1
|
Ren L, Luo X, Zhou JL, Jia Y, Yu C, Hu H, Li C, Wang Y. Biodegradation of triphenyl phosphate by a novel marine bacterial strain: Performance, mechanism, bioremediation and toxicity alleviation. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138664. [PMID: 40398036 DOI: 10.1016/j.jhazmat.2025.138664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/16/2025] [Accepted: 05/16/2025] [Indexed: 05/23/2025]
Abstract
Triphenyl phosphate (TPHP), a widely used organo-phosphorus flame retardant, poses environmental risks due to its persistence and bioaccumulation. In this study, Stutzerimonas frequens RL-XB02, a novel TPHP-degrading strain, was isolated from mangrove sediments. Strain RL-XB02 could completely degrade 50 mg/L of TPHP in 24 hours under various conditions (pH 6.0-9.0, 30-40°C and salinity 2.0-4.0 % (NaCl, w/v)) and the optimal conditions for biodegradation were characterized as pH 7.0, 30°C and salinity 3.0 %. TPHP degradation and growth of RL-XB02 aligned with first-order decay (R2=0.998) and S-Logistic (R2=0.997) model, respectively. Additionally, biofilm formation during TPHP degradation might explain its efficient degradation of hydrophobic compounds. Furthermore, strain RL-XB02 degraded TPHP via enzyme-mediated processes, with intracellular enzymes likely crucial. The metabolites identification and genomic analysis revealed that TPHP was transformed into phenol via stepwise de-esterification, which was assimilated by dual catechol branches of the β-ketoadipate pathway to cell growth. The molecular mechanisms of phenol catabolism were confirmed by RT-qPCR. Bioaugmentation of strain RL-XB02 could eliminate TPHP from marine samples and alleviate the toxicity of TPHP to plants. These findings advance our understanding of TPHP biodegradation pathways and propose a sustainable bioremediation strategy for TPHP contamination.
Collapse
Affiliation(s)
- Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaobing Luo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - John L Zhou
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Yang Jia
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Chuanming Yu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hanqiao Hu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chengyong Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yanyan Wang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
2
|
Wang H, Wang M, Li Y, Yang X, Xing X, Shi B. Chlorination enhances the phthalates release and increases the cytotoxicity and bacterial functions related to human disease of drinking water in plastic pipes. WATER RESEARCH 2025; 276:123218. [PMID: 39908590 DOI: 10.1016/j.watres.2025.123218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 11/10/2024] [Accepted: 01/28/2025] [Indexed: 02/07/2025]
Abstract
The interaction between water and pipe surfaces can deteriorate drinking water quality, thus threatening public health. However, uncertainties remain in the release mechanism of phthalates acid esters (PAEs) from plastic pipes and their effects on drinking water quality. Our study indicated that PAEs released from polyvinyl chloride (PVC) pipes was higher than polyethylene (PE) pipes. Chlorine disinfection increased the released PAEs concentration in effluents of PE-Cl2 and PVCCl2 pipes to 6.60∼7.87 μg/L and 7.45∼8.88 μg/L, respectively. PAEs release varied the CHO and tannins numbers in dissolved organic matter (DOM), increasing the cytotoxicity of water. Although chorine disinfection reduced the abundance of pathogenic bacteria, it upregulated the relative abundance of bacterial metabolic pathways related to human disease, such as drug resistance: antimicrobial and cancer: overview. In addition, various biofilm bacterial community compositions affected the interactions between bacteria and pipe surfaces, and the roughness of pipe surfaces increased after biofilm formation. The hydrophilicity of pipe surfaces also increased due to biofilm formation and chlorine disinfection. After five months of running, higher hydrophilicity of PVC pipe surface was observed than that of PE pipes, especially after chlorine disinfection, consequently enhancing PAEs release. In conclusion, chlorine disinfection accelerated PAEs release from plastic pipes by increasing the hydrophilicity of pipe surfaces, resulting in higher cytotoxicity and microbial risk of drinking water, especially in PVCCl2 pipes. This study revealed the influence of chlorine disinfection on PAEs release and its potential risk to public health, which provided insightful visions for the future drinking water security monitoring.
Collapse
Affiliation(s)
- Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Min Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yukang Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xinyuan Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xueci Xing
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Zhang B, Zhang Y, Zhang X, Qu J, Ruan C, Liao J, Alvarez PJJ, Yu P. Enhanced Phytopathogen Biofilm Control in the Soybean Phyllosphere by the Phoresy of Bacteriophages Hitchhiking on Biocontrol Bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40315344 DOI: 10.1021/acs.est.4c09851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
Phage-based biocontrol has shown notable advantages in protecting plants against pathogenic bacteria in agricultural settings compared to chemical-based bactericides. However, the efficiency and scope of phage biocontrol of pathogenic bacteria are limited by the intrinsic properties of phages. Here, we investigated pathogen biofilm eradication in the phyllosphere using the phoresy system of hitchhiking phages onto carrier biocontrol bacteria. The phoresy system efficiently removed the pathogen biofilm in the soybean phyllosphere, reducing the total biomass by 58% and phytopathogens by 82% compared to the untreated control. Biofilm eradication tests demonstrated a significant combined beneficial effect (Bliss independence model, CI < 1) as phages improved carrier bacteria colonization by 1.2-fold and carrier bacteria facilitated phage infection by 1.4-fold. Transcriptomic analysis showed that phoresy significantly enhanced motility (e.g., fliC and pilD genes) and energy metabolism (e.g., pgm and pgk genes) of carrier bacteria and suppressed the defense system (e.g., MSH3 and FLS2 genes) and energy metabolism (e.g., petB and petC genes) of pathogens. Metabolomics analysis revealed that the phoresy system stimulated the secretion of beneficial metabolites (e.g., flavonoid and tropane alkaloid) that could enhance stress response and phyllosphere protection in soybeans. Overall, the phoresy of phages hitchhiking on biocontrol bacteria offers a novel and effective strategy for phyllosphere microbiome manipulation and bacterial disease control.
Collapse
Affiliation(s)
- Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xu Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Chujin Ruan
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf 8600, Switzerland
| | - Jingqiu Liao
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering and Rice WaTER Institute, Rice University, Houston, Texas 77005, United States
| | - Pingfeng Yu
- State Key Laboratory of Soil Pollution Control and Safety, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Ma W, Kou Z, Fang M, Huo M, Xu X, Lin X, Huang L. Environmental peracetic acid increases antibiotic resistance in Streptococcus Suis. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138353. [PMID: 40286665 DOI: 10.1016/j.jhazmat.2025.138353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/08/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Disinfectants in the environment have important impacts on the occurrence of antibiotic resistant bacteria, posing a new threat to public health. Streptococcus suis (S. suis) can survive in the environment for three months and carries antibiotic resistance genes. However, it remains unclear whether disinfectants directly induce antibiotic resistance in S. suis. Here, we conducted induction experiments on the S. suis standard strain (CVCC609) with eight disinfectants at different concentrations and investigated their effects on the antibiotic resistance mechanism of S. suis. The results showed that only 64 mg L-1 peracetic acid (PAA) led to an increase (8-fold) in S. suis resistance to tiamulin (TIA) with genetic stability. The treatment also induced significant changes in the morphology and capsule of the mutant strains, as well as triggered an increase in reactive oxygen species and biofilms in bacterial cells, resulting in an emergency response. Moreover, PAA significantly decreased the cell membrane permeability and led to slight changes in the adenosine triphosphate level. The key differentially expressed genes are closely related to these resistance mechanisms. These results reveal the co-selection mechanism of S. suis resistance to PAA and TIA, and highlight the importance of standardized application of disinfectants in livestock and poultry farming.
Collapse
Affiliation(s)
- Wenjin Ma
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Ziyan Kou
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Mengya Fang
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Meixia Huo
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Xiangyue Xu
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Xudong Lin
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Lingli Huang
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agriculture University, Wuhan 430070, China; MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China.
| |
Collapse
|
5
|
Chen F, Chen J, Chen Y, He Y, Li H, Li J, Tian YS. Mechanistic insight into degradation of dibutyl phthalate by microorganism in sediment-water environment: Metabolic pathway, community succession, keystone phylotypes and functional genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125932. [PMID: 40020898 DOI: 10.1016/j.envpol.2025.125932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 03/03/2025]
Abstract
Despite extensive studies on dibutyl phthalate (DBP) degradation in isolated bacterial cultures, the primary degraders, community dynamics, and metabolic pathways involved in its biotransformation within complex sediment microbial communities remain poorly understood. In this study, we aimed to investigate the biotransformation mechanism of DBP by microorganisms in a sediment-water system by employing gas chromatography-mass spectrometry, 16S rRNA gene sequencing, metagenomic analysis, and bacterial isolation techniques. We observed that DBP biotransformation has three distinct phases: lag, degradative, and stationary. During the degradative phase, DBP gets progressively degraded by microorganisms, resulting in a microbial community with reduced stability and ambiguous boundaries. DBP, primarily metabolised by key phylotypes into monobutyl phthalate (MBP), phthalic acid (PA), and protocatechuic acid, subsequently enters the tricarboxylic acid (TCA) cycle. Through metagenomic analysis, ten functional genes from five genera were identified as crucial for DBP metabolism. Firstly, Arthrobacter degrades DBP into MBP and PA using pheA. Subsequently, Acinetobacter, Massilia, and Arthrobacter convert PA into TCA cycle intermediates using phtBAaAbAcAd and pcaCH. Concurrently, Hydrogenophaga and Acidovorax degrade PA to TCA cycle intermediates through pht1234 and ligAB. Genes related to amino acid synthesis, ABC transporters, and two-component regulatory systems also contribute significantly. Thus, the listed key bacteria, along with their diverse functional genes, collectively exhibit a high capacity for DBP degradation. This study provides insights into the bacterial responses to DBP degradation and offers a theoretical basis for the prevention and control of this pollutant.
Collapse
Affiliation(s)
- Fangyuan Chen
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Jinye Chen
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China; College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Yuchi Chen
- Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yun He
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Hui Li
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Jianfen Li
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Yang Sheng Tian
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China; School of Information and Engineering, Wuhan University of Technology, Wuhan, 430070, Hubei, China.
| |
Collapse
|
6
|
Gulizia AM, Bell SC, Kuek F, Santana MMF, Edmunds RC, Yeoh YK, Sato Y, Haikola P, van Herwerden L, Motti CA, Bourne DG, Vamvounis G. Biofilm development as a factor driving the degradation of plasticised marine microplastics. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:136975. [PMID: 39787933 DOI: 10.1016/j.jhazmat.2024.136975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/18/2024] [Accepted: 12/22/2024] [Indexed: 01/12/2025]
Abstract
Biodegradation of microplastics facilitated by natural marine biofouling is a promising approach for ocean bioremediation. However, implementation requires a comprehensive understanding of how interactions between the marine microbiome and dominant microplastic debris types (e.g., polymer and additive combinations) can influence biofilm development and drive biodegradation. To investigate this, polystyrene (PS) and polyvinyl chloride (PVC) microplastics (< 200 µm in diameter) were prepared either without any additives (i.e., virgin) or containing 15 wt% of the plasticisers diethylhexyl phthalate (DEHP) or bisphenol A (BPA). Each polymer-plasticiser microplastic combination was exposed to environmentally relevant conditions in a simulated seawater mesocosm representative of tropical reef waters over a 21-day period to allow for natural biofilm development. Following this, microplastic degradation and the colonising bacterial biofilm was assessed as a function of time, polymer and plasticiser type using infrared, thermal, gel permeation and surface characterisation techniques, as well as 16S ribosomal RNA bacterial gene sequencing, respectively. Together, these analyses revealed time-, polymer- and plasticiser-dependent degradation, particularly of the PS-BPA microplastics. Degradation of the PS-BPA microplastics also coincided with changes in bacterial community composition and an increased total relative abundance of putative biodegradative bacteria. These findings indicate that the metabolic potential and biodegradative capability of the colonising marine biofilm can be significantly impacted by the chemical properties of the microplastic substrate, even within short timeframes.
Collapse
Affiliation(s)
- Alexandra M Gulizia
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, QLD 4811, Australia; School of Design, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC 3000, Australia; Bioplastics Innovation Hub (BIH), Food Futures Institute, Murdoch University, Perth, WA 6150, Australia.
| | - Sara C Bell
- AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, QLD 4811, Australia; Australian Institute of Marine Science (AIMS), Townsville, QLD 4810, Australia
| | - Felicity Kuek
- Australian Institute of Marine Science (AIMS), Townsville, QLD 4810, Australia
| | - Marina M F Santana
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, QLD 4811, Australia; Australian Institute of Marine Science (AIMS), Townsville, QLD 4810, Australia
| | - Richard C Edmunds
- Australian Institute of Marine Science (AIMS), Townsville, QLD 4810, Australia
| | - Yun Kit Yeoh
- AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, QLD 4811, Australia; Australian Institute of Marine Science (AIMS), Townsville, QLD 4810, Australia
| | - Yui Sato
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; Australian Institute of Marine Science (AIMS), Townsville, QLD 4810, Australia
| | - Pirjo Haikola
- School of Design, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC 3000, Australia; Australian Institute of Marine Science (AIMS), Townsville, QLD 4810, Australia
| | - Lynne van Herwerden
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Cherie A Motti
- AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, QLD 4811, Australia; Australian Institute of Marine Science (AIMS), Townsville, QLD 4810, Australia
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, QLD 4811, Australia; Australian Institute of Marine Science (AIMS), Townsville, QLD 4810, Australia
| | - George Vamvounis
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
7
|
Wu L, Zhang X, Jin D, Wu P. Insights into combined stress mechanisms of microplastics and antibiotics on anammox: A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124947. [PMID: 40081039 DOI: 10.1016/j.jenvman.2025.124947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/20/2025] [Accepted: 03/09/2025] [Indexed: 03/15/2025]
Abstract
The microplastic and antibiotic pollution poses a major threat to human health and natural ecology. Wastewater treatment systems act as a link between human societies and natural ecosystems. Microplastics (MPs) and antibiotics (ATs) in wastewater endanger the stabilization of the anaerobic ammonium oxidation (anammox) system. However, most existing studies have primarily concentrated on the effects and stress mechanisms of either MPs-induced or ATs-induced stress on anammox. A comprehensive and holistic overview of the effects and underlying mechanisms of the combined stress exerted on anammox by both MPs and ATs is currently lacking. This review concludes the effects of MPs and ATs on anammox bacteria (AnAOB) and describes the mechanisms of the effects of these two emerging contaminants on AnAOB. Subsequently, the effects that the combined stress of MPs and ATs can have on the anammox system are reviewed. The adsorption of ATs by MPs, an indispensable mechanism affecting the combined stress, is explained. Additionally, the effect of MPs' aging on their ability to adsorb ATs is presented. Finally, this paper proposes to alleviate the combined stress of MPs and ATs by enriching biofilms and points out the risk of propagation of ARGs under the combined stress. This review sheds light on valuable insights into the combined stress of MPs and ATs on anammox and points out future research directions for this combined stress.
Collapse
Affiliation(s)
- Long Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Da Jin
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
8
|
Tao Y, Xu J, Li A, Jiang Z, Ma N, Sun R, Zhang Y. Kill two birds with one stone: Biochar immobilised polydopamine coated compound bacterial agent for remediation of dibutyl phthalate contaminated soil. ENVIRONMENTAL RESEARCH 2025; 269:120872. [PMID: 39824271 DOI: 10.1016/j.envres.2025.120872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/31/2024] [Accepted: 01/15/2025] [Indexed: 01/20/2025]
Abstract
The severe contamination of the plasticizer dibutyl phthalate (DBP) in agriculture soils is often accompanied by a decrease in nutrient utilization. Though the combined application of a variety of microorganisms can simultaneously address the problems of soil contamination and nutrient deprivation, the activity and function of microorganisms can be severely inhibited by DBP, and studies on their protection under DBP contamination are almost non-existent. In this study, a compound bacterial agent KPSB was prepared by optimising with Fe3O4-modified biochar loaded with DBP-degrading bacterium Enterobacterium sp. DNB-S2 and polydopamine (PDA)-coated potassium-solubilizing bacterium Paenibacillus sp. KT. The results showed that KPSB was able to simultaneously remove DBP and increase the soil available potassium (K) content. PDA has good biocompatibility and shielding effect, and the strain KT coated by it has more complete cell membrane and stronger ability to secrete low molecular weight organic acids to promote K solubilization. The Fe3O4-modified biochar with suitable pore structure, large specific surface area and abundant functional groups could provide a good growth microenvironment for functional microorganisms and support the growth of strains while promoting the degradation of DBP. The expression of DBP-degradation-related genes was significantly increased in KPSB, which promoted the removal of DBP. In addition, KPSB has good acid and alkali resistance and a wide range of temperature adaptability, and is able to remove DBP and increase the available K content better under different environmental conditions. These results will provide new perspectives for the research of in situ soil remediation technology.
Collapse
Affiliation(s)
- Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jiaming Xu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ang Li
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ningyuan Ma
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Rui Sun
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
9
|
Xu Z, Li C, Xiong J, Hu S, Ma Y, Li S, Ren X, Huang B, Pan X. The ecological security risks of phthalates: A focus on antibiotic resistance gene dissemination in aquatic environments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124488. [PMID: 39946805 DOI: 10.1016/j.jenvman.2025.124488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/14/2024] [Accepted: 02/04/2025] [Indexed: 02/27/2025]
Abstract
Antibiotic resistance genes (ARGs) have become a major focus in environmental safety and human health, with concerns about non-antibiotic substances like microplastics facilitating their horizontal gene transfer. Phthalate esters (PAEs), as ubiquitous plastic additives, are prevalent in aquatic environments, yet there remains a dearth of studies examining their impacts on ARG dissemination. This study focuses on dibutyl phthalate (DBP), a prototypical PAE, to assess its potential influence on the conjugative transfer of ARGs along with the related molecular mechanisms. The results revealed that DBP exposure at environmentally relevant concentrations significantly promoted the conjugative transfer of RP4 plasmid-mediated ARGs by up to 2.7-fold compared to that of the control group, whereas it severely suppressed the conjugation at a high concentration (100 μg/L). The promotion of conjugation transfer by low-concentration DBP (0.01-10 μg/L) was mainly attributed to the stimulation of ROS, enhanced membrane permeability, increased energy synthesis, increased polymeric substances secretion, and upregulation of conjugation-related genes. Conversely, high DBP exposure induced oxidative damage and reduced ATP synthesis, resulting in the suppression of ARG conjugation. Notably, donor and recipient bacteria responded differently to DBP-induced oxidative stress. This study explores the environmental behavior of DBP in the water environment from the perspective of ARG propagation and provides essential data and theoretical insights to raise public awareness about the ecological security risks of PAEs.
Collapse
Affiliation(s)
- Zhixiang Xu
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China; Southwest United Graduate School, Kunming, 650092, China.
| | - Caiqing Li
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jinrui Xiong
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China; Southwest United Graduate School, Kunming, 650092, China
| | - Siyuan Hu
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yitao Ma
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China; Southwest United Graduate School, Kunming, 650092, China
| | - Siyuan Li
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiaomin Ren
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Bin Huang
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Xuejun Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming, 650500, China; Southwest United Graduate School, Kunming, 650092, China.
| |
Collapse
|
10
|
Katnic SP, Gupta RK. From biofilms to biocatalysts: Innovations in plastic biodegradation for environmental sustainability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124192. [PMID: 39842313 DOI: 10.1016/j.jenvman.2025.124192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/27/2024] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
The increase in plastic waste has evolved into a severe environmental crisis, which requires innovative recycling technologies to repurpose used plastic with adequate environmental protection. This review highlights the urgent need for innovative approaches to the treatment and degradation of post-use plastics. It investigates the promising role of biofilms in the biodegradation of polymers, especially for polymers such as polyethylene terephthalate (PET), polyurethane (PU), and polyethylene (PE). By examining biofilms, researchers can determine key enzymes involved in polymer degradation and improve their efficiency through genetic engineering. In addition, the review explores in detail the structure and development of biofilms on polymeric surfaces, elucidating the role of specific microbial strains necessary for biofilm formation and maintenance. Techniques for identifying enzymes within biofilms and improving their degradation ability are also discussed. The review concludes with recent discoveries in enzyme isolation and the key role of biofilms in the degradation and recycling of major plastic pollutants such as PET, PU, and PE. These findings highlight the potential of biofilm-derived enzymes to promote sustainable polymer recycling.
Collapse
Affiliation(s)
- Slavica Porobic Katnic
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS, 66762, USA; University of Belgrade, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, 11000, Serbia
| | - Ram K Gupta
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS, 66762, USA; Department of Chemistry, Pittsburg State University, Pittsburg, KS, 66762, USA.
| |
Collapse
|
11
|
Li X, Cai S, Xu M. Nanoscale zero-valent iron alleviated horizontal transfer of antibiotic resistance genes in soil: The important role of extracellular polymeric substances. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135902. [PMID: 39303615 DOI: 10.1016/j.jhazmat.2024.135902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/23/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Extracellular polymeric substances (EPS) are tightly related to the horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs), but often neglected in soil. In this study, nanoscale zero-valent iron (nZVI) was utilized for attenuation of ARGs in contaminated soil, with an emphasis on its effects on EPS secretion and HGT. Results showed during soil microbe cultivation exposed to tetracycline, more EPS was secreted and significant increase of tet was observed due to facilitated HGT. Notably, copies of EPS-tet accounted for 71.39 % of the total tet, implying vital effects of EPS on ARGs proliferation. When co-exposed to nZVI, EPS secretion was decreased by 38.36-71.46 %, for that nZVI could alleviate the microbial oxidative stress exerted by tetracycline resulting in downregulation of genes expression related to the c-di-GMP signaling system. Meanwhile, the abundance of EPS-tet was obviously reduced from 7.04 to 5.12-6.47 log unit, directly causing decrease of total tet from 7.19 to 5.68-6.69 log unit. For the reduced tet, it was mainly due to decreased EPS secretion induced by nZVI resulting in inhibition of HGT especially transformation of the EPS-tet. This work gives an inspiration for attenuation of ARGs dissemination in soil through an EPS regulation strategy.
Collapse
Affiliation(s)
- Xu Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China
| | - Shujie Cai
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China.
| |
Collapse
|
12
|
Xu D, Liu T, Pan C, Guo L, Guo J, Zheng P, Zhang M. Novel ellipsoid-like granules exhibit enhanced anammox performance compared to sphere-like granules. WATER RESEARCH X 2024; 25:100270. [PMID: 39524568 PMCID: PMC11550336 DOI: 10.1016/j.wroa.2024.100270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/01/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Anammox granular sludge (AnGS) serves as an important platform for cost-effective nitrogen removal from wastewater. Different to the traditionally sphere-like granules, a novel type of AnGS in a unique ellipsoid-like shape was obtained through enhancing shear force. The ellipsoid-like AnGS significantly exhibited a smaller aspect ratio (-25.1 %) and granular size (-11.8 %), compared to traditional sphere-like AnGS (p < 0.01). Comprehensive comparisons showed that ellipsoid-like AnGS possessed a significantly higher extracellular polymeric substances (EPS) content and strength, as well as an enhanced mass transfer and a higher viable bacteria proportion due to the larger substrate permeable zone (p < 0.01). Additionally, the anammox bacterial abundance (Candidatus Kuenenia) was 12.2 % higher in ellipsoid-like AnGS than in sphere-like AnGS. All these characteristics of ellipsoid-like AnGS jointly increased the specific anammox activity by 29.0 % and nitrogen removal capacity by 22.6 %, compared to sphere-like AnGS. Further fluid field simulation suggested the enhanced flow shear on the side surface of AnGS likely drove the formation of ellipsoid-like AnGS. The higher shear force on the side surface led to an increase of EPS content (especially hydrophobic protein) and elastic modulus, thus constraining lateral expansion. This study sheds light on impacts of granular shape, an overlooked morphological factor, on anammox performance. The ellipsoid-like AnGS presented herein also offers a unique and promising aggregate to enhance anammox performance.
Collapse
Affiliation(s)
- Dongdong Xu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Chao Pan
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Leiyan Guo
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Ping Zheng
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China
| | - Meng Zhang
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| |
Collapse
|
13
|
Ke Y, Sun W, Xue Y, Yuan Z, Zhu Y, Chen X, Yan S, Li Y, Xie S. Pipe material and natural organic matter impact drinking water biofilm microbial community, pathogen profiles and antibiotic resistome deciphered by metagenomics assembly. ENVIRONMENTAL RESEARCH 2024; 262:119964. [PMID: 39260724 DOI: 10.1016/j.envres.2024.119964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Biofilms in drinking water distribution systems (DWDSs) are a determinant to drinking water biosafety. Yet, how and why pipe material and natural organic matter (NOM) affect biofilm microbial community, pathogen composition and antibiotic resistome remain unclear. We characterized the biofilms' activity, microbial community, antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and pathogenic ARG hosts in Centers for Disease Control and Prevention (CDC) reactors with different NOM dosages and pipe materials based on metagenomics assembly. Biofilms in cast iron (CI) pipes exhibited higher activity than those in polyethylene (PE) pipes. NOM addition significantly decreased biofilm activity in CI pipes but increased it in PE pipes. Pipe material exerted more profound effects on microbial community structure than NOM. Azospira was significantly enriched in CI pipes and Sphingopyxis was selected in PE pipes, while pathogen (Ralstonia pickettii) increased considerably in NOM-added reactors. Microbial community network in CI pipes showed more edges (CI 13520, PE 7841) and positive correlation proportions (CI 72.35%, PE 61.69%) than those in PE pipes. Stochastic processes drove assembly of both microbial community and antibiotic resistome in DWDS biofilms based on neutral community model. Bacitracin, fosmidomycin and multidrug ARGs were predominant in both PE and CI pipes. Both pipe materials and NOM regulated the biofilm antibiotic resistome. Plasmid was the major MGE co-existing with ARGs, facilitating ARG horizontal transfer. Pathogens (Achromobacter xylosoxidans and Ralstonia pickettii) carried multiple ARGs (qacEdelta1, OXA-22 and aadA) and MGEs (integrase, plasmid and transposase), which deserved more attention. Microbial community contributed more to ARG change than MGEs. Structure equation model (SEM) demonstrated that turbidity and ammonia affected ARGs by directly mediating Shannon diversity and MGEs. These findings might provide a technical guidance for controlling pathogens and ARGs from the point of pipe material and NOM in drinking water.
Collapse
Affiliation(s)
- Yanchu Ke
- School of Environment, Tsinghua University, Beijing, 100084, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Fujian Provincial Key Laboratory of Soil Environment Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing, 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou, 215163, China.
| | - Yanei Xue
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Hong Kong, SAR, China
| | - Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shuang Yan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yangyang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
14
|
Wu G, Wan Q, Lu J, Wen G. Impact of metal ions on PMS/Cl - disinfection efficacy: Enhancing or impeding microbial inactivation? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176087. [PMID: 39255943 DOI: 10.1016/j.scitotenv.2024.176087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/24/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Peroxymonosulfate (PMS) is an eco-friendly disinfectant gaining attention. This study examined the influence of metal ions (Co(II), Cu(II), Fe(II)) on PMS disinfection with chloride ions (Cl-) against waterborne microorganisms, encompassing both bacteria and fungal spores. The findings elucidated that metal ions augment the inactivation of bacteria in the PMS/Cl- system while concurrently impeding the inactivation of fungal spores. Specifically, the PMS/Co(II)/Cl- process increased E. coli inactivation rates by 2.25 and 2.75 times compared to PMS/Co(II) and PMS/Cl-, respectively. Conversely, PMS/Me(II)/Cl- generally exhibited a diminished inactivation capacity against the three fungal spores compared to PMS/Cl-, albeit surpassing the efficacy of PMS/Me(II). For instance, the inactivation levels of A. niger by PMS/Cl-, PMS/Cu(II)/Cl-, and PMS/Cu(II) are 4.47-log, 1.92-log, and 0.11-log, respectively. Notably, fungal spores demonstrated a substantially higher resistance to disinfectants compared to bacteria. Differences in microbial susceptibility were linked to cell wall structure, composition, antioxidant defenses, and reactive species generation, such as hydroxyl radicals (•OH), sulfate radicals (SO4•-), and reactive chlorine species (RCS). This study demonstrated the novel and unique phenomenon of metal ions' dual role in modulating the PMS/Cl- disinfection process, which has not been reported before and has important implications for the field of water treatment.
Collapse
Affiliation(s)
- Gehui Wu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiqi Wan
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jinsuo Lu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Green Building, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gang Wen
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
15
|
Wang HB, Wu YH, Sun Y, Chen Z, Xu YQ, Ikuno N, Koji N, Hu HY. Ozone-Resistant Bacteria, an Inconvenient Hazard in Water Reclamation: Resistance Mechanism, Propagating Capacity, and Potential Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17908-17915. [PMID: 39344972 DOI: 10.1021/acs.est.4c04860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Resistant bacteria have always been of research interest worldwide. In the urban water system, the increased disinfectant usage gives more chances for undesirable disinfection-resistant bacteria. As the strongest oxidative disinfectant in large-scale water treatment, ozone might select ozone-resistant bacteria (ORB), which, however, have rarely been reported and are inexplicit for their resistant mechanisms and physiological characteristics. In this study, six strains of ORB were screened from a water reclamation plant in Beijing. Three of them (O7, CR19, and O4) were more resistant to ozone than all previously reported ORB or even spores. The ozone consumption capacity of extracellular polymeric substances and cell walls was proved to be the main sources of bacterial ozone resistance, rather than intracellular antioxidant enzymes. The transcriptome results elucidated that strong ORB possessed a combined antioxidant mechanism consisting of the enhanced transcription of protein synthesis, protein export, and polysaccharide export genes (LptF, LptB, NodJ, LivK, LviG, MetQ, MetN, and GltU). This study confirmed the existence of ORB in urban water systems and brought doubts to the idea of a traditional control strategy against chlorine-resistant bacteria. A salient "trade-off" effect between the ozone resistance and propagation ability indicated the weakness and potential control approaches of ORB.
Collapse
Affiliation(s)
- Hao-Bin Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing 100084, PR China
- Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing 100084, PR China
- Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yige Sun
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing 100084, PR China
- Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing 100084, PR China
- Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yu-Qing Xu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing 100084, PR China
- Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Nozomu Ikuno
- Kurita Water Industries Ltd, Nakano-ku, Tokyo 164-0001, Japan
| | - Nakata Koji
- Kurita Water Industries Ltd, Nakano-ku, Tokyo 164-0001, Japan
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing 100084, PR China
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Jiangsu, Suzhou 215163, PR China
| |
Collapse
|
16
|
Wang H, Tao X, Yin H, Xing X, Shi B. The perfluorooctanoic acid accumulation and release from pipelines promoted growth of bacterial communities and opportunistic pathogens with different antibiotic resistance genes in drinking water. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135600. [PMID: 39180999 DOI: 10.1016/j.jhazmat.2024.135600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
The spread of opportunistic pathogens (OPs) and antibiotic resistance genes (ARGs) through drinking water has already caused serious human health issues. There is also an urgent need to know the effects of perfluorooctanoic acid (PFOA) on OPs with different ARGs in drinking water. Our results suggested that PFOA accumulation and release from the pipelines induced its concentration in pipelines effluents increase from 0.03 ± 0.01 μg/L to 0.70 ± 0.01 μg/L after 6 months accumulation. The PFOA also promoted the growth of Hyphomicrobium, Microbacterium, and Bradyrhizobium. In addition, PFOA accumulation and release from the pipelines enhanced the metabolism and tricarboxylic acid (TCA) cycle processes, resulting in more extracellular polymeric substances (EPS) production. Due to EPS protection, Pseudomonas aeruginosa and Legionella pneumophila increased to (7.20 ± 0.09) × 104 gene copies/mL, and (8.85 ± 0.11) × 102 gene copies/mL, respectively. Moreover, PFOA also enhanced the transfer potential of different ARGs, including emrB, mdtB, mdtC, mexF, and macB. The main bacterial community composition and the main OPs positively correlated with the main ARGs and mobile genetic elements (MGE)-ARGs significantly. Therefore, PFOA promoted the propagation of OPs with different ARGs. These results are meaningful for controlling the microbial risk caused by the OPs with ARGs and MGE-ARGs in drinking water.
Collapse
Affiliation(s)
- Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiangkai Tao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hong Yin
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xueci Xing
- Key Laboratory for Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
17
|
Liu H, Chen H, Ma Z, Zhang Y, Zhang S, Zhao D, Yao Z, Zhou T, Wang Z. Plumbagin enhances antimicrobial and anti-biofilm capacities of chlorhexidine against clinical Klebsiella pneumoniae while reducing resistance mutations. Microbiol Spectr 2024; 12:e0089624. [PMID: 39162533 PMCID: PMC11448042 DOI: 10.1128/spectrum.00896-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/11/2024] [Indexed: 08/21/2024] Open
Abstract
With the widespread misuse of disinfectants, the clinical susceptibility of Klebsiella pneumoniae (K. pneumoniae) to chlorhexidine (CHX) has gradually diminished, posing significant challenges to clinical disinfection and infection control. K. pneumoniae employs overexpression of efflux pumps and the formation of thick biofilms to evade the lethal effects of CHX. Plumbagin (PLU) is a natural plant extract that enhances membrane permeability and reduces proton motive force. In this study, we elucidated the synergistic antimicrobial activity of PLU in combination with CHX, effectively reducing the MIC of CHX against K. pneumoniae to 1 µg/mL and below. Crucially, through crystal violet staining and confocal laser scanning microscopy live/dead staining, we discovered that PLU significantly enhances the anti-biofilm capability of CHX. Mechanistically, experiments involving membrane permeability, alkaline phosphatase leakage, reactive oxygen species, and RT-qPCR suggest that the combination of PLU and CHX improves the permeability of bacterial inner and outer membranes, promotes bacterial oxidative stress, and inhibits oqxA/B efflux pump expression. Furthermore, we conducted surface disinfection experiments on medical instruments to simulate clinical environments, demonstrating that the combination effectively reduces bacterial loads by more than 3 log10 CFU/mL. Additionally, results from resistance mutation frequency experiments indicate that combined treatment reduces the generation of resistant mutants within the bacterial population. In summary, PLU can serve as an adjuvant, enhancing the anti-biofilm capability of CHX and reducing the occurrence of resistance mutations, thereby extending the lifespan of CHX.IMPORTANCEAs disinfectants are extensively and excessively utilized worldwide, clinical pathogens are progressively acquiring resistance against these substances. However, high concentrations of disinfectants can lead to cross-resistance to antibiotics, and concurrent use of different disinfectants can promote bacterial resistance mutations and facilitate the horizontal transfer of resistance genes, which poses significant challenges for clinical treatment. Compared with the lengthy process of developing new disinfectants, enhancing the effectiveness of existing disinfectants with natural plant extracts is important and meaningful. CHX is particularly common and widely used compared with other disinfectants. Meanwhile, Klebsiella pneumoniae, as a clinically significant pathogen, exhibits high rates of resistance and pathogenicity. Previous studies and our data indicate a significant decrease in the sensitivity of clinical K. pneumoniae to CHX, highlighting the urgent need for novel strategies to address this issue. In light of this, our research is meaningful.
Collapse
Affiliation(s)
- Haifeng Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Huanchang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Zhexiao Ma
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Shihang Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Deyi Zhao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhuocheng Yao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Zhongyong Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| |
Collapse
|
18
|
Durante‐Rodríguez G, de Francisco‐Polanco S, Fernández‐Arévalo U, Díaz E. Engineering bacterial biocatalysts for the degradation of phthalic acid esters. Microb Biotechnol 2024; 17:e70024. [PMID: 39365609 PMCID: PMC11451385 DOI: 10.1111/1751-7915.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
Phthalic acid esters (PAEs) are synthetic diesters derived from o-phthalic acid, commonly used as plasticizers. These compounds pose significant environmental and health risks due to their ability to leach into the environment and act as endocrine disruptors, carcinogens, and mutagens. Consequently, PAEs are now considered major emerging contaminants and priority pollutants. Microbial degradation, primarily by bacteria and fungi, offers a promising method for PAEs bioremediation. This article highlights the current state of microbial PAEs degradation, focusing on the major bottlenecks and associated challenges. These include the identification of novel and more efficient PAE hydrolases to address the complexity of PAE mixtures in the environment, understanding PAEs uptake mechanisms, characterizing novel o-phthalate degradation pathways, and studying the regulatory network that controls the expression of PAE degradation genes. Future research directions include mitigating the impact of PAEs on health and ecosystems, developing biosensors for monitoring and measuring bioavailable PAEs concentrations, and valorizing these residues into other products of industrial interest, among others.
Collapse
Affiliation(s)
| | | | - Unai Fernández‐Arévalo
- Department of BiotechnologyCentro de Investigaciones Biológicas Margarita Salas‐CSICMadridSpain
| | - Eduardo Díaz
- Department of BiotechnologyCentro de Investigaciones Biológicas Margarita Salas‐CSICMadridSpain
| |
Collapse
|
19
|
Wang H, Hu C, Li Y, Shen Y, Guo J, Shi B, Alvarez PJJ, Yu P. Nano-sized polystyrene and magnetite collectively promote biofilm stability and resistance due to enhanced oxidative stress response. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134974. [PMID: 38905973 DOI: 10.1016/j.jhazmat.2024.134974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/25/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Despite the growing prevalence of nanoplastics in drinking water distribution systems, the collective influence of nanoplastics and background nanoparticles on biofilm formation and microbial risks remains largely unexplored. Here, we demonstrate that nano-sized polystyrene modified with carboxyl groups (nPS) and background magnetite (nFe3O4) nanoparticles at environmentally relevant concentrations can collectively stimulate biofilm formation and prompt antibiotic resistance. Combined exposure of nPS and nFe3O4 by P. aeruginosa biofilm cells stimulated intracellular reactive oxidative species (ROS) production more significantly compared with individual exposure. The resultant upregulation of quorum sensing (QS) and c-di-GMP signaling pathways enhanced the biosynthesis of polysaccharides by 50 %- 66 % and increased biofilm biomass by 36 %- 40 % relative to unexposed control. Consistently, biofilm mechanical stability (measured as Young's modulus) increased by 7.2-9.1 folds, and chemical stress resistance (measured with chlorine disinfection) increased by 1.4-2.0 folds. For P. aeruginosa, the minimal inhibitory concentration of different antibiotics also increased by 1.1-2.5 folds after combined exposure. Moreover, at a microbial community-wide level, metagenomic analysis revealed that the combined exposure enhanced the multi-species biofilm's resistance to chlorine, enriched the opportunistic pathogenic bacteria, and promoted their virulence and antibiotic resistance. Overall, the enhanced formation of biofilms (that may harbor opportunistic pathogens) by nanoplastics and background nanoparticles is an overlooked phenomenon, which may jeopardize the microbial safety of drinking water distribution systems.
Collapse
Affiliation(s)
- Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chisheng Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yukang Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yun Shen
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052, USA
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
20
|
Chang B, Wan Q, Wu G, Cheng Y, Wang J, Huang T, Wen G. Formation of filamentous fungal biofilms in water and the transformation of resistance to chlor(am)ine disinfection. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135138. [PMID: 38996681 DOI: 10.1016/j.jhazmat.2024.135138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/18/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Biofilms are composed of complex multi-species in nature, potentially threatening drinking water safety. In this work, the formation of single- and multi-species fungal biofilms formed by Aspergillus niger (A. niger) and Aspergillus flavus (A. flavus), and the inactivation of mature biofilms using chlor(am)ine were firstly investigated. Results revealed that the antagonistic interaction occurred between A. niger and A. flavus. Chloramination at 20 mg/L for 30 min achieved 74.74 % and 76.04 % inactivation of A. flavus and multi-species biofilm, which were 1.69- and 1.84-fold higher than that of chlorine at the same condition. However, no significant difference was observed in the inactivation of A. niger biofilm between chlorine and monochloramine disinfection due to the lower amount of extracellular polymeric substance produced by it (p > 0.05). The inactivation of biofilm by monochloramine fitted the Weibull model well. According to the Weibull model, the monochloramine resistance of biofilm were as follows: A. flavus > multi-species > A. niger biofilm. Besides, an increase in reactive oxygen levels, damage of cell membrane, and leakage of intracellular substances in biofilms were observed after chlor(am)ination. More intracellular polysaccharides and proteins were leaked in chloramination inactivation (p < 0.05). This study provides important implications for controlling fungal biofilm.
Collapse
Affiliation(s)
- Baochun Chang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiqi Wan
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gehui Wu
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ya Cheng
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jingyi Wang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gang Wen
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
21
|
Luo Y, Qiu R, Zhang X, Li F. Biofouling behaviors of reverse osmosis membrane in the presence of trace plasticizer for circulating cooling water treatment: Characteristics and mechanisms. WATER RESEARCH 2024; 260:121937. [PMID: 38878313 DOI: 10.1016/j.watres.2024.121937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/17/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
Reverse osmosis (RO) system has been increasingly applied for circulating cooling water (CCW) reclamation. Plasticizers, which may be dissolved into CCW system in plastic manufacturing industry, cannot be completely removed by the pretreatment prior to RO system, possibly leading to severe membrane biofouling. Deciphering the characteristics and mechanisms of RO membrane biofouling in the presence of trace plasticizers are of paramount importance to the development of effective fouling control strategies. Herein, we demonstrate that exposure to a low concentration (1 - 10 μg/L) of three typical plasticizers (Dibutyl phthalate (DBP), Tributyl phosphate (TBP) and 2,2,4-Trimethylpentane-1,3-diol (TMPD)) detected in pretreated real CCW promoted Escherichia coli biofilm formation. DBP, TBP and TMPD showed the highest stimulation at 5 or 10 μg/L with biomass increasing by 55.7 ± 8.2 %, 35.9 ± 9.5 % and 32.2 ± 14.7 % respectively, relative to the unexposed control. Accordingly, the bacteria upon exposure to trace plasticizers showed enhanced adenosine triphosphate (ATP) activity, stimulated extracellular polymeric substances (EPS) excretion and suppressed intracellular reactive oxygen species (ROS) induction, causing by upregulation of related genes. Long-term study further showed that the RO membranes flowing by the pretreated real CCW in a polypropylene plant exhibited a severer biofouling behavior than exposed control, and DBP and TBP parts played a key role in stimulation effects on bacterial proliferation. Overall, we demonstrate that RO membrane exposure to trace plasticizers in pretreated CCW can upregulate molecular processes and physiologic responses that accelerate membrane biofouling, which provides important implications for biofouling control strategies in membrane-based CCW treatment systems.
Collapse
Affiliation(s)
- Yi Luo
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Centre of Ministry of Ecology and Environment, Donghua University, Shanghai 201620, China
| | - Riji Qiu
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Centre of Ministry of Ecology and Environment, Donghua University, Shanghai 201620, China
| | - Xingran Zhang
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Centre of Ministry of Ecology and Environment, Donghua University, Shanghai 201620, China.
| | - Fang Li
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Centre of Ministry of Ecology and Environment, Donghua University, Shanghai 201620, China
| |
Collapse
|
22
|
Mohamed DFMS, Tarafdar A, Lee SY, Oh HB, Kwon JH. Assessment of biodegradation and toxicity of alternative plasticizer di(2-ethylhexyl) terephthalate: Impacts on microbial biofilms, metabolism, and reactive oxygen species-mediated stress response. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124217. [PMID: 38797346 DOI: 10.1016/j.envpol.2024.124217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/04/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Although di(2-ethylhexyl) terephthalate (DOTP) is being widely adopted as a non-phthalate plasticizer, existing research primarily focuses on human and rat toxicity. This leaves a significant gap in our understanding of their impact on microbial communities. This study assessed the biodegradation and toxicity of DOTP on microbes, focusing on its impact on biofilms and microbial metabolism using Rhodococcus ruber as a representative bacterial strain. DOTP is commonly found in mass fractions between 0.6 and 20% v/v in various soft plastic products. This study used polyvinyl chloride films (PVC) with varying DOTP concentrations (range 1-10% v/v) as a surface for analysis of biofilm growth. Cell viability and bacterial stress responses were tested using LIVE/DEAD™ BacLight™ Bacterial Viability Kit and by the detection of reactive oxygen species using CellROX™ Green Reagent, respectively. An increase in the volume of dead cells (in the plastisphere biofilm) was observed with increasing DOTP concentrations in experiments using PVC films, indicating the potential negative impact of DOTP on microbial communities. Even at a relatively low concentration of DOTP (1%), signs of stress in the microbes were noticed, while concentrations above 5% compromised their ability to survive. This research provides a new understanding of the environmental impacts of alternative plasticizers, prompting the need for additional research into their wider effects on both the environment and human health.
Collapse
Affiliation(s)
- Dana Fahad M S Mohamed
- Division of Environmental Science and Ecological Engineering, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Abhrajyoti Tarafdar
- Division of Environmental Science and Ecological Engineering, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea; School of Food Science and Environmental Health, Technological University Dublin, City Campus, Grangegorman, Dublin, D07ADY7, Ireland
| | - So Yeon Lee
- Department of Chemistry, Sogang University, Seoul, 04107, Republic of Korea
| | - Han Bin Oh
- Department of Chemistry, Sogang University, Seoul, 04107, Republic of Korea
| | - Jung-Hwan Kwon
- Division of Environmental Science and Ecological Engineering, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
23
|
Chen X, Chen CE, Cheng S, Sweetman AJ. Bisphenol A sorption on commercial polyvinyl chloride microplastics: Effects of UV-aging, biofilm colonization and additives on plastic behaviour in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124218. [PMID: 38815887 DOI: 10.1016/j.envpol.2024.124218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Chemical additives are important components in commercial microplastics and their leaching behaviour has been widely studied. However, little is known about the potential effect of additives on the adsorption/desorption behaviour of pollutants on microplastics and their subsequent role as vectors for pollutant transport in the environment. In this study, two types of commercial polyvinyl chloride (PVC1 and PVC2) microplastics were aged by UV irradiation and biotic modification via biofilm colonization to investigate the adsorption and desorption behaviour of bisphenol A (BPA). Surface cracks and new functional groups (e.g., O-H) were found on PVC1 after UV irradiation, which increased available adsorption sites and enhanced H‒bonding interaction, resulting in an adsorption capacity increase from 1.28 μg/L to 1.85 μg/L. However, the adsorption and desorption capacity not showed significant changes for PVC2, which might be related to the few characteristic changes after UV aging with the protection of light stabilizers and antioxidants. The adsorption capacity ranged from 1.28 μg/L to 2.06 μg/L for PVC1 and PVC2 microplastics, and increased to 1.62 μg/L-2.95 μg/L after colonization by biofilms. The increased adsorption ability might be related to the N-H functional group, amide groups generated by microorganisms enhancing the affinity for BPA. The opposite effect was observed for desorption. Plasticizers can be metabolized during biofilm formation processes and might play an important role in microorganism colonization. In addition, antioxidants and UV stabilizers might also indirectly influence the colonization of microorganisms' on microplastics by controlling the degree to which PVC microplastics age under UV. The amount of biomass loading on the microplastics would further alter the adsorption/desorption behaviour of contaminants. This study provides important new insights into the evaluation of the fate of plastic particles in natural environments.
Collapse
Affiliation(s)
- Xiaoxin Chen
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Chang-Er Chen
- Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Shengming Cheng
- Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Andrew J Sweetman
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom.
| |
Collapse
|
24
|
Lu M. Is aromatic plants environmental health engineering (APEHE) a leverage point of the earth system? Heliyon 2024; 10:e30322. [PMID: 38756557 PMCID: PMC11096952 DOI: 10.1016/j.heliyon.2024.e30322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/30/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
It is important to note that every ecological niche in an ecosystem is significant. This study aims to assess the importance of medicinal and aromatic plants (MAPs) in the ecosystem from multiple perspectives. A primary model of Aromatic Plants Environmental Health Engineering (APEHE) has been designed and constructed. The APEHE system was used to collect aerosol compounds, and it was experimentally verified that these compounds have the potential to impact human health by binding to AKT1 as the primary target, and MMP9 and TLR4 as secondary targets. These compounds may indirectly affect human immunity by reversing drug resistance in drug-resistant bacteria in the nasal cavity. This is mainly achieved through combined mutations in sdhA, scrA, and PEP. Our findings are based on Network pharmacology and molecular binding, drug-resistance rescue experiments, as well as combined transcriptomics and metabolomics experiments. It is suggested that APEHE may have direct or indirect effects on human health. We demonstrate APEHE's numerous potential benefits, such as attenuation and elimination of airborne microorganisms in the environment, enhancing carbon and nitrogen storage in terrestrial ecosystems, promoting the formation of low-level clouds and strengthening the virtuous cycle of Earth's ecosystems. APEHE also supports the development of transdisciplinary technologies, including terpene energy production. It facilitates the creation of a sustainable circular economy and provides additional economic advantages through urban optimisation, as well as fresh insights into areas such as the habitability of other planets. APEHE has the potential to serve as a leverage point for the Earth system. We have created a new research direction.
Collapse
Affiliation(s)
- MengYu Lu
- HEFEI XIAODOUKOU HEALTH TECH CO LTD, China
| |
Collapse
|
25
|
Wu M, Xu Y, Zhao C, Huang H, Liu C, Duan X, Zhang X, Zhao G, Chen Y. Efficient nitrate and Cr(VI) removal by denitrifier: The mechanism of S. oneidensis MR-1 promoting electron production, transportation and consumption. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133675. [PMID: 38508109 DOI: 10.1016/j.jhazmat.2024.133675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 03/22/2024]
Abstract
When Cr(VI) and nitrate coexist, the efficiency of both bio-denitrification and Cr(VI) bio-reduction is poor because chromate hinders bacterial normal functions (i.e., electron production, transportation and consumption). Moreover, under anaerobic condition, the method about efficient nitrate and Cr(VI) removal remained unclear. In this paper, the addition of Shewanella oneidensis MR-1 to promote the electron production, transportation and consumption of denitrifier and cause an increase in the removal of nitrate and Cr(VI). The efficiency of nitrate and Cr(VI) removal accomplished by P. denitrificans as a used model denitrifier increased respectively from 51.3% to 96.1% and 34.3% to 99.8% after S. oneidensis MR-1 addition. The mechanism investigations revealed that P. denitrificans provided S. oneidensis MR-1 with lactate, which was utilized to secreted riboflavin and phenazine by S. oneidensis MR-1. The riboflavin served as coenzymes of cellular reductants (i.e., thioredoxin and glutathione) in P. denitrificans, which created favorable intracellular microenvironment conditions for electron generation. Meanwhile, phenazine promoted biofilm formation, which increased the adsorption of Cr(VI) on the cell surface and accelerated the Cr(VI) reduction by membrane bound chromate reductases thereby reducing damage to other enzymes respectively. Overall, this strategy reduced the negative effect of chromate, thus improved the generation, transportation, and consumption of electrons. SYNOPSIS: The presence of S. oneidensis MR-1 facilitated nitrate and Cr(VI) removal by P. denitrificans through decreasing the negative effect of chromate due to the metabolites' secretion.
Collapse
Affiliation(s)
- Meirou Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yanan Xu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chunxia Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chao Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xu Duan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuemeng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
26
|
Wu J, Lv YH, Sun D, Zhou JH, Wu J, He RL, Liu DF, Song H, Li WW. Phthalates Boost Natural Transformation of Extracellular Antibiotic Resistance Genes through Enhancing Bacterial Motility and DNA Environmental Persistence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7291-7301. [PMID: 38623940 DOI: 10.1021/acs.est.4c02751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The environmental dissemination of extracellular antibiotic resistance genes (eARGs) in wastewater and natural water bodies has aroused growing ecological concerns. The coexisting chemical pollutants in water are known to markedly affect the eARGs transfer behaviors of the environmental microbial community, but the detailed interactions and specific impacts remain elusive so far. Here, we revealed a concentration-dependent impact of dimethyl phthalate (DMP) and several other types of phthalate esters (common water pollutants released from plastics) on the natural transformation of eARGs. The DMP exposure at an environmentally relevant concentration (10 μg/L) resulted in a 4.8-times raised transformation frequency of Acinetobacter baylyi but severely suppressed the transformation at a high concentration (1000 μg/L). The promotion by low-concentration DMP was attributed to multiple mechanisms, including increased bacterial mobility and membrane permeability to facilitate eARGs uptake and improved resistance of the DMP-bounded eARGs (via noncovalent interaction) to enzymatic degradation (with suppressed DNase activity). Similar promoting effects of DMP on the eARGs transformation were also found in real wastewater and biofilm systems. In contrast, higher-concentration DMP suppressed the eARGs transformation by disrupting the DNA structure. Our findings highlight a potentially underestimated eARGs spreading in aquatic environments due to the impacts of coexisting chemical pollutants and deepen our understanding of the risks of biological-chemical combined pollution in wastewater and environmental water bodies.
Collapse
Affiliation(s)
- Jing Wu
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123,China
| | - Yun-Hui Lv
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dan Sun
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123,China
| | - Jun-Hua Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123,China
| | - Jie Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123,China
| | - Ru-Li He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123,China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hao Song
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123,China
| |
Collapse
|
27
|
Hong Y, Xie H, Jin X, Naraginti S, Xu D, Guo C, Feng C, Wu F, Giesy JP. Prediction of HC 5s for phthalate esters by use of the QSAR-ICE model and ecological risk assessment in Chinese surface waters. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133642. [PMID: 38330644 DOI: 10.1016/j.jhazmat.2024.133642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/01/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Due to their endocrine-disrupting effects and the risks posed in surface waters, in particular by chronic low-dose exposure to aquatic organisms, phthalate esters (PAEs) have received significant attention. However, most assessments of risks posed by PAEs were performed at a selection level, and thus limited by empirical data on toxic effects and potencies. A quantitative structure activity relationship (QSAR) and interspecies correlation estimation (ICE) model was constructed to estimate hazardous concentrations (HCs) of selected PAEs to aquatic organisms, then they were used to conduct a multiple-level environmental risk assessment for PAEs in surface waters of China. Values of hazardous concentration for 5% of species (HC5s), based on acute lethality, estimated by use of the QSAR-ICE model were within 1.25-fold of HC5 values derived from empirical data on toxic potency, indicating that the QSAR-ICE model predicts the toxicity of these three PAEs with sufficient accuracy. The five selected PAEs may be commonly measured in China surface waters at concentrations between ng/L and μg/L. Risk quotients according to median concentrations of the five PAEs ranged from 3.24 for di(2-ethylhexhyl) phthalate (DEHP) to 4.10 × 10-3 for dimethyl phthalate (DMP). DEHP and dibutyl phthalate (DBP) had risks to the most vulnerable aquatic biota, with the frequency of exceedances of the predicted no-effect concentration (PNECs) of 75.5% and 38.0%, respectively. DEHP and DBP were identified as having "high" or "moderate" risks. Results of the joint probability curves (JPC) method indicated DEHP posed "intermediate" risk to freshwater species with a maximum risk product of 5.98%. The multiple level system introduced in this study can be used to prioritize chemicals and other new pollutant in the aquatic ecological.
Collapse
Affiliation(s)
- Yajun Hong
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Huiyu Xie
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China.
| | - Saraschandra Naraginti
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Dayong Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Environmental Sciences, Baylor University, Waco, TX 76798-7266, USA; Department of Integrative Biology and Centre for Integrative Toxicology, Michigan State University, East Lansing, MI 48895, USA
| |
Collapse
|
28
|
Zheng X, Feng Q, Guo L. Quantitative analysis of microplastics and nanoplastics released from disposable PVC infusion tubes. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133246. [PMID: 38147754 DOI: 10.1016/j.jhazmat.2023.133246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023]
Abstract
The exposure of micro- and nanoplastics (MNPs) via medical device is still unknown to us. Herein, a visual quantitative detection of polyvinyl chloride (PVC) MPs and a fluorescent quantitative detection of PVC NPs were developed. To overcome the aggregation of PVC NPs, sodium dodecylbenzene sulfonate was used as the stabilizer of PVC NPs. The brand-new disposable PVC infusion tubes were found to carry PVC MPs with the average total number (ATN) of 931.4 particles and PVC NPs with the average mass of 0.040 μg, respectively. For four typical infusion fluids such as 0.9% sodium chloride, 5% glucose, 5% sodium bicarbonate, hydroxyethyl starch 40 sodium chloride, the released PVC MPs and NPs were ranged from 1003.6 ∼ 3494.6 particles and 0.042 ∼ 0.087 μg, respectively in stimulating normal infusion scenario (room temperature 4 h). The released PVC MPs and NPs were also increased with the infusion duration and temperature. The released PVC MPs are mainly in granular form, accounting for 38 ∼ 49% of the total PVC MPs. Our findings indicate PVC MNPs can enter the blood vessel directly with the infusion fluids during intravenous infusion and the PVC MNPs exposure risk towards patients deserves more attention.
Collapse
Affiliation(s)
- Xueyi Zheng
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Qiaochen Feng
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Liangqia Guo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
29
|
Zhang B, Zhang J, Wang Y, Qu J, Jiang Z, Zhang X, Tao Y, Wang Y, Kang Z, Han S, Zhang J, Zhang Y. Biodegradation of atrazine with biochar-mediated functional bacterial biofilm: Construction, characterization and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133237. [PMID: 38113741 DOI: 10.1016/j.jhazmat.2023.133237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/05/2023] [Accepted: 12/10/2023] [Indexed: 12/21/2023]
Abstract
The abuse and residue of herbicides in the black soil area had seriously affected the soil structure, function and crop growth, posing severe threats to agricultural soil environment and public health. Given the limitation of routine microbial remediation, innovative and eco-friendly functional bacterial biofilm which could adapt under adverse conditions was developed on the biochar to investigate its enhanced bioremediation and metabolic characteristics of typical herbicide atrazine. Results revealed that the atrazine degrading strain Acinetobacter lwoffii had competitive advantage in soil indigenous microorganisms and formed dense biofilms on the biochar which was beneficial to cell viability maintenance and aggregations. Metatranscriptomics and RT-qPCR analysis demonstrated that the biochar-mediated biofilm improved the frequency of intercellular communications through quorum sensing and two-component signal regulation systems, and enhanced the atrazine biodegradation efficiency through horizontal gene transfer in co-metabolism mode, providing important scientific basis for the biological remediation of farmland soil non-point source pollution.
Collapse
Affiliation(s)
- Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jingdan Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuping Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Xu Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhonghui Kang
- Longjiang Environmental Protection Group Co.,Ltd., Harbin 150050, PR China
| | - Songting Han
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jingyi Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
30
|
Kalu CM, Mudau KL, Masindi V, Ijoma GN, Tekere M. Occurrences and implications of pathogenic and antibiotic-resistant bacteria in different stages of drinking water treatment plants and distribution systems. Heliyon 2024; 10:e26380. [PMID: 38434035 PMCID: PMC10906316 DOI: 10.1016/j.heliyon.2024.e26380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/05/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Different stages of drinking water treatment plants (DWTPs) play specific roles in diverse contaminants' removal present in natural water sources. Although the stages are recorded to promote adequate treatment of water, the occurrence of pathogenic bacteria (PB) and antibiotic-resistant bacteria (ARB) in the treated water and the changes in their diversity and abundance as it passed down to the end users through the drinking water distribution systems (DWDSs), is a great concern, especially to human health. This could imply that the different stages and the distribution system provide a good microenvironment for their growth. Hence, it becomes pertinent to constantly monitor and document the diversity of PB and ARB present at each stage of the treatment and distribution system. This review aimed at documenting the occurrence of PB and ARB at different stages of treatment and distribution systems as well as the implication of their occurrence globally. An exhaustive literature search from Web of Science, Science-Direct database, Google Scholar, Academic Research Databases like the National Center for Biotechnology Information, Scopus, and SpringerLink was done. The obtained information showed that the different treatment stages and distribution systems influence the PB and ARB that proliferate. To minimize the human health risks associated with the occurrence of these PB, the present review, suggests the development of advanced technologies that can promote quick monitoring of PB/ARB at each treatment stage and distribution system as well as reduction of the cost of environomics analysis to promote better microbial analysis.
Collapse
Affiliation(s)
- Chimdi M. Kalu
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| | - Khuthadzo L. Mudau
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| | - Vhahangwele Masindi
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
- Magalies Water, Scientific Services, Research & Development Division, Brits, South Africa
| | - Grace N. Ijoma
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| | - Memory Tekere
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 1710, South Africa
| |
Collapse
|
31
|
Crépin A, Thiroux A, Alafaci A, Boukerb AM, Dufour I, Chrysanthou E, Bertaux J, Tahrioui A, Bazire A, Rodrigues S, Taupin L, Feuilloley M, Dufour A, Caillon J, Lesouhaitier O, Chevalier S, Berjeaud JM, Verdon J. Sensitivity of Legionella pneumophila to phthalates and their substitutes. Sci Rep 2023; 13:22145. [PMID: 38092873 PMCID: PMC10719263 DOI: 10.1038/s41598-023-49426-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
Phthalates constitute a family of anthropogenic chemicals developed to be used in the manufacture of plastics, solvents, and personal care products. Their dispersion and accumulation in many environments can occur at all stages of their use (from synthesis to recycling). However, many phthalates together with other accumulated engineered chemicals have been shown to interfere with hormone activities. These compounds are also in close contact with microorganisms that are free-living, in biofilms or in microbiota, within multicellular organisms. Herein, the activity of several phthalates and their substitutes were investigated on the opportunistic pathogen Legionella pneumophila, an aquatic microbe that can infect humans. Beside showing the toxicity of some phthalates, data suggested that Acetyl tributyl citrate (ATBC) and DBP (Di-n-butyl phthalate) at environmental doses (i.e. 10-6 M and 10-8 M) can modulate Legionella behavior in terms of motility, biofilm formation and response to antibiotics. A dose of 10-6 M mostly induced adverse effects for the bacteria, in contrast to a dose of 10-8 M. No perturbation of virulence towards Acanthamoeba castellanii was recorded. These behavioral alterations suggest that L. pneumophila is able to sense ATBC and DBP, in a cross-talk that either mimics the response to a native ligand, or dysregulates its physiology.
Collapse
Affiliation(s)
- Alexandre Crépin
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Audrey Thiroux
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Aurélien Alafaci
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Amine M Boukerb
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, UR4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Izelenn Dufour
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Eirini Chrysanthou
- Department of Life Sciences and Systems Biology, University of Turin, 10100, Turin, Italy
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, 13900, Biella, Italy
| | - Joanne Bertaux
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Ali Tahrioui
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, UR4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, Lorient, France
| | - Sophie Rodrigues
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, Lorient, France
| | - Laure Taupin
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, Lorient, France
| | - Marc Feuilloley
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, UR4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, Lorient, France
| | - Jocelyne Caillon
- Faculté de Médecine, EA3826 Thérapeutiques Cliniques et Expérimentales des Infections, Université de Nantes, Nantes, France
| | - Olivier Lesouhaitier
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, UR4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Sylvie Chevalier
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, UR4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Jean-Marc Berjeaud
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Julien Verdon
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France.
| |
Collapse
|
32
|
Yin H, Wang H, Wang M, Shi B. The interaction between extracellular polymeric substances and corrosion products in pipes shaped different bacterial communities and the effects of micropollutants. WATER RESEARCH 2023; 247:120822. [PMID: 37950951 DOI: 10.1016/j.watres.2023.120822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/13/2023]
Abstract
There are growing concerns over the effects of micropollutants on biofilms formation and antibiotic resistance gene (ARGs) transmission in drinking water distribution pipes. However, there was no reports about the influence of the interaction between extracellular polymeric substances (EPS) and corrosion products on biofilms formation. Our results indicated that the abundance of quorum sensing (QS)-related genes, polysaccharide and amino acids biosynthesis genes of EPS was 6747-8055 TPM, 2221-2619 TPM, and 1461-1535 TPM in biofilms of cast iron pipes, respectively, which were higher than that of stainless steel pipes. The two-dimensional correlation spectroscopy (2D-COS) analysis of attenuated total reflectance-Fourier transform infrared spectrometry (ATR-FTIR) results indicated that polysaccharide of EPS was more easily adsorbed onto the corrosion products of cast iron pipes. Therefore, more human pathogenic bacteria (HPB) carrying ARGs were formed in biofilms of cast iron pipes. The amide I and amide II components and phosphate moieties of EPS were more susceptible to the corrosion products of stainless steel pipes. Thus, more bacteria genera carrying mobile genetic elements (MGE)-ARG were formed in biofilms of stainless steel pipes due to more abundance of QS-related genes, amino acids biosynthesis genes of EPS and the functional genes related to lipid metabolism. The enrichment of dimethyl phthalate (DMP), perfluorooctanoic acid (PFOA) and sulfadiazine (SUL) in corrosion products induced upregulation of QS and EPS-related genes, which promoted bacteria carrying different ARGs growth in biofilms, inducing more microbial risks.
Collapse
Affiliation(s)
- Hong Yin
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Min Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
33
|
Thiroux A, Labanowski J, Venisse N, Crapart S, Boisgrollier C, Linares C, Berjeaud J, Villéger R, Crépin A. Exposure to endocrine disruptors promotes biofilm formation and contributes to increased virulence of Pseudomonas aeruginosa. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:740-756. [PMID: 37586891 PMCID: PMC10667657 DOI: 10.1111/1758-2229.13190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/07/2023] [Indexed: 08/18/2023]
Abstract
Anthropogenic activities contribute to the spread of chemicals considered as endocrine disruptors (ED) in freshwater ecosystems. While several studies have reported interactions of EDs with organisms in those ecosystems, very few have assessed the effect of these compounds on pathogenic bacteria. Here we have evaluated the impact of five EDs found in aquatic resources on the virulence of human pathogen P. aeruginosa. ED concentrations in French aquatic resources of bisphenol A (BPA), dibutyl phthalate (DBP), ethylparaben (EP), methylparaben (MP) and triclosan (TCS) at mean molar concentration were 1.13, 3.58, 0.53, 0.69, and 0.81 nM respectively. No impact on bacterial growth was observed at EDs highest tested concentration. Swimming motility of P. aeruginosa decreased to 28.4% when exposed to EP at 100 μM. Swarming motility increased, with MP at 1 nM, 10 and 100 μM (1.5-fold); conversely, a decrease of 78.5%, with DBP at 100 μM was observed. Furthermore, exposure to 1 nM BPA, DBP and EP increased biofilm formation. P. aeruginosa adhesion to lung cells was two-fold higher upon exposure to 1 nM EP. We demonstrate that ED exposure may simultaneously decrease mobility and increase cell adhesion and biofilm formation, which may promote colonisation and establishment of the pathogen.
Collapse
Affiliation(s)
- Audrey Thiroux
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| | - Jérôme Labanowski
- Université de PoitiersUMR 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP)PoitiersFrance
| | - Nicolas Venisse
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
- Université de Poitiers, CHU de Poitiers, INSERMCentre d'investigation clinique CIC1402PoitiersFrance
| | - Stéphanie Crapart
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| | - Chloé Boisgrollier
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| | - Carlos Linares
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| | - Jean‐Marc Berjeaud
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| | - Romain Villéger
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| | - Alexandre Crépin
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| |
Collapse
|
34
|
Thiroux A, Berjeaud JM, Villéger R, Crépin A. Effect of endocrine disruptors on bacterial virulence. Front Cell Infect Microbiol 2023; 13:1292233. [PMID: 38029256 PMCID: PMC10657830 DOI: 10.3389/fcimb.2023.1292233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
For several decades, questions have been raised about the effects of endocrine disruptors (ED) on environment and health. In humans, EDs interferes with hormones that are responsible for the maintenance of homeostasis, reproduction and development and therefore can cause developmental, metabolic and reproductive disorders. Because of their ubiquity in the environment, EDs can adversely impact microbial communities and pathogens virulence. At a time when bacterial resistance is inevitably emerging, it is necessary to understand the effects of EDs on the behavior of pathogenic bacteria and to identify the resulting mechanisms. Increasing studies have shown that exposure to environmental EDs can affect bacteria physiology. This review aims to highlight current knowledge of the effect of EDs on the virulence of human bacterial pathogens and discuss the future directions to investigate bacteria/EDs interaction. Given the data presented here, extended studies are required to understand the mechanisms by which EDs could modulate bacterial phenotypes in order to understand the health risks.
Collapse
Affiliation(s)
- Audrey Thiroux
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, Poitiers, France
| | | | | | - Alexandre Crépin
- Université de Poitiers, UMR CNRS 7267, Ecologie et Biologie des Interactions, Poitiers, France
| |
Collapse
|
35
|
Hadiuzzaman M, Mirza N, Brown SP, Ladner DA, Salehi M. Lead (Pb) deposition onto new and biofilm-laden potable water pipes. CHEMOSPHERE 2023; 342:140135. [PMID: 37690561 DOI: 10.1016/j.chemosphere.2023.140135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Heavy metals' interactions with plumbing materials are complicated due to the differential formation of biofilms within pipes that can modulate, transform, and/or sequester heavy metals. This research aims to elucidate the mechanistic role of biofilm presence on Lead (Pb) accumulation onto crosslinked polyethylene (PEX-A), high-density polyethylene (HDPE), and copper potable water pipes. For this purpose, biofilms were grown on new pipes for three months. Five-day Pb exposure experiments were conducted to examine the kinetics of Pb accumulation onto the new and biofilm-laden pipes. Additionally, the influence of Pb initial concentration on the rate of its accumulation onto the pipes was examined. The results revealed greater biofilm biomass on the PEX-A pipes compared to the copper and HDPE pipes. More negative zeta potential was found for the biofilm-laden plastic pipes compared to the new plastic pipes. After five days of Pb exposure under stagnant conditions, the biofilm-laden PEX-A (980 μg m-2) and HDPE (1170 μg m-2) pipes accumulated more than three times the Pb surface loading compared to the new PEX-A (265 μg m-2) and HDPE pipes (329 μg m-2), respectively. However, under flow conditions, Pb accumulation on biofilm-laden plastic pipes was lower than on the new pipes. Moreover, with increasing the initial Pb concentration, greater rates of Pb surface accumulation were found for the biofilm-laden pipes compared to the new pipes under stagnant conditions. First-order kinetics model best described the Pb accumulation onto both new and biofilm-laden water pipes under both stagnant and flow conditions.
Collapse
Affiliation(s)
- Md Hadiuzzaman
- Department of Civil Engineering, The University of Memphis, Memphis, TN, USA
| | - Nahreen Mirza
- Department of Biological Sciences, The University of Memphis, Memphis, TN, USA
| | - Shawn P Brown
- Department of Biological Sciences, The University of Memphis, Memphis, TN, USA
| | - David A Ladner
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC, USA
| | - Maryam Salehi
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
36
|
Wang M, Wang H, Hu C, Deng J, Shi B. Phthalate acid esters promoted the enrichment of chlorine dioxide-resistant bacteria and their functions related to human diseases in rural polyvinyl chloride distribution pipes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165282. [PMID: 37406691 DOI: 10.1016/j.scitotenv.2023.165282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/09/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Polyvinyl chloride (PVC) pipes are widely used as drinking water distribution pipes in rural areas of China. However, whether phthalate acid esters (PAEs) released from PVC pipes will affect tap water quality is still unknown. The influence of released PAEs on the water quality was analysed in this study, especially after ClO2 disinfection. The results indicated that ClO2 disinfection could control the growth of total coliforms and heterotrophic bacteria (HPC). However, when the ClO2 residual decreased to below 0.10 mg/L, HPC and opportunistic pathogens, including Mycobacterium avium and Pseudomonas aeruginosa, increased significantly. In addition, after ClO2 disinfection, PAEs concentrations increased from 10.6-22.2 μg/L to 21.2-58.8 μg/L in different sampling cites. Linear discriminant analysis (LDA) effect size (LEfSe) and statistical analysis of metagenomic profiles (Stamp) showed that ClO2 disinfection induced the enrichment of Pseudomonas, Bradyrhizobium, and Mycobacterium and functions related to human diseases, such as pathogenic Escherichia coli infection, shigellosis, Staphylococcus aureus infection, and Vibrio cholerae infection. The released PAEs not only promoted the growth of these ClO2-resistant bacterial genera but also enhanced their functions related to human diseases. Moreover, these PAEs also induced the enrichment of other bacterial genera, such as Blastomonas, Dechloromonas, and Kocuria, and their functions, such as chronic myeloid leukaemia, African trypanosomiasis, leishmaniasis, hepatitis C and human T-cell leukaemia virus 1 infection. The released PAEs enhanced the microbial risk of the drinking water. These results are meaningful for guaranteeing water quality in rural areas of China.
Collapse
Affiliation(s)
- Min Wang
- Institute of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Chisheng Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianmian Deng
- Institute of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China.
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
37
|
Wu J, Liu C, Wang R, Yan S, Chen B, Zhu X. Enhanced bacterial adhesion force by rifampicin resistance promotes microbial colonization on PE plastic compared to non-resistant biofilm formation. WATER RESEARCH 2023; 242:120319. [PMID: 37441870 DOI: 10.1016/j.watres.2023.120319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
The microbial biofilm formed on plastics, is ubiquitous in the environment. However, the effects of antibiotic resistance on the development of the biofilm on plastics, especially with regard to initial cell attachment, remain unclear. In this study, we investigated the initial bacterial adhesion and subsequent biofilm growth of a rifampin (Rif) resistant E. coli (RRE) and a normal gram-positive B. subtilis on a typical plastic (polyethylene, PE). The experiments were conducted in different antibiotic solutions, including Rif, sulfamethoxazole (SMX), and kanamycin (KM), with concentrations ranging from 1 to 1000 μg/L to simulate different aquatic environments. The AFM-based single-cell adhesion force determination revealed that Rif resistance strengthened the adhesion force of RRE to PE in the environment rich in Rif rather than SMX and KM. The enhanced adhesion force may be due to the higher secretion of extracellular polymeric substances (EPS), particularly proteins, by RRE in the presence of Rif compared to the other two antibiotics. In addition, the higher ATP level of RRE would facilitate the initial adhesion and subsequent biofilm growth. Transcriptome analysis of RRE separately cultured in Rif and SMX environments demonstrated a clear correlation between the expression of Rif resistance and the augmented bacterial adhesion and cellular activity. Biofilm biomass analysis confirmed the promotion effect of Rif resistance on biofilm growth when compared to non-resistant biofilms, establishing a novel association with the augmentation of microbial adhesion force. Our study highlights concerns related to the dissemination of antibiotic resistance during microbial colonization on plastic that may arise from antibiotic resistance.
Collapse
Affiliation(s)
- Jiayi Wu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Congcong Liu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Rui Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Saitao Yan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
38
|
Wu J, Zhou JH, Liu DF, Wu J, He RL, Cheng ZH, Li HH, Li WW. Phthalates Promote Dissemination of Antibiotic Resistance Genes: An Overlooked Environmental Risk. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6876-6887. [PMID: 37083356 DOI: 10.1021/acs.est.2c09491] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plastics-microorganism interactions have aroused growing environmental and ecological concerns. However, previous studies concentrated mainly on the direct interactions and paid little attention to the ecotoxicology effects of phthalates (PAEs), a common plastic additive that is continuously released and accumulates in the environment. Here, we provide insights into the impacts of PAEs on the dissemination of antibiotic resistance genes (ARGs) among environmental microorganisms. Dimethyl phthalate (DMP, a model PAE) at environmentally relevant concentrations (2-50 μg/L) significantly boosted the plasmid-mediated conjugation transfer of ARGs among intrageneric, intergeneric, and wastewater microbiota by up to 3.82, 4.96, and 4.77 times, respectively. The experimental and molecular dynamics simulation results unveil a strong interaction between the DMP molecules and phosphatidylcholine bilayer of the cell membrane, which lowers the membrane lipid fluidity and increases the membrane permeability to favor transfer of ARGs. In addition, the increased reactive oxygen species generation and conjugation-associated gene overexpression under DMP stress also contribute to the increased gene transfer. This study provides fundamental knowledge of the PAE-bacteria interactions to broaden our understanding of the environmental and ecological risks of plastics, especially in niches with colonized microbes, and to guide the control of ARG environmental spreading.
Collapse
Affiliation(s)
- Jing Wu
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Jun-Hua Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jie Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Ru-Li He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Zhou-Hua Cheng
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Hui-Hui Li
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Wei Li
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| |
Collapse
|
39
|
Zheng X, Feng Q, Chen J, Yan J, Li X, Guo L. Quantification analysis of microplastics released from disposable polystyrene tableware with fluorescent polymer staining. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161155. [PMID: 36572298 DOI: 10.1016/j.scitotenv.2022.161155] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/26/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Ingesting microplastics (MPs) from plastic tableware is an important source of health risk to human bodies. However, the comprehensive information of MPs released from disposable tableware has not been explored. Herein, a new visual quantification method for polystyrene MPs is proposed with carbon nitride fluorescent polymers staining, which can overcome the disadvantages of high signal background and photobleaching derived from organic dyes staining. Combining with fluorescence microscope and ImageJ software, the quantity, shape, and size distribution of MPs carried by the brand-new disposable polystyrene tableware (DPT) samples before usage and released from the clean DPT samples in different simulated usage scenes were studied. The brand-new DPT samples were found to carry a large number of MPs particles and the clean DPT samples could release MPs during usage. Fiber and fragment are the main morphology of the detected MPs and fiber accounts for 45-52 %. The particles with size <50 μm are the majority of the detected MPs and the distribution fraction of MPs particles is gradually decreased with the raising of particle size within 50 μm. The released MPs particles are increased with the raising of contact time and temperature, and greatly boosted for the DPT samples with cracks. The DPT samples are more like to release MPs in weak acidic condition (pH 4.0) than in weak alkaline (pH 8.3) and neutral (pH 7.0) conditions. The obtained results help to assess the food safety of tack-out food and the health risk of MPs exposure to human.
Collapse
Affiliation(s)
- Xueyi Zheng
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Qiaocheng Feng
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jingru Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jiaquan Yan
- Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, College of Computer and Control Engineering, Minjiang University, Fuzhou, 350121, China
| | - Xiaojing Li
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Liangqia Guo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
40
|
Yin H, Chen R, Wang H, Schwarz C, Hu H, Shi B, Wang Y. Co-occurrence of phthalate esters and perfluoroalkyl substances affected bacterial community and pathogenic bacteria growth in rural drinking water distribution systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158943. [PMID: 36155042 DOI: 10.1016/j.scitotenv.2022.158943] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The adverse health effects of phthalate esters (PAEs) and perfluoroalkyl substances (PFAS) in drinking water have attracted considerable attention. Our study investigated the effects of PAEs and PFAS on the bacterial community and the growth of potential human pathogenic bacteria in rural drinking water distribution systems. Our results showed that the total concentration of PAEs and PFAS ranged from 1.02 × 102 to 1.65 × 104 ng/L, from 4.40 to 1.84 × 102 ng/L in rural drinking water of China, respectively. PAEs concentration gradually increased and PFAS slowly decreased along the pipeline distribution, compared to concentrations in the effluents of rural drinking water treatment plants. The co-occurrence of higher concentrations of PAEs and PFAS changed the structure and function of the bacterial communities found within these environments. The bacterial community enhanced their ability to respond to fluctuating environmental conditions through up-regulation of functional genes related to extracellular signaling and interaction, as well as genes related to replication and repair. Under these conditions, co-occurrence of PAEs and PFAS promoted the growth of potential human pathogenic bacteria (HPB), therefore increasing the risk of the development of associated diseases among exposed persons. The main HPB observed in this study included Burkholderia mallei, Mycobacterium tuberculosis, Klebsiella pneumoniae, Acinetobacter calcoaceticus, Escherichia coli, and Pseudomonas aeruginosa. Contaminants including particles, microorganisms, PAEs and PFAS were found to be released from corrosion scales and deposits of pipes and taps, resulting in the increase of the cytotoxicity and microbial risk of rural tap water. These results are important to efforts to improve the safety of rural drinking water.
Collapse
Affiliation(s)
- Hong Yin
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ruya Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China
| | - Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Cory Schwarz
- Department of Civil and Environmental Engineering, Rice University, Houston 77005, United States
| | - Haotian Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yili Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
41
|
Hung CM, Huang CP, Hsieh SL, Chen YT, Chen CW, Dong CD. The remediation of di-(2-ethylhexyl) phthalate-contaminated sediments by water hyacinth biochar activation of calcium peroxide and its effect on cytotoxicity. ENVIRONMENTAL RESEARCH 2023; 216:114656. [PMID: 36341791 DOI: 10.1016/j.envres.2022.114656] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/28/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
The presence of di-(2-ethylhexyl) phthalate (DEHP) in the aquatic systems, specifically marine sediments has attracted considerable attention worldwide, as it enters the food chain and adversely affects the aquatic environment and subsequently human health. This study reports an efficient carbocatalytic activation of calcium peroxide (CP) using water hyacinth biochar (WHBC) toward the efficient remediation of DEHP-contaminated sediments and offer insights into biochar-mediated cellular cytotoxicity, using a combination of chemical and bioanalytical methods. The pyrolysis temperature (300-900 °C) for WHBC preparation significantly controlled catalytic capacity. Under the experimental conditions studied, the carbocatalyst exhibited 94% of DEHP removal. Singlet oxygen (1O2), the major active species in the WHBC/CP system and electron-rich carbonyl functional groups of carbocatalyst, played crucial roles in the non-radical activation of CP. Furthermore, cellular toxicity evaluation indicated lower cytotoxicity in hepatocarcinoma cells (HepG2) after exposure to WHBC (25-1000 μg mL-1) for 24 h and that WHBC induced cell cycle arrest at the G2/M phase. Findings clearly indicated the feasibility of the WHBC/CP process for the restoration of contaminated sediment and contributing to understanding the mechanisms of cytotoxic effects and apoptotic of carbocatalyst on HepG2.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Ya-Ting Chen
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
42
|
Sójka O, van der Mei HC, van Rijn P, Gagliano MC. Zwitterionic poly(sulfobetaine methacrylate)-based hydrogel coating for drinking water distribution systems to inhibit adhesion of waterborne bacteria. Front Bioeng Biotechnol 2023; 11:1066126. [PMID: 36896012 PMCID: PMC9989184 DOI: 10.3389/fbioe.2023.1066126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Presence of biofilms in drinking water distribution systems (DWDS) can be a nuisance, leading to several operational and maintenance issues (i.e., increased secondary disinfectants demand, pipe damage or increased flow resistance), and so far, no single control practice was found to be sufficiently effective. Here, we propose poly (sulfobetaine methacrylate) (P(SBMA))-based hydrogel coating application as a biofilm control strategy in DWDS. The P(SBMA) coating was synthetized through photoinitiated free radical polymerization on polydimethylsiloxane with different combinations of SBMA as a monomer, and N, N'-methylenebis (acrylamide) (BIS) as a cross-linker. The most stable coating in terms of its mechanical properties was obtained using 20% SBMA with a 20:1 SBMA:BIS ratio. The coating was characterized using Scanning Electron Microscopy, Energy Dispersive X-Ray Spectroscopy, and water contact angle measurements. The anti-adhesive performance of the coating was evaluated in a parallel-plate flow chamber system against adhesion of four bacterial strains representing genera commonly identified in DWDS biofilm communities, Sphingomonas and Pseudomonas. The selected strains exhibited varying adhesion behaviors in terms of attachment density and bacteria distribution on the surface. Despite these differences, after 4 h, presence of the P(SBMA)-based hydrogel coating significantly reduced the number of adhering bacteria by 97%, 94%, 98% and 99%, for Sphingomonas Sph5, Sphingomonas Sph10, Pseudomonas extremorientalis and Pseudomonas aeruginosa, respectively, compared to non-coated surfaces. These findings motivate further research into a potential application of a hydrogel anti-adhesive coating as a localized biofilm control strategy in DWDS, especially on materials known to promote excessive biofilm growth.
Collapse
Affiliation(s)
- Olga Sójka
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands.,Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Henny C van der Mei
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Patrick van Rijn
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Maria Cristina Gagliano
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands
| |
Collapse
|
43
|
Tarafdar A, Lim JY, Kwon JH. UV stabilizers can foster early development of biofilms on freshwater microplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120444. [PMID: 36265727 DOI: 10.1016/j.envpol.2022.120444] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Interactions between microbes and microplastics are important as of emerging plastic loads in the global environment. Although diverse plastic additives are used in large amounts, there are very few studies on a quantitative comparison of plastisphere on plastics with different plastic additives. We studied the effects of two widely used UV stabilizers (benzotriazole-type UV-327 and benzophenone-type UV-531 were selected based on their persistence and toxicity) in low-density polyethylene (LDPE) on freshwater microbes. This is the first study on the sole effects of UV stabilizers used as plastic additives on freshwater in situ plastisphere biofilm development. Confocal laser scanning microscopy, assisted with proper differentiating fluorochromes and threshold-based 3D segmentation of data, was used to visualize and quantify biofilm. On the first week of biofilm growth, there was very little biovolume and a negligible amount of phototrophs on pristine LDPE contrasting other substrates. Biovolumes were significantly higher on LDPE with UV stabilizers (up to 159% higher than pristine LDPE), although the biomass was mostly dead due to toxicity (>100% higher dead biovolume than live biovolume in LDPE with UV stabilizers). After the fourth week, marginally higher biovolumes along with a revival of the biomass on LDPE with UV stabilizers were observed. The ability to induce microorganismic intracellular reactive oxygen species by UV stabilizers was detected, which may stimulate biofilm growth during the primary phase of biofilm development. Atomic force microscopy analysis denoted that LDPE with UV stabilizers exhibit considerably stronger adhesion force than pristine LDPE. These observations suggest that UV stabilizers can foster the early attachment of microbes to microplastics while killing the surface contacting layer. An alive upper layer of microbes can get developed on the dead biofilm without much disruption due to the toxicity of UV stabilizers. This occurrence can eventually boost the early development of biofilms on plastics.
Collapse
Affiliation(s)
- Abhrajyoti Tarafdar
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Ja-Yun Lim
- Department of Clinical Laboratory Science, Hyejeon College, 19 Daehak-1gil, Hongsung-eup, Hongsung-gun, Chungnam, 32244, Republic of Korea.
| | - Jung-Hwan Kwon
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
44
|
Zhang X, Zhang J, She Y, Li Y, Cheng H, Ji R, Bian Y, Han J, Jiang X, Song Y, Xue J. Comparison of the performance of hydrochar, raw biomass, and pyrochar as precursors to prepare porous biochar for the efficient sorption of phthalate esters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157511. [PMID: 35872190 DOI: 10.1016/j.scitotenv.2022.157511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
In this study, three high-performance porous biochars were synthesized by the cocarbonization of Pistia stratiotes-derived precursors (raw biomass, hydrochar and pyrochar) with potassium hydroxide and utilized for the sorption of diethyl phthalate from aqueous solution. The developed pore structure, surface functional groups, high hydrophobicity characteristic and graphene structure of porous biochars contributed to the excellent sorption quantity of up to 813 mg g-1 (Ce, 25 mg L-1). Among the three precursors, hydrochar-derived porous biochar showed better properties in terms of its specific surface area and hydrophobicity, and it displayed the highest sorption capacity. The sorption kinetics and isotherm experiments confirmed that pore filling and partitioning dominated the sorption capacity while the mass transfer, hydrogen bonding and π-π stacking in the hydrochar limited the sorption rate. This finding helped to propose a feasible method for the efficient utilization of invasive aquatic plants and provided novel insight into the selection of precursors for preparing porous biochars.
Collapse
Affiliation(s)
- Xinrui Zhang
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100015, PR China
| | - Jiapeng Zhang
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yutong She
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yang Li
- Jiangsu Institute of Geological Survey, Nanjing 210018, PR China
| | - Hu Cheng
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100015, PR China.
| | - Rongting Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Jiangang Han
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Yang Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Jianming Xue
- New Zealand Forest Research Institute (Scion), Christchurch 8440, New Zealand
| |
Collapse
|
45
|
Louis M, Tahrioui A, Verdon J, David A, Rodrigues S, Barreau M, Manac’h M, Thiroux A, Luton B, Dupont C, Calvé ML, Bazire A, Crépin A, Clabaut M, Portier E, Taupin L, Defontaine F, Clamens T, Bouffartigues E, Cornelis P, Feuilloley M, Caillon J, Dufour A, Berjeaud JM, Lesouhaitier O, Chevalier S. Effect of Phthalates and Their Substitutes on the Physiology of Pseudomonas aeruginosa. Microorganisms 2022; 10:microorganisms10091788. [PMID: 36144390 PMCID: PMC9502294 DOI: 10.3390/microorganisms10091788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Phthalates are used in a variety of applications—for example, as plasticizers in polyvinylchloride products to improve their flexibility—and can be easily released into the environment. In addition to being major persistent organic environmental pollutants, some phthalates are responsible for the carcinogenicity, teratogenicity, and endocrine disruption that are notably affecting steroidogenesis in mammals. Numerous studies have thus focused on deciphering their effects on mammals and eukaryotic cells. While multicellular organisms such as humans are known to display various microbiota, including all of the microorganisms that may be commensal, symbiotic, or pathogenic, few studies have aimed at investigating the relationships between phthalates and bacteria, notably regarding their effects on opportunistic pathogens and the severity of the associated pathologies. Herein, the effects of phthalates and their substitutes were investigated on the human pathogen, Pseudomonas aeruginosa, in terms of physiology, virulence, susceptibility to antibiotics, and ability to form biofilms. We show in particular that most of these compounds increased biofilm formation, while some of them enhanced the bacterial membrane fluidity and altered the bacterial morphology.
Collapse
Affiliation(s)
- Mélissande Louis
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Ali Tahrioui
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Julien Verdon
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- CNRS UMR7267 Ecologie et Biologie des Interactions (EBI), Université de Poitiers, F-86000 Poitiers, France
| | - Audrey David
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Sophie Rodrigues
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Magalie Barreau
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Maëliss Manac’h
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Audrey Thiroux
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- CNRS UMR7267 Ecologie et Biologie des Interactions (EBI), Université de Poitiers, F-86000 Poitiers, France
| | - Baptiste Luton
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Charly Dupont
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Marie Le Calvé
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Alexis Bazire
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Alexandre Crépin
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- CNRS UMR7267 Ecologie et Biologie des Interactions (EBI), Université de Poitiers, F-86000 Poitiers, France
| | - Maximilien Clabaut
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- CNRS UMR7267 Ecologie et Biologie des Interactions (EBI), Université de Poitiers, F-86000 Poitiers, France
| | - Emilie Portier
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Laure Taupin
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Florian Defontaine
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Thomas Clamens
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Emeline Bouffartigues
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Pierre Cornelis
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Marc Feuilloley
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Jocelyne Caillon
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- EA3826 Thérapeutiques Cliniques et Expérimentales des Infections, Faculté de Médecine, Université de Nantes, F-44000 Nantes, France
| | - Alain Dufour
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Jean-Marc Berjeaud
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- CNRS UMR7267 Ecologie et Biologie des Interactions (EBI), Université de Poitiers, F-86000 Poitiers, France
| | - Olivier Lesouhaitier
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Sylvie Chevalier
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Correspondence: ; Tel.: +33-2-32-29-15-60
| |
Collapse
|