1
|
Yang L, Zhu L, Lin B, Shi Y, Lai W, Li K, Tian L, Xi Z, Liu H. CuO-NPs Induce Apoptosis and Functional Impairment in BV2 Cells Through the CSF-1R/PLCγ2/ERK/Nrf2 Pathway. TOXICS 2025; 13:231. [PMID: 40278547 PMCID: PMC12031120 DOI: 10.3390/toxics13040231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 04/26/2025]
Abstract
Copper oxide nanoparticles (CuO-NPs) induce neurological diseases, including neurobehavioral defects and neurodegenerative diseases. Direct evidence indicates that CuO-NPs induce inflammation in the central nervous system and cause severe neurotoxicity. However, the mechanism of CuO-NP-induced damage to the nervous system has rarely been studied, and the toxicity of different CuO-NP particle sizes and their copper ion (Cu2+) precipitation in microglia (BV2 cells) is worth exploring. Therefore, this study investigated CuO-NPs with different particle sizes (small particle size: S-CuO-NPs; large particle size: L-CuO-NPs), Cu2+ with equal molar mass (replaced by CuCl2 [Equ group]), and Cu2+ precipitated in a cell culture solution with CuO-NPs (replaced by CuCl2 [Pre group]), and examined the mechanism of action of each on BV2 microglia after co-culture for 12 h and 24 h. The activity of BV2 cells decreased, the morphology was damaged, and the apoptosis rate increased in all the exposed groups. Toxicity increased time- and dose-dependently, and was highest in the Equ group, followed by the S-CuO-NPs, L-CuO-NPs, and Pre groups, respectively. Subsequently, we investigated the mechanism of S-CuO-NP-induced cell injury, and revealed that S-CuO-NPs induced oxidative stress and inflammatory response and increased the membrane permeability of BV2 cells. Moreover, S-CuO-NPs reduced the ratio of p-CSF-1R/CSF-1R, p-PLCγ2/PLCγ2, p-extracellular signal-regulated kinase (ERK)/ERK, p-Nrf2/Nrf2, and Bcl-2/Bax protein expression in microglia, and elevated cleaved caspase-3 expression. The CSF-1R/PLCγ2/ERK/Nrf2 apoptotic pathway was activated. The downregulation of CX3CR1, CSF-1R, brain-derived neurotrophic factor (BDNF), and IGF-1 protein expression indicates impairment of the repair and protection functions of microglia in the nervous system. In summary, our results reveal that CuO-NPs promote an increase in inflammatory molecules in BV2 microglia through oxidative stress, activate the CSF-1R/PLCγ2/ERK/Nrf2 pathway, cause apoptosis, and ultimately result in neurofunctional damage to microglia.
Collapse
Affiliation(s)
- Linhui Yang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (L.Y.); (L.Z.)
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China; (B.L.); (Y.S.); (W.L.); (K.L.); (L.T.)
| | - Lina Zhu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (L.Y.); (L.Z.)
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China; (B.L.); (Y.S.); (W.L.); (K.L.); (L.T.)
| | - Bencheng Lin
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China; (B.L.); (Y.S.); (W.L.); (K.L.); (L.T.)
| | - Yue Shi
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China; (B.L.); (Y.S.); (W.L.); (K.L.); (L.T.)
| | - Wenqing Lai
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China; (B.L.); (Y.S.); (W.L.); (K.L.); (L.T.)
| | - Kang Li
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China; (B.L.); (Y.S.); (W.L.); (K.L.); (L.T.)
| | - Lei Tian
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China; (B.L.); (Y.S.); (W.L.); (K.L.); (L.T.)
| | - Zhuge Xi
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China; (B.L.); (Y.S.); (W.L.); (K.L.); (L.T.)
| | - Huanliang Liu
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China; (B.L.); (Y.S.); (W.L.); (K.L.); (L.T.)
| |
Collapse
|
2
|
Kovács K, Szierer Á, Mészáros E, Molnár Á, Rónavári A, Kónya Z, Feigl G. Species-specific modulation of nitro-oxidative stress and root growth in monocots by silica nanoparticle pretreatment under copper oxide nanoparticle stress. BMC PLANT BIOLOGY 2025; 25:188. [PMID: 39948461 PMCID: PMC11823027 DOI: 10.1186/s12870-025-06193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Abiotic stressors such as heavy metals and nanoparticles pose significant challenges to sustainable agriculture, with copper oxide nanoparticles (CuO NPs) known to inhibit root growth and induce oxidative stress in plants. While silica nanoparticles (SiO2 NPs) have been shown to increase abiotic stress tolerance, their role in mitigating CuO NP-induced stress in crops, especially monocots, remains poorly understood. This study addresses this critical knowledge gap by investigating how SiO2 NP pretreatment modulates CuO NP-induced stress responses, with a particular focus on root growth inhibition and nitro-oxidative stress pathways. RESULTS Using an in vitro semihydroponic system, seeds were pretreated with varying concentrations of SiO2 NPs (100-800 mg/L) before exposure to CuO NPs at levels known to inhibit root growth by 50%. SiO2 NP pretreatment alleviated CuO NP-induced root growth inhibition in sorghum, wheat, and rye but intensified it in triticale. These responses are associated with species-specific alterations in reactive signaling molecules, including a reduction in nitric oxide levels and an increase in hydrogen sulfide in sorghum, a decrease in superoxide anion levels in rye, and elevated hydrogen peroxide levels in wheat. Protein tyrosine nitration, a marker of nitro-oxidative stress, was reduced in most cases, further indicating the stress-mitigating role of SiO2 NPs. These signaling molecules were selected for their established roles in mediating oxidative and nitrosative stress responses under abiotic stress conditions. CONCLUSIONS SiO2 NP pretreatment modulates CuO NP-induced stress responses through species-specific regulation of reactive oxygen and nitrogen species, demonstrating its potential as a tool for enhancing crop resilience. These findings advance the understanding of nanoparticle‒plant interactions and provide a foundation for future applications of nanotechnology in sustainable agriculture. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Kamilla Kovács
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép fasor 52, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Ádám Szierer
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép fasor 52, Szeged, Hungary
| | - Enikő Mészáros
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép fasor 52, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Árpád Molnár
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép fasor 52, Szeged, Hungary
| | - Andrea Rónavári
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Gábor Feigl
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép fasor 52, Szeged, Hungary.
| |
Collapse
|
3
|
Kang M, Liu Y, Weng Y, Wang H, Huang Y, Bai X. Trade-off strategies for driving the toxicity and metabolic remodeling of copper oxide nanoparticles and copper ions in Ipomoea aquatica. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136342. [PMID: 39488971 DOI: 10.1016/j.jhazmat.2024.136342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
The ecological safety of copper oxide nanoparticles (CuO NPs) in the environment determines the advancement of nano-agriculture owing to breakthroughs in nanotechnology; however, the release of Cu2+ is an uncontrollable factor. Currently, the trade-off mechanisms of CuO NPs and Cu2+ dominating the potential hazards of plant-nano systems remain unclear. This study proposed the trade-off strategy for reconstructing physiological responses and metabolic profiles and deciphered the differential regulation of dominant CuO NPs and Cu2+ in plants. The results showed that 100 and 500 mg/kg CuO NPs promoted root fresh weight but reduced shoot fresh weight, while 1000 mg/kg Cu2+ demonstrated the strongest inhibition on both roots and shoots. The net photosynthetic perturbation in photosynthetic disorders is accompanied by superoxide anion and hydrogen peroxide accumulation, which are severe under 1000 mg/kg CuO NPs and Cu2+ stress. Metabolomics revealed that CuO NPs significantly altered coumaric acid and derivatives, for example, down-regulating coumaroyl hexoside (isomers of 690 and 691) by 40.79 %. Additionally, Cu2+ treatment severely interfered with the dominant metabolic response, activating plant hormone signal transduction and α-linolenic acid metabolism. The trade-off strategies of galactose metabolism, amino sugar and nucleotide sugar metabolism, pantothenate and coenzyme A (CoA) biosynthesis, and β-alanine metabolism as differential metabolism were confirmed by comparing the CuO NPs and Cu2+ exposure. Protein secondary structure analysis revealed specific regulation of protein conformation upon exposure to CuO NPs and Cu2+. These findings provide new insights into differential metabolism and environmental effects in plant-nano systems.
Collapse
Affiliation(s)
- Mengen Kang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yi Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yuzhu Weng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Haoke Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yue Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xue Bai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China.
| |
Collapse
|
4
|
Zhou XX, Xiao Q, Zhang K, Gao Y, Zhang J, Fang L, Yan B, Li F. Quantitatively Tracking the Speciation and Dynamics of Selenium Nanoparticles in Rice Plants. Anal Chem 2024; 96:16937-16945. [PMID: 39361821 DOI: 10.1021/acs.analchem.4c04032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The uptake, translocation, and transformation of engineered nanoparticles (ENPs) in plants present significant challenges due to the lack of effective determination methods. This is especially true for selenium nanoparticles (SeNPs), which hold promise for Se-biofortified agriculture and exhibit dynamic behaviors within plant system. Herein, we proposed a novel approach that incorporates enzymic digestion and membrane filtration to selectively extract SeNPs and dissolved Se from plant tissues, employing rice (Oryza sativa) plant as a model. Subsequently, the SeNPs retained on the membrane were quantified using inductively coupled plasma mass spectrometry (ICPMS), while the dissolved Se in the filtrate, including selenite (Se(IV)), selenate (Se(VI)), and seleno amino acid, were analyzed by liquid chromatography coupled with ICPMS (LC-ICPMS). Recoveries of 83.5-91.4% for SeNPs and 73.6-99.4% for dissolved Se at a spiking level of 8 μg/g in quality control samples were obtained. With the established method, it was discovered that SeNPs taken up by rice leaves can transform into Se (IV) and organic Se, and all the Se species could be translocated downward, but only Se (IV) and SeNPs could be excreted through the roots. These findings provide valuable insights into the fate of SeNPs in plants and their related biological responses.
Collapse
Affiliation(s)
- Xiao-Xia Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Quanzhi Xiao
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Kena Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yan Gao
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jie Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
5
|
Chen A, Peng C, Su C, Ma Y, Zhan X, Chen J, Liang W, Zhang W. Chitosan-Copper Hybrid Nanoflowers: A Novel Nanopesticide for Controlling Rhizoctonia solani Infection in Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39367837 DOI: 10.1021/acs.jafc.4c06345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Copper-based nanomaterials are effective alternatives to traditional pesticides due to their antibacterial properties. However, the high cost and low dispersity limit their application. In this study, we synthesized cost-effective, eco-friendly, and stable chitosan-copper hybrid nanoflowers (CS-Cu HNFs) through facile self-assembly to manage agricultural diseases caused by the fungal pathogen (Rhizoctonia solani). The results show that CS-Cu HNFs, which utilized chitosan and copper phosphate as primary scaffolds, were formed via a series of nucleation, aggregation, self-assembly, and anisotropic growth processes. 200 mg/L CS-Cu HNFs exhibited an excellent inhibitory effect on R. solani, which was 6.11 times that of CuO nanoparticles, despite CS-Cu HNFs containing only 45% of Cu as that in CuO nanoparticles. Additionally, CS-Cu HNFs significantly reduced R. solani infection in various crops and displayed broad-spectrum antibacterial activity. This research provides new insights into the preparation and application of organic-inorganic hybrid nanoflowers as nanopesticides.
Collapse
Affiliation(s)
- Anqi Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Chengpeng Su
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yixin Ma
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiuping Zhan
- Shanghai Agricultural Technology Extension and Service Center, Shanghai 201103, China
| | - Jun Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiyu Liang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Marmiroli M, Villani M, Scarponi P, Carlo S, Pagano L, Sinisi V, Lazzarini L, Pavlicevic M, Marmiroli N. Green Synthesis of CuO Nanoparticles from Macroalgae Ulva lactuca and Gracilaria verrucosa. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1157. [PMID: 38998762 PMCID: PMC11243669 DOI: 10.3390/nano14131157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Macroalgae seaweeds such as Ulva lactuca and Gracilaria verrucosa cause problems on the northern coast of the Italian Adriatic Sea because their overabundance hinders the growth of cultivated clams, Rudatapes philippinarum. This study focused on the green synthesis of CuO nanoparticles from U. lactuca and G. verrucosa. The biosynthesized CuO NPs were successfully characterized using FTIR, XRD, HRTEM/EDX, and zeta potential. Nanoparticles from the two different algae species are essentially identical, with the same physical characteristics and almost the same antimicrobial activities. We have not investigated the cause of this identity, but it seems likely to arise from the reaction of Cu with the same algae metabolites in both species. The study demonstrates that it is possible to obtain useful products from these macroalgae through a green synthesis approach and that they should be considered as not just a cause of environmental and economic damage but also as a potential source of income.
Collapse
Affiliation(s)
- Marta Marmiroli
- Department Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; (P.S.); (M.P.)
| | - Marco Villani
- Istituto dei Materiali per l’Elettronica ed il Magnetismo (CNR IMEM), Parco Area delle Scienze, 43124 Parma, Italy; (M.V.); (V.S.); (L.L.)
| | - Paolina Scarponi
- Department Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; (P.S.); (M.P.)
| | - Silvia Carlo
- Department Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; (P.S.); (M.P.)
| | - Luca Pagano
- Consorzio Interuniversitario Nazionale per le Scienze Ambientali (CINSA), University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; (L.P.); (N.M.)
| | - Valentina Sinisi
- Istituto dei Materiali per l’Elettronica ed il Magnetismo (CNR IMEM), Parco Area delle Scienze, 43124 Parma, Italy; (M.V.); (V.S.); (L.L.)
| | - Laura Lazzarini
- Istituto dei Materiali per l’Elettronica ed il Magnetismo (CNR IMEM), Parco Area delle Scienze, 43124 Parma, Italy; (M.V.); (V.S.); (L.L.)
| | - Milica Pavlicevic
- Department Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; (P.S.); (M.P.)
| | - Nelson Marmiroli
- Consorzio Interuniversitario Nazionale per le Scienze Ambientali (CINSA), University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; (L.P.); (N.M.)
| |
Collapse
|
7
|
Martins MR, Kiirika LM, Schaffer N, Sajnóg A, Coutinho JAP, Franklin G, Mondal D. Unveiling Dissolution Kinetics of CuO Nanofertilizer Using Bio-Based Ionic Liquids Envisaging Controlled Use Efficiency for Sustainable Agriculture. ACS SUSTAINABLE RESOURCE MANAGEMENT 2024; 1:1291-1301. [PMID: 38957680 PMCID: PMC11215779 DOI: 10.1021/acssusresmgt.4c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/02/2024] [Accepted: 04/24/2024] [Indexed: 07/04/2024]
Abstract
The need for sustainable agriculture amid a growing population and challenging climatic conditions is hindered by the environmental repercussions of widespread fertilizer use, resulting in the accumulation of metal ions and the loss of micronutrients. The present study provides an approach to improve the efficiency of nanofertilizers by controlling the release of copper (Cu) ions from copper oxide (CuO) nanofertilizers through bioionic liquids based on plant growth regulators (PGR-ILs). A 7-day study was conducted to understand the kinetics of Cu ion release in aqueous solution of five different PGR-ILs, with choline ascorbate ([Cho][Asc]) or choline salicylate ([Cho][Sal]) leading to 200- to 700-fold higher dissolution of Cu ions in comparison to choline indole-3-acetate ([Cho][IAA]), choline indole-3-butyrate ([Cho][IBA]), and choline gibberellate ([Cho][GA3]). The tunable diffusion of Cu ions from CuO nanofertilizers using PGR-ILs is then applied in a foliar spray study, evaluating its impact on the growth phenotype, photosynthetic parameters, and carbon dioxide (CO2) sequestration in Nicotiana tabacum in a greenhouse. The results indicate that nanoformulations with lower concentrations of Cu ions in PGR-IL solutions exhibit superior outcomes in terms of plant length, net photosynthetic rate, dry biomass yield, and CO2 sequestration, emphasizing the critical role of dissolution kinetics in determining the effectiveness of PGR-IL-based nanoformulations for sustainable agriculture.
Collapse
Affiliation(s)
- Mónia
A. R. Martins
- Institute
of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznan, Poland
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório
para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Leonard M. Kiirika
- Institute
of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznan, Poland
| | - Nicolas Schaffer
- CICECO
− Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Adam Sajnóg
- Department
of Trace Analysis, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| | - João A. P. Coutinho
- CICECO
− Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Gregory Franklin
- Institute
of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznan, Poland
| | - Dibyendu Mondal
- Institute
of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznan, Poland
- Centre for
Nano and Material Sciences, Jain (Deemed-to-be
University), Jain Global
Campus, Kanakapura, Bangalore, Karnataka 562112, India
| |
Collapse
|
8
|
Raza A, Salehi H, Bashir S, Tabassum J, Jamla M, Charagh S, Barmukh R, Mir RA, Bhat BA, Javed MA, Guan DX, Mir RR, Siddique KHM, Varshney RK. Transcriptomics, proteomics, and metabolomics interventions prompt crop improvement against metal(loid) toxicity. PLANT CELL REPORTS 2024; 43:80. [PMID: 38411713 PMCID: PMC10899315 DOI: 10.1007/s00299-024-03153-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/05/2024] [Indexed: 02/28/2024]
Abstract
The escalating challenges posed by metal(loid) toxicity in agricultural ecosystems, exacerbated by rapid climate change and anthropogenic pressures, demand urgent attention. Soil contamination is a critical issue because it significantly impacts crop productivity. The widespread threat of metal(loid) toxicity can jeopardize global food security due to contaminated food supplies and pose environmental risks, contributing to soil and water pollution and thus impacting the whole ecosystem. In this context, plants have evolved complex mechanisms to combat metal(loid) stress. Amid the array of innovative approaches, omics, notably transcriptomics, proteomics, and metabolomics, have emerged as transformative tools, shedding light on the genes, proteins, and key metabolites involved in metal(loid) stress responses and tolerance mechanisms. These identified candidates hold promise for developing high-yielding crops with desirable agronomic traits. Computational biology tools like bioinformatics, biological databases, and analytical pipelines support these omics approaches by harnessing diverse information and facilitating the mapping of genotype-to-phenotype relationships under stress conditions. This review explores: (1) the multifaceted strategies that plants use to adapt to metal(loid) toxicity in their environment; (2) the latest findings in metal(loid)-mediated transcriptomics, proteomics, and metabolomics studies across various plant species; (3) the integration of omics data with artificial intelligence and high-throughput phenotyping; (4) the latest bioinformatics databases, tools and pipelines for single and/or multi-omics data integration; (5) the latest insights into stress adaptations and tolerance mechanisms for future outlooks; and (6) the capacity of omics advances for creating sustainable and resilient crop plants that can thrive in metal(loid)-contaminated environments.
Collapse
Affiliation(s)
- Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Hajar Salehi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Shanza Bashir
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Javaria Tabassum
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Monica Jamla
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Rutwik Barmukh
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Basharat Ahmad Bhat
- Department of Bio-Resources, Amar Singh College Campus, Cluster University Srinagar, Srinagar, JK, India
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST), Srinagar, Kashmir, India
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia.
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| |
Collapse
|
9
|
Jia H, Wei Y, An H, Wang Q, Yang J, Li C. Copper oxide nanoparticles alter the uptake and distribution of cadmium through disturbing the ordered structure of the cell wall in Arabidopsis root. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108430. [PMID: 38364632 DOI: 10.1016/j.plaphy.2024.108430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Copper oxide nanoparticles (CuO NPs) influence the uptake of heavy metal ions by plants, but molecular mechanism is still unknown. Here, we proved the mechanism of CuO NPs affecting Cd absorption in Arabidopsis root. 4-d-old seedlings were treated by 10 and 20 mg/L CuO NPs for 3 d, which decreased the contents of cellulose and hemicellulose in roots. Moreover, the contents of some important monosaccharides were altered by CuO NPs, including arabinose, glucose and mannose. Biosynthesis of cellulose and hemicellulose is regulated by cellulose synthase A complexe (CSC) dynamics. The synthesis of tubulin cytoskeleton was inhibited by CuO NPs, which resulted in the decrease of CSCs bidirectional velocities. Furthermore, the arrangement and network of cellulose fibrillar bundles were disrupted by CuO NPs. CuO NPs treatment significantly increased the influx of Cd2+. The accumulation and translocation of Cd were increased by 10 and 20 mg/L CuO NPs treatment. The subcellular distribution of Cd in root cells indicated CuO NPs decrease the enrichment of Cd in cell wall, but increase the enrichment of Cd in soluble fraction and organelle. In light of these findings, we proposed a mechanistic model in which CuO NPs destroy the ordered structure of the cell wall, alter the uptake and distribution of Cd in Arabidopsis.
Collapse
Affiliation(s)
- Honglei Jia
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Yuting Wei
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Haodong An
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Qing Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Jun Yang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Chengtao Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| |
Collapse
|
10
|
El-Abeid SE, Mosa MA, El-Tabakh MAM, Saleh AM, El-Khateeb MA, Haridy MSA. Antifungal activity of copper oxide nanoparticles derived from Zizyphus spina leaf extract against Fusarium root rot disease in tomato plants. J Nanobiotechnology 2024; 22:28. [PMID: 38216982 PMCID: PMC10785362 DOI: 10.1186/s12951-023-02281-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024] Open
Abstract
Incorporating green chemistry concepts into nanotechnology is an important focus area in nanoscience. The demand for green metal oxide nanoparticle production has grown in recent years. The beneficial effects of using nanoparticles in agriculture have already been established. Here, we highlight some potential antifungal properties of Zizyphus spina leaf extract-derived copper oxide nanoparticles (CuO-Zs-NPs), produced with a spherical shape and defined a 13-30 nm particle size. Three different dosages of CuO-Zs-NPs were utilized and showed promising antifungal efficacy in vitro and in vivo against the selected fungal strain of F. solani causes tomato root rot disease, which was molecularly identified with accession number (OP824846). In vivo results indicated that, for all CuO-Zs-NPs concentrations, a significant reduction in Fusarium root rot disease occurred between 72.0 to 88.6% compared to 80.5% disease severity in the infected control. Although treatments with either the chemical fungicide (Kocide 2000) showed a better disease reduction and incidence with (18.33% and 6.67%) values, respectively, than CuO-Zs-NPs at conc. 50 mg/l, however CuO-Zs-NPs at 250 mg/l conc. showed the highest disease reduction (9.17 ± 2.89%) and lowest disease incidence (4.17 ± 3.80%). On the other hand, CuO-Zs-NPs at varied values elevated the beneficial effects of tomato seedling vigor at the initial stages and plant growth development compared to either treatment with the commercial fungicide or Trichoderma Biocide. Additionally, CuO-Zs-NPs treatments introduced beneficial results for tomato seedling development, with a significant increase in chlorophyll pigments and enzymatic activity for CuO-Zs-NPs treatments. Additionally, treatment with low concentrations of CuO-Zs-NPs led to a rise in the number of mature pollen grains compared to the immature ones. however the data showed that CuO-Zs-NPs have a unique antifungal mechanism against F. solani, they subsequently imply that CuO-Zs-NPs might be a useful environmentally friendly controlling agent for the Fusarium root rot disease that affects tomato plants.
Collapse
Affiliation(s)
- Sozan E El-Abeid
- Nanotechnology & Advanced Nano-Materials Laboratory (NANML), Plant Pathology Research Institute, Agricultural Research Center, Giza, 12619, Egypt
- Mycology and Disease Survey Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | - Mohamed A Mosa
- Nanotechnology & Advanced Nano-Materials Laboratory (NANML), Plant Pathology Research Institute, Agricultural Research Center, Giza, 12619, Egypt
- Mycology and Disease Survey Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | | | - Ahmed M Saleh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University, Horus, 34518, Egypt
| | | | - Maha S A Haridy
- Central Lab of Organic Agriculture, Agricultural Research Center (ARC), 9 Gamaa St, Giza, 12619, Egypt
| |
Collapse
|
11
|
Janni M, Maestri E, Gullì M, Marmiroli M, Marmiroli N. Plant responses to climate change, how global warming may impact on food security: a critical review. FRONTIERS IN PLANT SCIENCE 2024; 14:1297569. [PMID: 38250438 PMCID: PMC10796516 DOI: 10.3389/fpls.2023.1297569] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024]
Abstract
Global agricultural production must double by 2050 to meet the demands of an increasing world human population but this challenge is further exacerbated by climate change. Environmental stress, heat, and drought are key drivers in food security and strongly impacts on crop productivity. Moreover, global warming is threatening the survival of many species including those which we rely on for food production, forcing migration of cultivation areas with further impoverishing of the environment and of the genetic variability of crop species with fall out effects on food security. This review considers the relationship of climatic changes and their bearing on sustainability of natural and agricultural ecosystems, as well as the role of omics-technologies, genomics, proteomics, metabolomics, phenomics and ionomics. The use of resource saving technologies such as precision agriculture and new fertilization technologies are discussed with a focus on their use in breeding plants with higher tolerance and adaptability and as mitigation tools for global warming and climate changes. Nevertheless, plants are exposed to multiple stresses. This study lays the basis for the proposition of a novel research paradigm which is referred to a holistic approach and that went beyond the exclusive concept of crop yield, but that included sustainability, socio-economic impacts of production, commercialization, and agroecosystem management.
Collapse
Affiliation(s)
- Michela Janni
- Institute of Bioscience and Bioresources (IBBR), National Research Council (CNR), Bari, Italy
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), Parma, Italy
| | - Elena Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Interdepartmental Centers SITEIA.PARMA and CIDEA, University of Parma, Parma, Italy
| | - Mariolina Gullì
- Department of Chemistry, Life Sciences and Environmental Sustainability, Interdepartmental Centers SITEIA.PARMA and CIDEA, University of Parma, Parma, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, Interdepartmental Centers SITEIA.PARMA and CIDEA, University of Parma, Parma, Italy
| | - Nelson Marmiroli
- Consorzio Interuniversitario Nazionale per le Scienze Ambientali (CINSA) Interuniversity Consortium for Environmental Sciences, Parma/Venice, Italy
| |
Collapse
|
12
|
Flores-Iga G, Lopez-Ortiz C, Gracia-Rodriguez C, Almeida A, Nimmakayala P, Reddy UK, Balagurusamy N. A Genome-Wide Identification and Comparative Analysis of the Heavy-Metal-Associated Gene Family in Cucurbitaceae Species and Their Role in Cucurbita pepo under Arsenic Stress. Genes (Basel) 2023; 14:1877. [PMID: 37895226 PMCID: PMC10606463 DOI: 10.3390/genes14101877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The heavy-metal-associated (HMA) proteins are a class of PB1-type ATPases related to the intracellular transport and detoxification of metals. However, due to a lack of information regarding the HMA gene family in the Cucurbitaceae family, a comprehensive genome-wide analysis of the HMA family was performed in ten Cucurbitaceae species: Citrullus amarus, Citrullus colocynthis, Citrullus lanatus, Citrullus mucosospermus, Cucumis melo, Cucumis sativus, Cucurbita maxima, Cucurbita moschata, Cucurbita pepo, and Legenaria siceraria. We identified 103 Cucurbit HMA proteins with various members, ranging from 8 (Legenaria siceraria) to 14 (Cucurbita pepo) across species. The phylogenetic and structural analysis confirmed that the Cucurbitaceae HMA protein family could be further classified into two major clades: Zn/Co/Cd/Pb and Cu/Ag. The GO-annotation-based subcellular localization analysis predicted that all HMA gene family members were localized on membranes. Moreover, the analysis of conserved motifs and gene structure (intron/exon) revealed the functional divergence between clades. The interspecies microsynteny analysis demonstrated that maximum orthologous genes were found between species of the Citrullus genera. Finally, nine candidate HMA genes were selected, and their expression analysis was carried out via qRT-PCR in root, leaf, flower, and fruit tissues of C. pepo under arsenic stress. The expression pattern of the CpeHMA genes showed a distinct pattern of expression in root and shoot tissues, with a remarkable expression of CpeHMA6 and CpeHMA3 genes from the Cu/Ag clade. Overall, this study provides insights into the functional analysis of the HMA gene family in Cucurbitaceae species and lays down the basic knowledge to explore the role and mechanism of the HMA gene family to cope with arsenic stress conditions.
Collapse
Affiliation(s)
- Gerardo Flores-Iga
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, México; (G.F.-I.); (C.G.-R.)
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (P.N.)
| | - Carlos Lopez-Ortiz
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (P.N.)
| | - Celeste Gracia-Rodriguez
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, México; (G.F.-I.); (C.G.-R.)
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (P.N.)
| | - Aldo Almeida
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark;
| | - Padma Nimmakayala
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (P.N.)
| | - Umesh K. Reddy
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (P.N.)
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, México; (G.F.-I.); (C.G.-R.)
| |
Collapse
|
13
|
He J, Li J, Gao Y, He X, Hao G. Nano-based smart formulations: A potential solution to the hazardous effects of pesticide on the environment. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131599. [PMID: 37210783 DOI: 10.1016/j.jhazmat.2023.131599] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/21/2023] [Accepted: 05/07/2023] [Indexed: 05/23/2023]
Abstract
Inefficient usage, overdose, and post-application losses of conventional pesticides have resulted in severe ecological and environmental issues, such as pesticide resistance, environmental contamination, and soil degradation. Advances in nano-based smart formulations are promising novel methods to decrease the hazardous impacts of pesticide on the environment. In light of the lack of a systematic and critical summary of these aspects, this work has been structured to critically assess the roles and specific mechanisms of smart nanoformulations (NFs) in mitigating the adverse impacts of pesticide on the environment, along with an evaluation of their final environmental fate, safety, and application prospects. Our study provides a novel perspective for a better understanding of the potential functions of smart NFs in reducing environmental pollution. Additionally, this study offers meaningful information for the safe and effective use of these nanoproducts in field applications in the near future.
Collapse
Affiliation(s)
- Jie He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China.
| | - Jianhong Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China.
| | - Yangyang Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China.
| | - Xiongkui He
- College of Science, China Agricultural University, Beijing 100193, PR China; College of Agricultural Unmanned System, China Agricultural University, Beijing 100193, PR China.
| | - Gefei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China; National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
14
|
López-Luna J, Nopal-Hormiga Y, López-Sánchez L, Mtz-Enriquez AI, Pariona N. Effect of methods application of copper nanoparticles in the growth of avocado plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163341. [PMID: 37031937 DOI: 10.1016/j.scitotenv.2023.163341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
The aim of this greenhouse study was to evaluate root irrigation, foliar spray, and stem injection in order to find the best method for the nanofertilization of avocado plants with green synthesized CuNPs. One-year-old avocado plants were supplied four times (every 15 days) with 0.25 and 0.50 mg/ml of CuNPs through the three fertilization methods. Stem growth and new leaf formation were evaluated over time and after 60 days of CuNPs exposure, several plant traits (root growth, fresh and dry biomass, plant water content, cytotoxicity, photosynthetic pigments, and total Cu accumulation in plant tissues) were evaluated for CuNPs improvement. Regarding the control treatment, stem growth and new leaf appearance were increased by 25 % and 85 %, respectively, by the CuNPs supply methods of foliar spray>stem injection>root irrigation, with little significant differences among NPs concentrations. Avocado plants supplied with 0.25 and 0.50 mg/ml CuNPs maintained a hydric balance and cell viability ranged from 91 to 96 % through the three NPs application methods. TEM did not reveal any ultrastructural organelle changes induced by CuNPs in leaf tissues. The concentrations of CuNPs tested were not high enough to exert deleterious effects on the photosynthetic machinery of avocado plants, but photosynthetic efficiency was also found to be improved. The foliar spray method showed improved uptake and translocation of CuNPs, with almost no loss of Cu. In general, the improvement in plant traits indicated that the foliar spray method was the best for nanofertilization of avocado plants with CuNPs.
Collapse
Affiliation(s)
- Jaime López-Luna
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351, El Haya, 91073 Xalapa, Veracruz, Mexico.
| | - Yulisa Nopal-Hormiga
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351, El Haya, 91073 Xalapa, Veracruz, Mexico
| | - Lorena López-Sánchez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351, El Haya, 91073 Xalapa, Veracruz, Mexico.
| | - Arturo I Mtz-Enriquez
- Centro de Investigación y de Estudios Avanzados del IPN Unidad Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe, 25900, Coahuila, Mexico.
| | - Nicolaza Pariona
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351, El Haya, 91073 Xalapa, Veracruz, Mexico.
| |
Collapse
|
15
|
Kong W, Hou X, Wei L, Chen W, Liu J, Schnoor JL, Jiang G. Accumulation, translocation, and transformation of two CdSe/ZnS quantum dots in rice and pumpkin plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161156. [PMID: 36572319 DOI: 10.1016/j.scitotenv.2022.161156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
As a widely applied semiconductor nanomaterial, quantum dots (QDs) have drawn considerable interest. In this study, pumpkin and rice seedlings were hydroponically exposed to two core/shell CdSe/ZnS QDs coated with cysteamine (CdSe/ZnS-CA) and polyethylene glycol-carboxy (CdSe/ZnS-PEG-COOH) for 10 days to analyze their time-varying uptake, translocation, and transformation behaviors in plants. Both QDs were mainly adsorbed/absorbed by the roots in the particulate state, and more CdSe/ZnS-CA accumulated than CdSe/ZnS-PEG-COOH. For CdSe/ZnS-CA-treated plants, the Se and Cd concentrations (CSe and CCd) associated with the roots were 561 ± 75 and 580 ± 73 μg/g (dw) for rice and 474 ± 49 and 546 ± 53 μg/g (dw) for pumpkin, respectively, on day 10. For CdSe/ZnS-PEG-COOH-treated plants, the concentrations of Se and Cd associated with roots were 392 ± 56 and 453 ± 56 μg/g (dw) for rice and 363 ± 52 and 417 ± 52 μg/g (dw) for pumpkin, respectively. The surface charges and coatings significantly affected the accumulation of QDs at the beginning of exposure; however, the impaction decreased with time. The ratios between the Cd and Se concentrations (CCd/CSe) in the stems and leaves varied from those of the QD standards, indicating the transformation of the QDs in the exposure system. Se and Cd were more likely to translocate in CdSe/ZnS-PEG-COOH-treated plants than in CdSe/ZnS-CA-treated plants. The vertical translocation of Se was greater than that of Cd. Rice showed greater abilities of accumulation and translocation of Se and Cd from both QDs than pumpkin. These findings improve our understanding of the interference of QDs with plants and their environmental fate.
Collapse
Affiliation(s)
- Wenqian Kong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingwang Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Linfeng Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weifang Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China.
| | - Jerald L Schnoor
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, IA, USA
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| |
Collapse
|
16
|
Pagano L, Rossi R, White JC, Marmiroli N, Marmiroli M. Nanomaterials biotransformation: In planta mechanisms of action. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120834. [PMID: 36493932 DOI: 10.1016/j.envpol.2022.120834] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/25/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Research on engineered nanomaterials (ENMs) exposure has continued to expand rapidly, with a focus on uncovering the underlying mechanisms. The EU largely limits the number and the type of organisms that can be used for experimental testing through the 3R normative. There are different routes through which ENMs can enter the soil-plant system: this includes the agricultural application of sewage sludges, and the distribution of nano-enabled agrochemicals. However, a thorough understanding of the physiological and molecular implications of ENMs dispersion and chronic low-dose exposure remains elusive, thus requiring new evidence and a more mechanistic overview of pathways and major effectors involved in plants. Plants can offer a reliable alternative to conventional model systems to elucidate the concept of ENM biotransformation within tissues and organs, as a crucial step in understanding the mechanisms of ENM-organism interaction. To facilitate the understanding of the physico-chemical forms involved in plant response, synchrotron-based techniques have added new potential perspectives in studying the interactions between ENMs and biota. These techniques are providing new insights on the interactions between ENMs and biomolecules. The present review discusses the principal outcomes for ENMs after intake by plants, including possible routes of biotransformation which make their final fate less uncertain, and therefore require further investigation.
Collapse
Affiliation(s)
- Luca Pagano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Riccardo Rossi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy; Centro Interdipartimentale per L'Energia e L'Ambiente (CIDEA), University of Parma, 43124, Parma, Italy
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, 06504, USA
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy; Consorzio Interuniversitario Nazionale per le Scienze Ambientali (CINSA), University of Parma, 43124, Parma, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy; Interdepartmental Centre for Food Safety, Technologies and Innovation for Agri-food (SITEIA.PARMA), 43124, Parma, Italy.
| |
Collapse
|
17
|
Gallo V, Serianni VM, Imperiale D, Zappettini A, Villani M, Marmiroli M, Marmiroli N. Protein Analysis of A. halleri and N. caerulescens Hyperaccumulators When Exposed to Nano and Ionic Forms of Cd and Zn. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4236. [PMID: 36500857 PMCID: PMC9736429 DOI: 10.3390/nano12234236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Hyperaccumulator plant species growing on metal-rich soils can accumulate high quantity of metals and metalloids in aerial tissues, and several proteomic studies on the molecular mechanisms at the basis of metals resistance and hyperaccumulation have been published. Hyperaccumulator are also at the basis of the phytoremediation strategy to remove metals more efficiently from polluted soils or water. Arabidopsis halleri and Noccea caerulescens are both hyperaccumulators of metals and nano-metals. In this study, the change in some proteins in A. halleri and N. caerulescens was assessed after the growth in soil with cadmium and zinc, provided as sulphate salts (CdSO4 and ZnSO4) or sulfide quantum dots (CdS QDs and ZnS QDs). The protein extracts obtained from plants after 30 days of growth were analyzed by 2D-gel electrophoresis (2D SDS-PAGE) and identified by MALDI-TOF/TOF mass spectrometry. A bioinformatics analysis was carried out on quantitative protein differences between control and treated plants. In total, 43 proteins resulted in being significatively modulated in A. halleri, while 61 resulted in being modulated in N. caerulescens. Although these two plants are hyperaccumulator of both metals and nano-metals, at protein levels the mechanisms involved do not proceed in the same way, but at the end bring a similar physiological result.
Collapse
Affiliation(s)
- Valentina Gallo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43126 Parma, Italy
| | - Valentina M. Serianni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43126 Parma, Italy
| | - Davide Imperiale
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43126 Parma, Italy
- Experimental Station for the Food Preservation Industry—Research Foundation, 43121 Parma, Italy
| | - Andrea Zappettini
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), 06128 Parma, Italy
| | - Marco Villani
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), 06128 Parma, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43126 Parma, Italy
| | - Nelson Marmiroli
- The Italian National Interuniversity Consortium for Environmental Sciences (CINSA), 43124 Parma, Italy
| |
Collapse
|
18
|
Maity D, Gupta U, Saha S. Biosynthesized metal oxide nanoparticles for sustainable agriculture: next-generation nanotechnology for crop production, protection and management. NANOSCALE 2022; 14:13950-13989. [PMID: 36124943 DOI: 10.1039/d2nr03944c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The current agricultural sector is not only in its most vulnerable state but is also becoming a threat to our environment due to expanding population and growing food demands along with worsening climatic conditions. In addition, numerous agrochemicals presently being used as fertilizers and pesticides have low efficiency and high toxicity. However, the rapid growth of nanotechnology has shown great promise to tackle these issues replacing conventional agriculture industries. Since the last decade, nanomaterials especially metal oxide nanoparticles (MONPs) have been attractive for improving agricultural outcomes due to their large surface area, higher chemical/thermal stability and tunable unique physicochemical characteristics. Further, to achieve sustainability, researchers have been extensively working on ecological and cost-effective biological approaches to synthesize MONPs. Hereby, we have elaborated on recent successful biosynthesis methods using various plants/microbes. Furthermore, we have elucidated different mechanisms for the interaction of MONPs with plants, including their uptake/translocation/internalization, photosynthesis, antioxidant activity, and gene alteration, which could revolutionize crop productivity/yield through increased nutrient amount, photosynthesis rate, antioxidative enzyme level, and gene upregulations. Besides, we have briefly discussed about functionalization of MONPs and their application in agricultural-waste-management. We have further illuminated recent developments of various MONPs (Fe2O3/ZnO/CuO/Al2O3/TiO2/MnO2) as nanofertilizers, nanopesticides and antimicrobial agents and their implications for enhanced plant growth and pest/disease management. Moreover, the potential use of MONPs as nanobiosensors for detecting nutrients/pathogens/toxins and safeguarding plant/soil health is also illuminated. Overall, this review attempts to provide a clear insight into the latest advances in biosynthesized MONPs for sustainable crop production, protection and management and their scope in the upcoming future of eco-friendly agricultural nanotechnology.
Collapse
Affiliation(s)
- Dipak Maity
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India.
- School of Health Sciences & Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Urvashi Gupta
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India.
| | - Sumit Saha
- Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, Odisha 751013, India.
| |
Collapse
|
19
|
Cadmium Sulfide Quantum Dots Adversely Affect Gametogenesis in Saccharomyces cerevisiae. NANOMATERIALS 2022; 12:nano12132208. [PMID: 35808044 PMCID: PMC9268033 DOI: 10.3390/nano12132208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022]
Abstract
In the last decades, nanotechnology-based tools have attracted attention in the scientific community, due to their potential applications in different areas from medicine to engineering, but several toxicological effects mediated by these advanced materials have been shown on the environment and human health. At present, the effects of engineered nanomaterials on gametogenesis have not yet been well understood. In the present study, we addressed this issue using the yeast Saccharomyces cerevisiae as a model eukaryote to evaluate the effects of cadmium sulfide quantum dots (CdS QDs) on sporulation, a process equivalent to gametogenesis in higher organisms. We have observed that CdS QDs cause a strong inhibition of spore development with the formation of aberrant, multinucleated cells. In line with these observations, treatment with CdS QDs down-regulates genes encoding crucial regulators of sporulation process, in particular, the transcription factor Ndt80 that coordinates different genes involved in progression through the meiosis and spore morphogenesis. Down-regulation of NDT80 mediated by CdS QDs causes a block of the meiotic cell cycle and a return to mitosis, leading to the formation of aberrant, multinucleated cells. These results indicate that CdS QDs inhibit gametogenesis in an irreversible manner, with adverse effects on cell-cycle progression.
Collapse
|
20
|
Zhen Y, Ge L, Chen Q, Xu J, Duan Z, Loor JJ, Wang M. Latent Benefits and Toxicity Risks Transmission Chain of High Dietary Copper along the Livestock-Environment-Plant-Human Health Axis and Microbial Homeostasis: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6943-6962. [PMID: 35666880 DOI: 10.1021/acs.jafc.2c01367] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The extensive use of high-concentration copper (Cu) in feed additives, fertilizers, pesticides, and nanoparticles (NPs) inevitably causes significant pollution in the ecological environment. This type of chain pollution begins with animal husbandry: first, Cu accumulation in animals poisons them; second, high Cu enters the soil and water sources with the feces and urine to cause toxicity, which may further lead to crop and plant pollution; third, this process ultimately endangers human health through consumption of livestock products, aquatic foods, plants, and even drinking water. High Cu potentially alters the antibiotic resistance of soil and water sources and further aggravates human disease risks. Thus, it is necessary to formulate reasonable Cu emission regulations because the benefits of Cu for livestock and plants cannot be ignored. The present review evaluates the potential hazards and benefits of high Cu in livestock, the environment, the plant industry, and human health. We also discuss aspects related to bacterial and fungal resistance and homeostasis and perspectives on the application of Cu-NPs and microbial high-Cu removal technology to reduce the spread of toxicity risks to humans.
Collapse
Affiliation(s)
- Yongkang Zhen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang 832000, China
| | - Ling Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qiaoqing Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jun Xu
- Institute for Quality and Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330000, China
| | - Zhenyu Duan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang 832000, China
| | - Juan J Loor
- Mammalian Nutrition Physiology Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang 832000, China
| |
Collapse
|
21
|
Marmiroli M, Marmiroli N, Pagano L. Nanomaterials Induced Genotoxicity in Plant: Methods and Strategies. NANOMATERIALS 2022; 12:nano12101658. [PMID: 35630879 PMCID: PMC9145990 DOI: 10.3390/nano12101658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022]
Abstract
In recent years, plant-nanomaterial interactions have been studied, highlighting their effects at physiological and molecular levels. Transcriptomics and proteomics studies have shown pathways and targets of nanomaterial exposure and plant response, with particular regard to abiotic stress and oxidative stress. Only little information has been reported on engineered nanomaterial (ENMs) interactions with plant genetic material, both at a genomic and organellar DNAs level. Plants can be useful experimental material, considering they both contain chloroplast and mitochondrial DNAs and several plant genomes have been completely sequenced (e.g., Arabidopsis thaliana, Solanum lycoperiscum, Allium cepa, Zea mays, etc.). In this mini review, the methods and the evidence reported in the present literature concerning the level of genotoxicity induced by ENMs exposure have been considered. Consolidated and potential strategies, which can be applied to assess the nanomaterial genotoxicity in plants, are reviewed.
Collapse
Affiliation(s)
- Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Nelson Marmiroli
- Consorzio Interuniversitario Nazionale per le Scienze Ambientali (CINSA), Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Luca Pagano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| |
Collapse
|
22
|
Wang S, Fu Y, Zheng S, Xu Y, Sun Y. Phytotoxicity and Accumulation of Copper-Based Nanoparticles in Brassica under Cadmium Stress. NANOMATERIALS 2022; 12:nano12091497. [PMID: 35564206 PMCID: PMC9104374 DOI: 10.3390/nano12091497] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022]
Abstract
The widespread use of copper-based nanoparticles expands the possibility that they enter the soil combined with heavy metals, having a toxic effect and posing a threat to the safety of vegetables. In this study, single and combined treatments of 2 mg/L Cd, 20 mg/L Cu NPs and 20 mg/L CuO NPs were added into Hoagland nutrient solution by hydroponics experiments. The experimental results show that copper-based Nanoparticles (NPs) can increase the photosynthetic rate of plants and increase the biomass of Brassica. Cu NPs treatment increased the Superoxide Dismutase (SOD), Peroxidase (POD) and catalase (CAT) activities of Brassica, and both NPs inhibited ascorbate peroxidase (APX) activity. We observed that Cd + Cu NPs exhibited antagonistic effects on Cd accumulation, inhibiting it by 12.6% in leaf and 38.6% in root, while Cd + CuO NPs increased Cd uptake by 73.1% in leaves and 22.5% in roots of Brassica. The Cu content in the shoots was significantly negatively correlated with Cd uptake. The Cd content of each component in plant subcellular is soluble component > cytoplasm > cell wall. Cu NPs + Cd inhibited the uptake of Zn, Ca, Fe, Mg, K and Mn elements, while CuO NPs + Cd promoted the uptake of Mn and Na elements. The results show that copper-based nanoparticles can increase the oxidative damage of plants under cadmium stress and reduce the nutritional value of plants.
Collapse
Affiliation(s)
- Shiqi Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China; (S.W.); (Y.F.)
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs (MARA), Tianjin 300191, China;
- Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs (MARA), Tianjin 300191, China
| | - Yutong Fu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China; (S.W.); (Y.F.)
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs (MARA), Tianjin 300191, China;
- Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs (MARA), Tianjin 300191, China
| | - Shunan Zheng
- Rural Energy & Environment Agency, Ministry of Agriculture and Rural Affairs (MARA), Beijing 100125, China;
| | - Yingming Xu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs (MARA), Tianjin 300191, China;
- Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs (MARA), Tianjin 300191, China
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs (MARA), Tianjin 300191, China;
- Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs (MARA), Tianjin 300191, China
- Correspondence:
| |
Collapse
|
23
|
Kapoor P, Dhaka RK, Sihag P, Mehla S, Sagwal V, Singh Y, Langaya S, Balyan P, Singh KP, Xing B, White JC, Dhankher OP, Kumar U. Nanotechnology-enabled biofortification strategies for micronutrients enrichment of food crops: Current understanding and future scope. NANOIMPACT 2022; 26:100407. [PMID: 35594741 DOI: 10.1016/j.impact.2022.100407] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 05/16/2023]
Abstract
Nutrient deficiency in food crops severely compromises human health, particularly in under privileged communities. Globally, billions of people, particularly in developing nations, have limited access to nutritional supplements and fortified foods, subsequently suffering from micronutrient deficiency leading to a range of health issues. The green revolution enhanced crop production and provided food to billions of people but often falls short with respect to the nutritional quality of that food. Plants may assimilate nutrients from synthetic chemical fertilizers, but this approach generally has low nutrient delivery and use efficiency. Further, the overexposure of chemical fertilizers may increase the risk of neoplastic diseases, render food crops unfit for consumption and cause environmental degradation. Therefore, to address these challenges, more research is needed for sustainable crop yield and quality enhancement with minimum use of chemical fertilizers. Complex nutritional disorders and 'hidden hunger' can be addressed through biofortification of food crops. Nanotechnology may help to improve food quality via biofortification as plants may readily acquire nanoparticle-based nutrients. Nanofertilizers are target specific, possess controlled release, and can be retained for relatively long time periods, thus prevent leaching or run-off from soil. This review evaluates the recent literature on the development and use of nanofertilizers, their effects on the environment, and benefits to food quality. Further, the review highlights the potential of nanomaterials on plant genetics in biofortification, as well as issues of affordability, sustainability, and toxicity.
Collapse
Affiliation(s)
- Prexha Kapoor
- Department of Molecular Biology, Biotechnology & Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Rahul Kumar Dhaka
- Department of Chemistry & Centre for Bio-Nanotechnology, College of Basic Sciences & Humanities, CCS Haryana Agricultural University, Hisar 125004, India
| | - Pooja Sihag
- Department of Molecular Biology, Biotechnology & Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Sheetal Mehla
- Department of Molecular Biology, Biotechnology & Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Vijeta Sagwal
- Department of Molecular Biology, Biotechnology & Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Yogita Singh
- Department of Molecular Biology, Biotechnology & Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Sonu Langaya
- Department of Genetics and Plant Breeding, College of Agriculture, CCS Haryana Agricultural University, Hisar 125004, India
| | - Priyanka Balyan
- Department of Botany, Deva Nagri P.G. College, CCS University Meerut, 245206, India
| | - Krishna Pal Singh
- Biophysics Unit, College of Basic Sciences & Humanities, GB Pant University of Agriculture & Technology, Pantnagar 263145, India; Vice-Chancellor's Secretariat, Mahatma Jyotiba Phule Rohilkhand University, Bareilly 243001, India
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA 01003, USA
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA 01003, USA.
| | - Upendra Kumar
- Department of Molecular Biology, Biotechnology & Bioinformatics, College of Biotechnology, CCS Haryana Agricultural University, Hisar 125004, India.
| |
Collapse
|
24
|
Recent progress in advanced biomaterials for long-acting reversible contraception. J Nanobiotechnology 2022; 20:138. [PMID: 35300702 PMCID: PMC8932341 DOI: 10.1186/s12951-022-01329-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
Unintended pregnancy is a global issue with serious ramifications for women, their families, and society, including abortion, infertility, and maternal death. Although existing contraceptive strategies have been widely used in people's lives, there have not been satisfactory feedbacks due to low contraceptive efficacy and related side effects (e.g., decreased sexuality, menstrual cycle disorder, and even lifelong infertility). In recent years, biomaterials-based long-acting reversible contraception has received increasing attention from the viewpoint of fundamental research and practical applications mainly owing to improved delivery routes and controlled drug delivery. This review summarizes recent progress in advanced biomaterials for long-acting reversible contraception via various delivery routes, including subcutaneous implant, transdermal patch, oral administration, vaginal ring, intrauterine device, fallopian tube occlusion, vas deferens contraception, and Intravenous administration. In addition, biomaterials, especially nanomaterials, still need to be improved and prospects for the future in contraception are mentioned.
Collapse
|
25
|
Pagano L, Marmiroli M, Villani M, Magnani J, Rossi R, Zappettini A, White JC, Marmiroli N. Engineered Nanomaterial Exposure Affects Organelle Genetic Material Replication in Arabidopsis thaliana. ACS NANO 2022; 16:2249-2260. [PMID: 35048688 DOI: 10.1021/acsnano.1c08367] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mitochondria and chloroplasts not only are cellular energy sources but also have important regulatory and developmental roles in cell function. CeO2, FeOx ENMs, ZnS, CdS QDs, and relative metal salts were utilized in Murashige-Skoog (MS) synthetic growth medium at different concentrations (80-500 mg L-1) and times of exposures (0-20 days). Analysis of physiological and molecular response of A. thaliana chloroplasts and mitochondrion demonstrates that ENMs increase or decrease functionality and organelle genome replication. Exposure to nanoscale CeO2 and FeOx causes an 81-105% increase in biomass, whereas ZnS and CdS QDs yielded neutral or a 59% decrease in growth, respectively. Differential effects between ENMs and their corresponding metal salts highlight nanoscale-specific response pathways, which include energy production and oxidative stress response. Differences may be ascribed to ENM and the metal salt dissolution rate and the toxicity of the metal ion, which suggests eventual biotransformation processes occurring within the plant. With regard to specific effects on plastid (pt) and mitochondrial (mt) DNA, CdS QD exposure triggered potential variations at the substoichiometric level in the two organellar genomes, while nanoscale FeOx and ZnS QDs caused a 1- to 3-fold increase in ptDNA and mtDNA copy numbers. Nanoparticle CeO2 exposure did not affect ptDNA and mtDNA stoichiometry. These findings suggest that modification in stoichiometry is a potential morpho-functional adaptive response to ENM exposure, triggered by modifications of bioenergetic redox balance, which leads to reducing the photosynthesis or cellular respiration rate.
Collapse
Affiliation(s)
- Luca Pagano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Marco Villani
- IMEM-CNR, Parco Area Delle Scienze 37/A, 43124 Parma, Italy
| | - Jacopo Magnani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Riccardo Rossi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | | | - Jason C White
- The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06504, United States
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
- Consorzio Interuniversitario Nazionale per le Scienze Ambientali (CINSA), University of Parma, 43124 Parma, Italy
| |
Collapse
|
26
|
Salehi H, Chehregani Rad A, Sharifan H, Raza A, Varshney RK. Aerially Applied Zinc Oxide Nanoparticle Affects Reproductive Components and Seed Quality in Fully Grown Bean Plants ( Phaseolus vulgaris L.). FRONTIERS IN PLANT SCIENCE 2022; 12:808141. [PMID: 35095979 PMCID: PMC8790032 DOI: 10.3389/fpls.2021.808141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
The development of reproductive components in plant species is susceptible to environmental stresses. The extensive application of zinc oxide nanoparticles (nZnO) in various agro-industrial processes has jeopardized the performance and functionality of plants. To understand the response of the developmental (gametogenesis and sporogenesis) processes to nanoparticles (NPs) exposure, the aerial application of nZnO and their ionic counterpart of ZnSO4 at four different levels were examined on bean plants (Phaseolus vulgaris) before the flowering stage. To evaluate the mentioned processes, briefly, flowers in multiple sizes were fixed in paraffin, followed by sectioning and optical analysis. The possibility of alteration in reproductive cells was thoroughly analyzed using both light and electron microscopes. Overall, our results revealed the histological defects in male and female reproductive systems of mature plants depend on NPs levels. Furthermore, NPs caused tapetum abnormalities, aberrations in carbohydrate accumulation, and apoptosis. The nZnO induced abnormal alterations right after meiosis and partly hindered the microspore development, leading to infertile pollens. The seed yield and dry weight were reduced to 70 and 82% at 2,000 mg L-1 nZnO foliar exposure, respectively. The sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis pattern showed the increased expression of two proteins at the molecular weight of 28 and 42 kDa at various concentrations of nZnO and ZnSO4. Overall, our results provided novel insights into the negative effect of nano-scaled Zn on the differential mechanism involved in the reproductive stage of the plants compared with salt form.
Collapse
Affiliation(s)
- Hajar Salehi
- Laboratory of Plant Cell Biology, Department of Biology, Bu-Ali Sina University, Hamedan, Iran
| | | | - Hamidreza Sharifan
- Department of Natural Science, Albany State University, Albany, GA, United States
| | - Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rajeev K. Varshney
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|