1
|
Wang JA, Aryal O, Brownstein LN, Shwwa H, Rickard AL, Stephens AE, Lanzarini-Lopes M, Ismail NS. Zooplankton protect viruses from sunlight disinfection. Appl Environ Microbiol 2025; 91:e0254024. [PMID: 40162778 PMCID: PMC12016492 DOI: 10.1128/aem.02540-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/01/2025] [Indexed: 04/02/2025] Open
Abstract
Sunlight disinfection is an important inactivation process for enteric viruses in water. Understanding how dark biotic processes, such as zooplankton filter feeding, impact sunlight disinfection for viruses has important implications for public health. This research quantifies the uptake of MS2, a model for enteric viruses, by the filter feeder Branchionus plicatilis (rotifer) and the effects of such uptake on subsequent sunlight inactivation of MS2. Experiments co-incubating MS2 with rotifers showed 2.6 log viral removal over 120 hours. Viable virus was recovered from rotifer bodies after co-incubation, indicating incomplete viral inactivation via ingestion. When live rotifers were co-incubated with MS2 and the system was treated with sunlight, experimental treatments with rotifers showed that the virus was protected with 2-3 log viral inactivation compared to 4.5 log inactivation for sunlight controls without rotifers. Dead rotifers placed in the system did not show the same magnitude of protection effects, indicating that active filter feeding of rotifers is associated with protection from sunlight. Data from this study show that zooplankton may serve as a vector for viruses and reduce the efficiency of sunlight inactivation.IMPORTANCEEnteric viral contamination in water is a leading global cause of waterborne disease outbreaks. Sunlight inactivation is an important disinfection mechanism in natural waters, but accurately modeling inactivation is challenging due to the complex nature of aquatic systems. Zooplankton play a critical role in natural systems and are known to inactivate bacteria, but their interaction with viruses is not well understood. Our research examines the impact of a model zooplankton species on the sunlight disinfection of viruses. The results from this study address knowledge gaps in the importance of dark processes such as zooplankton filter feeding and their impact on viral fate.
Collapse
Affiliation(s)
- J. A. Wang
- Picker Engineering Program, Smith College, Northampton, Massachusetts, USA
| | - O. Aryal
- Picker Engineering Program, Smith College, Northampton, Massachusetts, USA
| | - L. N. Brownstein
- Picker Engineering Program, Smith College, Northampton, Massachusetts, USA
| | - H. Shwwa
- Picker Engineering Program, Smith College, Northampton, Massachusetts, USA
| | - A. L. Rickard
- Picker Engineering Program, Smith College, Northampton, Massachusetts, USA
| | - A. E. Stephens
- Picker Engineering Program, Smith College, Northampton, Massachusetts, USA
| | - M. Lanzarini-Lopes
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - N. S. Ismail
- Picker Engineering Program, Smith College, Northampton, Massachusetts, USA
| |
Collapse
|
2
|
Hill T, Wang P, Olivieri A, Batista J, Gerrity D. Assessing the basis for regulatory crediting of virus LRVs for secondary biological wastewater treatment: A systematic review. WATER RESEARCH 2025; 271:122886. [PMID: 39647311 DOI: 10.1016/j.watres.2024.122886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/10/2024]
Abstract
Regulatory frameworks for potable reuse often include stringent log10 reduction value (LRV) targets to ensure public health protection against exposure to viruses and protozoa. To achieve overall LRV targets and reduce associated capital and operational costs, it is important to maximize LRV credits awarded to each unit process in a potable reuse treatment train. This may include processes that are historically uncredited or undercredited, such as secondary biological wastewater treatment incorporating activated sludge and secondary clarification. To identify gaps in knowledge and inform future efforts to justify virus crediting, this systematic literature review and meta-analysis focused on characterizing virus attenuation during secondary treatment and identifying any virus characteristics, operational conditions, or water quality parameters that could serve as predictors of virus LRVs. Out of a total of 1,341 search results from three databases, this review considered 44 peer-reviewed studies that met the criteria for inclusion. LRVs as high as 5.3 log10 were reported for F-specific coliphages, but some studies reported increases in rotavirus and norovirus GI concentrations across secondary treatment. Median LRVs ranged from 0.8 log10 for rotavirus and norovirus GI (both based on molecular methods) to 2.4 to 3.4 log10 for poliovirus (culture) and polyomavirus (molecular), respectively. 5th percentile LRVs were <1.0 log10 for multiple viruses. Study publication date was shown to have a significant impact, pooled virus LRVs exhibited a moderately strong correlation with reduction in biochemical oxygen demand (BOD), and mixed liquor suspended solids (MLSS) concentration demonstrated a threshold (∼1000 mg/L) beyond which there was no discernible relationship with virus LRV. In general, the lack of reported background data hindered identification of critical parameters that could inform model development or serve as surrogates for estimating virus LRV. More robust datasets that simultaneously evaluate a range of viruses and operational/water quality parameters are needed before LRV credits can be broadly and confidently awarded to conventional secondary biological wastewater treatment systems.
Collapse
Affiliation(s)
- Tyler Hill
- Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States; University of Nevada Las Vegas, Department of Civil & Environmental Engineering and Construction, 4505 S. Maryland Parkway, Las Vegas, NV 89154, United States
| | - Phillip Wang
- Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States
| | - Adam Olivieri
- EOA, Inc., 1410 Jackson Street, Oakland, CA 94612, United States
| | - Jacimaria Batista
- University of Nevada Las Vegas, Department of Civil & Environmental Engineering and Construction, 4505 S. Maryland Parkway, Las Vegas, NV 89154, United States
| | - Daniel Gerrity
- Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States.
| |
Collapse
|
3
|
Innocenzi P. Antiviral Surface Coatings: From Pandemic Lessons to Visible-Light-Activated Films. MATERIALS (BASEL, SWITZERLAND) 2025; 18:906. [PMID: 40004426 PMCID: PMC11857441 DOI: 10.3390/ma18040906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/30/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
The increasing need for effective antiviral strategies has led to the development of innovative surface coatings to combat the transmission of viruses via fomites. The aim of this review is to critically assess the efficacy of antiviral coatings in mitigating virus transmission, particularly those activated by visible light. The alarm created by the COVID-19 pandemic, including the initial uncertainty about the mechanisms of its spread, attracted attention to fomites as a possible source of virus transmission. However, later research has shown that surface-dependent infection mechanisms need to be carefully evaluated experimentally. By briefly analyzing virus-surface interactions and their implications, this review highlights the importance of shifting to innovative solutions. In particular, visible-light-activated antiviral coatings that use reactive oxygen species such as singlet oxygen to disrupt viral components have emerged as promising options. These coatings can allow for obtaining safe, continuous, and long-term active biocidal surfaces suitable for various applications, including healthcare environments and public spaces. This review indicates that while the significance of fomite transmission is context-dependent, advances in material science provide actionable pathways for designing multifunctional, visible-light-activated antiviral coatings. These innovations align with the lessons learned from the COVID-19 pandemic and pave the way for sustainable, broad-spectrum antiviral solutions capable of addressing future public health challenges.
Collapse
Affiliation(s)
- Plinio Innocenzi
- Laboratory of Materials Science and Nanotechnology, Consorzio Interuniversitario per la Scienza e Tecnologia dei Materiali (INSTM), Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
| |
Collapse
|
4
|
Wu H, Brighton K, Chen J, Shuai D, Aw TG. Quantification of Particle-Associated Viruses in Secondary Treated Wastewater Effluent. FOOD AND ENVIRONMENTAL VIROLOGY 2025; 17:19. [PMID: 39812936 PMCID: PMC11735553 DOI: 10.1007/s12560-025-09634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
Viruses can interact with a broad range of inorganic and organic particles in water and wastewater. These associations can protect viruses from inactivation by quenching chemical disinfectants or blocking ultraviolet light transmission, and a much higher dosage of disinfectants is required to inactivate particle-associated viruses than free viruses. There have been only few studies of the association of viruses with particles in wastewater, particularly in secondary treated effluent. As secondary effluent is the source water to the reclaimed water treatment system, this study quantified indigenous enteric viruses, and viral indicators associated with particles in secondary effluents collected from five full-scale water reclamation facilities in the United States. Particle-associated viruses were enumerated using a sequential filtration followed by microfluidic digital PCR. This study showed that enteric viruses and viral indicators (crAssphage and pepper mild mottle virus, PMMoV) were attached to particles of different sizes in secondary effluent. Significantly higher concentrations of RNA viruses including PMMoV, norovirus, and enterovirus were detected in filtrate of the sequential filtration, which contained particles < 0.45 µm. DNA viruses including adenovirus and crAssphage were found to be more associated with larger particles in secondary effluent. Overall, high correlations were observed between viral indicators and enteric viruses, supporting the use of crAssphage and PMMoV to evaluate virus removal efficiency in water and wastewater treatment processes. The association of viruses with particles in wastewater has significant implications on wastewater treatment and disinfection processes as well as virus enumeration in wastewater.
Collapse
Affiliation(s)
- Huiyun Wu
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA, 70112, USA
- Department of Civil and Environmental Engineering, Washington State University, Pullman, Washington, USA
| | - Keegan Brighton
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA, 70112, USA
| | - Jiahao Chen
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC, USA
| | - Danmeng Shuai
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC, USA
| | - Tiong Gim Aw
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA, 70112, USA.
| |
Collapse
|
5
|
Domingo M, V Guzman H, Kanduč M, Faraudo J. Electrostatic Interaction between SARS-CoV-2 and Charged Surfaces: Spike Protein Evolution Changed the Game. J Chem Inf Model 2025; 65:240-251. [PMID: 39722544 DOI: 10.1021/acs.jcim.4c01724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Previous works show the key role of electrostatics in the SARS-CoV-2 virus in aspects such as virus-cell interactions or virus inactivation by ionic surfactants. Electrostatic interactions depend strongly on the variant since the charge of the Spike protein (responsible for virus-environment interactions) evolved across the variants from the highly negative Wild Type (WT) to the highly positive Omicron variant. The distribution of the charge also evolved from diffuse to highly localized. These facts suggest that SARS-CoV-2 should interact strongly with charged surfaces in a way that changed during the virus evolution. This question is studied here by computing the electrostatic interaction between WT, Delta and Omicron Spike proteins with charged surfaces using a new method (based on Debye-Hückel theory) that provides efficiently general results as a function of the surface charge density σ. We found that the interaction of the WT and Delta variant spikes with charged surfaces is dominated by repulsive image forces proportional to σ2 originating at the protein/water interface. On the contrary, the Omicron variant shows a distinct behavior, being strongly attracted to negatively charged surfaces and repelled from positively charged ones. Therefore, the SARS-CoV-2 virus has evolved from being repelled by charged surfaces to being efficiently adsorbing to negatively charged ones.
Collapse
Affiliation(s)
- Marc Domingo
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, E-08193 Bellaterra, Spain
| | - Horacio V Guzman
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, E-08193 Bellaterra, Spain
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Matej Kanduč
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana 1000, Slovenia
| | - Jordi Faraudo
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, E-08193 Bellaterra, Spain
| |
Collapse
|
6
|
Zhang J, Zhang J, Sano D, Chen R. Comparison of activated sludge and virus interactions in aerobic and anaerobic membrane bioreactors. iScience 2024; 27:111450. [PMID: 39735431 PMCID: PMC11681883 DOI: 10.1016/j.isci.2024.111450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/10/2024] [Accepted: 11/19/2024] [Indexed: 12/31/2024] Open
Abstract
Membrane bioreactors (MBRs) are effective sewage treatment technologies, yet the differences in virus removal efficiency between aerobic (AeMBR) and anaerobic membrane bioreactors (AnMBR), remain inadequately understood. This study compared the virus removal efficiency of AeMBR and AnMBR, focusing on the interactions between aerobic (AeS) and anaerobic (AnS) activated sludge and viruses in the sewage treatment process. Results showed average log removal values (LRVs) for MS2 of 2.53 ± 0.54 in AeMBR and 1.64 ± 0.90 in AnMBR due to the higher virus inactivation in the aerobic mixed liquor. The virus concentration in AnS was greater than in AeS, consistent with the predictions from the pseudo-second-order kinetic model. Soluble extracellular polymeric substances (S-EPS) were key to virus adsorption in AeS, while tightly bound EPS (TB-EPS) were significant in AnS. Additionally, more fluorescent substances in AnS contributed to virus adsorption, while more functional groups in AeS offered adsorption sites.
Collapse
Affiliation(s)
- Jinfan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi’an University Architecture and Technology, No. 13 Yanta Road, Xi’an 710055, P.R. China
| | - Jie Zhang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi’an University Architecture and Technology, No. 13 Yanta Road, Xi’an 710055, P.R. China
| | - Daisuke Sano
- Department of Civil and Environment Engineering, Graduate School of Engineering, Tohoku University, Aoba 606-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
- Department of Frontier Sciences for Advanced Environment, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Rong Chen
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi’an University Architecture and Technology, No. 13 Yanta Road, Xi’an 710055, P.R. China
- International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi’an University of Architecture and Technology, No. 13 Yanta Road, Xi’an 710055, P.R. China
| |
Collapse
|
7
|
García‐Arribas AB, Ibáñez‐Freire P, Carlero D, Palacios‐Alonso P, Cantero‐Reviejo M, Ares P, López‐Polín G, Yan H, Wang Y, Sarkar S, Chhowalla M, Oksanen HM, Martín‐Benito J, de Pablo PJ, Delgado‐Buscalioni R. Broad Adaptability of Coronavirus Adhesion Revealed from the Complementary Surface Affinity of Membrane and Spikes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404186. [PMID: 39231361 PMCID: PMC11538687 DOI: 10.1002/advs.202404186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/21/2024] [Indexed: 09/06/2024]
Abstract
Coronavirus stands for a large family of viruses characterized by protruding spikes surrounding a lipidic membrane adorned with proteins. The present study explores the adhesion of transmissible gastroenteritis coronavirus (TGEV) particles on a variety of reference solid surfaces that emulate typical virus-surface interactions. Atomic force microscopy informs about trapping effectivity and the shape of the virus envelope on each surface, revealing that the deformation of TGEV particles spans from 20% to 50% in diameter. Given this large deformation range, experimental Langmuir isotherms convey an unexpectedly moderate variation in the adsorption-free energy, indicating a viral adhesion adaptability which goes beyond the membrane. The combination of an extended Helfrich theory and coarse-grained simulations reveals that, in fact, the envelope and the spikes present complementary adsorption affinities. While strong membrane-surface interaction lead to highly deformed TGEV particles, surfaces with strong spike attraction yield smaller deformations with similar or even larger adsorption-free energies.
Collapse
Affiliation(s)
- Aritz B. García‐Arribas
- Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Pablo Ibáñez‐Freire
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Diego Carlero
- Departamento de Estructura de MacromoléculasCentro Nacional de Biotecnología CSICMadrid28049Spain
| | - Pablo Palacios‐Alonso
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Miguel Cantero‐Reviejo
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Pablo Ares
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Guillermo López‐Polín
- Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Han Yan
- Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeCB3 0FSUK
| | - Yan Wang
- Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeCB3 0FSUK
| | - Soumya Sarkar
- Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeCB3 0FSUK
| | - Manish Chhowalla
- Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeCB3 0FSUK
| | - Hanna M. Oksanen
- Faculty of Biological and Environmental SciencesVijkki BiocenterUniversity of HelsinkiHelsinki00014Finland
| | - Jaime Martín‐Benito
- Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Pedro J. de Pablo
- Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
- Instituto de Física de la Materia Condensada IFIMACUniversidad Autónoma de MadridMadrid28049Spain
| | - Rafael Delgado‐Buscalioni
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
- Instituto de Física de la Materia Condensada IFIMACUniversidad Autónoma de MadridMadrid28049Spain
| |
Collapse
|
8
|
Sautrey G. An Update on Theoretical and Metrological Aspects of the Surface Hydrophobicity of Virus and Virus-Like Particles. Adv Biol (Weinh) 2024:e2400221. [PMID: 39435562 DOI: 10.1002/adbi.202400221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/08/2024] [Indexed: 10/23/2024]
Abstract
Viruses are biological entities embodied in protein-based nanoparticles devoid of metabolic activity. Hence, the colloidal, interfacial, and chemical reactivity of virus particles (VPs) profoundly affects the fate of natural and artificial viruses in biotic or abiotic aqueous systems. These rely on the physical chemistry at the outer surface of VPs. In other words, whether wild or synthetic VPs and regardless of the scientific fields involved, taming viruses implies thus managing the physical chemistry at the VP external surface. The surface hydrophobicity (SH) of VPs is a critical feature that must be looked at. Still, the literature dealing with nanoscale hydrophobic domains at the proteinaceous surface of VPs underlying their global SH is like a fragmented puzzle. This article provides an overview of the topic from the perspective of modern protein biophysics for updating the classic physicochemical picture of outer VP/water interfaces hitherto accepted. Patterns of non-polar and "false-polar" patches, expressing variable hydrophobic degrees according to neighboring polar patches, are now drawn. The extensive discussion of reviewed data generates such fresh ideas to explore in the coming years for better modeling the SH of wild virions or engineered virus-based nanoparticles, paving the way for new directions in fundamental virology and virus-based chemistry.
Collapse
Affiliation(s)
- Guillaume Sautrey
- LCPME UMR 7564 Université de Lorraine - CNRS, 405 rue de Vandoeuvre, Villers-lès-Nancy, 54600, France
| |
Collapse
|
9
|
Lapras B, Marchand C, Merienne C, Medina M, Kolenda C, Laurent F, Pirot F. Rationalisation of the purification process for a phage active pharmaceutical ingredient. Eur J Pharm Biopharm 2024; 203:114438. [PMID: 39111580 DOI: 10.1016/j.ejpb.2024.114438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/14/2024]
Abstract
The resurgence of phage therapy, once abandoned in the early 20th century in part due to issues related to the purification process and stability, is spurred by the global threat of antibiotic resistance. Engineering advances have enabled more precise separation unit operations, improving overall purification efficiency. The present review discusses the physicochemical properties of impurities commonly found in a phage lysate, e.g., contaminants, phage-related impurities, and propagation-related impurities. Differences in phages and bacterial impurities properties are leveraged to elaborate a four-step phage purification process: clarification, capture and concentration, subsequent purification and polishing. Ultimately, a framework for rationalising the development of a purification process is proposed, considering three operational characteristics, i.e., scalability, transferability to various phages and duration. This guide facilitates the preselection of a sequence of unit operations, which can then be confronted with the expected impurities to validate the theoretical capacity of the process to purify the phage lysate.
Collapse
Affiliation(s)
- B Lapras
- Hospices Civils de Lyon, Edouard Herriot Hospital, Pharmacy Department, FRIPHARM®, F-69437 Lyon, France; Claude Bernard Lyon 1 University, French National Centre for Scientific Research (CNRS), Institut de Biologie et de Chimie des Protéines (IBCP), Tissue Biology and Therapeutic Engineering Laboratory (LBTI), UMR 5305, F-69007 Lyon, France.
| | - C Marchand
- Hospices Civils de Lyon, Edouard Herriot Hospital, Pharmacy Department, FRIPHARM®, F-69437 Lyon, France
| | - C Merienne
- Hospices Civils de Lyon, Edouard Herriot Hospital, Pharmacy Department, FRIPHARM®, F-69437 Lyon, France
| | - M Medina
- Hospices Civils de Lyon, Croix Rousse Hospital, Bacteriology Department, French National Reference Centre for Staphylococci, F-69317 Lyon, France; Claude Bernard Lyon 1 University, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR 5308, F- 69365 Lyon, France
| | - C Kolenda
- Hospices Civils de Lyon, Croix Rousse Hospital, Bacteriology Department, French National Reference Centre for Staphylococci, F-69317 Lyon, France; Claude Bernard Lyon 1 University, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR 5308, F- 69365 Lyon, France
| | - F Laurent
- Hospices Civils de Lyon, Croix Rousse Hospital, Bacteriology Department, French National Reference Centre for Staphylococci, F-69317 Lyon, France; Claude Bernard Lyon 1 University, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR 5308, F- 69365 Lyon, France
| | - F Pirot
- Hospices Civils de Lyon, Edouard Herriot Hospital, Pharmacy Department, FRIPHARM®, F-69437 Lyon, France; Claude Bernard Lyon 1 University, French National Centre for Scientific Research (CNRS), Institut de Biologie et de Chimie des Protéines (IBCP), Tissue Biology and Therapeutic Engineering Laboratory (LBTI), UMR 5305, F-69007 Lyon, France
| |
Collapse
|
10
|
Addo MA, Zang Z, Gerdt JP. Chemical inhibition of cell surface modification sensitizes bacteria to phage infection. RSC Chem Biol 2024; 5:d4cb00070f. [PMID: 39308478 PMCID: PMC11409987 DOI: 10.1039/d4cb00070f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
Many bacteriophages that infect Gram-positive bacteria rely on the bacterial cell surface polymer wall teichoic acid (WTA) as a receptor. However, some bacteria modulate their cell wall with d-alanine residues, which can disrupt phage adsorption. The prevalence and significance of WTA alanylation as an anti-phage defense is unknown. A chemical inhibitor of WTA d-alanylation could be employed to efficiently screen phage-host combinations for those that exhibit alanylation-dependent infections. Since the incorporation of d-alanine residues into the cell wall requires the activity of d-alanine:alanyl carrier protein ligase (DltA), a DltA inhibitor was employed as this tool. Herein, we found that a chemical probe inhibiting DltA activity impeded bacterial cell wall alanylation and enhanced infectivity of many phages against Bacillus subtilis, including phages Phi29, SPP1, SPO1, SP50, and Goe2. This finding reveals the breadth of immunity conferred by WTA alanylation in B. subtilis, which was previously known to impact only phages Phi29 and SPP1, but not SPO1, SP50, or Goe2. DltA inhibition selectively promoted infection by several phages that bind WTA, having no impact on the flagellotropic phage PBS1. Unexpectedly, DltA inhibition also had no effect on phage SP10, which binds to WTA. This selective chemical tool has the potential to unravel bacteriophage interactions with bacteria, leading to improved phage therapies in the future.
Collapse
Affiliation(s)
- Marian Aba Addo
- Department of Chemistry, Indiana University Bloomington IN 47405 USA
| | - Zhiyu Zang
- Department of Chemistry, Indiana University Bloomington IN 47405 USA
| | - Joseph P Gerdt
- Department of Chemistry, Indiana University Bloomington IN 47405 USA
| |
Collapse
|
11
|
Hayes EK, Gagnon GA. From capture to detection: A critical review of passive sampling techniques for pathogen surveillance in water and wastewater. WATER RESEARCH 2024; 261:122024. [PMID: 38986282 DOI: 10.1016/j.watres.2024.122024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/05/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024]
Abstract
Water quality, critical for human survival and well-being, necessitates rigorous control to mitigate contamination risks, particularly from pathogens amid expanding urbanization. Consequently, the necessity to maintain the microbiological safety of water supplies demands effective surveillance strategies, reliant on the collection of representative samples and precise measurement of contaminants. This review critically examines the advancements of passive sampling techniques for monitoring pathogens in various water systems, including wastewater, freshwater, and seawater. We explore the evolution from conventional materials to innovative adsorbents for pathogen capture and the shift from culture-based to molecular detection methods, underscoring the adaptation of this field to global health challenges. The comparison highlights passive sampling's efficacy over conventional techniques like grab sampling and its potential to overcome existing sampling challenges through the use of innovative materials such as granular activated carbon, thermoplastics, and polymer membranes. By critically evaluating the literature, this work identifies standardization gaps and proposes future research directions to augment passive sampling's efficiency, specificity, and utility in environmental and public health surveillance.
Collapse
Affiliation(s)
- Emalie K Hayes
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Graham A Gagnon
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
12
|
Bayati M, Hsieh HY, Hsu SY, Qasim S, Li C, Belenchia A, Klutts J, Zemmer SA, Sibley K, Reynolds M, Semkiw E, Johnson HY, Lyddon T, Wieberg CG, Wenzel J, Johnson MC, Lin CH. The different adsorption-degradation behaviors of SARS-CoV-2 by bioactive chemicals in wastewater: The suppression kinetics and their implications for wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173609. [PMID: 38815826 DOI: 10.1016/j.scitotenv.2024.173609] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Wastewater-Based Epidemiology (WBE) is widely used to monitor the progression of SARS-CoV-2 pandemic. While there is a clear correlation between the number of COVID patients in a sewershed and the viral load in the wastewater, there is notable variability across different treatment plants. In particular, some facilities consistently exhibit higher viral content per diagnosed patient, implying a potential underestimation of the number of COVID patients, while others show a low viral load per diagnosed case, indicating potential attenuation of genetic material from the sewershed. In this study, we investigated the impact of nonylphenol ethoxylate (NPHE), linear alkylbenzene sulfonic acid (LABS), bisoctyl dimethyl ammonium chloride (BDAC), and didecyldimethylammonium chloride (DDAC), the surfactants that have been commonly used as detergents, emulsifiers, wetting agents on the stability of SARS-CoV-2 in wastewater. The results showed multiple and dynamic mechanisms, including degradation and desorption, can occur simultaneously during the interaction between SARS-CoV-2 and different chemicals depending on the physicochemical properties of each chemical. Through the elucidation of the dynamic interactions, the findings from this study could help the state health organizations and scientific community to optimize the SARS-CoV-2 wastewater-based epidemiology strategies.
Collapse
Affiliation(s)
- Mohamed Bayati
- School of Natural Resources, University of Missouri, Columbia, MO 65201, USA; Environmental Engineering Department, Tikrit University, Tikrit, Iraq
| | - Hsin-Yeh Hsieh
- School of Natural Resources, University of Missouri, Columbia, MO 65201, USA
| | - Shu-Yu Hsu
- School of Natural Resources, University of Missouri, Columbia, MO 65201, USA; Center for Agroforestry, University of Missouri, Columbia, MO 65201, USA
| | - Sally Qasim
- School of Natural Resources, University of Missouri, Columbia, MO 65201, USA
| | - Chenhui Li
- School of Natural Resources, University of Missouri, Columbia, MO 65201, USA
| | - Anthony Belenchia
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, MO, USA
| | - Jessica Klutts
- Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine and the Christopher S. Bond Life Sciences Center, Columbia, MO 65201, USA
| | - Sally A Zemmer
- Water Protection Program, Missouri Department of Natural Resources, Jefferson City, MO, USA
| | - Kristen Sibley
- Water Protection Program, Missouri Department of Natural Resources, Jefferson City, MO, USA
| | - Melissa Reynolds
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, MO, USA
| | - Elizabeth Semkiw
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, MO, USA
| | - Hwei-Yiing Johnson
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, MO, USA
| | - Terri Lyddon
- Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine and the Christopher S. Bond Life Sciences Center, Columbia, MO 65201, USA
| | - Chris G Wieberg
- Water Protection Program, Missouri Department of Natural Resources, Jefferson City, MO, USA
| | - Jeff Wenzel
- Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri Department of Health and Senior Services, Jefferson City, MO, USA
| | - Marc C Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine and the Christopher S. Bond Life Sciences Center, Columbia, MO 65201, USA
| | - Chung-Ho Lin
- School of Natural Resources, University of Missouri, Columbia, MO 65201, USA; Center for Agroforestry, University of Missouri, Columbia, MO 65201, USA.
| |
Collapse
|
13
|
Sarabi A, Nizet S, Röhrich A, Tschegg C. Unveiling the Broad-Spectrum Virucidal Potential of Purified Clinoptilolite-Tuff. Microorganisms 2024; 12:1572. [PMID: 39203414 PMCID: PMC11356225 DOI: 10.3390/microorganisms12081572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Due to its remarkable surface properties, natural clinoptilolite-tuff interacts with a variety of biochemical, pharmaceutical, chemical, and microbiological entities, including human viruses. In the present work, the virucidal activity of purified clinoptilolite-tuff (PCT) was investigated using a variety of viruses, differing in their structure and composition. Influenza A virus, Herpes Simplex virus, Rhinovirus, and Parvovirus were chosen to represent enveloped and non-enveloped viruses with RNA and DNA genomes. Beside human viruses, Canine Parvovirus and bacteriophages T4 and MS2 were used to represent animal and bacterial viruses, respectively. The virucidal activity of PCT was quantified by examining the residual viral activity on susceptible cell lines upon incubation with PCT. A wide range of antiviral efficiencies was observed, ranging from up to 99% for Herpes Simplex virus to no activity for Rhinovirus and both bacteriophages. This study reveals that the virucidal potential of PCT is not universal and depends on a complex set of factors including virus structure and medium composition. The environmental and medical implications of this research are discussed for uses such as wastewater treatment or wound healing.
Collapse
|
14
|
Chazot-Franguiadakis L, Eid J, Delecourt G, Kolbeck PJ, Brugère S, Molcrette B, Socol M, Mougel M, Salvetti A, Démery V, Lacroix JC, Bennevault V, Guégan P, Castelnovo M, Montel F. Soft jamming of viral particles in nanopores. Nat Commun 2024; 15:6180. [PMID: 39039059 PMCID: PMC11263580 DOI: 10.1038/s41467-024-50059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/27/2024] [Indexed: 07/24/2024] Open
Abstract
Viruses have remarkable physical properties and complex interactions with their environment. However, their aggregation in confined spaces remains unexplored, although this phenomenon is of paramount importance for understanding viral infectivity. Using hydrodynamical driving and optical detection, we developed a method to detect the transport of single virus in real time through synthetic nanopores. We unveiled a jamming phenomenon specifically associated with virus confinement under flow. We showed that the interactions of viral particles with themselves and with the pore surface were critical for clog formation. Based on the detailed screening of the physical and chemical determinants, we proposed a simple dynamical model that recapitulated all the experimental observations. Our results pave the way for the study of jamming phenomena in the presence of more complex interactions.
Collapse
Affiliation(s)
| | - Joelle Eid
- Institut de Recherche en Infectiologie de Montpellier, UMR CNRS 9004, Université de Montpellier, Montpellier, France
| | - Gwendoline Delecourt
- Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, Sorbonne Université, Paris, France
| | - Pauline J Kolbeck
- Laboratoire de Physique, UMR CNRS 5672, ENS de Lyon, Université de Lyon, Lyon, France
- Department of Physics and Center for NanoScience, LMU Munich, 80799, Munich, Germany
- Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, 3584, CC Utrecht, The Netherlands
| | - Saskia Brugère
- Laboratoire de Physique, UMR CNRS 5672, ENS de Lyon, Université de Lyon, Lyon, France
| | - Bastien Molcrette
- Laboratoire de Physique, UMR CNRS 5672, ENS de Lyon, Université de Lyon, Lyon, France
- Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology, UMR CNRS 7104, University of Strasbourg, Illkirch, France
| | - Marius Socol
- Institut de Recherche en Infectiologie de Montpellier, UMR CNRS 9004, Université de Montpellier, Montpellier, France
| | - Marylène Mougel
- Institut de Recherche en Infectiologie de Montpellier, UMR CNRS 9004, Université de Montpellier, Montpellier, France
| | - Anna Salvetti
- Centre International de Recherche en Infectiologie, UMR CNRS 5308, Université de Lyon, INSERM, Lyon, France
| | - Vincent Démery
- Laboratoire de Physique, UMR CNRS 5672, ENS de Lyon, Université de Lyon, Lyon, France
- Gulliver, UMR CNRS 7083, ESPCI Paris, Université PSL, Paris, France
| | | | - Véronique Bennevault
- Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, Sorbonne Université, Paris, France
- University of Evry, Evry, 91000, France
| | - Philippe Guégan
- Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, Sorbonne Université, Paris, France
| | - Martin Castelnovo
- Laboratoire de Physique, UMR CNRS 5672, ENS de Lyon, Université de Lyon, Lyon, France
| | - Fabien Montel
- Laboratoire de Physique, UMR CNRS 5672, ENS de Lyon, Université de Lyon, Lyon, France.
| |
Collapse
|
15
|
Nattich-Rak M, Sadowska M, Adamczyk Z, Basinska T, Mickiewicz D, Gadzinowski M. Deposition of Human-Serum-Albumin-Functionalized Spheroidal Particles on Abiotic Surfaces: Reference Kinetic Results for Bioparticles. Molecules 2024; 29:3405. [PMID: 39064983 PMCID: PMC11279952 DOI: 10.3390/molecules29143405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Human serum albumin (HSA) corona formation on polymer microparticles of a spheroidal shape was studied using dynamic light scattering and Laser Doppler Velocimetry (LDV). Physicochemical characteristics of the albumin comprising the zeta potential and the isoelectric point were determined as a function of pH for various ionic strengths. Analogous characteristics of the polymer particles were analyzed. The adsorption of albumin on the particles was in situ monitored by LDV. The stability of the HSA-functionalized particle suspensions under various pHs and their electrokinetic properties were also determined. The deposition kinetics of the particles on mica, silica and gold sensors were investigated by optical microscopy, AFM and quartz microbalance (QCM) under diffusion and flow conditions. The obtained results were interpreted in terms of the random sequential adsorption model that allowed to estimate the range of applicability of QCM for determining the deposition kinetics of viruses and bacteria at abiotic surfaces.
Collapse
Affiliation(s)
- Małgorzata Nattich-Rak
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Cracow, Poland;
| | - Marta Sadowska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Cracow, Poland;
| | - Zbigniew Adamczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Cracow, Poland;
| | - Teresa Basinska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Henryka Sienkiewicza 112, 90-363 Lodz, Poland; (T.B.); (D.M.); (M.G.)
| | - Damian Mickiewicz
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Henryka Sienkiewicza 112, 90-363 Lodz, Poland; (T.B.); (D.M.); (M.G.)
| | - Mariusz Gadzinowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Henryka Sienkiewicza 112, 90-363 Lodz, Poland; (T.B.); (D.M.); (M.G.)
| |
Collapse
|
16
|
Wang X, Zheng K, Wang Y, Hou X, He Y, Wang Z, Zhang J, Chen X, Liu X. Microplastics and viruses in the aquatic environment: a mini review. Front Microbiol 2024; 15:1433724. [PMID: 39021631 PMCID: PMC11251918 DOI: 10.3389/fmicb.2024.1433724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Microplastics (MPs) have been widely found in the environment and have exerted non-negligible impacts on the environment and human health. Extensive research has shown that MPs can act as carriers for viruses and interacts with them in various ways. Whether MPs influence the persistence, transmission and infectivity of virus has attracted global concern in the context of increasing MPs contamination. This review paper provides an overview of the current state of knowledge regarding the interactions between MPs and viruses in aquatic environments. Latest progress and research trends in this field are summarized based on literature analysis. Additionally, we discuss the potential risks posed by microplastic-associated viruses to human health and the environmental safety, highlighting that MPs can affect viral transmission and infectivity through various pathways. Finally, we underscores the need for further research to address key knowledge gaps, such as elucidating synergistic effects between MPs and viruses, understanding interactions under real environmental conditions, and exploring the role of biofilms in virus-MPs interactions. This review aims to contribute to a deeper understanding on the transmission of viruses in the context of increasing MPs pollution in water, and promote actions to reduce the potential risks.
Collapse
Affiliation(s)
- Xiuwen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Kaixin Zheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Yi Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Xin Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Yike He
- The Eighth Geological Brigade, Hebei Geological Prospecting Bureau, Qinhuangdao, China
- Marine Ecological Restoration and Smart Ocean Engineering Research Center of Hebei Province, Qinhuangdao, China
| | - Zhiyun Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Jiabo Zhang
- The Eighth Geological Brigade, Hebei Geological Prospecting Bureau, Qinhuangdao, China
- Marine Ecological Restoration and Smart Ocean Engineering Research Center of Hebei Province, Qinhuangdao, China
| | - Xiaochen Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
17
|
Goitom E, Ariano S, Gilbride K, Yang MI, Edwards EA, Peng H, Dannah N, Farahbakhsh F, Hataley E, Sarvi H, Sun J, Waseem H, Oswald C. Identification of environmental and methodological factors driving variability of Pepper Mild Mottle Virus (PMMoV) across three wastewater treatment plants in the City of Toronto. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172917. [PMID: 38701931 DOI: 10.1016/j.scitotenv.2024.172917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
PMMoV has been widely used to normalize the concentration of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA, influenza, and respiratory syncytial virus (RSV) to account for variations in the fecal content of wastewater. PMMoV is also used as an internal RNA recovery control for wastewater-based epidemiology (WBE) tests. While potentially useful for the interpretation of WBE data, previous studies have suggested that PMMoV concentration can be affected by various physico-chemical characteristics of wastewater. There is also the possibility that laboratory methods, particularly the variability in centrifugation steps to remove supernatant from pellets can cause PMMoV variability. The goal of this study is to improve our understanding of the main drivers of PMMoV variability by assessing the relationship between PMMoV concentration, the physico-chemical characteristics of wastewater, and the methodological approach for concentrating wastewater samples. We analyzed 24-hour composite wastewater samples collected from the influent stream of three wastewater treatment plants (WWTPs) located in the City of Toronto, Ontario, Canada. Samples were collected 3 to 5 times per week starting from the beginning of March 2021 to mid-July 2023. The influent flow rate was used to partition the data into wet and dry weather conditions. Physico-chemical characteristics (e.g., total suspended solids (TSS), biological oxygen demand (BOD), alkalinity, electrical conductivity (EC), and ammonia (NH3)) of the raw wastewater were measured, and PMMoV was quantified. Spatial and temporal variability of PMMoV was observed throughout the study period. PMMoV concentration was significantly higher during dry weather conditions. Multiple linear regression analysis demonstrates that the number and type of physico-chemical parameters that drive PMMoV variability are site-specific, but overall BOD and alkalinity were the most important predictors. Differences in PMMoV concentration for a single WWTP between two different laboratory methods, along with a weak correlation between pellet mass and TSS using one method may indicate that differences in sample concentration and subjective subsampling bias could alter viral recovery and introduce variability to the data.
Collapse
Affiliation(s)
- Eyerusalem Goitom
- Department of Geography & Environmental Studies, Toronto Metropolitan University, Canada
| | - Sarah Ariano
- Department of Geography & Environmental Studies, Toronto Metropolitan University, Canada; Department of Earth and Planetary Sciences, McGill University, Canada
| | - Kim Gilbride
- Department of Chemistry & Biology, Toronto Metropolitan University, Canada
| | - Minqing Ivy Yang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Canada; School of the Environment, University of Toronto, Canada
| | - Nora Dannah
- Department of Chemistry & Biology, Toronto Metropolitan University, Canada
| | - Farnaz Farahbakhsh
- Department of Chemistry & Biology, Toronto Metropolitan University, Canada
| | - Eden Hataley
- Department of Geography & Environmental Studies, Toronto Metropolitan University, Canada
| | - Hooman Sarvi
- Department of Chemistry & Biology, Toronto Metropolitan University, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Canada
| | - Hassan Waseem
- Department of Chemistry & Biology, Toronto Metropolitan University, Canada
| | - Claire Oswald
- Department of Geography & Environmental Studies, Toronto Metropolitan University, Canada.
| |
Collapse
|
18
|
Li Y, Wu B, Zhai X, Li Q, Fan C, Li YY, Sano D, Chen R. Removal of RNA viruses from swine wastewater using anaerobic membrane bioreactor: Performance and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134296. [PMID: 38643574 DOI: 10.1016/j.jhazmat.2024.134296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/22/2024] [Accepted: 04/10/2024] [Indexed: 04/23/2024]
Abstract
The effective removal of viruses from swine wastewater using anaerobic membrane bioreactor (AnMBR) is vital to ecological safety. However, most studies have focused only on disinfectants, whereas the capabilities of the treatment process have not been investigated. In this study, the performance and mechanism of an AnMBR in the removal of porcine hepatitis E virus (HEV), porcine kobuvirus (PKoV), porcine epidemic diarrhea virus (PEDV), and transmissible gastroenteritis coronavirus (TGEV) are systematically investigated. The results show that the AnMBR effectively removes the four viruses, with average removal efficiencies of 1.62, 3.05, 2.41, and 1.34 log for HEV, PKoV, PEDV and TGEV, respectively. Biomass adsorption contributes primarily to the total virus removal in the initial stage of reactor operation, with contributions to HEV and PKoV removal exceeding 71.7 % and 68.2 %, respectively. When the membrane is fouled, membrane rejection dominated virus removal. The membrane rejection contribution test shows the significant contribution of membrane pore foulants (23-76 %). Correlation analysis shows that the surface characteristics and size differences of the four viruses contribute primarily to their different effects on biomass adsorption and membrane rejection. This study provides technical guidance for viral removal during the treatment of high-concentration swine wastewater using an AnMBR.
Collapse
Affiliation(s)
- Yu Li
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Baolei Wu
- Vanke School of Public Health, Tsinghua University, Beijing 100008, PR China
| | - Xuanyu Zhai
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Qian Li
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China.
| | - Chenlong Fan
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| |
Collapse
|
19
|
Kadoya SS, Zhu Y, Chen R, Rong C, Li Y, Sano D. A soft-sensor approach for predicting an indicator virus removal efficiency of a pilot-scale anaerobic membrane bioreactor (AnMBR). JOURNAL OF WATER AND HEALTH 2024; 22:967-977. [PMID: 38935449 DOI: 10.2166/wh.2024.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 05/10/2024] [Indexed: 06/29/2024]
Abstract
The anaerobic membrane bioreactor (AnMBR) is a promising technology for not only water reclamation but also virus removal; however, the virus removal efficiency of AnMBR has not been fully investigated. Additionally, the removal efficiency estimation requires datasets of virus concentration in influent and effluent, but its monitoring is not easy to perform for practical operation because the virus quantification process is generally time-consuming and requires specialized equipment and trained personnel. Therefore, in this study, we aimed to identify the key, monitorable variables in AnMBR and establish the data-driven models using the selected variables to predict virus removal efficiency. We monitored operational and environmental conditions of AnMBR in Sendai, Japan and measured virus concentration once a week for six months. Spearman's rank correlation analysis revealed that the pH values of influent and mixed liquor suspended solids (MLSS) were strongly correlated with the log reduction value of pepper mild mottle virus, indicating that electrostatic interactions played a dominant role in AnMBR virus removal. Among the candidate models, the random forest model using selected variables including influent and MLSS pH outperformed the others. This study has demonstrated the potential of AnMBR as a viable option for municipal wastewater reclamation with high microbial safety.
Collapse
Affiliation(s)
- Syun-Suke Kadoya
- Department of Urban Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yifan Zhu
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Rong Chen
- Key Laboratory of Northwest Water Resource, Ecology and Environment, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Chao Rong
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yuyou Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Daisuke Sano
- Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan E-mail:
| |
Collapse
|
20
|
Li T, Liu R, Wang Q, Rao J, Liu Y, Dai Z, Gooneratne R, Wang J, Xie Q, Zhang X. A review of the influence of environmental pollutants (microplastics, pesticides, antibiotics, air pollutants, viruses, bacteria) on animal viruses. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133831. [PMID: 38402684 DOI: 10.1016/j.jhazmat.2024.133831] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/09/2024] [Accepted: 02/17/2024] [Indexed: 02/27/2024]
Abstract
Microorganisms, especially viruses, cause disease in both humans and animals. Environmental chemical pollutants including microplastics, pesticides, antibiotics sand air pollutants arisen from human activities affect both animal and human health. This review assesses the impact of chemical and biological contaminants (virus and bacteria) on viruses including its life cycle, survival, mutations, loads and titers, shedding, transmission, infection, re-assortment, interference, abundance, viral transfer between cells, and the susceptibility of the host to viruses. It summarizes the sources of environmental contaminants, interactions between contaminants and viruses, and methods used to mitigate such interactions. Overall, this review provides a perspective of environmentally co-occurring contaminants on animal viruses that would be useful for future research on virus-animal-human-ecosystem harmony studies to safeguard human and animal health.
Collapse
Affiliation(s)
- Tong Li
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Ruiheng Liu
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Qian Wang
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Jiaqian Rao
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Yuanjia Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhenkai Dai
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Qingmei Xie
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China.
| | - Xinheng Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China.
| |
Collapse
|
21
|
Ghosal M, Rakshit T, Bhattacharya S, Bhattacharyya S, Satpati P, Senapati D. E-Protein Protonation Titration-Induced Single-Particle Chemical Force Spectroscopy for Microscopic Understanding and pI Estimation of Infectious DENV. J Phys Chem B 2024; 128:3133-3144. [PMID: 38512319 DOI: 10.1021/acs.jpcb.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The ionization state of amino acids on the outer surface of a virus regulates its physicochemical properties toward the sorbent surface. Serologically different strains of the dengue virus (DENV) show different extents of infectivity depending upon their interactions with a receptor on the host cell. To understand the structural dependence of E-protein protonation over its sequence dependence, we have followed E-protein titration kinetics both experimentally and theoretically for two differentially infected dengue serotypes, namely, DENV-2 and DENV-4. We have performed E-protein protonation titration-induced single-particle chemical force spectroscopy using an atomic force microscope (AFM) to measure the surface chemistry of DENV in physiological aqueous solutions not only to understand the charge distribution dynamics on the virus surface but also to estimate the isoelectric point (pI) accurately for infectious dengue viruses. Cryo-EM structure-based theoretical pI calculations of the DENV-2 surface protein were shown to be consistent with the evaluated pI value from force spectroscopy measurements. We also highlighted here the role of the microenvironment around the titrable residues (in the 3D-folded structure of the protein) in altering the pKa. This is a comprehensive study to understand how the cumulative charge distribution on the outer surface of a specific serotype of DENV regulates a prominent role of infectivity over minute changes at the genetic level.
Collapse
Affiliation(s)
- Manorama Ghosal
- Chemical Sciences Division, Saha Institute of Nuclear Physics (SINP), A CI of Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, WB 700064, India
| | - Tatini Rakshit
- Department of Chemistry, School of Natural Sciences (SNS), Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP 201314, India
| | - Shreya Bhattacharya
- Computational Biology Lab, Department of Bioscience & Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Sankar Bhattacharyya
- NCR Biotech Science Cluster, Translational Health Science and Technology Institute (THSTI), Faridabad-Gurugram Expressway, PO Box 4, Faridabad-Gurugram HR-121001, India
| | - Priyadarshi Satpati
- Computational Biology Lab, Department of Bioscience & Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Dulal Senapati
- Chemical Sciences Division, Saha Institute of Nuclear Physics (SINP), A CI of Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, WB 700064, India
| |
Collapse
|
22
|
Heffron J, Samsami M, Juedemann S, Lavin J, Tavakoli Nick S, Kieke BA, Mayer BK. Mitigation of viruses of concern and bacteriophage surrogates via common unit processes for water reuse: A meta-analysis. WATER RESEARCH 2024; 252:121242. [PMID: 38342066 DOI: 10.1016/j.watres.2024.121242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/13/2024]
Abstract
Water reuse is a growing global reality. In regulating water reuse, viruses have come to the fore as key pathogens due to high shedding rates, low infectious doses, and resilience to traditional wastewater treatments. To demonstrate the high log reductions required by emerging water reuse regulations, cost and practicality necessitate surrogates for viruses for use as challenge organisms in unit process evaluation and monitoring. Bacteriophage surrogates that are mitigated to the same or lesser extent than viruses of concern are routinely used for individual unit process testing. However, the behavior of these surrogates over a multi-barrier treatment train typical of water reuse has not been well-established. Toward this aim, we performed a meta-analysis of log reductions of common bacteriophage surrogates for five treatment processes typical of water reuse treatment trains: advanced oxidation processes, chlorination, membrane filtration, ozonation, and ultraviolet (UV) disinfection. Robust linear regression was applied to identify a range of doses consistent with a given log reduction of bacteriophages and viruses of concern for each treatment process. The results were used to determine relative conservatism of surrogates. We found that no one bacteriophage was a representative or conservative surrogate for viruses of concern across all multi-barrier treatments (encompassing multiple mechanisms of virus mitigation). Rather, a suite of bacteriophage surrogates provides both a representative range of inactivation and information about the effectiveness of individual processes within a treatment train. Based on the abundance of available data and diversity of virus treatability using these five key water reuse treatment processes, bacteriophages MS2, phiX174, and Qbeta were recommended as a core suite of surrogates for virus challenge testing.
Collapse
Affiliation(s)
- Joe Heffron
- U.S. Department of Agriculture-Agricultural Research Service, Environmentally Integrated Dairy Management Research Unit, 2615 Yellowstone Dr., Marshfield, WI 54449, USA.
| | - Maryam Samsami
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 West Wisconsin Avenue, Milwaukee, WI 53233, USA
| | - Samantha Juedemann
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 West Wisconsin Avenue, Milwaukee, WI 53233, USA
| | - Jennifer Lavin
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 West Wisconsin Avenue, Milwaukee, WI 53233, USA
| | - Shadi Tavakoli Nick
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 West Wisconsin Avenue, Milwaukee, WI 53233, USA
| | - Burney A Kieke
- Marshfield Clinic Research Institute, Center for Clinical Epidemiology and Population Health, 1000 N Oak Ave., Marshfield, WI 54449, USA
| | - Brooke K Mayer
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 West Wisconsin Avenue, Milwaukee, WI 53233, USA
| |
Collapse
|
23
|
Zhang T, Wang Q, Yang Y, Hou L, Zheng W, Wu Z, Wang Z. Revealing the contradiction between DLVO/XDLVO theory and membrane fouling propensity for oil-in-water emulsion separation. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133594. [PMID: 38290334 DOI: 10.1016/j.jhazmat.2024.133594] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/06/2024] [Accepted: 01/20/2024] [Indexed: 02/01/2024]
Abstract
Oil fouling is the crucial issue for the separation of oil-in-water emulsion by membrane technology. The latest research found that the membrane fouling rate was opposite to the widely used theoretical prediction by Derjaguin-Landau-Verwey-Overbeek (DLVO) or extended DLVO (XDLVO) theory. To interpret the contradiction, the molecular dynamics was adopted to explore the molecular behavior of oil and emulsifier (Tween 80) at membrane interface with the assistance of DLVO/XDLVO theory and membrane fouling models. The decreased flux attenuation and fitting of fouling models proved that the existence of Tween 80 effectively alleviated membrane fouling. Conversely, DLVO/XDLVO theory predicted that the membrane fouling should be exacerbated with the increase of Tween 80 concentration in O/W emulsion. This contradiction originated from the different interaction energy between oil/Tween 80 molecules and polyether sulfone (PES) membrane. The favorable free energy of Tween 80 was resulted from the sulfuryl groups in PES and hydrogen bonds (O-H…O) formation further strengthened the interaction. Therefore, Tween 80 could preferentially adsorb on membrane surface and form an isolation layer by demulsification and steric hindrance and resist the aggregation of oil, which effectively alleviated membrane fouling. This study provided a new insight in the interpretation of interaction in O/W emulsion.
Collapse
Affiliation(s)
- Tong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qiaoying Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Yan Yang
- China South-to-North Water Diversion Corporation Limited, Beijing 100036, China
| | - Linxi Hou
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wenjia Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
24
|
Foster AR, Haas CN, Gerba CP, Pepper IL. Effectiveness of monochloramine for inactivation of coronavirus in reclaimed water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167634. [PMID: 37806580 DOI: 10.1016/j.scitotenv.2023.167634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Fecal shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by infected persons into wastewater was documented early during the COVID-19 pandemic, thereby stimulating inquiries into the effectiveness of municipal wastewater treatment processes for the reduction of infectious viruses. In wastewater treatment plants, free chlorine has traditionally been the disinfectant utilized due to its low cost and high efficacy. However, regulations limiting disinfection by-products have prompted a shift to chloramination in many areas of the United States. While studies regarding the effectiveness of free chlorine against many viral agents are abundant, the efficacy of monochloramine (NH2Cl) has been less well researched. This study aimed to determine the effectiveness of pre-formed monochloramine for disinfection of human coronavirus 229E (HCoV-229E) in both phosphate-buffered saline (PBS) and reclaimed water from a water reclamation plant in Tucson, Arizona. Reclaimed water was sampled over the course of six months (August 2020 to November 2020), and dosed with monochloramine at 3 mg/L. An additional 1 mg/L free ammonia was added to simulate the operational conditions of the treatment plant. Viability was determined using MRC-5 host cell monolayers, using the TCID50 assay method. An average Ct99.9 (concentration of disinfectant multiplied by the contact time to achieve a 99.9 % reduction of the target organism) of 176 mg*min/L monochloramine was determined. No significant difference in inactivation rate was observed between the dosed reclaimed water and phosphate buffered saline (PBS). These data indicate that monochloramine is an effective disinfectant for coronaviruses. They also indicate that the water matrix type did not significantly impact the disinfection efficacy of monochloramine against HCoV-229E in reclaimed wastewater compared to PBS.
Collapse
Affiliation(s)
- Aidan R Foster
- Water & Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ, USA.
| | - Charles N Haas
- Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA, USA.
| | - Charles P Gerba
- Water & Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ, USA.
| | - Ian L Pepper
- Water & Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
25
|
Heinrichs ME, Piedade GJ, Popa O, Sommers P, Trubl G, Weissenbach J, Rahlff J. Breaking the Ice: A Review of Phages in Polar Ecosystems. Methods Mol Biol 2024; 2738:31-71. [PMID: 37966591 DOI: 10.1007/978-1-0716-3549-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Bacteriophages, or phages, are viruses that infect and replicate within bacterial hosts, playing a significant role in regulating microbial populations and ecosystem dynamics. However, phages from extreme environments such as polar regions remain relatively understudied due to challenges such as restricted ecosystem access and low biomass. Understanding the diversity, structure, and functions of polar phages is crucial for advancing our knowledge of the microbial ecology and biogeochemistry of these environments. In this review, we will explore the current state of knowledge on phages from the Arctic and Antarctic, focusing on insights gained from -omic studies, phage isolation, and virus-like particle abundance data. Metagenomic studies of polar environments have revealed a high diversity of phages with unique genetic characteristics, providing insights into their evolutionary and ecological roles. Phage isolation studies have identified novel phage-host interactions and contributed to the discovery of new phage species. Virus-like particle abundance and lysis rate data, on the other hand, have highlighted the importance of phages in regulating bacterial populations and nutrient cycling in polar environments. Overall, this review aims to provide a comprehensive overview of the current state of knowledge about polar phages, and by synthesizing these different sources of information, we can better understand the diversity, dynamics, and functions of polar phages in the context of ongoing climate change, which will help to predict how polar ecosystems and residing phages may respond to future environmental perturbations.
Collapse
Affiliation(s)
- Mara Elena Heinrichs
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany
| | - Gonçalo J Piedade
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 't Horntje, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Ovidiu Popa
- Institute of Quantitative and Theoretical Biology Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | | | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Julia Weissenbach
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Janina Rahlff
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden.
- Aero-Aquatic Virus Research Group, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
26
|
Cantero M, Rodríguez-Espinosa MJ, Strobl K, Ibáñez P, Díez-Martínez A, Martín-González N, Jiménez-Zaragoza M, Ortega-Esteban A, de Pablo PJ. Atomic Force Microscopy of Viruses: Stability, Disassembly, and Genome Release. Methods Mol Biol 2024; 2694:317-338. [PMID: 37824011 DOI: 10.1007/978-1-0716-3377-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
In atomic force microscopy (AFM), the probe is a nanometric tip located at the end of a microcantilever which palpates the specimen under study as a blind person manages a walking stick. In this way, AFM allows obtaining nanometric resolution images of individual protein shells, such as viruses, in liquid milieu. Beyond imaging, AFM also enables not only the manipulation of single protein cages but also the evaluation of each physicochemical property which is able of inducing any measurable mechanical perturbation to the microcantilever that holds the tip. In this chapter, we start revising some recipes for adsorbing protein shells on surfaces and how the geometrical dilation of tips can affect to the AFM topographies. This work also deals with the abilities of AFM to monitor TGEV coronavirus under changing conditions of the liquid environment. Subsequently, we describe several AFM approaches to study cargo release, aging, and multilayered viruses with single indentation and fatigue assays. Finally, we comment on a combined AFM/fluorescence application to study the influence of crowding on GFP packed within individual P22 bacteriophage capsids.
Collapse
Affiliation(s)
- Miguel Cantero
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Jesús Rodríguez-Espinosa
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Klara Strobl
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo Ibáñez
- Department of Theoretical Physics of Condensed Matter, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alejandro Díez-Martínez
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Manuel Jiménez-Zaragoza
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alvaro Ortega-Esteban
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pedro José de Pablo
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain.
- Solid Condensed Matter Institute IFIMAC, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
27
|
Galbraith P, Henry R, McCarthy DT. Plants release, pathogens decease: Plants with documented antimicrobial activity are associated with Campylobacter and faecal indicator attenuation in stormwater biofilters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167474. [PMID: 37804974 DOI: 10.1016/j.scitotenv.2023.167474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/05/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
Stormwater biofilters demonstrate promising treatment of faecal microorganisms, however performance can vary with design and operational conditions. This study investigated whether plants with significant documented antimicrobial activity could improve faecal bacterial treatment within biofilters. Laboratory-scale biofilters (n = 30) were dosed with synthetic stormwater containing faecal bacteria Escherichia coli, Enterococcus faecalis and Campylobacter jejuni under south-eastern Australian climatic conditions. Systems vegetated with Melaleuca species, renowned for their in vitro antimicrobial activity, consistently enhanced removal of all tested culturable bacteria in total outflow and submerged zone water relative to other plant configurations. Within just 1-2 days of stormwater dosing, M. linariifolia submerged zones demonstrated significantly reduced bacterial concentrations compared to C. appressa (p = 0.023 and <0.001 for C. jejuni and E. coli, respectively), removing ∼1.47 log10 MPN/100 mL E. coli, ∼1.14 log10 MPN/100 mL E. faecalis and ∼0.81 log10 MPN/L C. jejuni from inflow. These trends continued even after all but one M. linariifolia replicate perished during an extended drying period (p = 0.002 and 0.003 for C. jejuni and E. coli, respectively). Through a systematic process of elimination, these observations were attributed to enhanced bacterial attenuation with elevated plant inhibitory activity. Cumulative biofilter age reinforced plant-mediated bacterial treatment (p = 0.023 for E. faecalis), ostensibly due to increased plant size/growth and net biological activity. Notably, E. coli and E. faecalis attenuation improved with prolonged antecedent drying length (14 vs. 4 days; p < 0.0001 for both), while the converse was observed for C. jejuni (not significant). This study addresses significant knowledge gaps around plant-mediated faecal microbe treatment within biofilters, providing key direction for real-world system design to optimise stormwater pathogen treatment.
Collapse
Affiliation(s)
- P Galbraith
- Department of Civil Engineering, Monash University, Wellington Road, Clayton, Victoria 3800, Australia; CSIRO Agriculture and Food, Building 10, 39 Kessels Rd, Coopers Plains, Queensland 4108, Australia
| | - R Henry
- Department of Civil Engineering, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - D T McCarthy
- School of Civil and Environmental Engineering, Queensland University of Technology, 2 George St, Brisbane City, Queensland 4000, Australia.
| |
Collapse
|
28
|
Canh VD, Nga TTV, Lien NT, Katayama H. Development of a simple and low-cost method using Moringa seeds for efficient virus concentration in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167101. [PMID: 37716673 DOI: 10.1016/j.scitotenv.2023.167101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Effective virus concentration methods are essential for detecting pathogenic viruses in environmental waters and play a crucial role in wastewater-based epidemiology. However, the current methods are often expensive, complicated, and time-consuming, which limits their practical application. In this study, a simple and low-cost method was developed using the extract of Moringa oleifera (MO) seeds (MO method) to recover both enveloped and non-enveloped viruses, including pepper mild mottle virus (PMMoV), murine norovirus (MNV), Aichivirus (AiV), murine hepatitis virus (MHV), and influenza A virus subtype H1N1[H1N1] in wastewater. The optimal conditions for the MO method were determined to be a concentration of MO extract at the UV280 value of 0.308 cm-1 and an elution buffer (0.05 M KH2PO4, 1 M NaCl, 0.1 % Tween80 [v/v]) for recovering the tested viruses in wastewater. Compared to other commonly used virus concentration methods such as InnovaPrep, HA, PEG, and Centricon, the MO method was found to be more efficient and cost-effective in recovering the tested viruses. Moreover, the MO method was successfully applied to detect various types of viruses (PMMoV, AiV, norovirus of genotype II [NoV II], enterovirus [EV], influenza A virus [matrix gene] [IAV], and SARS-CoV-2) in raw wastewater. Thus, the developed MO method could offer a simple, low-cost, and efficient tool to concentrate viruses in wastewater.
Collapse
Affiliation(s)
- Vu Duc Canh
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Tran Thi Viet Nga
- Faculty of Environmental Engineering, Hanoi University of Civil Engineering, 55 Giai Phong Road, Hai Ba Trung, Hanoi, Viet Nam
| | - Nguyen Thuy Lien
- Faculty of Environmental Engineering, Hanoi University of Civil Engineering, 55 Giai Phong Road, Hai Ba Trung, Hanoi, Viet Nam
| | - Hiroyuki Katayama
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
29
|
Di DYW, Li B, Jeon MK, Yan T. Comparing solid-based concentration methods for rapid and efficient recovery of SARS-CoV-2 for wastewater surveillance. J Virol Methods 2023; 320:114790. [PMID: 37558056 DOI: 10.1016/j.jviromet.2023.114790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/26/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
As wastewater-based surveillance of SARS-CoV-2 attracts interest globally, there is a need to evaluate and identify rapid and efficient methods for concentrating enveloped viruses in wastewater. When comparing five precipitation/flocculation-based concentration methods (including aluminum hydroxide adsorption-precipitation, AHAP; zinc acetate precipitation, ZAP; skimmed milk flocculation, SMF; FeCl3 precipitation, FCP; and direct centrifugation, DC), AHAP was found to be the most efficient method in terms of seeded BCoV recovery (50.2 %). Based on the BCoV recovery efficiency and turnaround time, the AHAP and DC methods were selected and tested on five additional wastewater samples containing both seeded BCoV and indigenous wastewater SARS-CoV-2 RNA. The BCoV recovery (DC: average=30.1 %, sx =14.7 %; AHAP: average=33.0 %, sx =14.2 %) and SARS-CoV-2 based on the N2 gene assay (DC: average=3.6 ×103 gene copies or GC/mL, sx =1.9 × 103 GC/mL; AHAP: average=3.0 ×103 GC/mL, sx =2.0 ×103 GC/mL) of both methods were not significantly different in solid fraction (p = 0.89). This study showed significant higher BCoV recovery and SARS-CoV-2 viral RNA in wastewater solid fraction (p = 0.006) than liquid fraction. Our result suggests that the solid fraction of wastewater samples is more suitable for recovering enveloped viruses from wastewater, and the DC and AHAP methods equally provide suitably rapid, cost-effective, and significantly higher recovery of SARS-CoV-2 viral RNA in wastewater samples.
Collapse
Affiliation(s)
- Doris Yoong Wen Di
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Bo Li
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Min Ki Jeon
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Tao Yan
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA; Water Resources Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| |
Collapse
|
30
|
Ouyang L, Wang N, Irudayaraj J, Majima T. Virus on surfaces: Chemical mechanism, influence factors, disinfection strategies, and implications for virus repelling surface design. Adv Colloid Interface Sci 2023; 320:103006. [PMID: 37778249 DOI: 10.1016/j.cis.2023.103006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
While SARS-CoV-2 is generally under control, the question of variants and infections still persists. Fundamental information on how the virus interacts with inanimate surfaces commonly found in our daily life and when in contact with the skin will be helpful in developing strategies to inhibit the spread of the virus. Here in, a critically important review of current understanding of the interaction between virus and surface is summarized from chemistry point-of-view. The Derjaguin-Landau-Verwey-Overbeek and extended Derjaguin-Landau-Verwey-Overbeek theories to model virus attachments on surfaces are introduced, along with the interaction type and strength, and quantification of each component. The virus survival and transfer are affected by a combination of biological, physical, and chemical parameters, as well as environmental parameters. The surface properties for virus and virus survival on typical surfaces such as metals, plastics, and glass are summarized. Attention is also paid to the transfer of virus to/from surfaces and skin. Typical virus disinfection strategies utilizing heat, light, chemicals, and ozone are discussed together with their disinfection mechanism. In the last section, design principles for virus repelling surface chemistry such as surperhydrophobic or surperhydrophilic surfaces are also introduced, to demonstrate how the integration of surface property control and advanced material fabrication can lead to the development of functional surfaces for mitigating the effect of viral infection upon contact.
Collapse
Affiliation(s)
- Lei Ouyang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Nan Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Joseph Irudayaraj
- Department of Bioengineering, College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Tetsuro Majima
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
31
|
Aguayo-Acosta A, Jiménez-Rodríguez MG, Silva-Lance F, Oyervides-Muñoz MA, Armenta-Castro A, de la Rosa O, Ovalle-Carcaño A, Melchor-Martínez EM, Aghalari Z, Parra-Saldívar R, Sosa-Hernández JE. Passive Sampler Technology for Viral Detection in Wastewater-Based Surveillance: Current State and Nanomaterial Opportunities. Viruses 2023; 15:1941. [PMID: 37766347 PMCID: PMC10537877 DOI: 10.3390/v15091941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Although wastewater-based surveillance (WBS) is an efficient community-wide surveillance tool, its implementation for pathogen surveillance remains limited by ineffective sample treatment procedures, as the complex composition of wastewater often interferes with biomarker recovery. Moreover, current sampling protocols based on grab samples are susceptible to fluctuant biomarker concentrations and may increase operative costs, often rendering such systems inaccessible to communities in low-to-middle-income countries (LMICs). As a response, passive samplers have emerged as a way to make wastewater sampling more efficient and obtain more reliable, consistent data. Therefore, this study aims to review recent developments in passive sampling technologies to provide researchers with the tools to develop novel passive sampling strategies. Although promising advances in the development of nanostructured passive samplers have been reported, optimization remains a significant area of opportunity for researchers in the area, as methods for flexible, robust adsorption and recovery of viral genetic materials would greatly improve the efficacy of WBS systems while making them more accessible for communities worldwide.
Collapse
Affiliation(s)
- Alberto Aguayo-Acosta
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.A.-A.); (M.A.O.-M.); (O.d.l.R.); (A.O.-C.); (E.M.M.-M.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Mildred G. Jiménez-Rodríguez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Fernando Silva-Lance
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Mariel Araceli Oyervides-Muñoz
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.A.-A.); (M.A.O.-M.); (O.d.l.R.); (A.O.-C.); (E.M.M.-M.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Arnoldo Armenta-Castro
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Orlado de la Rosa
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.A.-A.); (M.A.O.-M.); (O.d.l.R.); (A.O.-C.); (E.M.M.-M.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Antonio Ovalle-Carcaño
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.A.-A.); (M.A.O.-M.); (O.d.l.R.); (A.O.-C.); (E.M.M.-M.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Elda M. Melchor-Martínez
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.A.-A.); (M.A.O.-M.); (O.d.l.R.); (A.O.-C.); (E.M.M.-M.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Zahra Aghalari
- Faculty of Public Health, Babol University of Medical Sciences, Babol 47176-47754, Iran;
| | - Roberto Parra-Saldívar
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.A.-A.); (M.A.O.-M.); (O.d.l.R.); (A.O.-C.); (E.M.M.-M.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| | - Juan Eduardo Sosa-Hernández
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.A.-A.); (M.A.O.-M.); (O.d.l.R.); (A.O.-C.); (E.M.M.-M.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.G.J.-R.); (F.S.-L.); (A.A.-C.)
| |
Collapse
|
32
|
Martins da Silva AY, Arouche TDS, Siqueira MRS, Ramalho TC, de Faria LJG, Gester RDM, Carvalho Junior RND, Santana de Oliveira M, Neto AMDJC. SARS-CoV-2 external structures interacting with nanospheres using docking and molecular dynamics. J Biomol Struct Dyn 2023; 42:9892-9907. [PMID: 37712854 DOI: 10.1080/07391102.2023.2252930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Coronavirus is caused by the SARS-CoV-2 virus has shown rapid proliferation and scarcity of treatments with proven effectiveness. In this way, we simulated the hospitalization of carbon nanospheres, with external active sites of the SARS-CoV-2 virus (M-Pro, S-Gly and E-Pro), which can be adsorbed or inactivated when interacting with the nanospheres. The computational procedures performed in this work were developed with the SwissDock server for molecular docking and the GROMACS software for molecular dynamics, making it possible to extract relevant data on affinity energy, distance between molecules, free Gibbs energy and mean square deviation of atomic positions, surface area accessible to solvents. Molecular docking indicates that all ligands have an affinity for the receptor's active sites. The nanospheres interact favorably with all proteins, showing promising results, especially C60, which presented the best affinity energy and RMSD values for all protein macromolecules investigated. The C60 with E-Pro exhibited the highest affinity energy of -9.361 kcal/mol, demonstrating stability in both molecular docking and molecular dynamics simulations. Our RMSD calculations indicated that the nanospheres remained predominantly stable, fluctuating within a range of 2 to 3 Å. Additionally, the analysis of other structures yielded promising results that hold potential for application in other proteases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anderson Yuri Martins da Silva
- Laboratory for the Preparation and Computation of Nanomaterials (LPCN), Federal University of Pará, Belem, Brazil
- Graduated in Chemical Engineering, ITEC, Federal University of Pará, Belém, Brazil
- Postgraduate Program in Chemical Engineering, ITEC, Federal University of Pará, Belém, Brazil
| | - Tiago da Silva Arouche
- Laboratory for the Preparation and Computation of Nanomaterials (LPCN), Federal University of Pará, Belem, Brazil
- Graduated in Chemical Engineering, ITEC, Federal University of Pará, Belém, Brazil
| | | | - Teodorico Castro Ramalho
- Postgraduate Program in Engineering of Natural Resources of the Amazon, ITEC, Federal University of Pará, Belém, Brazil
| | | | - Rodrigo do Monte Gester
- Institute of Exact Sciences (ICE), Federal University of the South and Southeast of Pará, Maraba, Brazil
| | - Raul Nunes de Carvalho Junior
- Postgraduate Program in Chemical Engineering, ITEC, Federal University of Pará, Belém, Brazil
- Postgraduate Program in Engineering of Natural Resources of the Amazon, ITEC, Federal University of Pará, Belém, Brazil
- Faculty of Food Engineering ITEC, Federal University of Pará, Belém, Brazil
| | | | - Antonio Maia de Jesus Chaves Neto
- Laboratory for the Preparation and Computation of Nanomaterials (LPCN), Federal University of Pará, Belem, Brazil
- Graduated in Chemical Engineering, ITEC, Federal University of Pará, Belém, Brazil
- Postgraduate Program in Chemical Engineering, ITEC, Federal University of Pará, Belém, Brazil
- National Professional Master's in Physics Teaching, Federal University of Pará, Belém, Brazil
- Museu Paraense Emílio Goeldi, Diretoria, Coordenação de Botânica, Rua Augusto Corrêa, Belém, Brazil
| |
Collapse
|
33
|
Roldan-Hernandez L, Boehm AB. Adsorption of Respiratory Syncytial Virus, Rhinovirus, SARS-CoV-2, and F+ Bacteriophage MS2 RNA onto Wastewater Solids from Raw Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13346-13355. [PMID: 37647137 PMCID: PMC10501194 DOI: 10.1021/acs.est.3c03376] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
Despite the widespread adoption of wastewater surveillance, more research is needed to understand the fate and transport of viral genetic markers in wastewater. This information is essential for optimizing monitoring strategies and interpreting wastewater surveillance data. In this study, we examined the solid-liquid partitioning behavior of four viruses in wastewater: SARS-CoV-2, respiratory syncytial virus (RSV), rhinovirus (RV), and F+ coliphage/MS2. We used two approaches: (1) laboratory partitioning experiments using lab-grown viruses and (2) distribution experiments using endogenous viruses in raw wastewater. Partition experiments were conducted at 4 and 22 °C. Wastewater samples were spiked with varying concentrations of each virus, solids and liquids were separated via centrifugation, and viral RNA concentrations were quantified using reverse-transcription-digital droplet PCR (RT-ddPCR). For the distribution experiments, wastewater samples were collected from six wastewater treatment plants and processed without spiking exogenous viruses; viral RNA concentrations were measured in wastewater solids and liquids. In both experiments, RNA concentrations were higher in the solid fraction than the liquid fraction by approximately 3-4 orders of magnitude. Partition coefficients (KF) ranged from 2000-270,000 mL·g-1 across viruses and temperature conditions. Distribution coefficients (Kd) were consistent with results from partitioning experiments. Further research is needed to understand how virus and wastewater characteristics might influence the partitioning of viral genetic markers in wastewater.
Collapse
Affiliation(s)
- Laura Roldan-Hernandez
- Department of Civil &
Environmental Engineering, School of Engineering and Doerr School
of Sustainability, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| | - Alexandria B. Boehm
- Department of Civil &
Environmental Engineering, School of Engineering and Doerr School
of Sustainability, Stanford University, 473 Via Ortega, Stanford, California 94305, United States
| |
Collapse
|
34
|
Do Nascimento J, Bichet M, Challant J, Loutreul J, Petinay S, Perrotte D, Roman V, Cauvin E, Robin M, Ladeiro MP, La Carbona S, Blin JL, Gantzer C, Geffard A, Bertrand I, Boudaud N. Toward better monitoring of human noroviruses and F-specific RNA bacteriophages in aquatic environments using bivalve mollusks and passive samplers: A case study. WATER RESEARCH 2023; 243:120357. [PMID: 37549447 DOI: 10.1016/j.watres.2023.120357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/09/2023]
Abstract
Monitoring pathogenic enteric viruses in continental and marine water bodies is essential to control the viral contamination of human populations. Human Noroviruses (NoV) are the main enteric viruses present in surface waters and foodstuff. In a context of global change, it is currently a challenge to improve the management of viral pollutions in aquatic environments and thereby limit the contamination of vulnerable water bodies or foodstuffs. The aim of this study is to evaluate the potential of specific accumulation systems for improving the detection of NoV in water bodies, compared to direct water analyses. Passive samplers (Zetapor filters) and three species of bivalve molluscan shellfish (BMS) (Dreissena polymorpha, Mytilus edulis and Crassostreas gigas) were used as accumulation systems to determine their performance in monitoring continental and marine waters for viruses. F-specific RNA bacteriophages (FRNAPH) were also analyzed since they are described as indicators of NoV hazard in many studies. During a one-year study in a specific area frequently affected by fecal pollution, twelve campaigns of exposure of passive samplers and BMS in continental and coastal waters were conducted. Using suitable methods, NoV (genome) and FRNAPH (infectious and genome) were detected in these accumulation systems and in water at the same time points to determine the frequency of detection but also to gain a better understanding of viral pollution in this area. The reliability of FRNAPH as a NoV indicator was also investigated. Our results clearly showed that BMS were significantly better than passive samplers and direct water analyses for monitoring NoV and FRNAPH contamination in water bodies. A dilution of viral pollution between the continental and the coastal area was observed and can be explained by the distance from the source of the pollution. Viral pollution is clearly greater during the winter period, and stakeholders should take this into consideration in their attempts to limit the contamination of food and water. A significant correlation was once again shown between NoV and FRNAPH genomes in BMS, confirming the reliability of FRNAPH as a NoV indicator. Moreover, a strong correlation was observed between NoV genomes and infectious FRNAPH, suggesting recent viral pollution since infectious particles had not been inactivated at sufficient levels in the environment. More generally, this study shows the value of using BMS as an active method for improving knowledge on the behavior of viral contamination in water bodies, the ranking of the contamination sources, and the vulnerability of downstream water bodies.
Collapse
Affiliation(s)
- Julie Do Nascimento
- Université de Reims Champagne-Ardenne, UMR-I 02 SEBIO, F-51687 Reims, France
| | - Marion Bichet
- Actalia, Food Safety Department, F-50000 Saint-Lô, France; LCPME, UMR 7564, CNRS, Université de Lorraine, F-54000 Nancy, France
| | - Julie Challant
- LCPME, UMR 7564, CNRS, Université de Lorraine, F-54000 Nancy, France
| | - Julie Loutreul
- Actalia, Food Safety Department, F-50000 Saint-Lô, France
| | | | | | - Véronica Roman
- LCPME, UMR 7564, CNRS, Université de Lorraine, F-54000 Nancy, France
| | - Elodie Cauvin
- LABEO Manche, Virology Department, F-50000 Saint-Lô, France
| | - Maëlle Robin
- Actalia, Food Safety Department, F-50000 Saint-Lô, France
| | | | | | | | | | - Alain Geffard
- Université de Reims Champagne-Ardenne, UMR-I 02 SEBIO, F-51687 Reims, France
| | - Isabelle Bertrand
- LCPME, UMR 7564, CNRS, Université de Lorraine, F-54000 Nancy, France
| | | |
Collapse
|
35
|
Matveeva M, Lefebvre M, Chahinian H, Yahi N, Fantini J. Host Membranes as Drivers of Virus Evolution. Viruses 2023; 15:1854. [PMID: 37766261 PMCID: PMC10535233 DOI: 10.3390/v15091854] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The molecular mechanisms controlling the adaptation of viruses to host cells are generally poorly documented. An essential issue to resolve is whether host membranes, and especially lipid rafts, which are usually considered passive gateways for many enveloped viruses, also encode informational guidelines that could determine virus evolution. Due to their enrichment in gangliosides which confer an electronegative surface potential, lipid rafts impose a first control level favoring the selection of viruses with enhanced cationic areas, as illustrated by SARS-CoV-2 variants. Ganglioside clusters attract viral particles in a dynamic electrostatic funnel, the more cationic viruses of a viral population winning the race. However, electrostatic forces account for only a small part of the energy of raft-virus interaction, which depends mainly on the ability of viruses to form a network of hydrogen bonds with raft gangliosides. This fine tuning of virus-ganglioside interactions, which is essential to stabilize the virus on the host membrane, generates a second level of selection pressure driven by a typical induced-fit mechanism. Gangliosides play an active role in this process, wrapping around the virus spikes through a dynamic quicksand-like mechanism. Viruses are thus in an endless race for access to lipid rafts, and they are bound to evolve perpetually, combining speed (electrostatic potential) and precision (fine tuning of amino acids) under the selective pressure of the immune system. Deciphering the host membrane guidelines controlling virus evolution mechanisms may open new avenues for the design of innovative antivirals.
Collapse
Affiliation(s)
| | | | | | | | - Jacques Fantini
- Department of Biology, Faculty of Medicine, University of Aix-Marseille, INSERM UMR_S 1072, 13015 Marseille, France; (M.M.); (M.L.); (H.C.); (N.Y.)
| |
Collapse
|
36
|
Bernardy C, Malley J. Virus Behavior after UV 254 Treatment of Materials with Different Surface Properties. Microorganisms 2023; 11:2157. [PMID: 37764001 PMCID: PMC10535119 DOI: 10.3390/microorganisms11092157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
The COVID-19 pandemic highlighted the limitations in scientific and engineering understanding of applying germicidal UV to surfaces. This study combines surface characterization, viral retention, and the related UV dose response to evaluate the effectiveness of UV254 as a viral inactivation technology on five surfaces: aluminum, ceramic, Formica laminate, PTFE and stainless steel. Images of each surface were determined using SEM (Scanning Electron Microscopy), which produced a detailed characterization of the surfaces at a nanometer scale. From the SEM images, the surface porosity of each material was calculated. Through further analysis, it was determined that surface porosity, surface roughness, contact angle, and zeta potential correlate to viral retention on the material. The imaging revealed that the aluminum surface, after repeated treatment, is highly oxidized, increasing surface area and surface porosity. These interactions are important as they prevent the recovery of MS-2 without exposure to UV254. The dose response curve for PTFE was steeper than ceramic, Formica laminate and stainless steel, as inactivation to the detection limit was achieved at 25 mJ/cm2. These findings are consistent with well-established literature indicating UV reflectivity of PTFE is maximized. Statistical testing reinforced that the efficacy of UV254 for surface inactivation varies by surface type.
Collapse
Affiliation(s)
| | - James Malley
- Department of Civil and Environmental Engineering, College of Engineering & Physical Sciences, University of New Hampshire, Durham, NH 03824, USA;
| |
Collapse
|
37
|
Shan LP, Hu Y, Hu L, Liu HW, Liu L, Chen J. Involvement of Microplastics in the Conflict Between Host Immunity Defense and Viral Virulence: Promoting the Susceptibility of Shrimp to WSSV Infection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11634-11642. [PMID: 37498082 DOI: 10.1021/acs.est.3c01566] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
As the concentration of microplastics/microspheres (MPs) in coastal and estuarine regions increases, the likelihood of disease outbreaks and epidemics also rises. Our study investigated the impact of polyvinyl chloride MPs (PVC-MPs) on white spot syndrome virus (WSSV) infection in shrimp. The results revealed that PVC-MPs obviously increased WSSV replication in vivo, leading to a high mortality rate among the larvae and facilitating the horizontal transmission of WSSV. Furthermore, the data of WSSV loads detected together with qPCR, agarose gel electrophoresis, and flow cytometry approaches indicated that PVC-MPs could interact with the virus to prolong survival and maintain the virulence of WSSV at different temperatures and pH values. In terms of host resistance, metabolomics and transcriptomics analysis demonstrated that exposure to PVC-MPs upregulated metabolic concentrations and gene expressions associated with phospholipid metabolism that were associated with innate immunity responses. Particularly, PVC-MPs stimulated the synthesis of phosphatidylcholine (PC) and induced lipid peroxidation. The inhibition of PC on Stimulator of Interferon Genes (STING) translocation from the endoplasmic reticulum to the Golgi apparatus reduces expression of the innate immunity genes (IFN-like genes Vago4 and Vago5) regulated by STING signaling pathways, resulting in a significant decrease in the shrimp's resistance to WSSV infection. Notably, a recovery operation in which the exposed larvae were transferred to a MPs-free aquatic environment led to decreased WSSV infectivity over time, indicating the restoration of antiviral properties in shrimp. Overall, these findings highlight that MPs promote shrimp susceptibility to WSSV in two aspects: host immune defense and viral virulence.
Collapse
Affiliation(s)
- Li-Peng Shan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo 315832, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo 315832, China
| | - Yang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo 315832, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo 315832, China
| | - Ling Hu
- Ningbo Academy of Inspection and Quarantine, Ningbo 315000, China
| | - Han-Wei Liu
- Ningbo Customs District Technology Center, Ningbo 315100, China
| | - Lei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo 315832, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo 315832, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo 315832, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo 315832, China
| |
Collapse
|
38
|
Zeng L, Li J, Lv M, Li Z, Yao L, Gao J, Wu Q, Wang Z, Yang X, Tang G, Qu G, Jiang G. Environmental Stability and Transmissibility of Enveloped Viruses at Varied Animate and Inanimate Interfaces. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2023; 1:15-31. [PMID: 37552709 PMCID: PMC11504606 DOI: 10.1021/envhealth.3c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 08/10/2023]
Abstract
Enveloped viruses have been the leading causative agents of viral epidemics in the past decade, including the ongoing coronavirus disease 2019 outbreak. In epidemics caused by enveloped viruses, direct contact is a common route of infection, while indirect transmissions through the environment also contribute to the spread of the disease, although their significance remains controversial. Bridging the knowledge gap regarding the influence of interfacial interactions on the persistence of enveloped viruses in the environment reveals the transmission mechanisms when the virus undergoes mutations and prevents excessive disinfection during viral epidemics. Herein, from the perspective of the driving force, partition efficiency, and viral survivability at interfaces, we summarize the viral and environmental characteristics that affect the environmental transmission of viruses. We expect to provide insights for virus detection, environmental surveillance, and disinfection to limit the spread of severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Li Zeng
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Junya Li
- College
of Sciences, Northeastern University, Shenyang 110819, China
| | - Meilin Lv
- College
of Sciences, Northeastern University, Shenyang 110819, China
| | - Zikang Li
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Linlin Yao
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Gao
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environment, Hangzhou Institute for Advanced
Study, UCAS, Hangzhou 310000, China
| | - Qi Wu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environment, Hangzhou Institute for Advanced
Study, UCAS, Hangzhou 310000, China
| | - Ziniu Wang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyue Yang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Tang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbo Qu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environment, Hangzhou Institute for Advanced
Study, UCAS, Hangzhou 310000, China
- Institute
of Environment and Health, Jianghan University, Wuhan 430056, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environment, Hangzhou Institute for Advanced
Study, UCAS, Hangzhou 310000, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
39
|
Liu F, Rittmann B, Kuthari S, Zhang W. Viral inactivation using microwave-enhanced membrane filtration. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131966. [PMID: 37399721 DOI: 10.1016/j.jhazmat.2023.131966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/05/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
Pathogenic viruses (e.g., Enteroviruses, Noroviruses, Rotaviruses, and Adenovirus) present in wastewater, even at low concentrations, can cause serious waterborne diseases. Improving water treatment to enhance viral removal is of paramount significance, especially given the COVID-19 pandemic. This study incorporated microwave-enabled catalysis into membrane filtration and evaluated viral removal using a model bacteriophage (MS2) as a surrogate. Microwave irradiation effectively penetrated the PTFE membrane module and enabled surface oxidation reactions on the membrane-coated catalysts (i.e., BiFeO3), which thus elicited strong germicidal effects via local heating and radical formation as reported previously. A log removal of 2.6 was achieved for MS2 within a contact time as low as 20 s using 125-W microwave irradiation with the initial MS2 concentration of 105 PFU∙mL-1. By contrast, almost no inactivation could be achieved without microwave irradiation. COMSOL simulation indicates that the catalyst surface could be heated up to 305 oC with 125-W microwave irradiation for 20 s and also analyzed microwave penetration into catalyst or water film layers. This research provides new insights to the antiviral mechanisms of this microwave-enabled catalytic membrane filtration.
Collapse
Affiliation(s)
- Fangzhou Liu
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, NJ, USA
| | - Bruce Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Saachi Kuthari
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, NJ, USA; Millburn High School, Short Hills, NJ, USA
| | - Wen Zhang
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, NJ, USA.
| |
Collapse
|
40
|
Bastin G, Gantzer C, Schvoerer E, Sautrey G. The presence of RNA cargo is suspected to modify the surface hydrophobicity of the MS2 phage. Virology 2023; 585:139-144. [PMID: 37343460 DOI: 10.1016/j.virol.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
The surface hydrophobicity of native or engineered non-enveloped viruses and virus-like particles (VLPs) is a key parameter regulating their fate in living and artificial aqueous systems. Its modulation is mainly depending on the structure and environment of particles. Nevertheless, unexplained variations have been reported between structurally similar viruses and with pH. This indicates that some modulating factors of their hydrophobicity remain to be identified. Herein we investigate the potential involvement of RNA cargo in the MS2 phage used as non-enveloped RNA virus model, by examining the SDS-induced electrophoretic mobility shift (SEMS) determined for native MS2 virions and corresponding RNA-free VLPs at various pH. Interestingly, the SEMS of VLPs was larger and more variable from pH 5 to 9 compared to native virions. These observations are discussed in term of RNA-dependent changes in surface hydrophobicity, suggesting that RNA cargo may be a major modulator/regulator of this viral parameter.
Collapse
Affiliation(s)
| | | | - Evelyne Schvoerer
- Université de Lorraine, CNRS, LCPME, F-54000, Nancy, France; Laboratoire de Virologie - Microbiologie, Hôpital Universitaire de Nancy, F-54500, Vandœuvre-lès-Nancy, France.
| | | |
Collapse
|
41
|
Pan L, Liu X, Fan D, Qian Z, Sun X, Wu P, Zhong L. Study of Oncolytic Virus Preservation and Formulation. Pharmaceuticals (Basel) 2023; 16:843. [PMID: 37375789 DOI: 10.3390/ph16060843] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, oncolytic viruses (OVs) have emerged as an effective means of treating cancer. OVs have multiple oncotherapeutic functions including specifically infecting and lysing tumor cells, initiating immune cell death, attacking and destroying tumor angiogenesis and triggering a broad bystander effect. Oncolytic viruses have been used in clinical trials and clinical treatment as drugs for cancer therapy, and as a result, oncolytic viruses are required to have long-term storage stability for clinical use. In the clinical application of oncolytic viruses, formulation design plays a decisive role in the stability of the virus. Therefore, this paper reviews the degradation factors and their degradation mechanisms (pH, thermal stress, freeze-thaw damage, surface adsorption, oxidation, etc.) faced by oncolytic viruses during storage, and it discusses how to rationally add excipients for the degradation mechanisms to achieve the purpose of maintaining the long-term stability of oncolytic viral activity. Finally, the formulation strategies for the long-term formulation stability of oncolytic viruses are discussed in terms of buffers, permeation agents, cryoprotectants, surfactants, free radical scavengers, and bulking agent based on virus degradation mechanisms.
Collapse
Affiliation(s)
- Lina Pan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Dianfa Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Zhangbo Qian
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Xinjun Sun
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
42
|
Ochirbat E, Zbonikowski R, Sulicka A, Bończak B, Bonarowska M, Łoś M, Malinowska E, Hołyst R, Paczesny J. Heteroaggregation of virions and microplastics reduces the number of active bacteriophages in aqueous environments. JOURNAL OF ENVIRONMENTAL QUALITY 2023; 52:665-677. [PMID: 36785877 DOI: 10.1002/jeq2.20459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/24/2023] [Indexed: 05/06/2023]
Abstract
The objective of this study is to explore the effects of microplastics on the viability of the bacteriophages in an aqueous environment. Bacteriophages (phages), that is, viruses of bacteria, are essential in homeostasis. It is estimated that phages cause up to 40% of the death of all bacteria daily. Any factor affecting phage activity is vital for the whole food chain and the ecology of numerous niches. We hypothesize that the number of active phages decreases due to the virions' adsorption on microplastic particles or by the released leachables from additives used in the production of plastic, for example, stabilizers, plasticizers, colorants, and reinforcements. We exposed three diverse phages, namely, T4 (tailed), MS2 (icosahedral), and M13 (filamentous), to 1 mg/mL suspension of 12 industrial-grade plastics [acrylonitrile butadiene styrene, high-impact polystyrene, poly-ε-caproamide, polycarbonate, polyethylene, polyethylene terephthalate, poly(methyl methacrylate), polypropylene, polystyrene, polytetrafluoroethylene, polyurethane, and polyvinyl chloride] shredded to obtain microparticles of radius ranging from 2 to 50 μm. The effect of leachables was measured upon exposure of phages not to particles themselves but to the buffer preincubated with microplastics. A double-overlay plaque counting method was used to assess phage titers. We employed a classical linear regression model to verify which physicochemical parameters (65 variables were tested) govern the decrease of phage titers. The key finding is that adsorption mechanisms result in up to complete scavenging of virions, whereas leachables deactivate up to 50% of phages. This study reveals microplastic pollution's plausible and unforeseen ecotoxicological effect causing phage deactivation. Moreover, phage transmission through adsorption can alter the balance of the food chain in the new environment. The effect depends mainly on the zeta potentials of the polymers and the phage type.
Collapse
Affiliation(s)
- Enkhlin Ochirbat
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Rafał Zbonikowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Sulicka
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Chemistry, The Chair of Medical Biotechnology, Warsaw University of Technology, Warsaw, Poland
| | - Bartłomiej Bończak
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Marcin Łoś
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
- Phage Consultants, Gdańsk, Poland
| | - Elżbieta Malinowska
- Faculty of Chemistry, The Chair of Medical Biotechnology, Warsaw University of Technology, Warsaw, Poland
- CEZAMAT, Warsaw University of Technology, Warsaw, Poland
| | - Robert Hołyst
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
43
|
Yasui M, Ikner L, Yonetani T, Liu M, Katayama H. Effects of surface hydrophobicity on the removal of F-specific RNA phages from reclaimed water by coagulation and ceramic membrane microfiltration. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2304-2314. [PMID: 37186632 PMCID: wst_2023_133 DOI: 10.2166/wst.2023.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Microfiltration (MF) has been widely adopted as an advanced treatment process to reduce suspended solids and turbidity in treated wastewater effluents designated for potable reuse. Although microfilter pores are much larger than viruses, the addition of a coagulant upstream of a microfilter system can achieve stable virus removal. Ceramic membranes have a narrow pore size distribution to achieve the high removal of contaminants. This study aims to evaluate virus log reduction using bench-scale coagulation and ceramic membrane MF. To investigate the effects of differences in net surface hydrophobicity, 18 sewage-derived F-specific RNA phages (FRNAPHs) were used for batch hydrophobicity and coagulation-MF tests. The capability of bench-scale coagulation and ceramic membrane MF under continuous automated long-term operation was tested to remove the lab reference strain MS2 and three selected FRNAPH isolates which varied by surface property. Median virus log reduction values (LRVs) exceeding 6.2 were obtained for all three isolates and MS2. Although coagulation and hydrophobicity were positively correlated, the virus isolate demonstrating the lowest level of hydrophobicity and coagulation (genogroup I) still exhibited a high LRV. Thus, coagulation and ceramic membrane MF systems may serve as viable options for virus removal during water reclamation and advanced treatment.
Collapse
Affiliation(s)
- Midori Yasui
- Department of Urban Engineering, The University of Tokyo, Tokyo, Japan E-mail:
| | - Luisa Ikner
- Department of Environmental Science, The University of Arizona, Tucson, AZ, USA
| | | | - Miaomiao Liu
- Department of Urban Engineering, The University of Tokyo, Tokyo, Japan E-mail:
| | - Hiroyuki Katayama
- Department of Urban Engineering, The University of Tokyo, Tokyo, Japan E-mail:
| |
Collapse
|
44
|
Singh V, Morgan BA, Schertel A, Dolovich M, Xing Z, Thompson MR, Cranston ED. Internal microstructure of spray dried particles affects viral vector activity in dry vaccines. Int J Pharm 2023; 640:122988. [PMID: 37121491 DOI: 10.1016/j.ijpharm.2023.122988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/02/2023]
Abstract
To maintain the activity of sensitive biologics during encapsulation by spray drying, a better understanding of deactivation pathways in dried particles is necessary. The effect of solid-air interfaces within dried particles on viral deactivation was examined with three binary excipient blends, mannitol/dextran (MD), xylitol/dextran (XD), and lactose/trehalose (LT). Particles encapsulating human serotype 5 adenovirus viral vector (AdHu5) were produced via both spray drying and acoustic levitation. The particles' internal microstructure was directly visualized, and the location of a viral vector analogue was spatially mapped within the particles by volume imaging using focused ion beam sectioning and scanning electron microscopy. The majority of the viral vector analogue was found at, or near, the solid-air interfaces. Peclet number and crystallization kinetics governed the internal microstructure of the particles: XD particles with minimal internal voids retained the highest viral activity, followed by MD particles with a few large voids, and finally LT particles with numerous internal voids exhibited the lowest viral activity. Overall, AdHu5 activity decreased as the total solid-air interfacial area increased (as quantified by nitrogen sorption). Along with processing losses, this work highlights the importance of surface area within particles as an indicator of activity losses for dried biologics.
Collapse
Affiliation(s)
- Varsha Singh
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada L8S 4L7
| | - Blair A Morgan
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada L8S 4L7
| | | | - Myrna Dolovich
- Firestone Aerosol Laboratory, St. Joseph's Healthcare, Hamilton, Ontario, Canada, L8N 4A6
| | - Zhou Xing
- McMaster Immunology Research Centre and Department of Medicine, McMaster University, Ontario, Canada L8N 4L7
| | - Michael R Thompson
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada L8S 4L7
| | - Emily D Cranston
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada L8S 4L7; Department of Wood Science, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, Canada V6T IZ4; Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia, Canada V6T 1Z3.
| |
Collapse
|
45
|
Maciel C, Silva NFD, Teixeira P, Magalhães JMCS. Development of a Novel Phagomagnetic-Assisted Isothermal DNA Amplification System for Endpoint Electrochemical Detection of Listeria monocytogenes. BIOSENSORS 2023; 13:bios13040464. [PMID: 37185539 PMCID: PMC10136355 DOI: 10.3390/bios13040464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023]
Abstract
The hitherto implemented Listeria monocytogenes detection techniques are cumbersome or require expensive non-portable instrumentation, hindering their transposition into on-time surveillance systems. The current work proposes a novel integrated system resorting to loop-mediated isothermal amplification (LAMP), assisted by a bacteriophage P100-magnetic platform, coupled to an endpoint electrochemical technique, towards L. monocytogenes expeditious detection. Molybdophosphate-based optimization of the bacterial phagomagnetic separation protocol allowed the determination of the optimal parameters for its execution (pH 7, 25 °C, 32 µg of magnetic particles; 60.6% of specific capture efficiency). The novel LAMP method targeting prfA was highly specific, accomplishing 100% inclusivity (for 61 L. monocytogenes strains) and 100% exclusivity (towards 42 non-target Gram-positive and Gram-negative bacteria). As a proof-of-concept, the developed scheme was successfully validated in pasteurized milk spiked with L. monocytogenes. The phagomagnetic-based approach succeeded in the selective bacterial capture and ensuing lysis, triggering Listeria DNA leakage, which was efficiently LAMP amplified. Methylene blue-based electrochemical detection of LAMP amplicons was accomplished in 20 min with remarkable analytical sensitivity (1 CFU mL-1). Hence, the combined system presented an outstanding performance and robustness, providing a 2.5 h-swift, portable, cost-efficient detection scheme for decentralized on-field application.
Collapse
Affiliation(s)
- Cláudia Maciel
- Laboratório Associado, Escola Superior de Biotecnologia, CBQF-Centro de Biotecnologia e Química Fina, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Nádia F D Silva
- REQUIMTE/LAQV, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Paula Teixeira
- Laboratório Associado, Escola Superior de Biotecnologia, CBQF-Centro de Biotecnologia e Química Fina, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Júlia M C S Magalhães
- REQUIMTE/LAQV, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| |
Collapse
|
46
|
Plaza-Garrido A, Ampuero M, Gaggero A, Villamar-Ayala CA. Norovirus, Hepatitis A and SARS-CoV-2 surveillance within Chilean rural wastewater treatment plants based on different biological treatment typologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160685. [PMID: 36476771 PMCID: PMC9721186 DOI: 10.1016/j.scitotenv.2022.160685] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 05/10/2023]
Abstract
During the COVID-19 pandemic, wastewater from WWTPs became an interesting source of epidemiological surveillance. However, there is uncertainty about the influence of treatment type on virus removal. The aim of this study was to assess viral surveillance within wastewater treatment plants (WWTPs) based on different biological treatments. Seasonal monitoring (autumn-winter and spring-summer) was conducted in 10 Chilean rural WWTPs, which were based on activated sludge, aerated lagoons, bio-discs, constructed wetlands, vermifilters and mixed systems. Viruses were measured (influent/effluent) by the RT-qPCR technique, using a commercial kit for SARS-CoV-2, NoV GI, NoV GII, and HAV. The detection of SARS-CoV-2 viral variants by genotyping was performed using SARS-CoV-2 Mutation Assays (ThermoFisher Scientific, USA). JC polyomavirus detection (control), as well as a qPCR technique. Results showed that SARS-CoV-2, NoV GI and GII were detected in influents at values between <5 and 462, 0 to 28, and 0 to 75 GC/mL, respectively. HAV was not detected among the studied WWTPs. The monitored WWTPs removed these viruses at percentages between 0 and 100 %. WWTPs based on activated sludge with bio-discs demonstrated to be the most efficient at removing SARS-CoV-2 (up to 98 %) and NoV GI and GII (100 %). Meanwhile, bio-discs technologies were the least efficient for viral removal, due to biofilm detachment, which could also adsorb viral aggregates. A correlation analysis established that solids, pH, and temperature are the most influential parameters in viral removal. Wastewater-based surveillance at WWTP allowed for the detection of Omicron before the Chilean health authorities notified its presence in the population. In addition, surveillance of viruses and other microorganisms could help assess the potential public health risk of wastewater recycling.
Collapse
Affiliation(s)
- Angela Plaza-Garrido
- Departamento de Ingeniería en Obras Civiles, Facultad de Ingeniería, Universidad Santiago de Chile (USACH), Av. Victor Jara 3659, Estación Central, Santiago, Chile
| | - Manuel Ampuero
- Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Aldo Gaggero
- Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile.
| | - Cristina Alejandra Villamar-Ayala
- Departamento de Ingeniería en Obras Civiles, Facultad de Ingeniería, Universidad Santiago de Chile (USACH), Av. Victor Jara 3659, Estación Central, Santiago, Chile.
| |
Collapse
|
47
|
Ten Bosch A. Modeling transport and filtration of nanoparticle suspensions in porous media. Phys Rev E 2023; 107:034121. [PMID: 37073066 DOI: 10.1103/physreve.107.034121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/08/2023] [Indexed: 04/20/2023]
Abstract
Recently membrane filters have gained in significance due to the need to provide protection against airborne pollution. A question of importance, and some controversy, is the efficiency of filters for small nanoparticles with diameters below 100 nm as these are considered particularly dangerous due to possible penetration into the lungs. The efficiency is measured by the number of particles blocked by the pore structure after passing though the filter. To study the penetration into pores by nanoparticles suspended in a fluid, a stochastic transport theory based on an atomistic model is used to calculate particle density and flow within the pores, resulting pressure gradient, and filter efficiency. The importance of pore size relative to particle diameter and of the parameters of the pore wall interactions are investigated. The theory is applied to aerosols in fibrous filters and found to reproduce common trends in measurements. As particles enter the initially empty pores on relaxation to the steady state the small penetration measured at the onset of filtration increases faster in time the smaller the nanoparticle diameter. Control of pollution by filtration is achieved by strong repulsion of pore walls for particle diameters greater than twice the effective pore width. For smaller nanoparticles the steady-state efficiency decreases as the pore wall interactions weaken. Effective efficiency is increased when the suspended nanoparticles inside the pores combine into clusters of sizes greater than the filter channel width.
Collapse
Affiliation(s)
- A Ten Bosch
- Centre National de Recherche Scientifique, Parc Valrose, 06108 Nice, France
| |
Collapse
|
48
|
Ahmed W, Bivins A, Korajkic A, Metcalfe S, Smith WJM, Simpson SL. Comparative analysis of Adsorption-Extraction (AE) and Nanotrap® Magnetic Virus Particles (NMVP) workflows for the recovery of endogenous enveloped and non-enveloped viruses in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160072. [PMID: 36356768 PMCID: PMC10823496 DOI: 10.1016/j.scitotenv.2022.160072] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
In this study, two virus concentration methods, namely Adsorption-Extraction (AE) and Nanotrap® Magnetic Virus Particles (NMVP) along with commercially available extraction kits were used to quantify endogenous pepper mild mottle virus (PMMoV) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in nucleic acid extracted from 48 wastewater samples collected over six events from eight wastewater treatment plants (WWTPs). The main aim was to determine which workflow (i.e., concentration and extraction methods) produces greater concentrations of endogenous PMMoV and SARS-CoV-2 gene copies (GC) in comparison with each other. Turbidity and total suspended solids (TSS) of wastewater samples within and among the eight WWTPs were highly variable (41-385 NTU and 77-668 mg/L TSS). In 58 % of individual wastewater samples, the log10 GC concentrations of PMMoV were greater by NMVP workflow compared to AE workflow. Paired measurements of PMMoV GC/10 mL from AE and NMVP across all 48 wastewater samples were weakly correlated (r = 0.455, p = 0.001) and demonstrated a poor linear relationship (r2 = 0.207). The log10 GC concentrations of SARS-CoV-2 in 69 % of individual samples were greater by AE workflow compared to NMVP workflow. In contrast to PMMoV, the AE and NMVP derived SARS-CoV-2 GC counts were strongly correlated (r = 0.859, p < 0.001) and demonstrated a strong linear relationship (r2 = 0.738). In general, the PMMoV GC achieved by the NMVP workflow decreased with increasing turbidity, but the PMMoV GC by the AE workflow did not appear to be as sensitive to either turbidity or TSS levels. These findings suggest that wastewater sample turbidity or suspended solids concentration, and the intended target for analysis should be considered when validating an optimal workflow for wastewater surveillance of viruses.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Aaron Bivins
- Department of Civil and Environmental Engineering, Louisiana State University, 3255 Patrick F. Taylor Hall, Baton Rouge, LA 70803, USA
| | - Asja Korajkic
- United States Environmental Protection Agency, 26W Martin Luther King Jr. Drive, Cincinnati, OH 45268, USA
| | - Suzanne Metcalfe
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Wendy J M Smith
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | | |
Collapse
|
49
|
Ren Z, Cao H, Desmond P, Liu B, Ngo HH, He X, Li G, Ma J, Ding A. Ions play different roles in virus removal caused by different NOMs in UF process: Removal efficiency and mechanism analysis. CHEMOSPHERE 2023; 313:137644. [PMID: 36577454 DOI: 10.1016/j.chemosphere.2022.137644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
In this study, we investigated the effect of different compositions of aquatic natural organic matter (NOM) and ions on virus removal by ultrafiltration (UF). MS2 bacteriophage was used as a surrogate. Humic acid (HA) improved the MS2 removal rate from 1.95 ± 0.09 LRV to 2.40 ± 0.03 LRV at the HA dosage of 9 mg/L through the combined mechanisms of size exclusion, electrostatic repulsion and hydrophobicity. MS2 removal rate further increased to 3.10 ± 0.05 LRV by 10 mmol/L Na+ dosage and 3.19 ± 0.12 LRV by Ca2+ 1 mmol/L in the HA-containing UF system. Size exclusion turned into the dominant virus removal mechanism according to the results of the fouling model fitting and the weakening of electrostatic repulsion and hydrophobicity. The complexation of Ca2+ also played a role in MS2 removal based on the analysis of interaction force. MS2 removal rate by bovine serum albumin (BSA) was poor, which was 2.07 ± 0.06 LRV at the BSA dosage of 9 mg/L. Hydrophobicity was greatly reduced and the dominant virus removal mechanisms were size exclusion and electrostatic repulsion. 10 mmol/L Na+ in the presence of BSA deteriorated MS2 removal rate to 2.02 ± 0.07 LRV by the weakening of electrostatic repulsion, hydrophobicity and size exclusion. Electrostatic repulsion severely decreased by 1 mmol/L Ca2+ and the enhanced adsorption barrier represented competitive adsorption of Ca2+ by BSA and MS2 contributed for MS2 removal further decline (1.99 ± 0.05 LRV). Complex components in water will have different effects on virus removal due to their properties and interactions. This study can provide references for selecting more efficient water treatment methods according to the different compositions of raw water in actual water treatment applications during the UF process. Moreover, the retention of virus by UF can be predicted based on our study results.
Collapse
Affiliation(s)
- Zixiao Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Haiyan Cao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Peter Desmond
- Institute of Environmental Engineering (ISA), RWTH Aachen University, 52056, Aachen, Germany
| | - Bingsheng Liu
- China Construction Third Bureau Green Industry Investment Co., Ltd., Wuhan, 430072, China
| | - Huu Hao Ngo
- Faculty of Engineering, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW, 2007, Australia
| | - Xu He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - An Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
50
|
Surface characterization of alkane viral anchoring films prepared by titanate-assisted organosilanization. Colloids Surf B Biointerfaces 2023; 222:113136. [PMID: 36641873 DOI: 10.1016/j.colsurfb.2023.113136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/26/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
Studies of virus adsorption on surfaces with optimized properties have attracted a lot of interest, mainly due to the influence of the surface in the retention, orientation and stability of the viral capsids. Besides, viruses in whole or in parts can be used as cages or vectors in different areas, such as biomedicine and materials science. A key requirement for virus nanocage application is their physical properties, i.e. their mechanical response and the distribution of surface charge, which determine virus-substrate interactions and stability. In the present work we show two examples of viruses exhibiting strong surface interactions on homogeneous hydrophobic surfaces. The surfaces were prepared by titanate assisted organosilanization, a sol-gel spin coating process, followed by a mild annealing step. We show by surface and interface spectroscopies that the process allows trapping triethoxy-octylsilane (OCTS) molecules, exhibiting a hydrophobic alkane rich surface finishing. Furthermore, the surfaces remain flat and behave as more efficient sorptive surfaces for virus particles than mica or graphite (HOPG). Also, we determine by atomic force microscopy (AFM) the mechanical properties of two types of viruses (human adenovirus and reovirus) and compare the results obtained on the OCTS functionalized surfaces with those obtained on mica and HOPG. Finally, the TIPT+OCTS surfaces were validated as platforms for the morphological and mechanical characterization of virus particles by using adenovirus as initial model and using HOPG and mica as standard control surfaces. Then, the same characteristics were determined on reovirus using TIPT+OCTS and HOPG, as an original contribution to the catalogue of physical properties of viral particles.
Collapse
|