1
|
Du L, Pan B, Han X, Li D, Meng Y, Liu Z, Xiong X, Li M. Enhanced ecological risk of microplastic ingestion by fish due to fragmentation and deposition in heavily sediment-laden river. WATER RESEARCH 2025; 278:123306. [PMID: 40015218 DOI: 10.1016/j.watres.2025.123306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/09/2025] [Accepted: 02/15/2025] [Indexed: 03/01/2025]
Abstract
The widespread occurrence of microplastics (MPs) in rivers has aroused increasing concerns. However, there remains a significant gap about its effect on fish with different species, especially in highly-sediment-laden rivers. Here, through a large-scale investigation of microplastics in the Yellow River, our research highlighted effects of heavily sediments on MPs contamination in fish gut. MPs were 100 % tested in water, sediment and fish gut samples, with MPs in the lower reach 2∼3 times larger than that of the upper reach. Most of the microplastics were small (<1 mm), fibrous and blue fragments, composed of polyethylene, polypropylene, and polyethylene terephthalate. Feeding habitat and environment significantly controlled MPs ingestion by fish (p < 0.05), of which filter feeders and species with broader dietary preferences exhibited higher ingestion abundance, omnivorous fish abundance up to 24.9 items/individual. Heavily sediment load accelerated the fragmentation and deposition of MPs (p < 0.05), leading to the generation of more and smaller MPs particles, increasing ecological risks to aquatic organisms. Downstream, smaller sediment size and higher organic matter content also facilitated microplastic accumulation. The prevalence of highly toxic polyvinyl chloride polymers was emerged as the major contributor to environmental risks. Our results suggested that the contribution and ecological risks of small microplastics are worth attention in the mid and lower reaches of the Yellow River.
Collapse
Affiliation(s)
- Lei Du
- State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China
| | - Baozhu Pan
- State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China.
| | - Xu Han
- State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China
| | - Dianbao Li
- State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China
| | - Yueting Meng
- State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China
| | - Zhiqi Liu
- State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Xi'an University of Technology, Xi'an, Shaanxi 710048, PR China
| | - Xiong Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China
| | - Ming Li
- Northwest A&F University, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
2
|
Zhang JM, Li P, Chen CZ, Liu L, Li ZH. Toxic effects of emerging pollutants on mucosal organs of teleost fish: A review focusing on mucosal microbiota, physical barrier and immune barrier. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 978:179431. [PMID: 40245518 DOI: 10.1016/j.scitotenv.2025.179431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/02/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025]
Abstract
The urgency of emerging pollutants driven by human activities presents an increasing threat to the health of fish. The mucosal system, serving as a primary barrier against environmental pollutants, has emerged as a central focus in toxicological research. Alterations in the mucosal microbiota can impact health at both local and systemic levels. This review explores the toxic effects of emerging pollutants on the mucosal immunity of teleost fish, reflects on the reasons behind the limited focus on adaptive immunity studies, and highlights changes in microbial composition, gene expression, histology, and overall mucosal organ function. Furthermore, we summarize the mechanisms through which these pollutants disrupt the mucosal barriers of teleosts, emphasizing interactions between the mucosal microbiota, physical barriers, and immune defenses. The relevant methodologies and potential solutions to the current challenges have been summarized. While current research predominantly centers on the intestines and gills, further studies are needed to investigate the toxic effects of emerging pollutants on other mucosal organs and to elucidate how microbiota influence host health through neuro-immune communication. This review aims to provide a comprehensive overview of mucosal immunity, serving as a theoretical foundation for the assessment of related ecological risks.
Collapse
Affiliation(s)
- Jia-Ming Zhang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | | | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
3
|
Phaksopa J, Worachananant S, Thamrongnawasawat T, Tanapivattanakul K, Kumnuandao S, Chamcha-Em T, Khamrueang A, Chaimongkol T. Microplastic pollution and risk assessment around coral reefs of the Eastern Part, Thailand. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36439-8. [PMID: 40295380 DOI: 10.1007/s11356-025-36439-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 04/19/2025] [Indexed: 04/30/2025]
Abstract
Microplastic pollution, driven by widespread plastic use and poor management, poses a growing threat to marine ecosystems, particularly coral reefs. This study examined microplastic pollution and risk assessment in the surface waters around coral reefs in the Eastern Economic Corridor (EEC) in Eastern Part, Thailand. Microplastics were widespread, with concentrations ranging from 0.05 to 0.54 items/m3 and an average of 0.22 ± 0.16 items/m3. The distribution varied among the reefs, with over 80% of the microplastics exceeding 3 mm in size. The most common shapes were fibers and sheets, with polypropylene (31.25%), polyethylene (19.35%), and PET (18.45%) being the predominant polymers. Si-Chang Island had the highest microplastic abundance, likely due to pollution from residential, industrial, and tourism activities. Risk assessments indicated that Lan Island faced a higher risk of microplastic contamination compared to other areas. While the overall abundance of microplastics was relatively low, the potential impact on coral reefs warrants concern. Periodic monitoring, removal, and mitigation efforts are recommended to address this issue.
Collapse
Affiliation(s)
- Jitraporn Phaksopa
- Department of Marine Science, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand.
| | - Suchai Worachananant
- Department of Marine Science, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand
| | - Thon Thamrongnawasawat
- Department of Marine Science, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand
| | | | - Suriya Kumnuandao
- Department of Marine Science, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand
| | - Tinhapat Chamcha-Em
- Department of Marine Science, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand
| | - Apichayanan Khamrueang
- Department of Marine Science, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand
| | - Thitipong Chaimongkol
- Department of Marine Science, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
4
|
Das RS, Mahatab Uddin SM, Gündoğdu S, Afrin JK, Jahan N, Abedin MRB, Chowdhury S, Nahian SA, Mustafa MG, Siddique MAM. Unveiling Microplastics in Commercial Brackish Water Fishes from the Lower Meghna River Estuary of Bangladesh. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025; 114:68. [PMID: 40281122 PMCID: PMC12031850 DOI: 10.1007/s00128-025-04048-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Microplastics (MPs) pose a persistent global threat and have entered almost every component of the ecosystem and seafood items. This study aimed to identify and characterize MPs in three widely edible fishes in the lower Meghna River estuary of Bangladesh and assess the polymer hazard index. Gastrointestinal tracts (GIT) of fish were collected and digested with KOH to extract MPs, and the polymer was confirmed by FTIR analysis. The species with the highest mean MP abundance was M. gulio (22.89 ± 8.91 MPs/GIT), followed by P. paradiseus (10.78 ± 4.29) and O. pama (15.11 ± 3.55). Fibers were predominant MPs, comprising 73.20-91.75% of the total particles. Blue, red, and black were the dominant colors of MPs, while 81.07-93.81% particles were between 500 and 1000 μm. Five distinct polymers, polypropylene, polyethylene, polyethylene terephthalate, Polystyrene, and Nylon 6, were detected in the GIT of these fishes. The study unveiled a significant correlation (r2 = 0.223, p = 0.013) between MP incidence and the total length of fish. The polymer hazard index of the selected fishes showed the risk category IV (Danger), which is alarming. A risk category IV indicates that exposure to polymer, directly or indirectly through the food chain, may result in severe health consequences for humans as well as wildlife. With these detailed insights into MPs in most consumable fishes, the study highlights the comprehensive risks posed by MPs that could be useful for strategies to mitigate this environmental challenge.
Collapse
Affiliation(s)
- Razat Suvra Das
- Department of Oceanography, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - S M Mahatab Uddin
- Department of Oceanography, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Sedat Gündoğdu
- Department of Basic Sciences, Faculty of Fisheries, Cukurova University, Adana, 01330, Turkey
| | - Jannatul Kubra Afrin
- Department of Oceanography, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Nusrat Jahan
- Department of Oceanography, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Rubaet Bin Abedin
- Department of Oceanography, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | | | - Sultan Al Nahian
- Bangladesh Oceanographic Research Institute, Cox's Bazar, 4730, Bangladesh
| | - M Golam Mustafa
- Department of Oceanography, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Mohammad Abdul Momin Siddique
- Department of Oceanography, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, Vodnany, 389 25, Czech Republic.
| |
Collapse
|
5
|
Li H, Wang T, Zhou Y, He J, Dong R, Xu A, Liu Y. The released micro/nano-plastics from plastic containers amplified the toxic response of disinfection by-products in human cells. Food Chem 2025; 470:142636. [PMID: 39742609 DOI: 10.1016/j.foodchem.2024.142636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 01/03/2025]
Abstract
Micro- and nanoplastics (MNPs) released from plastic containers pose significant food safety concerns; however, their release patterns in different containers along with their impacts on other pollutants remain poorly understood. This study revealed that feeding bottles, food containers, and paper cups released approximately 104 microplastics and 107 nanoplastics after hot water treatment. These released MNPs were nontoxic in six cell types, whereas they significantly amplified the toxicity of disinfection by-products (DBPs), a widely existing contaminant in drinking water. The joint toxicity was influenced by MNPs size, the types of cells and DBPs, with a maximum synergistic efficiency of 57.89 ± 4.64 % in human hepatic carcinoma cells (HepG2) exposed to nanoplastics from feeding bottles and iodoacetamide. Additionally, the exposure assessment indicated that released MNPs posed greater risks to infants. These findings suggested that while MNPs alone were nontoxic, their interactions with DBPs presented potential risks, particularly for sensitive populations.
Collapse
Affiliation(s)
- Han Li
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, HFIPS, Chinese Academy of Science, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Tong Wang
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, HFIPS, Chinese Academy of Science, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Yemian Zhou
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, HFIPS, Chinese Academy of Science, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Jing He
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, HFIPS, Chinese Academy of Science, Hefei, Anhui 230031, PR China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, PR China
| | - Ruoyun Dong
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, HFIPS, Chinese Academy of Science, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - An Xu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, HFIPS, Chinese Academy of Science, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, PR China.
| | - Yun Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology; High Magnetic Field Laboratory, HFIPS, Chinese Academy of Science, Hefei, Anhui 230031, PR China.
| |
Collapse
|
6
|
Pascual-Parra E, Villoria-Calvo S, López-Alonso R, Vigil-Robles N, Arias A. Microplastic accumulation and histological effects on the Atlantic deep-sea scale-worm Laetmonice filicornis. MARINE POLLUTION BULLETIN 2025; 213:117689. [PMID: 39970794 DOI: 10.1016/j.marpolbul.2025.117689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/21/2025]
Abstract
Small benthic scavengers and carnivores, such as polychaetes, are very interesting to assess the accumulation and transfer of microplastics (MPs) to higher trophic levels in marine ecosystems. In this study we evaluate the presence, accumulation and impacts of MPs in the North-Atlantic deep-sea polychaete Laetmonice filicornis. Three types of MPs were identified: fishing lines, fibres and fragments, mostly black in colour, followed by red and blue ones. The average number of MPs was 4.10 ± 1.90 particles/g tissue. Fibres were the most abundant. They were composed of Polypropylene, Rayon, Polyethyleneimine Cellulose and Polyester. The histological analysis revealed the presence of microfibres embedded in muscles, peritoneum, nephridia, gonads and blood vessels, which can have a direct impact on vital functions, such as feeding and reproduction. This species occupies both predator and prey roles, bioaccumulate MPs and can transfer them to higher trophic links, representing a significant threat to all marine species, including humans.
Collapse
Affiliation(s)
- Esteban Pascual-Parra
- Department of Organisms and Systems Biology, University of Oviedo, Oviedo 33071, Spain
| | - Sergio Villoria-Calvo
- Department of Organisms and Systems Biology, University of Oviedo, Oviedo 33071, Spain
| | - Ricardo López-Alonso
- Department of Organisms and Systems Biology, University of Oviedo, Oviedo 33071, Spain
| | - Natalia Vigil-Robles
- Department of Organisms and Systems Biology, University of Oviedo, Oviedo 33071, Spain
| | - Andrés Arias
- Department of Organisms and Systems Biology, University of Oviedo, Oviedo 33071, Spain.
| |
Collapse
|
7
|
Dawson AL, Santana MFM, Perez M, Meehan K, McCarthy H, Vickers K, Motti CA. Rapid egestion of microplastics in juvenile barramundi: No evidence of gut retention or tissue translocation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125884. [PMID: 39984021 DOI: 10.1016/j.envpol.2025.125884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/25/2024] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
Despite many reports of large microplastics being isolated from fish muscle, there are limited exposure studies documenting the transport of microplastics >10 μm from the gastrointestinal tract (GIT) to surrounding tissues. Moreover, egestion rates of microplastics are not commonly studied, especially for carnivorous fish. In this study, experimental data and a literature meta-analysis were combined to understand microplastic translocation to fish tissue and egestion rates. Juvenile barramundi (Lates calcifer) were exposed through their diet to polyamide (PA) fibres and polyethylene terephthalate (PET) fibres and fragments (8-547 μm in length) to determine if shape, size, and polymer type influence microplastic translocation and egestion rates. Despite the high concentration (∼5000 microplastics g-1) and variable range of PET sizes and shapes used, their translocation from the GIT into other tissues was not observed, thus demonstrating PET fragments and fibres are unlikely to accumulate within barramundi. Moreover, more than 90% of all ingested PET microplastics were egested in less than 24 h, with only one small fragment persisting to 96 h post exposure. Elimination half-lives ranged from 9.2 to 12.2 h, with small PET fragments egested at a faster rate than the larger PET fragments and fibres but with no significant differences. Due to methodological challenges, PA fibres were unable to be quantified amongst the digesta. The meta-analysis of published fish egestion rates revealed that, when considering multiple fish, gut morphology (i.e., presence of a true stomach) rather than microplastic size and shape influenced egestion rates across species. The results presented here demonstrate no concrete evidence for GIT accumulation or translocation into tissue with rapid and efficient egestion of ingested microplastics by fish. These results suggest microplastics are not likely to bioaccumulate in barramundi and/or directly impact their associated food web.
Collapse
Affiliation(s)
- Amanda L Dawson
- Australian Institute of Marine Science (AIMS), Townsville, Qld, 4810, Australia; CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, QLD 4067, Australia.
| | - Marina F M Santana
- Australian Institute of Marine Science (AIMS), Townsville, Qld, 4810, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, Queensland 4811, Australia
| | - Michelle Perez
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, Queensland 4811, Australia
| | - Kelley Meehan
- Australian Institute of Marine Science (AIMS), Townsville, Qld, 4810, Australia; School of the Environment, University of Queensland, St Lucia, QLD 4067, Australia
| | - Hannah McCarthy
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, Queensland 4811, Australia
| | - Keegan Vickers
- Australian Institute of Marine Science (AIMS), Townsville, Qld, 4810, Australia
| | - Cherie A Motti
- Australian Institute of Marine Science (AIMS), Townsville, Qld, 4810, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
8
|
Babkiewicz E, Nowakowska J, Zebrowski ML, Kunijappan S, Jarosińska K, Maciaszek R, Zebrowski J, Jurek K, Maszczyk P. Microplastic Passage through the Fish and Crayfish Digestive Tract Alters Particle Surface Properties. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5693-5703. [PMID: 40085149 PMCID: PMC11948475 DOI: 10.1021/acs.est.4c08909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Most studies on the effects of organisms on microplastic characteristics have focused on microorganisms, while the impact of animal feeding behavior, particularly in aquatic species like fish and decapod crustaceans, has been less explored. This study examines how polyethylene spherical microplastics (275 μm in diameter) passing through the digestive tracts of crucian carp (Carassius carassius) and Australian crayfish (Cherax quadricarinatus) affect surface properties, particle size, and bacterial colonization. The species were fed diets with or without microplastics. The particles underwent two rounds of passage through the digestive tracts and were then exposed to known bacterial densities. Surface damage, size, and biofilm coverage were analyzed using scanning electron microscopy, while alterations in surface chemical composition were assessed through Fourier transform infrared spectroscopy with attenuated total reflectance, and the formation and penetration of nanoplastics in gut tissues and glands were determined using Py-GC/MS. Results show that the passage significantly altered surface properties and reduced microplastic size, without affecting chemical composition or nanoplastic penetration into tissues. These changes promoted bacterial colonization compared to controls. The findings suggest that animal feeding activity may play an important role in the mechanical fragmentation of microplastics in aquatic environments, potentially leading to their faster degradation.
Collapse
Affiliation(s)
- Ewa Babkiewicz
- Department
of Hydrobiology, Institute of Ecology, Faculty of Biology, University of Warsaw, Warsaw 00-927, Poland
- Biological
and Chemical Research Centre, University
of Warsaw, Warsaw 02-089, Poland
| | - Julita Nowakowska
- Imaging
Laboratory, Faculty of Biology, University
of Warsaw, Warsaw 00-927, Poland
| | - Marcin L. Zebrowski
- Department
of Hydrobiology, Institute of Ecology, Faculty of Biology, University of Warsaw, Warsaw 00-927, Poland
| | - Selvaraj Kunijappan
- Department
of Biotechnology, Kalasalingam Academy of
Research and Education, Krishnankoil 626126, India
| | - Katarzyna Jarosińska
- Department
of Hydrobiology, Institute of Ecology, Faculty of Biology, University of Warsaw, Warsaw 00-927, Poland
| | - Rafał Maciaszek
- Warsaw
University of Life Sciences, Institute of
Animal Science, Department of Animal Genetics and Conservation, Warsaw 02-787, Poland
| | - Jacek Zebrowski
- Institute
of Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow 35-310, Poland
| | - Krzysztof Jurek
- Faculty
of Geology, Geophysics and Environmental
Protection at the AGH University of Krakow, Kraków 30-059, Poland
| | - Piotr Maszczyk
- Department
of Hydrobiology, Institute of Ecology, Faculty of Biology, University of Warsaw, Warsaw 00-927, Poland
| |
Collapse
|
9
|
Noor SY, Riani E, Hariyadi S, Butet NA, Cordova MR. Microplastic accumulation in respiratory and digestive systems of selected fish from Banten Bay, Indonesia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:454. [PMID: 40117009 DOI: 10.1007/s10661-025-13933-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
Microplastics pose a significant environmental threat as they can be consumed directly or indirectly by various marine organisms. This investigation explores the ecological hazards of microplastic pollution in marine life, with an emphasis on fish in Banten Bay, Indonesia. The sampling spots were in Banten Bay where traditional fishing gears known as "bubu" were used and nets. This study represents an inaugural examination of microplastic contamination in selected fish species including Gambusia affinis, Stolephorus indicus, Scatophagus argus, Epinephelus coioides, Rastrelliger sp., Parapenaeopsis sculptilis, and Leiognathus sp. As a result, microplastics were detected in each fish, with a notable increase in concentrations within the gills (7.85 ± 3.54 items/ind) as opposed to the digestive tract (4.95 ± 2.15 items/ind). Their presence indicated a significant difference (p < 0.01), primarily observed as fragments and filaments. Nine distinct polymer types were identified with FT-IR in fish samples collected from Banten Bay, including polyethylene terephthalate, polyvinyl chloride, polyester, polyurethane, ethylene propylene, polypropylene, polyethylene, polystyrene and polyphenylene sulfide. Microplastics were primarily detected within the size range of 20 to 4510 µm. Microplastic contamination in fish causes detrimental implications on aquatic ecosystems and human health, since the particles exist in the food chain, altering the biological activities of fish, and potentially posing hazards to consumers. Considering the closeness of Banten Bay to Indonesia's capital and economic hub, immediate preventive actions are essential to safeguard human health and the ecosystem. Additional investigation into plastic degradation and waste management is crucial for comprehending the origins of contamination. The results establish a foundation for continuous monitoring of microplastic risks in Banten Bay and other swiftly evolving coastal ecosystems in Northeast Asia.
Collapse
Affiliation(s)
- Sri Yuningsih Noor
- Department of Fisheries and Marine Science, Faculty of Agriculture, Gorontalo University, Gorontalo, 96211, Indonesia.
- Graduate School of IPB University, Bogor, 16680, Indonesia.
| | - Etty Riani
- Department of Aquatic Resources Management, Faculty of Fishery and Marine Science, IPB University, Bogor, 16680, Indonesia
| | - Sigid Hariyadi
- Department of Aquatic Resources Management, Faculty of Fishery and Marine Science, IPB University, Bogor, 16680, Indonesia
| | - Nurlisa Alias Butet
- Department of Aquatic Resources Management, Faculty of Fishery and Marine Science, IPB University, Bogor, 16680, Indonesia
| | - Muhammad Reza Cordova
- Research Center for Oceanography, National Research and Innovation Agency, Jakarta, 14430, Indonesia
| |
Collapse
|
10
|
Liang W, Li B, Munson A, Chen Q, Shi H. Can Fish Escape the Evolutionary Trap Induced by Microplastics? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4788-4796. [PMID: 40038063 PMCID: PMC11924217 DOI: 10.1021/acs.est.4c09932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/23/2025] [Accepted: 02/20/2025] [Indexed: 03/06/2025]
Abstract
Microplastic (MP) ingestion acts as an evolutionary trap with various ecological consequences. Cues that lead animals to respond differently to MPs are key factors driving MP ingestion, yet they remain poorly understood. Here, we quantified the susceptibility of three fish species to different types of MPs across different social contexts. Our results showed that bass were more attracted to MPs that resembled food visually, whereas carp tended to select MPs that shared olfactory cues with food. Goldfish relied more on oral processing to make foraging decisions on MPs. Structural differences in the oropharynx supported these discriminated oral processes. Enlarged group size and fasting time altered the foraging behaviors of MPs of goldfish and bass, both of which were suction-feeding species. Such behavioral changes, regardless of whether fish ultimately ingested or rejected MPs, could pose indirect costs to fish. However, changed group sizes and fasting times did not affect the intake of MPs by the filter-feeding carp. We also proposed four pathways causing the MP-induced evolutionary trap and discussed the potential of fish to escape this trap. Our results contribute to experimental and theoretical understanding of the ecological risks posed by MPs to aquatic species.
Collapse
Affiliation(s)
- Weiwenhui Liang
- State Key
Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
- School
of
Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, United
Kingdom
| | - Bowen Li
- State Environmental
Protection Key Laboratory of Environmental Pollution Health Risk Assessment,
Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology
and Environment, Guangzhou 510655, China
| | - Amelia Munson
- Department
of Wildlife, Fish & Environmental Studies, Swedish University of Agricultural Sciences, Umeå 750 07, Sweden
| | - Qiqing Chen
- State Key
Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Huahong Shi
- State Key
Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| |
Collapse
|
11
|
D'Costa AH, Kunkolkar A, Naik G, Natekar T, Sinha A, Kundaikar G, Fernandes S. Assessment of microplastic contamination in clams and shrimp from estuarine environments of Goa: implications for environmental health and food safety. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:329. [PMID: 40009228 DOI: 10.1007/s10661-025-13776-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Microplastics (MPs) are emerging contaminants of global concern, particularly in estuarine ecosystems. This study aimed to quantify and compare the concentration of MPs in two economically important species: Meretrix casta collected from Siridao beach and Penaeus vannamei from a sluice gate harvest site in Siolim, in Goa, India. Water samples from both locations were also analyzed to evaluate environmental MP levels. MPs were present at both sites; however, water and shrimp from Siolim exhibited higher concentrations than the water and bivalves from Siridao. The MPs were predominantly fibres and fragments of polyamide, polyethylene, and polystyrene, most likely originating from anthropogenic activities such as fishing, tourism, and waste disposal. The coefficient of microplastic impact (CMPI) reveals the impact of fragments and fibres at both Siridao [fragments, 0.56 (maximum); fibres, 0.39 (average)] and Siolim sites [fibres, 0.87 (extreme)]. The bioaccumulation factor (BAF) was found to be highest at Siolim (> 1 for all MP types). The findings raise concerns about the potential health risks posed to local and tourist populations that consume seafood from coastal regions like Goa, as well as the broader ecological impacts of MP pollution.
Collapse
Affiliation(s)
- Avelyno H D'Costa
- School of Biological Sciences & Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India.
| | - Anamika Kunkolkar
- School of Biological Sciences & Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India
| | - Gaurav Naik
- School of Biological Sciences & Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India
| | - Tanya Natekar
- School of Biological Sciences & Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India
| | - Ankit Sinha
- School of Biological Sciences & Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India
| | - Gandhita Kundaikar
- School of Biological Sciences & Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India
| | - Samantha Fernandes
- School of Biological Sciences & Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India
| |
Collapse
|
12
|
Ceylan L, Arı H, Erdoğan Ş. The role of habitat preference and feeding strategy on exposure to microplastic pollution in freshwater fish species. CHEMOSPHERE 2025; 370:143921. [PMID: 39653191 DOI: 10.1016/j.chemosphere.2024.143921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/10/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Microplastic (MP) pollution has been observed in a variety of ecosystems, but there is a limited number of studies on reservoir ecosystems. The aim of this study was to determine the levels of MP contamination in sediment, water and commercially important fish species (Cyprinus carpio, Perca fluviatilis, Atherina boyeri and Sander lucioperca) collected from the Yamula Reservoir in Türkiye. Water samples were collectes at five stations. Four sediment samples were collected from the lake. As sediments from the lake represent a vital element of the lake ecosystem, they function as a historical archive that reflects alterations in land use and the characteristics of the lake over time. The average amounts of MPs observed in sediment and water samples were 0.12 MP/g and 0.58 MP/m3 respectively. The digestive systems of 30 individuals of each fish species were examined. The highest amount of MP was observed for C. carpio (6 ± 5.9 MP/individual), while the lowest amount of MP was observed for A. boyeri (1.8 ± 1.7 MP/individual). MP abundance in S. lucioperca and P. fluviatilis was 2 ± 2.8 and 4.6 ± 6.3 MP per individual. The most commonly observed polymer types were polypropylene (67%), polyvinyl alcohol (13%), polyethylene resin (13%) and high-density polyethylene (7%). The pollution load indexes determined for each fish species from the highest to the lowest were as follows: 1.83 (C. carpio) 1.6 (S. lucioperca) 1.05 (P. fluviatilis) and, 1 (A. boyeri). The findings of the study indicate that all sampling stations, including both sediment and water, are contaminated with MPs. Furthermore, the results demonstrate that all examined fish species ingest MPs. Additionally, the results indicate that fish inhabiting a wide range of habitats and consuming diverse diets are more susceptible to MP contamination.
Collapse
Affiliation(s)
- Levent Ceylan
- Department of Biology, Faculty of Science and Art, Yozgat Bozok University, 66900, Yozgat, Türkiye
| | - Hatice Arı
- Department of Chemistry, Faculty of Science and Art, Yozgat Bozok University, 66900, Yozgat, Türkiye
| | - Şeyda Erdoğan
- Department of Biology, Faculty of Science and Art, Yozgat Bozok University, 66900, Yozgat, Türkiye.
| |
Collapse
|
13
|
Giani D, Baini M, Panti C, Galli M, Caliani I, Concato M, Casini S, Fossi MC. A multi-compartment monitoring approach to assess the impact of marine litter in a Mediterranean coastal area. MARINE POLLUTION BULLETIN 2025; 211:117466. [PMID: 39693835 DOI: 10.1016/j.marpolbul.2024.117466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
Marine litter, particularly microplastics, is a growing threat to the Mediterranean Sea, impacting biodiversity and ecosystem health. However, most studies conducted in the Mediterranean Sea have focused on monitoring of only specific environmental compartments, and rarely have highlighted the overall impacts affecting an area. Therefore, using a new multi-compartment monitoring approach and a standardized methodology, this study investigates the abundance, distribution, composition and impact of marine litter on beaches, surface waters, fish and mussels in a coastal area of Tuscany (Italy). Concerning beach macro litter values, significant differences were found among the three beaches analysed, with the highest amount in the Feniglia beach (mean value = 1245 items/100 m). The top items found are cotton bud sticks (32.3 %), which in the winter survey at Feniglia beach, reached a remarkable density of 1983 items/100 m. Microlitter (1-5 mm), was detected in the beach sediments with a mean abundance of 130 items/m2. Regarding floating macrolitter, the transect with the highest values was the Feniglia site at 3 nautical miles in autumn (1083 items/km2) while for floating microlitter the highest concentration (832,683 MPs/km2) was found in front of Scarlino. Of the 234 fish analysed from 5 different species, 67 contained microplastics in the gastrointestinal tract (28 %) with a mean value of 0.4 items per individual. The species with the highest occurrence was the European anchovy (Engraulis encrasicolus) (53 %) followed by the bogue (Boops boops) (40 %). Through the application of the Marine Litter Impact Index (MLII), considering all the compartments analysed, the Feniglia area emerges as the ecosystem most impacted by marine litter (mean MLII = 3.5, high). This study highlights how a multi-compartment monitoring approach is crucial for understanding the complex interactions between land, sea, and biota.
Collapse
Affiliation(s)
- Dario Giani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Matteo Baini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy; NBFC National Biodiversity Future Center, Palermo, Italy.
| | - Cristina Panti
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy; NBFC National Biodiversity Future Center, Palermo, Italy
| | - Matteo Galli
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Margherita Concato
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy; NBFC National Biodiversity Future Center, Palermo, Italy
| | - Maria Cristina Fossi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy; NBFC National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
14
|
Xu Y, Liu L, Ma Y, Wang C, Duan F, Feng J, Yin H, Sun L, Cao Z, Jung J, Li P, Li ZH. Biotransport and toxic effects of micro- and nanoplastics in fish model and their potential risk to humans: A review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107215. [PMID: 39706134 DOI: 10.1016/j.aquatox.2024.107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
The growing body of scientific evidence suggests that micro- and nanoplastics (MPs/NPs) pose a significant threat to aquatic ecosystems and human health. These particles can enter organisms through ingestion, inhalation, dermal contact, and trophic transfer. Exposure can directly affect multiple organs and systems (respiratory, digestive, neurological, reproductive, urinary, cardiovascular) and activate extensive intracellular signaling, inducing cytotoxicity involving mechanisms such as membrane disruption, extracellular polymer degradation, reactive oxygen species (ROS) production, DNA damage, cellular pore blockage, lysosomal instability, and mitochondrial depolarization. This review focuses on current research examining the in vivo and in vitro toxic effects of MPs/NPs on aquatic organisms, particularly fish, in relation to particulate toxicity aspects (such as particle transport mechanisms and structural modifications). Meanwhile, from the perspectives of the food chain and environmental factors, it emphasizes the comprehensive threats of MPs/NPs to human health in terms of both direct and indirect toxicity. Additionally, future research needs and strategies are discussed to aid in mitigating the potential risks of particulate plastics as carriers of toxic trace elements to human health.
Collapse
Affiliation(s)
- Yanan Xu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Yuqing Ma
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Cunlong Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Fengshang Duan
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Jianxue Feng
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Haiyang Yin
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Le Sun
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhihan Cao
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
15
|
Pajuro K, Yang Z, Jespersen S, Hansen DS. Assessing Hydrocyclone System's Efficiency in Water-Borne Microplastics Capture Using Online Microscopy Sensors. SENSORS (BASEL, SWITZERLAND) 2025; 25:879. [PMID: 39943517 PMCID: PMC11820389 DOI: 10.3390/s25030879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025]
Abstract
Plastic pollution has been a global concern. Microplastics are often referred to as plastic particulates whose sizes are within the range of 1 μm to 5 mm. To cost-effectively capture these tiny microplastics from open environments, such as from the air or aquatic/marine systems, is far from trivial. Not only is some innovative capturing technology demanded, but some online monitoring solutions are often requested as well to assess the capturing effectiveness and efficiency, as well as provide some feedback information to the control system to adapt to varying operating conditions. Inspired by the de-oiling treatment of the produced water in offshore oil & gas production, this paper explores the potential to apply the hydrocyclone technology to cost-effectively handle the water-borne microplastics, and its effectiveness is demonstrated based on reliably calibrated online microscopy measurements subject to artificial polyethylene particulates added to the water stream. The experimental work is carried out using a commercial de-oiling hydrocyclone system and a set of commercial optical microscopy sensors. A statistic-based calibration method is firstly proposed for the deployed microscopy sensors to select the best calibration parameters. Afterwards these sensors are installed at the inlet and water-outlet of the hydrocyclone system via a side-stream sampling mechanism to assess this system's (microplastics) separation efficiency subject to dynamical operating conditions, which are mimicked by manipulating its underflow and overflow control valves via PI-controlled loops. The separation efficiencies are calculated based on these volume concentration measurements and compared between the case with (statistically) optimal calibration parameters and the case with a set of non-optimal parameters. The best separation efficiency of 87.76% under the optimal calibration parameters is observed under a specific operating condition. The obtained result shows a promising potential to use these separation and sensing systems to cost-effectively handle aquatic microplastics collection, though it also indicates that a further higher efficiency could be achieved by some (microplastics) dedicated cyclone design combined with a dedicated process control system, and this is one part of our ongoing research work.
Collapse
Affiliation(s)
| | - Zhenyu Yang
- Department of Energy, Aalborg University, Esbjerg Campus, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark; (K.P.); (S.J.); (D.S.H.)
| | | | | |
Collapse
|
16
|
Li H, Song W, Wang S, Wang Y, Ma Y, Su Y, Ji R. Ingestion of melamine cleaning sponges-derived microplastic fibers affects the survival and reproduction of Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117814. [PMID: 39874685 DOI: 10.1016/j.ecoenv.2025.117814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 01/30/2025]
Abstract
The abrasion of melamine cleaning sponges release microplastic fibers (MPFs) into the environment, yet the potential risks remain unknown. Here, we evaluated the ingestion, elimination, and toxic effects of melamine MPFs on Daphnia magna through acute and chronic exposures. This new type of MPFs displayed different morphology (a combination of linear and branched fibers with a length ranging from 10 to 157 μm) from the widely-studied MPFs released from textiles (longer and thicker linear fibers but no branched fibers). Although the lethality of melamine MPFs to neonates was not observed upon a short-term exposure (24 h), such effect was detected when the animals were exposed for a longer period (21 d) and showed a concentration-dependent manner. The MPFs tended to aggregate in the gut of D. magna, leading to a slow elimination compared to polystyrene microspheres. The MPFs remaining in the gut triggered an elevation in the intracellular reactive oxygen species, which further induced oxidative damage and eventually death. The long-term exposure to MPFs also stimulated D. magna to produce more offspring. Our findings show the chronic toxicity of the sponges-derived MPFs to typical freshwater zooplankton and accentuate the environmental impacts related to the extensive use of the sponges.
Collapse
Affiliation(s)
- Huimin Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wenwen Song
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; School of Energy and Environment, Southeast University, Nanjing 211189, China
| | - Songfeng Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yanhua Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Yunfeng Ma
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yu Su
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
17
|
Fang C, Liu S, Gao F, Zheng Y, Zheng R, Feng Y, Roeroe KA, Du J, Bo J. Micro- and mesoplastic pollution in the surface water and nekton from the eastern Indian ocean: Spatiotemporal variation, correlation and risk assessment. ENVIRONMENTAL RESEARCH 2025; 264:120377. [PMID: 39549906 DOI: 10.1016/j.envres.2024.120377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024]
Abstract
The pollution of micro- and mesoplastic (MMP) in the Eastern Indian Ocean (EIO) remains poorly understood. The present study revealed that MMP abundance in nekton from EIO in 2022 (mean: 2.30 ± 0.39 items individual-1 and 1.81 ± 0.54 items g-1) was significantly higher than that in 2021 (mean: 1.60 ± 0.22 items individual-1 and 0.80 ± 0.13 items g-1). In contrast, MMP abundance in surface water varied insignificantly between 2021 (mean: 0.04 ± 0.01 items m-3) and 2022 (mean: 0.05 ± 0.02 items m-3). The rise in predominant polymers-polypropylene (PP), rayon (RA), and polyester (PES)-in nekton from 2021 to 2022 may suggest increased pollution from face masks and home textiles along coastal regions. Notable spatial variation in PP and RA between the northeastern and southeastern regions was observed only in nekton, suggesting they are better indicators of MMP spatiotemporal variation than surface water. Shadow driftfish ingested more MMPs than purpleback flying squid and mackerel scad, likely due to its deeper habitat. By simultaneously considering color, composition, and shape, integrated MMP analysis showed insignificant correlation between MMP pollution in surface water and nekton, suggesting that nekton may ingest MMPs through multiple pathways beyond surface water. Risk indices for surface water and nekton reached moderate to upper levels globally, emphasizing the need for continued monitoring in the EIO. Epoxy resin, rubber, and PP + acrylic were identified as the most hazardous polymers, providing a valuable basis for developing effective strategies to mitigate plastic pollution.
Collapse
Affiliation(s)
- Chao Fang
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Shigang Liu
- Laboratory of Marine Biodiversity, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Fulong Gao
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Youchang Zheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology Chinese Academy of Sciences, Guangzhou, 510000, China
| | - Ronghui Zheng
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Yang Feng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology Chinese Academy of Sciences, Guangzhou, 510000, China
| | | | - Jianguo Du
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; APEC Marine Sustainable Development Center, Xiamen, 361005, China.
| | - Jun Bo
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| |
Collapse
|
18
|
Wang H, Wu Y, Deng Y, Wu X, Li X, Xu H, Zeng Y, Yan Y. Impacts of wind forcing on microplastics kinematic in a sensitive water area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177983. [PMID: 39647200 DOI: 10.1016/j.scitotenv.2024.177983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Microplastics (MPs) have been found in different environmental department globally, and the threat to organisms posed by MPs is also widely recognized. Kinematic characteristics of low-density fiber MPs in Poyang Lake under different due-south wind were calculated by combining hydrodynamic model with particle tracking model in this study. Poyang Lake is divided into north lake and south lake for study based on its topographic and hydrodynamic characteristics, and the results are as follows: the critical wind speeds causing vertical mixing of MPs in the water column ranges from 6 to 9 m·s-1 in the north lake, while it is >9 m·s-1 in the south lake, and the MPs beaching rate decreases by 7.08 %/(m·s-1) as the due-south wind speed increases. The MPs speed is mainly affected by surface current, while the direction of the velocity is more affected by wind. The MPs velocity in the south lake is only 27.10 % of that in the north lake, and the direction is more dispersed, so the due-south wind concentrates the direction of MPs velocity more to the north in the south lake. The northern wards movement of MPs resulted in a noticeable decrease in FS in the south lake, with FS decreasing by 0.10 for every 1 m·s-1 increase in wind speed, and therefore, the due-south wind reduces the ecological risk posed by MPs through reducing the range of movement and retention time. However, since the FS in the north lake has been close to the minimum value of 1, the reduction of the FS is not significant, and the wind reduces the risk mainly by shortening the retention time of the MPs. Therefore, the ecological risk caused by MPs in Poyang Lake under no or weak wind conditions should be taken into consideration.
Collapse
Affiliation(s)
- Hua Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Yi Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yanqing Deng
- Jiangxi Hydrological Monitoring Center, Nanchang 330000, China; College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China; Jiangxi Province Key Laboratory of Ecohydrological Monitoring Research in Poyang Lake Basin, Nanchang 330000, China
| | - Xiaomao Wu
- Jiangxi Poyang Lake water conservancy project construction office, Nanchang 330009, China
| | - Xiaoying Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Haosen Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yichuan Zeng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yuting Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
19
|
You T, Feng X, Xu H. The whole life journey and destination of microplastics: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125165. [PMID: 39427952 DOI: 10.1016/j.envpol.2024.125165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
Recent reports indicate that ubiquitous microplastics (MPs) in the environment can infiltrate the human body, posing significant health risks and garnering widespread attention. However, public understanding of the intricate processes through which microplastics are transferred to humans remains limited. Consequently, developing effective strategies to mitigate the escalating issue of MPs pollution and safeguard human health is still challenging. In this review, we elucidated the sources and dynamic migration pathways of MPs, examined its complex interactions with other pollutants, and identified primary routes of human exposure. Subsequently, the events and alterations of gut microbiota, gut microbiota metabolism, and intestinal barrier after MPs enter the gut of organisms are unclosed. Additionally, it highlighted the ease with which MPs translocate from the intestine to other organs along with their biological toxicities. Finally, we also emphasized the knowledge gaps in the current research field and proposes future research directions. This review aims to enhance public awareness regarding microplastic pollution and provide valuable references for forthcoming research endeavors as well as policy formulation related to this pressing issue.
Collapse
Affiliation(s)
- Tao You
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Xiaoyan Feng
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China.
| |
Collapse
|
20
|
Gao S, Zhang S, Feng Z, Lu J, Fu G, Yu W. The bio-accumulation and -magnification of microplastics under predator-prey isotopic relationships. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135896. [PMID: 39378590 DOI: 10.1016/j.jhazmat.2024.135896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Recent studies on microplastics (MPs) in marine ecosystems have focused on their bioaccumulation and biomagnification within food chains, emphasizing their potential health risks to humans. However, these bio-effects of MPs in marine ecosystems remain a contentious issue. Employing the "consumer-dietary source" tracking function in stable isotope analysis can enhance our comprehension of how MPs magnify in organisms. In our research conducted in the coastal waters of Haizhou Bay, Jiangsu, China, we examined two commercially important fish species, Larimichthys polyactis and Collichthys lucidus, through stable isotope analysis to investigate the accumulation of MPs in their dietary sources. Results revealed fiber, blue, and PET as the primary shapes, colors, and polymers of MPs in the region. C. lucidus displayed a broader isotopic niche and a higher propensity for MP accumulation than L. polyactis. Biomagnification analysis indicated that dominant MP shapes, colors, and polymers were magnified in both fish species, with MPs smaller than 3 mm exhibiting substantial biomagnification. Factors such as feeding strategies and habitat preferences may influence MP ingestion by fish. We conclude that a high proportion of dietary sources in fish does not necessarily equate to a high concentration of MPs. Neglecting the proportion of dietary sources might lead to underestimating MP biomagnification. Therefore, a multidimensional approach to exploring the biomagnification of MPs is essential to accurately grasp this unique pollutant's impact.
Collapse
Affiliation(s)
- Shike Gao
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China; Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Shuo Zhang
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China; Joint Laboratory for Monitoring and Conservation of Aquatic Living Resources In the Yangtze Estuary, Shanghai 200000, China.
| | - Zhihua Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Jikun Lu
- Marine and Fishery Development Promotion Center In Lianyungang, Lianyungang 222002, Jiangsu, China.
| | - Guanghui Fu
- Marine and Fishery Development Promotion Center In Lianyungang, Lianyungang 222002, Jiangsu, China
| | - Wenwen Yu
- Jiangsu Research Institute of Marine Fisheries, Nantong 226007, China.
| |
Collapse
|
21
|
Gong N, Wang Z, Wang X, Shao K. Uptake, removal and trophic transfer of fluorescent polyethylene microplastics by freshwater model organisms: the impact of particle size and food availability. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107165. [PMID: 39549359 DOI: 10.1016/j.aquatox.2024.107165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024]
Abstract
As an emerging contaminant, microplastics (MPs) are widely distributed in freshwater ecosystems and pose potential threats to aquatic organisms, attracting significant attention from both the scientific community and the general public. However, there is still uncertainty regarding the mechanisms of MPs transfer within aquatic biota and how particle size and food availability influence their transport patterns. In this study, zebrafish (Danio rerio) were selected as a model organism to investigate the uptake and elimination of fluorescent polyethylene (PE) MPs under different exposure scenarios (waterborne or trophic transfer, with or without food) and varying particle sizes (ranging from 10-300 μm at concentrations of 0.1, 2, and 300 mg/L). Additionally, water fleas (Daphnia magna) were provided as prey for the fish. The dynamic accumulation of PE-MPs sized between 10-20 μm at a concentration of 25 mg/L by daphnia was also determined along with its impact on animal feeding behavior. The results demonstrated that both organisms were capable of ingesting PE-MPs during exposures lasting up to 24 hours for daphnia and up to 72 hours for zebrafish. Furthermore, rapid elimination rates were observed within just 30 minutes for daphnia and between 6-12 hours for zebrafish. The presence of food reduced MPs uptake and removal by daphnia but significantly increased MP elimination by fish. Zebrafish showed a preference for ingesting larger-sized MPs that they could easily recognize; however, trophic transfer from daphnia to fish was found to be the primary route of ingestion specifically for PE-MPs sized between 10-20 μm. The findings suggest that while fish directly ingest fewer invisible MPs from the water column, they still accumulate these particles through predation on contaminated prey organisms. Therefore, it is imperative to prioritize the ecological risks associated with the transfer of MPs from zooplankton to fish.
Collapse
Affiliation(s)
- Ning Gong
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Zhiyuan Wang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Xiaofan Wang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Kuishuang Shao
- National Marine Environmental Monitoring Center, Dalian 116023, China.
| |
Collapse
|
22
|
Fang L, Wang S, Sun X, Wang K. Bioaccumulation and biochemical impact of polyethylene terephthalate microplastics in Cipangopaludina chinensis: Tissue-specific analysis and homeostasis disruption. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107144. [PMID: 39520844 DOI: 10.1016/j.aquatox.2024.107144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/19/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Microplastics are a novel pollutant that adversely affect freshwater benthic organisms. However, few studies have investigated the mechanism underlying the bioaccumulation and the toxicity of microplastics. In this study, microplastics bioaccumulation of wild Cipangopaludina chinensis in the Songhua River were utilized, and a 28-day aquatic toxicity test was performed to determine the effects of exposure to polyethylene terephthalate (PET), the bioaccumulation of PET, and changes in multiple biomarkers in the muscle, gill, and kidney tissues. The concentration pattern of microplastics was as follows: kidney tissue > muscle tissue > gill tissue. Microplastic ingestion caused AChE inhibition led to significant increases in redox and energy metabolism indicators. Furthermore, the IBR analysis presented a "response-resistance-breakdown" process, indicating that Cipangopaludina chinensis possessed resistance with time (D14 and D21) and concentration (0.10 mg/L and 1.00 mg/L) thresholds. Tissue sensitivity to microplastics was ranked as gill > muscle > kidney, which was the opposite order of microplastic accumulation. These findings implied that less sensitive tissues stored a larger amount of pollutants, suggesting a reduction in tissue sensitivity to microplastics with higher microplastic occurrence rates. This study provides new insights into biological resistance to pollutant stress, warranting further investigation into the underlying mechanisms.
Collapse
Affiliation(s)
- Lanjin Fang
- College of Forest, Northeast Forest University, Harbin 150040, China
| | - Shuangshuang Wang
- College of Forest, Northeast Forest University, Harbin 150040, China
| | - Xingbin Sun
- College of Forest, Northeast Forest University, Harbin 150040, China.
| | - Kejing Wang
- Ecological and Environmental Monitoring Centre of Heilongjiang Province, Harbin 150056, China.
| |
Collapse
|
23
|
Liu H, Li H, Liu Y, Zhao H, Peng R. Toxic effects of microplastic and nanoplastic on the reproduction of teleost fish in aquatic environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:62530-62548. [PMID: 39467868 DOI: 10.1007/s11356-024-35434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 10/23/2024] [Indexed: 10/30/2024]
Abstract
Microplastics and nanoplastics are widely present in aquatic environments and attract significant scholarly attention due to their toxicity, persistence, and ability to cross biological barriers, which pose substantial risks to various fish species. Microplastics and nanoplastics can enter fish through their digestive tract, gills and skin, causing oxidative damage to the body and adversely affecting their reproductive system. Given that fish constitute a crucial source of high-quality protein for humans, it is necessary to study the impact of microplastics on fish reproduction in order to assess the impact of pollutants on ecology, biodiversity conservation, environmental sustainability, and endocrine disruption. This review explores the reproductive consequences of microplastics and nanoplastics in fish, examining aspects such as fecundity, abnormal offspring, circadian rhythm, gonad index, spermatocyte development, oocyte development, sperm quality, ovarian development, and changes at the molecular and cellular level. These investigations hold significant importance in environmental toxicology.
Collapse
Affiliation(s)
- Huanpeng Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Huiqi Li
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Haiyang Zhao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
24
|
Du H, Chen P, Lin X, Zheng J, Liu H, Wang X. Adsorption of metals on aged microplastics in intensive mariculture areas: Aggravating the potential ecological risks to marine organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173964. [PMID: 38876355 DOI: 10.1016/j.scitotenv.2024.173964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Field determination of the metal adsorption capacity of microplastics (MPs) by using a passive sampler had been done in typical subtropical mariculture area in China. The adsorption of eight metals (Fe, Mn, Cu, Zn, As, Pb, Cr and Cd) by five types of MPs (low-density polyethylene, polypropylene, polystyrene, poly(ethylene terephthalate) and poly(vinyl chloride) (PVC) was compared, including metal types, mariculture types (cage and longline culture), metal residue content in ambient environment, polymer types and particle sizes of MPs. The results showed that Cu, Zn, As, Cd, Pb and Cr in the mariculture environment were contaminated compared with the quality criteria. The concentrations of these six metals adsorbed on five MPs increased linearly with those in seawater. More enriched Cu and As in MPs in marine cage culture than in longline culture, due to the obvious endogenous pollution emissions for the artificial diets, fish medicine and disinfectants. Aged PVC with more cracks and pores showed higher metal adsorption capacity than any other polymers. MPs with a smaller size range of 50-74 μm tended to accumulate higher amounts of metals than those with a larger size range of 74-178 μm, consisting with the surface characteristics of MPs. The significant positive relationship between the concentrations of nutrients in seawater and the adsorption amounts of Cu, Zn and As on MPs implies that the eutrophication would promote their pollution. Based on the ecological risk assessment, the occurrence of MPs could aggravate the potential risk of metals to marine organisms in intensive mariculture areas. This is the first time to reveal the impacts of the adsorption of metals on aged MPs on the potential ecological risks of metals to organisms under the realistic environmental condition.
Collapse
Affiliation(s)
- Huihong Du
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Pengyu Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Xiaoping Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jingyi Zheng
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Huatai Liu
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
25
|
Pei Y, Lin Y, Guo J, Luo K, Wu J, Wu J, Yang W, Gao J. Microplastics in wild fish in the Three Gorges Reservoir, China: A detailed investigation of their occurrence, characteristics, biomagnification and risk. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135551. [PMID: 39154484 DOI: 10.1016/j.jhazmat.2024.135551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Microplastics (MPs) pollution in freshwater poses a risk to various ecosystems and health security. In 2018, the Chinese government banned fishing since 2018 in the Three Gorges Reservoir (TGR), but the fate and risk of MPs in wild fish remain unclear. Therefore, a detailed investigation was conducted into the occurrence of MPs in 18 wild fish species in the TGR using a Micro Fourier Transform Infrared Spectrometer, and the trophic transfer and risks were assessed. MPs in fish were aged, with abundances ranging from 0.68 ± 0.98 to 4.00 ± 2.12 items/individual. Most particles were less than 1 mm in size (73.4 %), with fibers being the dominant shape (48.9 %) and transparent as the dominant color (35 %). Polyethylene (PE) was the most prevalent type. The bioconcentration factor (BCF), bioaccumulation factor (BAF), trophic magnification factor (TMF) and polymer hazard index (PHI) were low, suggesting no trophic transfer and a low risk of MPs. The BAF may provide a more reasonable description of the degree of enrichment of MPs, and 'items/individual' or 'g/individual' can be used to describe MPs concentrations in fish. This study proposes new insights and prospectives that can help researchers better understand MPs enrichment in fish across various trophic levels.
Collapse
Affiliation(s)
- Yizhi Pei
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Ying Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jinsong Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Kongyan Luo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jianyong Wu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jingcheng Wu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Wenhao Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Junmin Gao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
26
|
Liu R, Gao H, Liang X, Zhang J, Meng Q, Wang Y, Guo W, Martyniuk CJ, Zha J. Polystyrene nanoplastics alter intestinal toxicity of 2,4-DTBP in a sex-dependent manner in zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135585. [PMID: 39178772 DOI: 10.1016/j.jhazmat.2024.135585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024]
Abstract
Nanoplastics (NPs) and 2,4-di-tert-butylphenol (2,4-DTBP) are ubiquitous emerging environmental contaminants detected in aquatic environment. While the intestinal toxicity of 2,4-DTBP alone has been studied, its combined effects with NPs remain unclear. Herein, adult zebrafish were exposed to 80 nm polystyrene nanoplastics (PS-NPs) or/ and 2,4-DTBP for 28 days. With co-exposure of PS-NPs, impact of 2,4-DTBP on feeding capacity and intestinal histopathology was enhanced in males while attenuated in females. Addition of PS-NPs significantly decreased the uptake of 2,4-DTBP in females, while the intestinal concentrations of 2,4-DTBP were not different between the sexes in co-exposure groups. Furthermore, lower intestinal pH and higher contents of digestive enzymes were detected in male fish, while bile acid was significantly increased in co-exposed females. In addition, co-exposure of PS-NPs stimulated female fish to remodel microbial composition to potentially enhance xenobiotics degradation, while negative Aeromonas aggravated inflammation in males. These results indicated that in the presence of PS-NPs, the gut microenvironment in females can facilitate the detoxification of 2,4-DTBP, while exaggerating toxiciy in males. Overall, this study demonstrates that toxicological outcomes of NPs-chemical mixtures may be modified by sex-specific physiology and microbiota composition, furthering understanding for environmental risk assessment and management of aquatic environments.
Collapse
Affiliation(s)
- Ruimin Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Huina Gao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Jiye Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Qingjian Meng
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yuchen Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wei Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jinmiao Zha
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
27
|
Zhang L, Lu G, Ling X, Yan Z, Liu J, Ding K. Toxicokinetics of microplastics in Macrobrachium nipponense and their impact on the bioavailability of loaded pollutants. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135610. [PMID: 39178771 DOI: 10.1016/j.jhazmat.2024.135610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Microplastics (MPs) have unique toxicokinetic (TK) processes that differ from those of soluble pollutants. This study investigated the ingestion, migration, accumulation, and clearance of environmental aging MPs in the Japanese swamp shrimp (Macrobrachium nipponense). The concentrations of plastic additives and personal care products adsorbed onto MPs in natural river water were determined, and TK models for MPs and MPs-loaded pollutants were developed. Results showed that the formation of surface biofilms and alterations in the distribution of MPs in waters caused by environmental aging affect MPs bioavailability, which is mainly related to the feeding habits of shrimp. The decrease in MPs particle size caused by biological digestion and the increase in the number of oxygen-containing functional groups caused by environmental aging affect the TK process of MPs. The TK model of MPs-loaded pollutants revealed the cleaning effect of shrimp on pollutants adsorbed onto MPs during swallowing and spitting MPs. This cleaning effect significantly increases the bioavailability of MPs-associated pollutants in aquatic environments. This study provides a new perspective for understanding the interactions between environmental MPs and their associated pollutants in aquatic ecosystems.
Collapse
Affiliation(s)
- Leibo Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Xin Ling
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Keqiang Ding
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| |
Collapse
|
28
|
Yamen SNM, Samsudin MS, Azid A, Norizan MN, Suradee APK, Rosli MIFM. First Evidence of Microplastic Ingestion by Riverine Fish From the Freshwater of Northwest Peninsular Malaysia. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2189-2198. [PMID: 39119975 DOI: 10.1002/etc.5971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024]
Abstract
In a baseline study, we investigated microplastic contamination in fish from the Pinang and Kerian Rivers in Northwest Peninsular Malaysia. In recognition of the growing concern over microplastic pollution in aquatic environments, we aimed to assess the abundance and characteristics of microplastics ingested by various fish species. Fish samples were collected from local fishermen, followed by a digestion process using 10% potassium hydroxide (KOH). Microplastics were isolated and analyzed through visual examination and attenuated total reflectance Fourier transform infrared spectroscopy. The results revealed a high prevalence of microplastics, with Johnius borneensis and Oreochromis sp. exhibiting the highest abundance, averaging 48.6 and 42.8 microplastics/g, respectively. The predominant shapes were fibers (55.6%) and fragments (25.9%), with colors primarily transparent (48.19%) and black (30.12%). Our results indicate significant contamination levels in freshwater fish, emphasizing the need for further research and effective mitigation strategies. These findings provide crucial baseline data on microplastics in Malaysian freshwater ecosystems. Environ Toxicol Chem 2024;43:2189-2198. © 2024 SETAC.
Collapse
Affiliation(s)
| | - Mohd Saiful Samsudin
- Environmental Technology Division, School of Industrial Technology, University Sains Malaysia, Penang, Malaysia
| | - Azman Azid
- Faculty of Bioresources and Food Industry, University Sultan Zainal Abidin, Besut Campus, Besut, Terengganu, Malaysia
| | - Mohd Nurazzi Norizan
- Bioresource Technology Division, School of Industrial Technology, University Sains Malaysia, Penang, Malaysia
| | - Aidee Putera Kamal Suradee
- Environmental Technology Division, School of Industrial Technology, University Sains Malaysia, Penang, Malaysia
| | | |
Collapse
|
29
|
Jiang H, Cheng H, Wu S, Li H, Chen H, Li Z, Yao X, Zhang Y, Chen Y, Chen S, Chen S, Zheng L, Sui Y, Shao R. Microplastics footprint in nature reserves-a case study on the microplastics in the guano from Yancheng Wetland Rare Birds National Nature Reserve, China. ENVIRONMENTAL RESEARCH 2024; 256:119252. [PMID: 38815716 DOI: 10.1016/j.envres.2024.119252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/12/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Bio-ingestion of microplastics poses a global threat to ecosystems, yet studies within nature reserves, crucial habitats for birds, remain scarce despite the well-documented ingestion of microplastics by avian species. Located in Jiangsu Province, China, the Yancheng Wetland Rare Birds Nature Reserve is home to diverse bird species, including many rare ones. This study aimed to assess the abundance and characteristics of microplastics in common bird species within the reserve, investigate microplastic enrichment across different species, and establish links between birds' habitat types and microplastic ingestion. Microplastics were extracted from the feces of 110 birds, with 84 particles identified from 37.27% of samples. Among 8 species studied, the average microplastic abundance ranged from 0.97 ± 0.47 to 43.43 ± 61.98 items per gram of feces, or 1.5 ± 0.87 to 3.4 ± 1.50 items per individual. The Swan goose (Anser cygnoides) exhibited the highest microplastic abundance per gram of feces, while the black-billed gull (Larus saundersi) had the highest abundance per individual. The predominant form of ingested microplastics among birds in the reserve was fibers, with polyethylene being the most common polymer type. Significant variations in plastic exposure were observed among species and between aquatic and terrestrial birds. This study represents the first quantitative assessment of microplastic concentrations in birds within the reserve, filling a crucial gap in research and providing insights for assessing microplastic pollution and guiding bird conservation efforts in aquatic and terrestrial environments.
Collapse
Affiliation(s)
- Huimin Jiang
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Hai Cheng
- Yancheng National Nature Reserve for Rare Birds, Administrative Bureau, Yancheng, China
| | - Shiyue Wu
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Hongshan Li
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Hao Chen
- Yancheng National Nature Reserve for Rare Birds, Administrative Bureau, Yancheng, China
| | - Zhenghao Li
- Yancheng National Nature Reserve for Rare Birds, Administrative Bureau, Yancheng, China
| | - Xinyun Yao
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Yanan Zhang
- Yancheng National Nature Reserve for Rare Birds, Administrative Bureau, Yancheng, China
| | - Yaqin Chen
- Yancheng National Nature Reserve for Rare Birds, Administrative Bureau, Yancheng, China
| | - Shuyi Chen
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Shihao Chen
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Liang Zheng
- East China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Yanming Sui
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, China; Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany.
| | - Rong Shao
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, China.
| |
Collapse
|
30
|
Conger E, Dziobak M, McCabe EJB, Curtin T, Gaur A, Wells RS, Weinstein JE, Hart LB. An analysis of suspected microplastics in the muscle and gastrointestinal tissues of fish from Sarasota Bay, FL: exposure and implications for apex predators and seafood consumers. ENVIRONMENTS 2024; 11:185. [PMID: 39391169 PMCID: PMC11466323 DOI: 10.3390/environments11090185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Microplastics have been found in the gastrointestinal (GI) fluid of bottlenose dolphins (Tursiops truncatus), inhabiting Sarasota Bay, FL, suggesting exposure by ingestion, possibly via contaminated fish. To better understand the potential for trophic transfer, muscle and GI tissues from 11 species of dolphin prey fish collected from Sarasota Bay were screened for microplastics (particles <5 mm diameter). Suspected microplastics were found in 82% of muscle samples (n=89), and 97% of GI samples (n=86). Particle abundance and shapes varied by species (p<0.05) and foraging habit (omnivore vs. carnivore, p<0.05). Pinfish (Lagodon rhomboides) had the highest particle abundance for both tissue types (muscle: 0.38 particles/g; GI: 15.20 particles/g), which has implications for dolphins as they are a common prey item. Findings from this study support research demonstrating the ubiquity of estuarine plastic contamination and underscore the risks of ingestion exposure for wildlife and potentially seafood consumers.
Collapse
Affiliation(s)
- Eric Conger
- Department of Biology, School of Sciences, Mathematics, and Engineering, College of Charleston, Charleston, SC, USA
| | - Miranda Dziobak
- Department of Health and Human Performance, School of Health Sciences, College of Charleston, Charleston, SC, USA
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Elizabeth J Berens McCabe
- Sarasota Dolphin Research Program, Brookfield Zoo Chicago, c/o Mote Marine Laboratory, Sarasota, FL, USA
| | - Tita Curtin
- Department of Health and Human Performance, School of Health Sciences, College of Charleston, Charleston, SC, USA
| | - Ayushi Gaur
- Department of Biology, School of Sciences, Mathematics, and Engineering, College of Charleston, Charleston, SC, USA
| | - Randall S Wells
- Sarasota Dolphin Research Program, Brookfield Zoo Chicago, c/o Mote Marine Laboratory, Sarasota, FL, USA
| | | | - Leslie B Hart
- Department of Health and Human Performance, School of Health Sciences, College of Charleston, Charleston, SC, USA
| |
Collapse
|
31
|
Sawangproh W. Microplastic contamination of bryophytes: A review on mechanisms and impacts. Heliyon 2024; 10:e36360. [PMID: 39253117 PMCID: PMC11381745 DOI: 10.1016/j.heliyon.2024.e36360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
This systematic review investigates the interactions of microplastics (MPs) and nanoplastics (NPs) with bryophytes, incorporating findings from 11 articles identified through a comprehensive database search using a combination of keywords. The review explores mechanisms such as adsorption and internalization by which MPs and NPs are present in bryophytes and examines the ecological ramifications, including changes in bryophyte community structure and impacts on ecosystem functions such as nutrient cycling, soil formation, habitat provision, water balance, and erosion control. Despite providing valuable insights, this review highlights several critical knowledge gaps that warrant further investigation. Future research should address the following areas: the long-term effects of MPs and NPs on bryophyte health and survival, the mechanisms of MP and NP uptake and translocation within bryophytes, and the broader ecological consequences of plastic pollution on bryophyte-dominated ecosystems. Additionally, studies should explore the effectiveness of various mitigation and management strategies, including advanced waste management techniques and innovative technologies, in reducing plastic pollution and protecting these vital ecosystems.
Collapse
Affiliation(s)
- Weerachon Sawangproh
- Conservation Biology Program, School of Interdisciplinary Studies, Mahidol University Kanchanaburi Campus, 199 Moo 9, Lumsum Sub-District, Saiyok District, Kanchanaburi Province 71150, Thailand
| |
Collapse
|
32
|
Yang H, Zhao H, Mao H, Pu Y, Peng Q, Xu Z, Zhang X, Huang F, Li Z. Lower concentration polyethylene microplastics can influence free-floating macrophyte interactions by combined effects of many weak interactions: A nonnegligible ecological impact. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107028. [PMID: 39047441 DOI: 10.1016/j.aquatox.2024.107028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Microplastics (MPs) are ubiquitous in freshwater ecosystems and their accumulation has been considered an emerging threat. Early research on the effects of MPs on macrophytes primarily focused on the toxicological impacts on individual macrophytes, with several studies suggesting that lower concentrations of MPs have little impact on macrophytes. However, the ecological implications of lower MP concentrations on macrophyte communities remain largely unexplored. Here, we experimented to assess the effects of lower concentrations including 25 mg/L, 50 mg/L, 75 mg/L, and 100 mg/L of polyethylene (PE) microplastics on Spirodela polyrhiza and Lemna minor, and their community. Our results also indicated that PE concentrations below 100 mg/L had no significant effect on relative growth rate, specific leaf area, Chlorophyll a, Chlorophyll b, Chlorophyll a + b, carotenoid, malondialdehyde (MDA), catalase, and soluble sugar of monocultural S. polyrhiza. However, a lower concentration of PE significantly decreased the MDA of monocultural L. minor and significantly affected the comprehensive index of S. polyrhiza. These findings suggested that lower concentrations of PE can influence interactions between macrophytes maybe due to the cumulative effects of many weak interactions. Additionally, our study showed that 75 mg/L and 100 mg/L PE additions decreased the competitive balance index value of two macrophytes under mixed-culture condition. This result implied that the ecological influence of lower concentration MPs on macrophytes may manifest at the community level rather than at the population level, due to species-specific responses and varying degrees of sensitivity of macrophytes to PE concentrations. Thus, our study emphasizes the need to closely monitor the ecological consequences of emerging contaminants such as MPs accumulation on macrophyte communities, rather than focusing solely on the morphology and physiology of individual macrophytes.
Collapse
Affiliation(s)
- Hui Yang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, PR China
| | - Hongbo Zhao
- The Forestry Prospect & Design Institute of Hubei Province, Wuhan, 430223, PR China
| | - Hongzhi Mao
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, PR China
| | - Yunhai Pu
- Wildlife Conservation Chief Station of Hubei Province, Wuhan, PR China
| | - Qiutong Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, PR China
| | - Zhiyan Xu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, PR China
| | - Xu Zhang
- Hubei Provincial Academy of Eco-environmental Science (Hubei Eco-environmental Engineering Assessment Center), Wuhan, 430079, PR China
| | - Feng Huang
- Hubei Provincial Academy of Eco-environmental Science (Hubei Eco-environmental Engineering Assessment Center), Wuhan, 430079, PR China
| | - Zhongqiang Li
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
33
|
Hajji AL, Lucas KN. Anthropogenic stressors and the marine environment: From sources and impacts to solutions and mitigation. MARINE POLLUTION BULLETIN 2024; 205:116557. [PMID: 38875966 DOI: 10.1016/j.marpolbul.2024.116557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/16/2024]
Abstract
Human-released contaminants are often poorly understood wholistically in marine ecosystems. This review examines the sources, pathways, impacts on marine animals, and mitigation strategies of five pollutants (plastics, per- and polyfluoroalkyl substances, bisphenol compounds, ethynylestradiol, and petroleum hydrocarbons). Both abiotic and biotic mechanisms contribute to all five contaminants' movement. These pollutants cause short- and long-term effects on many biological processes genetically, molecularly, neurologically, physiologically, reproductively, and developmentally. We explore the extension of adverse outcome pathways to ecosystem effects by considering known inter-generational and trophic relations resulting in large-scale direct and indirect impacts. In doing so, we develop an understanding of their roles as environmental stressors in marine environments for targeted mitigation and future work. Ecosystems are interconnected and so international collaboration, standards, measures preceding mass production, and citizen involvement are required to protect and conserve marine life.
Collapse
Affiliation(s)
- Angelina L Hajji
- Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada.
| | - Kelsey N Lucas
- Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
34
|
Lan D, He H, Song X, Ma Y. Effects of food quantity on the ingestion and egestion of MPs with different colors by Daphnia magna. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106976. [PMID: 38820742 DOI: 10.1016/j.aquatox.2024.106976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
Aquatic organism uptake and accumulate microplastics (MPs) through various pathways, with ingestion alongside food being one of the primary routes. However, the impact of food concentration on the accumulation of different types of MPs, particularly across various colors, remains largely unexplored. To address this gap, we selected Daphnia magna as a model organism to study the ingestion/egestion kinetics and the preference for different MP colors under varying concentrations of Chlorella vulgaris. Our findings revealed that as the concentration of Chlorella increased, the ingestion of MPs by D. magna initially increased and then showed a decline. During the egestion phase within clean medium without further food supply, an increase in food concentration during the ingestion phase led to a slower rate of MP discharge; while when food was present during the egestion phase, the discharge rate accelerated for all treatments, indicating the importance of food ingestion/digestion process on the MPs bioaccumulation. Furthermore, in the presence of phytoplankton, D. magna demonstrated a preference for ingesting green-colored MPs, especially at low and medium level Chlorella supply, possibly due to the enhanced food searching activities. Beyond gut passage, we also examined the attachment of MPs to the organism's body surface, finding that the number of adhered MPs increased with increasing food concentration, likely due to the intensified filtering current during food ingestion. In summary, this study demonstrated that under aquatic environment with increasing phytoplankton concentrations, the ingestion and egestion rates, color preferences, as well as surface adherence of MPs to filter feeding zooplanktons will be significantly influenced, which may further pose ecological risks. Our results offer novel insights into the unintentional accumulation of MPs by zooplankton, highlighting the complex interactions between food availability and MPs accumulation dynamics.
Collapse
Affiliation(s)
- Danhua Lan
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Hua He
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Xueyi Song
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Yini Ma
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
35
|
Devi SS, Saifudeen N, Kumar KS, Kumar AB. Does the microplastics ingestion patterns and polymer composition vary across the oceanic zones? A case study from the Indian coast. MARINE POLLUTION BULLETIN 2024; 204:116532. [PMID: 38824708 DOI: 10.1016/j.marpolbul.2024.116532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
This study explores microplastic (MP) presence in the gastrointestinal tracts of deep-sea fish from the Central Indian Ocean, off the Indian coast. Among the 27 species examined, 19 showed MP contamination, averaging 2.68 ± 0.30 (±SE) MPs per individual. Polymer analysis via FTIR and micro-Raman identified several types, including polyethylene terephthalate (PET), polyvinyl alcohol (PVA), polypropelene (PP), polyvinyl acetate (PVC), polyurethane (PU), polytetrafluoroethylene (PTFE), polyaniline (PANI), polymethyl methacrylate (PMMA), and polyethersulfone (PES), with PET being the most prevalent (33.33 %). MP ingestion was higher in benthopelagic fish and those at higher trophic levels, as indicated by comparisons across oceanic zones. Niche partitioning analysis suggests feeding behaviour as a primary influencer of MP ingestion in deep-sea fish rather than habitat or trophic level. The study proposes the potential use of deep-sea fish as indicators for assessing microplastic pollution across oceanic zones and deep-sea regions through bycatch monitoring.
Collapse
Affiliation(s)
- Suvarna S Devi
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram 69551, Kerala, India
| | - Nasila Saifudeen
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram 69551, Kerala, India
| | | | - Appukuttannair Biju Kumar
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram 69551, Kerala, India.
| |
Collapse
|
36
|
Li K, Wang F, Liu S, Cheng X, Xu J, Liu X, Zhang L. Response and adaptation mechanisms of Apostichopus japonicus to single and combined anthropogenic stresses of polystyrene microplastics or cadmium. MARINE POLLUTION BULLETIN 2024; 204:116519. [PMID: 38850758 DOI: 10.1016/j.marpolbul.2024.116519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/10/2024]
Abstract
Microplastics (MPs) have become pervasive in marine ecosystems, exerting detrimental effects on marine life. The concurrent presence and interaction of MPs and heavy metals in aquatic environments could engender more insidious toxicological impacts. This study aimed to elucidate the potential impacts and underlying mechanisms of polystyrene microplastics (PS-MPs), cadmium (Cd), and their combined stress (MPs-Cd) on sea cucumbers (Apostichopus japonicus). It focused on the growth, Cd bioaccumulation, oxidative stress responses, immunoenzymatic activities, and metabolic profiles, specifically considering PS-MPs sizes preferentially ingested by these organisms. The high-dose MPs (MH) treatment group exhibited an increase in cadmium bioavailability within the sea cucumbers. Exposure to PS-MPs or Cd triggered the activation of antioxidant defenses and immune responses. PS-MPs and Cd exhibited a synergistic effect on lysozyme (LZM) activity. A total of 149, 316, 211, 197, 215, 619, 434, and 602 differentially expressed metabolites were identified, distinguishing the low-dose MPs (ML), high-dose MPs (MH), low-dose Cd (LCd), low-dose MPs and low-dose Cd (MLLCd), high-dose MPs and low-dose Cd (MHLCd), high-dose Cd (HCd), low-dose MPs and high-dose Cd (MLHCd), high-dose MPs and high-dose Cd (MHHCd) groups, respectively. Metabolomic analyses revealed disruptions in lipid metabolism, nervous system function, signal transduction, and transport and catabolism pathways following exposure to PS-MPs, Cd, and MPs-Cd. Correlation analyses among key differentially expressed metabolites (DEMs) underscored the interregulation among these metabolic pathways. These results offer new perspectives on the distinct and synergistic toxicological impacts of microplastics and cadmium on aquatic species, highlighting the complex interplay between environmental contaminants and their effects on marine life.
Collapse
Affiliation(s)
- Kehan Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shuai Liu
- Binzhou Ocean Development Research Institute, Binzhou 256600, China
| | - Xiaochen Cheng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jialei Xu
- Zhongke Tonghe (Shandong) Ocean Technology Co., Ltd., Dongying 257200, China
| | - Xiao Liu
- Zhongke Tonghe (Shandong) Ocean Technology Co., Ltd., Dongying 257200, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
37
|
Parolini M, Romano A. Geographical and ecological factors affect microplastic body burden in marine fish at global scale. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124121. [PMID: 38723708 DOI: 10.1016/j.envpol.2024.124121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Microplastic (MP) contamination has been identified as a worrisome environmental issue at the global level. Fish are the taxonomic group more extensively investigated to assess MP contamination in marine environment. A large variability in MP bioaccumulation (i.e., body burden) was reported in fish but to date there is a dearth of information concerning the drivers underlying this process. The present systematic review aimed at summarizing the results of the scientific literature on MP body burden in the digestive tract of marine fish to quantitatively shed light on the contribution of different geographical (i.e., latitudinal origin of the sample, distance from the coastline and field- or marked-collected) and ecological (i.e., trophic strategy, milieu, and body size) factors driving bioaccumulation. The mean (±SE) MPs/individual was 4.13 ± 2.87, and the mean MPs/ww (i.e., MPs/g) was 5.92 ± 0.94. Overall, MP abundance expressed as MPs/individual of fish from tropical areas was significantly higher compared to the other latitudinal bands, with species sampled close to the coastline that accumulated a larger number of MPs compared to those collected offshore. Neither the trophic strategy, nor the milieu and the market or field origin of fish explained the MP body burden. However, fish body size resulted as a determinant of MP body burden (as MPs/individual), with small fish accumulating a lower amount of MPs compared to larger ones. Qualitatively, but not statistically significant, similar results were generally obtained for MPs/ww, except for an opposite, and significant, variation according to species body size. Our findings showed that geographical, rather than ecological factors represent the main drivers of MP body burden in marine fish, suggesting that environmental variables and/or local pollution sources mainly contribute to explaining the large variability underlying the ingestion and bioaccumulation processes of these contaminants.
Collapse
Affiliation(s)
- Marco Parolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133, Milan, Italy.
| | - Andrea Romano
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133, Milan, Italy
| |
Collapse
|
38
|
Zheng Y, Huang S, Fan H, Liu H, Xu J, Craig NJ, Li JY, He W, Su L. Microplastics in different tissues of historical and live samples of endangered mega-fish (Acipenser sinensis) and their potential relevance to exposure pathways. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106943. [PMID: 38733942 DOI: 10.1016/j.aquatox.2024.106943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
The Chinese sturgeon (Acipenser sinensis) is an endangered freshwater mega-fish (IUCN-red listed) that survives in the Yangtze River Basin, but the population of which has declined significantly in response to environmental pressures generated by human activities. In order to evaluate the interaction between Chinese sturgeon and microplastics (MPs) for the first time, we examined the gut and gills of historical samples (n = 27), in conjunction with the blood and mucus of live samples (n = 10), to explore the potential pathways involved in MP uptake. We detected MPs in 62.9 % of the field fish, with no significant difference between guts (mean=0.9 items/individual) and gills (mean=0.8 items/individual). The abundance of MPs in fish from 2017 was significantly higher than that from 2015 to 2016 with regards to both gills and gut samples. The size of MPs in gills was significantly smaller than those in guts, yet both contained mostly fibers (90.2 %). No MPs were confirmed in blood, however 62.5 % of mucus samples contained MPs. The MPs in mucus indicated the possibility of MPs entering Chinese sturgeons if their skins were damaged. The body size of Chinese sturgeons affected their MPs uptake by ingestion and inhalation, as less MPs were detected in the gut and gills of smaller individuals. Combining the evidence from historical and live samples, we revealed the presence of MPs in different tissues of Chinese sturgeon and their potential relevance to exposure pathways. Our work expands the understanding of multiple exposure pathways between MPs and long-lived mega-fish, while emphasizing the potential risks of long-term exposure in the field.
Collapse
Affiliation(s)
- Yueping Zheng
- Shanghai Aquatic Wildlife Conservation and Research Center, Shanghai 200003, China
| | - Sirui Huang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Houyong Fan
- Shanghai Aquatic Wildlife Conservation and Research Center, Shanghai 200003, China
| | - Hanqi Liu
- East China Sea Ecological Center, MNR (Ministry of Natural Resources), Shanghai 201206, China
| | - Jianan Xu
- Shanghai Aquatic Wildlife Conservation and Research Center, Shanghai 200003, China
| | - Nicholas J Craig
- School of Biosciences, the University of Melbourne, Parkville, Victoria 3010, Australia
| | - Juan-Ying Li
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai 201702, China
| | - Wenhui He
- Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai 201702, China
| | - Lei Su
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai 201702, China.
| |
Collapse
|
39
|
Li H, Liu H, Bi L, Liu Y, Jin L, Peng R. Immunotoxicity of microplastics in fish. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109619. [PMID: 38735599 DOI: 10.1016/j.fsi.2024.109619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/17/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Plastic waste degrades slowly in aquatic environments, transforming into microplastics (MPs) and nanoplastics (NPs), which are subsequently ingested by fish and other aquatic organisms, causing both physical blockages and chemical toxicity. The fish immune system serves as a crucial defense against viruses and pollutants present in water. It is imperative to comprehend the detrimental effects of MPs on the fish immune system and conduct further research on immunological assessments. In this paper, the immune response and immunotoxicity of MPs and its combination with environmental pollutants on fish were reviewed. MPs not only inflict physical harm on the natural defense barriers like fish gills and vital immune organs such as the liver and intestinal tract but also penetrate cells, disrupting intracellular signaling pathways, altering the levels of immune cytokines and gene expression, perturbing immune homeostasis, and ultimately compromising specific immunity. Initially, fish exposed to MPs recruit a significant number of macrophages and T cells while activating lysosomes. Over time, this exposure leads to apoptosis of immune cells, a decline in lysosomal degradation capacity, lysosomal activity, and complement levels. MPs possess a small specific surface area and can efficiently bind with heavy metals, organic pollutants, and viruses, enhancing immune responses. Hence, there is a need for comprehensive studies on the shape, size, additives released from MPs, along with their immunotoxic effects and mechanisms in conjunction with other pollutants and viruses. These studies aim to solidify existing knowledge and delineate future research directions concerning the immunotoxicity of MPs on fish, which has implications for human health.
Collapse
Affiliation(s)
- Huiqi Li
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Huanpeng Liu
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Liuliu Bi
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinai Liu
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Renyi Peng
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
40
|
Li Y, Neema P, Andrews S. Adsorption Behavior and Mechanisms of Trihalomethanes onto Virgin and Weathered Polyvinyl Chloride Microplastics. TOXICS 2024; 12:450. [PMID: 39058102 PMCID: PMC11281136 DOI: 10.3390/toxics12070450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024]
Abstract
Microplastics that adsorb various toxic contaminants in water may be transported into cells and organs, possibly posing toxicological risks in the aquatic environment. Disinfection byproducts (DBPs), which are ubiquitous in chlorinated drinking water and wastewater, may have some potential to sorb onto microplastics (MPs) through hydrophobic or electrostatic interactions. However, DBP adsorption on microplastics has not yet been closely examined. This work investigated the adsorption behavior of trihalomethanes (THMs)-a regulated and ubiquitous DBP class in chlorinated water-onto virgin and weathered polyvinyl chloride (PVC) microplastics, the most widely used plastic material in drinking water distribution and sewer systems. A comparative analysis of kinetic and isotherm test results indicated that the adsorption mechanisms mainly involved hydrophobic interactions from a combination of weak and strong physisorption behavior and possibly chemisorption. The adsorption coefficients from all the models examined suggested that the adsorption of THMs, and perhaps chemically similar DBPs, onto virgin PVC microplastics can be 10-20 µg g-1. However, the weathered PVC microplastics contained more polar functional groups, which led to a decreased hydrophobicity and reduced THM adsorption capacity by approximately 10%. These findings offer novel insights into the possible adsorption characteristics of disinfection byproducts (DBPs) onto microplastics and will assist in targeting more toxic DBPs for future investigations.
Collapse
Affiliation(s)
- Yi Li
- Department of Civil & Mineral Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada; (P.N.); (S.A.)
| | | | | |
Collapse
|
41
|
Su Y, Yang C, Wang S, Li H, Wu Y, Xing B, Ji R. Mechanochemical Formation of Poly(melamine-formaldehyde) Microplastic Fibers During Abrasion of Cleaning Sponges. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10764-10775. [PMID: 38843113 DOI: 10.1021/acs.est.4c00846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
The abrasion of synthetic textile fibers is a significant factor in the generation of environmental microplastic fibers (MPFs). The extent to which polymer sponges designed specifically for surface cleaning have a tendency to release MPFs during normal use remains unknown. Here, the tribological behaviors of melamine cleaning sponges (also known as "magic erasers") with different strut densities against metal surfaces of different roughness were investigated using a reciprocating abrader. The MPFs formed by sponge wear under various conditions were characterized in terms of their morphology, composition, and quantity. They were mainly composed of poly(melamine-formaldehyde) polymer with linear or branched fiber morphologies (10-405 μm in length), which were formed through deformation and fracture of the struts within open cells of the sponges, facilitated by friction-induced polymer decomposition. The rate and capability of MPF production generally increased with increasing roughness of the metal surface and density of the struts, respectively. The sponge wear could release 6.5 million MPFs/g, which could suggest a global overall emission of 4.9 trillion MPFs due to sponge consumption. Our study reveals a hitherto unrecognized source of the environmental MPF contamination and highlights the need to evaluate exposure risks associated with these new forms of MPFs.
Collapse
Affiliation(s)
- Yu Su
- School of Energy and Environment, Southeast University, Nanjing 211189, China
| | - Chenqi Yang
- School of Energy and Environment, Southeast University, Nanjing 211189, China
| | - Songfeng Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Huimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yiyu Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
42
|
Shahriar SIM, Islam N, Emon FJ, Ashaf-Ud-Doulah M, Khan S, Shahjahan M. Size dependent ingestion and effects of microplastics on survivability, hematology and intestinal histopathology of juvenile striped catfish (Pangasianodon hypophthalmus). CHEMOSPHERE 2024; 356:141827. [PMID: 38583529 DOI: 10.1016/j.chemosphere.2024.141827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/07/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Microplastic pollution is drastically increasing in aquatic ecosystems and it is assumed that different sizes of microplastics have diverse impacts on the physiology of aquatic organisms. Therefore, this study was intended to examine the ingestion and size specific effects of polyamide microplastic (PA-MP) on different physiological aspects such as growth, feed utilization, survivability, blood parameters and intestinal histopathology of juvenile striped catfish (Pangasianodon hypophthalmus). In a 28-day exposure, the fish were fed with different sized PA-MP with a concentration of 500 mg per kg of feed in order to simulate highly microplastic contaminated environment. Three different treatments were set for this experiment i.e. T1, 25-50 μm (smaller microplastic); T2, 300 μm-2 mm (larger microplastic); T3, (mixed) including a control (C); each had three replicates. The highest ingestion was recorded in the gastrointestinal tract (GIT) of fish exposed to smaller PA-MP treatments (T1 followed by T3). The results also showed compromised weight gain (WG; g), specific growth rate (SGR; %/day) and feed conversion ratio (FCR) with the exposure of PA-MP. Besides, survivability significantly reduced among treatments with the ingestion of smaller sized microplastic and found lowest in T1 (65.0 ± 5.0). In addition, the presence of PA-MP in feed negatively affected the concentration of hemoglobin and blood glucose. Similarly, smaller PA-MP caused most erythrocytic cellular and nuclear abnormalities; found highest in T1 that significantly different from other treatments (p < 0.05). Various histopathological deformities were observed in fish fed with PA-MP incorporated feed. The principal component analysis (PCA) showed that the toxicity and stress imparted by smaller PA-MP affected the survivability and blood parameters where larger PA-MP caused mild to severe abnormalities. Based on eigenvector values, the major abnormalities in intestine included occurrence of epithelium columnar degeneration (ECD: 0.402; PC1), hyperplasia of internal mucosa (HISM: 0.411; PC1), beheading of villi (BV: 0.323; PC1), atrophy of mucosa (AM: 0.322; PC1), tiny vacuoles in apical villi (TV: 0.438. PC2), crypt degeneration (CD: 0.375: PC2) and atrophy of goblet cell (AGC: 0.375; PC2). Therefore, it has been speculated that the size based PA-MP ingestion in the GIT interfered with the digestion and absorption as well as caused deformities that reflected negatively in survivability and hemato-biochemical parameters of juvenile striped catfish.
Collapse
Affiliation(s)
- Sheik Istiak Md Shahriar
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Naimul Islam
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Farhan Jamil Emon
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | | | - Saleha Khan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| |
Collapse
|
43
|
Bothma F, Uren RC, Iordachescu L, van der Lingen CD, Bouwman H. Microplastics in the Indian and South Atlantic oceans translocate to gills, digestive glands, and muscle of the chokka squid Loligo reynaudii. MARINE POLLUTION BULLETIN 2024; 202:116371. [PMID: 38657492 DOI: 10.1016/j.marpolbul.2024.116371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
Comparative microplastic (MP) data for cephalopods between oceans is scarce. Our aim was to quantify, characterise, and compare MPs in gills, digestive gland, and mantle of chokka squid from the South Atlantic Ocean (SAO) and Indian Ocean (IO) off the coast of South Africa. South African squid had more MPs compared with other studies (means = 2.0 and 0.4 in SAO and IO squid mantle, respectively). Blue fibres were dominant. Identifiable MPs were polyethylene. Despite IO water having higher MP concentrations than the SAO, SAO squid had higher MP concentrations. Dilution by growth is the likely reason for the lower MP concentrations. Fibres were shorter in SAO than IO squid. However, we could not explain why fibre and mantle lengths from both oceans were positively correlated. Squid may not be the best indicator of marine MPs. The characteristics of MPs in squid can be used to track stocks and migrations.
Collapse
Affiliation(s)
- Francois Bothma
- Research Unit: Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
| | - Ryan Christian Uren
- Research Unit: Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Lucian Iordachescu
- Department of the Built Environment, Division of Civil and Environmental Engineering, Aalborg University, Aalborg, Denmark
| | - Carl D van der Lingen
- Formerly, Branch: Fisheries Management, Department of Forestry, Fisheries and the Environment, Cape Town, South Africa; Department of Biodiversity and Conservation Biology, University of the Western Cape Town, Cape Town, South Africa
| | - Hindrik Bouwman
- Research Unit: Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
44
|
Gayathri V, Pavithra R, Thangal SH, Ganapathy S, Gurusaravanan P, Santhanam P, Radhakrishnan S, Muralisankar T. Incidence of microplastics in Indian anchovy Stolephorus indicus from Tuticorin, Southeast coast of India. MARINE POLLUTION BULLETIN 2024; 202:116406. [PMID: 38677108 DOI: 10.1016/j.marpolbul.2024.116406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
In the present study, the occurrence of microplastics (MPs) in the gut, gill, and muscle of edible fish Stolephorus indicus sampled from Tuticorin coastal regions of Tamilnadu, India was investigated. We recorded a total of 689 MPs which includes 510 and 179 MPs from males and females respectively. The total abundance of MPs was significantly (P < 0.05) higher in the gut followed by gills and muscle. The sex-wise distribution of average MPs showed high in the females' gut and compared to that in males. Further, the length wise distribution of MPs was higher in the muscle in both male and female fish, followed by other organs. The predominance of MPs in tissues were transparent and blue colour with fibers and fragments in both males and females. Besides, polyethylene terephthalate and nylon were evidenced by the Fourier-transform infrared spectroscopy spectrum in all organs of fishes.
Collapse
Affiliation(s)
- Velusamy Gayathri
- Department of Zoology, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Raj Pavithra
- Department of Zoology, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Said Hamid Thangal
- Department of Zoology, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Selvam Ganapathy
- Department of Zoology, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | | | - Perumal Santhanam
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, -620024, Tamilnadu, India
| | - Subramanian Radhakrishnan
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | | |
Collapse
|
45
|
He C, Lin X, Li P, Hou J, Yang M, Sun Z, Zhang S, Yang K, Lin D. Nematode Uptake Preference toward Different Nanoplastics through Avoidance Behavior Regulation. ACS NANO 2024; 18:11323-11334. [PMID: 38635335 DOI: 10.1021/acsnano.4c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Expounding bioaccumulation pathways of nanoplastics in organisms is a prerequisite for assessing their ecological risks in the context of global plastic pollution. Invertebrate uptake preference toward nanoplastics is a key initial step of nanoplastic food chain transport that controls their global biosafety, while the biological regulatory mechanism remains unclear. Here, we reveal a preferential uptake mechanism involving active avoidance of nanoplastics by Caenorhabditis elegans and demonstrate the relationship between the uptake preference and nanoplastic characteristics. Nanoplastics with 100 nm in size or positive surface charges induce stronger avoidance due to higher toxicity, causing lower accumulation in nematodes, compared to the 500 nm-sized or negatively charged nanoplastics, respectively. Further evidence showed that nematodes did not actively ingest any types of nanoplastics, while different nanoplastics induced defense responses in a toxicity-dependent manner and distinctly stimulated the avoidance behavior of nematodes (ranged from 15.8 to 68.7%). Transcriptomics and validations using mutants confirmed that the insulin/IGF signaling (IIS) pathway is essential for the selective avoidance of nanoplastics. Specifically, the activation of DAF-16 promoted the IIS pathway-mediated defense against nanoplastics and stimulated the avoidance behavior, increasing the survival chances of nematodes. Considering the genetical universality of this defense response among invertebrates, such an uptake preference toward certain nanoplastics could lead to cascaded risks in the ecosystem.
Collapse
Affiliation(s)
- Caijiao He
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Xintong Lin
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong China
| | - Pei Li
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Hou
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Meirui Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Ziyi Sun
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Shuang Zhang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Kun Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Ecological Civilization Academy, Anji 313300, China
| |
Collapse
|
46
|
Zhang L, Zhang J, Ma H, Wei Z, Liu G, Zhang H, Liu Y. Removal of Nanoplastics from Copollutant Systems Using Seaweed Cellulose Nanofibers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38605444 DOI: 10.1021/acs.jafc.4c00832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Nanoplastic pollution poses a significant global concern for public health due to the potential toxicity it induces in the human body through food and water intake. Consequently, the urgent task of removing nanoplastics, especially from water resources, is paramount for enhancing food safety, and developing eco-friendly materials capable of efficiently removing nanoplastics is crucial. In this context, we propose the use of biodegradable anionic seaweed cellulose nanofibers (TEMPO-mediated seaweed cellulose nanofibers, TCNFs) and cationic seaweed cellulose nanofibers (quaternized seaweed cellulose nanofibers, QCNFs) for nanoplastic removal in both single- and copollutant systems. In our experiments under simulated practical conditions, we revealed that TCNFs and QCNFs achieved an average removal efficiency of 98.71% against nanoplastic particles. Moreover, TCNFs and QCNFs exhibited higher adsorption capacities compared to those of existing materials, potentially offering a cost-effective advantage. Toxicity assessments conducted with mammalian cells further confirmed the biosafety of TCNFs and QCNFs. This study contributes to the scientific and theoretical understanding of using edible seaweed as well as offers promising solutions for food safety control in an efficient, cost-effective, and eco-friendly manner.
Collapse
Affiliation(s)
- Lan Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Jing Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Haorui Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Zhiliang Wei
- Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2105, United States
| | - Guanxu Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Haoyang Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- Department of Agrotechnology & Food Sciences, Wageningen University and Research, Wageningen 6708 PB, Netherlands
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
47
|
Maurya AC, Bhattacharya A, Vij V, Khare SK. Deciphering the seasonal dynamics of microplastic morphotypes and associated co-contaminants along the northwest coast of India. CHEMOSPHERE 2024; 354:141690. [PMID: 38484988 DOI: 10.1016/j.chemosphere.2024.141690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
In the present study, the northwest coast of India, bordering the Arabian Sea, was selected to evaluate the microplastic (MP) abundance. This is the first study to emphasize the effects of different seasons on MP distribution. The collected MPs were dried, segregated, and evaluated based on their morphotype, size, color, and polymer type. A total of 1756.6, 7326.6, and 202 particles/kg of sand were estimated in the pre-monsoon, monsoon and post-monsoon seasons, respectively, with a dominance of polypropylene (PP) type of plastic in the pre-monsoon and high-density polyethylene (HDPE) in monsoon and post-monsoon seasons. HDPE and PP collected MPs during the monsoon season were further characterized for associated contaminants. Metal absorbance was detected using SEM-EDX mapping and ICP-MS. The presence of organic compounds (OCs) was analyzed using GC-MS. MPs exhibit distinct associations with metals, among which the HDPE pellet morphotype exhibits a higher range of metal adsorption. Total 61 different OCs were associated with MPs. The HDPE pellets contained the highest amounts of hydrophobic organic compounds. PP pellets were found to contain triglycerides, fatty aldehydes, and alkaloids, along with HOCs. Among morphotypes, pellet forms of MPs were found to adsorb more contaminants. These co-contaminants infiltrate the study area through sewage runoff and shoreline debris deposition, subsequently interacting with MPs. Furthermore, the MP diversity was studied by employing the MP diversity integrated index, which suggests that most of the MP diversity was observed in the pre-monsoon period. The pollution load index employed an MP risk assessment, which presented a low degree of MP contamination. In contrast, the polymer hazard index was calculated as 21650.3 in post-monsoon, placing the area under the extreme danger category. It is evident from the data that the types of MP is more important than their number. Thus, MP morphotypes have importance in the adsorption of co-contaminants.
Collapse
Affiliation(s)
- Ankita C Maurya
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi-11016, India
| | - Amrik Bhattacharya
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi-11016, India
| | - Varun Vij
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi-11016, India
| | - Sunil K Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi-11016, India.
| |
Collapse
|
48
|
Curi LM, Barrios CE, Attademo AM, Caramello C, Peltzer PM, Lajmanovich RC, Sánchez S, Hernández DR. A realistic combined exposure scenario: effect of microplastics and atrazine on Piaractus mesopotamicus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29794-29810. [PMID: 38592632 DOI: 10.1007/s11356-024-33177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
Microplastics, considered emerging environmental contaminants resulting from plastic degradation, are discovered in diverse aquatic ecosystems and can be unintentionally ingested by fish. Therefore, it is essential to characterize their interaction with other contaminants, such as agrochemicals, in aquatic environments. This study aimed to assess histological, enzymatic, and genotoxic biomarkers in juvenile pacú (Piaractus mesopotamicus) exposed to polyethylene (PE) microplastic particles and the herbicide atrazine, individually or combined, for 15 days. Four treatments were used: a negative control (CON), PE in the fish diet (0.1% w/w, FPE), atrazine through water (100 μg L-1, ATZ), and the mixture (ATZ+FPE). Results confirmed histological alterations in gills (edema and lamellar fusion) and liver (necrotic areas and congestion) of fish exposed to ATZ and ATZ+FPE. The number of goblet cells increased in the posterior intestine of fish under ATZ+FPE compared to CON and FPE. Enzyme activities (CAT, GST, AChE, and BChE) significantly increased in ATZ+FPE compared to CON. However, no genotoxic effect was demonstrated. These findings provide insights into the complex impacts of simultaneous exposure to atrazine and microplastics, emphasizing the need for continued research to guide effective environmental management strategies against these contaminants that represent a risk to aquatic organisms.
Collapse
Affiliation(s)
- Lucila Marilén Curi
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.
- Instituto de Materiales de Misiones (IMAM). Facultad de Ciencias Exactas, Químicas y Naturales (FCEQyN), Universidad Nacional de Misiones (UNAM-CONICET), Félix de Azara, 1552, Posadas, Argentina.
| | - Carlos Eduardo Barrios
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Ictiología del Nordeste (INICNE). Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral, 2139, Corrientes, Argentina
| | - Andrés Maximiliano Attademo
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB -UNL-CONICET), Ciudad Universitaria, Paraje "El Pozo", RNN 168, Km, 472, Santa Fe, Argentina
| | - Cynthia Caramello
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Materiales de Misiones (IMAM). Facultad de Ciencias Exactas, Químicas y Naturales (FCEQyN), Universidad Nacional de Misiones (UNAM-CONICET), Félix de Azara, 1552, Posadas, Argentina
| | - Paola Mariela Peltzer
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB -UNL-CONICET), Ciudad Universitaria, Paraje "El Pozo", RNN 168, Km, 472, Santa Fe, Argentina
| | - Rafael Carlos Lajmanovich
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB -UNL-CONICET), Ciudad Universitaria, Paraje "El Pozo", RNN 168, Km, 472, Santa Fe, Argentina
| | - Sebastián Sánchez
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Ictiología del Nordeste (INICNE). Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral, 2139, Corrientes, Argentina
| | - David Roque Hernández
- Instituto de Ictiología del Nordeste (INICNE). Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral, 2139, Corrientes, Argentina
| |
Collapse
|
49
|
Hasanah U, Amqam H, Septami ARE, Chalid M, Aris AZ. Plasticizing Pregnancy: Microplastics Identified in Expectant Mothers' Feces. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241235810. [PMID: 38476841 PMCID: PMC10929056 DOI: 10.1177/11786302241235810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024]
Abstract
Introduction Microplastics may be present in food and drinks from various sources, exposing pregnant women to these particles. Consumption of contaminated food can lead to the ingestion of microplastics by pregnant women, potentially causing adverse health effects on the fetus. This study aims to investigate the presence of microplastics in the stools of pregnant women. Methods The research was conducted in the Makassar City region of South Sulawesi, Indonesia. Thirty healthy pregnant women from 2 community health centers, Pattingalloang and Jumpandang Baru, participated in the study. Their stools were analyzed using Fourier Transform Infrared (FTIR) microspectroscopy to detect the presence of microplastics. Result The analysis revealed the presence of a total of 359 microplastics in the participants' stools, with particle counts ranging from 4 to 21 and sizes ranging from 0.2 to 4.9 mm per 25 g of stool. The polymers identified included Polyethylene Terephthalate (PET), Polyamide/Nylon, Polyethylene Chlorinated, HDPE, and Ethylene Propylene. The amount of microplastics varied significantly among groups with different levels of seafood consumption. Conclusion Indonesian pregnant women have been exposed to some microplastic polymers.
Collapse
Affiliation(s)
- Uswatun Hasanah
- Department of Enviromental Health, Faculty of Public Health, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| | - Hasnawati Amqam
- Department of Enviromental Health, Faculty of Public Health, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| | | | - Maisuri Chalid
- Department of Obstetric and Gynecology, Medical Faculty, Hasanuddin University, South Sulawesi, Indonesia
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Port Dickson, Negeri Sembilan, Malaysia
| |
Collapse
|
50
|
Lin W, Wu Z, Wang Y, Jiang R, Ouyang G. Size-dependent vector effect of microplastics on the bioaccumulation of polychlorinated biphenyls in tilapia: A tissue-specific study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170047. [PMID: 38218489 DOI: 10.1016/j.scitotenv.2024.170047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
Microplastics play a significant role in interactions between organisms and hydrophobic organic contaminants (HOCs), leading to a joint toxic effect on aquatic organisms. This study extensively investigated the tissue-specific accumulation of polychlorinated biphenyls (PCBs) resulting from different sized microplastics in tilapia (Oreochromis mossambicus) using a passive dosing device. Based on biological feeding behavior considerations, 1 mm and 2 μm polystyrene (PS) microplastics with concentrations of 2 and 5 mg L-1 were investigated. A physiologically based toxicokinetic (PBTK) model was applied to evaluate the exchange kinetics and fluxes among the tissues. Moreover, an in vitro simulation experiment was conducted to theoretically validate the vector effect. The findings demonstrated that the effects caused by HOCs and microplastics on organisms were influenced by multiple factors such as size and surface properties. The mass transfer kinetics of HOCs in specific tissues were closely related to their adsorption capacity and position microplastics could reach. Specifically, although 2 μm microplastics exhibited high adsorption capacity for PCBs, they were only retained in the intestines and did not significantly contribute to the bioaccumulation of PCBs in gills or muscle. While 1 mm microplastics were ingested but just paused in the mouth and subsequently flew through the gills with oral mucus. Their vector effects increased the desorption of microplastic-bound PCB-118 in the gill mucus microcosm, thereby facilitating the mass transfer and accumulation of PCB-118 in gills and muscle. This study sheds new light on how the size-dependent vector generated by microplastics affects the tissue-specific accumulation of HOCs in aquatic organisms.
Collapse
Affiliation(s)
- Wei Lin
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Zhongshu Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yili Wang
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Ruifen Jiang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| | - Gangfeng Ouyang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|