Shuxian Li
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Jiahui Ding
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xianghui Shi
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Chung In Yau
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong SAR, China
| | - Leo L M Poon
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong SAR, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China; Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau SAR, China.
| |
Collapse
|
38
|
Ahmed W, Bivins A, Korajkic A, Metcalfe S, Smith WJM, Simpson SL. Comparative analysis of Adsorption-Extraction (AE) and Nanotrap® Magnetic Virus Particles (NMVP) workflows for the recovery of endogenous enveloped and non-enveloped viruses in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160072. [PMID: 36356768 PMCID: PMC10823496 DOI: 10.1016/j.scitotenv.2022.160072] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
In this study, two virus concentration methods, namely Adsorption-Extraction (AE) and Nanotrap® Magnetic Virus Particles (NMVP) along with commercially available extraction kits were used to quantify endogenous pepper mild mottle virus (PMMoV) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in nucleic acid extracted from 48 wastewater samples collected over six events from eight wastewater treatment plants (WWTPs). The main aim was to determine which workflow (i.e., concentration and extraction methods) produces greater concentrations of endogenous PMMoV and SARS-CoV-2 gene copies (GC) in comparison with each other. Turbidity and total suspended solids (TSS) of wastewater samples within and among the eight WWTPs were highly variable (41-385 NTU and 77-668 mg/L TSS). In 58 % of individual wastewater samples, the log10 GC concentrations of PMMoV were greater by NMVP workflow compared to AE workflow. Paired measurements of PMMoV GC/10 mL from AE and NMVP across all 48 wastewater samples were weakly correlated (r = 0.455, p = 0.001) and demonstrated a poor linear relationship (r2 = 0.207). The log10 GC concentrations of SARS-CoV-2 in 69 % of individual samples were greater by AE workflow compared to NMVP workflow. In contrast to PMMoV, the AE and NMVP derived SARS-CoV-2 GC counts were strongly correlated (r = 0.859, p < 0.001) and demonstrated a strong linear relationship (r2 = 0.738). In general, the PMMoV GC achieved by the NMVP workflow decreased with increasing turbidity, but the PMMoV GC by the AE workflow did not appear to be as sensitive to either turbidity or TSS levels. These findings suggest that wastewater sample turbidity or suspended solids concentration, and the intended target for analysis should be considered when validating an optimal workflow for wastewater surveillance of viruses.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Aaron Bivins
- Department of Civil and Environmental Engineering, Louisiana State University, 3255 Patrick F. Taylor Hall, Baton Rouge, LA 70803, USA
| | - Asja Korajkic
- United States Environmental Protection Agency, 26W Martin Luther King Jr. Drive, Cincinnati, OH 45268, USA
| | - Suzanne Metcalfe
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Wendy J M Smith
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | | |
Collapse
|
39
|
Burnet JB, Cauchie HM, Walczak C, Goeders N, Ogorzaly L. Persistence of endogenous RNA biomarkers of SARS-CoV-2 and PMMoV in raw wastewater: Impact of temperature and implications for wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159401. [PMID: 36240930 PMCID: PMC9554201 DOI: 10.1016/j.scitotenv.2022.159401] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/21/2022] [Accepted: 10/08/2022] [Indexed: 05/28/2023]
Abstract
Understanding the persistence of SARS-CoV-2 biomarkers in wastewater should guide wastewater-based epidemiology users in selecting best RNA biomarkers for reliable detection of the virus during current and future waves of the pandemic. In the present study, the persistence of endogenous SARS-CoV-2 were assessed during one month for six different RNA biomarkers and for the pepper mild mottle virus (PMMoV) at three different temperatures (4, 12 and 20 °C) in one wastewater sample. All SARS-CoV-2 RNA biomarkers were consistently detected during 6 days at 4° and differences in signal persistence among RNA biomarkers were mostly observed at 20 °C with N biomarkers being globally more persistent than RdRP, E and ORF1ab ones. SARS-CoV-2 signal persistence further decreased in a temperature dependent manner. At 12 and 20 °C, RNA biomarker losses of 1-log10 occurred on average after 6 and 4 days, and led to a complete signal loss after 13 and 6 days, respectively. Besides the effect of temperature, SARS-CoV-2 RNA signals were more persistent in the particulate phase compared to the aqueous one. Finally, PMMoV RNA signal was highly persistent in both phases and significantly differed from that of SARS-CoV-2 biomarkers. We further provide a detailed overview of the latest literature on SARS-CoV-2 and PMMoV decay rates in sewage matrices.
Collapse
Affiliation(s)
- Jean-Baptiste Burnet
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Henry-Michel Cauchie
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Cécile Walczak
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Nathalie Goeders
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Leslie Ogorzaly
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg.
| |
Collapse
|
40
|
Lott MEJ, Norfolk WA, Dailey CA, Foley AM, Melendez-Declet C, Robertson MJ, Rathbun SL, Lipp EK. Direct wastewater extraction as a simple and effective method for SARS-CoV-2 surveillance and COVID-19 community-level monitoring. FEMS MICROBES 2023; 4:xtad004. [PMID: 37333441 PMCID: PMC10117872 DOI: 10.1093/femsmc/xtad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/23/2022] [Accepted: 01/11/2023] [Indexed: 10/22/2023] Open
Abstract
Wastewater surveillance has proven to be an effective tool to monitor the transmission and emergence of infectious agents at a community scale. Workflows for wastewater surveillance generally rely on concentration steps to increase the probability of detection of low-abundance targets, but preconcentration can substantially increase the time and cost of analyses while also introducing additional loss of target during processing. To address some of these issues, we conducted a longitudinal study implementing a simplified workflow for SARS-CoV-2 detection from wastewater, using a direct column-based extraction approach. Composite influent wastewater samples were collected weekly for 1 year between June 2020 and June 2021 in Athens-Clarke County, Georgia, USA. Bypassing any concentration step, low volumes (280 µl) of influent wastewater were extracted using a commercial kit, and immediately analyzed by RT-qPCR for the SARS-CoV-2 N1 and N2 gene targets. SARS-CoV-2 viral RNA was detected in 76% (193/254) of influent samples, and the recovery of the surrogate bovine coronavirus was 42% (IQR: 28%, 59%). N1 and N2 assay positivity, viral concentration, and flow-adjusted daily viral load correlated significantly with per-capita case reports of COVID-19 at the county-level (ρ = 0.69-0.82). To compensate for the method's high limit of detection (approximately 106-107 copies l-1 in wastewater), we extracted multiple small-volume replicates of each wastewater sample. With this approach, we detected as few as five cases of COVID-19 per 100 000 individuals. These results indicate that a direct-extraction-based workflow for SARS-CoV-2 wastewater surveillance can provide informative and actionable results.
Collapse
Affiliation(s)
- Megan E J Lott
- Department of Environmental Health Science, University of Georgia, 150 East Green Street, Athens, GA 30602, United States
| | - William A Norfolk
- Department of Environmental Health Science, University of Georgia, 150 East Green Street, Athens, GA 30602, United States
| | - Cody A Dailey
- Department of Epidemiology and Biostatistics, University of Georgia, 101 Buck Road, Athens, GA 30606, United States
| | - Amelia M Foley
- Department of Environmental Health Science, University of Georgia, 150 East Green Street, Athens, GA 30602, United States
| | - Carolina Melendez-Declet
- Department of Environmental Health Science, University of Georgia, 150 East Green Street, Athens, GA 30602, United States
| | - Megan J Robertson
- Department of Environmental Health Science, University of Georgia, 150 East Green Street, Athens, GA 30602, United States
| | - Stephen L Rathbun
- Department of Epidemiology and Biostatistics, University of Georgia, 101 Buck Road, Athens, GA 30606, United States
| | - Erin K Lipp
- Department of Environmental Health Science, University of Georgia, 150 East Green Street, Athens, GA 30602, United States
| |
Collapse
|
41
|
Maryam S, Ul Haq I, Yahya G, Ul Haq M, Algammal AM, Saber S, Cavalu S. COVID-19 surveillance in wastewater: An epidemiological tool for the monitoring of SARS-CoV-2. Front Cell Infect Microbiol 2023; 12:978643. [PMID: 36683701 PMCID: PMC9854263 DOI: 10.3389/fcimb.2022.978643] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/03/2022] [Indexed: 01/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has prompted a lot of questions globally regarding the range of information about the virus's possible routes of transmission, diagnostics, and therapeutic tools. Worldwide studies have pointed out the importance of monitoring and early surveillance techniques based on the identification of viral RNA in wastewater. These studies indicated the presence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in human feces, which is shed via excreta including mucus, feces, saliva, and sputum. Subsequently, they get dumped into wastewater, and their presence in wastewater provides a possibility of using it as a tool to help prevent and eradicate the virus. Its monitoring is still done in many regions worldwide and serves as an early "warning signal"; however, a lot of limitations of wastewater surveillance have also been identified.
Collapse
Affiliation(s)
- Sajida Maryam
- Department of Biosciences, The Commission on Science and Technology for Sustainable Development in the South (COMSATS) University Islamabad (CUI), Islamabad, Pakistan
| | - Ihtisham Ul Haq
- Department of Biosciences, The Commission on Science and Technology for Sustainable Development in the South (COMSATS) University Islamabad (CUI), Islamabad, Pakistan
- Department of Physical Chemistry and Polymers Technology, Silesian University of Technology, Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Gliwice, Poland
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mehboob Ul Haq
- Department of Biosciences, The Commission on Science and Technology for Sustainable Development in the South (COMSATS) University Islamabad (CUI), Islamabad, Pakistan
| | - Abdelazeem M. Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
42
|
Sridhar J, Parit R, Boopalakrishnan G, Rexliene MJ, Praveen R, Viswananathan B. Importance of wastewater-based epidemiology for detecting and monitoring SARS-CoV-2. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2022; 6:100241. [PMID: 37520919 PMCID: PMC9341170 DOI: 10.1016/j.cscee.2022.100241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 08/01/2023]
Abstract
Coronavirus disease caused by the SARS-CoV-2 virus has emerged as a global challenge in terms of health and disease monitoring. COVID-19 infection is mainly spread through the SARS-CoV-2 infection leading to the development of mild to severe clinical manifestations. The virus binds to its cognate receptor ACE2 which is widely expressed among different tissues in the body. Notably, SARS-CoV-2 shedding in the fecal samples has been reported through the screening of sewage water across various countries. Wastewater screening for the presence of SARS-CoV-2 provides an alternative method to monitor infection threat, variant identification, and clinical evaluation to restrict the virus progression. Multiple cohort studies have reported the application of wastewater treatment approaches and epidemiological significance in terms of virus monitoring. Thus, the manuscript outlines consolidated and systematic information regarding the application of wastewater-based epidemiology in terms of monitoring and managing a viral disease outbreak like COVID-19.
Collapse
Affiliation(s)
- Jayavel Sridhar
- Department of Biotechnology (DDE), Madurai Kamaraj University, Madurai, 625021, Tamilnadu, India
| | - Rahul Parit
- Department of Biotechnology (DDE), Madurai Kamaraj University, Madurai, 625021, Tamilnadu, India
| | | | - M Johni Rexliene
- Department of Biotechnology (DDE), Madurai Kamaraj University, Madurai, 625021, Tamilnadu, India
| | - Rajkumar Praveen
- Department of Biotechnology (DDE), Madurai Kamaraj University, Madurai, 625021, Tamilnadu, India
| | - Balaji Viswananathan
- Department of Biotechnology (DDE), Madurai Kamaraj University, Madurai, 625021, Tamilnadu, India
| |
Collapse
|
43
|
Huge BJ, North D, Mousseau CB, Bibby K, Dovichi NJ, Champion MM. Comparison of RT-dPCR and RT-qPCR and the effects of freeze-thaw cycle and glycine release buffer for wastewater SARS-CoV-2 analysis. Sci Rep 2022; 12:20641. [PMID: 36450877 PMCID: PMC9709738 DOI: 10.1038/s41598-022-25187-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Public health efforts to control the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic rely on accurate information on the spread of the disease in the community. Acute and surveillance testing has been primarily used to characterize the extent of the disease. However, obtaining a representative sample of the human population is challenging because of limited testing capacity and incomplete testing compliance. Wastewater-based epidemiology is an agnostic alternative to surveillance testing that provides an average sample from the population served by the treatment facility. We compare the performance of reverse transcription quantitative PCR (RT-qPCR) and reverse transcription digital droplet PCR (RT-dPCR) for analysis of SARS-CoV-2 RNA in a regional wastewater treatment facility in northern Indiana, USA from the earliest stages of the pandemic. 1-L grab samples of wastewater were clarified and concentrated. Nucleic acids were extracted from aliquots and analyzed in parallel using the two methods. Synthetic viral nucleic acids were used for method development and generation of add-in standard-curves. Both methods were highly sensitive in detecting SARS-CoV-2 in wastewater, with detection limits as low as 1 copy per 500 mL wastewater. RT-qPCR and RT-dPCR provided essentially identical coefficients of variation (s/[Formula: see text] = 0.15) for triplicate measurements made on wastewater samples taken on 16 days. We also observed a sevenfold decrease in viral load from a grab sample that was frozen at - 80 °C for 92 days compared to results obtained without freezing. Freezing samples before analysis should be discouraged. Finally, we found that treatment with a glycine release buffer resulted in a fourfold inhibition in RT-qPCR signal; treatment with a glycine release buffer also should be discouraged. Despite their prevalence and convenience in wastewater analysis, glycine release and freezing samples severely and additively (~ tenfold) degraded recovery and detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Bonnie Jaskowski Huge
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Devin North
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - C Bruce Mousseau
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
- Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
- Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Matthew M Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
- Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
44
|
Tian C, Zhao L, Qi G, Zhu J, Zhang S. One-pot and rapid detection of SARS-CoV-2 viral particles in environment using SERS aptasensor based on a locking amplifier. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 371:132445. [PMID: 35919746 PMCID: PMC9335397 DOI: 10.1016/j.snb.2022.132445] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 05/07/2023]
Abstract
With the frequent detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in dwellings and wastewater, the risk of transmission of environmental contaminants is of great concern. Fast, simple and sensitive sensors are essential for timely detecting infection and controlling transmission through environment fomites. Herein, we developed a Surface Enhanced Raman Scattering (SERS) aptasensor, which can realize ultrasensitive and rapid assay of SARS-CoV-2 viral particles. In this strategy, we designed a novel locking amplifier which is activated only in the presence of virus by aptamer recognition. The reaction process was carried out though one-pot method at 37 °C, which can save time and resources. In addition, magnetic beads used in reaction system can simplify operation, as well as provide ideas for developing biosensing robots via magnetic field. This SERS aptasensor can detect SARS-CoV-2 virus with a LOD of 260 TU/µL within 40 min in the linear range of 625-10,000 TU/µL. Therefore, this convenience, speediness, sensitivity, and selectivity of detection has great prospects in analyzing SARS-CoV-2 viral particles or other viruses in environment as well as monitoring of environmental virus sources.
Collapse
Affiliation(s)
- Cheng Tian
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, PR China
| | - Lei Zhao
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, PR China
| | - Guoliang Qi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, PR China
| | - Jin Zhu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, PR China
| |
Collapse
|
45
|
Mendoza Grijalva L, Brown B, Cauble A, Tarpeh WA. Diurnal Variability of SARS-CoV-2 RNA Concentrations in Hourly Grab Samples of Wastewater Influent during Low COVID-19 Incidence. ACS ES&T WATER 2022; 2:2125-2133. [PMID: 37552729 PMCID: PMC9063989 DOI: 10.1021/acsestwater.2c00061] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 06/17/2023]
Abstract
Wastewater-based epidemiology (WBE) has been widely deployed during the COVID-19 pandemic, but with limited evaluation of the utility of discrete sampling for large sewersheds and low COVID-19 incidence. In this study, SARS-CoV-2 RNA was measured in 72 consecutive hourly influent grab samples collected at a wastewater treatment plant serving nearly 500 000 residents when incidence was low (approximately 20 cases per 100 000). We characterized diurnal variability and relationships between SARS-CoV-2 RNA detection and physicochemical covariates [flow rate, total ammonia nitrogen (TAN), and total solids (TS)]. The highest detection rate observed was 82% during the first peak flow, which occurred in the early afternoon (14:00). Higher detection rates were also observed when sampling above median TAN concentrations (71%; p < 0.01; median = 40.26 mg of NH4/L). SARS-CoV-2 RNA concentrations were weakly correlated with flow rate (Kendall's τ = 0.16; p < 0.01), TAN (τ = 0.19; p < 0.05), and TS (τ = 0.18; p < 0.01), suggesting generally low RNA sewer discharges as expected at low incidence. Our results elucidated sensible adjustments to maximize detection rates, including using multiple gene targets, collecting duplicate samples, and sampling during higher flow and TAN discharges. Optimizing the lower-incidence bounds of WBE can help assess its suitability for verifying COVID-19 reemergence or eradication.
Collapse
Affiliation(s)
- Lorelay Mendoza Grijalva
- Department of Civil and Environmental Engineering,
Stanford University, Stanford, California 94305,
United States
| | - Blake Brown
- Central Contra Costa Sanitary
District, Martinez, California 94553, United
States
| | - Amanda Cauble
- Central Contra Costa Sanitary
District, Martinez, California 94553, United
States
| | - William A. Tarpeh
- Department of Civil and Environmental Engineering,
Stanford University, Stanford, California 94305,
United States
- Department of Chemical Engineering,
Stanford University, Stanford, California 94305,
United States
| |
Collapse
|
46
|
Safford H, Zuniga-Montanez RE, Kim M, Wu X, Wei L, Sharpnack J, Shapiro K, Bischel HN. Wastewater-Based Epidemiology for COVID-19: Handling qPCR Nondetects and Comparing Spatially Granular Wastewater and Clinical Data Trends. ACS ES&T WATER 2022; 2:2114-2124. [PMID: 37552742 PMCID: PMC9397567 DOI: 10.1021/acsestwater.2c00053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 05/28/2023]
Abstract
Wastewater-based epidemiology (WBE) is a useful complement to clinical testing for managing COVID-19. While community-scale wastewater and clinical data frequently correlate, less is known about subcommunity relationships between the two data types. Moreover, nondetects in qPCR wastewater data are typically handled through methods known to bias results, overlooking perhaps better alternatives. We address these knowledge gaps using data collected from September 2020-June 2021 in Davis, California (USA). We hypothesize that coupling the expectation maximization (EM) algorithm with the Markov Chain Monte Carlo (MCMC) method could improve estimation of "missing" values in wastewater qPCR data. We test this hypothesis by applying EM-MCMC to city wastewater treatment plant data and comparing output to more conventional nondetect handling methods. Dissimilarities in results (i) underscore the importance of specifying nondetect handling method in reporting and (ii) suggest that using EM-MCMC may yield better agreement between community-scale clinical and wastewater data. We also present a novel framework for spatially aligning clinical data with wastewater data collected upstream of a treatment plant (i.e., distributed across a sewershed). Applying the framework to data from Davis reveals reasonable agreement between wastewater and clinical data at highly granular spatial scales-further underscoring the public-health value of WBE.
Collapse
Affiliation(s)
- Hannah Safford
- Department of Civil and Environmental Engineering,
University of California Davis, 3109 Ghausi Hall, 480 Bainer
Hall Drive, Davis, California 95616, United States
| | - Rogelio E. Zuniga-Montanez
- Department of Civil and Environmental Engineering,
University of California Davis, 3109 Ghausi Hall, 480 Bainer
Hall Drive, Davis, California 95616, United States
| | - Minji Kim
- School of Veterinary Medicine, University
of California Davis, Davis, California 95616, United
States
| | - Xiaoliu Wu
- Department of Statistics, University of
California Davis, Davis, California 95616, United
States
| | - Lifeng Wei
- Department of Statistics, University of
California Davis, Davis, California 95616, United
States
| | - James Sharpnack
- Department of Statistics, University of
California Davis, Davis, California 95616, United
States
| | - Karen Shapiro
- School of Veterinary Medicine, University
of California Davis, Davis, California 95616, United
States
| | - Heather N. Bischel
- Department of Civil and Environmental Engineering,
University of California Davis, 3109 Ghausi Hall, 480 Bainer
Hall Drive, Davis, California 95616, United States
| |
Collapse
|
47
|
Zambrana W, Catoe D, Coffman MM, Kim S, Anand A, Solis D, Sahoo MK, Pinsky BA, Bhatt AS, Boehm AB, Wolfe MK. SARS-CoV-2 RNA and N Antigen Quantification via Wastewater at the Campus Level, Building Cluster Level, and Individual-Building Level. ACS ES&T WATER 2022; 2:2025-2033. [PMID: 37552722 PMCID: PMC9128006 DOI: 10.1021/acsestwater.2c00050] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 05/30/2023]
Abstract
Monitoring wastewater for SARS-CoV-2 from populations smaller than those served by wastewater treatment plants may help identify small spatial areas (subsewersheds) where COVID-19 infections are present. We sampled wastewater from three nested locations with different sized populations within the same sewer network at a university campus and quantified SARS-CoV-2 RNA using reverse transcriptase droplet digital polymerase chain reaction (PCR). SARS-CoV-2 RNA concentrations and/or concentrations normalized by PMMoV were positively associated with laboratory-confirmed COVID-19 cases for both the sewershed level and the subsewershed level. We also used an antigen-based assay to detect the nucleocapsid (N) antigen from SARS-CoV-2 in wastewater samples at the sewershed level. The N antigen was regularly detected at the sewershed level, but the results were not associated with either laboratory-confirmed COVID-19 cases or SARS-CoV-2 RNA concentrations. The results of this study indicate that wastewater monitoring based on quantification of SARS-CoV-2 RNA using PCR-based methods is associated with COVID-19 cases at multiple geographic scales within the subsewershed level and can serve to aid the public health response.
Collapse
Affiliation(s)
- Winnie Zambrana
- Department of Civil and Environmental Engineering,
Stanford University, 473 Via Ortega, Stanford, California
94305, United States
| | - David Catoe
- Joint Initiative for Metrology in Biology,
SLAC National Accelerator Laboratory, 2575 Sand Hill Road,
Menlo Park, California 94025, United States
| | - Mhara M. Coffman
- Department of Civil and Environmental Engineering,
Stanford University, 473 Via Ortega, Stanford, California
94305, United States
| | - Sooyeol Kim
- Department of Civil and Environmental Engineering,
Stanford University, 473 Via Ortega, Stanford, California
94305, United States
| | - Archana Anand
- Department of Civil and Environmental Engineering,
Stanford University, 473 Via Ortega, Stanford, California
94305, United States
| | - Daniel Solis
- Department of Pathology, Stanford
University School of Medicine, Stanford, California 94305, United
States
| | - Malaya K. Sahoo
- Department of Pathology, Stanford
University School of Medicine, Stanford, California 94305, United
States
| | - Benjamin A. Pinsky
- Department of Pathology, Stanford
University School of Medicine, Stanford, California 94305, United
States
- Department of Medicine, Division of Infectious
Diseases and Geographic Medicine, Stanford University School of
Medicine, Stanford, California 94305, United
States
| | - Ami S. Bhatt
- Department of Medicine (Hematology) and Department of
Genetics, Stanford University, Stanford, California 94305,
United States
| | - Alexandria B. Boehm
- Department of Civil and Environmental Engineering,
Stanford University, 473 Via Ortega, Stanford, California
94305, United States
| | - Marlene K. Wolfe
- Department of Civil and Environmental Engineering,
Stanford University, 473 Via Ortega, Stanford, California
94305, United States
- Gangarosa Department of Environmental Health, Rollins School
of Public Health, Emory University, Atlanta, Georgia 30322,
United States
| |
Collapse
|
48
|
Langan LM, O’Brien M, Rundell ZC, Back JA, Ryan BJ, Chambliss CK, Norman RS, Brooks BW. Comparative Analysis of RNA-Extraction Approaches and Associated Influences on RT-qPCR of the SARS-CoV-2 RNA in a University Residence Hall and Quarantine Location. ACS ES&T WATER 2022; 2:1929-1943. [PMID: 37552714 PMCID: PMC9063990 DOI: 10.1021/acsestwater.1c00476] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 05/09/2023]
Abstract
Wastewater-based epidemiology (WBE) provides an early warning and trend analysis approach for determining the presence of COVID-19 in a community and complements clinical testing in assessing the population level, even as viral loads fluctuate. Here, we evaluate combinations of two wastewater concentration methods (i.e., ultrafiltration and composite supernatant-solid), four pre-RNA extraction modifications, and three nucleic acid extraction kits using two different wastewater sampling locations. These consisted of a quarantine facility containing clinically confirmed COVID-19-positive inhabitants and a university residence hall. Of the combinations examined, composite supernatant-solid with pre-RNA extraction consisting of water concentration and RNA/DNA shield performed the best in terms of speed and sensitivity. Further, of the three nucleic acid extraction kits examined, the most variability was associated with the Qiagen kit. Focusing on the quarantine facility, viral concentrations measured in wastewater were generally significantly related to positive clinical cases, with the relationship dependent on method, modification, kit, target, and normalization, although results were variable-dependent on individual time points (Kendall's Tau-b (τ) = 0.17 to 0.6) or cumulatively (Kendall's Tau-b (τ) = -0.048 to 1). These observations can support laboratories establishing protocols to perform wastewater surveillance and monitoring efforts for COVID-19.
Collapse
Affiliation(s)
- Laura M. Langan
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Megan O’Brien
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Zach C. Rundell
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Jeffrey A. Back
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
| | - Benjamin J. Ryan
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
| | - C. Kevin Chambliss
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
- Department of Chemistry and Biochemistry,
Baylor University, One Bear Place #97348, Waco, Texas 76798,
United States
| | - R. Sean Norman
- Environmental Health Sciences, Arnold
School of Public Health, South Carolina, 921 Assembly Street, Columbia,
South Carolina 29208, United States
| | - Bryan W. Brooks
- Department of Environmental Science,
Baylor University, One Bear Place #97266, Waco, Texas 76798,
United States
- Center for Reservoir and Aquatic Systems Research,
Baylor University, One Bear Place #97178, Waco, Texas 76798,
United States
- Institute of Biomedical Studies, Baylor
University, One Bear Place #97224, Waco, Texas 76798, United
States
| |
Collapse
|
49
|
Roldan-Hernandez L, Graham KE, Duong D, Boehm AB. Persistence of Endogenous SARS-CoV-2 and Pepper Mild Mottle Virus RNA in Wastewater-Settled Solids. ACS ES&T WATER 2022; 2:1944-1952. [PMID: 36380769 PMCID: PMC8938836 DOI: 10.1021/acsestwater.2c00003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Limited information is available on the decay rate of endogenous SARS-CoV-2 and pepper mild mottle virus (PMMoV) RNA in wastewater and primary settled solids, potentially limiting an understanding of how transit or holding times within wastewater infrastructure might impact RNA measurements and their relationship to community COVID-19 infections. In this study, primary settled solids samples were collected from two wastewater treatment plants in the San Francisco Bay Area. Samples were thoroughly mixed, aliquoted into subsamples, and stored at 4, 22, and 37 °C for 10 days. The concentrations of SARS-CoV-2 (N1 and N2 targets) and PMMoV RNA were measured using an RT-ddPCR. Limited decay (<1 log10 reduction) was observed in the detection of viral RNA targets at all temperature conditions, suggesting that SARS-CoV-2 and PMMoV RNA can be highly persistent in solids. First-order decay rate constants ranged from 0.011 to 0.098 day-1 for SARS-CoV-2 RNA and from 0.010 to 0.091 day-1 for PMMoV RNA depending on the temperature conditions. A slower decay was observed for SARS-CoV-2 RNA in primary settled solids compared to previously reported decay in wastewater influent. Further research is needed to understand if solid content and wastewater characteristics might influence the persistence of viral RNA targets.
Collapse
Affiliation(s)
- Laura Roldan-Hernandez
- Department
of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford 94305, California, United States
| | - Katherine E. Graham
- Department
of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford 94305, California, United States
| | - Dorothea Duong
- Verily
Life Sciences, San Francisco, California 94080, United States
| | - Alexandria B. Boehm
- Department
of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford 94305, California, United States
| |
Collapse
|
50
|
Pardo-Figueroa B, Mindreau-Ganoza E, Reyes-Calderon A, Yufra SP, Solorzano-Ortiz IM, Donayre-Torres AJ, Antonini C, Renom JM, Quispe AM, Mota CR, Chernicharo CAL, Carbajal MA, Santa-María M. Spatiotemporal Surveillance of SARS-CoV-2 in the Sewage of Three Major Urban Areas in Peru: Generating Valuable Data Where Clinical Testing Is Extremely Limited. ACS ES&T WATER 2022; 2:2144-2157. [PMID: 37552743 PMCID: PMC9159516 DOI: 10.1021/acsestwater.2c00065] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 05/29/2023]
Abstract
Peru has been severely affected by the COVID-19 pandemic. By January 2022, Peru had surpassed 200 000 COVID-19 deaths, constituting the highest death rate per capita worldwide. Peru has had several limitations during the pandemic: insufficient testing access, limited contact tracing, a strained medical infrastructure, and many economic hurdles. These limitations hindered the gathering of accurate information about infected individuals with spatial resolution in real time, a critical aspect of effectively controlling the pandemic. Wastewater monitoring for SARS-CoV-2 RNA offered a promising alternative for providing needed population-wide information to complement health care indicators. In this study, we demonstrate the feasibility and value of implementing a decentralized SARS-CoV-2 RNA wastewater monitoring system to assess the spatiotemporal distribution of COVID-19 in three major cities in Peru: Lima, Callao, and Arequipa. Our data on viral loads showed the same trends as health indicators such as incidence and mortality. Furthermore, we were able to identify hot spots of contagion within the surveyed urban areas to guide the efforts of health authorities. Viral decay in the sewage network of the cities studied was found to be negligible (<2%). Overall, our results support wastewater monitoring for SARS-CoV-2 as a valuable and cost-effective tool for monitoring the COVID-19 pandemic in the Peruvian context.
Collapse
Affiliation(s)
- Braulio Pardo-Figueroa
- Universidad de Ingenieria y Tecnologia
(UTEC), Centro de Investigación y Tecnología del Agua
(CITA), Jr. Medrano Silva 165, Lima 15063, Peru
| | - Elias Mindreau-Ganoza
- Universidad Nacional Mayor de San Marcos,
Facultad de Ciencias Biológicas, Av. Germán Amézaga
s/n, Lima 15081, Peru
| | - Alonso Reyes-Calderon
- Universidad de Ingenieria y Tecnologia
(UTEC), Centro de Investigación y Tecnología del Agua
(CITA), Jr. Medrano Silva 165, Lima 15063, Peru
| | - Sonia P. Yufra
- Universidad Nacional de San Agustin de
Arequipa, Departamento de Ingeniería Metalúrgica e
Ingeniería Ambiental, Av. Independencia s/n, Arequipa 04001,
Peru
| | - Isabel M. Solorzano-Ortiz
- Universidad de Ingenieria y Tecnologia
(UTEC), Departamento de Ingeniería Ambiental, Jr. Medrano Silva
165, Lima 15063, Peru
| | - Alberto J. Donayre-Torres
- Universidad de Ingenieria y Tecnologia
(UTEC), Departamento de Bioingeniería, Jr. Medrano Silva 165, Lima
15063, Peru
| | - Claudia Antonini
- Universidad de Ingenieria y Tecnologia
(UTEC), Departamento de Ingeniería Industrial, Jr. Medrano Silva
165, Lima 15063, Peru
| | - Jose Miguel Renom
- Universidad de Ingenieria y Tecnologia
(UTEC), Departamento de Ciencias, Jr. Medrano Silva 165, Lima 15063,
Peru
| | - Antonio Marty Quispe
- Universidad de Ingenieria y Tecnologia
(UTEC), Departamento de Bioingeniería, Jr. Medrano Silva 165, Lima
15063, Peru
- Universidad Continental,
Escuela de Posgrado, Av. San Carlos 1980, Huancayo 12001, Peru
| | - Cesar R. Mota
- Universidade Federal de Minas
Gerais, Departamento de Engenharia Sanitária e Ambiental, Escola de
Engenharia, Av. Antonio Carlos, 6.627, 31270-901 Belo Horizonte,
Brazil
| | - Carlos A. L. Chernicharo
- Universidade Federal de Minas
Gerais, Departamento de Engenharia Sanitária e Ambiental, Escola de
Engenharia, Av. Antonio Carlos, 6.627, 31270-901 Belo Horizonte,
Brazil
| | - Max A. Carbajal
- Ministerio de Vivienda
Construcción y Saneamiento, Dirección de Saneamiento, Av.
República de Panamá 3650, Lima 15073, Peru
| | - Mónica
C. Santa-María
- Universidad de Ingenieria y Tecnologia
(UTEC), Centro de Investigación y Tecnología del Agua
(CITA), Jr. Medrano Silva 165, Lima 15063, Peru
- Universidad de Ingenieria y Tecnologia
(UTEC), Departamento de Ingeniería Ambiental, Jr. Medrano Silva
165, Lima 15063, Peru
| |
Collapse
|