1
|
Yang W, Yang J, Liu E, Xing N, Wang D, Yang H, Li Y, Zhang P, Dou J. MnO/MnS nanoparticles encapsulated in Lycopodium spores derived nitrogen-doped porous carbon as a cost-effective peroxymonosulfate activator for pollutant decontamination: Insight into the mechanism of electron transfer-dominated non-radical pathway. J Colloid Interface Sci 2025; 691:137428. [PMID: 40147365 DOI: 10.1016/j.jcis.2025.137428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
The rational design and exploitation of cost-effective and robust catalysts for peroxymonosulfate (PMS) activation is of great significance. Herein, MnO/MnS nanoparticles encapsulated in Nitrogen-doped porous carbon skeleton (abbreviated as MnO/MnS@NPC) were first constructed through an easy two-step of impregnation along with subsequent pyrolysis technique and utilized to activate PMS for the elimination and mineralization of tetracycline (TC). Benefiting from the strong coupling of transition metal Mn with carbon-based material, the co-doping of heteroatom N and S, the enhanced electrical conductivity, and the hierarchical porous microarchitecture, the obtained MnO/MnS@NPC composite has been expected to present superior PMS activation capacity and pollutant elimination efficiency to its benchmark NPC and MnO@NPC, with 92.5 % degradation rate of TC within 60 min. Comprehensive investigations, involving quenching experiments, electron paramagnetic resonance (EPR) studies, in situ Raman identification, and electrochemical tests, jointly indicated that the non-radical pathways including electron-transfer, single oxygen (1O2) and the high-valent Mn-oxo species, especially the electron transfer process (ETP) from TC molecule to the metastable MnO/MnS@NPC-PMS* complex were dominantly responsible for PMS activation and further decomposition of TC, which greatly enhanced the selective removal of TC and the anti-interference capacity of the PMS system. Furthermore, the possible TC degradation routes were predicted by Density Functional Theory (DFT) calculation and the toxicity of degradation intermediates were also analyzed by toxicity assessment software. In addition, the heterogeneous catalyst displayed outstanding stability and reusability owing to the shield effect of NPC framework to MnO/MnS nanoparticles. Overall, this work proposed a prospective strategy for rationally designing and exploring heterogeneous PMS activator towards wastewater purification.
Collapse
Affiliation(s)
- Wenning Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Jie Yang
- Department of Pharmaceutical and Bioengineering, ZiBo Vocational Institute, ZiBo 255000, China
| | - Erkang Liu
- Hebei Short Process Steelmaking Technology Innovation Center, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Ningning Xing
- School of Sport Communication and Information Technology, Shandong Sport University, Jinan 250100, China
| | - Dong Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Hua Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Yongfei Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Pengfang Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jianmin Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
2
|
Kang H, Chen Y, Cheng M, Guo H, Zhang G, Shi Q, Zhou W, Zhao C, Zou B, Lv X, Yuan Z, Zeng G. State-Of-The-Art Structural Regulation Methods and Quantum Chemistry for Carbon-Based Single-Atom Catalysts in Advanced Oxidation Process: Critical Perspectives into Molecular Level. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2505128. [PMID: 40401577 DOI: 10.1002/adma.202505128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/24/2025] [Indexed: 05/23/2025]
Abstract
Advanced oxidation processes (AOPs) by carbon-based single-atom catalysts (SACs) are recognized as an attractive scientific frontier for water treatment, with the outstanding benefits of ultra-effective and anti-interference capability. However, most of the research has paid more attention to the performance of SACs, while the in-depth understanding of catalytic regulation by molecular interaction is relatively deficient. This critical review delves into deciphering the catalytic mechanism through a micro-level, which makes it more convenient to interpret apparent catalytic phenomena. It first summarizes basic theories of quantum chemistry, which provide mechanism interpretation and prediction for molecular-oxidation systems. Additionally, corresponding oxidation pathways of common oxidants are underscored. Following the oxidants, state-of-the-art regulation methods are discussed with special attention to involved molecular interactions and pollutants. Particularly, the preliminary insights into the "oxidant-catalyst-pollutants" internal relationships are provided to help construct the SAC-AOP system from a molecular standpoint. Meanwhile, some cutting-edge laboratory devices and pilot-scale engineering are presented to illustrate the ultimate purpose of scientific molecular exploration. Eventually, relative challenges of SACs-AOPs upon the design of catalytic systems and investigation methods are provided. This review aims to promote the large-scale potential of SACs-based AOPs in practical water treatment by emphasizing the pivotal role of micro-insights.
Collapse
Affiliation(s)
- Huayue Kang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Huiqin Guo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Gaoxia Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Qingkai Shi
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Wencheng Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Chen Zhao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Bin Zou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xinyue Lv
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Ziyue Yuan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| |
Collapse
|
3
|
Shi J, Cheng Y, Wang T, Peng Y, Lin X, Tang B, Feng M, Zhuang Z, Sun Y, Yu X, Xu ZJ. Site-Specific Spin State Modulation in Spinel Oxides for Enhanced Nonradical Oxidation. Angew Chem Int Ed Engl 2025:e202504189. [PMID: 40323154 DOI: 10.1002/anie.202504189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/14/2025] [Accepted: 05/05/2025] [Indexed: 05/16/2025]
Abstract
Spinel oxides hold tremendous potential for driving advanced oxidation processes, yet the underlying mechanism for maximizing their activity remains unclear. In this study, we leverage tetrahedral and octahedral site interactions in MnxCo3-xO4 to modulate the spin states, specifically spin alignment and spin moment, thereby enhancing periodate (PI) activation and catalytic performance in contaminant degradation. Through combined experimental and density functional theory (DFT) analyses, we elucidate the role of spin alignment at synergetic tetrahedral and octahedral sites in facilitating quantum spin exchange interactions (QSEI) with an efficient electronic spin channel for charge transfer. Meanwhile, the engineered high spin configuration in CoMn2O4 raises the d-band center, favoring stable PI* surface complex formation and accelerating the rate-determining desorption of IO3 - with a lower-ICOHP value during the catalytic degradation of ciprofloxacin. As a result, the fine-tuned spin state of CoMn2O4 leads to enhanced overall reaction kinetics, with a 2.5-fold increase compared to MnCo2O4 and up to 22-fold increase compared to the octahedrally-active only catalysts. Such a site-specific modulation has been found applicable to other spinel oxides, enlightening fine-tuned electronic structure for maximizing catalytic performance.
Collapse
Affiliation(s)
- Jingdan Shi
- College of the Environment & Ecology, Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102, P.R. China
| | - Yaxin Cheng
- College of the Environment & Ecology, Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102, P.R. China
| | - Ting Wang
- College of the Environment & Ecology, Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102, P.R. China
| | - Yanhua Peng
- College of the Environment & Ecology, Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102, P.R. China
| | - Xinlong Lin
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Bing Tang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Mingbao Feng
- College of the Environment & Ecology, Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102, P.R. China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Yuanmiao Sun
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China
| | - Xin Yu
- College of the Environment & Ecology, Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102, P.R. China
| | - Zhichuan J Xu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
4
|
Zhou H, Duan X, Huang B, Zhong S, Cheng C, Sharma VK, Wang S, Lai B. Isotope Techniques in Chemical Wastewater Treatment: Opportunities and Uncertainties. Angew Chem Int Ed Engl 2025; 64:e202422892. [PMID: 40040468 PMCID: PMC12051784 DOI: 10.1002/anie.202422892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/06/2025]
Abstract
A comprehensive and in-depth analysis of reaction mechanisms is essential for advancing chemical water treatment technologies. However, due to the limitations of conventional experimental and analytical methods, the types of reactive species and their generation pathways are commonly debatable in many aqueous systems. As highly sensitive diagnostic tools, isotope techniques offer deeper insights with minimal interference from reaction conditions. Nevertheless, precise interpretations of isotope results remain a significant challenge. Herein, we first scrutinized the fundamentals of isotope chemistry and highlighted key changes induced by the isotope substitution. Next, we discussed the application of isotope techniques in kinetic isotope effects, presenting a roadmap for interpreting KIE in sophisticated systems. Furthermore, we summarized the applications of isotope techniques in elemental tracing to pinpoint reaction sites and identify dominant reactive species. Lastly, we propose future research directions, highlighting critical considerations for the rational design and interpretation of isotope experiments in environmental chemistry and related fields.
Collapse
Affiliation(s)
- Hongyu Zhou
- State Key Laboratory of Hydraulics and Mountain River EngineeringCollege of Architecture and Environment, Sichuan UniversityChengdu610065China
- School of Chemical EngineeringThe University of AdelaideAdelaideSA5005Australia
| | - Xiaoguang Duan
- School of Chemical EngineeringThe University of AdelaideAdelaideSA5005Australia
| | - Bingkun Huang
- State Key Laboratory of Hydraulics and Mountain River EngineeringCollege of Architecture and Environment, Sichuan UniversityChengdu610065China
| | - Shuang Zhong
- School of Chemical EngineeringThe University of AdelaideAdelaideSA5005Australia
| | - Cheng Cheng
- School of Chemical EngineeringThe University of AdelaideAdelaideSA5005Australia
| | - Virender K. Sharma
- Department of Chemical, Environmental and MaterialsUniversity of Miami1251 Memorial DriveCoral GablesFlorida33146USA
| | - Shaobin Wang
- School of Chemical EngineeringThe University of AdelaideAdelaideSA5005Australia
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River EngineeringCollege of Architecture and Environment, Sichuan UniversityChengdu610065China
| |
Collapse
|
5
|
Yang T, Chen M, Li J, Feng Z, Zou S, Mao S, Tian Z, Zhao H. One Heterogeneous Catalyst Drives Two Selective Fenton-like Reaction Modes for Sustainable Water Decontamination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8155-8166. [PMID: 40239063 DOI: 10.1021/acs.est.4c13436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Heterogeneous Fenton-like reactions based on nonradical reactive oxygen species (ROS) are desirable for selective water decontamination, and different pollutants coexisting in real scenarios necessitate a rational combination of multiple ROS for efficient and sustainable decontamination. However, the general one-catalyst-for-one-ROS strategy toward selective ROS generation inevitably renders the combinational process lengthy and cost ineffective. Herein, we developed a new approach to enable the separate but selective generation of two distinct ROS in one catalyst via peroxymonosulfate activation. The unique catalyst is comprised of a graphitic layer bottom-wrapped Fe@Fe3C encapsulated inside nitrogen-doped carbon nanotubes. The Fe3C shell facilitates selective formation of surface-bound FeIV═O with up to 96.0% selectivity, and the applied electric field could switch ROS generation toward free 1O2 with 90.5% selectivity, as enabled by C atoms adjacent to graphite N. One dual-site catalyst enables both high cumulative concentration for FeIV═O and 1O2 up to 16605 and 7674 μM at 30 min, respectively. Based on such a simple electricity on/off switch mode, a tandem process operated in one unit was proposed to efficiently degrade mixed pollutants of distinct adsorption properties. This study presents a simple but very effective strategy to modulate selective ROS generation that simplifies tandem Fenton-like systems for sustainable water decontamination.
Collapse
Affiliation(s)
- Tian Yang
- Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Min Chen
- Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jiejie Li
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China
| | - Zhiyuan Feng
- Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Shihua Zou
- Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Shun Mao
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Ziqi Tian
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China
| | - Hongying Zhao
- Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
6
|
Zhang C, Wang Y, Tao Y, Shi Y, Wang J, Ma Z, Shang H, Zhang D, Li G. Ultrahigh Peroxymonosulfate Utilization Over a Single-Atom Iron-N-C Catalyst for Efficient Fenton-Like Chemistry via Surface-Bound Reactive Complexes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501267. [PMID: 40270286 DOI: 10.1002/smll.202501267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/03/2025] [Indexed: 04/25/2025]
Abstract
Transition metal single-atom catalysts (SACs) find extensive application in peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs). Yet, the disparity in intrinsic activity is often attributed to thermodynamics, but few studies focused on the electronic structure between different metals. Herein, transition metal catalysts in the form of single-atom M-N4 moieties moored to graphitic carbon nitride (denoted MSA CN, M = Fe, Co, and Cu) are developed and used for activating PMS for the degradation of 4-chlorophenol. Remarkably, FeSA CN achieves a catalyst-dose-normalized kinetic rate constant of 34.2 L min-1 g-1, surpassing reported systems by 2-551 times ─ even at ultralow catalyst (0.06 mg L-1) and PMS (0.2 mm) concentration. The in situ formation of surface-bound PMS* complexes enabled the degradation of 4-chlorophenol to achieve unprecedented utilization efficiency (≈100%) through highly efficient non-radical pathways. Density functional theory calculations revealed that large spin polarization of Fe-N-C sites facilitated the d orbitals to overlap with the PMS on the metal active sites and promoted electron transport, thereby facilitating PMS adsorption and enhancing the oxidation capacity. This work establishes a mechanistic foundation for designing a single Fe-atom catalyst/PMS system in Fenton-like water treatment.
Collapse
Affiliation(s)
- Chi Zhang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Yongjie Wang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Ying Tao
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Yuxin Shi
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Jixing Wang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Zhong Ma
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200234, P. R. China
| | - Huan Shang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200234, P. R. China
| | - Dieqing Zhang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Guisheng Li
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P. R. China
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200234, P. R. China
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, P. R. China
| |
Collapse
|
7
|
Jiang Z, Tong K, Li Z, Tao H, Zhu M. Spin State Regulation for Peroxide Activation: Fundamental Insights and Regulation Mechanisms. Angew Chem Int Ed Engl 2025; 64:e202500791. [PMID: 39925159 DOI: 10.1002/anie.202500791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/08/2025] [Accepted: 02/08/2025] [Indexed: 02/11/2025]
Abstract
Peroxides are widely used in environmental applications due to their strong oxidizing properties, however, traditional activation methods often face challenges such as uncontrolled reactive oxygen species (ROS) generation and high energy barriers. Recent advancements in spin state regulation provide a promising alternative to enhance the efficiency of peroxide activation. This review provides an overview of spin fundamentals and discusses the key factors affecting spin state in catalytic materials, including crystal field configuration, ligand environment, and valence changes. Subsequently, the role of electron spin state in peroxide activation is comprehensively analyzed, with a focus on how spin state regulation can tune adsorption energy, lower energy barriers, facilitate electron transfer between transition metals and peroxides, and promote selective ROS generation. Finally, this review briefly outlines the practical applications of peroxide activation in water treatment and concludes with a summary and perspectives on future research directions. This review aims to provide a comprehensive perspective on the role of spin state regulation in advancing peroxide activation strategies.
Collapse
Affiliation(s)
- Zicong Jiang
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, P.R. China
| | - Kangbo Tong
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, P.R. China
| | - Zhi Li
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, P.R. China
| | - Hengcong Tao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, P.R. China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, P.R. China
| |
Collapse
|
8
|
Lu N, Li Y, Wang J, Li G, Li G, Liu F, Tang CY. Precise manipulation of iron spin states in single-atom catalytic membranes for singlet oxygen selective production. MATERIALS HORIZONS 2025; 12:1944-1952. [PMID: 39704204 DOI: 10.1039/d4mh01479k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Heterogeneous single-atom catalysts are attracting substantial attention for selectively generating singlet oxygen (1O2). However, precise manipulation of atom coordination structures remains challenging. Here, the fine coordination structure of iron single-atom carbon-nitride catalysts (Fe-CNs) was manipulated by precisely tuning the heating rate with 1 °C min-1 difference. Multiple techniques in combination with density functional theory (DFT) calculations reveal that FeN6 coordination sites with high Fe spin states promote the adsorption, electron transfer, and dissociation of peroxymonosulfate (PMS), resulting in nearly 100% selection of 1O2 generation. A lamellar single atom catalytic membrane is constructed, exhibiting high permeance, high degradation, high-salinity resistance and sustained operation stability. This work provides ideas for regulating spin states of the metal site to fabricate catalysts with selective 1O2 generation for membrane separation and environment catalysis applications.
Collapse
Affiliation(s)
- Na Lu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China.
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Yanle Li
- 4.Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313000, P. R. China
| | - Jianqiang Wang
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China.
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Guiliang Li
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China.
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Guowei Li
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
- CAS Key Laboratory of Magnetic Materials and Devices/Zhejiang Province Key, Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
| | - Fu Liu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China.
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Chuyang Y Tang
- 5.Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| |
Collapse
|
9
|
Chen T, Zhang G, Sun H, Hua Y, Yang S, Zhou D, Di H, Xiong Y, Hou S, Xu H, Zhang L. Robust Fe-N 4-C 6O 2 single atom sites for efficient PMS activation and enhanced Fe IV = O reactivity. Nat Commun 2025; 16:2402. [PMID: 40064929 PMCID: PMC11894199 DOI: 10.1038/s41467-025-57643-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The microenvironment regulation of Fe-N4 single atom catalysts (SACs) critically governs peroxymonosulfate (PMS) activation. Although conventional heteroatom substitution in primary coordination enhances activity, it disrupts Fe-N4 symmetry and compromises stability. Herein, we propose oxygen doping in the secondary coordination shell to construct Fe-N4-C6O2 SAC, which amplifies the localized electric field while preserving the pristine coordination symmetry, thus trading off its activity and stability. This approach suppresses Fe-N bond structural deformation (bond amplitude reduced from 0.875-3.175 Å to 0.925-2.975 Å) during PMS activation by lowering Fe center electron density to strengthen Fe-N bond, achieving extended catalytic durability (>240 h). Simultaneously, the weakened coordination field lowers the Fe=O σ* orbital energy, promoting electrophilic σ-attack of high-valent iron-oxo towards bisphenol A, and increasing its degradation rate by 41.6-fold. This work demonstrates secondary coordination engineering as a viable strategy to resolve the activity-stability trade-off in SAC design, offering promising perspectives for developing environmental catalysts.
Collapse
Affiliation(s)
- Tiantian Chen
- State Key Laboratory of Green Pesticide; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Ganbing Zhang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry; Ministry-of-Education Key Laboratory for the Synthesis and Applications of Organic Functional Molecules; College of Chemistry and Chemical Engineering, Hubei University, Wuhan, PR China.
| | - Hongwei Sun
- State Key Laboratory of Green Pesticide; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Yetong Hua
- State Key Laboratory of Green Pesticide; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Shu Yang
- State Key Laboratory of Green Pesticide; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Dandan Zhou
- State Key Laboratory of Green Pesticide; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Haoxin Di
- State Key Laboratory of Green Pesticide; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Yiling Xiong
- State Key Laboratory of Green Pesticide; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Shenghuai Hou
- State Key Laboratory of Green Pesticide; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, PR China
| | - Hui Xu
- State Key Laboratory of Green Pesticide; Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, Wuhan, PR China.
| | - Lizhi Zhang
- School of Environmental Science and Engineering, National observation and Research Station of Erhai Lake Ecosystem in Yunnan, Yunnan Dali Research Institute, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
10
|
Ren Y, Li J, Liu C, Zhang W, Lai B. Switchable surface Fe II/III sites for water/sediment remediation through enhanced selective oxidation and ROS regulation: Performance, mechanism and application. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136799. [PMID: 39675082 DOI: 10.1016/j.jhazmat.2024.136799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/15/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
Selective oxidation relying on high-valent iron-oxo species (Fe(IV/V)) is a promising way of effective organic decontamination. However, Fe(IV/V) formation and further purposeful reinforcement production are commonly insufficient and unsustainable. Herein, cerium (Ce) modification strategy was adopted for efficient micropollutants removal through boosting Fe(IV/V) generation. Kinetic rate of sulfamethoxazole (SMX) removal through peracetic acid (PAA) activation by FeCe-O-CN is 4.1-fold of that without Ce doping. Ce modification lowered energy barrier of the key reaction pathway (*OH→*O) during Fe(IV/V) formation and accelerated the exposure of the surface FeII site for Fe(IV) production. Steady-state concentration of Fe(IV) and Fe(V) in FeCe-O-CN/PAA process is 2.5 × 10-8 and 9.7 × 10-11 M with its corresponding contribution to SMX removal as 64 % and 36 %. Not only intensified SMX removal, Ce modification significantly reduced the toxicity of transformation products. Furthermore, FeCe-O-CN/PAA system satisfies favorable decontaminant in long-term runs, anti-interference, and significantly alleviated bioaccumulation in plants. This study provides a new insight into the association between Ce modification and Fe(IV/V) generation in PAA activation and offered a feasible way for enhanced selective oxidation.
Collapse
Affiliation(s)
- Yi Ren
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China; College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Jun Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China; College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China.
| | - Chao Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China; College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China; School of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
11
|
Chen Y, Qiu Y, Chen T, Wang H. An S-Scheme MOF-on-MXene Heterostructure for Enhanced Photocatalytic Periodate Activation. ACS NANO 2025; 19:6588-6600. [PMID: 39908079 DOI: 10.1021/acsnano.4c18864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Fully understanding the periodate (PI) activation system is still a great challenge, which calls for efficient heterogeneous catalysts with a sophisticated structure. Herein, we developed "MOF-on-MXene" heterostructures. By constructing S-scheme heterostructures MXene/Z67450, the internal electric field is generated via the Ti-O-Co bonds at the interface, favoring the excitation of the photogenerated electrons, providing a driving force for accelerating the charge transfer, and enhancing redox performances. Further contributed by the synergy of Ti-O-Co and Co-N4 bonds, the MXene/Z67450 composites exhibit enhanced ability for activating the periodate system to degrade organic pollutants via building a donor-catalyst-acceptor system. In the presence of periodate and light, MXene/Z67450 degraded ∼100% of tetracycline hydrochloride (TCH) in only 10 min. The active sites of the heterostructures can react with the periodate and give the intermediate MXene/Z67450-PI (*PI). As a result, it efficiently reduced the PI adsorption energy and promoted the decomposition of PI and the formation of holes/electrons, singlet oxygen (1O2) as well as hydroxyl radical (•OH). In addition, the MXene/Z67450 composites exhibit high stability, reusability, selectivity, and environmental robustness. Our study provides a research direction for rationally designing MXene-based heterojunctions and applying them in the periodate activation system.
Collapse
Affiliation(s)
- Yawen Chen
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Yan Qiu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Tao Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230026, People's Republic of China
| | - Hong Wang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
12
|
Li A, Yang Y, Bai X, Bao H, He M, Zeng X, Wang Y, Li F, Qin S, Yang W, Li X. Trimetallic MOF-derived Fe-Mn-Sn oxide heterostructure enabling exceptional catalytic degradation of organic pollutants. J Colloid Interface Sci 2025; 679:232-244. [PMID: 39447466 DOI: 10.1016/j.jcis.2024.10.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Developing efficient and environmentally benign heterogeneous catalysts that activate peroxymonosulfate (PMS) for the degradation of persistent organic contaminants remains a challenge. Metal-organic frameworks (MOFs)-derived metal oxide catalysts in advanced oxidation processes (AOPs) have received considerable attention research fraternity. Herein, we report an innovative magnetic trimetallic MOF-derived Fe-Mn-Sn oxide heterostructure (FeMnO@Sn) with adjustable morphology, size and Sn content, prepared through an impregnation-calcination strategy. The formation of a novel magnetic Fe2O3/Fe3O4/Mn3O4 heterostructure induces the generation of abundant Fe2+ and Mn2+ sites on the FeMnO@Sn surface. Meanwhile, the introduction of SnO2 into the Fe2O3/Fe3O4/Mn3O4 heterostructure facilitates the cleavage of the OO bond in adsorbed PMS. The synergy among the different functionalities of each metal oxide plays a vital role in the swift and effective degradation of pollutants. In addition, the uniquely designed catalyst exhibits magnetic properties that facilitate easy recycling and repeated use, thereby meeting environmental protection requirements. Overall, this research highlights the design of heterogeneous catalysts for the effective activation of PMS and provides valuable insights for the advancement of future environmental catalysts.
Collapse
Affiliation(s)
- Anqi Li
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Yu Yang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Xuening Bai
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Hebin Bao
- Army logistics Academy of PLA, Chongqing 401331, China
| | - Miao He
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Xuzhong Zeng
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Yejin Wang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Fang Li
- Analytical and Testing Center, Chongqing University, Chongqing 401331, China
| | - Shijiang Qin
- Analytical and Testing Center, Chongqing University, Chongqing 401331, China.
| | - Wenjing Yang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Xueming Li
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| |
Collapse
|
13
|
Zhu C, Yang M, Jiang B, Lu L, Fang Q, Zheng Y, Song S, Chen B, Shen Y. Insights into excitonic behavior in single-atom covalent organic frameworks for efficient photo-Fenton-like pollutant degradation. Nat Commun 2025; 16:790. [PMID: 39824825 PMCID: PMC11742440 DOI: 10.1038/s41467-025-56103-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025] Open
Abstract
The generation of radicals through photo-Fenton-like reactions demonstrates significant potential for remediating emerging organic contaminants (EOCs) in complex aqueous environments. However, the excitonic effect, induced by Coulomb interactions between photoexcited electrons and holes, reduces carrier utilization efficiency in these systems. In this study, we develop Cu single-atom-loaded covalent organic frameworks (CuSA/COFs) as models to modulate excitonic effects. Temperature-dependent photoluminescence and ultrafast transient absorption spectra reveal that incorporating acenaphthene units into the linker (CuSA/Ace-COF) significantly reduces exciton binding energy (Eb). This modification not only enhances peroxymonosulfate adsorption at Cu active sites but also facilitates rapid electron transfer and promotes selective hydroxyl radical generation. Compared to CuSA/Obq-COF (Eb = 25.6 meV), CuSA/Ace-COF (Eb = 12.2 meV) shows a 39.5-fold increase in the pseudo-first-order rate constant for sulfamethoxazole degradation (0.434 min-1). This work provides insights into modulating excitonic behavior in single-atom catalysts via linker engineering for EOCs degradation.
Collapse
Affiliation(s)
- Chao Zhu
- Department of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mingzheng Yang
- Department of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bo Jiang
- Department of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Lun Lu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou, 510655, China
| | - Qile Fang
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, China
| | - Yong Zheng
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, 443002, China
| | - Shuang Song
- Department of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Baoliang Chen
- Faculty of Agriculture, Life, and Environmental Sciences and Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Yi Shen
- Department of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
- Shaoxing Research Institute, Zhejing University of Technology, Shaoxing, 312000, China.
| |
Collapse
|
14
|
Li X, Zhang H, Liu J, Chu Y, Qian M, Yang Z, Hua M, Zhang W. Unexpected chloride-triggered organics removal in the zirconium oxide activated peroxymonosulfate system. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136621. [PMID: 39581034 DOI: 10.1016/j.jhazmat.2024.136621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/31/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Chloride ion (Cl-) is ubiquitous in diverse water bodies, yet poses a longstanding challenge in water pollution control by hindering the efficiency of pollutant degradation. Herein, we proposed a novel concept involving the direct utilization of endogenous Cl- ions in water for rapid water purification within a non-redox zirconium oxide (ZrO2)-activated peroxymonosulfate (PMS) system. In this process, PMS was complexed on the ZrO2 surface through inner-sphere coordination, and effectively activated by the partial electron cloud deviation from Zr(IV) sites to PMS, thereby forming a metastable surface complex with an elevated redox potential. Afterwards, the coexistence of Cl- could trigger the transformation of the reactive complex into free chlorine species, thus leading to a 255.0-fold enhancement in the elimination rate of micropollutants compared with the ZrO2/PMS system. Quantitative structure-activity relationship analysis revealed that the ZrO2/PMS/Cl- system displayed strong target-dependence towards electron-rich compounds, showcasing a faster oxidation rate for pollutants with higher EHOMO energy levels. Significantly, the novel system performed robust resistance to complex water matrices, achieved low oxidant consumption for pollutant removal, and demonstrated adaptation across a broad range of Cl- concentrations (1.0-100.0 mM). Overall, our findings provide new mechanistic insights into the influence of Cl- ions on PMS activation, which refresh the understanding of the role of Cl- ions on pollutant degradation, and help to guide the treatment design for chloride-containing wastewater.
Collapse
Affiliation(s)
- Xiaoyang Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Han Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Jiahang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Yingying Chu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Mengying Qian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Zhichao Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Ming Hua
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China.
| |
Collapse
|
15
|
Xiao H, Luo D, Fang D, Yang Y, Zi J, Lian Z. Atomically Dispersed Fe-Mo Catalysts Mediate Fenton-Like Reaction to Efficiently Degrade Chlorophenol Pollutants Through Synergistic Oxidation and Dechlorination Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2410807. [PMID: 39811967 DOI: 10.1002/smll.202410807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/23/2024] [Indexed: 01/16/2025]
Abstract
Chlorophenols are difficult to degrade and mineralize by traditional advanced oxidation processes due to the strong electronegativity of chlorine. Here, a dual-site atomically dispersed catalyst (FeMoNC) is reported, which Fe/Mo supported on mesoporous nitrogen-doped carbon is prepared through high-temperature migration. The FeMoNC exhibits a high dechlorination rate of 93.3% within 1 min. Theoretical calculation suggested that the doping of high-valence Mo6+ as the electron reservoir, promoted electronic delocalization at Fe sites, thereby enhancing the adsorption and dissociation of peroxymonosulfate (PMS), subsequent generation of Fe (IV) = O and singlet oxygen (1O2) species. An interesting finding is that Mo sites can adsorb chlorine sites in 4-chlorophenol (4-CP) and induce C─Cl bond fracture. Thus, the FeMoNC/PMS system has high catalytic performance due to the synergistic effects of Mo-induced dechlorination and non-radical species (Fe(IV) = O and 1O2) as the degradation pathways, the degradation efficiency of 99.1% of 4-CP within 5 min without significant performance decline after 168 h ≈15,120-bed volumes. These findings can advance mechanistic understanding of PMS activation at the molecular level and guide the rational design of efficient eco-friendly single-atom catalysts (SACs) catalysts with bimetallic atomic sites.
Collapse
Affiliation(s)
- Han Xiao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Di Luo
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Duoduo Fang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Yupeng Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Jiangzhi Zi
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Zichao Lian
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| |
Collapse
|
16
|
Liu YQ, Tian L, Huang M, Liu HZ, Guo ZY, Ding J, Xia WQ, Teng L, Yu HQ, Li WW. Magnesium Oxide-Supported Single Atoms with Fine-Modulated Steric Location for Polymerization Transfer Removal of Water Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:880-891. [PMID: 39719864 DOI: 10.1021/acs.est.4c06608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Organic pollutants removal via a polymerization transfer (PT) pathway based on the use of single-atom catalysts (SACs) promises efficient water purification with minimal energy/chemical inputs. However, the precise engineering of such catalytic systems toward PT decontamination is still challenging, and the conventional SACs are plagued by low structural stability of carbon material support. Here, we adopted magnesium oxide (MgO) as a structurally stable alternative for loading single copper (Cu) atoms to drive peroxymonosulfate-based Fenton-like reactions. Through fine-tuning the Cu atom steric location from lattice-embedding to surface-loading, the system exhibited a fundamental transition in the catalytic pathways toward the PT process and drastically improved decontamination efficiency. The catalytic pathway change was mainly ascribed to a downshifted d-band center of the Cu atoms. The optimized catalyst achieved complete, rapid removal of phenolic compounds from water via nearly 100% PT pathway, accompanied by high oxidant utilization efficiency surpassing most state-of-the-art SACs. Moreover, it showed excellent structural stability and environmental robustness and was successfully used for the treatment of lake water and industrial coking wastewater. The adaptability of the spatial engineering strategy to other MgO-supported single atoms, including Fe, Co, and Ni SACs, was also demonstrated. Our work lays a foundation for further advancing SACs-based advanced oxidation technologies toward sustainable water purification applications.
Collapse
Affiliation(s)
- Yu-Qin Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, USTC, Suzhou 215123, China
| | - Lixin Tian
- School Environmental Science and Engineering, Huazhong University Science & Technology, Wuhan 430074, China
| | - Mingjie Huang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- School Environmental Science and Engineering, Huazhong University Science & Technology, Wuhan 430074, China
| | - Hong-Zhi Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Zhi-Yan Guo
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, USTC, Suzhou 215123, China
| | - Jian Ding
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, USTC, Suzhou 215123, China
| | - Wen-Qi Xia
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, USTC, Suzhou 215123, China
| | - Lang Teng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, USTC, Suzhou 215123, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, USTC, Suzhou 215123, China
| |
Collapse
|
17
|
Li X, Zhang X, Lang J, Zhou B, Alvarez PJJ, Zhang L, Long M. Support work-function dependent Fenton-like catalytic activity of Co single atoms for selective cobalt(IV)=O generation. Sci Bull (Beijing) 2024; 69:3867-3875. [PMID: 39419667 DOI: 10.1016/j.scib.2024.09.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/25/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
In Fenton-like reactions, high-valent cobalt-oxo (CoIV=O) has attracted increasing interests due to high redox potential, long lifetime, and anti-interference properties, but its generation is hindered by the electron repulsion between the electron rich oxo- and cobalt centers. Here, we demonstrate CoIV=O generation from peroxymonosulfate (PMS) activation over cobalt single-atom catalysts (Co-SACs) using in-situ Co K-edge X-ray absorption spectra, and discern that CoIV=O generation is dependent on the support work-function (WF) due to the strong electronic metal-support interaction (EMSI). Supports with a high WF value like anatase-TiO2 facilitate the binding of PMS-terminal oxo-ligand to Co sites by extracting Co-d electrons, thus decreasing the generation barrier for the critical intermediate (Co-OOSO32-). The Co atoms anchored on anatase-TiO2 (Co-TiO2) exhibited enhanced CoIV=O generation and superior activity for sulfamethoxazole (SMX) degradation during PMS activation. The normalized steady-state concentration of CoIV=O in Co-TiO2/PMS system was three orders of magnitude higher than that of free radicals, and 1.3- to 11-fold higher than that generated in other Co-SACs/PMS systems. Co-TiO2/PMS sustained efficient removal of SMX with minimal Co2+ leaching under continuous flow operation, suggesting its attractive water purification potential. Overall, these results underscore the significance of support selection for enhanced generation of high-valent metal-oxo species and efficient PMS activation in supported metal SACs.
Collapse
Affiliation(s)
- Xue Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangcheng Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junyu Lang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Baoxue Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingce Long
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
18
|
Li X, Zhang H, Liu J, Lu J, Zhang W, Hua M, Lv L, Pan B. Revealing the Overlooked Catalytic Ability of γ-Al 2O 3: Efficient Activation of Peroxymonosulfate for Enhanced Water Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22466-22476. [PMID: 39627152 DOI: 10.1021/acs.est.4c08834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Activated alumina (γ-Al2O3) is one of the few nanomaterials manufactured at a ton-scale and successfully implemented in large-scale water treatment. Yet its role in advanced oxidation processes (AOPs) has primarily been limited to functioning as an inert carrier due to its inherently nonredox nature. This study, for the first time, presents the highly efficient capability of γ-Al2O3 to activate peroxymonosulfate (PMS) for selectively eliminating electron-rich organic pollutants in the presence of Cl-. Through experimental and theoretical analysis, we revealed that γ-Al2O3, characterized by uniquely strong Lewis acid sites, enabled robust inner-sphere complexation between PMS and Al(III) sites, triggering the oxidation of Cl- to free chlorine through a distinctive, low-energy-barrier Eley-Rideal pathway. Such a unique pathway resulted in a 42.7-fold increase in free chlorine generation, culminating in a remarkable 145.9-fold enhancement in the degradation of carbamazepine (CBZ) compared with the case without γ-Al2O3. Furthermore, this catalyst exhibited high oxidant utilization efficiency, stable performance in real-world environmental matrices, and sustained long-term activation for over 1206 bed volumes (BV) with a CBZ removal rate exceeding 90% in fixed-bed experiments. These favorable features render γ-Al2O3 an extremely promising nanomaterial for sustainable water treatment initiatives.
Collapse
Affiliation(s)
- Xiaoyang Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Han Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Jiahang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Junhe Lu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Ming Hua
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Lu Lv
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| |
Collapse
|
19
|
Fan Y, Liu C, Wang F, Sun Z, Kong D, Yao J, Chu M, Zhang G, Wang Y. Mesoporous Atomically Dispersed Fe Catalysts with Enhanced Nonradical Pathways in Fenton-like Reactions: The Role of SiO 2 Templates. Inorg Chem 2024; 63:23960-23969. [PMID: 39636049 DOI: 10.1021/acs.inorgchem.4c04369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Single-atom catalysts (SACs) are extensively applied in Fenton-like catalytic processes to treat water pollutants. However, the role of the porous structures of SACs supports in catalytic reactions is often overlooked despite its significant contribution to mass diffusion during the reaction. Herein, we adopted a hard-template-assisted approach to fabricate Fe-based SACs (Fe-SACs) featuring a mesoporous architecture. The SiO2 template not only adjusts the pore architecture of the support but also facilitates the conversion of active sites from nanoscale sites to single-atom sites, thereby improving the selectivity for pollutant degradation via nonradical pathways (singlet oxygen and electron transfer mechanism). The experimental results demonstrated that using large-sized SiO2 (∼200 nm) as a template leads to metal aggregation on its surface, forming Fe nanoparticles (Fe-NPs). Fe-NPs exhibit narrow pore structures that prevent peroxymonosulfate (PMS) from being activated, resulting in a slow degradation of pollutants primarily through radical pathways. In contrast, employing small-sized SiO2 (∼10 nm) as a hard template not only produces supports with mesoporous structures but also promotes the building of single-atom active sites. The prepared Fe-SACs effectively activated PMS through nonradical pathways and removed contaminants at a rate k of 0.89 min-1, 33 times faster than Fe-NPs. This template-assisted method sheds light on the synthesis of effective Fenton-like catalysts with porous structures that enhance the efficient breakdown of contaminants in wastewater.
Collapse
Affiliation(s)
- Yafei Fan
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Caiyun Liu
- School of Economic Crime Investigation, Shandong Police College, Jinan 250200, China
| | - Feifei Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zhaoli Sun
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Dezhi Kong
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jianfei Yao
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Menghui Chu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guanyun Zhang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | | |
Collapse
|
20
|
Dong Y, Sun S, Zheng Y, Liu J, Zhou P, Xiong Z, Zhang J, Pan ZC, He CS, Lai B. Revealing the essence of anion ligands in regulating amorphous MnOx to activate peracetic acid for micropollutant removal. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136361. [PMID: 39486336 DOI: 10.1016/j.jhazmat.2024.136361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/09/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
How the anion ligands of manganese precursors affect the catalytic activity of amorphous manganese oxides (MnOx) in Fenton-like process is poorly understood. Here, five amorphous MnOx synthesized by Mn(II) precursors with different ligands were characterized and adopted to activate peracetic acid (PAA) for bisphenol A (BPA) degradation. Although > 90 % BPA removal was achieved in the five MnOx/PAA processes via both adsorption and oxidation, the oxidation kobs greatly differentiates by the ligands types with the order of MnOx-N > MnOx-S > MnOx-Cl > MnOx-AA > MnOx-OA. Ligands types would affect the specific surface area of MnOx and their ability to adsorb BPA, however which is not the decisive factor in determining the contaminant oxidation efficiency. Multiple experimental results indicate that the generation of oxygen vacancies induced by the ligands alters the Mn(III)/Mn(IV) ratio, ultimately contributing to the different efficiency of BPA oxidation driven by the direct electron transfer mechanism. Moreover, amorphous MnOx holds the promise of practical applications in catalytic PAA of various micropollutants with good stability. This study advances the fundamental understanding of ligand-regulated amorphous MnOx-catalyzed PAA process.
Collapse
Affiliation(s)
- Yudan Dong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Si Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yunzhe Zheng
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Jiamei Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Jing Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhi-Cheng Pan
- State key joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Water Safety and Water Pollution Control Engineering Technology Research Center in Sichuan Province, Haitian Water Group, Chengdu 610041, China
| | - Chuan-Shu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
21
|
Zeng X, Qin Y, Yang X, Zhou J, Pan J, Luo S, Cheng K. Molecular level decontamination of trace quinolones and Serratia marcescens in wastewater via in situ Cu(III) complexes mediated Fenton-like oxidation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136266. [PMID: 39476689 DOI: 10.1016/j.jhazmat.2024.136266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 12/01/2024]
Abstract
Co-pollution caused by antibiotics and antibiotic-resistant bacteria (ARB) in wastewater has led to widespread concerns. Hence, their targeted and synergistic decontamination is urgently required. A homogeneous Fenton-like oxidation system comprising cupric complexes-activated peroxymonosulfate (PMS) was demonstrated to synergistically decontaminate trace quinolones (QNs) and QNs-resistant Serratia marcescens (QRSM) in wastewater. More than 99 % of QNs were degraded within 60 min under alkaline condition, and the degradation efficiency was only slightly influenced by humic acid (up to 1 %) and various anions (up to 20 %), furthermore, the degraded pathway was proposed and the environmental risk after QNs degradation were also reduced. The activation of PMS via cupric complexes coupling in situ Cu(III) complexes generation promoted intramolecular electron transfer (IET) featuring the targeted oxidation of QNs. The produced Cu(III) and •OH played primary and secondary roles in the synergistic inactivation of QRSM by destroying the cell membranes and walls, DNA bases (T, A, C, and G), antibiotic resistance genes (ARGs, including intracellular ARGs and extracellular ARGs), and total DNA (including intracellular DNA and extracellular DNA). This study demonstrates a successful strategy and provides an innovative perspective for the molecular level decontamination of trace antibiotics and ARB using a homogeneous cupric complexes-activated Fenton-like oxidation system from metal ions inherent in breeding wastewater under alkaline condition.
Collapse
Affiliation(s)
- Xiangchu Zeng
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, Guangxi Zhuang Autonomous Region, China; Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, Zhejiang Province, China; School of Pharmaceutical Sciences, Fuchun Campus, Zhejiang Chinese Medical University, Hangzhou 311402, Zhejiang Province, China.
| | - Yue Qin
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, Guangxi Zhuang Autonomous Region, China
| | - Xiaobing Yang
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, Zhejiang Province, China
| | - Junmei Zhou
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, Zhejiang Province, China
| | - Junjie Pan
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, Zhejiang Province, China
| | - Songmei Luo
- Department of Pharmacy, Lishui Central Hospital, The Fifth Hospital Affiliated to Wenzhou Medical University, Lishui 323000, Zhejiang Province, China.
| | - Kejun Cheng
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, Zhejiang Province, China; School of Pharmaceutical Sciences, Fuchun Campus, Zhejiang Chinese Medical University, Hangzhou 311402, Zhejiang Province, China.
| |
Collapse
|
22
|
Yu W, Xu Y. Advancements on Single-Atom Catalysts-Mediated Persulfate Activation: Generating Reactive Species for Contaminants Elimination in Water. Molecules 2024; 29:5696. [PMID: 39683855 DOI: 10.3390/molecules29235696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
The single-atom catalyst (SAC) activated persulfate process has emerged as a highly efficient technology for eliminating refractory organic compounds in aqueous environments. This review delves into the intricacies of utilizing SACs for the effective removal of various contaminants in water. The common supports and the preparation procedures of SACs are summarized at first. The synthesis methods of SACs (i.e., wet chemical method, one-pot hydrothermal method, and high-temperature pyrolysis method) are also described. Then, a comprehensive overview of the diverse reaction mechanisms in SAC-activated persulfate systems is presented, including a radical oxidation process via sulfate or hydroxyl radicals and superoxide radicals, or a nonradical process via single oxygen, surface active complex, and high-valent metal-oxo species oxidation. The impact of key factors such as peroxides concentration, SAC dosage, reaction pH, inorganic anions, organic matter, operando stability, and real water is also delved. The removal of various pollutants (i.e., azo dyes, phenolic compounds, pharmaceuticals, and bacteria) by this process is further summarized. Finally, the challenges and perspectives in the field of water treatment utilizing SACs are discussed.
Collapse
Affiliation(s)
- Wan Yu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| | - Yin Xu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| |
Collapse
|
23
|
Jin S, Tan W, Tang X, Li M, Yu X, Zhang H, Song S, Zeng T. Unraveling the Fundamentals of Axial Coordination FeN 4+1 Sites Regulating the Peroxymonosulfate Activation for Fenton-Like Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405012. [PMID: 39380378 DOI: 10.1002/smll.202405012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/14/2024] [Indexed: 10/10/2024]
Abstract
Precise modulation of the axial coordination microenvironment in single-atom catalysts (SACs) to enhance peroxymonosulfate (PMS) activation represents a promising yet underexplored approach. This study introduces a pyrolysis-free strategy to fabricate SACs with well-defined axial-FeN4+1 coordination structures. By incorporating additional out-of-plane axial nitrogen into well-defined FeN4 active sites within a planar, fully conjugated polyphthalocyanine framework, FeN4+1 configurations are developed that significantly enhance PMS activation. The axial-FeN4+1 catalyst excelled in activating PMS, with a high bisphenol A (BPA) degradation rate of 2.256 min-1, surpassing planar-FeN4/PMS systems by 6.8 times. Theoretical calculations revealed that the axial coordination between N and the Fe sites forms an optimized axial FeN4+1 structure, disrupting the electron distribution symmetry of Fe and optimizing the electron distribution of the Fe 3d orbital (increasing the d-band center from -1.231 to -0.432 eV). Consequently, this led to an enhanced perpendicular adsorption energy of PMS from -1.79 to -1.82 eV and reduced energy barriers for the formation of the key reaction intermediate (O*) that generates 1O2. This study provides new insights into PMS activation through the axial coordinated engineering of well-defined SACs in water purification processes.
Collapse
Affiliation(s)
- Sijia Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
| | - Wenxian Tan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
| | - Xiaofeng Tang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
| | - Mengxuan Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
| | - Xinyi Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
| | - Haiyan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, P. R. China
| | - Shuang Song
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
| | - Tao Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, P. R. China
- Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing, Zhejiang, 312000, P. R. China
| |
Collapse
|
24
|
Wu Y, Zhao K, Wu S, Su Y, Yu H, Qian X, Shi X, Liu A, Huo S, Li WW, Niu J. Fundamental Insights into the Direct Electron Transfer Mechanism on Ag Atomic Cluster. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20699-20709. [PMID: 39288224 DOI: 10.1021/acs.est.4c06064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The nonradical oxidation pathway for pollutant degradation in Fenton-like catalysis is favorable for water treatment due to the high reaction rate and superior environmental robustness. However, precise regulation of such reactions is still restricted by our poor knowledge of underlying mechanisms, especially the correlation between metal site conformation of metal atom clusters and pollutant degradation behaviors. Herein, we investigated the electron transfer and pollutant oxidation mechanisms of atomic-level exposed Ag atom clusters (AgAC) loaded on specifically crafted nitrogen-doped porous carbon (NPC). The AgAC triggered a direct electron transfer (DET) between the terminal oxygen (Oα) of surface-activated peroxodisulfate and the electron-donating substituents-containing contaminants (EDTO-DET), rendering it 11-38 times higher degradation rate than the reported carbon-supported metal catalysts system with various single-atom active centers. Heterocyclic substituents and electron-donating groups were more conducive to degradation via the EDTO-DET system, while contaminants with high electron-absorbing capacity preferred the radical pathway. Notably, the system achieved 79.5% chemical oxygen demand (COD) removal for the treatment of actual pharmaceutical wastewater containing 1053 mg/L COD within 30 min. Our study provides valuable new insights into the Fenton-like reactions of metal atom cluster catalysts and lays an important basis for revolutionizing advanced oxidation water purification technologies.
Collapse
Affiliation(s)
- Yanan Wu
- College of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China
| | - Kun Zhao
- College of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Shuai Wu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yan Su
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Hongtao Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xubin Qian
- College of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China
| | - Xinglei Shi
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Aoshen Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Shengli Huo
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Junfeng Niu
- College of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
25
|
Shen Y, Pan Y, Zhu C, Zhang H, Wang J, Liu R, Fang Q, Song S, Chen B. Synergistic Coordination in Cu Single-Atom Catalysts Enhances High-Valent Copper-Oxo Species for Efficient PMS Activation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406319. [PMID: 39221550 DOI: 10.1002/smll.202406319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/17/2024] [Indexed: 09/04/2024]
Abstract
In the domain of heterogeneous catalytic activation of peroxymonosulfate (PMS), high-valent metal-oxo (HVMO) species are widely recognized as potent oxidants for the abatement of organic pollutants. However, the generation selectivity and efficiency of HVMO are often constrained by stringent requirements for catalyst adsorption sites and electron transfer efficiency. In this study, a single-atom catalyst, CuSA/CNP&S, is synthesized featuring multiple types (planar/axial) of heteroatom coordination via an H-bond-assisted self-assembly strategy. It is confirmed that CuN3 active centers with axial S coordination are uniformly distributed in a carbon matrix modified by planar P atoms. CuSA/CNP&S activated PMS to selectively generate Cu(III)═OH species as the primary reactive oxygen species (ROS). The pseudo-first-order kinetic rate for bisphenol A degradation reached 1.51 min-1, a 17.57-fold increase compared to the unmodified CuSA/CN catalyst. Additionally, the CuSA/CNP&S catalyst demonstrates high efficiency and durability in removing contaminants from various aqueous matrices. Theoretical calculations and experimental results indicate that the intrinsic electric field generated by distal planar P atoms enhances electron transfer efficiency within the carbon matrix. Meanwhile, axial S coordination elevates the d-band center and tunes the eg * band broadening of Cu, thereby enhancing the adsorption selectivity for the terminal oxygen of PMS. This multitype coordination synergistically mitigates the issues of low selectivity and yield of HVMO species.
Collapse
Affiliation(s)
- Yi Shen
- Key LaboraStory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
- Shaoxing Research Institute, Zhejing University of Technology, Shaoxing, 312000, P. R. China
| | - Yongliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Chao Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Haizhong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Jun Wang
- Key Laboratory for Green Chemical Technology of State Education Ministry, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Renlan Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Qile Fang
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, P. R. China
| | - Shuang Song
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
26
|
Ouyang Y, Li M, Tang C, Song S, Wang H, Huang C, Zhong H, Zhu J, Ji X, Xu H, Chen Z, Liu Z. Low-coordinated Mn-N 2 sites in graphene oxide induce peroxydisulfate activation for tetracycline degradation: Process optimization and theoretical calculation. ENVIRONMENTAL RESEARCH 2024; 260:119621. [PMID: 39019142 DOI: 10.1016/j.envres.2024.119621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/06/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Atom-dispersed low-coordinated transition metal-Nx catalysts exhibit excellent efficiency in activating peroxydisulfate (PDS) for environmental remediation. However, their catalytic performance is limited due to metal-N coordination number and single-atom loading amount. In this study, low-coordinated nitrogen-doped graphene oxide (GO) confined single-atom Mn catalyst (Mn-SA/NGO) was synthesized by molten salt-assisted pyrolysis and coupled to PDS for degradation of tetracycline (TC) in water. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (AC-HAADF-STEM) and X-ray absorption fine structure spectroscopy (XAFS) analysis showed the successful doping of single-atom Mn (weight percentage 1.6%) onto GO and the formation of low-coordinated Mn-N2 sites. The optimized parameters obtained by Box-Behnken Design achieved 100% TC removal in both prediction and experimental results. The Mn-SA/NGO + PDS system had strong anti-interference ability for TC removal in the presence of anions. Besides, Mn-SA/NGO possessed good reusability and stability. O2•-, •OH, and 1O2 were the main active species for TC degradation, and the TC mineralization reached 85.1%. Density functional theory (DFT) calculations confirmed that the introduction of single atoms Mn could effectively enhance adsorption and activation of PDS. The findings provide a reference for the synthesis of high-performance single-atom catalysts for effective removal of antibiotics.
Collapse
Affiliation(s)
- Yuan Ouyang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Shaoshan South Road, Tianxin District, Changsha 410004, China
| | - Meifang Li
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Shaoshan South Road, Tianxin District, Changsha 410004, China.
| | - Chunfang Tang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Shaoshan South Road, Tianxin District, Changsha 410004, China.
| | - Shiyu Song
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Shaoshan South Road, Tianxin District, Changsha 410004, China
| | - Hui Wang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Shaoshan South Road, Tianxin District, Changsha 410004, China
| | - Chenxi Huang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Shaoshan South Road, Tianxin District, Changsha 410004, China
| | - Haoxiang Zhong
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Shaoshan South Road, Tianxin District, Changsha 410004, China
| | - Jian Zhu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Shaoshan South Road, Tianxin District, Changsha 410004, China
| | - Xiaodong Ji
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Shaoshan South Road, Tianxin District, Changsha 410004, China
| | - Hao Xu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Shaoshan South Road, Tianxin District, Changsha 410004, China
| | - Zhangkai Chen
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Shaoshan South Road, Tianxin District, Changsha 410004, China
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA
| |
Collapse
|
27
|
Wang Y, Wang J, Long Z, Sun Z, Lv L, Liang J, Zhang G, Wang P, Gao W. MnCe-based catalysts for removal of organic pollutants in urban wastewater by advanced oxidation processes - A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122773. [PMID: 39388818 DOI: 10.1016/j.jenvman.2024.122773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024]
Abstract
With Advanced oxidation processes (AOPs) widely promoted, MnCe-based catalysts have received extensive attention under the advantages of high efficiency, stability and economy for refractory organic pollutants present in urban wastewater. Driven by multiple factors such as environmental pollution, technological development, and policy promotion, a systematic review of MnCe-based catalysts is urgently needed in the current research situation. This research provides a critical review of MnCe-based catalysts for removal of organic pollutants in urban wastewater by AOPs. It is found that co-precipitation and sol-gel methods are more appropriate methods for catalyst preparation. Among a host of influence factors, catalyst composition and pH are crucial in the catalytic oxidation processes. The synergistic effect of the free radical pathway and surface catalysis results in better pollutants degradation. It is more valuable to utilize multiple systems for oxidation (e.g., photo-Fenton technology) to improve the catalytic efficiency. This review provides theoretical guidance for MnCe-based catalysts and offers a reference direction for future research in the AOPs of organic pollutants removal from urban wastewater.
Collapse
Affiliation(s)
- Yuting Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jiaqing Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zeqing Long
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, China
| | - Zhi Sun
- National Key Laboratory of Biochemical Engineering, Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jinsong Liang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Pengfei Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Wenfang Gao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
28
|
Sun J, Yan M, Tao G, Su R, Xiao X, Wu Q, Chen F, Wu XL, Lin H. A single-atom manganese nanozyme mediated membrane reactor for water decontamination. WATER RESEARCH 2024; 268:122627. [PMID: 39423782 DOI: 10.1016/j.watres.2024.122627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/30/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Single-atom nanozymes possess high catalytic activity and selectivity, and are emerging as advanced heterogeneous catalysts for environmental applications. Herein, we present the innovative synthesis and characterization of a single-atom manganese-doped carbon nitride (SA-Mn-CN) nanozyme, integrated into a polyvinylidene fluoride (PVDF) membrane for advanced water treatment applications. The SA-Mn-CN nanozyme demonstrates high peroxidase-like activity, efficiently catalyzing the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) and generating reactive oxygen species (ROS) for effective antibacterial action. Notably, the SA-Mn-CN/PVDF membrane showcases enhanced water permeability, superior antifouling properties, and ultra-fast degradation kinetics of organic pollutants. Mechanistic studies reveal that the nanozyme selectively generates Mn(IV)-oxo species via peroxymonosulfate (PMS) activation, crucial for the efficient oxidation processes. Our integrated membrane system effectively removes (within 1 min, > 92 % removal) a variety of organic micropollutants in continuous-flow operations, demonstrating excellent stability and minimal manganese leaching. Compared to conventional advanced oxidation process (AOPs)/membrane system, the SA-Mn-CN/PVDF/PMS system holds the advantages of high catalytic activity and selectivity for generation of reactive species, wide working pH range (pH3-11) and excellent stability and reusability under the backwashing conditions. The developed device-scale AOPs/membrane system was proven to be effective in bacterial inactivation and pollutants degradation, verifying the vast application potential of the SA-Mn-CN/PVDF membrane for practical water decontamination. This work pioneers the development of enzyme-mimicking nanozyme membranes, offering a sustainable and high-performance solution for wastewater treatment, and sets a new benchmark for the design of nanozyme-based catalytic membranes in environmental applications.
Collapse
Affiliation(s)
- Jiahao Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| | - Minjia Yan
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| | - Guangdong Tao
- Zhejiang Hisun Pharmaceutical Co., Ltd., Waisha Road No.46, Taizhou, China.
| | - Runbin Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| | - Xuanming Xiao
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| | - Qiangshun Wu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Feng Chen
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| | - Xi-Lin Wu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
29
|
Fan Y, Chu M, Li H, Sun Z, Kong D, Yao J, Wang G, Wang Y, Zhu HY. Optimal Oxophilicity at the Fe-N x Interface Enhances the Generation of Singlet Oxygen for Efficient Fenton-Like Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403804. [PMID: 38973112 DOI: 10.1002/smll.202403804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/13/2024] [Indexed: 07/09/2024]
Abstract
In the pursuit of efficient singlet oxygen generation in Fenton-like catalysis, the utilization of single-atom catalysts (SACs) emerges as a highly desired strategy. Here, a discovery is reported that the single-atom Fe coordinated with five N-atoms on N-doped porous carbon, denoted as Fe-N5/NC, outperform its counterparts, those coordinated with four (Fe-N4/NC) or six N-atoms (Fe-N6/NC), as well as state-of-the-art SACs comprising other transition metals. Thus, Fe-N5/NC exhibits exceptional efficacy in activating peroxymonosulfate for the degradation of organic pollutants. The coordination number of N-atoms can be readily adjusted by pyrolysis of pre-assembly structures consisting of Fe3+ and various isomers of phenylenediamine. Fe-N5/NC displayed outstanding tolerance to environmental disturbances and minimal iron leaching when incorporated into a membrane reactor. A mechanistic study reveals that the axial ligand N reduces the contribution of Fe-3d orbitals in LUMO and increases the LUMO energy of Fe-N5/NC. This, in turn, reduces the oxophilicity of the Fe center, promoting the reactivity of *OO intermediate-a pivotal step for yielding singlet oxygen and the rate-determining step. These findings unveil the significance of manipulating the oxophilicity of metal atoms in single-atom catalysis and highlight the potential to augment Fenton-like catalysis performance using Fe-SACs.
Collapse
Affiliation(s)
- Yafei Fan
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Menghui Chu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Haibin Li
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Zhaoli Sun
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Dezhi Kong
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Jianfei Yao
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Huai-Yong Zhu
- School of Chemistry, Physics and Mechanical Engineering, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| |
Collapse
|
30
|
Niu L, Luo Z, Chen W, Zhong X, Zeng H, Yu X, Feng M. Deciphering the Novel Picolinate-Mn(II)/peroxymonosulfate System for Sustainable Fenton-like Oxidation: Dominance of the Picolinate-Mn(IV)-peroxymonosulfate Complex. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39276076 DOI: 10.1021/acs.est.4c05482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
A highly efficient and sustainable water treatment system was developed herein by combining Mn(II), peroxymonosulfate (PMS), and biodegradable picolinic acid (PICA). The micropollutant elimination process underwent two phases: an initial slow degradation phase (0-10 min) followed by a rapid phase (10-20 min). Multiple evidence demonstrated that a PICA-Mn(IV) complex (PICA-Mn(IV)*) was generated, acting as a conductive bridge facilitating the electron transfer between PMS and micropollutants. Quantum chemical calculations revealed that PMS readily oxidized the PICA-Mn(II)* to PICA-Mn(IV)*. This intermediate then complexed with PMS to produce PICA-Mn(IV)-PMS*, elongating the O-O bond of PMS and increasing its oxidation capacity. The primary transformation mechanisms of typical micropollutants mediated by PICA-Mn(IV)-PMS* include oxidation, ring-opening, bond cleavage, and epoxidation reactions. The toxicity assessment results showed that most products were less toxic than the parent compounds. Moreover, the Mn(II)/PICA/PMS system showed resilience to water matrices and high efficiency in real water environments. Notably, PICA-Mn(IV)* exhibited greater stability and a longer lifespan than traditional reactive oxygen species, enabling repeated utilization. Overall, this study developed an innovative, sustainable, and selective oxidation system, i.e., Mn(II)/PICA/PMS, for rapid water decontamination, highlighting the critical role of in situ generated Mn(IV).
Collapse
Affiliation(s)
- Lijun Niu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| | - Zhipeng Luo
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| | - Wenzheng Chen
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| | - Xinyang Zhong
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| | - Huabin Zeng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| | - Xin Yu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| | - Mingbao Feng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361100, China
| |
Collapse
|
31
|
Hu J, Gong H, Fu K, Jia J, Zhu N. Overcoming metals redox rate limitations in spinel oxide-driven Fenton-like reactions via synergistic heteroatom doping and carbon anchoring for efficient micropollutant removal. WATER RESEARCH 2024; 261:122020. [PMID: 38971079 DOI: 10.1016/j.watres.2024.122020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/16/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
The transition metals redox rate limitations of spinel oxides during Fenton-like reactions hinder its efficient and sustainable treatment of actual wastewater. Herein, we propose to optimize the electronic structure of Co-Mn spinel oxide (CM) via sulfur doping and carbon matrix anchoring synergistically, enhancing the radicals-nonradicals Fenton-like processes for efficient water decontamination. Activating peroxymonosulfate (PMS) with optimised spinel oxide (CMSAC) achieved near-complete removal of ofloxacin (10 mg/L) within 6 min, showing 8.4 times higher efficiency than CM group. Significantly higher yields of SO4·- and high-valent metal species in CMSAC/PMS system provided exceptional resistance to co-existing anions, enabling efficient removal of various emerging contaminants in high salinity leachate. Specifically, sulfur coordination and carbon anchoring-induced oxygen vacancy synergistically improved the electronic structure and electron transfer efficiency of CMSAC, thus forming highly reactive Co sites and significantly reducing the energy barrier for Co(IV)=O generation. The reductive sulfur species facilitated the conversion of Co(III) to Co(II), thereby maintaining the stability of the catalytic activity of CMSAC. This work developed a synergistic optimization strategy to overcome the metals redox rate limitations of spinel oxides in Fenton-like reactions, providing deep mechanistic insights for designing Fenton-like catalysts suitable for practical applications.
Collapse
Affiliation(s)
- Jinwen Hu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Huabo Gong
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Kaixing Fu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jinping Jia
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
32
|
Xiong Z, Pan Z, Wu Z, Huang B, Lai B, Liu W. Advanced Characterization Techniques and Theoretical Calculation for Single Atom Catalysts in Fenton-like Chemistry. Molecules 2024; 29:3719. [PMID: 39202799 PMCID: PMC11357653 DOI: 10.3390/molecules29163719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Single-atom catalysts (SACs) have attracted extensive attention due to their unique catalytic properties and wide range of applications. Advanced characterization techniques, such as energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy, and X-ray absorption fine-structure spectroscopy, have been used to investigate the elemental compositions, structural morphologies, and chemical bonding states of SACs in detail, aiming at unraveling the catalytic mechanism. Meanwhile, theoretical calculations, such as quantum chemical calculations and kinetic simulations, were used to predict the catalytic reaction pathways, active sites, and reaction kinetic behaviors of SACs, providing theoretical guidance for the design and optimization of SACs. This review overviews advanced characterization techniques and theoretical calculations for SACs in Fenton-like chemistry. Moreover, this work highlights the importance of advanced characterization techniques and theoretical calculations in the study of SACs and provides perspectives on the potential applications of SACs in the field of environmental remediation and the challenges of practical engineering.
Collapse
Affiliation(s)
- Zhaokun Xiong
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Ministry of Education, Beijing 100871, China;
- Sichuan Province Engineering Technology Research Center of Water Safety and Water Pollution Control, Haitian Water Group, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; (Z.W.); (B.H.); (B.L.)
| | - Zhicheng Pan
- Sichuan Province Engineering Technology Research Center of Water Safety and Water Pollution Control, Haitian Water Group, Chengdu 610065, China
| | - Zelin Wu
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; (Z.W.); (B.H.); (B.L.)
| | - Bingkun Huang
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; (Z.W.); (B.H.); (B.L.)
| | - Bo Lai
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; (Z.W.); (B.H.); (B.L.)
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Ministry of Education, Beijing 100871, China;
| |
Collapse
|
33
|
Qin Z, Zhang Z, Li J, Liu J, Wang J, Chen X, Wang Y, Wang L. Single-atom catalysts activate persulfate to degrade emerging organic contaminants in aqueous environments. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:1047-1069. [PMID: 39141051 DOI: 10.2166/wst.2024.236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/01/2024] [Indexed: 08/15/2024]
Abstract
Single-atom catalysts (SACs) exhibit outstanding catalytic activity due to their highly dispersed metal centers. Activating persulfates (PS) with SACs can generate various reactive oxygen species (ROS) to efficiently degrade emerging organic contaminants (EOCs) in aqueous environments, offering unique advantages such as high reaction rates and excellent stability. This technique has been extensively researched and holds enormous potential applications. In this paper, we comprehensively elaborated on the synthesis methods of SACs and their limitations, and factors influencing the catalytic performance of SACs, including metal center characteristics, coordination environment, and types of substrates. We also analyzed practical considerations for application. Subsequently, we discussed the mechanism of SACs activating PS for EOCs degradation, encompassing adsorption processes, radical pathways, and non-radical pathways. Finally, we provide prospects and outline our vision for future research, aiming to guide advancements in applying this technique.
Collapse
Affiliation(s)
- Zixun Qin
- School of Resources and Environment, Wuhan University of Technology, Wuhan, Hubei 430070, China; School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Zhonglei Zhang
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Ji Li
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Jin Liu
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Jinsheng Wang
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Xiaoguo Chen
- School of Resources and Environment, Wuhan University of Technology, Wuhan, Hubei 430070, China E-mail:
| | - Yangyang Wang
- School of Resources and Environment, Wuhan University of Technology, Wuhan, Hubei 430070, China; School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Lei Wang
- School of Resources and Environment, Wuhan University of Technology, Wuhan, Hubei 430070, China; School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| |
Collapse
|
34
|
Miao J, Jiang Y, Wang X, Li X, Zhu Y, Shao Z, Long M. Correlating active sites and oxidative species in single-atom catalyzed Fenton-like reactions. Chem Sci 2024; 15:11699-11718. [PMID: 39092108 PMCID: PMC11290428 DOI: 10.1039/d4sc02621g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/29/2024] [Indexed: 08/04/2024] Open
Abstract
Single-atom catalysts (SACs) have gained widespread popularity in heterogeneous catalysis-based advanced oxidation processes (AOPs), owing to their optimal metal atom utilization efficiency and excellent recyclability by triggering reactive oxidative species (ROS) for target pollutant oxidation in water. Systematic summaries regarding the correlation between the active sites, catalytic activity, and reactive species of SACs have rarely been reported. This review provides an overview of the catalytic performance of carbon- and metal oxide-supported SACs in Fenton-like reactions, as well as the different oxidation pathways induced by the metal and non-metal active sites, including radical-based pathways (e.g., ·OH and SO4˙-) and nonradical-based pathways (e.g. 1O2, high-valent metal-oxo species, and direct electron transfer). Thereafter, we discuss the effects of metal types, coordination environments, and spin states on the overall catalytic performance and the generated ROS in Fenton-like reactions. Additionally, we provide a perspective on the future challenges and prospects for SACs in water purification.
Collapse
Affiliation(s)
- Jie Miao
- School of Environmental Science and Engineering, Nanjing Tech University Nanjing 211816 China
| | - Yunyao Jiang
- School of Environmental Science and Engineering, Nanjing Tech University Nanjing 211816 China
| | - Xixi Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 210009 China
| | - Xue Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Yuan Zhu
- School of Chemistry and Chemical Engineering, Queen's University Belfast Belfast BT7 1NN UK
| | - Zongping Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 210009 China
- Department of Chemical Engineering, Curtin University Perth 6845 Australia
| | - Mingce Long
- School of Environmental Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
35
|
Mao Y, Yu B, Wang P, Yue S, Zhan S. Efficient reduction-oxidation coupling degradation of nitroaromatic compounds in continuous flow processes. Nat Commun 2024; 15:6364. [PMID: 39075042 PMCID: PMC11286756 DOI: 10.1038/s41467-024-50238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 07/04/2024] [Indexed: 07/31/2024] Open
Abstract
Nitroaromatic compounds (NACs) with electron-withdrawing nitro (-NO2) groups are typical refractory pollutants. Despite advanced oxidation processes (AOPs) being appealing degradation technologies, inefficient ring-opening oxidation of NACs and practical large-scale applications remain challenges. Here we tackle these challenges by designing a reduction-oxidation coupling (ROC) degradation process in LaFe0.95Cu0.05O3@carbon fiber cloth (LFCO@CFC)/PMS/Vis continuous flow system. Cu doping enhances the photoelectron transfer, thus triggering the -NO2 photoreduction and breaking the barriers in the ring opening. Also, it modulates surface electronic configuration to generate radicals and non-radicals for subsequent oxidation of reduction products. Based on this, the ROC process can effectively remove and mineralize NACs under the environmental background. More importantly, the LFCO catalyst outperformed most of the recently reported catalysts with lower cost (13.72 CNY/ton) and higher processing capacity (3600 t/month). Furthermore, the high scalability, material durability, and catalytic activity of LFCO@CFC under various realistic environmental conditions prove the potential ability for large-scale applications.
Collapse
Affiliation(s)
- Yueshuang Mao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, China
- College of Resources and Environment Science, Shanxi University, Taiyuan, China
| | - Bingnan Yu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Pengfei Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Shuai Yue
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Sihui Zhan
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, China.
| |
Collapse
|
36
|
Gu C, Zhang Y, He P, Gan M, Zhu J, Yin H. Bioinspired axial S-coordinated single-atom cobalt catalyst to efficient activate peroxymonosulfate for selective high-valent Co-Oxo species generation. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134515. [PMID: 38703676 DOI: 10.1016/j.jhazmat.2024.134515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
The efficient activation and selective high-valent metal-oxo (HVMO) species generation remain challenging for peroxymonosulfate (PMS)-based advanced oxidation processes (PMS-AOPs) in water purification. The underlying mechanism of the activation pathway is ambiguous, leading to a massive dilemma in the control and regulation of HVMO species generation. Herein, bioinspired by the bio-oxidase structure of cytochrome P450, the axial coordination strategy was adopted to tailor a single-atom cobalt catalyst (CoN4S-CB) with an axial S coordination. CoN4S-CB high-selectively generated high-valent Co-Oxo species (Co(IV)=O) via PMS activation. Co(IV)=O demonstrated an ingenious oxygen atom transfer (OAT) reaction to achieve the efficient degradation of sulfamethoxazole (SMX), and this allowed robust operation in various complex environments. The axial S coordination modulated the 3d orbital electron distribution of the Co atom. Density functional theory (DFT) calculation revealed that the axial S coordination decreased the energy barrier for PMS desorption and lowered the free energy change (ΔG) for Co(IV)=O generation. CoN4S-PMS* had a narrow d-band close to the Fermi level, which enhanced charge transfer to accelerate the cleavage of O-O and O-H bonds in PMS. This work provides a broader perspective on the activator design with natural enzyme structure-like active sites to efficient activate PMS for selective HVMO species generation.
Collapse
Affiliation(s)
- Chunyao Gu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, China
| | - Yaqin Zhang
- College of Food Science and Technology, Laboratory of Micro & Nano Biosensing Technology in Food Safety, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
| | - Peng He
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, China
| | - Min Gan
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, China.
| | - Jianyu Zhu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, China.
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha 410083, China
| |
Collapse
|
37
|
Liu W, Wang P, Chen J, Gao X, Che H, Su X, Liu B, Ao Y. In situ single iron atom doping on Bi 2WO 6 monolayers triggers efficient photo-fenton reaction. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100414. [PMID: 38606035 PMCID: PMC11007430 DOI: 10.1016/j.ese.2024.100414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/13/2024]
Abstract
Developing an efficient photocatalytic system for hydrogen peroxide (H2O2) activation in Fenton-like processes holds significant promise for advancing water purification technologies. However, challenges such as high carrier recombination rates, limited active sites, and suboptimal H2O2 activation efficiency impede optimal performance. Here we show that single-iron-atom dispersed Bi2WO6 monolayers (SIAD-BWOM), designed through a facile hydrothermal approach, can offer abundant active sites for H2O2 activation. The SIAD-BWOM catalyst demonstrates superior photo-Fenton degradation capabilities, particularly for the persistent pesticide dinotefuran (DNF), showcasing its potential in addressing recalcitrant organic pollutants. We reveal that the incorporation of iron atoms in place of tungsten within the electron-rich [WO4]2- layers significantly facilitates electron transfer processes and boosts the Fe(II)/Fe(III) cycle efficiency. Complementary experimental investigations and theoretical analyses further elucidate how the atomically dispersed iron induces lattice strain in the Bi2WO6 monolayer, thereby modulating the d-band center of iron to improve H2O2 adsorption and activation. Our research provides a practical framework for developing advanced photo-Fenton catalysts, which can be used to treat emerging and refractory organic pollutants more effectively.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing, 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing, 210098, China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing, 210098, China
| | - Xin Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing, 210098, China
| | - Huinan Che
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing, 210098, China
| | - Xiaozhi Su
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Yanhui Ao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1, Xikang Road, Nanjing, 210098, China
| |
Collapse
|
38
|
Hu X, Zhu M. Were Persulfate-Based Advanced Oxidation Processes Really Understood? Basic Concepts, Cognitive Biases, and Experimental Details. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10415-10444. [PMID: 38848315 DOI: 10.1021/acs.est.3c10898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Persulfate (PS)-based advanced oxidation processes (AOPs) for pollutant removal have attracted extensive interest, but some controversies about the identification of reactive species were usually observed. This critical review aims to comprehensively introduce basic concepts and rectify cognitive biases and appeals to pay more attention to experimental details in PS-AOPs, so as to accurately explore reaction mechanisms. The review scientifically summarizes the character, generation, and identification of different reactive species. It then highlights the complexities about the analysis of electron paramagnetic resonance, the uncertainties about the use of probes and scavengers, and the necessities about the determination of scavenger concentration. The importance of the choice of buffer solution, operating mode, terminator, and filter membrane is also emphasized. Finally, we discuss current challenges and future perspectives to alleviate the misinterpretations toward reactive species and reaction mechanisms in PS-AOPs.
Collapse
Affiliation(s)
- Xiaonan Hu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, PR China
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, PR China
| |
Collapse
|
39
|
Liu C, Li J, He X, Yue J, Chen M, Chen JP. The "4 + 1" strategy fabrication of iron single-atom catalysts with selective high-valent iron-oxo species generation. Proc Natl Acad Sci U S A 2024; 121:e2322283121. [PMID: 38814873 PMCID: PMC11161760 DOI: 10.1073/pnas.2322283121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Abstract
Single-atom catalysts (SACs) with atomic dispersion active sites have exhibited huge potentials in peroxymonosulfate (PMS)-based Fenton-like chemistry in water purification. However, four-N coordination metal (MN4) moieties often suffer from such problems as low selectivity and narrow workable pH. How to construct SACs in a controllable strategy with optimized electronic structures is of great challenge. Herein, an innovative strategy (i.e., the "4 + 1" fabrication) was devised to precisely modulate the first-shell coordinated microenvironment of FeN4 SAC using an additional N (SA-FeN5). This leads to almost 100% selective formation of high-valent iron-oxo [Fe(IV)═O] (steady-state concentration: 2.00 × 10-8 M) in the SA-FeN5/PMS system. In-depth theoretical calculations unveil that FeN5 configuration optimizes the electron distribution of monatomic Fe sites, which thus fosters PMS adsorption and reduces the energy barrier for Fe(IV)═O generation. SA-FeN5 was then attached to polyvinylidene difluoride membrane for a continuous flow device, showing long-term abatement of the microcontaminant. This work furnishes a general strategy for effective PMS activation and selective high-valent metal-oxo species generation by high N-coordination number regulation in SACs, which would provide guidance in the rational design of superior environmental catalysts for water purification.
Collapse
Affiliation(s)
- Chen Liu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing400714, China
| | - Jinglu Li
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing400714, China
| | - Xinxia He
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing400714, China
| | - Junpeng Yue
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing210098, China
| | - Ming Chen
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing400714, China
| | - J. Paul Chen
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore117576, Singapore
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518060, China
| |
Collapse
|
40
|
Wan Y, Li Z, Zheng X, Pan D, Wu H, Lu X, Ding S, Lin L. Superior performance of oxygen vacancy-enriched Cu-Co 3O 4/urushiol-rGO/peroxymonosulfate for hypophosphite and phosphite removal by enhancing singlet oxygen. J Colloid Interface Sci 2024; 663:177-190. [PMID: 38401439 DOI: 10.1016/j.jcis.2024.02.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
The treatment of wastewater containing hypophosphite [P(I)] and phosphite [P(III)] is challenged by limitations of traditional Fenton oxidation such as low efficiency, secondary pollution and high costs. This study introduced a facile solvent-thermal method to synthesize Cu-Co3O4 nanoparticles uniformly loaded on graphene (Cu-Co3O4/U-rGO) through the reduction and coordination effects of urushiol (U). As prepared Cu-Co3O4/U-rGO exhibited excellent activity in activating peroxymonosulfate (PMS) for the oxidation of P(I)/P(III) to phosphate [P(V)] (0.229 min-1), along with high stability and reusability (91.5 % after 6 cycles), low metal leaching rate (Co: 0.2 mg/L, Cu: 0.05 mg/L), insensitivity to common anions in water and a wide pH range (3-11). The activation mechanism involved the synergistic effects from both urushiol and graphene, which promoted redox of Cu+/Cu2+ and Co2+/Co3+ and induced abundant oxygen vacancies for PMS activation to produce singlet oxygen. Furthermore, the Cu-Co3O4/U-rGO/PMS was also excellent in the oxidative removal of organic phosphorus. This study is expected to advance strategies for the treatment of P(I)/P(III)-rich wastewater and provide new insights for the development of low-cost, highly efficient heterogeneous catalysts with abundant oxygen vacancies.
Collapse
Affiliation(s)
- Yali Wan
- College of Chemistry and Material Science, Fujian Normal University, Fuzhou 350007, China
| | - Zhongkai Li
- College of Chemistry and Material Science, Fujian Normal University, Fuzhou 350007, China
| | - Xuelin Zheng
- College of Chemistry and Material Science, Fujian Normal University, Fuzhou 350007, China; Fujian Key Laboratory of Polymer Materials, Fuzhou 350007, China.
| | - Danmei Pan
- Test Center, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Haobin Wu
- College of Chemistry and Material Science, Fujian Normal University, Fuzhou 350007, China
| | - Xin Lu
- Fujian Key Laboratory of Advanced Rubber-plastics Materials, Quanzhou 362200, China
| | - Sibo Ding
- Fujian Key Laboratory of Advanced Rubber-plastics Materials, Quanzhou 362200, China
| | - Liangxu Lin
- The Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350017, China; Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou 350017, China.
| |
Collapse
|
41
|
Yu G, Wang J, Xu Z, Cao H, Dai Q, Wu Y, Xie Y. Synergetic Manipulation Mechanism of Single-Atom M-N 4 and M-OH (M = Mn, Fe, Co, Ni) Sites for Ozone Activation: Theoretical Prediction and Experimental Verification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9393-9403. [PMID: 38748554 DOI: 10.1021/acs.est.4c00812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Carbon-based single-atom catalysts (SACs) have been gradually introduced in heterogeneous catalytic ozonation (HCO), but the interface mechanism of O3 activation on the catalyst surface is still ambiguous, especially the effect of a surface hydroxyl group (M-OH) at metal sites. Herein, we combined theoretical calculations with experimental verifications to comprehensively investigate the O3 activation mechanisms on a series of conventional SAC structures with N-doped nanocarbon substrates (MN4-NCs, where M = Mn, Fe, Co, Ni). The synergetic manipulation effect of the metal atom and M-OH on O3 activation pathways was paid particular attention. O3 tends to directly interact with the metal atom on MnN4-NC, FeN4-NC, and NiN4-NC catalysts, among which MnN4-NC has the best catalytic activity for its relatively lower activation energy barrier of O3 (0.62 eV) and more active surface-adsorbed oxygen species (Oads). On the CoN4-NC catalyst, direct interaction of O3 with the metal site is energetically infeasible, but O3 can be activated to generate Oads or HO2 species from direct or indirect participation of M-OH sites. The experimental results showed that 90.7 and 82.3% of total organic carbon (TOC) was removed within 40 min during catalytic ozonation of p-hydroxybenzoic acid with MnN4-NC and CoN4-NC catalysts, respectively. Phosphate quenching, catalyst characterization, and EPR measurement further supported the theoretical prediction. This contribution provides fundamental insights into the O3 activation mechanism on SACs, and the methods and ideals could be helpful for future studies of environmental catalysis.
Collapse
Affiliation(s)
- Guangfei Yu
- Chemistry & Chemical Engineering Data Center, Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jing Wang
- Chemistry & Chemical Engineering Data Center, Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaomeng Xu
- Chemistry & Chemical Engineering Data Center, Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbin Cao
- Chemistry & Chemical Engineering Data Center, Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qin Dai
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yiqiu Wu
- Chemistry & Chemical Engineering Data Center, Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongbing Xie
- Chemistry & Chemical Engineering Data Center, Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
42
|
Ma W, Ren X, Li J, Wang S, Wei X, Wang N, Du Y. Advances in Atomically Dispersed Metal and Nitrogen Co-Doped Carbon Catalysts for Advanced Oxidation Technologies and Water Remediation: From Microenvironment Modulation to Non-Radical Mechanisms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308957. [PMID: 38111984 DOI: 10.1002/smll.202308957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/25/2023] [Indexed: 12/20/2023]
Abstract
Atomically dispersed metal and nitrogen co-doped carbon catalysts (M-N-C) have been attracting tremendous attentions thanks to their unique MNx active sites and fantastic catalytic activities in advanced oxidation technologies (AOTs) for water remediation. However, precisely tailoring the microenvironment of active sites at atomic level is still an intricate challenge so far, and understanding of the non-radical mechanisms in persulfate activation exists many uncertainties. In this review, latest developments on the microenvironment modulation strategies of atomically dispersed M-N-C catalysts including regulation of central metal atoms, regulation of coordination numbers, regulation of coordination heteroatoms, and synergy between single-atom catalysts (SACs) with metal species are systematically highlighted and discussed. Afterwards, progress and underlying limitations about the typical non-radical pathways from production of singlet oxygen, electron transfer mechanism to generation of high-valent metal species are well demonstrated to inspire intrinsic insights about the mechanisms of M-N-C/persulfate systems. Lastly, perspectives for the remaining challenges and opportunities about the further development of carbon-based SACs in environment remediation are also pointed out. It is believed that this review will be much valuable for the further design of active sites in M-N-C/persulfate catalytic systems and promote the wide application of SACs in various fields.
Collapse
Affiliation(s)
- Wenjie Ma
- College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, 224051, P. R. China
| | - Xiaohui Ren
- College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, 224051, P. R. China
| | - Jiahao Li
- College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, 224051, P. R. China
| | - Shuai Wang
- College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, 224051, P. R. China
| | - Xinyu Wei
- College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, 224051, P. R. China
| | - Na Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Yunchen Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
43
|
Li D, Zhang X, Sun Y, Bu Y, Li H, Qian J. Investigating the evolution of reactive species in the CuO-mediated peroxymonosulfate activation process. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133425. [PMID: 38198860 DOI: 10.1016/j.jhazmat.2024.133425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/21/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024]
Abstract
The utilization of copper oxide (CuO) as a catalyst in the peroxymonosulfate (PMS) activation process holds great promise for effectively degrading aqueous organic pollutants, while the relevant mechanism remains inadequately understood. In this study, we delve into the evolution pathways of reactive species in the CuO/PMS system through a comprehensive series of experimental analyses. Our findings indicate that various reactive species are generated in the CuO/PMS system with the specific sequence, where the decomposition of surface Cu(II)-OOSO3- leads to the formation of surface Cu(III) species, which are responsible for the subsequent generation of HO•. The reactivity of these reactive species and the sequence of their generation explain the distinct oxidation behaviors of pollutants with different values of ionization potential (IP). In addition, singlet oxygen (1O2) may be produced during the PMS activation process, while its involvement in the oxidation of substrates is deemed negligible. This investigation presents a novel perspective, enhancing our comprehension of the mechanism underlying transition metal-mediated PMS activation processes. ENVIRONMENTAL IMPLICATION: The removal of refractory organic contaminations in water constitutes a fundamental concern within the realm of environmental pollution management. Peroxymonosulfate activation induced by transition metal oxides has garnered significant recognition as a promising technological approach for the degradation of aqueous organic contaminants, while the underlying mechanism remains enigmatic. In this study, we systematically investigate the evolution pathways of reactive species in the CuO/peroxymonosulfate system to reveal the mystery of the reaction mechanism between CuO and peroxymonosulfate. The outcomes of our study contribute to enhancing the practical applicability of transition metal-triggered PMS activation processes.
Collapse
Affiliation(s)
- Dawei Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Xinyue Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Yibing Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Yuanqing Bu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China; Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, 8 Jiangwangmiao Street, Nanjing 210042, China.
| | - Hongchao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China.
| | - Jieshu Qian
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China; School of Environmental Engineering, Wuxi University, Jiangsu 214105, China
| |
Collapse
|
44
|
Miao J, Zhu Y, Wei Y, Wen X, Shao Z, Zhou B, Wu C, Long M. Plastic wastes-derived N-doped carbon nanotubes for efficient removal of sulfamethoxazole in high salinity wastewater via nonradical peroxymonosulfate activation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133344. [PMID: 38147749 DOI: 10.1016/j.jhazmat.2023.133344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
Peroxymonosulfate (PMS) catalytic activation is effective to eliminate organic pollutants from water, thus the development of low-cost and efficient catalysts is significant in applications. The resource conversion of plastic wastes (PWs) into carbon nanotubes (CNTs) is a promising candidate for PMS-based advanced oxidation processes (AOPs), and also a sustainable strategy to realize plastic management and reutilization. Herein, cost-effective PWs-derived N-doped CNTs (N-pCNTs) were synthesized, which displayed efficient activity for PMS activation through an electron transfer pathway (ETP) for sulfamethoxazole (SMX) degradation in high salinity water. The pyrrolic N induced the positively charged surface of N-pCNTs, favoring the electrostatic adsorption of PMS and subsequent generation of active PMS* . A galvanic oxidation process was developed to prove the electron-shuttle dominated ETP for SMX oxidation. Combined with theoretical calculations, the efficiency of ETP was determined by the potential difference between HOMO of SMX and LUMO of N-pCNTs. Such oxidation produced low-toxicity intermediates and resulted in selective degradation of specific sulfonamide antibiotics. This work reveals the feasibility of low-cost N-pCNTs catalysts from PWs serving as an appealing candidate for PMS-AOPs in water remediation, providing a new solution to alleviate environmental issues caused by PWs and also advances the understanding of ETP during PMS activation.
Collapse
Affiliation(s)
- Jie Miao
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China; School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuan Zhu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Yan Wei
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue Wen
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, Western Australia 6845, Australia
| | - Baoxue Zhou
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunfei Wu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT7 1NN, UK.
| | - Mingce Long
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
45
|
Dai H, Zhao Z, Wang K, Meng F, Lin D, Zhou W, Chen D, Zhang M, Yang D. Regulating electronic structure of Fe single-atom site by S/N dual-coordination for efficient Fenton-like catalysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133399. [PMID: 38163411 DOI: 10.1016/j.jhazmat.2023.133399] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/10/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
The activity of single-atom catalysts in peroxymonosulfate activation process is bound up with the local electronic state of metal center. However, the large electronegativity of N atoms in Metal-N4 restricts the electron transfer between center metal atom and peroxymonosulfate. Herein, we constructed Fe-SN-C catalyst by incorporating S atom in the first coordination sphere of Fe single-atom site (Fe-S1N3) for Fenton-like catalysis. The Fe-SN-C with a low valent Fe is found to exhibit excellent catalytic activity for bisphenol A degradation, and the corresponding rate constant reaches 0.405 min-1, 11.9-fold higher than the original Fe-N-C. Besides, the Fe-SN-C/PMS system exhibits ideal catalytic stability under the effect of wide pH range and background substrates by the fast generation of high-valent Fe species. Experimental results and theoretical calculations reveal that the dual coordination of S and N atoms notably increases the local electron density of Fe atoms and electron filling in eg orbital, causing a d band center shifting close to the fermi level and thereby optimizes the activation energy for peroxymonosulfate decomposition via Fe 3d-O 2p orbital interaction. This work provides further development of promising SACs for the efficient activation of peroxymonosulfate based on direct regulation of the coordination environment of active center metal atoms.
Collapse
Affiliation(s)
- Huiwang Dai
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Ecological Civilization Academy, Anji, Zhejiang 310058, China
| | - Zhendong Zhao
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Kun Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fanxu Meng
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Ecological Civilization Academy, Anji, Zhejiang 310058, China
| | - Wenjun Zhou
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Ecological Civilization Academy, Anji, Zhejiang 310058, China.
| | - Dingjiang Chen
- Zhejiang Ecological Civilization Academy, Anji, Zhejiang 310058, China; Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ming Zhang
- Department of Environment Engineering, China Jiliang University, Hangzhou 310018, China
| | - Dongye Yang
- Zhejiang Huanneng Environmental Technology Co. Ltd., Hangzhou, Zhejiang 310012, China
| |
Collapse
|
46
|
Liu C, He X, Li J, Ma J, Yue J, Wang Z, Chen M. Selective electrophilic attack towards organic micropollutants with superior Fenton-like activity by biochar-supported cobalt single-atom catalyst. J Colloid Interface Sci 2024; 657:155-168. [PMID: 38035418 DOI: 10.1016/j.jcis.2023.11.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
The global shortage of freshwater and inadequate supply of clean water have necessitated the implementation of robust technologies for wastewater purification, and Fenton-like chemistry is a highly-promising approach. However, realizing the rapid Fenton-like chemistry for high-efficiency degradation of organic micropollutants (OMs) remains challenging. Herein, one novel system was constructed by a Co single-atom catalyst activating peroxymonosulfate (PMS), and the optimal system (SA-Co-NBC-0.2/PMS) achieved unprecedented catalytic performance towards a model OM [Iohexol (IOH)], i.e., almost 100% decay ratio in only 10 min (the observed rate constant: 0.444 min-1) with high electrophilic species 1O2 (singlet oxygen) generation. Theoretical calculations unveiled that Co-N4 sites preferred to adsorb the terminal-O of PMS (more negative adsorption energy than other O sites: -32.67 kcal/mol), promoting the oxidation of PMS to generate 1O2. Iodine (I)23 (0.1097), I24 (0.1154) and I25 (0.0898) on IOH with higher f- electrophilic values were thus identified as the main attack sites. Furthermore, 16S ribosomal RNA high-throughput sequencing and quantitative structure-activity relationship analysis illustrated the environmentally-benign property of the SA-Co-NBC-0.2 and the tapering ecological risk during IOH degradation process. Significantly, this work comprehensively checked the competence of the SA-Co-NBC-0.2/PMS system for organics abatement in practical wastewater.
Collapse
Affiliation(s)
- Chen Liu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Xinxia He
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Jinglu Li
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Jun Ma
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Junpeng Yue
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Ziwei Wang
- Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Ming Chen
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
47
|
Zhang S, Lu Z, Hu C, Li F. Understanding the Distance Effect of the Single-Atom Active Sites in Fenton-Like Reactions for Efficient Water Remediation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307151. [PMID: 38225759 DOI: 10.1002/advs.202307151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/02/2023] [Indexed: 01/17/2024]
Abstract
Emerging single-atom catalysts (SACs) are promising in water remediation through Fenton-like reactions. Despite the notable enhancement of catalytic activity through increasing the density of single-atom active sites, the performance improvement is not solely attributed to the increase in the number of active sites. The variation of catalytic behaviors stemming from the increased atomic density is particularly elusive and deserves an in-depth study. Herein, single-atom Fe catalysts (FeSA-CN) with different distances (dsite) between the adjacent single-atom Fe sites are constructed by controlling Fe loading. With the decrease in dsite value, remarkably enhanced catalytic activity of FeSA-CN is realized via the electron transfer regime with peroxymonosulfate (PMS) activation. The decrease in dsite value promotes electronic communication and further alters the electronic structure in favor of PMS activation. Moreover, the two adjacent single-atom Fe sites collectively adsorb PMS and achieve single-site desorption of the PMS decomposition products, maintaining continuous PMS activation and contaminant removal. Moreover, the FeSA-CN/PMS system exhibits excellent anti-interference performance for various aquatic systems and good durability in continuous-flow experiments, indicating its great potential for water treatment applications. This study provides an in-depth understanding of the distance effect of single-atom active sites on water remediation by designing densely populated SACs.
Collapse
Affiliation(s)
- Shuaiqi Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, China
| | - Zhicong Lu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, China
| | - Chun Hu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, China
| | - Fan Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
48
|
Lian Z, Gao F, Xiao H, Luo D, Li M, Fang D, Yang Y, Zi J, Li H. Photo-self-Fenton Reaction Mediated by Atomically Dispersed Ag-Co Photocatalysts toward Efficient Degradation of Organic Pollutants. Angew Chem Int Ed Engl 2024; 63:e202318927. [PMID: 38189599 DOI: 10.1002/anie.202318927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/28/2023] [Accepted: 01/08/2024] [Indexed: 01/09/2024]
Abstract
Achieving the complete mineralization of persistent pollutants in wastewater is still a big challenge. Here, we propose an efficient photo-self-Fenton reaction for the degradation of different pollutants using the high-density (Ag: 22 wt %) of atomically dispersed AgCo dual sites embedded in graphic carbon nitride (AgCo-CN). Comprehensive experimental measurements and density functional theory (DFT) calculations demonstrate that the Ag and Co dual sites in AgCo-CN play a critical role in accelerating the photoinduced charge separation and forming the self-Fenton redox centers, respectively. The bimetallic AgCo-CN exhibited excellent photocatalytic performance toward the phenol even under extreme conditions due to an efficient degradation pathway and in situ generation of the hydrogen peroxide producing the main active oxygen species (⋅OH and 1 O2 ) and showed long-term activity in a self-design photo-Filter reactor for the purification of the phenol. Our discoveries pave the way for the design of efficient single-atoms photocatalysts-based photo-self-Fenton reaction for recalcitrant pollutant treatment.
Collapse
Affiliation(s)
- Zichao Lian
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
- School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Fangfang Gao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Han Xiao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Di Luo
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Mengyuan Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Duoduo Fang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Yupeng Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Jiangzhi Zi
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Hexing Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| |
Collapse
|
49
|
He Y, Li J, Tang J, Cheng H, Zeng T, He Z, Wang D, Wang L, Song S, Ma J. Constructed electron-dense Mn sites in nitrogen-doped Mn 3O 4 for efficient catalytic ozonation of pyrazines: Degradation and odor elimination. WATER RESEARCH 2023; 247:120823. [PMID: 37976623 DOI: 10.1016/j.watres.2023.120823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/14/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
In this study, N-doped Mn3O4 catalysts (Mn-nN) with electron-dense Mn sites were synthesized and employed in heterogeneous catalytic ozonation (HCO). These catalysts demonstrated excellent performance in pyrazines degradation and odor elimination. The synthesis of Mn-nN was achieved through a facile urea-assisted heat treatment method. Experimental characterization and theoretical analyses revealed that the MnN structures in Mn-nN, played a crucial role in facilitating the formation of electron-dense Mn sites that served as the primary active sites for ozone activation. In particular, Mn-1N exhibited excellent performance in the HCO system, demonstrating the highest 2,5-dimethylpyrazine (2,5-DMP) degradation efficiency. •OH was confirmed as the primary reactive oxygen species involved in the HCO process. The second-order rate constants for 2,5-DMP degradation with O3 and •OH, were determined to be (3.75 ± 0.018) × 10-1 and (6.29 ± 0.844) × 109 M-1 s-1, respectively. Seventeen intermediates were identified through GC-MS analysis during the degradation of 2,5-DMP via HCO process with Mn-1N. The degradation pathways were subsequently proposed by considering these identified intermediates. This study introduces a novel approach to synthesize N-doped Mn3O4 catalysts and demonstrates their efficacy in HCO for the degradation of pyrazines and the elimination of associated odors. The results show that the catalysts are promising for addressing odor-related environmental issues and provide valuable insights about the broader significance of catalytic ozonation processes.
Collapse
Affiliation(s)
- Yinning He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jiayi Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jingyu Tang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Haijun Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tao Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhiqiao He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Da Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China; School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China.
| | - Lizhang Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Shuang Song
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
50
|
Wei S, Sun Y, Qiu YZ, Li A, Chiang CY, Xiao H, Qian J, Li Y. Self-carbon-thermal-reduction strategy for boosting the Fenton-like activity of single Fe-N 4 sites by carbon-defect engineering. Nat Commun 2023; 14:7549. [PMID: 37985662 PMCID: PMC10662205 DOI: 10.1038/s41467-023-43040-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
Carbon-defect engineering in metal single-atom catalysts by simple and robust strategy, boosting their catalytic activity, and revealing the carbon defect-catalytic activity relationship are meaningful but challenging. Herein, we report a facile self-carbon-thermal-reduction strategy for carbon-defect engineering of single Fe-N4 sites in ZnO-Carbon nano-reactor, as efficient catalyst in Fenton-like reaction for degradation of phenol. The carbon vacancies are easily constructed adjacent to single Fe-N4 sites during synthesis, facilitating the formation of C-O bonding and lowering the energy barrier of rate-determining-step during degradation of phenol. Consequently, the catalyst Fe-NCv-900 with carbon vacancies exhibits a much improved activity than the Fe-NC-900 without abundant carbon vacancies, with 13.5 times improvement in the first-order rate constant of phenol degradation. The Fe-NCv-900 shows high activity (97% removal ratio of phenol in only 5 min), good recyclability and the wide-ranging pH universality (pH range 3-9). This work not only provides a rational strategy for improving the Fenton-like activity of metal single-atom catalysts, but also deepens the fundamental understanding on how periphery carbon environment affects the property and performance of metal-N4 sites.
Collapse
Affiliation(s)
- Shengjie Wei
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yibing Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yun-Ze Qiu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ang Li
- Faculty of Materials and Manufacturing, Beijing Key Lab of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Ching-Yu Chiang
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan.
| | - Hai Xiao
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Jieshu Qian
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China.
- School of Environmental Engineering, Wuxi University, Jiangsu, 214105, P. R. China.
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|