1
|
Hu D, Chen W, Li Z, Ma C, Yang S, Huang Y, Huangfu X. Molecular insights into the Tl(I) binding capacity and response sequences of soil humic acids from different sources. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 272:104569. [PMID: 40239411 DOI: 10.1016/j.jconhyd.2025.104569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
Humic acid (HA) significantly affects the migration, transformation, and environmental fate of Tl(I) through complexation. However, knowledge of the interaction processes and interfacial mechanisms between HA and Tl(I) remains lacking. Here, we investigated the Tl(I) binding characteristics of Sigma-HA and soil HAs from representative watersheds in China at the molecular level using adsorption models, an excitation-emission matrix with parallel factor analysis (EEM-PARAFAC), and two-dimensional correlation spectroscopy (2D-COS). According to the isothermal adsorption modeling results, SSHA exhibited the greatest attraction for Tl(I). However, YSHA exhibited the lowest value. On the one hand, the content of oxygen-containing functional groups on HAs may influence the adsorption capacity for Tl(I). On the other hand, the EEM-PARAFAC analysis results revealed that the UV humic-like component (C3), which is unique to SSHA, plays a crucial role in determining Tl(I) binding as a more effective complexing species (log KM = 5.248). For the binding responsiveness of HAs, the 2D-COS results indicated that the carboxyl and phenolic hydroxyl groups associated with humic-like components in SSHA are the optimal structures for Tl(I) binding, whereas the polysaccharides and aliphatics in YSHA and PSHA are more sensitive. These findings increase our understanding of environmental behavior of Tl(I) and provide a solid theoretical foundation for evaluating the effectiveness of HA remediation in Tl-contaminated soils.
Collapse
Affiliation(s)
- Die Hu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Wanpeng Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Zhiheng Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Chengxue Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Shuangrui Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yuheng Huang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
2
|
Li Z, Zhao H, Lv J, Azam S. Mechanistic insight into multiple effects of copper ion on the photoreactivity of dissolved organic matter. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137124. [PMID: 39813924 DOI: 10.1016/j.jhazmat.2025.137124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/22/2024] [Accepted: 01/02/2025] [Indexed: 01/18/2025]
Abstract
Sunlight irradiation of dissolved organic matter (DOM) in surface water results in the production of photochemically produced reactive intermediates (PPRIs). This process is inevitably influenced by co-existing metal ions in aquatic environments; However, the underlying mechanism remains unclear. In this study, the effect of co-existing copper ion (Cu2 +) on PPRIs produced by irradiation of DOM was systematically investigated, because Cu2+ is a typical redox transient cation and has strong affinity to DOM. The findings demonstrated that Cu2+, acting as cation bridge, caused DOM to aggregate, and had impacts on the optical properties and conformation of DOM. The electron shuttle and catalyst effect of Cu2+ could accelerate the charge transfer processes for the increasing of quantum yield and steady concentrations of hydroxyl radical (·OH) with the increase of concentrations of e-aq, O2.-, hydrogen peroxide (H2O2) and charge separated states of DOM (DOM·+ or DOM·-); On the other hand, Cu2+, as excited state quencher, decrease of apparent quantum yield of triplet state of DOM (3DOM*) and singlet oxygen (1O2) through static quenching of singlet excited of DOM (1DOM*) and dynamic quenching of 3DOM*, respectively. The results provide a deeper understanding of the effect mechanism of Cu2+ on the DOM photochemistry in real environment and will be useful for assessment the photodegradation of organic contaminants in the presence of both DOM and Cu2+.
Collapse
Affiliation(s)
- Zhansheng Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shafiul Azam
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
3
|
Chang B, Yang T, Fan S, Zhen L, Zhong X, Yang F, Liu Y, Shao C, Hu F, Xu C, Yang Y, Dai Y, Lv J, Du W. Molecular-level insights of microplastic-derived soluble organic matter and heavy metal interactions in different environmental occurrences through EEM-PARAFAC and FT-ICR MS. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137050. [PMID: 39818050 DOI: 10.1016/j.jhazmat.2024.137050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025]
Abstract
The interactions between microplastic-derived dissolved organic matter (MPs-DOM) and heavy metals (Cu, Pb, and Cd) regulate the complex environmental transport behavior of pollutants in terrestrial and aquatic environments. In this study, fluorescence excited emission matrix spectroscopy combined with parallel factor analysis (EEM-PARAFAC) and electrospray ionization coupled Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) were employed to investigate the complexation mechanism of MPs-DOM with heavy metals, as well as the effects of different environmental occurrences of MPs-DOM on the transport behaviors of heavy metals in saturated porous medium. The findings demonstrated that MPs-DOM, particularly humic-like substances containing aromatic structures and various oxygen functional groups, could form stable complexes with heavy metals. This interaction significantly altered the transport capacity of Pb and Cu in saturated porous media. It is noteworthy that MPs-DOM in the free and deposited states in the environment may have markedly disparate effects on heavy metal transport. MPs-DOM in the free state may facilitate the co-migration of heavy metal ions in porous media, thereby enhancing the mobility of heavy metals. In contrast, sedimentary-state MPs-DOM can retain heavy metals in porous media and inhibit their migration through complexation with them.
Collapse
Affiliation(s)
- Bokun Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Tianhuan Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Shubo Fan
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Leming Zhen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xianbao Zhong
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Fang Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yang Liu
- Ocean college, Zhejiang University, Dinghai 316000, China
| | - Chen Shao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Feinan Hu
- College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling 712100, China
| | - Chenyang Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yajun Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Yunchao Dai
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Jialong Lv
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| | - Wei Du
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| |
Collapse
|
4
|
Teng C, Jing X, Xu Z, Chen W. Transformation of dissolved organic matter in membrane-concentrated landfill leachate during Cu-Fenton-biological treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124462. [PMID: 39933373 DOI: 10.1016/j.jenvman.2025.124462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Membrane-concentrated landfill leachate (MCLL) is a highly concentrated and recalcitrant wastewater with remarkably low biodegradability. In this study, a multi-stage Cu-Fenton oxidation coupled with biological process was proposed for MCLL treatment. Importantly, Fourier transform ion cyclotron resonance mass spectrometry was employed to unveil the molecular transformation of dissolved organic matter (DOM) in MCLL during this integrated treatment process. The multi-stage Cu-Fenton process exhibited a high capacity to remove CHON compounds, resulting in a decrease in their relative abundance from 43% to 28%. Conversely, CHOS compounds displayed an increased relative abundance. For compound classes, the relative abundance of aliphatic/protein groups increased from 11% to 20%, whereas lignin/CRAM-like structures decreased from 36% to 12%, resulting significant improvement of the effluent biodegradability. The recalcitrant species during the multi-stage Cu-Fenton process were 300-400 Da lignin/carboxylic rich alicyclic molecules and tannins with high O/C ratios, which were effectively degraded by the subsequent biological treatment, particularly for the higher molecular weight organic fractions. This work provides new insights into the transformation characteristics of DOM in MCLL at a molecular level and offers technical guidance for the treatment of this refractory organic wastewater.
Collapse
Affiliation(s)
- Chunying Teng
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Xinyu Jing
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Zhi Xu
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China.
| | - Wei Chen
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| |
Collapse
|
5
|
Ye Q, Li R, Liang B, Zhu L, Xiao J, Shi Z. Predicting the Kinetics of Cu and Cd Release from Diverse Soil Dissolved Organic Matter: A Novel Hybrid Model Integrating Machine Learning with Mechanistic Kinetics Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3713-3722. [PMID: 39935205 DOI: 10.1021/acs.est.4c08965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Kinetic release of trace metals from soil dissolved organic matter (DOM) to solution is the key process controlling the mobility and bioavailability of trace metals in soil environment. However, due to the complexity of soil DOM, predicting the reaction rates of trace metals with soil DOM from different sources remains challenging. In this study, we developed a novel hybrid model integrating machine learning with mechanistic kinetics model, which can quantitatively predict the release rates of Cu and Cd from diverse soil DOM based on their compositions and properties. Our model quantitatively demonstrated that the molecular compositions of DOM controlled metal release rates, which had more profound impact on Cu than Cd. Our modeling results also identified two key factors affecting metal release rates, in which high concentrations of Ca and Mg ions in DOM significantly decreased the release rates of Cu and Cd, and the reassociation reactions of metal ions with DOM became more significant with the release of metals from DOM. This work has provided a unified kinetic modeling framework combining both mechanistic and data-driven approaches, which offers a new perspective for developing predictive kinetics models and can be applied to different metals and DOM in dynamic environments.
Collapse
Affiliation(s)
- Qianting Ye
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
- The Key Lab of Pollution Control and Ecosystems Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Rong Li
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
- The Key Lab of Pollution Control and Ecosystems Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Bin Liang
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Lanlan Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Jiang Xiao
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Zhenqing Shi
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
- The Key Lab of Pollution Control and Ecosystems Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
6
|
Ruan M, Song F, Li T, Cao Y, Zhao Y, Chen X, Xie F, Hur J, Xing B, Wu F. Dynamic formation mechanism of persistent free radicals driven by water-phase oxidation-dependent heterogeneity of the carbon-silicon coupling structure in biochar. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136720. [PMID: 39637804 DOI: 10.1016/j.jhazmat.2024.136720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
The formation of persistent free radicals (PFRs) in biochar (BC) is closely related to the structural characteristics and reactivity of BC, which have toxic effects on the environment. However, the mechanisms driving PFRs formation through structural evolution during oxidative aging of BC remain unclear. Herein, we propose a novel dynamic mechanism for BC-PFRs formation driven by oxidation-dependent heterogeneity in carbon-silicon coupling structures by evaluating their heterogeneous correlations, sequential responses, and synergistic relations. The sequential destruction of the "outer carbon-middle silicon-inner carbon" spatial layer and the transformation of molecular components caused by continuous oxidation of BC contributed to the formation of BC-PFRs with two concentration peaks. Moreover, two-dimensional correlation spectroscopy combined with infrared spectroscopy and high-resolution mass spectrometry revealed the sequential responses of carbon-silicon functional groups in BC (Si-O-Si groups → silicon enclosed structures → carbon groups) and BC-derived dissolved organic molecules (lipid-/aliphatic-/carbohydrate-like molecules → lignin-/tannin-like molecules → condensed aromatic molecules), leading to the staged formation of BC-PFRs. High molecular-weight lignin-/tannin-like and condensed aromatic molecules in the carbon layer contributed to BC-PFRs formation, whereas crystalline silicon components hindered the oxidative degradation of inner aromatic carbon and subsequent PFRs formation. Our findings help elucidate potential environmental behaviors and risks associated with BC-PFRs.
Collapse
Affiliation(s)
- Mingqi Ruan
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fanhao Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Materials Science and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, China.
| | - Tingting Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuhan Cao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yao Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaofei Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fazhi Xie
- School of Materials Science and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Jin Hur
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
7
|
Zhang X, Xu Z, Sun Y, Mohanty SK, Lei H, Khan E, Tsang DCW. Implications of Pyrolytic Gas Dynamic Evolution on Dissolved Black Carbon Formed During Production of Biochar from Nitrogen-Rich Feedstock. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2699-2710. [PMID: 39801135 PMCID: PMC11823457 DOI: 10.1021/acs.est.4c08231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 02/12/2025]
Abstract
Gases and dissolved black carbon (DBC) formed during pyrolysis of nitrogen-rich feedstock would affect atmospheric and aquatic environments. Yet, the mechanisms driving biomass gas evolution and DBC formation are poorly understood. Using thermogravimetric-Fourier transform infrared spectrometry and two-dimensional correlation spectroscopy, we correlated the temperature-dependent primary noncondensable gas release sequence (H2O → CO2 → HCN, NH3 → CH4 → CO) with specific defunctionalization stages in the order: dehydration, decarboxylation, denitrogenation, demethylation, and decarbonylation. Our results revealed that proteins in feedstock mainly contributed to gas releases, and low-volatile pyrolytic products contributed to DBC. Combining mass difference analysis with Fourier transform ion cyclotron resonance mass spectrometry, we showed that 44-60% of DBC molecular compositions were correlated with primary gas-releasing reactions. Dehydration (-H2O), with lower reaction energy barrier, contributed to DBC formation most at 350 and 450 °C, whereas decarboxylation (-CO2) and deamidization (-HCNO) prevailed in contributing to DBC formation at 550 °C. The aromaticity changes of DBC products formed via gas emissions were deduced. Compared to their precursors, dehydration increased DBC aromaticity, while deamidization reduced the aromaticity of DBC products. These insights on pyrolytic byproducts help predict and tune DBC properties via changing gas formed during biochar production, minimizing their negative environmental impacts.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Department
of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong
Kong 999077, China
| | - Zibo Xu
- Department
of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Yuqing Sun
- School
of Agriculture, Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Sanjay K. Mohanty
- Civil
and Environmental Engineering Department, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Hanwu Lei
- Department
of Biological Systems Engineering, Washington
State University, Richland, Washington 99354-1671, United States
| | - Eakalak Khan
- Civil and
Environmental Engineering and Construction Department, University of Nevada, Las Vegas, Nevada 89154-4015, United States
| | - Daniel C. W. Tsang
- Department
of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| |
Collapse
|
8
|
Li W, Liu G, Lei M, Zhou Y, Cui H, Du H. Spectral fingerprints of DOM-tungsten interactions: Linking molecular binding to conformational changes. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136649. [PMID: 39603123 DOI: 10.1016/j.jhazmat.2024.136649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/05/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Tungsten (W), a widely used yet understudied emerging contaminant, forms oxyanions in aqueous environments, distinguishing it from conventional heavy metals. While dissolved organic matter (DOM) demonstrates considerable potential for W binding, DOM-W interactions remain largely unexplored. Of particular significance, yet frequently overlooked, are the conformational changes in DOM during W binding processes. This study proposes a novel theoretical framework integrating superposition and charge transfer models to elucidate the complexity of these interactions. By combining spectroscopic techniques and photophysical models, we revealed that aromatic compounds containing 1-3 rings, especially monocyclic aromatic protein-like components, exhibit high affinity for W (logK=3.74-4.00). Phenolic hydroxyls served as primary binding sites for W, with aromatic rings facilitating binding through π interactions. Importantly, W binding to aromatic compounds induced conformational changes in DOM, transitioning from a loosely aggregated state to a more compact configuration. These changes facilitated W encapsulation within DOM through the synergistic effects of hydrophobic interactions, hydrogen/π-hydrogen bonding and π-stacking, potentially leading to stable trapping of W. Two-dimensional correlation spectroscopy analysis elucidated the sequential encapsulation process, involving phenolic, aromatic carboxylic/aliphatic carboxylic, polysaccharides, and aliphatics. The intricate behavior of DOM-W binding profoundly reshapes DOM's conformation, subtly yet significantly orchestrating W's binding affinity, environmental transport, and bioavailability in aquatic ecosystems.
Collapse
Affiliation(s)
- Weijun Li
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410127, China
| | - Guobin Liu
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410127, China
| | - Ming Lei
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410127, China
| | - Yaoyu Zhou
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410127, China
| | - Haojie Cui
- College of Resources, Hunan Agricultural University, Changsha 410127, China
| | - Huihui Du
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410127, China.
| |
Collapse
|
9
|
Li X, Li T, Wei Y, Jin X, Pillai SC, Zhang J, Chen D, Wu X, Bao Y, Jiang X, Wang H. New insights into interfacial dynamics and mechanisms of biochar-derived dissolved organic matter on arsenic redistribution in Schwertmannite. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125419. [PMID: 39615573 DOI: 10.1016/j.envpol.2024.125419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/05/2024] [Accepted: 11/28/2024] [Indexed: 01/26/2025]
Abstract
Biochar is extensively utilized for the remediation of environments contaminated with heavy metals (HMs). However, its derived-dissolved organic matter (BDOM) can interact with iron oxides, which may adversely influence the retention of HMs. This study investigates the effect of BDOM derived from tobacco stalk (TS) and tobacco petiole (TP) biochar on the redistribution behavior of As(V) in acid mine drainage (AMD)-impacted environments, particularly concentrating on the interactions with Schwertmannite (Sch). Results showed that TP-BDOM, abundant in lignin-like compounds, led to a low-amplitude release of As(V) from Sch under acidic conditions, reaching a maximum value (19.84 μg L-1), significantly lower than the release caused by TS-BDOM (87.46 μg L-1). Subsequently, 88.2% of the released As(V) were re-adsorbed in the TS-BDOM system, while 47.5% were retained in the TP-BDOM system. XRD analysis, in conjunction with SEM and STEM characterizations, confirmed that there were no additional crystalline phases or alterations in the microscopic morphological features of the particles throughout the reaction process. In-situ ATR-FTIR, complemented by 2D-COS analysis, demonstrated that aromatic N-OH groups and carboxylic in BDOMs coordinated to As-Sch, enhancing sulfate and As(V) release. It was also noted that no As(III) was detected under the influences of TP- and TS-BDOM. XPS results indicated that As(V) remained the predominant redox species even in the presence of BDOMs. These findings enhance our insight into BDOM's role in As(V) fate and transport within AMD-contaminated environments.
Collapse
Affiliation(s)
- Xiaofei Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China.
| | - Tianfu Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Yanfu Wei
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Taipa, Macao, 999078, PR China
| | - Xiaohu Jin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Suresh C Pillai
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, Atlantic Technological University, ATU Sligo, Ash Lane, Sligo, F91 YW50, Ireland
| | - Jun Zhang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Dian Chen
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Xiaolian Wu
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Yanping Bao
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Xueding Jiang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| |
Collapse
|
10
|
Zhang C, Chen PA, Kuznetsov AM, Masliy AN, Yan M, Korshin GV. Effects of pH on the differential absorbance spectra, d-d transition bands and structural properties of copper complexes with humic substances and model compounds. CHEMOSPHERE 2025; 370:143949. [PMID: 39675579 DOI: 10.1016/j.chemosphere.2024.143949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/30/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Interactions between metal cations, notably Cu(II), and humic substances (HS) affect their mobility, bioavailability, and toxicity. This necessitates a molecular-level determination of the nature of HS functional groups binding Cu(II) (Cu-HS) and effects of pH on them. This study investigates the pH effects on the spectroscopic and structural properties of the complexes of Cu(II) with HS and representative model compounds using differential absorbance spectroscopy (DAS), examination of the properties of the d-d transition band characteristic for Cu(II) ions, and quantum chemical (QC) calculations. DAS of Cu-HS show distinct bands at 240, 275, 310 and 400 nm, while absorbance features located from 600 to 800 nm correspond to the d-d transitions in Cu(II). Similar features appear in copper complexes with the model compounds of salicylic acid (Cu-Sal) and poly(4-styrenesulfonic acid-co-maleic acid) (Cu-PSM). Increasing pH resulted in consistent changes of the DAS and the d-d band of Cu(II) which exhibited a hypsochromic shift and increased intensity. Deconvolution of the d-d bands into discrete Gaussian bands was indicative of transitions between dominant species at increasing pH. Cu-Sal and Cu-PSM structures that were modeled successfully by QC calculations. These results demonstrate the sensitivity of DAS spectra and d-d band to the modes of Cu(II) binding by HS and open a possibility of further elucidation of the functional groups engaged in the binding of heavy metals by HS.
Collapse
Affiliation(s)
- Chenyang Zhang
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China; Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA, 98195-2700, USA
| | - Po-An Chen
- Department of Environmental Science and Engineering, Tunghai University, Taichung, Taiwan; Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA, 98195-2700, USA
| | - Andrey M Kuznetsov
- Department of Inorganic Chemistry, Kazan National Research Technological University, K. Marx Street 68, 420015, Russia
| | - Alexey N Masliy
- Department of Inorganic Chemistry, Kazan National Research Technological University, K. Marx Street 68, 420015, Russia
| | - Mingquan Yan
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China.
| | - Gregory V Korshin
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA, 98195-2700, USA
| |
Collapse
|
11
|
Lai C, Zhan J, Chai Q, Wang C, Yang X, He H, Huang B, Pan X. Dissolved carbon in biochar: Exploring its chemistry, iron complexing capability, toxicity in natural redox environment. J Environ Sci (China) 2025; 147:217-229. [PMID: 39003041 DOI: 10.1016/j.jes.2023.09.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/30/2023] [Accepted: 09/30/2023] [Indexed: 07/15/2024]
Abstract
Dissolved black carbon (DBC) plays a crucial role in the migration and bioavailability of iron in water. However, the properties of DBC releasing under diverse pyrolysis conditions and dissolving processes have not been systematically studied. Here, the compositions of DBC released from biochar through redox processes dominated by bacteria and light were thoroughly studied. It was found that the DBC released from straw biochar possess more oxygen-containing functional groups and aromatic substances. The content of phenolic and carboxylic groups in DBC was increased under influence of microorganisms and light, respectively. The concentration of phenolic hydroxyl groups increased from 10.0∼57.5 mmol/gC to 6.6 ∼65.2 mmol/gC, and the concentration of carboxyl groups increased from 49.7∼97.5 mmol/gC to 62.1 ∼113.3 mmol/gC. Then the impacts of DBC on pyrite dissolution and microalgae growth were also investigated. The complexing Fe3+ was proved to play a predominant role in the dissolution of ferrous mineral in DBC solution. Due to complexing between iron ion and DBC, the amount of dissolved Fe in aquatic water may rise as a result of elevated number of aromatic components with oxygen containing groups and low molecular weight generated under light conditions. Fe-DBC complexations in solution significantly promoted microalga growth, which might be attributed to the stimulating effect of dissolved Fe on the chlorophyll synthesis. The results of study will deepen our understanding of the behavior and ultimate destiny of DBC released into an iron-rich environment under redox conditions.
Collapse
Affiliation(s)
- Chaochao Lai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Juhong Zhan
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China.
| | - Qiuyun Chai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Changlu Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaoxia Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
12
|
Wang M, Liu Q. Interactions between nanobiochar and arsenic: Effects of biochar aging methods on arsenic binding capacity and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125105. [PMID: 39393757 DOI: 10.1016/j.envpol.2024.125105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/13/2024]
Abstract
Nano-biochar (nanoBC), produced from biochar aging, exhibits significant molecular heterogeneity that may affect the fate and toxicity of co-occurring pollutants. However, the interaction between nanoBC and arsenic (As) remains unclear. Herein, we simulated biochar aging through water erosion, photoaging, and thermal chemical decomposition to generate three types of nanoBC (nUBC, nPBC, and nHBC). We then investigated their distinct binding affinities and interaction mechanisms with arsenite (AsIII) and arsenate (AsV). Complementary analysis using optical spectrophotometer and high-resolution mass spectrometry revealed significant differences in properties and chemical compositions among the three nanoBCs at a size of 100 nm. Specifically, nHBC had higher yield, nPBC had higher aromaticity, and nUBC had more intricate molecular compositions and larger molecular weights. Binding experiments showed that nHBC and nUBC exhibited the highest conditional distribution coefficient (KD) for AsIII and AsV, respectively. In nHBC, a higher proportion of humic-like fluorescent component C3 enhanced its affinity for AsIII, attributed to lignin-like molecules with CHONS formulas where thiol acted as active binding sites. In contrast, the robust AsV binding capacity of nUBC stemmed from its richness in humic-like fluorescent component C1 and tryptophan-like fluorescent component C2. This is facilitated by lipid-like molecules and CHO formulas in C1 and aliphatic/peptide-like molecules and CHON formulas in C2, which provided oxygenic and nitrogen-containing groups for binding. All nanoBC had a significantly higher binding affinity for As than bulk BC. These findings provide a deeper understanding of As-nanoBC binding mechanisms at the molecular level, facilitating more accurate prediction of As fate in biochar-amended soil and associated ecosystem risks.
Collapse
Affiliation(s)
- Mao Wang
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Qingqing Liu
- College of Resources and Environment, Southwest University, Chongqing, 400716, China; Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
13
|
Liu M, Liu X, Hu Y, Zhang Q, Farooq U, Qi Z, Lu L. Mobility of biochar-derived dissolved organic matter and its effects on sulfamerazine transport through saturated soil porous media. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:2264-2278. [PMID: 39526417 DOI: 10.1039/d4em00143e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Dissolved organic matter (DOM) released from biochar may impact antibiotic mobility and environmental fate in subsurface environments. Here, DOM samples derived from biochars (BDOM) generated by pyrolyzing corn straw at 300, 450, and 600 °C were employed to elucidate the mobility characteristics of these organic substances and their influences on the transport of sulfamerazine (SMZ, a typical sulfonamide antibiotic) in soil porous media. The results demonstrated that BDOM produced at a lower pyrolysis temperature exhibited greater mobility owing to the weaker hydrophobic and H-bonding interactions between BDOM and soil particles. Additionally and importantly, BDOM facilitated the promotion of SMZ mobility owing to the increased electrostatic repulsion between SMZ- forms and soil grains, the steric hindrance effect induced by the deposition of organic matter, and the competitive retention between SMZ molecules and BDOM. Meanwhile, the promotion effects of BDOM enhanced with improving pyrolysis temperature owing to the promoted deposition of organic matter on soil surfaces and the strengthened electrostatic repulsion. Moreover, the facilitated effects of BDOM on SMZ mobility declined as the solution pH values were raised from 5.0 to 9.0 or the flow rate increased from 0.18 to 0.51 cm min-1. This trend was due to decreased deposition competition and the steric effect caused by decreased retention of BDOM on soil particles. Furthermore, the cation-bridging effect emerged as an important mechanism contributing to the promotion effects of BDOM when the solution contained divalent cations (Cu2+ or Ca2+). Moreover, a two-site non-equilibrium model was used to interpret the controlling mechanisms for the effects of BDOM on the transport of SMZ. Findings from this work highlight that biochar-derived dissolved organic matter can remarkably affect the environmental behaviors of antibiotics in aquatic environments.
Collapse
Affiliation(s)
- Mengya Liu
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, P. R. China
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China.
| | - Xiaochen Liu
- Hydrogeology and Engineering Geology Institute of Hubei Geological Bureau, Jinzhou, 434020, P. R. China
| | - Yalu Hu
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Qiang Zhang
- Ecology Institute of the Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Usman Farooq
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China.
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China.
| | - Laotao Lu
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, P. R. China.
| |
Collapse
|
14
|
Cao Y, Yang Y, Zhang B, Song F, Yang L, Chang H, Yang F, Zhao X, Tu H, Wang L, Wu F. Molecular-level insights into the brewing-dependent chemical diversity, properties, and formation mechanism of Moutai Base baijiu using Fourier transform ion cyclotron resonance mass spectrometry. Food Chem 2024; 460:140802. [PMID: 39126956 DOI: 10.1016/j.foodchem.2024.140802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/28/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
The brewing-dependent molecular diversity, properties, and formation mechanism of Moutai (a typical sauce-flavor Baijiu) base Baijiu, were explored using FT-ICR MS combined with various visualization methods. Seven-round Moutai base Baijiu exhibited significant diversity and heterogeneity, containing more unsaturated/saturated reduced molecules. The increased brewing round increased the molecular unsaturation/aromaticity and enhanced the transformation between saturated/oxidized and unsaturated/reduced molecules. Moreover, lignin-/aliphatic-/peptide-/lipid-like molecules dominated the molecular characteristics of Moutai base Baijiu. The basic and acidic components contained more reduced carbohydrate-/lipid-like molecules and oxidized tannin-like/condensed aromatic molecules, respectively, contributing to the molecular stability and diversity, respectively. More unique lipid-like and lignin-like molecules newly formed in the early and late brewing rounds, respectively, and the increased brewing shifted the chemical reaction from a single dominant to a multi-dimensional balance. More unique N-containing molecules (>450 Da) significantly contributed the specific brewing characteristics. These new findings help to understand the molecular-level formation mechanism of Moutai base Baijiu.
Collapse
Affiliation(s)
- Yuhan Cao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yubo Yang
- Institute of Science and Technology, Kweichow Moutai Group, Renhuai, 564501, China
| | - Bohan Zhang
- Institute of Science and Technology, Kweichow Moutai Group, Renhuai, 564501, China
| | - Fanhao Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Lizhang Yang
- Institute of Science and Technology, Kweichow Moutai Group, Renhuai, 564501, China
| | - Hong Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Fan Yang
- Institute of Science and Technology, Kweichow Moutai Group, Renhuai, 564501, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Huabin Tu
- Kweichow Moutai Group, Renhuai, 564501, China
| | - Li Wang
- Kweichow Moutai Group, Renhuai, 564501, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
15
|
Sun Y, Xu Z, He M, Alessi DS, Tsang DCW. Unlocking the solution-phase molecular transformation of biochar during intensive rainfall events: Implications for the long-term carbon cycle under climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176708. [PMID: 39383956 DOI: 10.1016/j.scitotenv.2024.176708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
The unclear turnover of soluble and solid phases of biochar during increasingly severe climate change (e.g., intensive rainfall) raised questions about the carbon stability of biochar in soil. Here, we present an in-depth analysis of the molecular-level transformations occurring in both the soluble and solid phases of biochar subjected to prolonged wet-dry cycles with simulated rainwater. Biochar properties, including surface functionality and carbon texture, greatly affected the transformation route and led to a distinct stability variation. The rich alkyl -CH3 on the low-temperature biochar (450 °C) was oxidized to hydroxymethyl -CH2OH or formyl -CHO, and the ester -COOC- or peptide -CONHC- bonds were fragmented in the meantime, causing the release of protein- or lipid-like organic carbon and the declined carbon stability (Æ, tested by H2O2 oxidation, from 60.1% to 53.2%). After a high-temperature (750 °C) pyrolysis process, only oxidation of the surface -OH with limited bond breaking occurred after rainwater elution, presenting a marginal composition difference with constant stability. However, the fragile carbon nature of biochar, caused by CO2 activation, led to enhanced fragmentation, oxidation, and hydration, resulting in the release of tannin-like organic carbon, which compromised the carbon storage (Æ decreased from 81.2% to 73.0%). Our findings evaluated the critical transformation of biochar during intensive rainfall, offering crucial insights for designing sustainable biochar and achieving carbon neutrality.
Collapse
Affiliation(s)
- Yuqing Sun
- School of Agriculture and Biotechnology, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zibo Xu
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Mingjing He
- Deloitte China, 88 Queensway, Hong Kong, China
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
16
|
Chen W, Cheng Y, Zhang H, Farooq U, Ni J, Chen H, Si Y, Qi Z. Molecular insight into biomass-burning smoke water-soluble organic matter binding with Cd(II): Comprehensive analysis from fluorescence EEM-PARAFAC, FT-ICR-MS and two-dimensional correlation spectroscopy. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135754. [PMID: 39243541 DOI: 10.1016/j.jhazmat.2024.135754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
The deposition of biomass-burning smoke water-soluble organic matter (BBS-WSOM) significantly affects the environmental behavior of heavy metals in aqueous environments. However, the interactions between BBS-WSOM and heavy metals at the molecular level remain unknown. This study combined FT-ICR-MS, fluorescence spectrum, FTIR, and two-dimensional correlation spectroscopy to anatomize the molecular characteristics of BBS-WSOM binding with Cd(II). The results show that CHO and CHOP compounds were responsible for the fluorescence response of BBS-WSOM at Ex: 225 nm and 275 nm/Em: 325 nm, and abundant proteins or CHON compounds were responsible for the fluorescence response of BBS-WSOM at Ex: 225-250 nm/Em: 350-450 nm and Ex: 300-350 nm/Em: 350-450 nm, which was very different from the fluorescence molecules in natural organic matters. Fluorescence change after Cd(II) addition indicated that CHOP and CHOS compounds enhanced BBS-WSOM binding with Cd(II). Differently, the CHON compounds could weaken the binding of other compounds with Cd(II). Different compounds binding with Cd(II) generally followed the order: CHON/CHOS compounds>CHOP compounds>CHO compounds, and the chemical groups binding with Cd(II) generally followed the prioritization: -COO-> -NH/SO>P = O/P-O>aromatic ring>CO>C-OH of phenol/alcohol>C-O-C. This study provides a profound insight into the interaction between BBS-WSOM and Cd(II) at the molecular level.
Collapse
Affiliation(s)
- Weifeng Chen
- Institute of Geography, Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Yue Cheng
- Institute of Geography, Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Huiying Zhang
- Institute of Geography, Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Usman Farooq
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Jinzhi Ni
- Institute of Geography, Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Hui Chen
- Institute of Geography, Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Youtao Si
- Institute of Geography, Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
17
|
Jiang Z, He C, Gao F, Shi Q, Chen Y, Yu H, Zhou Z, Wang R. Molecular characteristics of organic matter derived from sulfonated biochar. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1641-1650. [PMID: 39132952 DOI: 10.1039/d4em00233d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Sulfonated biochar (SBC), as a functional carbon-based material, has attracted widespread attention due to its excellent adsorption properties. The composition of biochar-derived organic matter (B-DOM) is a key factor influencing the migration and transformation of soil elements and pollutants. However, molecular characteristics of sulfonated biochar-derived organic matter (SBC-DOM) are still unclear. In this study, the molecular composition of derived organic matter (DOM) from SBC prepared via one-step carbonization-sulfonation techniques was investigated by Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and then compared with those of DOMs from rice husk (RH), pyrochar (PYC), and hydrochar (HYC). The results show that the CHOS- and CHONS-containing formulae are predominant in SBC-DOM, accounting for 85% of the total molecular formula number, while DOMs from RH, PYC, and HYC are dominated by CHO-containing formulae. Compared to PYC-DOM and HYC-DOM, SBC-DOM has more unsaturated aliphatic compounds, which make it more labile and easily biodegraded. Additionally, SBC-DOM has higher O/C, (N + O)/C ratios and sulfur-containing compounds. These findings provide a theoretical basis for further research on the application of sulfonated biochar in soil improvement and remediation.
Collapse
Affiliation(s)
- Zhengfeng Jiang
- Petrochemical Research Institute, PetroChina Company Limited, Beijing 100195, China
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
- National Elite Institute of Engineering, CNPC, Beijing 100096, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| | - Fei Gao
- Petrochemical Research Institute, PetroChina Company Limited, Beijing 100195, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| | - Yang Chen
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Haimeng Yu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| | - Zhimao Zhou
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Ruoxin Wang
- Petrochemical Research Institute, PetroChina Company Limited, Beijing 100195, China
| |
Collapse
|
18
|
Feng F, Yang Y, Liu Q, Wu S, Yun Z, Xu X, Jiang Y. Insights into the characteristics of changes in dissolved organic matter fluorescence components on the natural attenuation process of toluene. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134952. [PMID: 38944985 DOI: 10.1016/j.jhazmat.2024.134952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
Natural attenuation (NA) is of great significance for the remediation of contaminated groundwater, and how to identify NA patterns of toluene in aquifers more quickly and effectively poses an urgent challenge. In this study, the NA of toluene in two typical soils was conducted by means of soil column experiment. Based on column experiments, dissolved organic matter (DOM) was rapidly identified using fluorescence spectroscopy, and the relationship between DOM and the NA of toluene was established through structural equation modeling analysis. The adsorption rates of toluene in clay and sandy soil were 39 % and 26 %, respectively. The adsorption capacity and total NA capacity of silty clay were large. The occurrence of fluorescence peaks of protein-like components and specific products indicated the occurrence of biodegradation. Arenimonas, Acidovorax and Brevundimonas were the main degrading bacteria identified in Column A, while Pseudomonas, Azotobacter and Mycobacterium were the main ones identified in Column B. The pH, ORP, and Fe(II) were the most important factors affecting the composition of microbial communities, which in turn affected the NA of toluene. These results provide a new way to quickly identify NA of toluene.
Collapse
Affiliation(s)
- Fan Feng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yu Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qiyuan Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shuxuan Wu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhichao Yun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiangjian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yonghai Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
19
|
Li X, Li T, Jeyakumar P, Li J, Bao Y, Jin X, Zhang J, Guo C, Jiang X, Lu G, Dang Z, Wang H. Effect of biochar-derived DOM on contrasting redistribution of chromate during Schwertmannite dissolution and recrystallization. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134988. [PMID: 38908178 DOI: 10.1016/j.jhazmat.2024.134988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Biochar-derived dissolved organic matter (BDOM), is extensively involved in the recrystallization of minerals and the speciation alteration of associated toxic metals. This study investigates how BDOM extracted from tobacco petiole (TP) or tobacco stalk (TS) biochar influences the speciation repartitioning of Cr(VI) in environments impacted by acid mine drainage (AMD), focusing on interactions with secondary minerals during Schwertmannite (Sch) dissolution and recrystallization. TP-BDOM, rich in lignin-like substances, slowed down the Cr-Sch dissolution and Cr release under acidic conditions compared to TS-BDOM. TP-BDOM's higher O/C component exerts a delayed impact on Cr-Sch stability and Cr(VI) reduction. In-situ ATR-FTIR and 2D-COS analysis showed that carboxylic and aromatic N-OH groups in BDOM could interact with Cr-Sch surfaces, affecting sulfate and Cr(VI) release. It was also observed that slight recrystallization occurred from Cr-Sch to goethite, along with increased Cr incorporation into secondary minerals within TS-BDOM. This enhances our understanding of BDOM's role in Cr(VI) speciation changes in AMD-contaminated sites.
Collapse
Affiliation(s)
- Xiaofei Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Tianfu Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Paramsothy Jeyakumar
- Environmental Sciences Group, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Jiayi Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Yanping Bao
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Xiaohu Jin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Jun Zhang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xueding Jiang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China.
| |
Collapse
|
20
|
Cheng Y, Zhang H, Wei R, Ni J, Fan Y, Chen W. Binding characters of biomass burning smoke-derived dissolved organic matter with Cu(II) in aqueous environment: Roles of functional groups and organic components. CHEMOSPHERE 2024; 364:143290. [PMID: 39245216 DOI: 10.1016/j.chemosphere.2024.143290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/03/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
The environmental effect of biomass burning smoke-derived dissolved organic matter (BBS-DOM) has attracted growing attention due to the increasing wildfire globally. BBS-DOM eventually deposits on the water and soil environments, thus altering the environmental behaviors of pollutants (e.g., heavy metals) in the surface environments of the wildfire region. However, presently, the binding characters between heavy metals and BBS-DOM remains unknown. In this study, alfalfa, pinewood, and corn straw were burned at 300 °C and 600 °C to produce BBS-DOMs and their binding characters with Cu(II) were investigated using fluorescence excitation-emission matrix spectra coupled with parallel factor (EEM-PARAFAC), synchronous fluorescence spectra combined with two-dimensional correlation spectroscopy (2D-SFS-COS) and FTIR combined with two-dimensional correlation spectroscopy (2D-FTIR-COS). The fluorescence quenching/enhancing results after Cu(II) addition suggested that the binding capacities with Cu(II) of various organic components in BBS-DOMs followed an order of polyphenols-like matters (Ex/Em: 220 nm/310 nm) > aromatic protein-like matters (Ex/Em: 275 nm/310 nm) ≈ small humic-like matters (Ex/Em: 300 nm/380 nm) > large humic-like matters (Ex/Em: 330 nm/410 nm). Interestingly, the quenching effect of Cu(II) addition on the fluorescence intensities of polyphenols-like matters and humic-like matters decreased with their increasing abundances, which possibly depended on the proportion of organic ligands of these components. Furthermore, 2D-FTIR-COS demonstrated that the binding sequence of different functional groups followed deprotonated -COOH→deprotonated phenol-OH→-C]O of aldehydes, ketones, and lactones/aromatic rings/-NH→C-O-C/C-OH of ethers and alcohols. Another novelty was that Cu(II) binding could increase the molecular size and humification of BBS-DOMs, due to the bridge effect of Cu(II). This work provides an importantly theoretical basis for deeply understanding the mechanism of BBS-DOM binding with Cu(II) at the molecular level, which is a key for reasonably predicting the multimedia-crossing effects of BBS-DOM and the environmental behavior of heavy metals in the wildfire region.
Collapse
Affiliation(s)
- Yue Cheng
- Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, Institute of Geography, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Huiying Zhang
- Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, Institute of Geography, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Ran Wei
- Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, Institute of Geography, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Jinzhi Ni
- Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, Institute of Geography, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Yuexin Fan
- Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, Institute of Geography, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China.
| | - Weifeng Chen
- Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, Institute of Geography, School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian, 350007, China.
| |
Collapse
|
21
|
Zhang J, Zhou Z, Zeng L, Wang C, Han R, Ren X, Wang W, Xiang M, Chen S, Li H. The molecular binding sequence transformation of soil organic matter and biochar dissolved black carbon antagonizes the transport of 2,4,6-trichlorophenol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174657. [PMID: 38986700 DOI: 10.1016/j.scitotenv.2024.174657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/29/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Dissolved organic matter (DOM) and dissolved black carbon (DBC) are significant environmental factors that influence the transport of organic pollutants. However, the mechanisms by which their molecular diversity affects pollutant transport remain unclear. This study elucidates the molecular binding sequence and adsorption sites through which DOM/DBC compounds antagonize the transport of 2,4,6-trichlorophenol (TCP) using column experiments and modelling. DBC exhibits a high TCP adsorption rate (kn = 5.32 × 10-22 mol1-n∙Ln-1∙min-1) and conditional stability constant (logK = 5.19-5.74), indicating a strong binding affinity and antagonistic effect on TCP. This is attributed to the high relative content of lipid/protein compounds in DBC (25.65 % and 30.28 %, respectively). Moreover, the small molecule lipid compounds showed stronger TCP adsorption energy (Ead = -0.0071 eV/-0.0093 eV) in DOM/DBC, combined with two-dimensional correlation spectroscopy model found that DOM/DBC antagonized TCP transport in the environment through binding sequences that transformed from lipid/protein small molecule compounds to lignin/tannin compounds. This study used a multifaceted approach to comprehensively assess the impact of DOM/DBC on TCP transport. It reveals that the molecular diversity of DOM/DBC is a critical factor affecting pollutant transport, providing important insights into the environmental trend and ecological effects of pollutants.
Collapse
Affiliation(s)
- Jin Zhang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Zhikang Zhou
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Lingjun Zeng
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Chen Wang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| | - Ruixia Han
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Xinlei Ren
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Wenbing Wang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Minghui Xiang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Shuai Chen
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, PR China
| | - Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
22
|
Song F, Li T, Hur J, Chow ATS, Leung KMY, Wu F. Wildfire-Derived Pyrogenic Organic Matter Posing Overlooked Emerging Risks to Aquatic Ecosystems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11209-11212. [PMID: 38869366 DOI: 10.1021/acs.est.4c05412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Affiliation(s)
- Fanhao Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tingting Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jin Hur
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea
| | - Alex Tat-Shing Chow
- Earth and Environmental Sciences Programme, Faculty of Science, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution, School of Energy and Environment, and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
23
|
Cheng S, Zhang H, Wang H, Mubashar M, Li L, Zhang X. Influence of algal organic matter in the in-situ flotation removal of Microcystis using positively charged bubbles. BIORESOURCE TECHNOLOGY 2024; 397:130468. [PMID: 38378102 DOI: 10.1016/j.biortech.2024.130468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024]
Abstract
Positively charged bubbles efficiently capture and remove negatively charged algal cells without relying on coagulation-flocculation. However, the efficiency is notably influenced by the presence of algal organic matter (AOM). This study investigated the impact of AOM composition on flotation performance by analyzing AOM from various growth phases of Microcystis flos-aquae. The results indicated that low-concentration AOM (<5 mg C L-1), particularly the high molecular weight (>30 kDa) fractions containing high percentages of protein during the exponential growth phase, significantly improved the flotation efficiency by >18%. A high-speed camera system illustrates the pivotal role of low-concentration protein-containing AOM in forming network structures that enhance cell capture. These protein-driven network structures, which enhance the flotation efficiency, provide valuable insights into the development of effective in-situ algal bloom prevention techniques.
Collapse
Affiliation(s)
- Shaozhe Cheng
- Institute of Hydrobiology, Chinese Academy of Sciences, South Donghu Road, Wuchang District, Wuhan 430072, Hubei Province, China; University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Haiyang Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, South Donghu Road, Wuchang District, Wuhan 430072, Hubei Province, China
| | - Hailing Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, South Donghu Road, Wuchang District, Wuhan 430072, Hubei Province, China; University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Muhammad Mubashar
- Institute of Hydrobiology, Chinese Academy of Sciences, South Donghu Road, Wuchang District, Wuhan 430072, Hubei Province, China
| | - Lili Li
- Institute of Hydrobiology, Chinese Academy of Sciences, South Donghu Road, Wuchang District, Wuhan 430072, Hubei Province, China; University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xuezhi Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, South Donghu Road, Wuchang District, Wuhan 430072, Hubei Province, China.
| |
Collapse
|
24
|
Li Q, Bu Q, Liu Q, Wang X, Zhao R, Huang H, Wang D, Yang L, Tang J. Depth-dependent variations of physicochemical properties of sedimentary dissolved organic matter and the influence on the elimination of typical pharmaceuticals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170432. [PMID: 38281635 DOI: 10.1016/j.scitotenv.2024.170432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Sedimentary dissolved organic matter (DOM) could exert a significant influence on the transformation of trace organic contaminants. However, the variations of sedimentary DOM properties with depth and their impact on trace organic contaminants biodegradation remain unclear. In this study, the qualitative changes in DOM properties with depth were assessed using spectral techniques. Specifically, within the sediment range of 0-30 cm, humic acid and fulvic acid fractions exhibited higher degrees of humification and aromatization at 10-20 cm, while hydrophilic fractions showed higher degrees of humification and aromatization at 20-30 cm. Furthermore, electrochemical methods were employed to quantitatively assess the electron transfer capacity of sedimentary DOM at different depths, which displayed consistent variation trend with humification and aromatization degree. The high degree of humification and aromatization, along with strong electron-accepting capability of DOM, significantly enhanced the biodegradation rates of tetracycline and ritonavir. To gain deeper insights into the influence of molecular composition of DOM on its properties, two-dimensional gas chromatography-quadrupole mass spectrometry analysis revealed that quinones and phenolic hydroxyl compounds govern the redox reactivity of DOM. Simulated experiment of DOM-mediated biodegradation of typical pharmaceuticals confirmed the role of quinones and phenolic hydroxyl groups in the redox reactivity of DOM.
Collapse
Affiliation(s)
- Qingshan Li
- School of Chemical & Environmental Engineering, China University of Mining & Technology - Beijing, Beijing 100083, PR China
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology - Beijing, Beijing 100083, PR China.
| | - Quanzhen Liu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xin Wang
- School of Chemical & Environmental Engineering, China University of Mining & Technology - Beijing, Beijing 100083, PR China
| | - Ruiqing Zhao
- School of Chemical & Environmental Engineering, China University of Mining & Technology - Beijing, Beijing 100083, PR China
| | - Haitao Huang
- School of Chemical & Environmental Engineering, China University of Mining & Technology - Beijing, Beijing 100083, PR China
| | - Donghong Wang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Jianfeng Tang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| |
Collapse
|
25
|
Zhang Z, Miller LM, He H, Nadagouda MN, Borch T, O'Shea KE, Dionysiou DD. Molecular insights into the bonding mechanisms between selenium and dissolved organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169429. [PMID: 38123086 PMCID: PMC11826423 DOI: 10.1016/j.scitotenv.2023.169429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Natural organic matter (NOM) plays a critical role in the mobilization and bioavailability of metals and metalloids in the aquatic environment. Selenium (Se), an environmental contaminant of aquatic systems, has drawn increasing attention over the years. While Se is a vital micronutrient to human beings, animals and plants, excess Se intake may pose serious long-term risks. However, the interaction between Se and dissolved organic matter (DOM) remains relatively unexplored, especially the reaction mechanisms and interactions of specific NOM components of certain molecular weight and the corresponding functional group change. Herein, we report an investigation on the interactions between Se and DOM by focusing on the mass distribution profile change of operationally defined molecular weight fractions of humic acid (HA) and fulvic acid (FA). The results showed that across all molecular weights studied, HA fractions were more prone to enhanced aggregation upon introduction of Se into the system. For FA, the presence of Se species results in aggregation, dissociation, and redox reactions with the first two being the major mechanisms. Total organic carbon analysis (TOC), UV-vis spectroscopy (UV-vis), and Orbitrap MS data showed that [10, 30] kDa MW fraction had the largest aromatic decrease (CRAM-like, lignin-like and tannin-like) upon addition of SeO2 via dissociation as the dominant mechanism. Fourier transform infrared spectroscopy (FT-IR) revealed that Se based bridging or chelation of functional groups from individual DOM components through hydrogen bonding in the form of SeO⋯H and possibly Se⋯H and/or attractive electrostatic interactions lead to aggregated DOM1⋯Se⋯DOM2. It was concluded from two-dimensional correlation analyses of excitation emission matrix (EEM) and FT-IR that the preferred Se-binding follows lipid ➔ peptide ➔ tannin ➔ aromatic functionalities. These results provide new understanding of Se interactions with various NOM components in aquatic environments and provide insight for Se assessing health risk and/or treatment of Se contaminated water.
Collapse
Affiliation(s)
- Zhe Zhang
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (DCEE), University of Cincinnati, OH 45221, USA
| | - Lance M Miller
- Department of Chemical Engineering, Purdue University, IN 47907, USA
| | - Huan He
- Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Mallikarjuna N Nadagouda
- The U.S. Environmental Protection Agency, ORD, CESER, WID, CMTB, 26 W. Martin Luther King Jr. Drive, Cincinnati, OH 45268, USA
| | - Thomas Borch
- Department of Soil and Crop Sciences and Department of Chemistry, Colorado State University, 1170 Campus Delivery, Fort Collins, CO 80523, USA
| | - Kevin E O'Shea
- Department of Chemistry and Biochemistry, Florida International University, University Park, Miami, FL 33199, USA.
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (DCEE), University of Cincinnati, OH 45221, USA.
| |
Collapse
|
26
|
Huang M, Yang Q, Zou J, Zhao L, He J, Tian D, Lei Y, Shen F. How does adsorptive fractionation of dissolved black carbon on ferrihydrite affect its copper binding behaviors? A molecular-scale investigation. WATER RESEARCH 2024; 251:121128. [PMID: 38262163 DOI: 10.1016/j.watres.2024.121128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/08/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
Adsorptive fractionation of dissolved black carbon (DBC) on minerals is proven to alter its molecular composition, which will inevitably affect the environment fate of heavy metals. However, the effects of molecular fractionation on the interaction between DBC and heavy metals remain unclear. Herein, we observed that the selective adsorption of ferrihydrite caused molecular changes of DBC from high molecular weight/unsaturation/aromaticity to low molecular weight/saturation/aliphatics. This process accompanied by a retention of carbohydrate and a reduction of oxygen-rich functional groups (e.g., polyphenols and carboxyl) and long carbon chain in DBC. The residual DBC in aqueous phase demonstrated a weaker binding affinity to copper compared to the original DBC. This decrease in binding affinity was primarily attributed to the adsorption of polycyclic condensed aromatic compounds of 200-250 Da, oxygen-rich polycyclic condensed aromatic compounds of 250-300 Da, oxygen-rich non-polycyclic aromatic compounds of 300-450 Da, and non-polycyclic aromatic compounds of 450-700 Da in DBC by ferrihydrite. Additionally, the retention of carbohydrates and aliphatic compounds of 300-450 Da also made a significant contribution. Notably, carboxylic groups rather than phenolic groups were the dominant oxygen-containing functional groups responsible for this affinity reduction. This study has significant implications for understanding of the biogeochemical processes of DBC at soil-water interface and surface water, especially its role in the transportation of heavy metals.
Collapse
Affiliation(s)
- Mei Huang
- Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, College of Environmental Science, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, PR China
| | - Qi Yang
- Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, College of Environmental Science, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, PR China
| | - Jianmei Zou
- Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, College of Environmental Science, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, PR China
| | - Li Zhao
- Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, College of Environmental Science, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, PR China.
| | - Jinsong He
- Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, College of Environmental Science, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, PR China
| | - Dong Tian
- Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, College of Environmental Science, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, PR China
| | - Yongjia Lei
- Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, College of Environmental Science, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, PR China
| | - Fei Shen
- Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, College of Environmental Science, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
27
|
Li W, Lu L, Du H. Deciphering DOM-metal binding using EEM-PARAFAC: Mechanisms, challenges, and perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14388-14405. [PMID: 38289550 DOI: 10.1007/s11356-024-32072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024]
Abstract
Dissolved organic matter (DOM) is a pivotal component of the biogeochemical cycles and can combine with metal ions through chelation or complexation. Understanding this process is crucial for tracing metal solubility, mobility, and bioavailability. Fluorescence excitation emission matrix (EEM) and parallel factor analysis (PARAFAC) has emerged as a popular tool in deciphering DOM-metal interactions. In this review, we primarily discuss the advantages of EEM-PARAFAC compared with other algorithms and its main limitations in studying DOM-metal binding, including restrictions in spectral considerations, mathematical assumptions, and experimental procedures, as well as how to overcome these constraints and shortcomings. We summarize the principles of EEM to uncover DOM-metal association, including why fluorescence gets quenched and some potential mechanisms that affect the accuracy of fluorescence quenching. Lastly, we review some significant and innovative research, including the application of 2D-COS in DOM-metal binding analysis, hoping to provide a fresh perspective for possible future hotspots of study. We argue the expansion of EEM applications to a broader range of areas related to natural organic matter. This extension would facilitate our exploration of the mobility and fate of metals in the environment.
Collapse
Affiliation(s)
- Weijun Li
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410127, China
- Yuelu Mountain Laboratory, Hunan Agricultural University Area, Changsha, 410000, China
| | - Lei Lu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410127, China
- Yuelu Mountain Laboratory, Hunan Agricultural University Area, Changsha, 410000, China
| | - Huihui Du
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410127, China.
- Yuelu Mountain Laboratory, Hunan Agricultural University Area, Changsha, 410000, China.
| |
Collapse
|
28
|
Wang H, Yuan Y, Tan W, Zhang J, Gong X, Li Y, Hui K, Chen H, Xi B. New insight into the functional group mechanism and structure-activity relationship of the complexation between DOM and Cr(III) in landfill leachate. JOURNAL OF HAZARDOUS MATERIALS 2023; 466:133210. [PMID: 38278069 DOI: 10.1016/j.jhazmat.2023.133210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/25/2023] [Accepted: 12/07/2023] [Indexed: 01/28/2024]
Abstract
Widespread landfills represent a significant source of groundwater contamination. Due to the unique and diverse nature of dissolved organic matter (DOM) in landfill leachate, the interaction between DOM and heavy metals, along with its quantitative evaluation, remains unknown. Consequently, we collected ten samples from various landfill types to serve as representatives for a comprehensive investigation of the mechanism involving functional groups and Cr(III) through the establishment of a quantitative structure-activity relationship (QSAR). We employed ESI FT-ICR MS, (MW) 2D-COS, and DFT calculations for this purpose. Our findings indicate that DOM from landfill leachate contains a higher proportion of CHON molecules on intensity compared to those from natural sources. The maximum complexation capacity was determined by the proportion of proteins (69%), normalized carbon average oxidation state (16%), double bond equivalence (8%), and the number of oxygen atoms (7%) in landfill leachate DOM. Besides, N-containing groups such as N = O and C-N in landfill leachate DOM with lower humification, can exhibit stronger affinities than COOH, ArOH, CO, and polysaccharide C-O groups, which are typically identified as dominant sites in natural DOM. A QSAR model incorporating four parameters demonstrated an impressive accuracy rate of 98.8%, underscoring its reliability in predicting the complexation potential of different landfill leachate DOM with Cr(III).
Collapse
Affiliation(s)
- Hui Wang
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Ying Yuan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Wenbing Tan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jia Zhang
- Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Xueying Gong
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Yanjiao Li
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; College of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, PR China
| | - Kunlong Hui
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Honghan Chen
- Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Beidou Xi
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
29
|
Lu K, Gao X, Yang F, Gao H, Yan X, Yu H. Driving mechanism of water replenishment on DOM composition and eutrophic status changes of lake in arid and semi-arid regions of loess area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165609. [PMID: 37474068 DOI: 10.1016/j.scitotenv.2023.165609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
Water replenishment can be a key factor in driving lake eutrophication status. In arid and semi-arid regions of China, water replenishment for a lake has been widely carried out for not only improving water environmental quality, but also maintaining ecological system function. However, it is still unclear in terms of mechanism by which water replenishment drives lake eutrophication status. In this study, fluorescence excitation-emission matrix spectroscopy (EEMs) combined with multiple statistical analysis models (including parallel factor analysis, correlation analysis, redundancy analysis, and partial least squares structural equation modeling) was utilized to reveal potential driving mechanism and causality between water replenishment, dissolved organic matter (DOM) fractions and eutrophic status of Lake Shahu in China. Based on variations of DOM fractions, fulvic-like substances could be accumulated during the replenishment period, while nutrients carried along the replenishment might conduce to increase microbial activities during the non-replenishment period. This should be contributed to an alteration of prominent component from fulvic-like substances to tyrosine-like substances during the replenishment period to non-replenishment period. According to partial least squares structural equation modeling, two potential indirect paths were finally revealed, i.e., water replenishment derived the eutrophic status of Lake Shahu: water replenishment → microbial activity → algae → eutrophication, and water replenishment → microbial activity → eutrophication. This supposed that the water replenishment should indirectly drive the algae and eutrophication of the lake by promoting the transformation of DOM fractions. In addition, natural conditions could indirectly contribute to the eutrophication of the lake through impacting the algae growth. These findings should be conducive to trace the alteration of DOM fractions in lakes by water replenishment and in recognizing potential driving mechanisms of water replenishment on eutrophication of lakes by changing DOM fractions. This could provide basic theoretical support for policymakers to regulate and treat the eutrophication of lakes.
Collapse
Affiliation(s)
- Kuotian Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Xiaobo Gao
- School of Environment, Beijing Normal University, Beijing 100875, PR China; Ningxia Environmental Science Research Institute Co., Ltd, Yinchuan 750002, PR China
| | - Fang Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Hongjie Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| | - Xin Yan
- Xiamen Lawlink Development Co., Ltd, Xiamen 361008, PR China
| | - Huibin Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
30
|
Tan Y, Sun S, Deng Z, Alvarez PJJ, Qu X. Intrinsic peroxidase-like activity of dissolved black carbon released from biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165347. [PMID: 37419343 DOI: 10.1016/j.scitotenv.2023.165347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Dissolved black carbon (DBC) is an important constituent of the natural organic carbon pool, influencing the global carbon cycling and the fate processes of many pollutants. In this work, we discovered that DBC released from biochar has intrinsic peroxidase-like activity. DBC samples were derived from four biomass stocks, including corn, peanut, rice, and sorghum straws. All DBC samples catalyze H2O2 decomposition into hydroxyl radicals, as determined by the electron paramagnetic resonance and the molecular probe. Similar to enzymes that exhibit saturation kinetics, the steady-state reaction rates follow the Michaelis-Menten equation. The peroxidase-like activity of DBC is controlled by the ping-pong mechanism, as suggested by parallel Lineweaver-Burk plots. Its activity increases with temperature from 10 to 80 °C and has an optimum at pH 5. The peroxidase-like activity of DBC is positively correlated with its aromaticity as aromatics can stabilize the reactive intermediates. The active sites in DBC also involve oxygen-containing groups, as inferred by increased activity after the chemical reduction of carbonyls. The peroxidase-like activity of DBC has significant implications for biogeochemical processing of carbon and potential health and ecological impacts of black carbon. It also highlights the need to advance the understanding of the occurrence and role of organic catalysts in natural systems.
Collapse
Affiliation(s)
- Yi Tan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Su Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Zehui Deng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, United States
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China.
| |
Collapse
|
31
|
Li Z, Samonte PRV, Cao H, Miesel JR, Xu W. Assess the formation of disinfection by-products from pyrogenic dissolved organic matter (pyDOM): impact of wildfire on the water quality of forest watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165496. [PMID: 37451447 DOI: 10.1016/j.scitotenv.2023.165496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Wildfires can release pyrogenic dissolved organic matter (pyDOM) into the forest watershed, which may pose challenges for water treatment operations downstream due to the formation of disinfection by-products (DBPs). In this study, we systematically assessed the physio-chemical properties of pyDOM (e.g., electron-donating and -accepting capacities; EDC and EAC) and their contributions to DBP formation under different disinfection scenarios using (1) ten lab samples produced from various feedstocks and pyrolysis temperatures, and (2) pre- and post-fire field samples with different burning severities. A comprehensive suite of DBPs-four trihalomethanes (THMs), nine haloacetic acids (HAAs), and seven N-nitrosamines-were included. The formations of THM and HAA showed an up to 5.7- and 8.9-fold decrease as the pyrolysis temperature increased, while the formation of N-nitrosamines exhibited an up to 6.6-fold increase for the laboratory-derived pyDOM. These results were supported by field pyDOM samples, where the post-fire samples consistently showed a higher level of N-nitrosamine formation (i.e., up to 5.3-fold), but lower THMs and HAAs compared to the pre-fire samples. To mimic environmental reducing conditions, two field samples were further reduced electrochemically and compared with Suwannee River natural organic matter (SRNOM) to evaluate their DBP formation. We found increased DBP formation in pyDOM samples following electrochemical reduction but not for SRNOM, which showed increased N-nitrosamines but decreased THMs and HAAs post-electrochemical reduction. Furthermore, this study reported for the first time the formation of two previously overlooked N-nitrosamines (i.e., nitrosodiethylamine (NDEA), N-nitrosodi-n-propylamine (NDPA)) in both laboratory and field pyDOM samples, raising concerns for drinking water safety given their higher toxicity as compared to the regulated counterparts. Results from this study provide new insights for DBP mitigation during post-fire recovery, which are particularly relevant to communities that rely on forest watersheds as their drinking water sources.
Collapse
Affiliation(s)
- Zhao Li
- Department of Civil and Environmental Engineering, Villanova University, 800 E. Lancaster Ave., Villanova, PA 19085, United States of America
| | - Pamela Rose V Samonte
- Department of Civil and Environmental Engineering, Villanova University, 800 E. Lancaster Ave., Villanova, PA 19085, United States of America
| | - Han Cao
- Department of Civil and Environmental Engineering, Villanova University, 800 E. Lancaster Ave., Villanova, PA 19085, United States of America
| | - Jessica R Miesel
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 220 Trowbridge Rd, East Lansing, MI 48824, United States of America
| | - Wenqing Xu
- Department of Civil and Environmental Engineering, Villanova University, 800 E. Lancaster Ave., Villanova, PA 19085, United States of America.
| |
Collapse
|
32
|
Hu A, Zheng Y, Wang Z, Li M, Wang D, Zhang W. Tracking the transformation pathway of dissolved organic matters (DOMs) in biochars under sludge pyrolysis via reactomics and molecular network analysis. CHEMOSPHERE 2023; 342:140149. [PMID: 37709065 DOI: 10.1016/j.chemosphere.2023.140149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
This work examined the transformation pathways of sludge biochar-derived dissolved organic matters (SBC-derived DOMs) under sludge pyrolysis via FT-ICR-MS-based reactomics and molecular network analysis. Lignin/carboxylic-rich alicyclic molecules, proteins/aliphatic, and lipids of SBC-derived DOMs did not contribute equally to the overall pyrolytic reactions. Reactomics suggested that the pyrolysis reactions of SBC-derived DOMs consist of multiple cascade reactions involving the elimination of assemblages of reactive fragments during each pyrolysis reaction region, and the overall pyrolysis process was divided into three stages according to cascade reaction variations. Especially, cascade reactions at 400-500 °C produced potential environmental risk substances of N-containing, carbonyl-containing, and phenolic compounds. Besides, network analysis unraveled the complexity and number of molecular reaction pairs of SBC-derived DOMs decreased with the increase in pyrolytic temperatures. Keystone molecules and pathways results indicated that the pyrolytic temperature of the sludge pyrolysis process should be controlled at temperatures above 500 °C according to the harmful substances generation pattern in reaction products. Overall, the possible transformation pathways of SBC-derived DOMs during sludge pyrolysis treatment were proposed. This study elucidated the underlying mechanisms in generating SBC-derived DOMs and provided theoretical support for process optimization and harmful substances control of sludge pyrolysis.
Collapse
Affiliation(s)
- Aibin Hu
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, China
| | - Yongliang Zheng
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, China
| | - Zheng Wang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, China
| | - Mengqiu Li
- School of Computer Science, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Dongsheng Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Weijun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese, Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
33
|
Zhang H, Ni J, Wei R, Chen W. Water-soluble organic carbon (WSOC) from vegetation fire and its differences from WSOC in natural media: Spectral comparison and self-organizing maps (SOM) classification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165180. [PMID: 37385508 DOI: 10.1016/j.scitotenv.2023.165180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/10/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Vegetation fire frequently occurs globally and produces two types of water-soluble organic carbon (WSOC) including black carbon WSOC (BC-WSOC) and smoke-WSOC, they will eventually enter the surface environment (soil and water) and participate in the eco-environmental processes on the earth surface. Exploring the unique features of BC-WSOC and smoke-WSOC is critical and fundamental for understanding their eco-environmental effects. Presently, their differences from the natural WSOC of soil and water remain unknown. This study produced various BC-WSOC and smoke-WSOC by simulating vegetation fire and used UV-vis, fluorescent EEM-PARAFAC, and fluorescent EEM-SOM to analyze their different features from natural WSOC of soil and water. The results showed that the maximum yield of smoke-WSOC reached about 6600 folds that of BC-WSOC after a vegetation fire event. The increasing burning temperature decreased the yield, molecular weight, polarity, and protein-like matters abundance of BC-WSOC and increased the aromaticity of BC-WSOC, but presented a negligible effect on the features of smoke-WSOC. Furthermore, compared with natural WSOC, BC-WSOC had a greater aromaticity, smaller molecular weight, and more humic-like matters, while smoke-WSOC had a lower aromaticity, smaller molecular size, higher polarity, and more protein-like matters. EEM-SOM analysis indicated that the ratio between the fluorescence intensity at Ex/Em: 275 nm/320 nm and the sum fluorescence intensity at Ex/Em: 275 nm/412 nm and Ex/Em: 310 nm/420 nm could effectively differentiate WSOC of different sources, following the order of smoke-WSOC (0.64-11.38) > water-WSOC and soil-WSOC (0.06-0.76) > BC-WSOC (0.0016-0.04). Hence, BC-WSOC and smoke-WSOC possibly directly alter the quantity, properties, and organic compositions of WSOC in soil and water. Owing to smoke-WSOC having far greater yield and bigger difference from natural WSOC than BC-WSOC, the eco-environmental effect of smoke-WSOC deposition should be given more attention after a vegetation fire.
Collapse
Affiliation(s)
- Huiying Zhang
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Jinzhi Ni
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Ran Wei
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Weifeng Chen
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou, Fujian 350007, China; School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China.
| |
Collapse
|
34
|
Zhao X, Dang Q, Wang Y, Zhang C, Chen Y, He L, Xi B. Linking Redox Characteristics to Dissolved Organic Matter Derived from Different Biowaste Composts: A Theoretical Modeling Approach Based on FT-ICR MS Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15076-15086. [PMID: 37774089 DOI: 10.1021/acs.est.3c03286] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Compost dissolved organic matter (DOM) is a complex mixture of redox-active organic molecules that impact various biogeochemical processes in soil environments. However, the impact of chemical complexity (heterogeneity and chemodiversity) on the electron accepting capacity (EAC) and electron donating capacity (EDC) of DOM molecules remains unclear, which hinders our ability to predict their environmental behavior and redox properties. In this study, the applicability of Vienna Soil Organic Matter Modeler 2 (VSOMM2) to the composting system based on the FT-ICR MS data has been validated. A molecular modeling approach using VSOMM2 and Schrödinger software was developed to quantitatively assess the redox sites and molecular interactions of compost DOM. Compost DOM molecules are categorized into three distinct groups based on their heterogeneous origins. In addition, we have developed 18 molecular models of compost DOM based on the links of molecules to EAC/EDC. Finally, Ar-OH, quinone, Ar-SH, and Ar-NH2 were identified as the redox sites; noncovalent contacts, H bonds, salt bridges, and aromatic-H bonds might be significant electronic transmission channels of compost DOM. Our findings contribute to the development of precise regulatory methods for functional molecules within compost DOM, providing the fine standards for composts matching specific ecosystem service requirements.
Collapse
Affiliation(s)
- Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qiuling Dang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- School of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, China
| | - Chuanyan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- School of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, China
| | - Yating Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Liangzi He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
35
|
Sun T, Sun Y, Huang Q, Xu Y, Jia H. Sustainable exploitation and safe utilization of biochar: Multiphase characterization and potential hazard analysis. BIORESOURCE TECHNOLOGY 2023:129241. [PMID: 37247790 DOI: 10.1016/j.biortech.2023.129241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/31/2023]
Abstract
Pyrolysis temperature determines the multiphase (solid and dissolved) structure of biochar (BC). In this study, the temperature-dependent evolution of characteristics and potential hazards of three crop (cotton, alfalfa, and wheat) residue BC were systematically investigated. The results showed that pyrolysis temperature significantly affected the elemental composition and morphology of BC. A higher pyrolysis temperature led to a higher aromatization and graphitization degree of BC. A numerical relationship between pyrolysis temperature and BC surface properties (functional groups, carbonization degree) was established. Pyrolysis temperature controlled the content, composition, and functional group evolution of BC-derived dissolved organic matter. Although the amount of potentially toxic elements (PTEs) in BC was concentrated after pyrolysis, the potentially risk of PTEs significantly decreased. The spin concentration of persistent free radicals in BC prepared at 500 °C was the highest. These findings will hopefully offer comprehensive guidance for sustainable utilization of crop straw and fit-for-purpose exploitation of BC.
Collapse
Affiliation(s)
- Tao Sun
- Key Laboratory of Original Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs/Tianjin Key Laboratory of Agro-Environment and Agro-Products, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yuebing Sun
- Key Laboratory of Original Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs/Tianjin Key Laboratory of Agro-Environment and Agro-Products, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Qingqing Huang
- Key Laboratory of Original Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs/Tianjin Key Laboratory of Agro-Environment and Agro-Products, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yingming Xu
- Key Laboratory of Original Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs/Tianjin Key Laboratory of Agro-Environment and Agro-Products, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Hongtao Jia
- College of Resources and Environment Sciences, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
36
|
Hameed R, Li G, Son Y, Fang H, Kim T, Zhu C, Feng Y, Zhang L, Abbas A, Zhao X, Wang J, Li J, Dai Z, Du D. Structural characteristics of dissolved black carbon and its interactions with organic and inorganic contaminants: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162210. [PMID: 36791863 DOI: 10.1016/j.scitotenv.2023.162210] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/15/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Biochar (BC) is a sustainable and renewable carbonaceous material, and its soluble component, dissolved black carbon (DBC), is the key to understanding BC's geological and environmental processes. Although the relationship between the changes in DBC structure and its properties, functions, and associated environmental risks has been explored, a gap remains in our understanding of DBC's fate and behavior in the natural environment. Thus, in this review, we have highlighted the molecular and chemical compositions and the structural evolution of DBC during pyrolysis, the influence of DBC's physicochemical properties on its fate and transport, DBC's interaction with soil and its contaminants, and DBC stability in soil and water environments along with potential risks. Based on our in-depth assessment of DBC and its biogeochemical roles, we believe that future studies should focus on the following: (1) using advanced techniques to understand the chemical and molecular structure of DBC deeply and concisely and, thus, determine its fundamental role in the natural environment; (2) investigating the multi-functional properties of DBC and its interaction mechanisms; and (3) evaluating the environmental behaviors of and risks associated with DBC after BC application. In future, it is necessary to gain a deeper insight into the fate and transport of DBC with contaminants and study its associated risks under BC application in the environment.
Collapse
Affiliation(s)
- Rashida Hameed
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Guanlin Li
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Yowhan Son
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Huajun Fang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Taewan Kim
- Institute of Ecological Phytochemistry, Hankyong National University, Anseong 17579, Republic of Korea
| | - Chaodong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Biological Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanfang Feng
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lihua Zhang
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, China
| | - Adeel Abbas
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiaqian Wang
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jian Li
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhicong Dai
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daolin Du
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
37
|
Song F, Li T, Wu F, Leung KMY, Hur J, Zhou L, Bai Y, Zhao X, He W, Ruan M. Temperature-Dependent Molecular Evolution of Biochar-Derived Dissolved Black Carbon and Its Interaction Mechanism with Polyvinyl Chloride Microplastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7285-7297. [PMID: 37098046 DOI: 10.1021/acs.est.3c01463] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Biochar-derived dissolved black carbon (DBC) molecules are dependent on the BC formation temperature and affect the fate of emerging contaminants in waters, such as polyvinyl chloride microplastic (MPPVC). However, the temperature-dependent evolution and MPPVC-interaction of DBC molecules remain unclear. Herein, we propose a novel DBC-MPPVC interaction mechanism by systematically interpreting heterogeneous correlations, sequential responses, and synergistic relationships of thousands of molecules and their linking functional groups. Two-dimensional correlation spectroscopy was proposed to combine Fourier transform-ion cyclotron resonance mass spectrometry and spectroscopic datasets. Increased temperature caused diverse DBC molecules and fluorophores, accompanied by molecular transformation from saturation/reduction to unsaturation/oxidation with high carbon oxidation states, especially for molecules with acidic functional groups. The temperature response of DBC molecules detected via negative-/positive-ion electrospray ionization sequentially occurred in unsaturated hydrocarbons → lignin-like → condensed aromatic → lipid-/aliphatic-/peptide-like → tannin-like → carbohydrate-like molecules. DBC molecular changes induced by temperature and MPPVC interaction were closely coordinated, with lignin-like molecules contributing the most to the interaction. Functional groups in DBC molecules with m/z < 500 showed a sequential MPPVC-interaction response of phenol/aromatic ether C-O, alkene C═C/amide C═O → polysaccharides C-O → alcohol/ether/carbohydrate C-O groups. These findings help to elucidate the critical role of DBCs in MP environmental behaviors.
Collapse
Affiliation(s)
- Fanhao Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tingting Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Jin Hur
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea
| | - Lingfeng Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wei He
- Ministry of Education Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Mingqi Ruan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
38
|
Li X, Cao H, Cao Y, Zhao Y, Zhang W, Shen J, Sun Z, Ma F, Gu Q. Insights into the mechanism of persulfate activation with biochar composite loaded with Fe for 2,4-dinitrotoluene degradation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:117955. [PMID: 37148765 DOI: 10.1016/j.jenvman.2023.117955] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/08/2023]
Abstract
Iron in biochar composite loaded with Fe (Fex@biochar) is crucial for persulfate activation. However, the iron dosages-driven mechanism linked to the speciation, electrochemical property, and persulfate activation with Fex@biochar remains ambiguous. We synthesized and characterized a series of Fex@biochar and evaluated its catalytic performance in 2,4-dinitrotoluene removal experiments. With increasing FeCl3 dosage, iron speciation in Fex@biochar changed from γ-Fe2O3 to Fe3O4, and the variation in functional groups was as follows: Fe-O, aliphatic C-O-H, O-H, aliphatic C-H, aromatic CC or CO, and C-N. The electron accepting capacity of Fex@biochar increased as the FeCl3 dosage increased from 10 to 100 mM but decreased at 300 and 500 mM FeCl3. 2,4-dinitrotoluene removal first increased and subsequently decreased, reaching 100% in the persulfate/Fe100@biochar system. The Fe100@biochar also showed good stability and reusability for PS activation, verified by five test cycles. The mechanism analysis indicated that the iron dosage altered the Fe (Ⅲ) content and electron accepting capacity of Fex@biochar during pyrolysis, further controlling persulfate activation and 2,4-dinitrotoluene removal. These results support the preparation of eco-friendly Fex@biochar catalysts.
Collapse
Affiliation(s)
- Xiaodong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Huizhen Cao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yuan Cao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yao Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenwen Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jialun Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zongquan Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fujun Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Qingbao Gu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
39
|
Li Z, Qu B, Jiang J, Bekele TG, Zhao H. The photoactivity of complexation of DOM and copper in aquatic system: Implication on the photodegradation of TBBPA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163620. [PMID: 37100127 DOI: 10.1016/j.scitotenv.2023.163620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/08/2023]
Abstract
The photoactivity of dissolved organic matter (DOM) has a great impact on the photodegradation of organic pollutants in natural waters. In this study, the photodegradation of TBBPA was investigated under simulated sunlight irradiation in the presence of copper ion (Cu2+), dissolved organic matter (DOM) and Cu-DOM complexation (Cu-DOM) to illustrate the effect of Cu2+ on photoactivity of DOM. The rate of photodegradation of TBBPA in the presence of Cu-DOM complex was 3.2 times higher than that in pure water. The effects of Cu2+, DOM and Cu-DOM on the photodegradation of TBBPA were highly pH dependent and hydroxyl radical(·OH) responded for the acceleration effect. Spectral and radical experiments indicated that Cu2+ had high affinity to fluorescence components of DOM, and acted as both the cation bridge and electron shuttle, resulting the aggregation of DOM and increasing of steady-state concentration of ·OH (·OHss). Simultaneously, Cu2+ also inhibited intramolecular energy transfer leading to the decrease of steady-state concentration singlet oxygen (1O2ss) and triplet of DOM (3DOM⁎ss). The interaction between Cu2+ and DOM followed the order of conjugated carbonyl CO, COO- or CO stretching in phenolic groups and carbohydrate or alcoholic CO groups. With these results, a comprehensive investigation on the photodegradation of TBBPA in the presence of Cu-DOM was conducted, and the effect of Cu2+ on the photoactivity of DOM was illustrated. These findings helped to understanding the potential mechanism of interaction among metal cation, DOM and organic pollutants in sunlit surface water, especially for the DOM-induced photodegradation of organic pollutants.
Collapse
Affiliation(s)
- Zhansheng Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116023, China
| | - Baocheng Qu
- College of Marine Technology and Environment, Dalian Ocean University, Heishijiao Street 52, Dalian 116024, China
| | - Jingqiu Jiang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No.12 South Zhongguancun Ave., Haidian District, Beijing 100081, China
| | - Tadiyose Girma Bekele
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116023, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116023, China.
| |
Collapse
|
40
|
Liu Y, Zhou S, Fu Y, Sun X, Li T, Yang C. Characterization of dissolved organic matter in biochar derived from various macroalgae (Phaeophyta, Rhodophyta, and Chlorophyta): Effects of pyrolysis temperature and extraction solution pH. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161786. [PMID: 36706994 DOI: 10.1016/j.scitotenv.2023.161786] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/03/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Characterization of biochar-derived dissolved organic matter (DOM) can provide deep insight into potential applications of biochar. Herein, biochar from six macroalgae (Phaeophyta-Sargassum fusiforme, Sargassum thunbergii, and Sargassum vachellianum; Rhodophyta-Grateloupia turuturu and Chondria crassicaulis; and Chlorophyta-Ulva pertusa) were subjected to pyrolysis at different temperatures (200 °C-500 °C). The effects of pyrolysis temperature and extraction solution pH on the characteristics of the macroalgal biochar-derived DOM (MBDOM) were investigated via fluorescence excitation-emission matrix spectroscopy with parallel factor (PARAFAC) analysis. Five humic-like substances and one protein-like substance were identified. The distributions of the six PARAFAC components depended on the macroalgae species, pyrolysis temperature, and extraction solution pH. The proportion of the protein-like substance (0 %-46.77 %) was less than that of the humic-like substances (100 %-53.23 %) in a given MBDOM regardless of the extraction solution pH values. Fluorescence spectral indicators show that DOM from macroalgal biochar is more autochthonous and humified than that from the corresponding biomass. Hierarchical cluster analysis and redundancy analysis results further show that the macroalgae species, pyrolysis temperature, and extraction solution pH jointly affect DOM characteristics with varying contribution levels.
Collapse
Affiliation(s)
- Yangzhi Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shanshan Zhou
- Zhejiang Marine Fisheries Research Institute, Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhoushan 316021, China; Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China
| | - Yu Fu
- Zhejiang Marine Fisheries Research Institute, Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhoushan 316021, China; Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China
| | - Xiumei Sun
- Zhejiang Marine Fisheries Research Institute, Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhoushan 316021, China; Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China
| | - Tiejun Li
- Zhejiang Marine Fisheries Research Institute, Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhoushan 316021, China; Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China
| | - Chenghu Yang
- Zhejiang Marine Fisheries Research Institute, Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhoushan 316021, China; Marine and Fishery institute of Zhejiang Ocean University, Zhoushan 316021, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
41
|
Hu X, Qu C, Han Y, Sun P, Cai P, Chen W, Huang Q. Elevated temperature induces contrasting transformation of exogenous copper to soil solution and solid phases in an arable soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114744. [PMID: 36931086 DOI: 10.1016/j.ecoenv.2023.114744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/19/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Heavy metal contamination of soils has been a global environmental issue over the past decades, threatening food security and human health. Understanding the migration and transformation of heavy metals in soils is critical for restoring an impaired environment and developing sustainable agriculture, particularly in the face of global warming. However, little effort has been devoted to investigating the impact of elevated temperatures on the migration and distribution of exogenous heavy metals in soils. This study experimented with a 180-day incubation at 15 °C, 30 °C, and 45 °C with an arable soil (Alfisol) of Huang-Huai-Hai River Basin, China, which was initially spiked with copper (Cu). A comparison of the results revealed that the percentage of soil water-soluble Cu doubled at 45 °C compared with 15 °C. The percentage of protein-like substances in dissolved organic matter (DOM) was the highest at 45 °C, suggesting that proteinaceous components play a more significant role in controlling the dissolution of Cu into DOM. Moreover, by sequential extraction and micro-X-ray fluorescence (μ-XRF), Cu was facilitatively transformed from exchangeable, and specifically adsorbed fractions, to iron (Fe)/manganese (Mn) oxides bound species by 7.75%23.63% with the elevation of temperature from 15 °C to 45 °C. The conversion of Cu speciation is attributed to the significant release of organic carbon from Fe/Mn oxides, especially the Mn oxide components, which are available for Cu binding. The findings of this work will provide an in-depth understanding of the fate of Cu in soils, which is fundamental for the risk assessment and remediation of Cu-polluted soils in the Huang-Huai-Hai River Basin under the context of global warming.
Collapse
Affiliation(s)
- Xiping Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenchen Qu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Yafeng Han
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Pan Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China; China-Australia Research Laboratory on Environmental Biogeochemistry, Huazhong Agricultural University, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China; China-Australia Research Laboratory on Environmental Biogeochemistry, Huazhong Agricultural University, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China.
| |
Collapse
|
42
|
Zhang J, Huang N, Li H, Cheng B, Zhou X, Wang C. Interaction between biochar-dissolved organic matter and chlorophenols during biochar adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:40375-40387. [PMID: 36609760 DOI: 10.1007/s11356-022-25083-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Biochar (BC) has been widely applied in the remediation of chlorophenols (CPs) from contaminated sites in which the role and mechanisms of BC dissolved organic matter (BDOM), as a crucial component of BC, with CPs are largely unknown and thus need to be investigated. In this study, DOM was derived from peanut hulls (PDOM) and corn stalks (CDOM) as BC sources, and the interactions between PDOM/CDOM and 2,4,6-trichlorophenol (TCP) were analysed using excitation-emission matrix spectroscopy (EEM) in combination with multiple models. EEM combined with fluorescence region integration (EEM-FRI) indicated that humic-like materials were the major materials of both PDOM and CDOM (percentage fluorescence response Ri,n > 60%), and CDOM contained more protein- and fulvic-like materials than PDOM. Based on EEM in combination with parallel factor analysis (EEM-PARAFAC), 4 components were obtained, and the percentage decrease in maximum fluorescence intensities (Fmax) showed that the main components interacting with TCP in PDOM/CDOM were protein- and fulvic-like components (> 25%). Moreover, the modified Stern-Volmer model was used to calculate the stability constants (Log KTCP) of PDOM/CDOM and TCP for the first time, and the mechanism of static quenching was dominant for interacting with TCP in PDOM (Log KTCP: 4.36-4.65) and CDOM (Log KTCP: 3.53-4.73). Furthermore, the sequential TCP binding of fluorescent components in BDOM generally followed the order of protein-like → short-wavelength fulvic-like → long-wavelength fulvic-like → humic-like components. These findings will provide a basis for screening biochar as a functional material for CP remediation applications and for understanding the environmental chemical behaviour of leached DOM during biochar application.
Collapse
Affiliation(s)
- Jin Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Nannan Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 10012, People's Republic of China
| | - Hui Li
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Biao Cheng
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Xuan Zhou
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Chen Wang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
43
|
Ye Y, Wang Z, Liu L, Qi K, Xie X. Novel insights into the temporal molecular fractionation of dissolved black carbon at the iron oxyhydroxide - water interface. WATER RESEARCH 2023; 229:119410. [PMID: 36462262 DOI: 10.1016/j.watres.2022.119410] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
As the most reactive and mobile fraction of black carbon, dissolved black carbon (DBC) inexorably interacts with minerals in the biosphere. Nevertheless, the research on the mechanisms and compositions of DBC assembly at the mineral-water interface remains limited. In this study, we revealed the "kinetic architecture" of DBC on iron oxyhydroxide at novel insights based on quantitative and qualitative approaches. The results indicated that high molecular weight, highly unsaturated, oxygen-rich (such as carboxyl-rich fraction, phenolics), aliphatics, and long C chains compounds were preferentially adsorbed on the iron oxyhydroxide. 2D-COS analyses directly disclosed the sequential fractionation: aromatic and phenolic groups > aliphatic groups, and few aromatics were continuously adsorbed after the rapid adsorption. Quantitative determinations identified that aromatic and phenolic components were adsorbed rapidly over the first 60 min, while aromatics achieved the dynamic equilibrium until ∼300 min, which was consistent with the 2D-COS observations. Our findings supported the hypothesis that "mineral-OM" and "OM-OM" interactions worked simultaneously, and the adsorption might be co-driven by ligand exchange, hydrophobic interactions, and other mechanisms. This work provided the theoretical basis for organic carbon storage and turnover, and it was valuable for predicting the behaviors and fates of contaminants at the soil-water interface and surface water.
Collapse
Affiliation(s)
- Yuping Ye
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Tianshui South Road 222, Lanzhou, Gansu 730000, China
| | - Zhaowei Wang
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Tianshui South Road 222, Lanzhou, Gansu 730000, China.
| | - Lijuan Liu
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Tianshui South Road 222, Lanzhou, Gansu 730000, China
| | - Kemin Qi
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Tianshui South Road 222, Lanzhou, Gansu 730000, China
| | - Xiaoyun Xie
- Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Tianshui South Road 222, Lanzhou, Gansu 730000, China.
| |
Collapse
|
44
|
Yan C, Wang W, Nie M, Ding M, Wang P, Zhang H, Huang G. Characterization of copper binding to biochar-derived dissolved organic matter: Effects of pyrolysis temperature and natural wetland plants. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130076. [PMID: 36193612 DOI: 10.1016/j.jhazmat.2022.130076] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/12/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Characterization of the biochar-derived dissolved organic matter (BDOM) is essential to understanding the environmental efficacy of biochar and the behavior of heavy metals. In this study, the binding properties of BDOM derived from different pyrolysis temperatures, wetland plants, and plant organs with Cu was investigated based on a multi-analytical approach. In general, the pyrolysis temperature exhibited a more significant impact on both the spectral characteristics of BDOM and Cu binding behavior than those of the feedstocks. With the pyrolysis temperature increased, the dissolved organic carbon, aromaticity, and fluorescence substance of BDOM decreased and the structure became more condensed. Humic-and tryptophan-like substance was more susceptible to the addition of Cu for BDOM pyrolyzed at 300 ℃ and 500 ℃, respectively. In addition, the more tyrosine-like substance is involved in Cu binding at higher pyrolysis temperature (500 ℃). However, the fluvic-like substance occurred preferentially with Cu than the other fluorophores. Moreover, the higher binding capacity for Cu was exhibited by the humic-like substance and by BDOM derived from the higher pyrolysis temperature and the lower elevation plants with the corresponding average stability constants (log KM) of 5.58, 5.36, and 5.16.
Collapse
Affiliation(s)
- Caixia Yan
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Wangyu Wang
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Minghua Nie
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China; Key Laboratory of Eco-geochemistry, Ministry of Natural Resource, Beijing 100037, China.
| | - Mingjun Ding
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China.
| | - Peng Wang
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Hua Zhang
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Gaoxiang Huang
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| |
Collapse
|
45
|
Ye Q, Ding Y, Ding Z, Li R, Shi Z. Unified Modeling Approach for Quantifying the Proton and Metal Binding Ability of Soil Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:831-841. [PMID: 36574384 DOI: 10.1021/acs.est.2c08482] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Soil dissolved organic matter (DOM) is composed of a mass of complex organic compounds in soil solutions and significantly affects a range of (bio)geochemical processes in soil environment. However, how the chemical complexity (i.e., heterogeneity and chemodiversity) of soil DOM molecules affects their proton and metal binding ability remains unclear, which limits our ability for predicting the environmental behavior of DOM and metals. In this study, we developed a unified modeling approach for quantifying the proton and metal binding ability of soil DOM based on Cu titration experiments, Fourier transform ion cyclotron resonance mass spectrometry data, and molecular modeling method. Although soil DOM samples from different regions have enormously heterogeneous and diverse properties, we found that the molecules of soil DOM can be divided into three representative groups according to their Cu binding capacity. Based on the molecular models for individual molecular groups and the relative contributions of each group in each soil DOM, we were able to further develop molecular models for all soil DOM to predict their molecular properties and proton and metal binding ability. Our results will help to develop mechanistic models for predicting the reactivity of soil DOM from various sources.
Collapse
Affiliation(s)
- Qianting Ye
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong510006, People's Republic of China
| | - Yang Ding
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong510006, People's Republic of China
| | - Zecong Ding
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong510006, People's Republic of China
| | - Rong Li
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong510006, People's Republic of China
| | - Zhenqing Shi
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong510006, People's Republic of China
| |
Collapse
|
46
|
Li H, McKay G. Fluorescence Quenching of Humic Substances and Natural Organic Matter by Nitroxide Free Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:719-729. [PMID: 36547376 DOI: 10.1021/acs.est.2c02220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Fluorescence spectroscopy is one of the most frequently used techniques for studying dissolved organic matter (DOM) in natural and engineered systems. However, the spatial distribution and fluorophores, including local and interacting states, within DOM's larger structure remains poorly understood. In this study, we used two nitroxide fluorescence quenchers to evaluate the chemical and spatial heterogeneity of DOM fluorophores. Several results from quenching experiments with cationic 4-amino-TEMPO (tempamine), including downward-curving Stern-Volmer plots and spectral dependent quenching, show that multiple emitting species contribute to the observed emission even at a single excitation wavelength. Furthermore, for DOM isolates of diverse geographic origins (soil vs aquatic) and isolation procedures (reverse osmosis vs humic substances), the maximum extent of quenching occurs on the red edge of the emission spectra. For soil humic substance isolates, the spectral dependent quenching was significant enough to affect a blue shift in the average emission wavelength. The same soil humic substance isolates whose emission spectra were blue shifted by tempamine quenching were also blue shifted by decreasing solution pH and decreasing solvent polarity, which suggests a role for anionic fluorophores (e.g., hydroxybenzoic acids) in long wavelength fluorescence. Finally, curvature in Stern-Volmer plots indicate that between 10 and 50% of emitting species detected by steady-state fluorescence are inaccessible to quenching by tempamine, suggesting that this fraction of fluorophores may be inaccessible to water solvent. Results from this study provide an assessment of the spatial distribution of fluorophores within DOM and help to reconcile prior studies on the role of solvent polarity and pH on DOM fluorescence.
Collapse
Affiliation(s)
- Hang Li
- Zachry Department of Civil & Environmental Engineering, Texas A&M University, College Station, Texas77845, United States
| | - Garrett McKay
- Zachry Department of Civil & Environmental Engineering, Texas A&M University, College Station, Texas77845, United States
| |
Collapse
|
47
|
Zhu M, Zhang Z, Zhang T, Hofmann T, Chen W. Eco-Corona Dictates Mobility of Nanoplastics in Saturated Porous Media: The Critical Role of Preferential Binding of Macromolecules. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:331-339. [PMID: 36574476 DOI: 10.1021/acs.est.2c07376] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanoplastics are an increasing environmental concern. In aquatic environments, nanoplastics will acquire an eco-corona by interacting with macromolecules (e.g., humic substances and extracellular polymeric substances (EPS)). Here, we show that the properties of the eco-corona and, consequently, its ability to enhance the transport of nanoplastics vary significantly with the surface functionality of nanoplastics and sources of macromolecules. The eco-corona derived from the EPS of Gram-negative Escherichia coli MG1655 enhances the transport of polystyrene (PS) nanospheres in saturated porous media to a much greater extent than the eco-corona derived from soil humic acid and fulvic acid. In comparison, the eco-corona from all three sources significantly enhance the transport of carboxylated PS (HOOC-PS). We show that the eco-corona inhibits the deposition of the two types of nanoplastics to the porous media mainly via steric repulsion. Accordingly, an eco-corona consisting of a higher mass of larger-sized macromolecules is generally more effective in enhancing transport. Notably, HOOC-PS tends to acquire macromolecules of lower hydrophobicity than PS. The more disordered and flexible structures of such macromolecules may result in greater elastic repulsion between the nanoplastics and sand grains and, consequently, greater transport enhancement. The findings of this study highlight the critical role of eco-corona formation in regulating the mobility of nanoplastics, as well as the complexity of this process.
Collapse
Affiliation(s)
- Meiling Zhu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Zhanhua Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Thilo Hofmann
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Wien, Austria
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| |
Collapse
|
48
|
Ye Y, Cai X, Wang Z, Xie X. Characterization of dissolved black carbon and its binding behaviors to ceftazidime and diclofenac pharmaceuticals: Employing the molecular weight fractionation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120449. [PMID: 36265731 DOI: 10.1016/j.envpol.2022.120449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/24/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
As the ubiquitous component of the aquatic environment, dissolved organic matter (DOM) readily bind with residual pharmaceutical contaminants (PCs) and influence their environmental behaviors. However, the binding mechanisms between dissolved black carbon (DBC), a vital part of the natural DOM pool, and PCs were poorly researched. In this study, the bulk DBC was divided into four fractions in molecular weight (MW) via an ultrafiltration system, and the properties of DBC and their binding interaction with two kinds of typical PCs (ceftazidime (CAZ) and diclofenac (DCF)) were explored concretely. The results showed that low MW component was the main contributor to bulk DBC, and the aromaticity increased with the increase of MW. The categories of chemical structures and fluorescent substances in different MW DBC were similar. Multispectral techniques showed that the oxygen-enriched compounds in DBC had the higher affinity to CAZ/DCF. The -NH-, -COOH, -NH2 groups in CAZ molecules appeared to form the hydrogen bond with DBC. Fluorescence quenching experiments were analyzed, and the binding mechanisms were specifically expounded from the thermodynamic perspective. The fluorophore of fulvic acid-like compounds (FA) were quenched by both static and dynamic quenching mechanisms, while only static quenching occurred for humic acid-like compounds (HA). For bulk DBC, the hydrogen bond and van der Waals force were the major forces in the HA-CAZ system, while the hydrophobic force made the primary contribution to the HA-DCF system, which might be ascribed to the higher hydrophobic nature of DCF. Notably, with the increase of HA MW, the main binding mode of HA-CAZ/DCF changed from hydrophobic force to hydrogen bond and van der Waals force gradually, which also directly proved that various noncovalent interactions co-driven the binding processes. Our findings are beneficial to better assess the fate of DBC and PCs and the corresponding complexes in the aquatic environment.
Collapse
Affiliation(s)
- Yuping Ye
- College of Earth and Environmental Sciences, Lanzhou University, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Lanzhou, 730000, China
| | - Xuewei Cai
- College of Earth and Environmental Sciences, Lanzhou University, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Lanzhou, 730000, China
| | - Zhaowei Wang
- College of Earth and Environmental Sciences, Lanzhou University, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Lanzhou, 730000, China.
| | - Xiaoyun Xie
- College of Earth and Environmental Sciences, Lanzhou University, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, Lanzhou, 730000, China
| |
Collapse
|
49
|
Tu YN, Li C, Shi F, Li Y, Zhang Z, Liu H, Tian S. Enhancive and inhibitory effects of copper complexation on triplet dissolved black carbon-sensitized photodegradation of organic micropollutants. CHEMOSPHERE 2022; 307:135968. [PMID: 35964723 DOI: 10.1016/j.chemosphere.2022.135968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/20/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Excited-triplet dissolved black carbon (DBC) was deemed as a significant reactive intermediate in the phototransformation of environmental micropollutants, but the impacts of concomitant metal ions on photochemical behavior of excited-triplet DBC (3DBC*) are poorly understood. Here, the photolytic kinetics of sulfadiazine and carbamazepine induced by 3DBC* involving Cu2+ was explored. The presence of Cu2+ reduced the 3DBC*-induced photodegradation rate of sulfadiazine; whereas for carbamazepine, Cu2+ enhanced 3DBC*-induced photodegradation. Cu(II)-DBC complex was formed due to the decreasing fluorescence intensities of DBC in the presence of Cu2+. Cu2+ complexation caused the decrease of 3DBC* steady-state concentrations, which markedly reduced 3DBC*-induced photodegradation rate of sulfadiazine due to its high triplet reactivity. Kinetic model showed that 3DBC* quenching rate by Cu2+ was 7.98 × 109 M-1 s-1. Cu2+ complexation can also enhance the electron transfer ability, thereby producing more ∙OH in Cu(II)-DBC complex, which explains the promoting effect of Cu2+ complexation on carbamazepine photodegradation in view of its low triplet reaction rate. These indicate that 3DBC* reactivity differences of organic micropollutants may explain their photodegradation kinetics differences in DBC system with/without Cu2+, which was supported by the linearized relationship between the photodegradation rate ratios of ten micropollutants with/without Cu2+ and their triplet reaction activity.
Collapse
Affiliation(s)
- Yi-Na Tu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Chen Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Fengli Shi
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Zhiyu Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Huaying Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| |
Collapse
|
50
|
Li T, Song F, Wu F, Huang X, Bai Y. Heterogeneous Dynamic Behavior and Synergetic Evolution Mechanism of Internal Components and Released Gases during the Pyrolysis of Aquatic Biomass. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13595-13606. [PMID: 36102145 DOI: 10.1021/acs.est.2c02631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Evolution of gaseous contaminants from biomass pyrolysis has drawn increasing attention. However, the thermal degradation, dynamics, and synergetic evolution mechanisms during real-time biomass pyrolysis remain unclear. Herein, a novel method using thermogravimetry-Fourier transform infrared spectrometry-gas chromatography/mass spectrometry (TG-FTIR-GC/MS) combined with thermal kinetics and two-dimensional correlation spectroscopy was proposed to explore the chemical properties and temperature response mechanisms of gaseous species released during Phragmites communis (PC) and Typha angustifolia (TA) pyrolysis. The thermal degradation mechanisms of PC/TA pyrolysis were mainly associated with the sigmoidal rate and random nucleation mechanisms. The formation intensities of alcohols/ethers, phenols/esters, acids, aldehydes, and ketones were higher during low-temperature TA pyrolysis and high-temperature PC pyrolysis. The average carbon oxidation state (OS¯C) of gaseous species mainly ranged from -1.5 to -0.5, and the OS¯C slope of most gaseous species was greater than -2.0, which was related to the reduction of aldehyde/ketone groups. Two-dimensional (2D)-TG-FTIR-COS analysis revealed that the sequential temperature response of gaseous species followed: acids → phenols, esters → aldehydes → hydrocarbons → alcohols, ethers → aromatics during PC/TA pyrolysis. The establishment of relationships between the sequential response of gases and degraded components provides an important basis for online monitoring/recovery of gaseous contaminants during biomass pyrolysis.
Collapse
Affiliation(s)
- Tingting Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Fanhao Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|