1
|
Iakovides IC, Beretsou VG, Christou A, Gkotsis G, Michael C, Mina T, Nika MC, Thomaidis NS, Fatta-Kassinos D. Impact of the wastewater treatment technology and storage on micropollutant profiles during reclaimed water irrigation: A wide-scope HRMS screening in a water-soil-lettuce-leachate system. WATER RESEARCH 2025; 279:123319. [PMID: 40132301 DOI: 10.1016/j.watres.2025.123319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/27/2025] [Accepted: 02/17/2025] [Indexed: 03/27/2025]
Abstract
In recent decades, climate change and global warming have intensified water scarcity, while the growing global population demands have increased. Reclaimed water (RW) has become essential, offering a viable alternative for crop irrigation in line with circular economy principles. However, although RW reuse is crucial for addressing water shortages, the presence of micropollutants still poses a challenge. The potential for micropollutants to be taken up by crops and enter the food chain still raises significant scientific concern. This work studies RW treated by conventional activated sludge followed by sand filtration and chlorination (CAS+SFC-RW) and membrane-bioreactor-treated RW (MBR-RW) in terms of micropollutant concentrations, providing insights into the differences in micropollutant profiles between the two treatments. The results demonstrate that MBR-RW generally exhibits lower cumulative concentrations of target analytes. However, the study also indicates that the storage of RW for irrigation significantly affects the presence of micropollutants, contributing to their degradation, increase or persistence. Soil analysis revealed fewer detectable micropollutants in the topsoil (0-20 cm) compared to RW, likely attributed to attenuation processes, and more micropollutants (both with respect to concentration and number) compared to deeper soil layers. Carbamazepine, 10,11-epoxide-carbamazepine, and telmisartan were found to migrate to deeper soil levels. The analysis revealed 13 micropollutants in lettuce irrigated with CAS+SFC-RW and 8 with MBR-RW, with carbamazepine and sulfamethoxazole being the most abundant. These differences are likely driven by the physicochemical properties of the compounds and plant-specific factors. Leachates examination showed the potential for contaminants to leach through soil, posing a risk for groundwater contamination. The study showed that the presence of micropollutants in RW is not directly associated with their presence in soil or lettuce, underscoring the need for regulatory policies that address not only their presence in RW but their eventual fate within the agricultural and environmental context.
Collapse
Affiliation(s)
- Iakovos C Iakovides
- Department of Civil and Environmental Engineering, School of Engineering, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus; Nireas-International Water Research Center, School of Engineering, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus
| | - Vasiliki G Beretsou
- Department of Civil and Environmental Engineering, School of Engineering, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus; Nireas-International Water Research Center, School of Engineering, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus
| | - Anastasis Christou
- Nireas-International Water Research Center, School of Engineering, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus; Department of Natural Resources and Environment, Agricultural Research Institute, Ministry of Agriculture, Rural Development and Environment, P.O. Box 22016, Nicosia1516, Cyprus
| | - Georgios Gkotsis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Costas Michael
- Nireas-International Water Research Center, School of Engineering, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus
| | - Theoni Mina
- Nireas-International Water Research Center, School of Engineering, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus
| | - Maria-Christina Nika
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Despo Fatta-Kassinos
- Department of Civil and Environmental Engineering, School of Engineering, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus; Nireas-International Water Research Center, School of Engineering, University of Cyprus, P.O. Box 20537, Nicosia 1678, Cyprus.
| |
Collapse
|
2
|
Dong M, Zheng K, Shen Z, Liu C. Light-dependent Br-org production in terrestrial plants under acetaminophen stress and the bromination mechanisms mediated by photosystem. J Environ Sci (China) 2025; 153:275-288. [PMID: 39855799 DOI: 10.1016/j.jes.2024.10.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/22/2024] [Accepted: 10/29/2024] [Indexed: 01/27/2025]
Abstract
Due to the endocrine toxicity, neurotoxic, and reproductive toxicity to organisms, the sources and risks of brominated organic pollutants have attracted widespread attention. However, knowledge gaps remain in the bromination processes of emerging phenolic pollutants in plants, which may increase the potential health risk associated with food exposure. Our study discovered that light induced generation and accumulation of more toxic brominated organic compounds (Br-org) in lettuce leaves under the stress of acetaminophen (ACE) than that without light, as evidenced by an increase in C-Br bond intensity in FTIR analysis. This result can be explained by the oxidation of bromide ions (Br-) by reactive species (ROS and 3Chl*) of chloroplast into reactive bromine species (RBS). The main mechanism is that the redox of Br- reduced the oxidative damage of ACE to the structure and function of chloroplasts, providing good conditions for light energy uptake and utilization and promoting the increase of pigments and active species. Compared with the dark group exposed to 5 mg/L Br-, the pigment content, H2O2 and 1O2 level of the light group increased by 56%, 84% and 69%, respectively. On the other hand, RBS attacks certain electrophilic organic compounds in leaves to generate Br-org. Triple excited state of chlorophyll (3Chl*) was the dominant species for the transformation of ACE, while RBS is a key factor in the generation of Br-org in the Br-/light/chlorophyll system. A total of six transformation products were identified by HPLC-MS/MS, which were involved in three transformation pathways: methylation, hydroxyl oxidation and hydroxylation followed by bromination. This is the first report that Br- could enter the chloroplast and improved chloroplast structure under ACE stress, and elucidated the bromination mechanism of organics in terrestrial plant involving of biophotochemical bromination in chloroplast besides enzyme-catalyzed bromination. This study is beneficial for risk assessment and prevention of emerging phenolic pollutants.
Collapse
Affiliation(s)
- Min Dong
- School of Environmental Science and Engineering, Shandong Key Laboratory of Environmental Processes and Health, Shandong University, Qingdao 266237, China
| | - Kai Zheng
- School of Environmental Science and Engineering, Shandong Key Laboratory of Environmental Processes and Health, Shandong University, Qingdao 266237, China
| | - Zhonglan Shen
- Shandong Institute for Food and Drug Control, Jinan 250101, China
| | - Chunguang Liu
- School of Environmental Science and Engineering, Shandong Key Laboratory of Environmental Processes and Health, Shandong University, Qingdao 266237, China; Laboratory of Marine Ecological Environment in Universities of Shandong, Shandong University, Qingdao 266237, China; Qingdao Key Laboratory of Marine Pollutant Prevention, Shandong University, Qingdao 266237, China; Shandong Kenli Petrochemical Group Co., Ltd., Dongying 257500, China.
| |
Collapse
|
3
|
Feng NX, Pan B, Huang HJ, Huang YT, Lyu H, Xiang L, Zhao HM, Liu BL, Li YW, Cai QY, Li DW, Mo CH. Uptake, translocation, and biotransformation of phthalate acid esters in crop plants: A comprehensive review. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137580. [PMID: 39952132 DOI: 10.1016/j.jhazmat.2025.137580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/05/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Phthalate acid esters (PAEs) are prevalent emerging contaminants in agricultural environments. The uptake of PAEs by crop plants has attracted extensive attention due to the risks posed to human health through transfer in food chains. Despite its importance, the interaction between PAEs and crop plants remains poorly understood. In this critical review, the occurrence of six priority control PAEs in various food crops grown in greenhouses and conventional farms is investigated, with detected concentrations reaching up to mg/kg (dry weight) levels. PAEs enter plants through roots, foliar gas, or foliar particle uptake. After entry, PAEs exhibit acropetal translocation from the root and basipetal translocation from the leaf. PAEs are transformed into various metabolites through hydroxylation, hydrolysis, and oxidation in phase I metabolism and further conjugated with biomolecules such as amino acids or sugars in phase II metabolism. Exposure to PAEs disrupts plant homeostasis and activated antioxidant enzymes to alleviate phytotoxicity. Dietary intake of PAEs-contaminated food crops presents potential risks to human health, particularly from fruit and root vegetables consumed by children, warranting specific attention. Furthermore, current knowledge gaps and future perspectives are proposed. This review provides a comprehensive assessment of the knowledge on the uptake, translocation, and transformation of PAEs in crop plants, emphasizing the need for an integrated investigation into the full life cycle of PAEs in plants to ensure food safety.
Collapse
Affiliation(s)
- Nai-Xian Feng
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou 510632, China.
| | - Bogui Pan
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou 510632, China.
| | - Hong-Jia Huang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou 510632, China
| | - Yi-Tong Huang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou 510632, China
| | - Hui Lyu
- School of Architecture and Planning, Foshan University, Foshan 528225, China
| | - Lei Xiang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou 510632, China
| | - Bai-Lin Liu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou 510632, China
| | - Da-Wei Li
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Ce-Hui Mo
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
4
|
Li H, Wang X, Li B, Lin J, Liu F, Mu W. Rational application of QoIs fungicides to achieve a rice-fungi-fish interaction balance within paddy ecosystems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126169. [PMID: 40158679 DOI: 10.1016/j.envpol.2025.126169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
In the realm of agricultural chemical research, elucidating the mechanisms underlying the selectivity of quinone outside inhibitors (QoIs) is crucial for guiding the development of novel pesticides. In this study, differences in the selectivity and toxicity of 12 QoIs were evaluated using three organisms (Magnaporthe oryzae, zebrafish, and rice) present in paddy fields. The interplay between the specific mechanisms of QoIs selectivity among different organisms and the variations in individual toxicity remains unclear. Therefore, the distinct levels of enrichment behavior, cell toxicity, and target enzyme toxicity of 12 QoIs across three organisms were investigated in this research. Additionally, an attempt was made to analyze the correlation between structural parameters and the degree of toxicity at the tissue, cellular, and target levels to establish the regulatory direction of QoIs activity and toxicity. The results revealed that cytotoxicity and target enzyme toxicity played significant roles in the toxicity observed in individuals, specifically in fish and fungus, respectively. The results of this study revealed a significant negative correlation between the bioconcentration factor (BCF) in biological tissues and fish toxicity (LC50) (P < 0.05), but no significant correlation between BCF of fungus and fungitoxicity (EC50) was detected (P > 0.05). Reducing the Log P (octanol-water partition coefficient) and further changing tissue enrichment could balance the toxicity and activity of QoIs in organisms. On the basis of the aforementioned findings, introducing hydrophilic groups into the structure of pyraclostrobin with lower Log P values was an effective strategy for designing new QoI structures. These modified structures demonstrated reduced toxicity to fish and promising fungitoxicity against rice blast fungus compared with pyraclostrobin. This study provides valuable insights for regulatory measures in the design and development of effective and safe new QoIs in paddy fields, further reducing adverse impacts on paddy fields and aquatic ecosystems.
Collapse
Affiliation(s)
- Hong Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xueqing Wang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Beixing Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Jin Lin
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Feng Liu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Wei Mu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| |
Collapse
|
5
|
Chuang YH, Zheng KX, Wong SC, Tzou YM, Wang S, Lin SR, Yang HY, Fu CY, Wu JJ, Liu CH. Fate, transport, and plant uptake of ricinine in soils amended with castor cake organic fertilizer. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138454. [PMID: 40327935 DOI: 10.1016/j.jhazmat.2025.138454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/13/2025] [Accepted: 04/29/2025] [Indexed: 05/08/2025]
Abstract
The toxic alkaloid ricinine in castor cake organic fertilizers poses significant risks to groundwater and crop safety due to its potential for downward transport and plant uptake following land application. However, its environmental behavior remains insufficiently studied. To address this gap, a modified QuEChERS-based method coupled with LC-QTOF/MS was developed and validated, achieving recovery rates of 74.0-93.3 % and detection limits of 0.01-0.32 µg kg-1 for ricinine in castor cake, soils, and lettuce. Soil pot experiments investigated the fate, transport, and plant uptake of ricinine using two loam soils amended with castor cake fertilizers. Pot leaching experiments demonstrated ricinine's high mobility, with ricinine either leaching directly into water or converting to metabolites like N-demethyl-ricinine before transport. Ricinine concentrations in leachate, soil pore water, and soil solid phases decreased over time, with 5.1-40.6 % of the initial ricinine remaining after 14 days. Pot-cultivation experiments confirmed lettuce uptake of ricinine and its metabolite, with accumulation increasing at higher castor cake application rates, reaching up to 7.6 µg and 10.0 µg, respectively, and higher concentrations in shoots than roots. These results highlight ricinine's potential to contaminate agroecosystems, stressing the need for regulatory measures and effective management strategies to ensure food safety.
Collapse
Affiliation(s)
- Ya-Hui Chuang
- Department of Soil and Environmental Sciences, National Chung-Hsing University, Taichung 402204, Taiwan; Master Program for Plant Medicine and Good Agricultural Practice, National Chung-Hsing University, Taichung 402204, Taiwan
| | - Kai-Xuan Zheng
- Master Program for Plant Medicine and Good Agricultural Practice, National Chung-Hsing University, Taichung 402204, Taiwan
| | - Siu Chun Wong
- Department of Soil and Environmental Sciences, National Chung-Hsing University, Taichung 402204, Taiwan
| | - Yu-Min Tzou
- Department of Soil and Environmental Sciences, National Chung-Hsing University, Taichung 402204, Taiwan
| | - Sichao Wang
- Center for Statistical Training and Consulting, Michigan State University, East Lansing, MI 48824, USA
| | - Shiou-Ruei Lin
- Agricultural Chemicals Research Institute, Ministry of Agriculture, Taichung 413001, Taiwan
| | - Hsiao-Ying Yang
- Southern Region Branch Station, Tea and Beverage Research Station, Ministry of Agriculture, Nantou 558004, Taiwan
| | - Chinn-Yuan Fu
- Department of Soil and Environmental Sciences, National Chung-Hsing University, Taichung 402204, Taiwan
| | - Jerry J Wu
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 40724, Taiwan
| | - Cheng-Hua Liu
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 40724, Taiwan.
| |
Collapse
|
6
|
Shekhar S, Sarkar S. Microplastic aging and adsorption in the atmosphere, and their associated impacts on various spheres of the earth: A review. CHEMOSPHERE 2025; 376:144256. [PMID: 40054284 DOI: 10.1016/j.chemosphere.2025.144256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/07/2025] [Accepted: 02/23/2025] [Indexed: 03/23/2025]
Abstract
Microplastic (MPs, size <5 mm) is an emerging category of contaminants with detrimental effects on human health, climate, and ecology. The atmospheric pathway is a crucial transport route for the migration of MPs from source to receptor locations. This long-range transport leads to the ubiquitous presence of MPs across all environmental matrices and constrains the source-transport pathway-sink interaction. During atmospheric transport, MPs experience aging and adsorption as a result of interactions with winds, solar radiation, moisture, pH, and atmospheric pollutants, which alters their hydrophilicity, structure, surface area, size, color, and the capacity for adsorption, often resulting in elevated toxicity and associated risks. However, the multifaceted dynamics of atmospheric aging of MPs and consequent impacts are poorly understood. This review presents a critical assessment of three major factors that determine the nature and degree of MP aging and adsorption in the atmosphere, namely: intrinsic MP properties such as the degree of unsaturation, crystallinity, presence of functional groups, charge, specific surface area, and structural defects; environmental factors such as temperature, pH, moisture, and the presence of chemical species; and pollutant characteristics such as charge and hydrophilicity/hydrophobicity that influence adsorption, with an emphasis on potential mechanisms. Additionally, the review presents a comparative assessment of the critical factors and mechanisms responsible for aging and adsorption in atmosphere with those in other environmental media. Further, the potential impacts of atmospherically aged MPs on climate, the biosphere, cryosphere, pedosphere, and hydrosphere are summarized. The review finally identifies key knowledge gaps and outlines perspectives for future research.
Collapse
Affiliation(s)
- Sneha Shekhar
- School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh 175075, India
| | - Sayantan Sarkar
- School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh 175075, India.
| |
Collapse
|
7
|
Li B, Wang H, Yu P, Zou P, Tan D, Jin F. Distribution, uptake, and daily exposure of per- and polyfluoroalkyl substances in a paddy field: A growth cycle study. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138256. [PMID: 40222064 DOI: 10.1016/j.jhazmat.2025.138256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/12/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Rice, a crucial agricultural commodity, is potentially susceptible to contamination by persistent organic pollutants throughout its entire growth cycle in the field. Per- and polyfluoroalkyl substances (PFASs) have attracted great scientific attention due to their environmental persistence, bioaccumulation potentials, and toxicity. However, the occurrence and behavior of PFASs in the paddy ecosystem have not been confirmed. This study explored the uptake, accumulation, and potential risks of PFASs in the irrigation water, soils and paddy tissues from a typical paddy system at the main stages of rice growth. The total PFAS concentrations in irrigation water and soils were in the range of 62.9 -85.5 ng/L and 45.7 -75.4 ng/g dw. The concentrations of PFASs in paddy tissues followed the order of root>stem>leaf>grain. A minor decrease in PFAS concentrations in paddy tissues with growth time may be attributed to biotransformation and growth dilution. PFAS distribution in soils, irrigation water, and different paddy tissues also showed different patterns with the growing time of paddy. ΣPFCAs and ΣPFSAs were the most prevalent PFASs in all samples, which constituted 65.0 -96.3 % of the total PFASs. In addition, the transfer factor (TF) values from root to stem/leaf/grain decreased as Log KOW increased (Log KOW< 5). Significant correlations between the concentrations and protein contents in paddy grains were observed for most long-chain PFASs. Risk assessments have suggested that the current levels do not pose a health risk to humans, but PFAS alternatives cannot be neglected for food safety and environmental impacts.
Collapse
Affiliation(s)
- Bowen Li
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory for Quality and Safety of Agro-Products, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongping Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory for Quality and Safety of Agro-Products, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peiwen Yu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory for Quality and Safety of Agro-Products, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pan Zou
- Institute of Agro-Product Safety and Nutrition, Tianjin Academy of Agricultural Sciences (TAAS), Tianjin 300192, China
| | - Dongfei Tan
- Institute of Agro-Product Safety and Nutrition, Tianjin Academy of Agricultural Sciences (TAAS), Tianjin 300192, China
| | - Fen Jin
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory for Quality and Safety of Agro-Products, Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
8
|
Shi Q, Shen D, Yates R, Chou C, Barajas A, Zhang J, Schlenk D, Gan J. Safe Reuse of Treated Wastewater: Accumulation of Contaminants of Emerging Concern in Field-Grown Vegetables under Different Irrigation Schemes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6261-6271. [PMID: 40113445 PMCID: PMC11966769 DOI: 10.1021/acs.est.4c13666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
The reuse of treated wastewater (TWW) for irrigation alleviates freshwater (FW) scarcity while supporting a circular economy. However, the potential human exposure to contaminants of emerging concern (CECs) through plant accumulation is a significant barrier. Currently, knowledge on CEC contamination of edible produce and effective mitigation strategies for the safe reuse of TWW is limited, particularly under field conditions. This study examined the accumulation of a representative set of CECs, including perfluoroalkyl and polyfluoroalkyl substances (PFAS), pharmaceuticals and personal care products, and tire wear particle (TWP) chemicals, in radish, lettuce, and tomato under three irrigation practices: FULL (continuous TWW irrigation), HALF (midseason switch from TWW to FW), and FW-only. Despite low PFAS concentrations (8.1-25.7 ng/L) in TWW, the plant uptake was consistently observed, including in tomato fruits. Alternating TWW with FW significantly reduced CEC accumulation in edible tissues, particularly for compounds with short half-lives, with reductions up to 82.4% even for persistent PFAS. For most CECs and plant species, edible tissue concentrations were similar between the HALF and FW treatments. These findings demonstrate the on-farm applicability of simple irrigation modifications to reduce food contamination and contribute to the promotion of safe reuse of nonconventional waters.
Collapse
Affiliation(s)
- Qingyang Shi
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Dahang Shen
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
- Institute
of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural
Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Rebecca Yates
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Catherine Chou
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Andrea Barajas
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Jingjing Zhang
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
- Department
of Pesticides, College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Daniel Schlenk
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Jay Gan
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| |
Collapse
|
9
|
Yao S, Chen Y, Zheng N, Chen T, Zhang S, Yu Z, Wang H. Accumulation and Subcellular Distribution Patterns of Carbamazepine in Hydroponic Vegetables. BIOLOGY 2025; 14:343. [PMID: 40282208 PMCID: PMC12024843 DOI: 10.3390/biology14040343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025]
Abstract
Pharmaceutical and Personal Care Products (PPCPs), such as carbamazepine, enter the food chain through wastewater irrigation, posing risks to ecosystems and human health. However, research on the translocation and subcellular distribution of carbamazepine in vegetables is limited. Herein, we used 14C-labeled carbamazepine as a tracer to investigate its removal, accumulation, and subcellular compartmentalization in hydroponic vegetable systems. Results showed carbamazepine accumulated in Chinese flowering cabbage and water spinach with removal efficiencies of 93.0-93.2%. The compound was absorbed by roots and translocated to aboveground tissues, particularly in bottom leaves, reaching 90.3 μmol/kg after 768 h, as confirmed by autoradiography. Subcellular analysis indicated that carbamazepine is predominantly distributed in root organelles and in the soluble fraction of leaves and stems. A strong correlation (R2 > 0.800) was observed between root enrichment coefficients and log KOW for caffeine, carbamazepine, and kresoxim-methyl. Higher lipid content in water spinach roots (2.07%) significantly enhanced upward transport, underscoring lipid content's role in translocation. Additionally, a higher xylem content in the plant accelerated the transport of carbamazepine. This study provides key insights into the environmental behavior of organic pollutants, supporting efforts in environmental and health protection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Haiyan Wang
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (S.Y.); (Y.C.); (N.Z.); (T.C.); (S.Z.); (Z.Y.)
| |
Collapse
|
10
|
Wang YZ, Zhao HM, Huang XP, Zhang Y, Ye JC, Feng NX, Li YW, Liu BL, Cai QY, Xiang L, Mo CH, Li QX. Variety-dependent seed endophytic bacteria enhance stress tolerance to and bioaccumulation of ciprofloxacin in choy sum (Brassica parachinensis). MICROBIOME 2025; 13:80. [PMID: 40121500 PMCID: PMC11929246 DOI: 10.1186/s40168-025-02073-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 02/26/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Accumulation of antibiotics in crops threatens human health. However, the mechanisms and effects of microorganisms on the uptake and accumulation of antibiotics in crops remain poorly understood. This study aimed to investigate the impact and underlying mechanisms of seed-borne microbiota in root on ciprofloxacin (CIP) accumulation in two choy sum varieties through amplicon sequencing, multiple statistical analyses, and subsequent validation of key bacteria via isolation and co-culturing with plants. RESULTS Bacillaceae (mainly Bacillus) was enriched specifically in the roots of CIP high-antibiotic-accumulating variety (HAV) via seed-based vertical transmission activated by the root exudate-derived maleic acid. The relative abundance of Bacillaceae was 9.2 to 27.7 times higher in roots of HAV relative to the low-antibiotic-accumulating variety (LAV). The enrichment of Bacillaceae facilitated a cooperative and beneficial bacterial community formed by the deterministic process. The community in HAV could not only stimulate antioxidase activities and decrease membrane lipid peroxidation via secreting indoleacetic acid and siderophore but also promote its biomass, especially the root length and biomass of HAV, thus greatly improving its tolerance to and absorption of CIP. The variety-specific plant-microbial interactions caused 1.6- to 3.2-fold higher CIP accumulation in shoots of HAV relative to LAV shoots. CONCLUSIONS The findings highlight the crucial roles of the seed-borne microbiota in regulating the uptake and accumulation of antibiotics in crops, giving new understanding on the accumulation of organic pollutants in plants, with an emphasis on plant-microbial interactions Video Abstract.
Collapse
Affiliation(s)
- Yi-Ze Wang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | | | - Xian-Pei Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yu Zhang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jin-Cheng Ye
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Bai-Lin Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| |
Collapse
|
11
|
Cao D, Peng W, Xu H, Fu X, Gong X, Yu S, Wei H, Zhou Q, Huang Y. Bioavailability and phytotoxicity of clomazone to corn depend on soil characteristics and can be estimated by in situ pore water. PEST MANAGEMENT SCIENCE 2025; 81:1316-1323. [PMID: 39511918 DOI: 10.1002/ps.8531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND The injury caused by residual herbicides in soils to subsequent crops has been frequently reported and is largely related to soil physicochemical properties. Elucidating the interactions between herbicide toxicity and soil properties could help assess its phytotoxicity based on local soil characteristics. Here, the influence of soil properties on the accumulation and toxicity of clomazone as a model compound to corn was explored to obtain a universal indicator for estimating the toxicity of herbicides against crops. RESULTS The phytotoxicity of clomazone to corn differed in the five tested soils with the median inhibitory concentration (IC50) values, according to the added concentration, fluctuating between 2.80 and 26.97 mg/kg. The uptake of clomazone by corn was primarily affected by its sorption onto soils and showed a positive correlation with the concentration of clomazone in in situ pore water (CIPW) (R2 ≥ 0.775, P < 0.001). In contrast to results derived from traditional soil clomazone concentrations (Csoil) determined through organic solvent extraction, consistent IC50 values (1.344-1.626 mg/L) were obtained based on CIPW in all five soils with a much lower coefficient of variation. CONCLUSIONS These findings indicate that measuring the concentration of clomazone in in situ pore water provides a reliable and comparable method for evaluating its bioavailability and phytotoxicity on corn. Using CIPW rather than Csoil as a herbicide indicator is more accurate for assessing its actual phytotoxicity. These results are important for the scientific application of clomazone and the safe production of corn. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Duantao Cao
- The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, China
| | - Wenwen Peng
- The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, China
| | - Hanghang Xu
- The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoxiang Fu
- The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, China
| | - Xia Gong
- College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang, China
| | - Sumei Yu
- College of Medicine, Linyi University, Linyi, China
| | - Hongyi Wei
- The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
| | - Qinghong Zhou
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, China
| | - Yingjin Huang
- Jiangxi Province Key Laboratory of Vegetable Cultivation and Utilization, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
12
|
Li D, Xing Y, Li L, Yao Y, Li Y, Zhu H, Du P, Wang F, Yu D, Yang F, Yao Z, Thomas KV. Accumulation, translocation and transformation of artificial sweeteners in plants: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125517. [PMID: 39667574 DOI: 10.1016/j.envpol.2024.125517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Artificial sweeteners (ASs) have become an increasingly significant concern as an emerging contaminant. The widespread utilization has given rise to environmental consequences that are progressively harder to disregard. ASs infiltrate both aquatic and terrestrial ecosystems through the discharge of wastewater effluents and the application of manure and biosolids. These compounds can be absorbed and accumulated by plants from soil, water and the atmosphere, posing potential risks to ecological systems and human health. However, limited data available on plant absorption, translocation, and metabolism of ASs hinders a comprehensive understanding of their impact on ecosystem. This study aims to comprehensively summarize the global distribution of ASs, along with elucidating patterns of their uptake and accumulation within plants. Furthermore, it seeks to elucidate the pivotal factors governing ASs absorption and translocation, encompassing hydrophilicity, ionic nature, plant physiology, and environmental conditions. Notably, there remains a significant knowledge gap in understanding the biodegradation of ASs within plants, with their specific degradation pathways and mechanisms largely unexplored, thereby necessitating further investigation. Additionally, this review provides valuable insights into the ecotoxicological effects of ASs on plants. Finally, it identifies research gaps and outlines potential avenues for future research, offering a forward-looking perspective on this critical issue.
Collapse
Affiliation(s)
- Dandan Li
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| | - Yeye Xing
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Li Li
- School of Public Health, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV, 89557-0274, USA
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yongcheng Li
- School of Public Health, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV, 89557-0274, USA
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Peng Du
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Fang Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Dayang Yu
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Fang Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Zhiliang Yao
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia
| |
Collapse
|
13
|
Nuruzzaman M, Bahar MM, Naidu R. Diffuse soil pollution from agriculture: Impacts and remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178398. [PMID: 39808904 DOI: 10.1016/j.scitotenv.2025.178398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
Agricultural activities are essential for sustaining the global population, yet they exert considerable pressure on the environment. A major challenge we face today is agricultural pollution, much of which is diffuse in nature, lacking a clear point of origin for chemical discharge. Modern agricultural practices, which often depend on substantial applications of fertilizers, pesticides, and irrigation water, are key contributors to this form of pollution. These activities lead to downstream contamination through mechanisms such as surface runoff, leaching, soil erosion, wind dispersal, and sedimentation. The environmental and human health consequences of diffuse pollution are profound and cannot be ignored. Accurate assessment of the risks posed by agricultural pollutants is crucial for ensuring the production of safe, high-quality food while safeguarding the environment. This requires systematic monitoring and evaluation of agricultural practices, including soil testing and nutrient management. Furthermore, the development and implementation of best management practices (BMPs) are critical in reducing the levels of agricultural pollution. Such measures are essential for mitigating the negative impacts on ecosystems and public health. Therefore, the adoption of preventive strategies aimed at minimizing pollution and its associated risks is highly recommended to ensure long-term environmental sustainability and human well-being.
Collapse
Affiliation(s)
- Md Nuruzzaman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; crc for Contamination Assessment and Remediation of the Environment (crcCARE), ATC Building, University Drive, Callaghan, NSW 2308, Australia
| | - Md Mezbaul Bahar
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; crc for Contamination Assessment and Remediation of the Environment (crcCARE), ATC Building, University Drive, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; crc for Contamination Assessment and Remediation of the Environment (crcCARE), ATC Building, University Drive, Callaghan, NSW 2308, Australia.
| |
Collapse
|
14
|
Li K, Cheng Q, Zeng C, Shen H, Lu C. The fate and transport of pesticide seed treatments and its impact on soil microbials. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117508. [PMID: 39671765 DOI: 10.1016/j.ecoenv.2024.117508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/02/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
In order to better understand the environmental impact of systemic pesticides used in the seed treatment, we conducted a field trial by planting maize seeds treated with thiamethoxam (TMX) and the combination with difenoconazole (DFZ), two of the commonly used systemic pesticides in the seed treatment program. We found most of pesticide residues were retained in the 0-10 cm layer from soil surface. Pesticide residue levels exhibited a significant decreasing trend from the seedling to milk period. The highest level of TMX in the profile soil were 0.068 and 0.036 μg·g-1 during the elongation and seedling stages, respectively, while DFZ was always below the limit of detection. The soil bacterial abundance and community structure at the early growth stages of maize were affected by the seed treatment, but not the diversity. As TMX levels in soil diminished toward the end of maize growth period, same as the effects on soil microbials. Neither the fresh weight nor the total yield of maize was significantly different among different treatments, suggesting the planting of maize seeds treated with TMX has no apparent economic incentives to corn growers.
Collapse
Affiliation(s)
- Kaiye Li
- College of Resources and Environment, Southwest University, Tian Shen Road, Beibei District, Chongqing 400799, China
| | - Qing Cheng
- College of Resources and Environment, Southwest University, Tian Shen Road, Beibei District, Chongqing 400799, China
| | - Chao Zeng
- College of Resources and Environment, Southwest University, Tian Shen Road, Beibei District, Chongqing 400799, China
| | - Hong Shen
- College of Resources and Environment, Southwest University, Tian Shen Road, Beibei District, Chongqing 400799, China
| | - Chensheng Lu
- College of Resources and Environment, Southwest University, Tian Shen Road, Beibei District, Chongqing 400799, China; Department of Environmental and Occupational Health Sciences, University of Washington, 3980 15th Ave. NE, Seattle, WA 98195, USA.
| |
Collapse
|
15
|
Zhao C, Liu H, Cheng D, Wang Y, Hu Z, Wu H, Xie H, Zhang J. Insights into poly-and perfluoroalkyl substances (PFAS) removal in treatment wetlands: Emphasizing the roles of wetland plants and microorganisms. WATER RESEARCH 2025; 268:122702. [PMID: 39476545 DOI: 10.1016/j.watres.2024.122702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 12/06/2024]
Abstract
Poly- and perfluoroalkyl substances (PFAS) are widespread emerging contaminants in aquatic environments, raising serious concerns due to their persistence and potential toxicity to both human health and ecosystems. Treatment wetlands (TWs) provide a sustainable, low-carbon solution for PFAS removal by harnessing the combined actions of substrates, plants, and microorganisms. This review evaluates the effectiveness of TWs in PFAS treatment, emphasizing their role as a post-treatment option for conventional wastewater treatment plants. Mass balance analysis reveals that substrate adsorption was the primary pathway for PFAS removal from TWs, while plant uptake and subsequent harvesting treatments, as well as microbial degradation, contribute substantially to long-term PFAS removal. Comparisons of bioaccumulation factor (BCF) and translocation factors (TF) between wetland and terrestrial plants demonstrate that wetland plants are particularly effective at adsorbing long-chain PFAS and transferring them from roots to aboveground tissues. The diverse environmental conditions within TWs support varied microbial communities, facilitating the evolution of PFAS-degrading microorganisms. Wetland microorganisms demonstrate the capacity to break down PFAS through processes such as head group transformations (e.g., decarboxylation, desulfonation) and defluorination (e.g., elimination, reductive defluorination, hydrolysis, dealkylation). This review emphasizes the crucial role of wetland plants and microorganisms in the sustainable removal of PFAS in TWs, providing insights for the ecological remediation of PFAS-contaminated wastewater.
Collapse
Affiliation(s)
- Changjie Zhao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Huaqing Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yanlong Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zhen Hu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Haiming Wu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Huijun Xie
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China; School of Geographical Environment, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
16
|
Zhu H, Hu J, Ruan Z, Liu D, Zhao M. Occurrence and bioaccumulation of organophosphate flame retardants in high-altitude regions: A comprehensive field survey in Qinghai Province, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117715. [PMID: 39798441 DOI: 10.1016/j.ecoenv.2025.117715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/23/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Organophosphate flame retardants (OPFRs) are a class of substances that pose potential risks to human health and ecosystems due to their large-scale production, wide range of applications, and ubiquitous presence in the environment. With their potential for long-range atmospheric transport (LRAT), OPFR pollution in high-altitude areas has become an increasing concern. Herein, a general pretreatment method for OPFRs across various sample matrices was established and combined with gas chromatography-mass spectrometry (GC-MS), utilizing a programmed temperature ramp in the vaporization chamber to enable high-throughput detection of OPFRs in various environmental matrices. OPFRs were quantified in soil, grass, tree bark, and wild rat liver samples collected from Qinghai, China (elevation: 2657-4635 m), and their occurrence and bioaccumulation behaviors were systematically investigated. All samples were contaminated with OPFRs, with ∑OPFR concentrations showing the trend of rat liver (mean: 439 ng/g, median: 420 ng/g) > grass (mean: 338 ng/g, median: 273 ng/g) > soil (mean: 190 ng/g, median: 162 ng/g) > tree bark (mean: 125 ng/g, median: 116 ng/g). Paired sample Spearman correlation analysis showed that soil ∑OPFRs were significantly positively correlated with grass ∑OPFRs (P = 0.0023), indicating that soil is the main source of OPFRs in grass. Among soil, grass, tree bark, and rat liver samples, tris(2-chloroisopropyl) phosphate (TCIPP) and tris(2-chloroethyl) phosphate (TCEP) had the highest contribution rates to ∑OPFRs, with cumulative contributions of 60.9 %, 48.6 %, 76.5 %, and 71.1 %, respectively, indicating that the proportion of industrial sources of OPFRs reaching this area through LRAT is relatively high. Biomagnification factor (BMF) analysis revealed that ∑OPFRs exhibited significant bioaccumulation and biomagnification effects within the soil-grass-rat terrestrial food chain. The ecological risk assessment results indicated that ∑OPFRs in the soil of the study area pose a high ecological risk, with aryl-OPFRs posing the greatest risk. Our findings provide a crucial foundation for further investigation into the contamination and bioaccumulation characteristics of OPFRs in high-altitude regions.
Collapse
Affiliation(s)
- Haibao Zhu
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China.
| | - Jinlin Hu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Zheng Ruan
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China
| | - Danhua Liu
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang 310013, PR China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| |
Collapse
|
17
|
Liu S, Wang G, Xing Z, Xue H, Wang Y, Wang H, Dong X, Chen H, Liu Y. Stable Isotope and Multiomics Reveal Uptake, Translocation, and Transformation Mechanisms of Tris(2-chloroethyl) Phosphate in Wheat ( Triticum aestivum L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27797-27807. [PMID: 39654329 DOI: 10.1021/acs.jafc.4c08393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Uptake, translocation, and transformation mechanisms of tris(2-chloroethyl) phosphate (TCEP) in hydroponic wheat (Triticum aestivum L.) were systematically investigated using compound-specific stable isotope and multiomics analyses in this study. Results showed that TCEP was quickly adsorbed on root epidermis and then absorbed in roots via water and anion channels as well as an active process dependent on energy. Active process and anion channel preferentially translocated TCEP-containing light carbon isotopes and dominated the transmembrane transport of TCEP to enter vascular bundle. Transcriptomic and metabolomic analyses indicated gene-encoding ATP-binding cassette (ABC) transporters and purple acid phosphatases (PAPs) and glutathione S-transferases (GSTs) involved in TCEP transport and transformation, respectively. Molecular docking simulations showed that TCEP bound to the hydrophilic cavity of ABC transporter/PAP and hydrophobic cavity of GST, and hydrogen bonding was the important driving force. The results of this study offered insights for future effective mitigation of TCEP risk in edible plants.
Collapse
Affiliation(s)
- Shuaihao Liu
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, P. R. China
| | - Guoguang Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, P. R. China
| | - Ziao Xing
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, P. R. China
| | - Hongyi Xue
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, P. R. China
| | - Yana Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, P. R. China
| | - Haixia Wang
- Navigation College, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, P. R. China
| | - Xu Dong
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, P. R. China
| | - Haiyue Chen
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, P. R. China
| | - Yu Liu
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian 116026, P. R. China
| |
Collapse
|
18
|
Mravcová L, Jašek V, Hamplová M, Navrkalová J, Amrichová A, Zlámalová Gargošová H, Fučík J. Assessing Lettuce Exposure to a Multipharmaceutical Mixture under Hydroponic Conditions: Findings through LC-ESI-TQ Analysis and Ecotoxicological Assessments. ACS OMEGA 2024; 9:49707-49718. [PMID: 39713641 PMCID: PMC11656385 DOI: 10.1021/acsomega.4c08013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024]
Abstract
The escalating global water scarcity demands innovative solutions, one of which is hydroponic vegetable cultivation systems that increasingly use reclaimed wastewater. Nevertheless, even treated wastewater may still harbor various emerging organic contaminants, including pharmaceuticals. This study aimed to comprehensively assess the impact of pharmaceuticals, focusing on bioconcentration factors (BCFs), translocation factors (TFs), pharmaceutical persistence in aqueous environment, ecotoxicological end points, and associated environmental and health risks. Lettuce (Lactuca sativa) was cultivated hydroponically throughout its entire growth cycle, exposed to seven distinct concentration levels of contaminants ranging from 0 to 500 μg·L-1 over a 35-day period. The findings revealed a diverse range of BCFs (2.3 to 880 L·kg-1) and TFs (0.019-1.48), suggesting a high potential of pharmaceutical uptake and translocation by L. sativa. The degradation of 20 pharmaceuticals within the water-lettuce system followed first-order degradation kinetics. Substantial ecotoxicological effects on L. sativa were observed, including increased mortality, alterations in root morphology and length, and changes in biomass weight (p < 0.05). Furthermore, the estimated daily intake of pharmaceuticals through L. sativa consumption suggested considerable health risks, even if lettuce would be one of the many vegetables consumed. It is hypothetical, as the values were calculated. Moreover, this study assessed the environmental risk associated with the emergence of antimicrobial resistance (AMR) in aquatic environments, revealing a significantly high risk of AMR emergence. In conclusion, these findings emphasize the multifaceted challenges posed by pharmaceutical contamination in aquatic environments and the necessity of proactive measures to mitigate associated risks to both environmental and human health.
Collapse
Affiliation(s)
- Ludmila Mravcová
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Vojtěch Jašek
- Institute
of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Marie Hamplová
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Jitka Navrkalová
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Anna Amrichová
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Helena Zlámalová Gargošová
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Jan Fučík
- Institute
of Chemistry and Technology of Environmental Protection, Faculty of
Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| |
Collapse
|
19
|
Warke M, McAvoy D. Prioritization of biosolids-borne unregulated organic compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177207. [PMID: 39471961 DOI: 10.1016/j.scitotenv.2024.177207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
The land application of biosolids offers benefits over landfilling and incineration by improving soil health and plant nutrition. Unregulated Organic Compounds (UOCs) in biosolids have led to concerns that may impede the beneficial use of biosolids. This study presents a prioritization scheme to identify the highest-priority biosolids-borne UOCs that risk human health. A database of 906 identified chemicals in US biosolids was developed. The primary filtering process based on the class of chemicals further reduced the number of chemicals to 460. Based on the availability of quantifiable UOCs concentrations in biosolids, the number of UOCs was reduced to 298. A criterion of the highest measured biosolids chemical concentration to toxicity (rat LD50) ratio of <0.001 was further used to reduce the final list to 124 UOCs. A scoring scheme was developed that included occurrence, mobility, persistence, bioaccumulation, and toxicity. Results were used to understand the fate of chemicals in soil and their potential effect on human health. The final assessment was based on the sum of five scenarios by adding scores of two or more of the parameters. Forty-six high priority and 78 low priority UOCs were identified after the final scoring evaluation. This study prioritizes UOCs based on exposure, fate, and potential hazards in soil amended with biosolids and recommends further investigation of high priority UOCs.
Collapse
Affiliation(s)
- Manas Warke
- Department of Chemical and Environmental Engineering, University of Cincinnati, 2901 Woodside Drive, Cincinnati, OH 45221-0012, USA; Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Ct, Anderson, SC 29632, USA.
| | - Drew McAvoy
- Department of Chemical and Environmental Engineering, University of Cincinnati, 2901 Woodside Drive, Cincinnati, OH 45221-0012, USA.
| |
Collapse
|
20
|
Jia WL, Gao FZ, Song C, Chen CE, Ma CX, White JC, Ying GG. Swine wastewater co-exposed with veterinary antibiotics enhanced the antibiotic resistance of endophytes in radish (Raphanus sativus L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125040. [PMID: 39343351 DOI: 10.1016/j.envpol.2024.125040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The widespread utilization of antibiotics in livestock has promoted the accumulation and diffusion of antibiotics and antibiotic resistance in agricultural soils and crops. Here we investigated the mechanisms of antibiotic uptake and accumulation in swine wastewater (SW)-treated radish (Raphanus sativus L.) and subsequent impacts on endophyte antibiotic resistance. Under SW treatments, exposure to 500 μg/L sulfamethazine (SMZ) and enrofloxacin (EFX) significantly affected radish biomass, with SMZ causing 63.0% increases and EFX causing 36.3% decreases relative to the untreated control. EFX uptake by radish were from 5 to 100-folds over SMZ. Passive diffusion through anion channel proteins on cell membranes was an important route for SMZ uptake, while both passive diffusion and energy-dependent processes contributed to the uptake of EFX. Bacterial community was time-dependent as a function of both antibiotics and SW, the bacterial alpha diversity in liquid solution co-treated with antibiotics and SW increased over time. The abundance of antibiotic resistance genes (ARGs) in the roots was positively correlated with ARGs in the Hoagland's solution under antibiotic-alone treatments. EFX co-exposure with SW enhanced the dissemination of ARGs from swine wastewater into plant roots, and significant correlations existed between ARGs and integrons in both Hoagland's solution and roots. These findings increased our understanding of the fate of antibiotics in crops and their subsequent impacts on antibiotic resistance of endophytic bacteria.
Collapse
Affiliation(s)
- Wei-Li Jia
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Fang-Zhou Gao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Chao Song
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Chang-Er Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Chuan-Xin Ma
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| |
Collapse
|
21
|
Fu J, Li S, Yin S, Zhao X, Zhao E, Li L. Comprehensive effects of acetamiprid uptake and translocation from soil on pak choi and lettuce at the environmental level. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106178. [PMID: 39672607 DOI: 10.1016/j.pestbp.2024.106178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 12/15/2024]
Abstract
Acetamiprid (ACE) is widely used in agriculture to control pests. However, its accumulation in soil and subsequent translocation to plants can impact plant growth and development through mechanisms that remain unclear. This study evaluated the comprehensive effects of residual ACE from soil on cultivated pak choi and lettuce at environmental levels. Results showed that more than 90 % of ACE residues in the soils dissipated within 14 days. The average root concentration factor (RCF) values of pak choi and lettuce were 1.442 and 0.318, respectively, while the average translocation factor (TF) values were 2.145 for pak choi and 5.346 for lettuce. Seedling height increased by 6.32 % in pak choi but decreased by 8.54 % in lettuce. Furthermore, chlorophyll content decreased by 14.6 % in pak choi and increased by 23.7 % in lettuce. Non-targeted metabolomics analysis showed significant disturbances in carbohydrates, amino acids, and secondary metabolite levels. Additionally, KEGG pathway analysis revealed the down-regulation of amino acid metabolites in both vegetables, alongside an up-regulation of flavone and flavonol biosynthesis in pak choi. This research enhances the understanding of the effects and underlying metabolic mechanism of ACE on different vegetables.
Collapse
Affiliation(s)
- Jizhen Fu
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Suzhen Li
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Shijie Yin
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Xiaojun Zhao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Ercheng Zhao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Li Li
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China.
| |
Collapse
|
22
|
Liu Z, Senavirathna MDHJ, Fujino T, Kaneko Y. Translocation mechanism and the role of aerenchyma in nanoplastic translocation in Myriophyllum sp. "Roraima" and physiological responses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65356-65370. [PMID: 39579187 DOI: 10.1007/s11356-024-35606-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Nanoplastics have become a growing concern due to their potential impact on freshwater vegetation. The uptake, translocation, and effects of 0.05-µm nanoplastics on Myriophyllum sp. "Roraima" were investigated, along with the role of aerenchyma in nanoplastic transport. Microscopic observations revealed nanoplastic particle adsorption to the plant surface and entry into the roots and stems, with higher abundance and more dispersed distribution by direct contact. Nanoplastic particles were detected in the plant stem, primarily concentrated in regions adjacent to the aerenchyma. No morphological effects were observed. Induced changes in photosynthesis, including increased maximum quantum efficiency of photosystem II (Fv/Fm), decreased non-photochemical quenching (NPQ), decreased photosynthetic pigments, and increased photoprotective pigments, were recognized. Additionally, hydrogen peroxide levels and antioxidant enzyme activities varied in response to nanoplastic exposure. This study provides insights into the impact of nanoplastics on Myriophyllum sp. "Roraima" and has reviewed the underlying mechanisms, highlighting the role of aerenchyma in nanoplastic transport within the plant. Moreover, this study contributes to the understanding of the potential impacts of nanoplastic pollution on freshwater macrophytes while acknowledging the influence of phyto-anatomical structure on nanoplastic translocation.
Collapse
Affiliation(s)
- Zhaozhi Liu
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-Ku, Saitama-Shi, Saitama, 338-8570, Japan
| | | | - Takeshi Fujino
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-Ku, Saitama-Shi, Saitama, 338-8570, Japan
| | - Yasuko Kaneko
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-Ku, Saitama-Shi, Saitama, 338-8570, Japan
| |
Collapse
|
23
|
Cheng X, Jiang L, Liu W, Song X, Kumpiene J, Luo C. Phytoremediation of trichloroethylene in the soil/groundwater environment: Progress, problems, and potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176566. [PMID: 39362566 DOI: 10.1016/j.scitotenv.2024.176566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Trichloroethylene (TCE) poses a significant environmental threat in groundwater and soil, necessitating effective remediation strategies. Phytoremediation offers a cost-effective and environmentally friendly approach to remediation. However, the mechanisms governing plant uptake, volatilisation, and degradation of TCE remain poorly understood. This review explores the mechanisms of TCE phytoremediation, metabolic pathways, and influencing factors, emphasizing future research directions to improve the understanding of TCE phytoremediation. The results showed that although the proportion of TCE phytovolatilisation is limited, it is important at sites chronically contaminated with TCE. The rhizosphere is a key microzone for pollutant redox reactions that significantly enhance its effectiveness when its characteristics are fully utilised and manipulated through reinforcement. Future research should focus on manipulating microbial communities through methods such as the application of endophytic bacteria and genetic modification. However, practical applications are in their infancy and further investigation is needed. Furthermore, many findings are based on non-uniform parameters or unstandardised methods, making them difficult to compare. Therefore, future studies should provide more standardised experimental parameters and employ accurate and standardised methods to develop suitable prediction models, enhancing data comparability and deepening our understanding of plant detoxification mechanisms.
Collapse
Affiliation(s)
- Xianghui Cheng
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Longfei Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wuxing Liu
- CAS Key Laboratory of Soil Environment & Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xin Song
- CAS Key Laboratory of Soil Environment & Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jurate Kumpiene
- Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå 97187, Sweden
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
24
|
Dong Y, Li J, Guo Z, Han L, Zhao J, Wu X, Chen X. Unveiling responses and mechanisms of spice crop chive exposure to three typical pesticides using metabolomics combined with transcriptomics, physiology and biochemistry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176285. [PMID: 39288875 DOI: 10.1016/j.scitotenv.2024.176285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/19/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Pesticides are frequently used to control target pests in the production of spice crops such as chives (Allium ascalonicum). However, little information is available on the responses and underlying mechanisms of pesticide exposure in this crop. Our findings revealed that the uptake, transportation, and subcellular distribution of three typical pesticides-the fungicide pyraclostrobin (PAL), insecticide acetamiprid (ATP), and herbicide pendimethalin (PND) in chives, as well as their physiological, biochemical, metabolic, and transcriptomic responses-were dependent on pesticide properties, especially hydrophobicity. The distribution of PAL and PND in chives decreased in the order root > stem > leaf, but the distribution order of ATP was the opposite. The proportion of PAL and PND in the solid phase of the root cells gradually increased, but ATP mainly existed in the cell-soluble component, indicating that the latter had an upward translocation ability and thus mainly accumulated in the leaves. Malondialdehyde levels in chive leaves were not significantly affected by exposure to these pesticides; however, the activities of superoxide dismutase (SOD) and catalase (CAT) in chive leaves increased significantly. Moreover, these pesticides exhibited critical differences in chive responses through the interaction of metabolites and regulation of differentially expressed genes. PAL dramatically influenced five carbohydrate metabolic pathways (34.35 %), disturbing the starch-to-sucrose balance. ATP strongly affected five amino acid (AC) metabolic pathways (33.38 %), enhancing four free amino acid levels. PND notably affected eight fatty acid (FA) metabolic pathways (25.38 %), increasing two unsaturated and decreasing one saturated FA. Simultaneously, PND, ATP, and PND accumulated in the chives could be detoxified through metabolic pathways mediated by cytochrome P450 (P450) and glycosyltransferase (GT)/glutathione S-transferase (GST), producing phase I (7, 4, and 5) and II (11, 13, and 10) metabolites, respectively. This study provides important molecular insights into the responses and underlying mechanisms of spice crop exposure to pesticides.
Collapse
Affiliation(s)
- Yibo Dong
- National Key Laboratory of Green Pesticide, Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Jiaohong Li
- Institute of Vegetable Research, Guizhou University, Guiyang 550025, PR China
| | - Zhenxiang Guo
- National Key Laboratory of Green Pesticide, Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Lei Han
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Jing Zhao
- National Key Laboratory of Green Pesticide, Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Xiaomao Wu
- National Key Laboratory of Green Pesticide, Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China; Institute of Vegetable Research, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, PR China.
| | - Xiangsheng Chen
- National Key Laboratory of Green Pesticide, Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
25
|
Elgarahy AM, Eloffy MG, Saber AN, Abouzid M, Rashad E, Ghorab MA, El-Sherif DM, Elwakeel KZ. Exploring the sources, occurrence, transformation, toxicity, monitoring, and remediation strategies of per- and polyfluoroalkyl substances: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1209. [PMID: 39556161 DOI: 10.1007/s10661-024-13334-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS), a class of man-made chemicals, possess unique properties that have rendered them indispensable in various industries and consumer goods. However, their extensive use and persistence in the environment have raised concerns about their potential repercussions on human health and the ecosystem. This review provides insights into the sources, occurrence, transformation, impacts, fate, monitoring, and remediation strategies for PFAS. Once released into the environment, these chemicals undergo intricate transformation processes, such as degradation, bioaccumulation, and biomagnification, which result in their far-reaching distribution and persistence. Their chemical stability results in persistent pollution, with far-reaching ecological and human health implications. Remediation strategies for PFAS are still in their infancy, and researchers are exploring innovative and sustainable methods for treating contaminated environments. Promising technologies such as adsorption, biodegradation, and electrochemical oxidation have shown the potential to remove PFAS from contaminated sites, yet the search for more efficient and sustainable solutions continues. In conclusion, this review emphasizes the urgent need for continued research and innovation to address the global environmental challenge posed by PFAS. As we move forward, it is imperative to prioritize sustainable solutions that minimize the detrimental consequences of these substances on human health and the environment.
Collapse
Affiliation(s)
- Ahmed M Elgarahy
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
- Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt
| | - M G Eloffy
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Ayman N Saber
- Pesticide Residues and Environmental Pollution Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, 12618, Giza, Egypt
- Department of Analytical Chemistry, Institute of Chemistry for Energy and the Environment, University of Córdoba, 14071, Cordoba, Spain
| | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781, Poznan, Poland
| | - Emanne Rashad
- Department of Environmental Sciences, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed A Ghorab
- Wildlife Toxicology Laboratory, Department of Animal Science, Institute for Integrative Toxicology (IIT), Michigan State University, East Lansing, MI, 48824, USA
| | - Dina M El-Sherif
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Khalid Z Elwakeel
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt.
- Department of Environmental Science, College of Science, University of Jeddah, Jeddah, Saudi Arabia.
| |
Collapse
|
26
|
Wang Y, Chen R, Zhang Z, Fu Z, Zhang L, Tan F. Kinetics of uptake, translocation, and metabolism of organophosphate esters in japonica rice (Oryza sativa L.): Hydroponic experiment combined with model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175838. [PMID: 39214366 DOI: 10.1016/j.scitotenv.2024.175838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Hydroponics combined with fugacity model was employed to investigate the kinetics of uptake, accumulation, and metabolism of organophosphate esters (OPEs) by japonica rice. The time-dependent process for uptake and accumulation of 5 OPEs and their diester-metabolites in both rice root and shoot fitted well with the pseudo-first-order kinetic model. The peak OPE accumulations in rice root and shoot were significantly positively or negatively correlated with their octanol-water partition coefficient (logKow) respectively, but not for their apparent accumulation rates. Root concentration factors (RCFs) and root-to-shoot translocation factors (TFs) of OPEs were found to be positively and negatively correlated with their logKow, respectively. Triphenyl phosphate with benzene ring substituents showed the highest RCF, but the lowest TF, because of its high potential for root adsorption due to the π electron-rich structures. Sterilized root exudates can hinder the root adsorption and absorption of OPEs from solution probably through competitive adsorption of OPEs with root surface. The first-hand transport and metabolism rates were also obtained by generating these rates to fit the dynamic fugacity model with the measurement values. The simulation indicated that the kinetics of OPE accumulation in rice plants may be controlled by multiple processes and physicochemical properties besides Kow.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Ruize Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zihao Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhiqiang Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Lijie Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
27
|
Li M, Liu G, Cai Y, Guo T, Xu Y, Zhao X, Ji H, Ouyang D, Zhang H. Decreased Sulfamethoxazole Uptake in Lettuce (Lactuca sativa L.) due to Transpiration Inhibition by Polypropylene Microplastics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117201. [PMID: 39426106 DOI: 10.1016/j.ecoenv.2024.117201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Microplastics and antibiotics are emerging contaminants in agricultural soil that can have negative effects on crops. However, limited research has been conducted on the effects of the polypropylene (PP) microplastic and sulfamethoxazole (SMX) co-exposure on crops, specifically regarding the impact of PP microplastics on SMX uptake and transport in crops. In this study, hydroponic experiments were carried out using lettuce (Lactuca sativa L.), PP microplastics (1.0 g L-1), and SMX (0.5 mg L-1 or 2.5 mg L-1) to investigate the individual and co-exposure effects of PP microplastics and SMX on Lettuce growth, explore the uptake and translocation of SMX in lettuce and elucidate the underlying mechanism of PP microplastic impact on SMX uptake. Results demonstrated that co-exposure to 1.0 g L-1 of PP microplastics and 0.5 mg L-1 of SMX resulted in an enhanced toxic effect. However, no intensified toxic effect on the lettuce was observed when 1.0 g L-1 PP microplastics were added in the presence of 2.5 mg L-1 SMX, indicating that the SMX dominated the toxic effect on lettuce at high concentrations. Additionally, the study found that the water absorption process controlled by the aquaporin and transpiration contributed to the uptake and translocation of SMX in lettuce. When exposed to PP microplastics, no impact was observed on the aquaporin contents of the lettuce while the transpiration rate was significantly decreased by 31.6 % - 44.2 % resulting from microplastics adhered to the root surface. Therefore, in the presence of 2.5 mg L-1 SMX, the SMX uptake in the lettuce root was inhibited by 35.9 % (P < 0.05) when exposed to 1.0 g L-1 PP microplastic. This work deepens our understanding of the behaviour of microplastics and antibiotics in the terrestrial environment.
Collapse
Affiliation(s)
- Mei Li
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Guanlin Liu
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yimin Cai
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Ting Guo
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yangyang Xu
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Xinlin Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha 410205, China
| | - Haibao Ji
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Da Ouyang
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| | - Haibo Zhang
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| |
Collapse
|
28
|
Fučík J, Fučík S, Rexroth S, Sedlář M, Gargošová HZ, Mravcová L. Pharmaceutical metabolite identification in lettuce (Lactuca sativa) and earthworms (Eisenia fetida) using liquid chromatography coupled to high-resolution mass spectrometry and in silico spectral library. Anal Bioanal Chem 2024; 416:6291-6306. [PMID: 39251428 PMCID: PMC11541386 DOI: 10.1007/s00216-024-05515-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024]
Abstract
Pharmaceuticals released into the aquatic and soil environments can be absorbed by plants and soil organisms, potentially leading to the formation of unknown metabolites that may negatively affect these organisms or contaminate the food chain. The aim of this study was to identify pharmaceutical metabolites through a triplet approach for metabolite structure prediction (software-based predictions, literature review, and known common metabolic pathways), followed by generating in silico mass spectral libraries and applying various mass spectrometry modes for untargeted LC-qTOF analysis. Therefore, Eisenia fetida and Lactuca sativa were exposed to a pharmaceutical mixture (atenolol, enrofloxacin, erythromycin, ketoprofen, sulfametoxazole, tetracycline) under hydroponic and soil conditions at environmentally relevant concentrations. Samples collected at different time points were extracted using QuEChERS and analyzed with LC-qTOF in data-dependent (DDA) and data-independent (DIA) acquisition modes, applying both positive and negative electrospray ionization. The triplet approach for metabolite structure prediction yielded a total of 3762 pharmaceutical metabolites, and an in silico mass spectral library was created based on these predicted metabolites. This approach resulted in the identification of 26 statistically significant metabolites (p < 0.05), with DDA + and DDA - outperforming DIA modes by successfully detecting 56/67 sample type:metabolite combinations. Lettuce roots had the highest metabolite count (26), followed by leaves (6) and earthworms (2). Despite the lower metabolite count, earthworms showed the highest peak intensities, closely followed by roots, with leaves displaying the lowest intensities. Common metabolic reactions observed included hydroxylation, decarboxylation, acetylation, and glucosidation, with ketoprofen-related metabolites being the most prevalent, totaling 12 distinct metabolites. In conclusion, we developed a high-throughput workflow combining open-source software with LC-HRMS for identifying unknown metabolites across various sample types.
Collapse
Affiliation(s)
- Jan Fučík
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic.
| | - Stanislav Fučík
- Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 3058/10, 616 00, Brno, Czech Republic
| | - Sascha Rexroth
- Shimadzu Europa GmbH, Albert-Hahn-Straße 6, 472 69, Duisburg, Germany
| | - Marian Sedlář
- CEITEC Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Helena Zlámalová Gargošová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Ludmila Mravcová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| |
Collapse
|
29
|
Wang X, Wang Y, Zhang Z, Tian L, Zhu T, Zhao Y, Tong Y, Yang Y, Sun P, Liu Y. Effect, Fate and Remediation of Pharmaceuticals and Personal Care Products (PPCPs) during Anaerobic Sludge Treatment: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19095-19114. [PMID: 39428634 DOI: 10.1021/acs.est.4c06760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Biomass energy recovery from sewage sludge through anaerobic treatment is vital for environmental sustainability and a circular economy. However, large amounts of pharmaceutical and personal care products (PPCPs) remain in sludge, and their interactions with microbes and enzymes would affect resource recovery. This article reviews the effects and mechanisms of PPCPs on anaerobic sludge treatment. Most PPCPs posed adverse impacts on methane production, while certain low-toxicity PPCPs could stimulate volatile fatty acids and biohydrogen accumulation. Changes in the microbial community structure and functional enzyme bioactivities were also summarized with PPCPs exposure. Notably, PPCPs such as carbamazepine could bind with the active sites of the enzyme and induce microbial stress responses. The fate of various PPCPs during anaerobic sludge treatment indicated that PPCPs featuring electron-donating groups (e.g., ·-NH2 and ·-OH), hydrophilicity, and low molecular weight were more susceptible to microbial utilization. Key biodegrading enzymes (e.g., cytochrome P450 and amidase) were crucial for PPCP degradation, although several PPCPs remain refractory to biotransformation. Therefore, remediation technologies including physical pretreatment, chemicals, bioaugmentation, and their combinations for enhancing PPCPs degradation were outlined. Among these strategies, advanced oxidation processes and combined strategies effectively removed complex and refractory PPCPs mainly by generating free radicals, providing recommendations for improving sludge detoxification.
Collapse
Affiliation(s)
- Xiaomin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Zixin Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Lixin Tian
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yongkui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
30
|
Wang Y, Gao F, Xu Y, Rodgers TFM, Tan F. Field study on the uptake pathways and their contributions to the accumulation of organophosphate esters, phthalates, and polycyclic aromatic hydrocarbons in upland rice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174205. [PMID: 38909796 DOI: 10.1016/j.scitotenv.2024.174205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Plant uptake of organic contaminants generally occurs through either root, gas-phase foliar, or particle-phase foliar uptake. Understanding these pathways is essential for food-system practitioners to reduce human exposures, and to clean contaminated-sites with phytoremediation. Herein, we conducted a field-based experiment using an improved specific exposure chamber to elucidate the uptake pathways of organophosphate esters, phthalates, and polycyclic aromatic compounds, and quantitatively assessed their contributions to organic contaminant accumulations in field-grown rice. For most target compounds, all three uptake pathways (root, foliar gas, and foliar particle uptakes) contributed substantially to the overall contaminant burden in rice. Compounds with lower octanol-water partition coefficients (Kow) were more readily translocated from roots to leaves, and compounds with higher octanol-air partition coefficients (Koa) tended to enter rice leaves mostly through particle deposition. Most compounds were mostly stored in the inner leaves (55.3-98.2 %), whereas the relatively volatile compounds were more readily absorbed by the waxy layer and then transferred to the inner leaves. Air particle desorption was a key process regulating foliar uptake of low-volatility compounds. The results can help us to better understand and predict the environmental fate of those contaminants, and develop more effective management strategies for reducing their human exposure through food ingestion.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Fei Gao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yue Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Timothy F M Rodgers
- Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
31
|
Li H, Liu Y, Xue M, Wang X, Miao W, Sun Q, Liu F, Mu W. Variation in phytotoxicity of rice seedlings caused by differential accumulation of azoxystrobin and pyraclostrobin in leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108947. [PMID: 39106768 DOI: 10.1016/j.plaphy.2024.108947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/23/2024] [Accepted: 07/16/2024] [Indexed: 08/09/2024]
Abstract
The effectiveness of pyraclostrobin (Pyr) and azoxystrobin (Azo) with highly targeting the rice blast is noteworthy, but they have varied toxic levels towards non-target aquatic organisms. Nevertheless, the toxic selectivity and mechanism of non-target plants, specifically rice, remain uncertain. In this study, we investigated the potential phytotoxic effects of Pyr and Azo on rice seedlings, including plant morphology, plant growth, physiological and biochemical changes. The findings revealed that both Pyr and Azo caused toxic effects on rice, resulting in symptoms of chlorosis and inhibited growth. The toxicity of Azo was found to be more severe when applied at the recommended field dose. Disruption of oxidative stress could significantly impact the demonstrated levels of REC, leading to a decrease in photosynthetic pigments and potentially culminating in cell death. Furthermore, the toxic effect of Azo had a greater impact on rice leaves compared to Pyr at treatments of 400, 800, 1600, and 4000 mg/L. However, the in vitro cytotoxicity of Azo on rice leaves was lower than that of Pyr. Therefore, it can be inferred that the mechanism of phytotoxicity of Azo is directly linked to the increased accumulation of the compound on the leaf tips and edges. Additionally, the positive effects observed on plant morphology and growth parameters suggest that the mixed application of plant growth regulators (sodium nitrophenolate aqueous solution of 14 mg/L and diethyl aminoethyl hexanoat of 50 mg/L) can be a promising approach to mitigate the rice phytotoxicity of Azo at 400 and 800 mg/L.
Collapse
Affiliation(s)
- Hong Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Yujuan Liu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Mei Xue
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xueqing Wang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Wenchao Miao
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Qi Sun
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Feng Liu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| | - Wei Mu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| |
Collapse
|
32
|
Li S, Zhao Z, Liu J, Zhang B, Han B, Ma Y, Jin L, Zhu N, Gao G, Lin T. Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and nutrients from two constructed wetlands in a city of southeastern China. Heliyon 2024; 10:e37551. [PMID: 39309800 PMCID: PMC11415654 DOI: 10.1016/j.heliyon.2024.e37551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/02/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a large class of toxic contaminants. Nutrients are closely related to the ecological health of aquatic systems. Both have received widespread global attention. This study investigated the concentrations, compositions, and spatial distributions of PFAS and nutrients in surface water from two constructed wetlands and the nearby drinking water treatment plants (DWTPs). We explored the natural environmental factors and human activities that affect the composition and distribution of pollutants in wetlands and assessed the ability of the DWTPs to remove contaminants. Concentrations of ∑32PFAS varied from 153 to 405 ng/L. Hexafluoropropylene oxide trimer acid (HFPO-TA) was the predominant substance accounting for 45 % of ∑32PFAS concentrations. It might originate from the emissions of indirect sources of PFAS related manufacturers. The detection rate of 6:2 fluorotelomer carboxylic acid (6:2 FTCA) was 100 % with concentrations ranging from 0.915 to 19.7 ng/L 6:2 FTCA might come from the biotransformation of indirect sources in the air. Concentrations of total nitrogen (TN) and total phosphorus (TP) were from 1.47 to 3.54 mg/L, and non-detect (ND) to 0.323 mg/L, respectively. Constructed wetlands could effectively remove PFAS under nutrient stress, however, the removal of PFAS depends on the characteristics of specific compounds and their sources. The removal rates for PFAS and nutrients could be promoted through artificial dredging. But wetland bioremediation could have two opposing effects. On the one hand, plants can take up pollutants from water via roots, leading to pollutant removal and purification. On the other hand, plants may also absorb precursor intermediates from the air through leaves and release them into the water, leading to increased pollutant concentrations. Thirty-two emerging PFAS were identified by high resolution mass spectrum. The drinking water treatment process removed PFAS and nutrients below the drinking water quality standards of China, however, 9 non-target PFAS compounds were still found in tap water. These results provide case support and a theoretical basis for the pollution control and sustainable development of typical ecological wetlands used as drinking water sources.
Collapse
Affiliation(s)
- Shiyue Li
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhen Zhao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jing Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Boxuan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Baocang Han
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yuntao Ma
- Jiaxing Jiayuan Testing Technology Service Co., Ltd, Jiaxing, 314000, China
| | - Limin Jin
- Jiaxing Key Laboratory of Environmental Risk Source Identification and Control, Jiaxing-Tongji Environmental Research Institute, Jiaxing, 314051, China
| | - Ningzheng Zhu
- Jiaxing Key Laboratory of Environmental Risk Source Identification and Control, Jiaxing-Tongji Environmental Research Institute, Jiaxing, 314051, China
| | - Guoping Gao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Tian Lin
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
33
|
Qin Z, Stubbings WA, Chen M, Li F, Wu F, Wang S. Co-exposure with Copper Alters the Uptake, Accumulation, Subcellular Distribution, and Biotransformation of Organophosphate Triesters in Rice ( Oryza sativa L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19312-19322. [PMID: 39166886 DOI: 10.1021/acs.jafc.4c04778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
This study investigated the uptake pathways, acropetal translocation, subcellular distribution, and biotransformation of OPEs by rice (Oryza sativa L.) after Cu exposure. The symplastic pathway was noted as the major pathway for the uptake of organophosphate triesters (tri-OPEs) and diesters (di-OPEs) by rice roots. Cu exposure enhanced the accumulation of tri-OPEs in rice roots, and such enhancement was positively correlated with Cu concentrations, attributing to the Cu-induced root damage. The hydrophilic Cl-OPEs in the cell-soluble fraction of rice tissues were enhanced after Cu exposure, while the subcellular distributions of alkyl- and aryl-OPEs were not affected by Cu exposure. Significantly higher biotransformation rates of tri-OPEs to di-OPEs occurred in leaves, followed by those in stems and roots. Our study reveals the mechanisms associated with the uptake, translocation, and biotransformation of various OPEs in rice after Cu exposure, which provides new insights regarding the phytoremediation of soils cocontaminated with heavy metal and OPEs.
Collapse
Affiliation(s)
- Zifei Qin
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - William A Stubbings
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Manjia Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fengchang Wu
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shaorui Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
34
|
Mosharaf MK, Gomes RL, Cook S, Alam MS, Rasmusssen A. Wastewater reuse and pharmaceutical pollution in agriculture: Uptake, transport, accumulation and metabolism of pharmaceutical pollutants within plants. CHEMOSPHERE 2024; 364:143055. [PMID: 39127189 DOI: 10.1016/j.chemosphere.2024.143055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The presence of pharmaceutical pollutants in water sources has become a growing concern due to its potential impacts on human health and other organisms. The physicochemical properties of pharmaceuticals based on their intended therapeutical application, which include antibiotics, hormones, analgesics, and antidepressants, is quite diverse. Their presence in wastewater, sewerage water, surface water, ground water and even in drinking water is reported by many researchers throughout the world. Human exposure to these pollutants through drinking water or consumption of aquatic and terrestrial organisms has raised concerns about potential adverse effects, such as endocrine disruption, antibiotic resistance, and developmental abnormalities. Once in the environment, they can persist, undergo transformation, or degrade, leading to a complex mixture of contaminants. Application of treated wastewater, compost, manures or biosolids in agricultural fields introduce pharmaceutical pollutants in the environment. As pharmaceuticals are diverse in nature, significant differences are observed during their uptake and accumulation in plants. While there have been extensive studies on aquatic ecosystems, the effect on agricultural land is more disparate. As of now, there are few reports available on the potential of plant uptake and transportation of pharmaceuticals within and between plant organs. This review summarizes the occurrence of pharmaceuticals in aquatic water bodies at a range of concentrations and their uptake, accumulation, and transport within plant tissues. Research gaps on pharmaceutical pollutants' specific effect on plant growth and future research scopes are highlighted. The factors affecting uptake of pharmaceuticals including hydrophobicity, ionization, physicochemical properties (pKa, logKow, pH, Henry's law constant) are discussed. Finally, metabolism of pharmaceuticals within plant cells through metabolism phase enzymes and plant responses to pharmaceuticals are reviewed.
Collapse
Affiliation(s)
- Md Khaled Mosharaf
- Agriculture and Environmental Sciences Division, School of Biosciences, Sutton Bonington, University of Nottingham, LE12 5RD, United Kingdom; Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Rachel L Gomes
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, NG7 2RD, United Kingdom
| | - Sarah Cook
- Water and Environmental Engineering, School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Mohammed S Alam
- Agriculture and Environmental Sciences Division, School of Biosciences, Sutton Bonington, University of Nottingham, LE12 5RD, United Kingdom
| | - Amanda Rasmusssen
- Agriculture and Environmental Sciences Division, School of Biosciences, Sutton Bonington, University of Nottingham, LE12 5RD, United Kingdom
| |
Collapse
|
35
|
Zhang W, Liang Y. Impact of four surfactants on the uptake of per- and polyfluoroalkyl substances (PFAS) by red fescue grass. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 27:13-22. [PMID: 39180432 DOI: 10.1080/15226514.2024.2394903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) pose great risks to human health and the ecosystem, necessitating effective remediation strategies such as phytoremediation. Surfactants, due to their ability to increase the bioavailability of hydrophobic contaminants, are considered as potential agents to improve phytoremediation for PFAS. In this research, we explored the impact of four surfactants (sodium dodecyl sulfate (SDS), rhamnolipid, Triton X-100, and Glucopone 600 CS UP) on plant growth and the uptake of PFAS by red fescue over 110 days. The results showed that while surfactants at lower concentrations did not negatively affect plant growth, the highest dose (2,500 mg/kg) significantly reduced the dry weight of plant shoots. Although none of the four surfactants led to an increased overall removal efficiency of ∑PFAS by red fescue over 110 days, SDS did enhance the uptake of PFAS compounds with long carbon chain lengths. With SDS addition at 2,500 mg/kg, the average fold increases of long chain PFAS removal were 1.99 for perfluorooctanoic acid (PFOA), 2.44 for perfluorononanoic acid (PFNA), 2.11 for perfluorodecanoic acid (PFDA), 1.52 for perfluoroundecanoic acid (PFUnA), 1.88 for perfluorohexanesulphonic acid (PFHxS), and 2.97 for perfluorooctanesulfonic acid (PFOS). The research indicated that using surfactants, such as SDS at appropriate doses could improve phytoremediation effectiveness in mitigating long-chain PFAS, which is a known challenge in soil remediation.
Collapse
Affiliation(s)
- Weilan Zhang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, USA
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, USA
| |
Collapse
|
36
|
Liu L, Cheng Z, Wang P, Chen X, Chen Z, Li J, Lu Y, Sun H. Insights into the Enantiomeric Uptake, Translocation, and Distribution of Triazole Chiral Pesticide Mefentrifluconazole in Wheat ( Triticum aestivum L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18401-18411. [PMID: 39092675 DOI: 10.1021/acs.jafc.4c03876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The uptake, translocation, and accumulation of mefentrifluconazole (MFZ), an innovative chiral triazole fungicide, in plants at the enantiomeric level are still unclear. Herein, we investigated the patterns and mechanisms of enantiomeric uptake, bioaccumulation, and translocation through several experiments. Rac-MFZ shows the strongest uptake and bioaccumulation capacity in wheat compared with its enantiomers, while S-(+)-MFZ has the highest translocation potential. Molecular docking provided evidence of the stronger translocation ability of S-(+)-MFZ than R-(-)-MFZ. Split-root experiments showed that MFZ and its enantiomers could undergo long-distance transport within the wheat. Active transport or facilitated and simple diffusion may be involved in the wheat uptake of MFZ. The limited acropetal translocation capability of MFZ may be attributed to the dominant uptake pathway of apoplastic. The concentrations of Rac-MFZ in different subcellular fractions varied greatly. In summary, this study provides novel insights for further understanding the behaviors of MFZ and its enantiomers in plants.
Collapse
Affiliation(s)
| | | | | | | | - Zenglong Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Li
- Citrus Research Institute, Southwest University & Chinese Academy of Agricultural Sciences, Chongqing 400712, China
| | | | | |
Collapse
|
37
|
Lu ZY, Liu CY, Hu YY, Pan Y, Yuan L, Wu LT, Qi KK, Zhang Z, Zhou JC, Zhao JH, Hu Y, Yin H, Sheng GP. Unmasking Spatial Heterogeneity in Phytotoxicology Mechanisms Induced by Carbamazepine by Mass Spectrometry Imaging and Multiomics Analyses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13986-13994. [PMID: 38992920 DOI: 10.1021/acs.est.4c04628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Previous studies have highlighted the toxicity of pharmaceuticals and personal care products (PPCPs) in plants, yet understanding their spatial distribution within plant tissues and specific toxic effects remains limited. This study investigates the spatial-specific toxic effects of carbamazepine (CBZ), a prevalent PPCP, in plants. Utilizing desorption electrospray ionization mass spectrometry imaging (DESI-MSI), CBZ and its transformation products were observed predominantly at the leaf edges, with 2.3-fold higher concentrations than inner regions, which was confirmed by LC-MS. Transcriptomic and metabolic analyses revealed significant differences in gene expression and metabolite levels between the inner and outer leaf regions, emphasizing the spatial location's role in CBZ response. Notably, photosynthesis-related genes were markedly downregulated, and photosynthetic efficiency was reduced at leaf edges. Additionally, elevated oxidative stress at leaf edges was indicated by higher antioxidant enzyme activity, cell membrane impairment, and increased free fatty acids. Given the increased oxidative stress at the leaf margins, the study suggests using in situ Raman spectroscopy for early detection of CBZ-induced damage by monitoring reactive oxygen species levels. These findings provide crucial insights into the spatial toxicological mechanisms of CBZ in plants, forming a basis for future spatial toxicology research of PPCPs.
Collapse
Affiliation(s)
- Zhi-Yu Lu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Cheng-Yuan Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Yan-Yun Hu
- Instruments Center for Physical Science, University of Science and Technology of China, Hefei 230026, China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Li Yuan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Liu-Tian Wu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Ke-Ke Qi
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Zhan Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jing-Chen Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jia-Heng Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hao Yin
- Instruments Center for Physical Science, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
38
|
Ye Y, Zhang H, You Y, Liao F, Shi J, Zhang K. Accumulation, translocation, metabolism and subcellular distribution of mandipropamid in cherry radish: A comparative study under hydroponic and soil-cultivated conditions. Food Chem 2024; 448:139169. [PMID: 38569412 DOI: 10.1016/j.foodchem.2024.139169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
The accumulation and transportation of pesticides in plants can provide valuable insights to assess potential risks and ensure food safety. The uptake and downward translocation of mandipropamid were examined in hydroponic and soil-cultivated cherry radishes. The uptake of mandipropamid in cherry radish was rapid (bioconcentration factors of 1.1-10.7), whereas the downward translocation was limited (translocation factors of 0.1-0.9). The subcellular distribution results indicated a predominant accumulation in solid fractions of cherry radish (proportions of 52.9-98.7%), potentially because of the hydrophobicity (log Kow of 3.2) of mandipropamid. Owing to the decrease in half-life (>10%), the cultivation of cherry radish enhanced the dissipation of mandipropamid in both nutrient solutions (without stereoselectivity) and soils (with stereoselectivity). In addition, eleven metabolites and three pathways are proposed. This study provides valuable insights for the varying extent of translocation and proper utilization and safety evaluation of mandipropamid in crops.
Collapse
Affiliation(s)
- Yu Ye
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hao Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Ye You
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Fanxia Liao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jing Shi
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D of Guizhou Medical University, Guiyang 550004, China
| | - Kankan Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
39
|
Kaw HY, Yu J, Ma X, Yang Q, Zhu L, Wang W. The significance of environmentally bioavailable antimicrobials in driving antimicrobial resistance in soils. ENVIRONMENT INTERNATIONAL 2024; 190:108830. [PMID: 38943926 DOI: 10.1016/j.envint.2024.108830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/16/2024] [Accepted: 06/17/2024] [Indexed: 07/01/2024]
Abstract
Antimicrobial resistance (AMR) stands as an escalating public health crisis fueled by antimicrobial residues in the environment, particularly in soil, which acts as a reservoir for antimicrobial resistance genes (ARGs). Merely quantifying the total extractable concentration of antimicrobials, instead of bioavailable fractions, may substantially underestimate their minimal selection concentration for propagating ARGs. To shed light on the role of bioavailability in ARG abundance within soil, a systematic bioavailability assessment method was established for accurately quantifying the partitioning of multi-class antimicrobials in representative Chinese soils. Microcosm studies unveiled that antimicrobials persisting in the bioavailable fraction could potentially prolong their selection pressure duration to trigger AMR. Notably, the co-occurrence of pesticide or steroid hormone influenced the development trends of ARG subtypes, with fluoroquinolone resistance genes (RGs) being particularly susceptible. Partial least squares path model (PLS-PM) analysis uncovered potentially distinct induction mechanisms of antimicrobials: observable results suggested that extractable residual concentration may exert a direct selection pressure on the development of ARGs, while bioavailable concentration could potentially play a stepwise role in affecting the abundance of mobile genetic elements and initiating ARG dissemination. Such unprecedented scrutinization of the interplay between bioavailable antimicrobials in soils and ARG abundance provides valuable insights into strategizing regulatory policy or guidelines for soil remediation.
Collapse
Affiliation(s)
- Han Yeong Kaw
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China
| | - Jing Yu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China
| | - Xuejing Ma
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China
| | - Qi Yang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China
| | - Wei Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
40
|
Mejías C, Arenas M, Martín J, Santos JL, Aparicio I, Alonso E. Multiclass Analysis for the Determination of Pharmaceuticals and Their Main Metabolites in Leafy and Root Vegetables. Molecules 2024; 29:3471. [PMID: 39124876 PMCID: PMC11313980 DOI: 10.3390/molecules29153471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
The irrigation of soils with reclaimed contaminated wastewater or its amendment with sewage sludge contributes to the uptake of pharmaceuticals by vegetables growing in the soil. A multiresidue method has been devised to determine five pharmaceuticals and nine of their main metabolites in leafy and root vegetables. The method employs ultrasound-assisted extraction, clean-up via dispersive solid-phase extraction, and analysis through liquid chromatography-tandem mass spectrometry. Box-Behnken design was used to refine variables such as extraction solvent volume, time of extraction, number of extraction cycles, and the type and amount of d-SPE sorbent. The method achieved linearity (R2) greater than 0.994, precision (relative standard deviation) under 16% for most compounds, and detection limits ranging from 0.007 to 2.25 ng g-1 dry weight. This method was applied to a leafy vegetable (lettuce) and to a root vegetable (carrot) sourced from a local market. Parent compounds were detected at higher concentrations than their metabolites, with the exception of carbamazepine-10,11-epoxide.
Collapse
Affiliation(s)
| | | | - Julia Martín
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África 7, E-41011 Seville, Spain; (C.M.); (M.A.); (J.L.S.); (I.A.); (E.A.)
| | | | | | | |
Collapse
|
41
|
Ahmed AA, Bazyad A, Alotaibi F, Alotaibi KD, Codling G, Alharbi HA. Imidacloprid Uptake and Accumulation in Lettuce Plant ( Lactuca sativa L. var. longipolia) and Its Effects on Abundance of Microbial Communities in Cultivated and Non-Cultivated Arid Soil. PLANTS (BASEL, SWITZERLAND) 2024; 13:2017. [PMID: 39124135 PMCID: PMC11313857 DOI: 10.3390/plants13152017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024]
Abstract
Systemic plant protection products, such as neonicotinoids (NIs), are capable of being translocated throughout a plant. Although NIs are less toxic to mammals, fish, and birds, their impact on microbial and non-target insects is of concern. This study investigates the uptake, translocation, and accumulation of the NI, imidacloprid (IMI), in romaine lettuce (Lactuca sativa L. var. longipolia). Exposing 15-day-old seedlings to "10 mg/L" of IMI, the effects on microbial communities in both cultivated (CS) and non-cultivated soil (NCS) were studied along with IMI translocation within plant tissues. The concentrations of IMI in soil varied temporally and between soil types after initial application, with a decrease from 2.0 and 7.7 mg/kg on the first day of sampling to 0.5 and 2.6 mg/kg on the final sampling day (day 35) for CS and NCS, respectively. The half-life of IMI soil was 10.7 and 72.5 days in CS and NCS, respectively, indicating that IMI degraded more quickly in CS, possibly due to smaller grain size, aeration, microbial degradation, and water flow. The accumulated concentrations of IMI in lettuce tissues ranged from 12.4 ± 0.2 and 18.7± 0.9 mg/kg in CS and NCS, respectively. The highest concentration of IMI was found in the shoots, followed by the roots, whereas the soil showed the lowest IMI residuals at the end of the trial. Soil bacteria and fungi were altered by the application of IMI, with a lower abundance index within the bacterial community, indicating a negative impact on the distribution of bacteria in the soil.
Collapse
Affiliation(s)
- Ahmed A. Ahmed
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.A.A.); (A.B.)
| | - Abdulgader Bazyad
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.A.A.); (A.B.)
| | - Fahad Alotaibi
- Department of Soil Science, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (F.A.); (K.D.A.)
| | - Khaled D. Alotaibi
- Department of Soil Science, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (F.A.); (K.D.A.)
| | - Garry Codling
- Centre for Resilience in Environment, Water and Waste (CREWW), University of Exeter, N. Park Road Exeter, Devon EX4 4QE, UK;
| | - Hattan A. Alharbi
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.A.A.); (A.B.)
| |
Collapse
|
42
|
Fan P, Yu H, Lv T, Wang H, Li D, Tong C, Wu Z, Yu D, Liu C. Alien emergent aquatic plants develop better ciprofloxacin tolerance and metabolic capacity than one native submerged species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173030. [PMID: 38719043 DOI: 10.1016/j.scitotenv.2024.173030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Antibiotic pollution and biological invasion pose significant risks to freshwater biodiversity and ecosystem health. However, few studies have compared the ecological adaptability and ciprofloxacin (CIPR) degradation potential between alien and native macrophytes. We examined growth, physiological response, and CIPR accumulation, translocation and metabolic abilities of two alien plants (Eichhornia crassipes and Myriophyllum aquaticum) and one native submerged species (Vallisneria natans) exposed to CIPR at 0, 1 and 10 mg/L. We found that E. crassipes and M. aquaticum's growth were unaffected by CIPR while V. natans was significantly hindered under the 10 mg/L treatment. CIPR significantly decreased the maximal quantum yield of PSII, actual quantum yield of PSII and relative electron transfer rate in E. crassipes and V. natans but didn't impact these photosynthetic characteristics in M. aquaticum. All the plants can accumulate, translocate and metabolize CIPR. M. aquaticum and E. crassipes in the 10 mg/L treatment group showed greater CIPR accumulation potential than V. natans indicated by higher CIPR contents in their roots. The oxidative cleavage of the piperazine ring acts as a key pathway for these aquatic plants to metabolize CIPR and the metabolites mainly distributed in plant roots. M. aquaticum and E. crassipes showed a higher production of CIPR metabolites compared to V. natans, with M. aquaticum exhibiting the strongest CIPR metabolic ability, as indicated by the most extensive structural breakdown of CIPR and the largest number of potential metabolic pathways. Taken together, alien species outperformed the native species in ecological adaptability, CIPR accumulation and metabolic capacity. These findings may shed light on the successful invasion mechanisms of alien aquatic species under antibiotic pressure and highlight the potential ecological impacts of alien species, particularly M. aquaticum. Additionally, the interaction of antibiotic contamination and invasion might further challenge the native submerged macrophytes and pose greater risks to freshwater ecosystems.
Collapse
Affiliation(s)
- Pei Fan
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan 430072, PR China
| | - Haihao Yu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan 430072, PR China
| | - Tian Lv
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan 430072, PR China
| | - Huiyuan Wang
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan 430072, PR China
| | - Dexiang Li
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan 430072, PR China
| | - Chao Tong
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan 430072, PR China
| | - Zhonghua Wu
- Water Pollution Ecology Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Dan Yu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan 430072, PR China
| | - Chunhua Liu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
43
|
Pan B, Zhu X, Huang L, Cai K, Li YW, Cai QY, Feng NX, Mo CH. Root-zone regulation and longitudinal translocation cause intervarietal differences for phthalates accumulation in vegetables. CHEMOSPHERE 2024; 359:142322. [PMID: 38761823 DOI: 10.1016/j.chemosphere.2024.142322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Selecting and cultivating low-accumulating crop varieties (LACVs) is the most effective strategy for the safe utilization of di-(2-ethylhexyl) phthalate (DEHP)-contaminated soils, promoting cleaner agricultural production. However, the adsorption-absorption-translocation mechanisms of DEHP along the root-shoot axis remains a formidable challenge to be solved, especially for the research and application of LACV, which are rarely reported. Here, systematic analyses of the root surface ad/desorption, root apexes longitudinal allocation, uptake and translocation pathway of DEHP in LACV were investigated compared with those in a high-accumulating crop variety (HACV) in terms of the root-shoot axis. Results indicated that DEHP adsorption was enhanced in HACV by root properties, elemental composition and functional groups, but the desorption of DEHP was greater in LACV than HACV. The migration of DEHP across the root surface was controlled by the longitudinal partitioning process mediated by root tips, where more DEHP accumulated in the root cap and meristem of LACV due to greater cell proliferation. Furthermore, the longitudinal translocation of DEHP in LACV was reduced, as evidenced by an increased proportion of DEHP in the root apoplast. The symplastic uptake and xylem translocation of DEHP were suppressed more effectively in LACV than HACV, because DEHP translocation in LACV required more energy, binding sites and transpiration. These results revealed the multifaceted regulation of DEHP accumulation in different choysum (Brassica parachinensis L.) varieties and quantified the pivotal regulatory processes integral to LACV formation.
Collapse
Affiliation(s)
- Bogui Pan
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Xiaoqiong Zhu
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Li Huang
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Kunzheng Cai
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Tropical Agricultural Environment in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
| | - Yan-Wen Li
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Quan-Ying Cai
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Nai-Xian Feng
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Ce-Hui Mo
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
44
|
Ayala Cabana L, de Santiago-Martín A, Meffe R, López-Heras I, de Bustamante I. Pharmaceutical and Trace Metal Interaction within the Water-Soil-Plant Continuum: Implications for Human and Soil Health. TOXICS 2024; 12:457. [PMID: 39058109 PMCID: PMC11281246 DOI: 10.3390/toxics12070457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
Unplanned water reuse for crop irrigation may pose a global health risk due to the entry of contaminants into the food chain, undesirable effects on crop quality, and impact on soil health. In this study, we evaluate the impact derived from the co-occurrence of pharmaceuticals (Phs), trace metals (TMs), and one metalloid within the water-soil-plant continuum through bioassay experiments with Lactuca sativa L. Results indicate that the co-occurrence of Phs and TMs has synergistic or antagonistic effects, depending on target contaminants and environmental compartments. Complex formations between drugs and TMs may be responsible for enhanced sorption onto the soil of several Phs and TMs. Concerning plant uptake, the co-occurrence of Phs and TMs exerts antagonistic and synergistic effects on carbamazepine and diazepam, respectively. With the exception of Cd, drugs exert an antagonistic effect on TMs, negatively affecting their uptake and translocation. Drug contents in lettuce edible parts do not pose any threat to human health, but Cd levels exceed the maximum limits set for leafy vegetable foodstuffs. Under Ph-TM conditions, lettuce biomass decreases, and a nutrient imbalance is observed. Soil enzyme activity is stimulated under Ph-TM conditions (β-galactosidase) and Ph and Ph-TM conditions (urease and arylsulfatase), or it is not affected (phosphatase).
Collapse
Affiliation(s)
- Lesly Ayala Cabana
- IMDEA Water Institute, Alcalá de Henares, 28805 Madrid, Spain; (A.d.S.-M.); (R.M.); (I.L.-H.); (I.d.B.)
- Department of Geology, Geography and Environment, University of Alcalá, Alcalá de Henares, 28802 Madrid, Spain
| | - Ana de Santiago-Martín
- IMDEA Water Institute, Alcalá de Henares, 28805 Madrid, Spain; (A.d.S.-M.); (R.M.); (I.L.-H.); (I.d.B.)
| | - Raffaella Meffe
- IMDEA Water Institute, Alcalá de Henares, 28805 Madrid, Spain; (A.d.S.-M.); (R.M.); (I.L.-H.); (I.d.B.)
| | - Isabel López-Heras
- IMDEA Water Institute, Alcalá de Henares, 28805 Madrid, Spain; (A.d.S.-M.); (R.M.); (I.L.-H.); (I.d.B.)
| | - Irene de Bustamante
- IMDEA Water Institute, Alcalá de Henares, 28805 Madrid, Spain; (A.d.S.-M.); (R.M.); (I.L.-H.); (I.d.B.)
- Department of Geology, Geography and Environment, University of Alcalá, Alcalá de Henares, 28802 Madrid, Spain
| |
Collapse
|
45
|
Chen G, Ma J, Yang G, Chen C, Long L, Li L, Gong L, Xu M, Wu J, Song C, Lyu J. Biochar-derived dissolved organic matter enhanced the release of residual ciprofloxacin from the soil solid phase. CHEMOSPHERE 2024; 358:142193. [PMID: 38697562 DOI: 10.1016/j.chemosphere.2024.142193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 04/10/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Biochar has been utilized to reduce ciprofloxacin (CIP) residues in soil. However, little is known about the effect of biochar-derived dissolved organic matter (DOM) on residual CIP transformation. Thus, we analyzed the residual soil CIP as influenced by biochar generated from rice straw (RS3 and RS6), pig manure (PM3 and PM6), and cockroach shell (CS3 and CS6) at 300 °C and 600 °C. The three-dimensional excitation-emission matrix (3D-EEM), parallel factor analysis (PARAFAC) and two-dimensional correlation spectral analysis (2D-COS) were used to describe the potential variation in the DOM-CIP interaction. Compared with CK, biochar amendment increased the water-soluble CIP content by 160.7% (RS3), 55.2% (RS6), 534.1% (PM3), 277.5% (PM6), 1160.6% (CS3) and 703.9% (CS6), indicating that the biochar feedstock controlled the soil CIP release. The content of water-soluble CIP was positively correlated with the content of dissolved organic carbon (r = 0.922, p < 0.01) and dissolved organic nitrogen (r = 0.898, p < 0.01), suggesting that the major influence of the water-soluble CIP increase was DOM. The fluorescence quenching experiment showed that the interaction between DOM and CIP triggered static quenching and the creation of a DOM complex. The mean log K of protein-like material (4.977) was higher than that of terrestrial humus-like material (3.491), suggesting that the protein-like material complexed CIP was more stable than the humus-like material. Compared with pyrolysis at 300 °C, pyrolysis at 600 °C decreased the stability of the complex of protein-like material and CIP by 0.44 (RS), 1.689 (PM) and 0.548 (CS). This result suggested that the influence of temperature change was more profound on PM biochar-derived DOM than on RS and CS. These insights are essential for understanding CIP transportation in soil and controlling CIP contamination with biochar.
Collapse
Affiliation(s)
- Guo Chen
- College of Environmental Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Ma
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an, 625014, China
| | - Gang Yang
- College of Environmental Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chao Chen
- College of Environmental Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lulu Long
- College of Environmental Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linling Li
- Sichuan Keyuan Engineering Technology Testing Center, Chengdu, 610073, China
| | - Li Gong
- Sichuan Keyuan Engineering Technology Testing Center, Chengdu, 610073, China
| | - Min Xu
- College of Environmental Science, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jun Wu
- College of Environmental Science, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Chun Song
- College of Environmental Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiejie Lyu
- College of History Culture and Tourism, Fuyang Normal University, 236041, China
| |
Collapse
|
46
|
Wu X, Sun F, Cao S, Wang Q, Wang L, Wang S, He Y, Kolvenbach BA, Corvini PFX, Ji R. Maize ( Zea mays L.) Plants Alter the Fate and Accumulate Nonextractable Residues of Sulfamethoxazole in Farmland Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9292-9302. [PMID: 38752544 DOI: 10.1021/acs.est.3c08954] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The fate of sulfonamide antibiotics in farmlands is crucial for food and ecological safety, yet it remains unclear. We used [phenyl-U-14C]-labeled sulfamethoxazole (14C-SMX) to quantitatively investigate the fate of SMX in a soil-maize system for 60 days, based on a six-pool fate model. Formation of nonextractable residues (NERs) was the predominant fate for SMX in unplanted soil, accompanied by minor mineralization. Notably, maize plants significantly increased SMX dissipation (kinetic constant kd = 0.30 day-1 vs 0.17 day-1), while substantially reducing the NER formation (92% vs 58% of initially applied SMX) and accumulating SMX (40%, mostly bound to roots). Significant NERs (maximal 29-42%) were formed via physicochemical entrapment (determined using silylation), which could partially be released and taken up by maize plants. The NERs consisted of a considerable amount of SMX formed via entrapment (1-8%) and alkali-hydrolyzable covalent bonds (2-12%, possibly amide linkage). Six and 10 transformation products were quantified in soil extracts and NERs, respectively, including products of hydroxyl substitution, deamination, and N-acylation, among which N-lactylated SMX was found for the first time. Our findings reveal the composition and instability of SMX-derived NERs in the soil-plant system and underscore the need to study the long-term impacts of reversible NERs.
Collapse
Affiliation(s)
- Xuan Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Feifei Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Siqi Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Qilin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Lianhong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Songfeng Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, Jiangsu, China
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Boris Alexander Kolvenbach
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz CH-4132, Switzerland
| | - Philippe Francois-Xavier Corvini
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz CH-4132, Switzerland
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| |
Collapse
|
47
|
Lu Y, Han H, Jiang C, Liu H, Wang Z, Chai Y, Zhang X, Qiu J, Chen H. Uptake, accumulation, translocation and transformation of seneciphylline (Sp) and seneciphylline-N-oxide (SpNO) by Camellia sinensis L. ENVIRONMENT INTERNATIONAL 2024; 188:108765. [PMID: 38810495 DOI: 10.1016/j.envint.2024.108765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/05/2024] [Accepted: 05/19/2024] [Indexed: 05/31/2024]
Abstract
Pyrrolizidine alkaloids (PAs) and their N-oxide (PANOs), as emerging environmental pollutants and chemical hazards in food, have become the focus of global attention. PAs/PANOs enter crops from soil and reach edible parts, but knowledge about their uptake and transport behavior in crops is currently limited. In this study, we chose tea (Camellia sinensis L.) as a representative crop and Sp/SpNO as typical PAs/PANOs to analyze their root uptake and transport mechanism. Tea roots efficiently absorbed Sp/SpNO, utilizing both passive and active transmembrane pathways. Sp predominantly concentrated in roots and SpNO efficiently translocated to above-ground parts. The prevalence of SpNO in cell-soluble fractions facilitated its translocation from roots to stems and leaves. In soil experiment, tea plants exhibited weaker capabilities for the uptake and transport of Sp/SpNO compared to hydroponic conditions, likely due to the swift degradation of these compounds in the soil. Moreover, a noteworthy interconversion between Sp and SpNO in tea plants indicated a preference for reducing SpNO to Sp. These findings represent a significant stride in understanding the accumulation and movement mechanisms of Sp/SpNO in tea plants. The insights garnered from this study are pivotal for evaluating the associated risks of PAs/PANOs and formulating effective control strategies.
Collapse
Affiliation(s)
- Yuting Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haolei Han
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changling Jiang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongxia Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ziqi Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yunfeng Chai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, China
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, China
| | - Jing Qiu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China.
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
48
|
Shi Q, Cao M, Xiong Y, Kaur P, Fu Q, Smith A, Yates R, Gan J. Alternating water sources to minimize contaminant accumulation in food plants from treated wastewater irrigation. WATER RESEARCH 2024; 255:121504. [PMID: 38555786 DOI: 10.1016/j.watres.2024.121504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
The use of treated wastewater (TWW) for agricultural irrigation is a critical measure in advancing sustainable water management and agricultural production. However, TWW irrigation in agriculture serves as a conduit to introduce many contaminants of emerging concern (CECs) into the soil-plant-food continuum, posing potential environmental and human health risks. Currently, there are few practical options to mitigate the potential risk while promoting the safe reuse of TWW. In this greenhouse study, the accumulation of 11 commonly occurring CECs was evaluated in three vegetables (radish, lettuce, and tomato) subjected to two different irrigation schemes: whole-season irrigation with CEC-spiked water (FULL), and half-season irrigation with CEC-spiked water, followed by irrigation with clean water for the remaining season (HALF). Significant decreases (57.0-99.8 %, p < 0.05) in the accumulation of meprobamate, carbamazepine, PFBS, PFBA, and PFHxA in edible tissues were found for the HALF treatment with the alternating irrigation scheme. The CEC accumulation reduction was attributed to reduced chemical input, soil degradation, plant metabolism, and plant growth dilution. The structural equation modeling showed that this mitigation strategy was particularly effective for CECs with a high bioaccumulation potential and short half-life in soil, while less effective for those that are more persistent. The study findings demonstrate the effectiveness of this simple and on-farm applicable management strategy that can be used to minimize the potential contamination of food crops from the use of TWW and other marginal water sources in agriculture, while promoting safe reuse and contributing to environmental sustainability.
Collapse
Affiliation(s)
- Qingyang Shi
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Meixian Cao
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States; CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaxin Xiong
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Parminder Kaur
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Qiuguo Fu
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318 Leipzig, Germany
| | - Aspen Smith
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Rebecca Yates
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States.
| |
Collapse
|
49
|
Wan Q, Li Y, Cheng J, Wang Y, Ge J, Liu T, Ma L, Li Y, Liu J, Zhou C, Li H, Sun X, Chen X, Li QX, Yu X. Two aquaporins, PIP1;1 and PIP2;1, mediate the uptake of neonicotinoid pesticides in plants. PLANT COMMUNICATIONS 2024; 5:100830. [PMID: 38297839 PMCID: PMC11121740 DOI: 10.1016/j.xplc.2024.100830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/05/2023] [Accepted: 01/29/2024] [Indexed: 02/02/2024]
Abstract
Neonicotinoids (NEOs), a large class of organic compounds, are a type of commonly used pesticide for crop protection. Their uptake and accumulation in plants are prerequisites for their intra- and intercellular movements, transformation, and function. Understanding the molecular mechanisms that underpin NEO uptake by plants is crucial for effective application, which remains elusive. Here, we demonstrate that NEOs enter plant cells primarily through the transmembrane symplastic pathway and accumulate mainly in the cytosol. Two plasma membrane intrinsic proteins discovered in Brassica rapa, BraPIP1;1 and BraPIP2;1, were found to encode aquaporins (AQPs) that are highly permeable to NEOs in different plant species and facilitate NEO subcellular diffusion and accumulation. Their conserved transport function was further demonstrated in Xenopus laevis oocyte and yeast assays. BraPIP1;1 and BraPIP2;1 gene knockouts and interaction assays suggested that their proteins can form functional heterotetramers. Assessment of the potential of mean force indicated a negative correlation between NEO uptake and the energy barrier of BraPIP1;1 channels. This study shows that AQPs transport organic compounds with greater osmolarity than previously thought, providing new insight into the molecular mechanisms of organic compound uptake and facilitating innovations in systemic pesticides.
Collapse
Affiliation(s)
- Qun Wan
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Yixin Li
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Jinjin Cheng
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Ya Wang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Jing Ge
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Tingli Liu
- Jiangsu Provincial Key Construction Laboratory of Special Biomass Resource Utilization, Nanjing Xiaozhuang University, 3601 Hongjin Avenue, Nanjing 211171, China
| | - Liya Ma
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Yong Li
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Jianan Liu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Chunli Zhou
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Haocong Li
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Xing Sun
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Xiaolong Chen
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Xiangyang Yu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| |
Collapse
|
50
|
Wang J, Zhu Y, Ye B, Dun J, Yu X, Sui Q. Absorption and translocation of selected pharmaceuticals in Pistia stratiotes: Spatial distribution analysis using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134028. [PMID: 38493630 DOI: 10.1016/j.jhazmat.2024.134028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Phytoremediation can eliminate pharmaceuticals from aquatic environments through absorption; however, understanding of absorption and transport processes in plants remains limited. In this study, a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging (MALDI-MSI) method was developed to explore the absorption and translocation mechanisms of seven common pharmaceuticals in Pistia stratiotes. Results showed that 2,3-dicyanohydroquinone, an infrequently used matrix, exhibited outstanding performance in MALDI-MSI analysis, producing the highest signal intensity for four of the seven pharmaceuticals. Region of Interest (ROI) analysis revealed that charge speciation of pharmaceuticals significantly influenced their ability to enter vascular bundle. Neutral and positively charged pharmaceuticals easily entered vascular bundle, while negatively charged pharmaceuticals faced difficulty. ROI results for neutral and negatively charged pharmaceuticals exhibited positive correlation with their transfer factor values, indicating that their translocation ability from root to shoot was related to their capacity to enter vascular bundle. However, no correlation was observed for positively charged pharmaceuticals, suggesting that these compounds, upon entering vascular bundle, encountered difficulties in upward translocation through the xylem. This study introduces an innovative approach and offers novel insights into the retention and migration of pharmaceuticals in plant tissues, aiming to enhance the understanding of pharmaceutical accumulation in plants. ENVIRONMENTAL IMPLICATION: Pharmaceuticals in aquatic environment can inflict detrimental effects on both human health and ecosystem. Phytoremediation can remove pharmaceuticals from aquatic environments through absorption. However, our understanding of absorption and transportation of pharmaceuticals in plants remains limited. This study developed a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging (MALDI-MSI) method for pharmaceuticals in plant roots, and to explore the absorption and translocation mechanisms of pharmaceuticals. The study offers direct evidence of differences in accumulation behavior of pharmaceuticals in plants, providing valuable insights for targeted and effective strategies in using plants for remediating the aquatic ecosystem from pharmaceuticals.
Collapse
Affiliation(s)
- Jiaxi Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yiwen Zhu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Beibei Ye
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Junling Dun
- Analytical Applications Center, Shimadzu (China) Co., Ltd., Shanghai 200233, China
| | - Xia Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|