1
|
Zhao H, Yang M, Chen B, Liu B, Zhang B. Transport of microplastic-antibiotic co-contaminants in tidal zones. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126072. [PMID: 40097062 DOI: 10.1016/j.envpol.2025.126072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/06/2025] [Accepted: 03/15/2025] [Indexed: 03/19/2025]
Abstract
Microplastics (MPs) and antibiotics (ATs) are emerging contaminants with recognized negative effects on marine ecosystems. MPs can adsorb and transport ATs, posing combined toxic effects to marine organisms. Despite growing concerns, research remains limited on the MP-AT co-contaminants in tidal zones, which are home to numerous aquatic species and represent a particularly susceptible ecosystem. This study used polyethylene (PE) MPs and tetracycline (TC) to investigate the influence under various conditions, including sediment sizes, tidal cycles, and MP sizes, on the transport of MP-AT co-contaminants in tidal zones using a tidal cycle simulation system, which was designed to replicate the tidal dynamics and provide insights into the movement and behavior of contaminants. It was observed that MP-AT co-contaminants in tidal sediments exist in three distinct transport states. Smaller MP-AT co-contaminants (State 1) pass through sand pores and are widely distributed in the upper sediment layers, whereas larger MP-AT co-contaminants (State 2) concentrate in layers 1-5 due to size limitations. Agglomerated MP-AT co-contaminants (State 3), unable to pass through sand pores, accumulate at the bottom. Tidal cycles enhance MP-AT co-contaminant retention, while sand size (125-212 μm) limitedly affects their distribution. MP size played a crucial role, with larger MPs settling in layers 1-5 and smaller MPs remaining more dispersed. These findings emphasize the importance of MP size in affecting contaminant transport in tidal environments. Results from this research will contribute to the development of transport models and help predict the long-term environmental impact of MP-AT co-contaminants.
Collapse
Affiliation(s)
- Hemeihui Zhao
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, Newfoundland, A1B 3X5, Canada
| | - Min Yang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, Newfoundland, A1B 3X5, Canada
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, Newfoundland, A1B 3X5, Canada
| | - Bo Liu
- Center for Freshwater Research and Education, Lake Superior State University (LSSU), Sault Ste. Marie, MI 49783, USA
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, Newfoundland, A1B 3X5, Canada.
| |
Collapse
|
2
|
Di X, Sun T, Hu M, Wang D, Zhang H. Significant microplastic accumulation and burial in the intertidal sedimentary environments of the Yellow River Delta. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137134. [PMID: 39787922 DOI: 10.1016/j.jhazmat.2025.137134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Estuarine intertidal habitats provide a dynamic and distinctive environment for the transport of microplastics, yet their migration and accumulation in these areas remain poorly understood. Herein, the spatial distribution patterns of microplastics in the estuarine sedimentary environment of the Yellow River Delta were investigated across elevation and depth gradients. Compared to the subtidal and supratidal zones, the estuarine intertidal zone exhibited the highest microplastic abundance in sediment (1027 ± 29 items/kg). Sediment cores revealed that the highest microplastic abundance occurred at a depth of 5-10 cm. The evolution of microplastic size and morphology characteristics with sediment depth indicates vertical transport of microplastics in estuarine sediments. The strong correlations between organic matter, silt content, and microplastics abundance in estuarine sediments suggested significant impacts of tidal hydrodynamics and sediment characteristics on microplastic migration processes. Estimates indicated that microplastic burial in the deeper sediments (638.7 tons in the 5-30 cm layer) was 1.96 times greater than that in the upper layers. Distinct variations in the carbonyl index across habitats suggested that tidal-induced dynamic redox conditions in the intertidal zone promoted both biotic and abiotic aging processes of microplastics. This study provides new insights into the environmental behavior and long-term fate of microplastics in estuarine intertidal sedimentary environments.
Collapse
Affiliation(s)
- Xiaoxuan Di
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Tao Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Ming Hu
- Command Center of Natural Resources Comprehensive Survey, China Geological Survey, Beijing 100055, China
| | - Dawei Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Hui Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
3
|
Jung CC, Chen KY. Assessing the impact of marine litter hotspot on atmospheric microplastics: A study of a coastal village. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125699. [PMID: 39824333 DOI: 10.1016/j.envpol.2025.125699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/24/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Marine litter and microplastics (MPs) represent pressing environmental challenges. However, the impact of marine litter on airborne MPs near marine litter hotspot remains unexplored. In this study, we simultaneously collected airborne MPs, weather factors, and air pollutants in a village near a marine litter hotspot across different seasons in Taiwan. Multiple methods were employed to evaluate whether the marine litter hotspot was a source of airborne MPs. The average MP concentration was 1.35 ± 1.33 particles/m³, with the highest concentration recorded in spring (3.06 ± 1.63 particles/m³) and the lowest in winter (0.61 ± 0.49 particles/m³). The dominant shapes and size ranges of MPs were fragment and 3-50 μm, respectively. The major polymer composition of the MPs was identified as polyamide. Wind rose, bivariate polar plot, and backward trajectories illustrated that the air mass passing through the marine litter hotspot exhibited higher MP concentrations in the study area in spring, fall, and winter. Factor analysis suggested that thermal and ultraviolet (UV) light exposure induced the emission of MPs from plastic items. In contrast, local activities may be a source of MPs in the study area during summer. Overall, this study revealed that higher MP concentrations were observed in the village near marine litter hotspot when the predominant directions from marine litter hotspot, with thermal and UV light exposure being the degradation mechanisms. This study also highlighted the need to reduce marine litter to mitigate MP pollution near hotspots in the atmosphere.
Collapse
Affiliation(s)
- Chien-Cheng Jung
- Department of Public Health, China Medical University, Taichung City, Taiwan.
| | - Kuan-Yuan Chen
- Department of Public Health, China Medical University, Taichung City, Taiwan.
| |
Collapse
|
4
|
Guo J, Yang M, Huang R, Yu J, Peng K, Cai C, Huang X, Wu Q, Liu J. The combined effects of microplastics and their additives on mangrove system: From the sinks to the sources of carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178336. [PMID: 39754942 DOI: 10.1016/j.scitotenv.2024.178336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/13/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
Mangrove ecosystems, a type of blue carbon ecosystems (BCEs), are vital to the global carbon cycle. However, the combined effects of microplastics (MPs) and plastic additives on carbon sequestration (CS) in mangroves remain unclear. Here, we comprehensively review the sources, occurrence, and environmental behaviors of MPs and representative plastic additives in mangrove ecosystems, including flame retardants, such as polybrominated diphenyl ethers (PBDEs), and plasticizers, such as phthalate esters (PAEs). Mangrove ecosystems have a complex influence on the behaviors of MPs and additives. Under the action of natural and unnatural factors, these pollutants exhibit complex behaviors including migration, interception, deposition and transformation, that are closely linked to those of particulate carbon, particularly carbon sequestration processes. MPs and additives hinder the CS function of mangroves by harming the growth of flora and fauna, influencing microbial nitrogen and sulfur cycles, and enhancing the degradation of organic matter in the sediment. The increasing accumulation and widespread occurrence of MPs and additives will greatly influence the carbon cycle. Future work is encouraged on systematic investigation of new alternatives to plastics and additives, and research methods to uncover the impact mechanisms of MPs and additives on BCEs. The developments of management measures and engineering technologies are also required to enhance pollutant control and mangrove CS.
Collapse
Affiliation(s)
- Junru Guo
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China
| | - Mingqing Yang
- Fuzhou Urban and Rural Construction Group Company Limited, Fuzhou 350007, China
| | - Ruohan Huang
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China
| | - Junyi Yu
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China
| | - Kaiming Peng
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China; Institute of Carbon Neutrality, Tongji University, Shanghai 200092, China
| | - Chen Cai
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China; Institute of Carbon Neutrality, Tongji University, Shanghai 200092, China
| | - Xiangfeng Huang
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China; Frontiers Science Center for Intelligent Autonomous Systems, Shanghai 200092, China; Institute of Carbon Neutrality, Tongji University, Shanghai 200092, China
| | - Qiaofeng Wu
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China; Fuzhou City Construction Investment Group Company Limited, Fuzhou 350014, China.
| | - Jia Liu
- College of Environmental Science and Engineering, Tongji University, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai 200092, China; Frontiers Science Center for Intelligent Autonomous Systems, Shanghai 200092, China; Institute of Carbon Neutrality, Tongji University, Shanghai 200092, China.
| |
Collapse
|
5
|
Zhang L, Wang D, Li W, Liu X, Zhang Z, Tian ZQ. Microplastics distribution and pollution characterization in two typical wetlands on the Qinghai-Tibet Plateau, China. JOURNAL OF CLEANER PRODUCTION 2025; 486:144455. [DOI: 10.1016/j.jclepro.2024.144455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
6
|
Jiang J, He L, Liu J, Liu X, Huang J, Rong L. Experimental study of interception effect by submerged dam on microplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135924. [PMID: 39321481 DOI: 10.1016/j.jhazmat.2024.135924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/20/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Submerged dam can alter microplastic (MP) transport, and act as a sink for MPs. In this paper, we investigated the interception rates of Polyvinyl chloride (PVC) and Polystyrene (PS) by an artificial submerged dam in a flow flume at first, and found that most of the un-intercepted PVC and PS particles by the dam accumulated behind it under the subcritical (Fr < 1) and turbulent (Re > 500) flows. PVC particles behind the dam mainly concentrated within two dam widths, and the concentration of PS particles decreased with the distance behind the dam lengthening. Then, we performed linear regression fitting and Redundancy Analysis (RDA) between the interception rates collected in 162 experiment tests and environmental factors, including flow velocity, distance to dam and MP concentration. The results showed that the interception rate of PVC and PS particles increased with the distance to dam lengthening, but decreased with the flow velocity and MP concentration heightening. RDA revealed that the interception rate was influenced by flow velocity, distance to dam, and MP concentration from the most to the least. Our findings are believed to contribute to understanding the mechanism of the interception effect of submerged dam on microplastics.
Collapse
Affiliation(s)
- Jianhao Jiang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, Zhejiang, China
| | - Lulu He
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, Zhejiang, China; Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology (Zhejiang University of Technology), Hangzhou 310023, China.
| | - Junping Liu
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, Zhejiang, China; Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology (Zhejiang University of Technology), Hangzhou 310023, China
| | - Xu Liu
- Zhejiang Institute of Hydraulics and Estuary, Hangzhou 310020, Zhejiang, China
| | - Junbao Huang
- Zhejiang Institute of Hydraulics and Estuary, Hangzhou 310020, Zhejiang, China
| | - Li Rong
- College of Foreign Languages, Zhejiang University of Technology, Hangzhou 310023, Zhejiang, China
| |
Collapse
|
7
|
He L, Jiang J, Zheng S, Yu N, Zhu Y, Han W. Numerical simulation and experimental study of microplastic transport under open channel shear flow: Roles of particle physical properties and flow velocities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117308. [PMID: 39522269 DOI: 10.1016/j.ecoenv.2024.117308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/22/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Microplastic (MP) transport patterns under open channel shear flow remain unclear. This study investigates the transport laws of MPs at various flow velocities, MP densities, sizes and concentrations in the U-shaped experimental flume and the numerical flume based on Lattice Boltzmann Method (LBM). The results indicate that the average horizontal particle velocity and the transport distances of Polyvinyl chloride (PVC) and Polystyrene (PS) particles increase with the average cross-sectional flow velocity, while the average vertical particle velocity decreases with it. The total average particle velocity closely matches the average vertical particle velocity, regardless of the variation in MP size, density and concentration. Formula-based analysis reveals that the acceleration of spherical MP transport mainly depends on the particle size and its consequent relative drag force term (RDFT) under the conditions with a single type of MP particles, but on the particle density and its consequent RDFT and relative gravity term (RGT) in the case concerning different types of MP particles with identical particle sizes. The average horizontal particle velocity maximum of PVC and PS are both strongly correlated with the average flow velocity maximum in the cross-section. This correlation lowers with the MP particle size and concentration, and is independent of MP density. Our findings can provide reference for the prevention and control of MP pollution in rivers.
Collapse
Affiliation(s)
- Lulu He
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Jianhao Jiang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Shiwei Zheng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China; Zhejiang Design Institute of Water Conservancy and Hydroelectric Power, Hangzhou, Zhejiang 310002, China
| | - Nazhen Yu
- The Eighth Geological Brigade, Hebei Bureau of Geology and Mineral Resources Exploration, Qinhuangdao, China; Marine Ecological Restoration and Smart Ocean Engineering Research Center of Hebei Province, Qinhuangdao 066000, China
| | - Yan Zhu
- Shanghai Research Center of Ocean & Shipbuilding Engineering, China Shipbuilding NDRI Engineering Co., Ltd., Shanghai 200090, China.
| | - Wei Han
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| |
Collapse
|
8
|
Shi YB, Hua ZL, Li XQ, Zhang SH, Liu JL. Submerge-emerge alternation promotes sediment per- and polyfluoroalkyl substance (PFAS) release and bioaccumulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177413. [PMID: 39510285 DOI: 10.1016/j.scitotenv.2024.177413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Understanding the sediment release and plant bioaccumulation of per- and polyfluoroalkyl substances (PFASs) under submerge-emerge alternation (SE) is crucial to predicting their transport and fate in the riparian zones. In the present study, a simulational device was firstly constructed to explore the effects of SE on the transport of PFASs in riparian sediment-plant systems and the underlying mechanisms. The submerge (CS) and emerge (CE) situations were compared. The results showed that SE significantly enhanced the transport and bioaccumulation of PFASs in sediments. Compared with the initial concentration, PFASs in sediments decreased by 81.84 %, 50.48 %, and 21.68 % in the SE, CS, and CE groups, respectively. The bioaccumulation of PFASs in plant roots in the SE group was 1.26 and 4.16 times higher than that in the CS and CE groups, respectively, and the bioaccumulation of PFASs in leaves in the SE group was 2.05 and 1.71 times higher than that in the other two groups. Dissolved organic matter (DOM) composition and molecular properties under SE were recognized as the dominant factors regulating the release of PFASs from sediments. Root morphology and low-molecular-weight organic acids (LMWOAs) in root exudates were closely associated with the bioaccumulation of PFASs in plants. Among the substitutes, hexafluoropropylene oxide trimer acid (HFPO-TA) demonstrated greater hydrophobicity, hexafluoropropylene oxide dimer acid (Gen-X) had greater mobility, and 6:2 fluorotelomer sulfonate (6:2 FTS) accumulated more in plants. This study has expanded the understanding of the geochemical cycling of PFASs in riparian sediment-plant systems under submerge-emerge alternation.
Collapse
Affiliation(s)
- Ye-Bing Shi
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zu-Lin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Nanjing 210098, PR China.
| | - Xiao-Qing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Nanjing 210098, PR China
| | - Song-He Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jian-Long Liu
- Management Division of Qinhuai River Hydraulic Engineering of Jiangsu Province, Nanjing 210022, PR China
| |
Collapse
|
9
|
Wang Z, Lee K, Feng Q, An C, Chen Z. Effect of nanobubbles on the mobilization of microplastics in shorelines subject to seawater infiltration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123950. [PMID: 38604304 DOI: 10.1016/j.envpol.2024.123950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
The widespread presence of microplastics (MPs) in the ocean has varying degrees of impact on ecosystems and even human health. Coastal tidal zones are crucial in controlling the movement of MPs, which are influenced by waves and tidal forces. Meanwhile, natural nanobubbles (NBs) in the ocean can affect the hydrodynamic properties of the tidal zone. The mobilization of MPs in coastal tidal zones under the effect of NBs has been less studied. In this study, we explored natural NBs' influence on the mobilization of MPs in shorelines subject to seawater infiltration. Using glass beads as a substrate, a coastal porous environment was constructed through column experiments, and the pump-controlled water flow was used to study the transport of MPs subject to seawater movement within the substrate. The infiltration of MPs under continuous and transient conditions, as well as the upward transport induced by flood tide, were considered. The role of salinity in the interactions between NBs, MPs, and substrates was evaluated. Salinity altered the energy barriers between particles, which in turn affected the movement of MPs within the substrate. In addition, hydrophilic MPs were more likely to infiltrate within the substrate and had different movement patterns under continuous and transient flow conditions. The motion of the MPs within the substrate varied with flow rate, and NBs limited the vertical movement of MPs in the tidal zone. It was also observed that NBs adsorbed readily onto substrates, altering the surface properties of substrates, particularly their ability to attach and detach from other substances.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, K1A 0E6, Canada
| | - Qi Feng
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada.
| | - Zhikun Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| |
Collapse
|
10
|
Yang X, Huang G, Chen Z, Feng Q, An C, Lyu L, Bi H, Zhou S. Spotlight on the vertical migration of aged microplastics in coastal waters. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134040. [PMID: 38503206 DOI: 10.1016/j.jhazmat.2024.134040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Coastal waters are complex and dynamic areas with unique environmental attributes that complicate the vertical migration of microplastics (MPs). The MPs that enter coastal waters from diverse sources, including terrestrial, riverine, oceanic, and shoreline inputs undergo various aging pathways. In this study, the variations in the physiochemical characteristics of MPs undergoing various aging pathways and their vertical migration under dynamic conditions subjected to the effects of different MP characteristics and coastal environmental features were comprehensively explored. Opposite effects of aging on the vertical migration of hydrophobic and hydrophilic MPs were observed, with aging appearing to promote the dispersion of hydrophobic MPs but enhance the vertical migration of hydrophilic ones. The positive role of salinity and the negative role of humic acid (HA) concentrations on MP vertical migration were identified, and the mechanisms driving these effects were analyzed. Notably, intense turbulence not only promoted the floating of positively buoyant MPs but also reversed the migration direction of negatively buoyant MPs from downward to upward. Aging-induced changes in MP characteristics had a limited effect on MP vertical migration. The inherent characteristics of MPs and the surrounding environmental features, however, played major roles in their vertical migration dynamics. ENVIRONMENTAL IMPLICATION: Microplastics (MPs) have emerged as a significant global environmental concern and the coastal zones are the hotspots for MP pollution due to their high population density. This study comprehensively investigated the variations in the physiochemical characteristics of MPs undergoing various aging pathways. Their vertical migration patterns under dynamic conditions subjected to the effects of different MP characteristics and coastal environmental features were revealed. The roles of turbulence and MP density in their migration were identified. The findings of this study have important implications for understanding the transport and determining the ecological risks of MPs in coastal waters.
Collapse
Affiliation(s)
- Xiaohan Yang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Guohe Huang
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Zhikun Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Qi Feng
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada.
| | - Linxiang Lyu
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Huifang Bi
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Siyuan Zhou
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| |
Collapse
|
11
|
Jiang J, He L, Zheng S, Liu J, Gong L. A review of microplastic transport in coastal zones. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106397. [PMID: 38377936 DOI: 10.1016/j.marenvres.2024.106397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/13/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
Transport of microplastics (MPs) in coastal zones is influenced not only by their own characteristics, but also by the hydrodynamic conditions and coastal environment. In this article, we first summarized the source, distribution and abundance of MPs in coastal zones around the world through the induction of in-situ observation literature, and then comprehensively reviewed the different transports of MPs in coastal zones, including sedimentation, vertical mixing, resuspension, drift and biofouling. Afterwards, we conducted a comparative analysis of relevant experimental literature, and found that the current experimental research on microplastic transport mainly focused on the settling velocity under static water and the transport distribution under dynamic water. Based on the relevant literature on numerical simulation of microplastic transport in coastal zones, it was also found that the Euler-Lagrange method is the most widely used. The main influencing factor in the Euler method is hydrodynamic, while the Lagrange method and Euler-Lagrange method is hydrodynamic and microplastic particle characteristics. Tides in hydrodynamics are mentioned the most frequently, and the role of turbulence in almost all the literature. The density of MPs is the most influencing factor on transport results, followed by size, while shape is only studied in small-scale models. Some literature has also found that the influence of biofilms is mainly reflected in the changes in the density and size of MPs.
Collapse
Affiliation(s)
- Jianhao Jiang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, China
| | - Lulu He
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, China.
| | - Shiwei Zheng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, China; Zhejiang Design Institute of Water Conservancy and Hydroelectric Power, Hangzhou, 310002, Zhejiang, China
| | - Junping Liu
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, China
| | - Lixin Gong
- The Eighth Geological Brigade, Hebei Bureau of Geology and Mineral Resources Exploration, Qinhuangdao, 066001, Hebei, China; Marine Ecological Restoration and Smart Ocean Engineering Research Center of Hebei Province, Qinhuangdao, 066001, Hebei, China
| |
Collapse
|
12
|
Stagnitti M, Musumeci RE. Model-based estimation of seasonal transport of macro-plastics in a marine protected area. MARINE POLLUTION BULLETIN 2024; 201:116191. [PMID: 38428048 DOI: 10.1016/j.marpolbul.2024.116191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Management of plastic litter in Marine Protected Areas (MPAs) is expensive but crucial to avoid harms to critical environments. In the present work, an open-source numerical modelling chain is proposed to estimate the seasonal pathways and fates of macro-plastics, and hence support the effective planning and implementation of sea and beach cleaning operations. The proposed approach is applied to the nearshore region that includes the MPA of Capo Milazzo (Italy). A sensitivity analysis on the influence of tides, wind, waves and river floods over the year indicates that seasonality only slightly affects the location and extension of the macro-plastic accumulation zones, and that beach cleaning operations should be performed in autumn. Instead, the influence of rivers on plastic litter distribution is crucial for the optimal planning of cleaning interventions in the coastal area.
Collapse
Affiliation(s)
- M Stagnitti
- Department of Civil Engineering and Architecture, University of Catania, via S. Sofia 64, 95123 Catania, CT, Italy.
| | - R E Musumeci
- Department of Civil Engineering and Architecture, University of Catania, via S. Sofia 64, 95123 Catania, CT, Italy.
| |
Collapse
|
13
|
Feng Q, Chen Z, Huang G, An C, Yang X, Wang Z. Prolonged drying impedes the detachment of microplastics in unsaturated substrate: Role of flow regimes. WATER RESEARCH 2024; 252:121246. [PMID: 38340454 DOI: 10.1016/j.watres.2024.121246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/12/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The detachment of microplastics (MPs) from porous media under different moisture conditions and flow regimes has garnered limited attention within the research community. The present study investigates the detachment of MPs from porous media under wet and dry conditions combined with steady and transient flow. For both the wet and dry conditions, the increase in flow rates is found to decrease the detachment of hydrophobic polyethylene of two sizes and of hydrophilic polymethylmethacrylate. Intermittent flow is found to result in effluent peaks and a higher rate of MP detachment compared to steady flow. The ionic strength of inflow drops in a stepwise manner, leading to abrupt peaks followed by a tail corresponding to the arrival of each ionic strength front. Each step increase in flow rate leads to a steep peak followed by slow release over several pore volumes. Although transient flow facilitates the detachment of MPs, drying significantly impedes the detachment of MPs irrespective of flow regime. Ultraviolet weathering of MPs for 60 days weakens the inhibition effect of drying on hydrophilic polymethylmethacrylate, facilitating their detachment. Furthermore, the release of MPs decreases markedly with an increase in air-drying duration from 0 h to 72 h. Hydrus-1D two-site kinetic models are used to successfully simulate time-dependent processes, implying that drying heightens the energy barrier for MPs to detach. Our analysis confirms the significance of moisture in determining the remobilization of MPs, providing valuable insights concerning the fate of MPs in unsaturated substrate under prolonged drought conditions.
Collapse
Affiliation(s)
- Qi Feng
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Guohe Huang
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada.
| | - Xiaohan Yang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Zheng Wang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| |
Collapse
|
14
|
Luo S, Wu H, Xu J, Wang X, He X, Li T. Effects of lakeshore landcover types and environmental factors on microplastic distribution in lakes on the Inner Mongolia Plateau, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133115. [PMID: 38096614 DOI: 10.1016/j.jhazmat.2023.133115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 02/08/2024]
Abstract
Microplastic pollution in freshwater environments has received increasing attention. However, limited research on the occurrence and distribution of microplastics in plateau lakes. This study investigated the microplastic characteristics and influencing factors in lakes with different land cover types on the Inner Mongolia Plateau. Results showed that microplastic abundance ranged from 0.5 to 12.6 items/L in water and 50-325 items/kg in sediments. Microplastics in water were predominantly polypropylene (50.5%), fragments (40.5%), and 50-200 µm (66.7%). High-density (27.9%), fibrous (69.3%), and large-sized microplastics (47.7%) were retained primarily in lake sediments. The highest microplastic abundance in water was found in cropland lakes and grassland lakes, while that in sediments was in descending order of desert lakes > cropland lakes > grassland lakes > forest-grassland lakes. Differences among lake types suggest that agriculture, tourism, and atmospheric transport may be critical microplastic sources. Microplastic distribution was positively correlated with farmland and artificial surface coverage, showing that land cover types related to human activities could exacerbate microplastic pollution in lakes. Redundancy analysis showed that ammonia nitrogen and pH were the key physicochemical factors affecting microplastic distribution in lakes, indicating the potential sources of microplastics in lakes and the uniqueness of microplastic occurrence characteristics in desert saline-alkaline lakes, respectively.
Collapse
Affiliation(s)
- Shuai Luo
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Haonan Wu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jifei Xu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Xiujun Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xude He
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Tong Li
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
15
|
Yang X, Huang G, Feng Q, An C, Zhou S, Bi H, Lyu L. Unveiling the Vertical Migration of Microplastics with Suspended Particulate Matter in the Estuarine Environment: Roles of Salinity, Particle Properties, and Hydrodynamics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2944-2955. [PMID: 38306690 DOI: 10.1021/acs.est.3c08186] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
The estuary is an energetic area connecting the inland, river, and ocean. The migration of microplastics (MPs) in this highly complex area is tied to the entire ecosystem. In this study, the effects of cohesive SPM (clay) and noncohesive SPM (sand) on the vertical migration of positively buoyant MPs, polyethylene (PE), and negatively buoyant MPs, polytetrafluoroethylene (PTFE), in the estuarine environment under hydrodynamic disturbances were investigated. The settling of positively buoyant MPs was more reliant on the cohesive SPM compared to the settling of negatively buoyant MPs. Moreover, MPs interacting with the SPM mixture at a clay-to-sand ratio of 1:9 settled more efficiently than those interacting with clay alone. A significant positive correlation was observed between MP settling percentage and the salinity level. MP settling percentage was significantly negatively correlated with fluid shear stress for both types of MPs, meanwhile, negatively buoyant MPs were able to resist greater hydraulic disturbances. In the low-energy mixing state, for both types of MPs, the settling percentage reached about 50% in only 10 min. The resuspension process of MPs under hydrodynamic disturbances was also uncovered. Additionally, the migration and potential sites of MPs were described in the context of prevalent environmental phenomena in estuaries.
Collapse
Affiliation(s)
- Xiaohan Yang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Guohe Huang
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Qi Feng
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Siyuan Zhou
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Huifang Bi
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Linxiang Lyu
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| |
Collapse
|
16
|
Xu Y, Ou Q, van der Hoek JP, Liu G, Lompe KM. Photo-oxidation of Micro- and Nanoplastics: Physical, Chemical, and Biological Effects in Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:991-1009. [PMID: 38166393 PMCID: PMC10795193 DOI: 10.1021/acs.est.3c07035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/04/2024]
Abstract
Micro- and nanoplastics (MNPs) are attracting increasing attention due to their persistence and potential ecological risks. This review critically summarizes the effects of photo-oxidation on the physical, chemical, and biological behaviors of MNPs in aquatic and terrestrial environments. The core of this paper explores how photo-oxidation-induced surface property changes in MNPs affect their adsorption toward contaminants, the stability and mobility of MNPs in water and porous media, as well as the transport of pollutants such as organic pollutants (OPs) and heavy metals (HMs). It then reviews the photochemical processes of MNPs with coexisting constituents, highlighting critical factors affecting the photo-oxidation of MNPs, and the contribution of MNPs to the phototransformation of other contaminants. The distinct biological effects and mechanism of aged MNPs are pointed out, in terms of the toxicity to aquatic organisms, biofilm formation, planktonic microbial growth, and soil and sediment microbial community and function. Furthermore, the research gaps and perspectives are put forward, regarding the underlying interaction mechanisms of MNPs with coexisting natural constituents and pollutants under photo-oxidation conditions, the combined effects of photo-oxidation and natural constituents on the fate of MNPs, and the microbiological effect of photoaged MNPs, especially the biotransformation of pollutants.
Collapse
Affiliation(s)
- Yanghui Xu
- Key
Laboratory of Drinking Water Science and Technology, Research Centre
for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, P. R. China
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Qin Ou
- Key
Laboratory of Drinking Water Science and Technology, Research Centre
for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, P. R. China
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Jan Peter van der Hoek
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
- Waternet,
Department Research & Innovation,
P.O. Box 94370, 1090 GJ Amsterdam, The Netherlands
| | - Gang Liu
- Key
Laboratory of Drinking Water Science and Technology, Research Centre
for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, P. R. China
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kim Maren Lompe
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| |
Collapse
|
17
|
Lyu L, Bagchi M, Markoglou N, An C, Peng H, Bi H, Yang X, Sun H. Towards environmentally sustainable management: A review on the generation, degradation, and recycling of polypropylene face mask waste. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132566. [PMID: 37742382 DOI: 10.1016/j.jhazmat.2023.132566] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
There has been a considerable increase in the use of face masks in the past years. Managing face mask waste has become a global concern, as the current waste management system is insufficient to deal with such a large quantity of solid waste. The drastic increase in quantity, along with the material's inability to degrade plastic components such as polypropylene, has led to a large accumulation of plastic waste, causing a series of environmental and ecological challenges. In addition, the growing use also imposes pressure on waste management methods such as landfill and incineration, raising concerns about high energy consumption, low value-added utilization, and the release of additional pollutants during the process. This article initially reviews the impact of mask-related plastic waste generation and degradation behavior in the natural environment. It then provides an overview of various recently developed methods for recycling face mask plastic waste. The article also offers forward-looking strategies and recommendations on face mask plastic waste management. The review aims to provide guidance on harnessing the complexities of mask waste and other medical plastic pollution issues, as well as improving the current waste management system's deficiencies and inefficiencies in tackling the growing plastic waste problem.
Collapse
Affiliation(s)
- Linxiang Lyu
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Monisha Bagchi
- Department Research and Development, Meltech Innovation Canada Inc., Medicom Group, Pointe-Claire, QC H9P 2Z2, Canada
| | - Nektaria Markoglou
- Department Research and Development, Meltech Innovation Canada Inc., Medicom Group, Pointe-Claire, QC H9P 2Z2, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada.
| | - He Peng
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Huifang Bi
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Xiaohan Yang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Huijuan Sun
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
18
|
Lyu L, Peng H, An C, Sun H, Yang X, Bi H. An insight into the benefits of substituting polypropylene with biodegradable polylactic acid face masks for combating environmental emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167137. [PMID: 37734618 DOI: 10.1016/j.scitotenv.2023.167137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Mask waste can affect the natural environment and human health. In this study, the life cycle assessment (LCA) of two types of face masks (Polylactic acid (PLA) and Polypropylene (PP)) was first performed to evaluate the environmental impacts from production to end-of-life, and then, greenhouse gas (GHG) emissions were estimated for each life stage. The GHG emissions for one functional unit of PP and PLA face masks were estimated to be 6.27E+07 and 5.06E+07 kg CO2 eq, respectively. Explicitly, PLA mask production emissions are 37 % lower as compared to those for PP masks. Packaging has been recognized as a major GHG source throughout the product's life cycle. This study may provide a new insight into the environmental benefits of reducing GHG emissions within PLA face mask life cycles. Biodegradable and environmentally friendly materials can be used in the manufacturing and packaging of face masks.
Collapse
Affiliation(s)
- Linxiang Lyu
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - He Peng
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada.
| | - Huijuan Sun
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaohan Yang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Huifang Bi
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| |
Collapse
|
19
|
Li T, Wang Y, Jiao M, Zhao Z, Li R, Qin C. Distinct microplastics abundance variation in root-associated sediments revealed the underestimation of mangrove microplastics pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165611. [PMID: 37478953 DOI: 10.1016/j.scitotenv.2023.165611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
Mangrove sediment is acknowledged as the critical sink of microplastics (MPs). However, the potential effect of mangrove root systems on the MPs migration in sediment remains largely unknown. Here, our study characterized the spatial distribution of MPs trapped in root hair, rhizosphere, and non-rhizosphere zones, and analyzed their correlations with physicochemical properties of sediments. The significantly increased MPs abundances toward root systems shed light on the distinct effect on the migration of MPs exerted by mangrove root systems. Partial least squares path modeling (PLS-PM) analysis revealed that pore water content and pH influenced the abundances of different MP characteristics (shape, color, size, and type) and further promoted the accumulation of MPs toward the root systems. In different mangrove areas from landward to seaward, other sediment properties (median grain size, clay content, and salinity) also controlled MP distribution. Additionally, smaller-sized MPs (<1000 μm) were more easily transported to the root systems. Our study emphasizes the importance of considering root systems effect when investigating the mechanisms of MPs distribution and migration in mangrove sediments.
Collapse
Affiliation(s)
- Tiezhu Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yijin Wang
- School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Meng Jiao
- School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Zhen Zhao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Ruilong Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Chengrong Qin
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
20
|
Feng Q, An C, Chen Z, Lee K, Wang Z. Identification of the driving factors of microplastic load and morphology in estuaries for improving monitoring and management strategies: A global meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122014. [PMID: 37336353 DOI: 10.1016/j.envpol.2023.122014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 06/21/2023]
Abstract
Estuaries are one of the primary pathways for transferring microplastics (MPs) from the land to the ocean. A comprehensive understanding of the load, morphological characteristics, driving factors, and potential risks of MPs in estuaries is imperative to inform reliable management in this critical transboundary area. Extracted from 135 publications, a global meta-analysis comprising 1477 observations and 124 estuaries was conducted. MP abundance in estuaries was tremendously variable, reaching a mean of 21,342.43 ± 122,557.53 items/m3 in water and 1312.79 ± 6295.73 items/kg in sediment. Fibers and fragments take up a majority proportion in estuaries. Polyester, polypropylene, and polyethylene are the most detected MP types. Around 68.73% and 85.51% of MPs detected in water and sediment are smaller than 1 μm. The redundancy analysis revealed that the explanatory factors influencing the morphological characteristics of MPs differed between water and sediment. Regression analysis shows that MP abundance in water is significantly inversely correlated with mesh/filter size, per capita plastic waste, and the Human Development Index, whereas it is significantly positively correlated with population density and share of global mismanaged plastic waste. MP abundance in sediment significantly positively correlated with aridity index and probability of plastic entering the ocean, while significantly negatively correlated with mesh/filter size. Analysis based on Geodector identified that the extraction method, density of flotation fluid, and sampling depth are the top three explanatory factors for MP abundance in water, while the share of global mismanaged plastic waste, the probability of plastic being emitted into the ocean, and population density are the top three explanatory factors for MP abundance in sediment. In the studied estuaries, 46.75% of the water and 2.74% of the sediment are categorized into extremely high levels of pollution, while 73.08% of the water and 43.48% of the sediment belong to class V of the potential ecological index.
Collapse
Affiliation(s)
- Qi Feng
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada.
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, K1A 0E6, Canada
| | - Zheng Wang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| |
Collapse
|
21
|
Cai M, Qi Z, Guy C, An C, Chen X, Wang Z, Feng Q. Insights into the abiotic fragmentation of biodegradable mulches under accelerated weathering conditions. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131477. [PMID: 37104954 DOI: 10.1016/j.jhazmat.2023.131477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/19/2023]
Abstract
Biodegradable mulches (BMs) can be tilled into soils to mitigate disposal and environmental problems. However, the content of biodegradable microplastics (BMPs) would increase with the addition of biodegradable macroplastics (BMaPs). The fragmented particles have a strong affinity to soil pollutants, having the potential to transfer via the terrestrial food web in an agroecosystem. Based on the spectral analysis and particle size analysis, this study explored the physicochemical characteristics of weathered BMaPs and BMP-derived dissolved organic matter (DOMBMP). Ultraviolet (UV) irradiation reduced the mechanical strength of BMaPs and induced oxygenated functional groups, thus increasing surface roughness and hydrophilicity. This promoted the adsorption of aromatic compounds and heavy metals from soils to BMPs. After entering the water environment, the pH of the solution with DOMBMP decreased, whereas the concentration of dissolved organic carbon (DOC) increased. Compared with paper mulch, bioplastic mulch contributed a higher amount of DOMBMP, such as aromatic structure-containing chemicals and carboxylic acids, to the water environment but released fewer and smaller plastic particles. The findings from this study can help manage environmental risks and determine disposal strategies after the use of mulching.
Collapse
Affiliation(s)
- Mengfan Cai
- Department of Building, Civil and Environmental Engineering, Faculty of Engineering and Computer Science, Concordia University, Montreal H3G 1M8, Canada
| | - Zhiming Qi
- Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue H9X 3V9, Canada
| | - Christophe Guy
- University of Technology of Compiègne, Compiègne 60200, France
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Faculty of Engineering and Computer Science, Concordia University, Montreal H3G 1M8, Canada.
| | - Xiujuan Chen
- Department of Civil Engineering, University of Texas at Arlington, Arlington 76019, USA
| | - Zheng Wang
- Department of Building, Civil and Environmental Engineering, Faculty of Engineering and Computer Science, Concordia University, Montreal H3G 1M8, Canada
| | - Qi Feng
- Department of Building, Civil and Environmental Engineering, Faculty of Engineering and Computer Science, Concordia University, Montreal H3G 1M8, Canada
| |
Collapse
|
22
|
Ochirbat E, Zbonikowski R, Sulicka A, Bończak B, Bonarowska M, Łoś M, Malinowska E, Hołyst R, Paczesny J. Heteroaggregation of virions and microplastics reduces the number of active bacteriophages in aqueous environments. JOURNAL OF ENVIRONMENTAL QUALITY 2023; 52:665-677. [PMID: 36785877 DOI: 10.1002/jeq2.20459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/24/2023] [Indexed: 05/06/2023]
Abstract
The objective of this study is to explore the effects of microplastics on the viability of the bacteriophages in an aqueous environment. Bacteriophages (phages), that is, viruses of bacteria, are essential in homeostasis. It is estimated that phages cause up to 40% of the death of all bacteria daily. Any factor affecting phage activity is vital for the whole food chain and the ecology of numerous niches. We hypothesize that the number of active phages decreases due to the virions' adsorption on microplastic particles or by the released leachables from additives used in the production of plastic, for example, stabilizers, plasticizers, colorants, and reinforcements. We exposed three diverse phages, namely, T4 (tailed), MS2 (icosahedral), and M13 (filamentous), to 1 mg/mL suspension of 12 industrial-grade plastics [acrylonitrile butadiene styrene, high-impact polystyrene, poly-ε-caproamide, polycarbonate, polyethylene, polyethylene terephthalate, poly(methyl methacrylate), polypropylene, polystyrene, polytetrafluoroethylene, polyurethane, and polyvinyl chloride] shredded to obtain microparticles of radius ranging from 2 to 50 μm. The effect of leachables was measured upon exposure of phages not to particles themselves but to the buffer preincubated with microplastics. A double-overlay plaque counting method was used to assess phage titers. We employed a classical linear regression model to verify which physicochemical parameters (65 variables were tested) govern the decrease of phage titers. The key finding is that adsorption mechanisms result in up to complete scavenging of virions, whereas leachables deactivate up to 50% of phages. This study reveals microplastic pollution's plausible and unforeseen ecotoxicological effect causing phage deactivation. Moreover, phage transmission through adsorption can alter the balance of the food chain in the new environment. The effect depends mainly on the zeta potentials of the polymers and the phage type.
Collapse
Affiliation(s)
- Enkhlin Ochirbat
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Rafał Zbonikowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Sulicka
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Chemistry, The Chair of Medical Biotechnology, Warsaw University of Technology, Warsaw, Poland
| | - Bartłomiej Bończak
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Marcin Łoś
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
- Phage Consultants, Gdańsk, Poland
| | - Elżbieta Malinowska
- Faculty of Chemistry, The Chair of Medical Biotechnology, Warsaw University of Technology, Warsaw, Poland
- CEZAMAT, Warsaw University of Technology, Warsaw, Poland
| | - Robert Hołyst
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
23
|
Bilbao-Kareaga A, Menendez D, Peón P, Ardura A, Garcia-Vazquez E. Microplastics in jellifying algae in the Bay of Biscay. Implications for consumers' health. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
24
|
An investigation into the aging of disposable face masks in landfill leachate. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130671. [PMCID: PMC9789546 DOI: 10.1016/j.jhazmat.2022.130671] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 09/26/2023]
Abstract
Due to the excessive use of disposable face masks during the COVID-19 pandemic, their accumulation has posed a great threat to the environment. In this study, we explored the fate of masks after being disposed in landfill. We simulated the possible process that masks would experience, including the exposure to sunlight before being covered and the contact with landfill leachate. After exposure to UV radiation, all three mask layers exhibited abrasions and fractures on the surface and became unstable with the increased UV radiation duration showed aging process. The alterations in chemical groups of masks as well as the lower mechanical strength of masks after UV weathering were detected to prove the happened aging process. Then it was found that the aging of masks in landfill leachate was further accelerated compared to these processes occurring in deionized water. Furthermore, the carbonyl index and isotacticity of the mask samples after aging for 30 days in leachate were higher than those of pristine materials, especially for those endured longer UV radiation. Similarly, the weight and tensile strength of the aged masks were also found lower than the original samples. Masks were likely to release more microparticles and high concentration of metal elements into leachate than deionized water after UV radiation and aging. After being exposed to UV radiation for 48 h, the concentration of released particles in leachate was 39.45 μL/L after 1 day and then grew to 309.45 μL/L after 30 days of aging. Seven elements (Al, Cr, Cu, Zn, Cd, Sb and Pb) were detected in leachate and the concentration of this metal elements increased with the longer aging time. The findings of this study can advance our understanding of the fate of disposable masks in the landfill and develop the strategy to address this challenge in waste management.
Collapse
|
25
|
Chen Z, Elektorowicz M, An C, Tian X. Entrainment and Enrichment of Microplastics in Ice Formation Processes: Implications for the Transport of Microplastics in Cold Regions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3176-3186. [PMID: 36780450 DOI: 10.1021/acs.est.2c09340] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Sea ice can serve as a temporary sink for microplastics (MPs), and thus, it too can function as a secondary source of and transport medium for MPs. This study aimed to explore the effect of various MP properties and environmental characteristics on the entrainment and enrichment of MPs in ice under varying turbulence conditions. It was found that high rotation speed in freshwater distinctively enhanced the entrainment of hydrophobic MPs in ice, this being attributable to the combined effects of frazil ice and air bubbles. The hydrophobic nature of these MPs caused them to be attracted to the water/air or water/ice interface. However, in saline water, high turbulence inhibited the entrainment of all of the MP types under study. The ice crystals formed a loose structure in saline water instead of congealing, and this allowed the exchange of MPs between ice and water, leading to the rapid expulsion of MPs from the ice. The enrichment factors of all the MPs under study increased in calm saline water compared to in calm freshwater. The results revealed that the entrainment and enrichment of MPs in ice can be critical pathways affecting their fate in cold regions.
Collapse
Affiliation(s)
- Zhikun Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec H3G 1M8, Canada
| | - Maria Elektorowicz
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec H3G 1M8, Canada
| | - Xuelin Tian
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec H3G 1M8, Canada
| |
Collapse
|
26
|
Feng Q, An C, Chen Z, Wang Z. New Perspective on the Mobilization of Microplastics through Capillary Fringe Fluctuation in a Tidal Aquifer Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:929-938. [PMID: 36603902 DOI: 10.1021/acs.est.2c04686] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The presence of plastic fragments in the environment is a growing global concern. In this study, we explored the effects of dynamic fluctuations of capillary fringe on the transport of microplastics (MPs) in the substrate combining various environmental and MP properties. Both experimental and Hydrus-2D modeling results confirmed that increasing cycles of water table fluctuation led to the rise of capillary fringe. An increase in the cycles of water table fluctuations did not significantly change the overall MP retention percentages in 0.5 mm substrate but altered the MP distribution along the column. In 1 and 2 mm substrate, the increase in cycle numbers enhanced the MP transport from substrate to the water below. In terms of the size of the MPs, more 20-25 μm polyethylene (PE2) were retained in the substrate compared to 4-6 μm polyethylene (PE1) under the same number of fluctuation cycles. High-density polytetrafluoroethylene (PTFE, 5-6 μm) exhibited higher retention percentages compared to PE1 particles. Ultraviolet aging for 60 days enhanced PE1 transport along the column, while 60 days of seawater aging did not affect PE1 transport greatly. For PTFE, ultraviolet and seawater aging enhanced its retention in the substrate. The retention percentages of both PE1 and PTFE in the column increased with the elevated ionic strength and the decrease of fluctuation velocity. This work highlights that capillary fringe fluctuation can serve as a pathway to relocate MPs to the tidal aquifer.
Collapse
Affiliation(s)
- Qi Feng
- Department of Building, Civil and Environmental Engineering, Concordia University, MontrealQC H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, MontrealQC H3G 1M8, Canada
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, MontrealQC H3G 1M8, Canada
| | - Zheng Wang
- Department of Building, Civil and Environmental Engineering, Concordia University, MontrealQC H3G 1M8, Canada
| |
Collapse
|
27
|
Zhou L, Ma R, Yan C, Wu J, Zhang Y, Zhou J, Qu G, He X, Wang T. Plasma-mediated aging process of different microplastics: Release of dissolved organic matter and formation of disinfection by-products. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|