1
|
Ren H, Shen X. Multi-omics reveals the hepatic metabolic mechanism of neurological symptoms caused by selenium exposure in Przewalski's gazelle (Procapra przewalskii). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126341. [PMID: 40316242 DOI: 10.1016/j.envpol.2025.126341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/07/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
Neurological symptoms resulting from selenium(Se) exposure significantly impact the health and conservation of Przewalski's gazelle. In this study, we performed proteomic and metabolomic analyses of the liver in Przewalski's gazelle for the first time, aiming to reveal the hepatic metabolic mechanisms underlying the neurological symptoms caused by Se exposure. We identified 89 differentially expressed proteins and 30 metabolites with altered regulation. Using multi-omics integrated analysis, we identified a neurofunctional regulation network composed of three metabolic pathways, with (S)-3-amino-2-methylpropionate transaminase being the key enzyme in the regulatory network. Molecular docking revealed that the binding of selenocysteine to (S)-3-amino-2-methylpropionate transaminase may act as a key factor in activating this regulatory network. Consequently, these findings provide important insights into the molecular mechanisms of neurological symptoms caused by Se exposure and have significant implications for the conservation in Przewalski's gazelle.
Collapse
Affiliation(s)
- Hong Ren
- College of Life Science and Agri-forestry, Southwest University of Science and Technology, Mianyang, 621010, China; North Sichuan Medical College, Nanchong, 637100, China
| | - Xiaoyun Shen
- College of Life Science and Agri-forestry, Southwest University of Science and Technology, Mianyang, 621010, China; Rural Revitalization Project Center, Guizhou Department of Agriculture and Rural Affairs, Guiyang, 550000, China.
| |
Collapse
|
2
|
Chen J, Xu M, Li L, Lu Y, Luo Y, Cao J. Chronic fluoride induces neurotoxicity in zebrafish through the gut-brain axis. Comp Biochem Physiol C Toxicol Pharmacol 2025; 292:110157. [PMID: 40010531 DOI: 10.1016/j.cbpc.2025.110157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/07/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
Fluoride (F) is a common pollutant in aquatic environment. Chronic exposure to fluoride can cause toxicity to nervous system and behavior of fish. However, the underlying mechanism is still unclear. This study is designed to explore the effects and potential mechanisms of chronic fluoride exposure on zebrafish behavior. Zebrafish were exposed to CK, LF, MF, and HF for 90 days. The results showed that chronic fluoride exposure caused damage to the brain tissues of adult zebrafish and significantly reduced the total distance of free swimming per min. Fluoride significantly reduced dopamine content and dopamine pathway related gene expression in brain. In addition, fluoride disrupted the intestinal barrier function, reduced the expression of tight junction proteins and mucin related genes in intestinal tissues, increased intestinal permeability. Males in the HF group were more sensitive than the corresponding females. Fluoride significantly decreased the dopamine content in the intestine, disturbed the gene expression of dopamine pathway related genes. Fluoride significantly increased the relative abundance of g_uncultured_bacterium_c_Gammaprotebacteria in three F groups, while significantly reduced the relative abundance of g_lactobacilli and g_Lachnospiraceae NK4A136_group. At the same time, metabolic pathways including amino acid metabolism, nucleotide metabolism, and carbohydrate metabolism were also affected. These indicate that fluoride can result in neurotoxicity and behavioral changes by disrupting intestinal permeability and causing intestinal damage caused by imbalance of gut microbiota nucleotide metabolism, and the abnormal expression of dopamine related genes in the gut in zebrafish. Male zebrafish are more sensitive than female zebrafish.
Collapse
Affiliation(s)
- Jianjie Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Mengyan Xu
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Lijuan Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yuting Lu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yongju Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning 530021, Guangxi, China
| | - Jinling Cao
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
3
|
Wei X, Li X, Zhou W, Yan B, Chen T, Wu F, Luo Y, Mu J, Zhang YT, Chen H, Xie L. Why Western Mosquitofish ( Gambusia affinis) Is Tolerant to Se Contamination: Complex Mechanistic Explanations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8484-8494. [PMID: 40279166 DOI: 10.1021/acs.est.5c02842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
The western mosquitofish (Gambusia affinis (G. affinis)) is often the only fish that survives in various selenium-contaminated aquatic environments. However, mechanisms of its survival in such environments remain seldom explored. In this study, the acute toxicity of selenomethionine (Se-Met) in a variety of species (four oviparous and four ovoviviparous species) was evaluated, followed by the chronic effects of Se-Met on G. affinis and on zebrafish (Danio rerio (D. rerio)), focusing on Se accumulation in the gonads and offspring, reproductive biology, and offspring development. Our results showed that the LC50-96h of Se-Met was the largest in G. affinis among the eight fish, confirming its elevated resistance to Se. Meanwhile, the transcripts of genes related to selenoproteins and sulfoproteins showed opposite responses between G. affinis and D. rerio to Se-Met exposure, along with the altered levels of total selenoproteins in oviparous but not in ovoviviparous fish. The chronic exposures showed that Se levels in the gonads, effects on gonadal development and embryonic and early larval development, and Se efflux in the embryos and larvae were apparently different between G. affinis and D. rerio. Finally, differentially expressed genes (particularly antioxidant and inflammation) were mostly stimulated in G. affinis but inhibited in D. rerio. This study has demonstrated that the Se efflux capacity of the offspring and genes related to Se metabolism and antioxidant physiology can help partially explain the survival of G. affinis in Se-contaminated ecosystems.
Collapse
Affiliation(s)
- Xinrong Wei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao Li
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Wenji Zhou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Bo Yan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Tao Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Fangli Wu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yongju Luo
- Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Jingli Mu
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Yu Ting Zhang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
4
|
Xu Q, Gan R, Wang Q, Cheng P, Hu Z, Wang J. Metabolomic and molecular analysis reveals multiple pathways of TBBPA-induced developmental toxicity in zebrafish embryos. Toxicol Appl Pharmacol 2025; 498:117295. [PMID: 40090624 DOI: 10.1016/j.taap.2025.117295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/23/2025] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
Tetrabromobisphenol A (TBBPA), a commonly utilized flame retardant, presents potential risks to both environmental and human health, with particular concern regarding its impact on embryonic development.This study employed zebrafish embryos as a model organism to investigate the comprehensive toxicological effects of TBBPA exposure, integrating metabolomics analysis with molecular and biochemical approaches. Embryos exposed to TBBPA concentrations ranging from 0.5 to 1.5 mg/L exhibited significant dose-dependent developmental abnormalities, including pericardial edema, yolk sac enlargement, and body axis curvature. At 96 h, we observed 50 % mortality at 1 mg/L. At 144 h of exposure to 0.1 mg/L TBBPA, automated behavioral analysis revealed significant changes in larval swimming patterns, characterized by reduced total distance moved, shortened active swimming time, impaired acceleration parameters, and abnormal spatial distribution. UHPLC-Q-TOF-MS-based metabolomics analysis revealed substantial perturbations in multiple biochemical pathways, particularly affecting neurotransmitter metabolism, energy homeostasis, and oxidative stress responses. TBBPA exposure significantly disrupted dopamine and serotonin metabolism, evidenced by altered enzyme expression and metabolite levels. Notable changes in oxidative stress markers, including GSH, MDA, and SOD, indicated significant cellular damage, while inflammatory responses showed dysregulation of both pro- and anti-inflammatory cytokines. Energy metabolism was comprehensively affected, with disruptions in glycolysis, TCA cycle, and amino acid metabolism pathways. The study identified key metabolic signatures of TBBPA toxicity and elucidated the interconnected mechanisms underlying its developmental impacts, providing valuable insights for environmental risk assessment and regulatory considerations. These findings emphasize the complex nature of TBBPA toxicity and highlight the need for careful evaluation of its environmental impact, particularly concerning early developmental exposure.
Collapse
Affiliation(s)
- Qian Xu
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Ruixi Gan
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Qing Wang
- Department of Interventional Surgery, Zibo Central Hospital, 54 Gongqingtuan Road, Zibo, Shandong, China
| | - Peizhao Cheng
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Ziyun Hu
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Junsong Wang
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China.
| |
Collapse
|
5
|
Wang R, Wang M, Du D, Shan Z, Bi L, Chen QH. Brain-Targeted Reactive Oxygen Species in Hypertension: Unveiling Subcellular Dynamics, Immune Cross-Talk, and Novel Therapeutic Pathways. Antioxidants (Basel) 2025; 14:408. [PMID: 40298629 PMCID: PMC12024053 DOI: 10.3390/antiox14040408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/23/2025] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Hypertension (HTN) is a complex disease with significant global health implications, driven by neural and oxidative mechanisms. Reactive oxygen species (ROS), once considered mere metabolic byproducts, are now recognized as one of the key contributors to dysfunction of the autonomic nerve system, which involves the onset and progression of HTN. This review highlights the dynamic roles of ROS in neuronal signaling, subcellular compartmentalization, and brain-immune interactions, focusing on their impacts on synaptic remodeling, neuroinflammation, and epigenetic modifications within key autonomic regions such as the paraventricular nucleus and rostral ventrolateral medulla. We discuss novel ROS sources, including microglia-derived and endoplasmic reticulum stress-related ROS, and their contributions to HTN. Subcellular dynamics, such as ROS signaling at mitochondria-associated membranes and neuronal microdomains, are explored as activators of the sympathetic nerve system. Emerging evidence has linked ROS to epigenetic regulation, including histone modifications and non-coding RNA expression, with sex-specific differences offering insights for the development of personalized therapies. Innovative therapeutic strategies targeting ROS involve precision delivery systems, subcellular modulators, and circadian-optimized antioxidants. We propose several priorities for future research, including the real-time imaging of brain ROS, translating preclinical findings into clinical applications, and leveraging precision medicine to develop tailored interventions based on ROS activity and genetic predisposition. Through emphasizing the spatial and temporal complexity of ROS in HTN, this review identifies novel therapeutic opportunities and establishes a foundation for targeted treatments to address this health challenge.
Collapse
Affiliation(s)
- Renjun Wang
- Department of Biotechnology, School of Life Science, Jilin Normal University, Siping 136000, China; (R.W.); (M.W.)
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI 49931-1200, USA;
| | - Min Wang
- Department of Biotechnology, School of Life Science, Jilin Normal University, Siping 136000, China; (R.W.); (M.W.)
| | - Dongshu Du
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
| | - Zhiying Shan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI 49931-1200, USA;
| | - Lanrong Bi
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931-1200, USA
| | - Qing-Hui Chen
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI 49931-1200, USA;
| |
Collapse
|
6
|
Li N, Zhang Z, Shen L, Song G, Tian J, Liu Q, Ni J. Selenium metabolism and selenoproteins function in brain and encephalopathy. SCIENCE CHINA. LIFE SCIENCES 2025; 68:628-656. [PMID: 39546178 DOI: 10.1007/s11427-023-2621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/09/2024] [Indexed: 11/17/2024]
Abstract
Selenium (Se) is an essential trace element of the utmost importance to human health. Its deficiency induces various disorders. Se species can be absorbed by organisms and metabolized to hydrogen selenide for the biosynthesis of selenoproteins, selenonucleic acids, or selenosugars. Se in mammals mainly acts as selenoproteins to exert their biological functions. The brain ranks highest in the specific hierarchy of organs to maintain the level of Se and the expression of selenoproteins under the circumstances of Se deficiency. Dyshomeostasis of Se and dysregulation of selenoproteins result in encephalopathy such as Alzheimer's disease, Parkinson's disease, depression, amyotrophic lateral sclerosis, and multiple sclerosis. This review provides a summary and discussion of Se metabolism, selenoprotein function, and their roles in modulating brain diseases based on the most currently published literature. It focuses on how Se is utilized and transported to the brain, how selenoproteins are biosynthesized and function physiologically in the brain, and how selenoproteins are involved in neurodegenerative diseases. At the end of this review, the perspectives and problems are outlined regarding Se and selenoproteins in the regulation of encephalopathy.
Collapse
Affiliation(s)
- Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Zhonghao Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
- Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Guoli Song
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| | - Jing Tian
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China
| |
Collapse
|
7
|
Jiang J, Jiang T, Wang X, Zhao M, Shi H, Zhang H, Li W, Jiang S, Zhang X, Zhou J, Ren Q, Wang L, Yang S, Yao Z, Liu Y, Xu J. Malnutrition exacerbating neuropsychiatric symptoms on the Alzheimer's continuum is relevant to the cAMP signaling pathway: Human and mouse studies. Alzheimers Dement 2025; 21:e14506. [PMID: 39868480 PMCID: PMC11848410 DOI: 10.1002/alz.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/07/2024] [Accepted: 11/26/2024] [Indexed: 01/28/2025]
Abstract
INTRODUCTION Malnutrition correlates with neuropsychiatric symptoms (NPSs) in Alzheimer's disease (AD); however, the potential mechanism underlying this association remains unclear. METHODS Baseline and longitudinal associations of nutritional status with NPSs were analyzed in 374 patients on the AD continuum and 61 healthy controls. Serum biomarkers, behavioral tests, cerebral neurotransmitters, and differentially gene expression were evaluated in standard and malnourished diet-fed transgenic APPswe/PSEN1dE9 (APP/PS1) mice. RESULTS Poor nutritional status and increased cerebral blood flow in the midbrain and striatum were associated with severe general NPSs and subtypes, especially depression, anxiety, and apathy. APP/PS1 mice fed a malnourished diet showed poor nutritional status, depression- and anxiety-like behaviors, altered neurotransmitter levels, and downregulated c-Fos expression in the midbrain and striatum; these were associated with suppressed cyclic adenosine monophosphate (cAMP) signaling pathway. DISCUSSION Malnutrition exacerbating NPSs is relevant to suppressed cAMP pathway in the midbrain and striatum, suggesting the potential for targeted nutritional interventions to mitigate NPSs in the AD continuum. HIGHLIGHTS Poor nutritional status linked to general and specific neuropsychiatric symptom (NPS) deterioration. Malnutrition affects NPSs, usually involving the midbrain and striatum. Malnourished diet induces depression- and anxiety-like behaviors in APP/PS1 mice. Malnutrition exacerbates NPSs associated with cAMP signaling pathway in the midbrain and striatum.
Collapse
Affiliation(s)
- Jiwei Jiang
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Tianlin Jiang
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Xiaohong Wang
- Institute of Translational MedicineMedical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental & Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Min Zhao
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Hanping Shi
- Beijing Shijitan Hospital, Capital Medical UniversityBeijingChina
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and NutritionBeijingChina
| | - Huiying Zhang
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Wenyi Li
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Shirui Jiang
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Xiaoli Zhang
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Jiawei Zhou
- Institute of Translational MedicineMedical CollegeYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Experimental & Translational Non‐coding RNA ResearchYangzhou UniversityYangzhouChina
| | - Qiwei Ren
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Linlin Wang
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Shiyi Yang
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Zeshan Yao
- Beijing Institute of Collaborative InnovationBeijingChina
| | - Yaou Liu
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Jun Xu
- Beijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| |
Collapse
|
8
|
Huang M, Cao S, Huang Y, Tan Z, Duan R. The combined metabolism and transcriptome of tail muscles reveal the effects of antimony pulse exposure on swimming behavior of Pelophylax nigromaculatus tadpoles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177929. [PMID: 39647201 DOI: 10.1016/j.scitotenv.2024.177929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
Due to the periodic emission of pollutants, the exposure mode of contaminants in water bodies is mostly pulse exposure, and the toxic effects of fluctuating exposure on aquatic animals are not consistent with traditional toxicological experiments of constant exposure. The toxic effects of heavy metal antimony (Sb) on the swimming behavior of Pelophylax nigromaculatus tadpoles after pulse exposure (PESb) and continuous exposure (CESb) for 28 days were explored. The mechanisms were analyzed from the perspectives of tail muscle metabolism and transcriptomics. Compared to the control group, PESb and CESb decreased the average speed of P. nigromaculatus tadpoles by 25.72 % and 18.08 %, respectively. PESb and CESb led to changes in 70 and 24 metabolites of tail muscle, respectively. PESb led to alterations in metabolic pathways related to pyrimidine metabolism, arginine biosynthesis, and glycerophospholipid metabolism. In contrast, CESb altered metabolic pathways such as alanine, aspartate, and glutamate metabolism. Compared to the control, 1225 and 1139 DEGs were identified for PESb and CESb, respectively. These DEGs were mainly associated with functions such as immune response, DNA replication, protein digestion, and absorption. It can be seen that PESb and CESb can alter the metabolism and transcriptome of the tail muscle of P. nigromaculatus tadpoles, leading to differential expression of individual movements.
Collapse
Affiliation(s)
- Minyi Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi 417000, Hunan, China
| | - Songle Cao
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi 417000, Hunan, China
| | - Ying Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi 417000, Hunan, China
| | - Zikang Tan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi 417000, Hunan, China
| | - Renyan Duan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, Hunan, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi 417000, Hunan, China.
| |
Collapse
|
9
|
Li X, Li J, Lu K, Li X, Song K, Wang L, Zhang C. Effect of dietary supplementation of selenium-L-methionine on growth, antioxidant capacity and resistance to nitrite stress of spotted seabass ( Lateolabrax maculatus) under two rearing water temperatures. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:166-179. [PMID: 39635417 PMCID: PMC11615926 DOI: 10.1016/j.aninu.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 12/07/2024]
Abstract
A 10-week feeding trial, followed by 24-h nitrite stress, was performed to evaluate the effects of dietary selenium-L-methionine (Se-Met) on growth, Se accumulation, antioxidant capacity, transcripts of selenoproteins and histological changes of muscle as well as resistance to nitrite stress in spotted seabass (Lateolabrax maculatus) reared at optimal (27 °C) and high (33 °C) temperatures. Five experimental diets were formulated to contain 0, 0.9, 1.8, 3.5, and 7.0 mg Se-Met/kg. Each diet was fed to fish (2.60 ± 0.2 g) in two parallel treatments at 27 or 33 °C. The results showed that elevated temperature (33 °C) induced thermal stress in fish, and fish under thermal stress exhibited lower weight gain and hepatosomatic index but a higher condition factor compared to those reared at 27 °C. However, the growth and feed utilisation were promoted in L. maculatus with 0.9 to 3.5 mg/kg Se-Met treatments. The protein and lipid content in the muscle increased with the dietary Se-Met level, and the total Se level in the whole body and muscle showed a linear increase with dietary Se-Met supplementation. Thermal stress changed the histology of the muscle, leading to raised levels of malondialdehyde (MDA), reduced antioxidant parameters in the serum and liver, and a decrease in the transcripts of selenoprotein genes in the muscle. Meanwhile, increased antioxidant capacity of serum and liver and up-regulated transcripts of selenoprotein of muscle were observed in L. maculatus reaching a maximum with 3.5 mg Se-Met/kg treatment. After 24 h of nitrite stress, thermal stress exacerbated oxidative damage caused by nitrite stress in L. maculatus. In contrast, dietary Se-Met enhanced the resistance to nitrite stress of L. maculatus fed with Se-Met enriched diets containing 0.9 to 1.8 mg Se-Met/kg. Based on the effects of dietary Se-Met on the growth, antioxidant capacity and resistance to nitrite stress of L. maculatus, this study suggests that the optimal range of Se-Met supplementation in L. maculatus diets is 1.80 to 2.39 mg Se-Met/kg of diet at 27 °C and 1.80 to 4.46 mg Se-Met/kg of diet at 33 °C.
Collapse
Affiliation(s)
- Xiao Li
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Jing Li
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Kangle Lu
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xueshan Li
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Kai Song
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Ling Wang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Chunxiao Zhang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| |
Collapse
|
10
|
Fu H, Zhu L, Chen L, Zhang L, Mao L, Wu C, Chang Y, Jiang J, Jiang H, Liu X. Metabolomics and microbiomics revealed the combined effects of different-sized polystyrene microplastics and imidacloprid on earthworm intestinal health and function. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124799. [PMID: 39181306 DOI: 10.1016/j.envpol.2024.124799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
The coexistence of pesticides and plastic film residues in agricultural soils poses a significant threat to soil organisms due to their potential long-term contamination and combined toxic effects. Specifically, earthworms are at risk of simultaneously ingesting residual pesticides and microplastics, yet the impact of this combined exposure on their intestinal health and function remains poorly understood. In this study, earthworm (Eisenia fetida) were single and combined exposed to three particle sizes (10 μm, 500 μm, and 2 mm) of polyethylene microplastics (PE MPs) and imidacloprid (IMI) for 28 days, respectively. Our findings underscore that compared to single exposures, the combined exposure inflicted more profound injuries on intestinal tissues and elicited a heightened activation of intestinal digestive enzymes. Furthermore, the combined exposure significantly perturbed the relative abundance of several pivotal metabolic-associated gut microbiota, fostering an enrichment of pathogenic species. Metabolomics analysis showed combined exposure increased differential metabolites, disrupting amino acid, fatty acid, and carbohydrate metabolism in earthworm intestines, potentially hindering nutrient absorption and causing toxic metabolite accumulation. An integrated omics analysis implies that combined exposures have the potential to disrupt the relative abundance of crucial gut microbiota in earthworms, thereby altering their intestinal metabolism and subsequently impacting intestinal health and functionality. Overall, the results reveal that combined exposure of IMI and PE MPs exacerbate the negative effects on earthworm gut health, and this study holds significant implications for the holistic understanding of the combined toxic effects of microplastics and pesticide on soil ecosystems.
Collapse
Affiliation(s)
- Huimin Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Lizhen Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Lang Chen
- Environment Division, Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing, 100125, PR China
| | - Lan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Chi Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Yiming Chang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Jinhua Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, PR China
| | - Hongyun Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| |
Collapse
|
11
|
Liu T, Shang D, Tian W, Li Y, Xie R, Zhao J, Dong H. The concentration of dissolved organic matter impacts the neurobehavior in zebrafish larvae exposed to cyclophosphamide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61181-61190. [PMID: 39404950 DOI: 10.1007/s11356-024-34907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/27/2024] [Indexed: 11/05/2024]
Abstract
Dissolved organic matter (DOM) occurs ubiquitously in various water matrices and affects the chemical speciation and toxicity of emerging contaminants, such as cyclophosphamide (CP). However, the effects of CP in aquatic organisms with the presence of DOM have been relatively less addressed. In this study, zebrafish eggs < 4 h post fertilization (hpf) were exposed to CP (0 and 50 μg/L) and humic acid (HA, a main component of DOM, 0, 3, 10, and 30 mg-C/L) until 7 days post fertilization, and its toxicity was evaluated by behavioral approaches and transcription of nervous-related genes. An increase in swimming velocity and anxiety was noticed in zebrafish larvae exposed to CP. The related genes of neurotransmitter (drd1, mao, thp1b, and gad2), neurodevelopment (gli2b, nrd, and gfap), and neuroinflammation (thfα, casp3, and il-6) were upregulated by CP. In the presence of HA (3 mg-C/L), the behaviors and gene transcripts of zebrafish larvae were enhanced, while at 10 mg-C/L, they were mitigated. This study has demonstrated that DOM at low concentration increases the toxicity of CP and at high concentration alleviates its toxicity. This study highlights the importance of emerging contaminant exposure with the presence of DOM on their toxicities in aquatic organisms.
Collapse
Affiliation(s)
- Tianming Liu
- China MCC20 Group Co., Ltd, Pangu Road 777, Shanghai, 325035, China.
| | - Dongshen Shang
- China MCC20 Group Co., Ltd, Pangu Road 777, Shanghai, 325035, China
| | - Weiqi Tian
- China MCC20 Group Co., Ltd, Pangu Road 777, Shanghai, 325035, China
| | - Yindong Li
- China MCC20 Group Co., Ltd, Pangu Road 777, Shanghai, 325035, China
| | - Rong Xie
- China MCC20 Group Co., Ltd, Pangu Road 777, Shanghai, 325035, China
| | - Jianxing Zhao
- China MCC20 Group Co., Ltd, Pangu Road 777, Shanghai, 325035, China
| | - Heru Dong
- China MCC20 Group Co., Ltd, Pangu Road 777, Shanghai, 325035, China
| |
Collapse
|
12
|
Lai Z, Wei Y, He M, Lin C, Ouyang W, Liu X. Toxicity and related molecular mechanisms of Sb(III) in the embryos and larvae of zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124551. [PMID: 39004205 DOI: 10.1016/j.envpol.2024.124551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/16/2024]
Abstract
Antimony (Sb) pollution poses a severe threat to humans and ecosystems due to the extensive use of Sb in various fields. However, little is known about the toxic effects of Sb and its aquatic ecotoxicological mechanism. This study aimed to reveal the toxicity and related molecular mechanisms of trivalent Sb (Sb(III)) in zebrafish embryos/larvae. Sb(III) accumulated in larvae, which correlated with the exposure concentration. Although no significant lethal or teratogenic effects were observed, normal growth and development were affected. Exposure to 10 or 20 mg/L Sb(III) increased the levels of reactive oxygen species in the larvae while enhancing catalase activity and increasing cell apoptosis. Transcriptomic analysis revealed that Sb(III) promoted glutathione metabolism and the ferroptosis pathway. In addition, symptoms associated with ferroptosis, including mitochondrial damage, biochemical levels of related molecules and increased tissue iron content, were detected. Quantitative polymerase chain reaction (qPCR) analyses further confirmed that Sb(III) significantly altered the transcription levels of genes related to the ferroptosis pathway by disrupting iron homeostasis. Furthermore, ferrostatin-1 (Fer-1) mitigated the toxic effects induced by Sb(III) in zebrafish. Our research fills the gap in the literature on the toxicity and mechanism of Sb(III) in aquatic organisms, which is highly important for understanding the ecological risks associated with Sb.
Collapse
Affiliation(s)
- Ziyang Lai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yihan Wei
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
13
|
Cao J, Lei Y, Li W, Jiang X, Li M. Coupled digital visualization and multi-omics uncover neurobehavioral dysfunction in zebrafish induced by resorcinol bis(diphenylphosphate). ENVIRONMENT INTERNATIONAL 2024; 192:109023. [PMID: 39321538 DOI: 10.1016/j.envint.2024.109023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Resorcinol bis(diphenylphosphate) (RDP) is an emerging pollutant that has been frequently detected in aquatic environments, although its toxicity is poorly characterized. To understand how RDP affects the neural system, two-month-old zebrafish were exposed to RDP at concentrations of 0.1 and 10 μg/L for 60 days. Following exposure, behavioral assessments were conducted, revealing the emergence of anxiety-like symptoms and memory deficits among the adult fish exposed to RDP, especially at the higher concentration. The increased blood-brain barrier (BBB) permeability (4.67-5.58-fold higher than the control group), reduced expression of tight junction proteins and the rapid brain RDP bioaccumulation (15.63 ± 2.34 ng/g wet weight) indicated the neurotoxicity of RDP. Excess reactive oxygen species synthesis (2.20-2.50-fold) was induced by RDP, leading to mitochondrial dysfunction and decreased production of neurotransmitters in the brain, specifically serotonin (5-HT; 16.3 %) and dopamine (DA; 18.1 %). Metabolomic analysis revealed that the low-toxicity RDP dose up-regulated lipid-related metabolites, while the high-toxicity dose up-regulated arachidonic acid metabolism and disrupted amino acid metabolism, including tryptophan and tyrosine metabolism related to dopaminergic and serotonergic pathways. The dysregulation of genes in various cellular processes was identified by transcriptomics, mainly involved in cell adhesion molecules and gap junctions, and oxidative phosphorylation, which were directly associated with BBB permeability and oxidative stress, respectively. Correlation analysis of microbiome-metabolite-host links built a mechanistic hypothesis for alterations in gut microbiota (Actinobacteriota and Proteobacteria) induced by high-dose RDP leading to the alteration of tryptophan, tyrosine, and arachidonic acid metabolism, decreasing the production of 5-HT and DA through the gut-brain axis. This study provides valuable insights into the mechanism underlying RDP-induced neurotoxicity in zebrafish, which can inform ecological risk assessments.
Collapse
Affiliation(s)
- Jing Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yumeng Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Wenhao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiaofeng Jiang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
14
|
Zhang J, Xie L, Li H, Li S, Gao X, Zhang M. Selenomethionine Promotes Milk Protein and Fat Synthesis and Proliferation of Mammary Epithelial Cells through the GPR37-mTOR-S6K1 Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19505-19516. [PMID: 39177123 DOI: 10.1021/acs.jafc.4c03911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Selenomethionine (SeMet) is an important nutrient, but its role in milk synthesis and the GPCR related to SeMet sensing is still largely unknown. Here, we determined the dose-dependent role of SeMet on milk protein and fat synthesis and proliferation of mammary epithelial cells (MECs), and we also uncovered the GPCR-mediating SeMet function. At 24 h postdelivery, lactating mother mice were fed a maintenance diet supplemented with 0, 5, 10, 20, 40, and 80 mg/kg SeMet, and the feeding process lasted for 18 days. The 10 mg/kg group had the best increase in milk production, weight gain of offspring mice, and mammary gland weight and acinar size, whereas a higher concentration of SeMet gradually decreased the weight gain of the offspring mice and showed toxic effects. Transcriptome sequencing was performed to find the differentially expressed genes (DEGs) between the mammary gland tissues of mother mice in the 10 mg/kg SeMet treatment group and the control group. A total of 258 DEGs were screened out, including 82 highly expressed genes including GPR37 and 176 lowly expressed genes. SeMet increased milk protein and fat synthesis in HC11 cells and cell proliferation, mTOR and S6K1 phosphorylation, and expression of GPR37 in a dose-dependent manner. GPR37 knockdown decreased milk protein and fat synthesis in HC11 cells and cell proliferation and blocked SeMet stimulation on mTOR and S6K1 phosphorylation. Taken together, our data demonstrate that SeMet can promote milk protein and fat synthesis and proliferation of MECs and functions through the GPR37-mTOR-S6K1 signaling pathway.
Collapse
Affiliation(s)
- Jinlong Zhang
- College of Animal Science and Technology, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Liping Xie
- College of Animal Science and Technology, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Heqian Li
- College of Animal Science and Technology, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Siqi Li
- College of Animal Science and Technology, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Xuejun Gao
- College of Animal Science and Technology, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Minghui Zhang
- College of Animal Science and Technology, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| |
Collapse
|
15
|
Uddin MH, Ritu JR, Putnala SK, Rachamalla M, Chivers DP, Niyogi S. Selenium toxicity in fishes: A current perspective. CHEMOSPHERE 2024; 364:143214. [PMID: 39214409 DOI: 10.1016/j.chemosphere.2024.143214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Anthropogenic activities have led to increased levels of contaminants that pose significant threats to aquatic organisms, particularly fishes. One such contaminant is Selenium (Se), a metalloid which is released by various industrial activities including mining and fossil fuel combustion. Selenium is crucial for various physiological functions, however it can bioaccumulate and become toxic at elevated concentrations. Given that fishes are key predators in aquatic ecosystems and a major protein source for humans, Se accumulation raises considerable ecological and food safety concerns. Selenium induces toxicity at the cellular level by disrupting the balance between reactive oxygen species (ROS) production and antioxidant capacity leading to oxidative damage. Chronic exposure to elevated Se impairs a wide range of critical physiological functions including metabolism, growth and reproduction. Selenium is also a potent teratogen and induces various types of adverse developmental effects in fishes, mainly due to its maternal transfer to the eggs. Moreover, that can persist across generations. Furthermore, Se-induced oxidative stress in the brain is a major driver of its neurotoxicity, which leads to impairment of several ecologically important behaviours in fishes including cognition and memory functions, social preference and interactions, and anxiety response. Our review provides an up-to-date and in-depth analysis of the various adverse physiological effects of Se in fishes, while identifying knowledge gaps that need to be addressed in future research for greater insights into the impact of Se in aquatic ecosystems.
Collapse
Affiliation(s)
- Md Helal Uddin
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada; Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Jinnath Rehana Ritu
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada; Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Sravan Kumar Putnala
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada.
| |
Collapse
|
16
|
Zhou W, Chen J, Liu P, Wang F, Chen H. Comparative effects of different metals on the Japanese medaka embryos and larvae. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:653-661. [PMID: 38851654 DOI: 10.1007/s10646-024-02762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/22/2024] [Indexed: 06/10/2024]
Abstract
Rapid evaluation of the toxicity of metals using fish embryo acute toxicity is facilitative to ecological risk assessment of aquatic organisms. However, this approach has seldom been utilized for the comparative study on the effects of different metals to fish. In this study, acute and sub-chronic tests were used to compare the toxicity of Se(IV) and Cd in the embryos and larvae of Japanese medaka (Oryzias latipes). The embryos with different levels of dechorionation and/or pre-exposure were also exposed to Se(IV) and Cd at various concentrations. The results showed that the LC50-144 h of Cd was 1.3-5.2 folds higher than that of Se(IV) for the embryos. In contrast, LC50-96 h of Se(IV) were 200-400 folds higher than that of Cd for the larvae. Meanwhile, dechorionated embryos were more sensitive to both Se and Cd than the intact embryos. At elevated concentrations, both Se and Cd caused mortality and deformity in the embryos and larvae. In addition, pre-exposure to Cd at the embryonic stages enhanced the resistance to Cd in the larvae. However, pre-exposure to Se(IV) at the embryonic stages did not affect the toxicity of Se(IV) to the larvae. This study has distinguished the nuance differences in effects between Se(IV) and Cd after acute and sub-chronic exposures with/without chorion. The approach might have a potential in the comparative toxicology of metals (or other pollutants) and in the assessment of their risks to aquatic ecosystems.
Collapse
Affiliation(s)
- Wenji Zhou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Jiating Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Ping Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Feifan Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China.
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| |
Collapse
|
17
|
Yue S, Wang R, Huang C, Qiao Y, Shen Z, Wei Y, Li Z. Toxicokinetics of selenate in earthworm sub-tissues and potential bio-accessibility assessment of earthworm-derived selenium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116643. [PMID: 38925033 DOI: 10.1016/j.ecoenv.2024.116643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/16/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Selenium (Se) pollution is mainly caused by anthropogenic activities, and the resulting biosecurity concerns have garnered significant attention in recent years. Using one-compartmental toxicokinetic (TK) modelling, this study explored the kinetic absorption, sub-tissue distribution, and elimination processes of the main Se species (selenate, Se(VI)) in the cultivated aerobic soil of the earthworm Eisenia fetida. The bio-accessibility of earthworm-derived Se was assessed using an in vitro simulated gastrointestinal digestion test to evaluate its potential trophic risk. The results demonstrated that Se accumulated in the pre-clitellum (PC) and total tissues (TT) of earthworms in a time- and dose-dependent manner. The highest Se levels in the PC, post-clitellum (PoC), and TT were 70.54, 57.93, and 64.26 mg/kg during the uptake phase, respectively. The kinetic Se contents in the earthworms PC and TT were consistent with the TK model but not with PoC. The earthworm TT exhibited a faster uptake (Kus = 0.83-1.02 mg/kg/day) and elimination rate of Se (Kee = 0.044-0.049 mg/kg/day), as well as a shorter half-life time (LT1/2 = 15.88-14.22 days) than PC at low soil Se levels (≤5 mg/kg). Conversely, the opposite trend was observed with higher Se concentrations (10 and 20 mg/kg). These results are likely attributable to the tissue specificity and concentration of the toxicant. Earthworms PC and TT exhibited a higher kinetic Se accumulation factor (BAFk) than steady-state BAF (BAFss), with values ranging from 8 to 24 and 3-13, respectively. Furthermore, the bio-accessibility of earthworm-derived Se to poultry ranged from 66.25 % to 84.35 %. As earthworms are at the bottom of the terrestrial food chain, the high bio-accessibility of earthworm-derived Se poses a potential risk to predators. This study offers data support and a theoretical foundation for understanding the biological footprint of soil Se and its toxicological impacts and ecological hazards.
Collapse
Affiliation(s)
- Shizhong Yue
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China; International Joint Laboratory of Agricultural Food Science and Technology of Universities of Shandong, Dezhou University, Dezhou 253023, PR China
| | - Ruiping Wang
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China; International Joint Laboratory of Agricultural Food Science and Technology of Universities of Shandong, Dezhou University, Dezhou 253023, PR China.
| | - Caide Huang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China; School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yuhui Qiao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Zhiqiang Shen
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Yunwei Wei
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| | - Zhenghua Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| |
Collapse
|
18
|
Zhang X, Cao J, Chen J, Wang G, Li L, Wei X, Zhang R. Combined Effects of Fluoride and Dietary Seleno-L-Methionine at Environmentally Relevant Concentrations on Female Zebrafish (Danio rerio) Liver: Histopathological Damages, Oxidative Stress and Inflammation. Biol Trace Elem Res 2024; 202:2314-2326. [PMID: 37682395 DOI: 10.1007/s12011-023-03837-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Fluoride, a global environmental pollutant, is ubiquitous in aquatic environments and coexists with selenium, which can cause complex effects on exposed organisms. However, data on the interaction of fluoride and selenium remain scarce. In this study, female zebrafish (Danio rerio) were exposed to fluoride (80 mg/L sodium fluoride) and/or dietary selenomethionine (Se-Met) for 30, 60 and 90 days, the effects on the liver of zebrafish were investigated. The results indicated that an increase in fluoride burden, inhibited growth and impaired liver morphology were recorded after fluoride exposure. Furthermore, fluoride alone caused oxidative stress and inflammation in the liver, as reflected by the increase in ROS and MDA contents, the reduction of anti-oxidative enzymes, the altered immune related enzymes (ACP, AKP, LZM and MPO) and the expression of IL-6, IL-1β, TNF-α, IL-10 and TGF-β. In contrast, co-exposure to fluoride and Se-Met decreased fluoride burden and restored growth. Furthermore, dietary Se-Met alleviated oxidative stress, inflammation and impaired morphology in liver trigger by fluoride. However, dietary Se-Met alone increased the activities of SOD and CAT. These results demonstrate that the protective effect of dietary Se-Met against chronic fluoride toxicity at a certain level.
Collapse
Affiliation(s)
- Xiulin Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Jinling Cao
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Jianjie Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Guodong Wang
- School of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Lijuan Li
- College of Food and Environment, Jinzhong College of Information, Taigu, 030801, Shanxi, China
| | - Xiaobing Wei
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Runxiao Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| |
Collapse
|
19
|
Liu T, Dong H, Zhao J, Shang D, Li Y, Xie R. The concentration of dissolved organic matter impacts the neurobehavior in female zebrafish exposed to cyclophosphamide. Comp Biochem Physiol C Toxicol Pharmacol 2024; 278:109866. [PMID: 38373514 DOI: 10.1016/j.cbpc.2024.109866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
Cyclophosphamide (CP) is a broad-spectrum anticancer drug for various cancers and frequently detected in aquatic environments, reaching concentrations up to 22 μg/L. However, there is limited understanding of the toxicities of CP with the presence of dissolved organic matter, a ubiquitous component in aquatic environments, in fish. In this study, we investigated the behaviors, morphological alterations of retina, and related gene transcripts in zebrafish exposed to CP (0 and 50 μg/L) and Humic acid (HA, a main component of DOM) at concentrations of 0, 3, 10, and 30 mg-C/L for 30 days. The results showed that, relative to the zebrafish in CP treatment, HA at 30 mg-C/L increased the locomotion (12.1 % in the light and 7.2 % in the dark) and startle response (9.7 %), while inhibiting the anxiety (12.5 %) and cognition of female zebrafish (24.6 %). The levels of transcripts of neurotransmitter- (tph1b and ache), neuroinflammation-(il-6 and tnfα) and antioxidant-(gpx) related genes in the brain of female adult were also altered by CP with the presence of HA. In addition, HA promoted the transgenerational effects of CP on the neurobehaviors. Therefore, HA can enhance potential neurotoxicity of CP in female fish through alteration neurotransmission related genes. Our findings provide new insights into the toxicity and underlying mechanisms of CP with the presence of dissolved organic matter, thereby contribute to a deeper understanding of the risks posed by CP in aquatic ecosystems.
Collapse
Affiliation(s)
- Tianming Liu
- China MCC20 Group Corp., Ltd., Shanghai 201999, China.
| | - Heru Dong
- China MCC20 Group Corp., Ltd., Shanghai 201999, China
| | - Jianxing Zhao
- China MCC20 Group Corp., Ltd., Shanghai 201999, China
| | | | - Yindong Li
- China MCC20 Group Corp., Ltd., Shanghai 201999, China
| | - Rong Xie
- China MCC20 Group Corp., Ltd., Shanghai 201999, China
| |
Collapse
|
20
|
Lin Y, Hu L, Li X, Ma J, Li Q, Yuan X, Zhang Y. The beneficial and toxic effects of selenium on zebrafish. A systematic review of the literature. Toxicol Res (Camb) 2024; 13:tfae062. [PMID: 38645626 PMCID: PMC11031411 DOI: 10.1093/toxres/tfae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 04/23/2024] Open
Abstract
Selenium is an important and essential trace element in organisms, but its effects on organisms are also a "double-edged sword". Selenium deficiency or excess can endanger the health of humans and animals. In order to thoroughly understand the nutritional value and toxicity hazards of selenium, researchers have conducted many studies on the model animal zebrafish. However, there is a lack of induction and summary of relevant research on which selenium acts on zebrafish. This paper provides a review of the reported studies. Firstly, this article summarizes the benefits of selenium on zebrafish from three aspects: Promoting growth, Enhancing immune function and anti-tumor ability, Antagonizing some pollutants, such as mercury. Then, three aspects of selenium toxicity to zebrafish are introduced: nervous system and behavior, reproductive system and growth, and damage to some organs. This article also describes how different forms of selenium compounds have different effects on zebrafish health. Finally, prospects for future research directions are presented.
Collapse
Affiliation(s)
- Yuanshan Lin
- Department of Orthopedic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Liyun Hu
- Department of Orthopedic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Xinhang Li
- Department of Orthopedic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Jie Ma
- Department of Orthopedic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Qipeng Li
- Department of Orthopedic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Xiaofan Yuan
- Department of Orthopedic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yuan Zhang
- Department of Orthopedic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
21
|
Liao XL, Chen ZF, Ou SP, Liu QY, Lin SH, Zhou JM, Wang Y, Cai Z. Neurological impairment is crucial for tire rubber-derived contaminant 6PPDQ-induced acute toxicity to rainbow trout. Sci Bull (Beijing) 2024; 69:621-635. [PMID: 38185590 DOI: 10.1016/j.scib.2023.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPDQ) has attracted significant attention due to its highly acute lethality to sensitive salmonids. However, studies investigating the mechanisms underlying its acute toxicity have been lacking. In this work, we demonstrated the sensitivity of rainbow trout to 6PPDQ-induced mortality. Moribund trout exhibited significantly higher brain concentrations of 6PPDQ compared to surviving trout. In an in vitro model using human brain microvascular endothelial cells, 6PPDQ can penetrate the blood-brain barrier and enhance blood-brain barrier permeability without compromising cell viability. The time spent in the top of the tank increased with rising 6PPDQ concentrations, as indicated by locomotion behavior tests. Furthermore, 6PPDQ influenced neurotransmitter levels and mRNA expression of neurotransmission-related genes in the brain and exhibited strong binding affinity to target neurotransmission-related proteins using computational simulations. The integrated biomarker response value associated with neurotoxicity showed a positive linear correlation with trout mortality. These findings significantly contribute to filling the knowledge gap between neurological impairments and apical outcomes, including behavioral effects and mortality, induced by 6PPDQ.
Collapse
Affiliation(s)
- Xiao-Liang Liao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhi-Feng Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Shi-Ping Ou
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Qian-Yi Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shan-Hong Lin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jia-Ming Zhou
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yujie Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zongwei Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China.
| |
Collapse
|
22
|
Ni A, Fang L, Xi M, Li J, Qian Q, Wang Z, Wang X, Wang H, Yan J. Neurotoxic effects of 2-ethylhexyl diphenyl phosphate exposure on zebrafish larvae: Insight into inflammation-driven changes in early motor behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170131. [PMID: 38246379 DOI: 10.1016/j.scitotenv.2024.170131] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
The extensive utilization and potential adverse impacts of the replacement flame-retardant 2-Ethylhexyl Diphenyl Phosphate (EHDPP) have raised concerns. Currently, there is limited knowledge regarding the developmental, neurological, and immunotoxic consequences of EHDPP exposure, as well as its potential behavioral outcomes. In this study, we undertook a comprehensive examination and characterization of the toxic effects over the EHDPP concentration range of 14-1400 nM. Our findings unveiled that EHDPP, even at an environmentally relevant concentration of 14 nM, exhibited excitatory neurotoxicity, eliciting a 13.5 % increase in the swimming speed of zebrafish larvae. This effect might be attributed to the potential influence of EHDPP on the release of neurotransmitters like serotonin and dopamine, which, in turn, mediated anxiety-like behavior in the zebrafish larvae. Conversely, sublethal dose EHDPP (1400 nM) exposure significantly suppressed the swimming vigor of zebrafish larvae, accompanied by morphological changes, abnormal behaviors, and alterations in intracerebral molecules. Transcriptomics revealed the underlying mechanism. The utilization of pathway inhibitors reshaped the inflammatory homeostasis and alleviated the toxicity induced by EHDPP exposure, anchoring the pivotal role played by the TLR4/NF-κB signaling pathway in EHDPP-induced adverse changes in zebrafish behavior and neurophysiology. This study observed the detrimental effects of EHDPP on fish sustainability at environmentally relevant concentrations, highlighting the practical significance for EHDPP risk management. Elucidating the toxic mechanisms of EHDPP will contribute to a deeper comprehension of how environmental pollutants can intricately influence human health.
Collapse
Affiliation(s)
- Anyu Ni
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lu Fang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Miaocui Xi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jinyun Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qiuhui Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zejun Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jin Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
23
|
Lu ZJ, Shi WJ, Gao FZ, Ma DD, Zhang JG, Li SY, Long XB, Zhang QQ, Ying GG. An azole fungicide climbazole damages the gut-brain axis in the grass carp. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133463. [PMID: 38219582 DOI: 10.1016/j.jhazmat.2024.133463] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Azole antifungal climbazole has frequently been detected in aquatic environments and shows various effects in fish. However, the underlying mechanism of toxicity through the gut-brain axis of climbazole is unclear. Here, we investigated the effects of climbazole at environmental concentrations on the microbiota-intestine-brain axis in grass carp via histopathological observation, gene expression and biochemical analyses, and high-throughput sequencing of the 16 S rRNA. Results showed that exposure to 0.2 to 20 μg/L climbazole for 42 days significantly disrupted gut microbiota and caused brain neurotoxicity in grass carp. In this study, there was an alteration in the phylum and genus compositions in the gut microbiota following climbazole treatment, including reducing Fusobacteria (e.g., Cetobacterium) and increasing Actinobacteria (e.g., Nocardia). Climbazole disrupted intestinal microbial abundance, leading to increased levels of lipopolysaccharide and tumor necrosis factor-alpha in the gut, serum, and brain. They passed through the impaired intestinal barrier into the circulation and caused the destruction of the blood-brain barrier through the gut-brain axis, allowing them into the brain. In the brain, climbazole activated the nuclear factor kappaB pathway to increase inflammation, and suppressed the E2-related factor 2 pathway to produce oxidative damage, resulting in apoptosis, which promoted neuroinflammation and neuronal death. Besides, our results suggested that this neurotoxicity was caused by the breakdown of the microbiota-gut-brain axis, mediated by reduced concentrations of dopamine, short chain fatty acids, and intestinal microbial activity induced by climbazole.
Collapse
Affiliation(s)
- Zhi-Jie Lu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Fang-Zhou Gao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Si-Ying Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao-Bing Long
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Qian-Qian Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
24
|
Wang H, Poopal RK, Ren Z. Biological-based techniques for real-time water-quality studies: Assessment of non-invasive (swimming consistency and respiration) and toxicity (antioxidants) biomarkers of zebrafish. CHEMOSPHERE 2024; 352:141268. [PMID: 38246499 DOI: 10.1016/j.chemosphere.2024.141268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Swimming consistency and respiration of fish are recognized as the non-invasive stress biomarkers. Their alterations could directly indicate the presence of pollutants in the water ecosystem. Since these biomarkers are a routine process for fish, it is difficult to monitor their activity manually. For this reason, experts employ engineering technologies to create sensors that can monitor the regular activities of fish. Knowing the importance of these non-invasive stress biomarkers, we developed online biological behavior monitoring system-OBBMS and online biological respiratory response monitoring system-OBRRMS to monitor real-time swimming consistency and respiratory response of fish, respectively. We continuously monitored the swimming consistency and respiration (OCR, CER and RQ) of zebrafish (control and atrazine-treatments) for 7 days using our homemade real-time biological response monitoring systems. Furthermore, we analyzed oxidative stress indicators (SOD, CAT and POD) within the vital tissues (gills, brain and muscle) of zebrafish during stipulated sampling periods. The differences in the swimming consistency and respiratory rate of zebrafish between the control and atrazine treatments could be precisely differentiated on the real-time datasets of OBBMS and OBRRMS. The zebrafish exposed to atrazine toxin showed a concentration-dependent effect (hypoactivity). The OCR and CER were increased in the atrazine treated zebrafish. Both Treatment I and II received a negative response for RQ. Atrazine toxicity let to a rise in the levels of SOD, CAT and POD in the vital tissues of zebrafish. The continuous acquisition of fish signals is achieved which is one of the main merits of our OBBMS and OBRRMS. Additionally, no special data processing was done, the real-time data sets were directly used on statistical tools and the differences between the factors (groups, photoperiods, exposure periods and their interactions) were identified precisely. Hence, our OBBMS and OBRRMS could be a promising tool for biological response-based real-time water quality monitoring studies.
Collapse
Affiliation(s)
- Hainan Wang
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China
| | - Rama-Krishnan Poopal
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|
25
|
Sillé F, Hartung T. Metabolomics in Preclinical Drug Safety Assessment: Current Status and Future Trends. Metabolites 2024; 14:98. [PMID: 38392990 PMCID: PMC10890122 DOI: 10.3390/metabo14020098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Metabolomics is emerging as a powerful systems biology approach for improving preclinical drug safety assessment. This review discusses current applications and future trends of metabolomics in toxicology and drug development. Metabolomics can elucidate adverse outcome pathways by detecting endogenous biochemical alterations underlying toxicity mechanisms. Furthermore, metabolomics enables better characterization of human environmental exposures and their influence on disease pathogenesis. Metabolomics approaches are being increasingly incorporated into toxicology studies and safety pharmacology evaluations to gain mechanistic insights and identify early biomarkers of toxicity. However, realizing the full potential of metabolomics in regulatory decision making requires a robust demonstration of reliability through quality assurance practices, reference materials, and interlaboratory studies. Overall, metabolomics shows great promise in strengthening the mechanistic understanding of toxicity, enhancing routine safety screening, and transforming exposure and risk assessment paradigms. Integration of metabolomics with computational, in vitro, and personalized medicine innovations will shape future applications in predictive toxicology.
Collapse
Affiliation(s)
- Fenna Sillé
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
- CAAT-Europe, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| |
Collapse
|
26
|
Arias-Borrego A, Callejón-Leblic B, Collado MC, Abril N, García-Barrera T. Omics insights into the responses to dietary selenium. Proteomics 2023; 23:e2300052. [PMID: 37821362 DOI: 10.1002/pmic.202300052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
Selenium is a well-known health-relevant element related with cancer chemoprevention, neuroprotective roles, beneficial in diabetes, and in several infectious diseases, among others. It is naturally present in some foods, but deficiency in people led to the production of nutraceuticals, supplements, and functional food enriched in this element. There is a U-shaped link between selenium levels and health and a narrow range between toxic and essential levels, and thus, supplementation should be performed carefully. Omics methodologies have become valuable approaches to delve into the responses of dietary selenium in mammals that allowed a deeper knowledge about the metabolism of this element as well as its biological role. In this review, we discuss omics approaches from the workflows to their applications that has been previously used to deep insight into the metabolism of dietary selenium. There is a special focus on selenoproteins, metabolomics responses in blood and tissues (e.g., brain, reproductive organs, etc.) as well as the impact on gut microbiota and its metabolites profile. Thus, we mainly reviewed heteroatom-tagged proteomics, metallomics, metabolomics, and metataxonomics, usually combined with transcriptomics, genomics, and other molecular methods.
Collapse
Grants
- UHU-202009 Spanish Ministry of Economy and Competitiveness (MINECO)
- PY20_00366 Spanish Ministry of Economy and Competitiveness (MINECO)
- FEDER Andalusian Operative Program 2014-2020 (Ministry of Economy, Knowledge, Business and Universities, Regional Government of Andalusia, Spain)
- UNHU13-1E-1611 FEDER (European Community)
- PID2021-123073NB-C21 Ministerio de Ciencia e Innovación
- PY20_00366 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía
- UHU-202009 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía
- CEX2021-001189-S/MCIN/AEI/10.13039/501100011033 Spanish Government MCIN/AE-Center of Excellence Accreditation Severo Ochoa
- PID2022-139475OB-I00 Spanish Ministry of Science and Innovation (MCIN)
Collapse
Affiliation(s)
- Ana Arias-Borrego
- Research Center of Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Fuerzas Armadas Ave., Huelva, Spain
- Department of Analytical Chemistry, Faculty of Chemistry, University of Sevilla, Profesor García González Ave., Seville, Spain
| | - Belén Callejón-Leblic
- Research Center of Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Fuerzas Armadas Ave., Huelva, Spain
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology, University of Córdoba, Campus de Rabanales, Edificio Severo Ochoa, Córdoba, Spain
| | - Tamara García-Barrera
- Research Center of Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Fuerzas Armadas Ave., Huelva, Spain
| |
Collapse
|
27
|
Liu Y, Zhou H, Fan J, Huang H, Deng J, Tan B. Potential mechanisms of different methylation degrees of pectin driving intestinal microbiota and their metabolites to modulate intestinal health of Micropterus salmoides. Int J Biol Macromol 2023; 251:126297. [PMID: 37591422 DOI: 10.1016/j.ijbiomac.2023.126297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Four diets containing 8 % cellulose, low methyl-esterified pectin (LMP), high methyl-esterified pectin (HMP) and MMP (half LMP and half HMP) were designed to evaluate the potential mechanisms by which different esterification degrees of pectin drive intestinal microbiota and their metabolites modulating the intestinal health of Micropterus salmoides. The results showed that both dietary LMP and HMP consistently upregulated intestinal zonula occludens protein 1 (Zo-1), Caludin-1, and Caludin-4, and downregulated intestinal tumor necrosis factor-alpha (TNF-α), interleukin-8 (IL-8), and interleukin-1 beta (IL-1β) gene expression (P < 0.05). Dietary HMP separately upregulated intestinal Occludin, nuclear factor erythroid2-related factor 2 (Nrf2), B-cell lymphoma-2 (Bcl-2), and Bcl-2 associated agonist of cell death (BAD) gene expression, as well as the digesta propionate content, OTUs, Sobs, Shannon, Chao, and ACE indices (P < 0.05), whereas dietary LMP decreased digesta arginine, 4-aminobutyric, L-tyrosine, and phenylalanine contents (P < 0.05). Moreover, dietary HMP decreased plasma lipopolysaccharide and d-lactic acid contents and increased intestinal superoxide dismutase and glutathione peroxidase activities and immunoglobulin (Ig) receptor and IgM levels (P < 0.05). Collectively, dietary HMP improves intestinal health by increasing intestinal flora α-diversity and enhancing intestinal mechanical barrier, anti-inflammatory, antioxidant, and immune functions. On the contrary, the interference of dietary LMP with butyrate, tyrosine, arginine, and 4-aminobutyric acid metabolism is the main reason for its detrimental effects on intestinal health.
Collapse
Affiliation(s)
- Yu Liu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Hang Zhou
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Jiongting Fan
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Huajing Huang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China
| | - Junming Deng
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China.
| | - Beiping Tan
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang 524088, China.
| |
Collapse
|
28
|
Li H, Wang L, Wen J. Observations on neurophysiological pattern and behavioural traits as death-feigning mechanism in Eucryptorrhynchus scrobiculatus (Coleoptera: Curculionidae). J Exp Biol 2023; 226:jeb245864. [PMID: 37736810 DOI: 10.1242/jeb.245864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
In adaptation to surrounding environmental stimuli, most insects exhibit defense behaviour (death feigning) to improve survival rates in the wild. However, the underlying mechanism of death feigning remains largely unknown. Here, we tested the neurophysiological pattern and behavioural traits of the death-feigning mechanism in the forestry pest Eucryptorrhynchus scrobiculatus. Using neuroanatomy, LC-MS/MS target metabolomics detection technology and qRT-PCR, we investigated the effects of neurochemicals and metabolic pathways in experimental weevils. Excision and drug tests were conducted to verify the key regulatory body parts involved in regulating the central nervous system in death feigning. Our results reconstructed the death-feigning mechanism of E. scrobiculatus: when the effective stimuli point of arousal weevils received mechanical stimulation, the thoracoabdominal ganglion transmitted signals into the brain through the ventral nerve cord, and then the brain regulated dopamine (DA) and serotonin (5-HT) metabolic pathways, reducing the expression of dopamine (dar2) and octopamine (oar1, oab2) receptor genes, finally inducing death feigning. Our study suggests that the variation of neurotransmitters in the brain is an important indicator of the physiological response of death feigning, and the results provide ecological and theoretical information for future investigations to reveal key behaviour and target genes for pest control.
Collapse
Affiliation(s)
- Huijuan Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University College of Forestry, Beijing 100083, China
- 2035 Future Laboratory, PIESAT Information Technology Co Ltd, Beijing 100089, China
| | - Lu Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University College of Forestry, Beijing 100083, China
| | - Junbao Wen
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University College of Forestry, Beijing 100083, China
| |
Collapse
|
29
|
Zhang X, Cao J, Chen J, Wang G, Li L, Wei X, Zhang R. Combined Effects of Fluoride and Dietary Seleno-L-methionine at Environmentally Relevant Concentrations on Female Zebrafish (Danio rerio) Liver: Histopathological Damages, Oxidative Stress and Inflammation. Biol Trace Elem Res 2023:10.1007/s12011-023-03853-3. [PMID: 37728845 DOI: 10.1007/s12011-023-03853-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023]
Abstract
Fluoride, a global environmental pollutant, is ubiquitous in aquatic environments and coexists with selenium, which can cause complex effects on exposed organisms. However, data on the interaction of fluoride and selenium remain scarce. In this study, female zebrafish (Danio rerio) were exposed to fluoride (80 mg/L sodium fluoride) and/or dietary selenomethionine for 30, 60 and 90 days, the effects on the liver of zebrafish were investigated. The results indicated that an increase in fluoride burden, inhibited growth and impaired liver morphology were recorded after fluoride exposure. Furthermore, fluoride alone caused oxidative stress and inflammation in the liver, as reflected by the increase in ROS and MDA contents, the reduction of anti-oxidative enzymes, the altered immune related enzymes (ACP, AKP, LZM and MPO) and the expression of IL-6, IL-1β, TNF-α, IL-10 and TGF-β. In contrast, co-exposure to fluoride and Se-Met decreased fluoride burden and restored growth. Furthermore, dietary Se-Met alleviated oxidative stress, inflammation and impaired morphology in liver trigger by fluoride. However, dietary Se-Met alone increased the activities of SOD and CAT. These results demonstrate that the protective effect of dietary Se-Met against chronic fluoride toxicity at a certain level.
Collapse
Affiliation(s)
- Xiulin Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Jinling Cao
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Jianjie Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Guodong Wang
- School of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Lijuan Li
- College of Food and Environment, Jinzhong College of Information, Taigu, 030801, Shanxi, China
| | - Xiaobing Wei
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Runxiao Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| |
Collapse
|
30
|
Liu P, Li D, Wang F, Xie L, Chen H. Transfer of Se from sediments to the western mosquitofish Gambusia affinis: Tissue distribution, accumulation, and effects on the antioxidant physiology. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 262:106663. [PMID: 37598521 DOI: 10.1016/j.aquatox.2023.106663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Selenium (Se) has been shown to cause various toxicities in predatory species (i.e., fish and birds) in Se-contaminated aquatic environments. However, trophic transfer of Se from abiotic environments to freshwater fish has been relatively less addressed. In this study, 2-month-old mosquitofish (Gambusia affinis) were fed Se-enriched oligochaete (Lumbriculus variegatus, exposed to different concentrations of Se(IV) at 0.0, 3.0, 10.0, and 30.0 µg/g dry weight for 7 days) for 45 days. Tissue distribution, Se speciation, and effects on the antioxidant physiology in G. affinis were assessed. The results showed Se was rapidly accumulated in the oligochaete, with 6.30 ± 1.20, 16.20 ± 2.10, and 34.50 ± 2.40 µg/g dw of total Se levels in the worms exposed to 3.0, 10.0, and 30.0 µg/g of Se(IV), respectively. Total Se levels were increased in a dose-dependent manner in fish tissues and Se(IV) from sediments was maternally transferred to the fish embryos. Se-Met-and Se-Cys-were the predominant Se species in the worm and fish tissues, accounting for a minimum of 91.01% of the total Se. Furthermore, increased lipid peroxidation and altered the activities of antioxidant enzymes and levels of GSH were noticed in G. affinis fed the Se-enriched L. variegatus. This study has demonstrated that Se(IV) is transferred from an abiotic vector to freshwater organisms, disturbing the antioxidant physiology in G. affinis and potentially their offspring. This study highlights the importance of dietary exposure on the accumulation and toxicity of Se in aquatic organisms.
Collapse
Affiliation(s)
- Ping Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Dan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China; School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Feifan Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| |
Collapse
|
31
|
Yu F, Hou ZS, Luo HR, Li HX, Cui XF, Li JL, Feng WR, Tang YK, Su SY, Gao QF, Xiao J, Xu P. Neurobehavioral disorders induced by environmental zinc in female zebrafish (Danio rerio): Insights from brain and intestine transcriptional and metabolic signatures. CHEMOSPHERE 2023:138962. [PMID: 37230304 DOI: 10.1016/j.chemosphere.2023.138962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/26/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
Human activities can cause zinc (Zn) contamination of aquatic environments. Zn is an essential trace metal, but effects of environmentally relevant Zn exposure on the brain-intestine axis in fish are poorly understood. Here, six-month-old female zebrafish (Danio rerio) were exposed to environmentally relevant Zn concentrations (0, 1.0, and 1.5 mg/L) for six weeks. Zn significantly accumulated in the brain and intestine, causing anxiety-like behaviors and altered social behaviors. Zn accumulation altered levels of neurotransmitters, including serotonin, glutamate, and γ-aminobutyric acid, in the brain and intestine, and these changes were directly associated with changes in behavior. Zn caused oxidative damage and mitochondrial dysfunction, and impaired NADH dehydrogenase, thereby dysregulating the energy supply in brain Zn exposure resulted in nucleotide imbalance and dysregulation of DNA replication and the cell cycle, potentially impairing the self-renewal of intestinal cells. Zn also disturbed carbohydrate and peptide metabolism in the intestine. These results indicate that chronic exposure to Zn at environmentally relevant concentrations dysregulates the bidirectional interaction of the brain-intestine axis with respect to neurotransmitters, nutrients, and nucleotide metabolites, thereby causing neurological disorder-like behaviors. Our study highlights the necessity to evaluate the negative impacts of chronic environmentally relevant Zn exposure on the health of humans and aquatic animals.
Collapse
Affiliation(s)
- Fan Yu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Zhi-Shuai Hou
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Hong-Rui Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Hong-Xia Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Xue-Fan Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian-Lin Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Wen-Rong Feng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yong-Kai Tang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Sheng-Yan Su
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Qin-Feng Gao
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Jun Xiao
- Key Laboratory of Comprehensive Development and Utilization of Aquatic Germplasm Resources of China (Guangxi) and ASEAN (Co-construction by Ministry and Province), China of Fishery Sciences, Nanning, 530021, China.
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
32
|
Wang K, Che W, Duan M, Wang C, Li X, He L. Effects of Broflanilide on Oxidative Stress and Expression of Apoptotic Genes in Zebrafish (Danio rerio) Gill. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:91. [PMID: 37156957 DOI: 10.1007/s00128-023-03733-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 04/20/2023] [Indexed: 05/10/2023]
Abstract
Broflanilide exerted negative impacts on the gill of zebrafish. Thus, in this study, zebrafish gill was used to assess the apoptosis toxicity of broflanilide by determining the levels of reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA) and apoptosis-related genes. The results found that the minimum threshold for the content and time of broflanilide affecting enzyme content and gene expression was 0.26 mg/L after 24 h exposure. After 96 h exposure, broflanilide could cause apoptosis and exerted significantly increased contents of ROS and MDA, while inhibiting the activities of SOD, CAT, and GPx at 0.26 and 0.57 mg/L. Broflanilide also had adverse effects on apoptosis-related genes, such as tumor protein p53 (p53), associated × (Bax), B-cell lymphama-2 (Bcl-2), caspase-3, caspase-9, and apoptotic protease activating factor-1(apaf-1), at 0.26 mg/L and 0.57 mg/L after 96 h exposure, respectively. These results provide new insight into the potential toxicity mechanisms of broflanilide in zebrafish gills.
Collapse
Affiliation(s)
- Kai Wang
- Plant Protection College, Shenyang Agricultural University, Shenyang, China.
| | - Wunan Che
- Plant Protection College, Shenyang Agricultural University, Shenyang, China
| | - Manman Duan
- College of Science, China Agricultural University, Beijing, China
| | - Chengju Wang
- College of Science, China Agricultural University, Beijing, China
| | - Xiuwei Li
- Plant Protection College, Shenyang Agricultural University, Shenyang, China
| | - Lu He
- Plant Protection College, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
33
|
Zhang M, Li X, Cui X, Li R, Ma Z, Gao X. Selenomethionine promotes ANXA2 phosphorylation for proliferation and protein synthesis of myoblasts and skeletal muscle growth. J Nutr Biochem 2023; 115:109277. [PMID: 36739096 DOI: 10.1016/j.jnutbio.2023.109277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Selenomethionine (Se-Met) has many beneficial effects on higher animals and human, and can regulate cellular physiology through distinct signaling pathways. However, the role and molecular mechanism of Se-Met in skeletal muscle growth remains unclear. In this study, we observed the effects of Se-Met on C2C12 myoblasts and skeletal muscle growth of mice, and explored the corresponding molecular mechanism. Se-Met affected proliferation and protein synthesis of C2C12 myoblasts in a hormesis type of relationship, and had an optimal stimulatory effect at 50 µM concentration. Se-Met also affected mTOR, ANXA2, and PKCα phosphorylation in the same manner. ANXA2 knockdown blocked the stimulation of Se-Met on cell proliferation and protein synthesis and inhibition of Se-Met on autophagy of C2C12 myoblasts. Western blotting analysis showed that PI3K inhibition blocked the stimulation of Se-Met on mTOR phosphorylation. ANXA2 knockdown further blocked the stimulation of Se-Met on PI3K and mTOR phosphorylation. Point mutation experiment showed that ANXA2 mediated the stimulation of Se-Met on the PI3K-mTOR signaling through phosphorylation at Ser26. PKCα interacted with ANXA2, and PKCα knockdown blocked the stimulation of Se-Met on ANXA2 phosphorylation at Ser26. Se-Met addition (7.5mg/kg diet, 4 weeks) increased mouse carcass weight, promoted gastrocnemius skeletal muscle growth and ANXA2 and mTOR phosphorylation in this tissue. Collectively, our findings reveal that Se-Met can promote proliferation and protein synthesis of myoblasts and skeletal muscle growth through ANXA2 phosphorylation.
Collapse
Affiliation(s)
- Minghui Zhang
- College of Animal Science, Yangtze University, Jingmi Road 88, Jingzhou, 434025, China; College of Life Science, Northeast Agricultural University, Changjiang Road 600, Xiangfang District, Harbin, 150030, China
| | - Xueying Li
- College of Animal Science, Yangtze University, Jingmi Road 88, Jingzhou, 434025, China; College of Life Science, Northeast Agricultural University, Changjiang Road 600, Xiangfang District, Harbin, 150030, China
| | - Xu Cui
- College of Animal Science, Yangtze University, Jingmi Road 88, Jingzhou, 434025, China; College of Life Science, Northeast Agricultural University, Changjiang Road 600, Xiangfang District, Harbin, 150030, China
| | - Rui Li
- College of Animal Science, Yangtze University, Jingmi Road 88, Jingzhou, 434025, China
| | - Zonghua Ma
- College of Life Science, Northeast Agricultural University, Changjiang Road 600, Xiangfang District, Harbin, 150030, China
| | - Xuejun Gao
- College of Animal Science, Yangtze University, Jingmi Road 88, Jingzhou, 434025, China
| |
Collapse
|
34
|
Wei X, Li X, Liu P, Li L, Chen H, Li D, Liu J, Xie L. Integrated physiological, biochemical, and transcriptomic analysis of thallium toxicity in zebrafish (Danio rerio) larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160265. [PMID: 36403832 DOI: 10.1016/j.scitotenv.2022.160265] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Although several studies have evaluated the effects of Thallium (Tl) in adult species of fish, the developmental toxicity of Tl has not been previously explored. In this study, zebrafish embryos (<4 h post fertilization (hpf)) were exposed to Tl at concentrations from 0.8 to 400 μg L-1 for 7 d. The results showed that the decreased hatching rate and increased malformation rate were observed in the larvae. The swimming velocity of larvae from 200 and 400 μg L-1 treatments was respectively reduced by ~26 % and 15 %. Histopathological analysis of liver indicated the number of cells of karyolysis (143 % and 202 %) and pyknosis (170 % and 131 %) were respectively increased in 200 and 400 μg L-1 Tl treatments. Meanwhile, the Tl body burden and metallothionein (MT) levels in the larvae were increased with elevated Tl concentrations. The level of malondialdehyde (MDA) was increased by ~20 to 51 % in all Tl treatments and total antioxidant capacity (TAC) was decreased by ~12 % at 200 μg L-1. The activities of Na+/K+-ATPase and protease were inhibited in 200 and 400 μg L-1 Tl treatments. Moreover, the transcripts of genes (Nrf2, HO-1, TNF-α, IL-1β, IL-8, IL-10, TGF) were significantly altered. In addition, a total of 930 differentially expressed genes (DEGs) and 1549 DEGs were found in the 200 and 400 μg L-1 treatments with 458 overlapped DEGs by transcriptomic analysis. The protein digestion and absorption, ECM-receptor interaction, and complement and coagulation cascades pathways were shown to be the most significantly enriched pathways. This study helps better understand the molecular mechanisms of Tl toxicity in fish.
Collapse
Affiliation(s)
- Xinrong Wei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao Li
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Ping Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lixia Li
- 810 Institute of Hydrogeology and Engineering Geology, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan 250014, China; Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan 250014, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
35
|
Wang R, Yue S, Huang C, Shen Z, Qiao Y, Charles S, Yu J, Cao Z, Li Z, Li Z. Uptake, distribution, and elimination of selenite in earthworm Eisenia fetida at sublethal concentrations based on toxicokinetic model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159632. [PMID: 36283532 DOI: 10.1016/j.scitotenv.2022.159632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/28/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Natural and anthropogenic causes have promoted the rapid increase in environmental selenium (Se) levels, and the complex Se metabolism and dynamic in organisms make it challenging to evaluate the toxicity and ecological risks. In this study, the kinetics of selenite in earthworm Eisenia fetida were investigated based on toxicokinetic (TK) model (uptake-elimination phases: 14-14 days). The results showed the highest sub-tissue Se concentrations in pre-clitellum (PC), post-clitellum (PoC) parts, and total earthworms were 95.71, 70.40, and 79.94 mg/kg, respectively, which indicates the distinctive Se uptake capacities of E. fetida. Se kinetic rates in PCs were faster than that of the total E. fetida for both uptake (Kus = 0.30-0.80 mg/kg/day) and elimination phases (Kee = 0.024-0.056 mg/kg/day). Longer half-life times (LT1/2) were observed in the total earthworms (17.85-47.15 d) than PCs (12.28-29.22 d), while non-significant difference was found for the kinetic Se bioaccumulation factor (BAFk) in PC and total earthworms (12-19), which demonstrates that Se can be efficiently bioaccumulated and eliminated in earthworm PC part. Besides, the significant increase Se concentration in PoC with rapid elimination in PC also illustrates that earthworms can alleviate the Se stress by the transformation strategy of Se from the head to tail tissues. In conclusion, the investigation of Se kinetic accumulation and elimination characteristics in this study is helpful for understanding the metabolism and detoxification processes of Se in earthworms, and also providing a theoretical basis for further Se risk assessment using TK model.
Collapse
Affiliation(s)
- Ruiping Wang
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| | - Shizhong Yue
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China.
| | - Caide Huang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China; Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxon OX10 8BB, UK
| | - Zhiqiang Shen
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Yuhui Qiao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Sandrine Charles
- Laboratoire de Biométrie et Biologie Évolutive Université de Lyon, Université Lyon 1, UMR CNRS 5558, Villeurbanne 69100, France
| | - Jiafeng Yu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| | - Zanxia Cao
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| | - Zhen Li
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, PR China
| | - Zhenghua Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| |
Collapse
|
36
|
Tan J, Liang C, Guo Y, Zou H, Guo Y, Ye J, Hou L, Wang X. Thyroid endocrine disruption and neurotoxicity of gestodene in adult female mosquitofish (Gambusia affinis). CHEMOSPHERE 2023; 313:137594. [PMID: 36538954 DOI: 10.1016/j.chemosphere.2022.137594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The frequent detection of progestins in various aquatic environments and their potential endocrine disruptive effects in fish have attracted increasing attention worldwide. However, data on their effects on thyroid function and neurotoxicity in fish are limited, and the underlying mechanisms remain unclear. Here, the effects of gestodene (GES, a common progestin) on the thyroid endocrine and nervous systems of mosquitofish (Gambusia affinis) were studied. Adult female fish were exposed to GES at environmentally relevant concentrations (4.4-378.7 ng/L) for 60 days. The results showed that exposure to 378.7 ng/L GES caused a significant decrease in fish growth compared with the control and a marked reduction in the total distance traveled (50.6%) and swimming velocity (40.1-61.9%). The triiodothyronine (T3) levels were significantly increased by GES in a dose-dependent manner, whereas those of tetraiodothyronine (T4) were significantly decreased only at the G500 concentration. The acetylcholinesterase (AChE) activity was decreased significantly in the 4.42 ng/L GES treatments, but increased significantly at 378.67 ng/L. In the brain, a strong increase in the transcriptional levels of bdnf, trh, and dio2 was observed in fish after the 378.7 ng/L treatment. In addition, chronic exposure to GES caused colloid depletion with a concentration-dependent manner in the thyroid, and angiectasis, congestion, and vacuolar necrosis in the brain. These findings provide a better understanding of the effects of GES and associated underlying mechanisms in G. affinis.
Collapse
Affiliation(s)
- Jiefeng Tan
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China; School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Chuyan Liang
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Yanfang Guo
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Hong Zou
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Yuqi Guo
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Jiahui Ye
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China.
| | - Xiaolan Wang
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China.
| |
Collapse
|
37
|
Yang J, Yan X, Liu H, Chen H, Zhang W, Dong W, Li D, Xie L. Laboratory study of Se speciation in the sediment and oligochaete Lumbriculus variegatus from an aquatic environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90435-90445. [PMID: 35870066 DOI: 10.1007/s11356-022-22108-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Sediments are the major sink for selenium (Se) in aquatic environments. Se speciation in sediments is crucial for its bioavailability and toxicity in benthos, but this is relatively understudied. In this study, the background levels of Se in the river sediments, fish flakes, and Lumbriculus variegatus were also detected. Then, the dynamic changes of selenium speciation and concentrations in sediments were investigated after adding selenite (Se(IV)) and seleno-L-methionine (Se-Met) in the sediments for 90 and 7 days, and the accumulation and depuration of Se(IV) and Se-Met for 7 days in the oligochaete L. variegatus were also explored. Without the presence of worms, the levels of Se(IV) in the sediments were relatively stable within 7 days but showed a decreasing trend during the 90 days of aging. In contrast, Se-Met in the sediments showed a sharp decrease within 3 days of aging. The LC50-96 h values of Se(IV) and Se-Met in L. variegatus were 372.6 and 9.4 μg/g, respectively. Interestingly, the dominant Se species in Se(IV)- or Se-Met-treated L. variegatus was Se-Met, whose level was increased with time in 7 days of exposure. Se was barely depurated from L. variegatus during the 8 days of the depuration period. This study has provided indispensable data on the levels of total Se in the abiotic and biotic matrices and the biodynamics of Se in a representative benthos, which could better understand the ecological risk of Se to the freshwater benthic communities.
Collapse
Affiliation(s)
- Jichen Yang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
- School of Environment, South China Normal University, University Town, West Waihuan Road 378, Guangzhou, 510006, China
| | - Xin Yan
- Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Hongsong Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
- School of Environment, South China Normal University, University Town, West Waihuan Road 378, Guangzhou, 510006, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
- School of Environment, South China Normal University, University Town, West Waihuan Road 378, Guangzhou, 510006, China
| | - Wei Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Dan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China.
- School of Environment, South China Normal University, University Town, West Waihuan Road 378, Guangzhou, 510006, China.
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
- School of Environment, South China Normal University, University Town, West Waihuan Road 378, Guangzhou, 510006, China
| |
Collapse
|
38
|
Wu L, Zeeshan M, Dang Y, Liang LY, Gong YC, Li QQ, Tan YW, Fan YY, Lin LZ, Zhou Y, Liu RQ, Hu LW, Yang BY, Zeng XW, Yu Y, Dong GH. Environmentally relevant concentrations of F-53B induce eye development disorders-mediated locomotor behavior in zebrafish larvae. CHEMOSPHERE 2022; 308:136130. [PMID: 36049635 DOI: 10.1016/j.chemosphere.2022.136130] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/19/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The perfluorooctane sulfonate alternative, F-53B, induces multiple physiological defects but whether it can disrupt eye development is unknown. We exposed zebrafish to F-53B at four different concentrations (0, 0.15, 1.5, and 15 μg/L) for 120 h post-fertilization (hpf). Locomotor behavior, neurotransmitters content, histopathological alterations, morphological changes, cell apoptosis, and retinoic acid signaling were studied. Histology and morphological analyses showed that F-53B induced pathological changes in lens and retina of larvae and eye size were significantly reduced as compared to control. Acridine orange (AO) staining revealed a dose-dependent increase in early apoptosis, accompanied by upregulation of p53, casp-9 and casp-3 genes. Genes related to retinoic acid signaling (aldh1a2), lens developmental (cryaa, crybb, crygn, and mipa) and retinal development (pax6, rx1, gant1, rho, opn1sw and opn1lw) were significantly downregulated. In addition, behavioral responses (swimming speed) were significantly increased, while no significant changes in the neurotransmitters (dopamine and acetylcholine) level were observed. Therefore, in this study we observed that exposure to F-53B inflicted histological and morphological changes in zebrafish larvae eye, induced visual motor dysfunctions, perturbed retinoid signaling and retinal development and ultimately triggering apoptosis.
Collapse
Affiliation(s)
- Luyin Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Li-Ya Liang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan-Chen Gong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing-Qing Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ya-Wen Tan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuan-Yuan Fan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
39
|
Cai W, MacIsaac HJ, Xu R, Zhang J, Pan X, Zhang Y, Yang J, Dixon B, Li J, Zi Y, Chang X. Abnormal neurobehavior in fish early life stages after exposure to cyanobacterial exudates. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114119. [PMID: 36174318 DOI: 10.1016/j.ecoenv.2022.114119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacterial harmful algal blooms (cHABs) pose a risk to exposed aquatic and terrestrial species. Numerous studies have addressed effects of single toxins while much less attention has been devoted to mixtures of cHAB metabolites that are continually released by living cyanobacteria. Neuro-impairment associated with cHABs has been reported in fish, though the mechanism remains unclear. Here we exposed embryos of Sinocyclocheilus grahami, an endangered fish, to Microcystis aeruginosa exudates (MaE) to evaluate neurotoxicity and the toxicity mechanism(s). We found that MaE affected embryonic development by increasing malformation and mortality rates and decreasing the fertilization rate. MaE also inhibited fish neurobehavior including touch response, social frequency, swimming distance, and aggravated light-stimulation response. Neurobehavior suppression resulted from a decrease in excitatory neurotransmitters acetylcholine and dopamine, even though receptors increased. MaE also affected gene and protein expression of neurotransmitters, synthetic and/or degrading enzymes, and receptors. Our findings shed light on specific mechanisms by which MaE induces neurotoxicity in early life stages in fish and contributes to improvement of the conservation strategy for this species.
Collapse
Affiliation(s)
- Wenwen Cai
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Hugh J MacIsaac
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Runbing Xu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Jinlong Zhang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Xiaofu Pan
- Yunnan Key Laboratory of Plateau Fish Breeding, Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yuanwei Zhang
- Yunnan Key Laboratory of Plateau Fish Breeding, Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Junxing Yang
- Yunnan Key Laboratory of Plateau Fish Breeding, Yunnan Engineering Research Center for Plateau-Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Jiaojiao Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Yuanyan Zi
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Xuexiu Chang
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada; College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China.
| |
Collapse
|
40
|
Assessing effects of guar gum viscosity on the growth, intestinal flora, and intestinal health of Micropterus salmoides. Int J Biol Macromol 2022; 222:1037-1047. [PMID: 36181882 DOI: 10.1016/j.ijbiomac.2022.09.220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/20/2022]
Abstract
A 56-day feeding trial was conducted to assess the effects of different viscous guar gum on the growth, intestinal flora, and intestinal health of Micropterus salmoides. Four practical diets with 42.5 % crude protein and 13.7 % crude lipid were formulated to contain 8 % cellulose and three different viscosities (2500, 5200, and 6000 mPa·s) of guar gum. Dietary guar gum inhibits fish growth and feed utilization, decreases the α-diversity of the intestinal flora, and negatively alters the intestinal flora structure and metabolite composition. High viscous guar gum down-regulated the intestinal tight junction, anti-inflammatory, and anti-apoptotic related gene's expression, decreased digesta butyrate/histamine ratio; and increased the abundance of Plesiomonas shigelloides. These results suggest that dietary guar gum adversely affects intestinal health by disrupting intestinal flora structure and metabolite composition, and that viscosity should be considered when using guar gum as a binder in aquafeeds.
Collapse
|
41
|
Ji J, Huang J, Cao N, Hao X, Wu Y, Ma Y, An D, Pang S, Li X. Multiview behavior and neurotransmitter analysis of zebrafish dyskinesia induced by 6PPD and its metabolites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156013. [PMID: 35588826 DOI: 10.1016/j.scitotenv.2022.156013] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The typical tire manufacturing additive 6PPD, its metabolites 6PPDQ and 4-Hydroxy should be monitored because of their ubiquitous presence in the environment and the high toxicity of 6PPDQ to coho salmon. The toxic effect of 6PPD and its metabolites have been revealed superficially, especially on behavioral characteristics. However, the behavioral indicators explored so far are relatively simple and the toxic causes are poorly understood. With this in mind, our work investigated the toxic effects of 6PPD, 6PPDQ and 4-Hydroxy on adult zebrafish penetratingly through machine vision, and the meandering, body angle, top time and 3D trajectory are used for the first time to show the abnormal behaviors induced by 6PPD and its metabolites. Moreover, neurotransmitter changes in the zebrafish brain were measured to explore the causes of abnormal behavior. The results showed that high-dose treatment of 6PPD reduced the velocity by 42.4% and decreased the time at the top of the tank by 91.0%, suggesting significant activity inhibition and anxiety. In addition, γ-aminobutyric acid and acetylcholine were significantly impacted by 6PPD, while dopamine exhibited a slight variation, which can explain the bradykinesia, unbalance and anxiety of zebrafish and presented similar symptoms as Huntingdon's disease. Our study explored new abnormal behaviors of zebrafish induced by 6PPD and its metabolites in detail, and the toxic causes were revealed for the first time by studying the changes of neurotransmitters, thus providing an important reference for further studies of the biological toxicity of 6PPD and its metabolites.
Collapse
Affiliation(s)
- Jiawen Ji
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Jinze Huang
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Niannian Cao
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Xianghong Hao
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Yanhua Wu
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Yongqiang Ma
- College of Sciences, China Agricultural University, Beijing 100193, China.
| | - Dong An
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Sen Pang
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Xuefeng Li
- College of Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
42
|
Nie Y, Wang Z, Yu S, Liu Y, Zhang L, Liu R, Zhou Z, Zhu W, Diao J. Combined effects of abamectin and temperature on the physiology and behavior of male lizards (Eremias argus): Clarifying adaptation and maladaptation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155794. [PMID: 35550905 DOI: 10.1016/j.scitotenv.2022.155794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Chemical pollution and global warming are two major threats to organisms, which can interact to affect the normal activities of living beings. In this study, to explore the effects of abamectin and high temperature on adaptability of lizard, male adult Eremias argus (a native Chinese lizard) were exposed to environmentally relevant concentrations of abamectin (0.02 mg·L-1 and 2 mg·L-1) and different temperature (26 °C and 32 °C) for 30 days. The fitness-related behaviors (locomotion, predation, and thermoregulation) of lizards were evaluated. Physiological effects were addressed using biochemical biomarkers related to oxidative stress, detoxification, and neurotransmitter content. The results showed that abamectin could affect the neurotransmitter systems, cause oxidative stress, and alters lizard locomotion and predation-related behaviors of lizards, but lizards up-regulating detoxification metabolic enzymes, exhibiting higher body temperature preference to alleviate the toxicity of abamectin, and compensate the increased energy demand for detoxification and repair damage by increasing food intake. After exposure to high temperature, lizards showed adaptation to high temperature (higher body temperature preference), the thermal compensation mechanisms may involve elevated Hsp70 levels and increased food intake. At the combined effects of abamectin and high temperature, more obvious behavioral disorders and more severe oxidative stress were observed, although lizards avoided the negative effects of overheating and pollutants by seeking thermal shelter and reducing energy expenditure, this may subsequently reduce foraging opportunities and the ability to obtain energy needed for vital physiological functions (i.e., growth, maintenance, and reproduction). From a long-term perspective, these short-term adaptive strategies will be detrimental to individual long-term survival and population sustainability, and may transformed into maladaptation.
Collapse
Affiliation(s)
- Yufan Nie
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Zikang Wang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Simin Yu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Yuping Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Luyao Zhang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Rui Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Wentao Zhu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China.
| |
Collapse
|
43
|
Li D, Sun W, Lei H, Li X, Hou L, Wang Y, Chen H, Schlenk D, Ying GG, Mu J, Xie L. Cyclophosphamide alters the behaviors of adult Zebrafish via neurotransmitters and gut microbiota. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 250:106246. [PMID: 35917676 DOI: 10.1016/j.aquatox.2022.106246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Cyclophosphamide, one of the earliest prescribed alkylating anticancer drugs, has been frequently detected in aquatic environments. However, its effects on fish behavior and associated mechanisms remain largely unknown. In this study, the behaviors, neurochemicals, and gut microbiota of adult zebrafish were investigated after 2 months of exposure to CP at 0.05, 0.5, 5, and 50 µg/L. Behavioral assays revealed that CP increased locomotion and anxiety, and decreased the cognition of zebrafish. The alteration of neurotransmitters and related gene expressions in the dopamine and gamma-aminobutyric acid pathways induced by CP may be responsible for the observed changes in locomotion and cognition of adult zebrafish. Meanwhile, CP increased the anxiety of adult zebrafish through the serotonin, acetylcholine, and histamine pathways in the brain. In addition, increased abundances of Fusobacteriales, Reyanellales, Staphylococcales, Rhodobacterals, and Patescibateria in the intestine at the CP-50 treatment were observed. The study has demonstrated that CP affects the locomotion, anxiety, and cognition in zebrafish, which might be linked with the dysfunction of neurochemicals in the brain. This study further suggests that the gut-brain axis might interact to modulate fish behaviors upon exposure to CP (maybe other organic pollutants). Further research is warranted to test this hypothesis.
Collapse
Affiliation(s)
- Dan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Weijun Sun
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Haojun Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Yongzhuang Wang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Nanning Normal University, Ministry of Education, Nanning 530001, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, Riverside, CA 92507, USA
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jingli Mu
- College of Geography and Oceanography, Minjiang University, Fuzhou 350108, PR China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
44
|
Zhang X, Chen J, Wang G, Chen H, Cao J, Xie L, Luo Y. Interactive effects of fluoride and seleno-l-methionine at environmental related concentrations on zebrafish (Danio rerio) liver via the gut-liver axis. FISH & SHELLFISH IMMUNOLOGY 2022; 127:690-702. [PMID: 35809884 DOI: 10.1016/j.fsi.2022.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Fluoride (F) is a ubiquitous aquatic environmental pollutant and co-exists with other pollutants to form combined pollution. Selenium (Se) is beneficial at low levels yet toxic at high levels and can interact with some metals. However, the interactive effects of F and Se on the liver in fish remains enigmatic. In this study, zebrafish (Danio rerio) were exposed to F (80 mg/L) and dietary seleno-l-methionine (Se-Met, 0.25, 0.5 and 1.0 μg/g dry weight) alone or in combination for 90 d. The results indicated that co-treatment to F and Se-Met attenuated the histopathological damage, oxidative stress, and inflammatory in the liver, compared with the F treatment alone. Meanwhile, dietary Se-Met treatment improved F-induced intestinal barrier dysfunction, increased the transcripts of tight junction proteins (ZO-1, Claudin-1 and Occludin), and restored the homeostasis of intestinal microbiota. Moreover, dietary Se-Met ameliorated F-induced intestinal and liver inflammation by inhibiting lipopolysaccharide (LPS) levels and transcripts of TLR4 and p65 in the intestine and liver. This study manifested that Se-Met alleviates F-induced liver and intestinal injury when both co-occur at specific concentrations, and that the gut-liver axis pathway may serve as a mechanistic base for these alleviative effects.
Collapse
Affiliation(s)
- Xiulin Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Jianjie Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Guodong Wang
- School of Biology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Jinling Cao
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Yongju Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, Guangxi, 530021, China.
| |
Collapse
|
45
|
Yu F, Hou ZS, Luo HR, Cui XF, Xiao J, Kim YB, Li JL, Feng WR, Tang YK, Li HX, Su SY, Song CY, Wang MY, Xu P. Zinc alters behavioral phenotypes, neurotransmitter signatures, and immune homeostasis in male zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154099. [PMID: 35240190 DOI: 10.1016/j.scitotenv.2022.154099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Anthropogenic activities discharge zinc into aquatic ecosystems, and the effects of long-term and low-concentration zinc exposure on fish behavior are unclear. We evaluated the behavior and physiology of male zebrafish (Danio rerio) after a 6-week exposure to 1.0 or 1.5 ppm (mg/L) zinc chloride. The exposure caused anxiety-like behaviors and altered the social preferences in both exposure groups. Analysis of transcriptional changes suggested that in the brain, zinc exerted heterogenetic effects on immune and neurotransmitter functions. Exposure to 1.0 ppm zinc chloride resulted in constitutive immune dyshomeostasis, while exposure to 1.5 ppm zinc chloride impaired the neurotransmitter glutamate. In the intestine, zinc dysregulated self-renewal of intestinal cells, a potential loss of defense function. Moreover, exposure to 1.5 ppm zinc chloride suppressed intestinal immune functions and dysregulated tyrosine metabolism. These behavioral alterations suggested that the underlying mechanisms were distinct and concentration-specific. Overall, environmental levels of zinc can alter male zebrafish behaviors by dysregulating neurotransmitter and immunomodulation signatures.
Collapse
Affiliation(s)
- Fan Yu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Zhi-Shuai Hou
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Ocean University of China, Qingdao 266003, China; Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Hong-Rui Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xue-Fan Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jun Xiao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Jian-Lin Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wen-Rong Feng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yong-Kai Tang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hong-Xia Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Sheng-Yan Su
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Chang-You Song
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Mei-Yao Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
46
|
Zhao T, Lv WH, Hogstrand C, Zhang DG, Xu YC, Xu YH, Luo Z. Sirt3-Sod2-mROS-Mediated Manganese Triggered Hepatic Mitochondrial Dysfunction and Lipotoxicity in a Freshwater Teleost. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8020-8033. [PMID: 35653605 DOI: 10.1021/acs.est.2c00585] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Exposure to excessive manganese (Mn) is toxic to humans and animals. However, the toxic effects and mechanisms of excessive Mn influencing the vertebrates have been highly overlooked. In the present study, dietary Mn overload significantly increased hepatic lipid and Mn contents, decreased superoxide dismutase 2 (Sod2) activity, increased the Sod2 acetylation level, and induced mitochondrial dysfunction; Mn induced mitochondrial dysfunction through Mtf1/sirtuin 3 (Sirt3)-mediated acetylation of Sod2 at the sites K55 and K70. Meanwhile, mitochondrial oxidative stress was involved in Mn-induced lipotoxicity. Mechanistically, Mn-induced lipotoxicity was via oxidative stress-induced Hsf1 nucleus translocation and its DNA binding capacity to the regions of a peroxisome proliferator-activated receptor g (pparg) promoter, which in turn induced the transcription of lipogenic-related target genes. For the first time, our study demonstrated that Mn-induced hepatic lipotoxicity via a mitochondrial oxidative stress-dependent Hsf1/Pparg pathway and Mtf1/sirt3-mediated Sod2 acetylation participated in mitochondrial dysfunction. Considering that lipid metabolism and lipotoxicity are widely used as the biomarkers for environmental assessments of pollutants, our study provided innovative and important insights into Mn toxicological and environmental evaluation in aquatic environments.
Collapse
Affiliation(s)
- Tao Zhao
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Wu-Hong Lv
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Christer Hogstrand
- Department of Nutritional Sciences, School of Life Course and Population Sciences, King's College London, London SE1 9NH, U.K
| | - Dian-Guang Zhang
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Chuang Xu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Huan Xu
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Hubei Hongshan Laboratory, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
47
|
Zhang W, Fan R, Luo S, Liu Y, Jin Y, Li Y, Xiong M, Chen Y, Jia L, Yuan X. Combined effects of chlorpyrifos and cyfluthrin on neurobehavior and neurotransmitter levels in larval zebrafish. J Appl Toxicol 2022; 42:1662-1670. [PMID: 35470462 DOI: 10.1002/jat.4334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/17/2022] [Accepted: 03/27/2022] [Indexed: 11/10/2022]
Abstract
Chlorpyrifos and cyfluthrin are insecticides commonly used in agriculture. The mixed residues of chlorpyrifos and cyfluthrin in the aquatic environment may have combined effects on non-target species. Therefore, studying the combined toxic effects and mechanisms of pesticide mixtures is of great significance to environmental risk assessment. To evaluate the risk of combined exposure, we examined the effects of both compounds, separately and together, on motor activity, acetylcholinesterase (AChE) activity, and neurotransmitter levels in larval zebrafish. Chlorpyrifos exposure significantly reduced functional motor capacity (swim distance and velocity) and enhanced meandering, while cyfluthrin exposure alone had no significant effects on swim parameters. However, combined exposure significantly reduced total swimming distance and mean velocity, and increased meandering. Both compounds alone and the combination significantly reduced AChE activity, and the combined effect was antagonistic. Combined exposure also significantly altered the concentrations of serotonin, serotonin precursors, and dopamine precursors, as well as concentrations of the amino acid neurotransmitters glycine, alanine, and aspartic acid. Combined exposure to chlorpyrifos and cyfluthrin exhibited distinct joint action modes in terms of neurobehavior, AChE activity, and neurotransmitter levels, thereby providing an experimental basis for assessing the combined exposure to chlorpyrifos and cyfluthrin's environmental risk.
Collapse
Affiliation(s)
- Wanjun Zhang
- Center of Disease Control and Prevention, PLA, Beijing, PR China.,State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Ruiqi Fan
- Center of Disease Control and Prevention, PLA, Beijing, PR China.,State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Sunlin Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Ying Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Yongpeng Jin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Yongchen Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Mengqin Xiong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Yiqiang Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Li Jia
- Center of Disease Control and Prevention, PLA, Beijing, PR China
| | - Xiaoyan Yuan
- Center of Disease Control and Prevention, PLA, Beijing, PR China.,School of Nursing and Health, Henan University, Kaifeng, PR China
| |
Collapse
|
48
|
Adeyemi JA, Ogunwole GA, Bamidele OS, Adedire CO. Effects of pre-treatment with waterborne selenium on redox homeostasis and humoral innate immune parameters in African catfish, Clarias gariepinus (Burchell, 1822), experimentally challenged with Serratia marcescens. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:409-418. [PMID: 35184248 DOI: 10.1007/s10695-022-01059-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Bacterial infections have been associated with immune dysfunction and oxidative stress in cultured fish species while essential elements could boost immunity and exhibit antioxidant properties in fish. This study was therefore aimed at determining the effects of pre-treatment with waterborne selenium on humoral immunity and redox status of Clarias gariepinus experimentally challenged with Serratia marcescens. Juveniles C. gariepinus were pre-treated with 50 µg/L selenium for 14 days after which they were challenged with 5 × 103 CFU/mL of S. marcescens via oral gavage for 24 or 48 h. The control fish were not pre-treated with selenium and not challenged with bacteria. Thereafter, fish were sacrificed, blood collected into EDTA bottles for the determination of plasma nitric oxide levels and respiratory burst, and the liver excised for the determination of reduced glutathione, lipid peroxidation, and activities of catalase, superoxide dismutase, and glutathione peroxidase. Fish that were pre-treated with selenium prior to bacterial challenge (Sel + Bact) had decreased levels of nitric oxide and lipid peroxidation but a significant increase in the levels of reduced glutathione (at 48-h post-infection period only) compared to the fish challenged with bacteria without prior selenium pre-treatment (Bact). The respiratory burst and catalase activity decreased significantly in the Sel + Bact group especially at 48-h post-infection period while the activity of glutathione peroxidase increased significantly in the Sel + Bact group (at 24-h post-infection period only) compared to the Bact group. The results from this study showed that infection with S. marcescens is capable of disrupting the immune system and redox homeostasis in C. gariepinus, while pre-treatment with selenium has the ability to improve the physiological status of fish that were challenged with bacteria probably through its antioxidant properties. HIGHLIGHT: The pre-treatment of Clarias gariepinus to waterborne selenium for 14 days improved the redox homeostasis and innate immunity of fish that were experimentally challenged with the bacterium, Serratia marcescens.
Collapse
Affiliation(s)
- Joseph A Adeyemi
- Department of Biology, School of Life Sciences, Federal University of Technology Akure, P.M.B. 704, Akure, Nigeria.
| | - Germaine A Ogunwole
- Department of Biology, School of Life Sciences, Federal University of Technology Akure, P.M.B. 704, Akure, Nigeria
| | - Olufemi S Bamidele
- Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, Nigeria
| | - Chris O Adedire
- Department of Biology, School of Life Sciences, Federal University of Technology Akure, P.M.B. 704, Akure, Nigeria
| |
Collapse
|
49
|
Qiu SQ, Huang GY, Fang GZ, Li XP, Lei DQ, Shi WJ, Xie L, Ying GG. Chemical characteristics and toxicological effects of leachates from plastics under simulated seawater and fish digest. WATER RESEARCH 2022; 209:117892. [PMID: 34861434 DOI: 10.1016/j.watres.2021.117892] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
In recent years, the ecological risks of plastics to marine environments and organisms have attracted increasing attention, especially the leachates from plastics. However, a comprehensive knowledge about the leaching characteristics and subsequent toxicological effects of leachates is still sparse. In this study, 15 different plastic products were immersed in simulated seawater and fish digest for 16 h. The leachates were analyzed through non-target and target analyses and their toxicological signatures were assessed by bioassays. In total, 240 additives were identified from the plastic leachates, among which plasticizers represented the most (16.7%), followed by antioxidants (8.7%) and flame retardants (7.1%). Approximately 40% of plastic leachates exhibited significant inhibitory effects on the bioluminescence using a recombinant luminescent assay. In addition, both the hyperactive and hypoactive behaviors were displayed in the larvae of marine medaka (Oryzias melastigma) exposed to some plastic leachates. In general, the number and amount of identified compounds under simulated fish digest were less than those under simulated seawater. However, the simulated fish digest leachates triggered higher toxicity. Redundancy analysis demonstrated that identified additives did not adequately explain the toxicological effects. Future research should focus on the identification of more additives in the plastic leachates and their potential ecological risks.
Collapse
Affiliation(s)
- Shu-Qing Qiu
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guo-Yong Huang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Gui-Zhen Fang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao-Pei Li
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dong-Qiao Lei
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lingtian Xie
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
50
|
Li D, Sun W, Chen H, Lei H, Li X, Liu H, Huang GY, Shi WJ, Ying GG, Luo Y, Xie L. Cyclophosphamide affects eye development and locomotion in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150460. [PMID: 34818796 DOI: 10.1016/j.scitotenv.2021.150460] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Cyclophosphamide (CP) is a broad-spectrum anticancer drug and has been frequently detected in aquatic environments due to its incomplete removal by wastewater treatment facilities and slow degradation in waters. Its toxicity in fish remains largely unknown. In this study, zebrafish eggs <4 h post fertilization (hpf) were exposed to CP at the concentrations from 0.5 to 50.0 μg/L until 168 hpf, and its toxicity was evaluated by biochemical, transcriptomic, and behavioral approaches. The results showed that malformation and mortality rates increased with CP concentrations. The 7-day malformation EC50 and mortality (LC30) by CP were calculated to be 86.8 μg/L and 7.5 mg/L, respectively. Inhibited startle response (light to dark) (a minimal of 19%) and reduced swimming velocity (a minimal of 30%) were observed in the CP-exposed larvae. The thicknesses of retinal ganglion layer, inner plexiform layer, and inner nuclear layer in the retina were increased after exposure to CP. Meanwhile, exposure to CP increased karyorrhexis and karyolysis in the liver tissue. Transcriptomic analysis identified 607 differentially expressed genes (DEGs) (159 up-regulated and 448 down-regulated). A significant reduction in the transcripts of sgk1 (the FoxO pathway), jun (the MAPK pathway), and diabloa (apoptosis pathway) were observed in the CP-treated larvae. This study has demonstrated that low concentrations of CP cause malformation, reduced swimming capacity, histopathological alterations in the retina and liver tissues, and interference on transcriptional expressions of key genes associated with different pathways. The ecological risk of CP and other anticancer drugs to aquatic organisms merits future investigation.
Collapse
Affiliation(s)
- Dan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Weijun Sun
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Haojun Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hongsong Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guo-Yong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yongju Luo
- Guangxi Academy of Fishery Sciences, Nanning 530021, China.
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|