1
|
Torres-Franco AF, Leroy-Freitas D, García-Encina PA, Muñoz R. Viral RNA reduction from wastewaters using microalgae-based treatments: Elucidating the effect of light and zero-valent iron nanoparticles. BIORESOURCE TECHNOLOGY 2025; 427:132389. [PMID: 40089032 DOI: 10.1016/j.biortech.2025.132389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/23/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
Microalgae-based systems can potentially inactivate E. coli and viruses. In this work, batch algal-bacterial photobioreactors were operated to elucidate the effect of zero-valent iron (ZVI) nanoparticles and light intensity on the reduction of viral RNA (MS2, Phi6 and Bovine coronavirus, BCoV) and uidA gene (E. coli) during secondary wastewater treatment. Biodegradation and abiotic control photoreactors were operated at high light intensity (1100 µE m-2 s-1), with and without ZVI-nanoparticles addition (HLNP and HL) and low light intensity (450 µE m-2 s-1), without nanoparticles (LL). After 72 h, HLNP matched or increased the reductions of at least 99.9 % for viruses and 99 % for uidA achieved within 192 h in HL and LL. Oxidative reactions in the presence of ZVI-nanoparticles seemed to mediate the decay of viral RNA and uidA. This work demonstrated for the first time the potential for enhanced reduction of viral RNA and E. coli by ZVI-nanoparticles during microalgae-based wastewater treatment.
Collapse
Affiliation(s)
- Andrés F Torres-Franco
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| | - Deborah Leroy-Freitas
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| | - Pedro A García-Encina
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| | - Raúl Muñoz
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| |
Collapse
|
2
|
Waldman P, Fraisse A, Tran ML, Perelle S, Martin-Latil S. Seasonal surveillance of various pathogenic viruses in wastewater using a high-throughput PCR system and comparison of two concentration methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 978:179362. [PMID: 40250234 DOI: 10.1016/j.scitotenv.2025.179362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/18/2025] [Accepted: 04/04/2025] [Indexed: 04/20/2025]
Abstract
In recent years, the analysis of viruses in wastewater has become a recognized method to monitor the circulation of pathogenic viruses within the populations. This non-invasive and integrated approach is all the more strategic as many viral pathogens can be released in sewage. There is currently no standard method for the virological analysis of wastewater, and various protocols have been developed to concentrate and detect viruses in this matrix. This study aims to develop a high-throughput qPCR detection system to describe the occurrence of 30 human enteric and respiratory viruses in influent and effluent wastewater samples collected in the Paris area during two periods in 2023. The influence of the concentration method (ultracentrifugation or aluminium hydroxide adsorption-precipitation) for the recovery of viruses from wastewater samples was also investigated. The ultracentrifugation-based method allowed a higher viral recovery (4.95-100 % versus 0.77-33 % for the precipitation-based method), especially in effluent waters. The PCR array revealed the presence of many pathogenic viruses, with marked seasonal variations mainly for respiratory viruses. This system is particularly suitable for the rapid, sensitive, and specific detection of multiple viruses in wastewater.
Collapse
Affiliation(s)
- Prunelle Waldman
- Université Paris-Est, Anses, Laboratory for Food Safety, Enteric Viruses Unit, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France.
| | - Audrey Fraisse
- Université Paris-Est, Anses, Laboratory for Food Safety, Enteric Viruses Unit, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France
| | - Mai-Lan Tran
- Université Paris-Est, Anses, Laboratory for Food Safety, IdentyPath, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France
| | - Sylvie Perelle
- Université Paris-Est, Anses, Laboratory for Food Safety, Enteric Viruses Unit, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France
| | - Sandra Martin-Latil
- Université Paris-Est, Anses, Laboratory for Food Safety, Enteric Viruses Unit, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort Cedex, France.
| |
Collapse
|
3
|
Länsivaara A, Palmroth M, Kaarela O, Hyöty H, Oikarinen S, Lehto KM. Virus detection in influent, activated sludge, and effluent from municipal wastewater treatment plants using composite and grab samples in Finland. ENVIRONMENTAL RESEARCH 2025; 279:121776. [PMID: 40324624 DOI: 10.1016/j.envres.2025.121776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 04/15/2025] [Accepted: 05/03/2025] [Indexed: 05/07/2025]
Abstract
Wastewater-based surveillance has been commonly used as a monitoring tool for public health. Also, viruses present in wastewater can pose a health risk. In this study, we screened enterovirus, rhinovirus, norovirus GI and GII, pan-adenovirus, and gastroenteritis-causing adenovirus F40/41 in different wastewater sample types using reverse transcription quantitative polymerase chain reaction and quantitative polymerase chain reaction. We analyzed composite influent samples (N = 22), grab influent samples (N = 20), composite effluent samples (N = 78), grab effluent samples (N = 21), and activated sludge samples (N = 34) collected from six municipal wastewater treatment plants in the Pirkanmaa region of Finland. We detected the viruses in the influent to discover if they had the potential to be monitored using wastewater-based surveillance. In addition, we studied viruses in effluent and activated sludge to detect viruses that persisted in treatment processes. Furthermore, all sample types were compared to discover differences in the viral contents of different wastewater sample types. We detected all the studied viruses in influent, while in activated sludge, we detected enterovirus, pan-adenovirus, and adenovirus F40/41, and in effluent enterovirus, norovirus GI and GII, pan-adenovirus, and adenovirus F40/41 were identified. In addition, the relative amount of all the viruses was the highest in the influent. Our study also showed that composite sampling was a more representative and sensitive method for virus monitoring in wastewater than grab sampling, as the relative amount of the viruses present in composite samples was higher than in grab samples. Since we found abundant viruses in effluent, further studies are required to assess their infectivity and potential health risks as environmental pollutants.
Collapse
Affiliation(s)
- Annika Länsivaara
- Faculty of Medicine and Health Technology, Tampere University, P.O. Box 541, FI-33014, Tampere, Finland
| | - Marja Palmroth
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33014, Tampere, Finland
| | - Outi Kaarela
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33014, Tampere, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, P.O. Box 541, FI-33014, Tampere, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, P.O. Box 541, FI-33014, Tampere, Finland.
| | - Kirsi-Maarit Lehto
- Faculty of Medicine and Health Technology, Tampere University, P.O. Box 541, FI-33014, Tampere, Finland; Faculty of Veterinary Medicine, University of Helsinki, Helsingin Yliopisto, P.O. Box 66, FI-00014, Helsinki, Finland
| |
Collapse
|
4
|
Liang Z, Xu C, Zhou X, Huang X, Zhang X. Deciphering the virucidal potential of hydroxyl radical during ozonation: Implications for waterborne virus inactivation. WATER RESEARCH 2025; 272:122982. [PMID: 39719797 DOI: 10.1016/j.watres.2024.122982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024]
Abstract
The heightened public health risks associated with viral contamination in water have led to a strong emphasis on effective disinfection strategies. Ozone is a potent disinfectant widely employed for the inactivation of pathogens, yet comprehensive reports detailing the virucidal efficacy of hydroxyl radical (•OH) generated during ozonation are limited. The present research meticulously deciphered the role and influencing factors of •OH during ozone disinfection processes, elucidating how •OH enhanced ozone-mediated virus inactivation from both kinetic and molecular biological perspectives. The inactivation rate constants of ozone-derived •OH for Phi6 (9.67 × 1010 M-1 s-1) and PhiX174 (3.85 × 1010 M-1 s-1) were 4-5 orders of magnitude higher than those of ozone molecules. At 20 °C and pH 7.0, the contribution of •OH to the reduction of viral infectivity has been quantified as ranging from 11.3 % to 52.7 %. The yield of •OH increased notably as pH rose from 6.0 to 8.0, which was the principal cause for the accelerated apparent virus inactivation rates by ozone. An elevation in temperature (10-30 °C) had a negligible impact on •OH yield but facilitated virus removal by enhancing the reactivity of oxidants with viral particles. The damage inflicted on the viral genome by •OH vastly surpassed that caused by ozone, with the log reduction in gene copies in the presence of •OH being 297-343 % higher than the effect observed with ozone alone. The potential interaction sites of ozone and •OH with viral genetic material were predicted using Density Functional Theory static calculations and further compared. The present research offers comprehensive insights into the inactivation capabilities and underlying mechanisms of •OH for the effective control of waterborne viruses, establishing a theoretical foundation for employing the advanced oxidation properties of ozone-derived •OH in developing innovative water disinfection strategies.
Collapse
Affiliation(s)
- Zhiting Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Key Laboratory of Microorganism Application and Risk Control (Ministry of Ecology and Environment), School of Environment, Tsinghua University, Beijing 100084, China
| | - Chenyang Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Key Laboratory of Microorganism Application and Risk Control (Ministry of Ecology and Environment), School of Environment, Tsinghua University, Beijing 100084, China
| | - Xirui Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Key Laboratory of Microorganism Application and Risk Control (Ministry of Ecology and Environment), School of Environment, Tsinghua University, Beijing 100084, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Key Laboratory of Microorganism Application and Risk Control (Ministry of Ecology and Environment), School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Key Laboratory of Microorganism Application and Risk Control (Ministry of Ecology and Environment), School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Malla B, Shrestha S, Sthapit N, Hirai S, Raya S, Rahmani AF, Angga MS, Siri Y, Ruti AA, Haramoto E. Evaluation of plasmid pBI143 for its optimal concentration methods, seasonal impact, and potential as a normalization parameter in wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178661. [PMID: 39893813 DOI: 10.1016/j.scitotenv.2025.178661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
Plasmid pBI143, abundant in the human gut, is a promising human-specific fecal marker. However, studies on its optimal concentration methods, seasonal variations, and potential as a normalization parameter for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), remain limited. Among the three concentration methods compared, polyethylene glycol (PEG) precipitation and centrifugation demonstrated comparable efficiencies (9.3 ± 0.6 and 9.2 ± 0.6 log10 copies/L, respectively; n = 8 each), outperforming membrane filtration (8.0 ± 0.6 log10 copies/L; n = 8). PEG precipitation was further applied to quantify pBI143, together with other human-specific fecal markers (crAssphage and pepper mild mottle virus (PMMoV)), in 52 wastewater samples collected weekly over a one year from a wastewater treatment plant in Yamanashi Prefecture, Japan, by quantitative polymerase chain reaction. The higher pBI143 concentrations (9.6 ± 0.5 log10 copies/L) compared to PMMoV (8.2 ± 0.2 log10 copies/L) and crAssphage (8.0 ± 0.2 log10 copies/L) highlighted its potential as a robust marker for human fecal contamination. Unlike PMMoV and crAssphage that remained stable across seasons, pBI143 showed seasonal fluctuations, especially during summer and autumn, suggesting its greater sensitivity to environmental conditions. The study evaluated the suitability of pBI143, crAssphage, and PMMoV for normalizing SARS-CoV-2 concentrations in wastewater; however, non-normalized SARS-CoV-2 concentrations showed the highest correlation with COVID-19 cases (ρ = 0.74), whereas normalization reduced this correlation (PMMoV-normalized, ρ = 0.72; crAssphage-normalized, ρ = 0.70; and pBI143-normalized, ρ = 0.50), likely due to differences in the persistence and structural properties of the markers, indicating that these markers are less effective for SARS-CoV-2 normalization. This study underscores the promising utility of pBI143 in wastewater surveillance but highlights the need for further research across diverse regions to validate its applicability.
Collapse
Affiliation(s)
- Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sadhana Shrestha
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Niva Sthapit
- Department of Civil and Environmental Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Soichiro Hirai
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sunayana Raya
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Aulia Fajar Rahmani
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Made Sandhyana Angga
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Yadpiroon Siri
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Annisa Andarini Ruti
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| |
Collapse
|
6
|
Girón-Guzmán I, Falcó I, Cuevas-Ferrando E, Ballesteros S, Barranquero R, Sánchez G. Survival of viruses in water microcosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178416. [PMID: 39818153 DOI: 10.1016/j.scitotenv.2025.178416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/04/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
Human enteric viruses and emerging viruses such as severe acute respiratory syndrome coronavirus 2, influenza virus and monkeypox virus, are frequently detected in wastewater. Human enteric viruses are highly persistent in water, but there is limited information available for non-enteric viruses. The present study evaluated the stability of hepatitis A virus (HAV), murine norovirus (MNV), influenza A virus H3N2 (IAV H3N2), human coronavirus (HCoV) 229E, and vaccinia virus (VACV) in reference water (RW), effluent wastewater (EW) and drinking water (DW) under refrigeration and room temperature conditions. The decay of infectious viruses was analyzed using a monophasic decay model, which largely showed that human enteric viruses exhibit remarkable persistence in water samples. MNV infectivity decreased significantly after 14 days in EW at room temperature compared to 84 days under refrigerated conditions, with decay rates of 0.230 log TCID50/day at room temperature and 0.040 log TCID50/day under refrigeration. A gradual decline in HAV infectivity was observed at room temperature, whereas at refrigerated temperature, infectious viruses were recovered even after 98 days. HCoV-229E, IAV H3N2 and VACV were completely inactivated in DW and EW at room temperature between 7 and 21 days, with longer stability observed under refrigeration. The decay of IAV H3N2, HCoV-229E and VACV in EW and DW was also assessed in parallel using RT-qPCR to determine genome persistence and viability PCR to determine intact viral capsid persistence. Overall, our results suggest that viability PCR is not suitable for tracking virus decay in water under real-world environmental conditions.
Collapse
Affiliation(s)
- Inés Girón-Guzmán
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Irene Falcó
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain; Department of Microbiology and Ecology, University of Valencia, C/ Doctor Moliner, 50, 46100 Burjassot, Valencia, Spain.
| | - Enric Cuevas-Ferrando
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Sandra Ballesteros
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Regino Barranquero
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Gloria Sánchez
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain.
| |
Collapse
|
7
|
Wagner JPS, Rech MF, Prandi BA, Franco AC, Rigotto C, Horn F. Epidemiological monitoring of sewage sludge and wastewater from an upflow anaerobic sludge blanket reactor using SARS-CoV-2 as a model. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2025; 91:333-343. [PMID: 40018894 DOI: 10.2166/wst.2025.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 01/15/2025] [Indexed: 03/01/2025]
Abstract
This study explores the potential of sludge-based monitoring from an upflow anaerobic sludge blanket reactor for epidemiological surveillance, using SARS-CoV-2 as a model. We monitored SARS-CoV-2 copy numbers and mutations, and compared concentrations in sludge to concentrations in wastewater samples taken on the same days. From January to August 2021, 32 sludge samples were analyzed; 30 (93%) were positive for SARS-CoV-2, and copy numbers varied from 0.147 to 2.314 copies ×106/L. In wastewater samples collected on the same days, 31 (96%) were positive for SARS-CoV-2, and copy numbers ranged from 0.058 to 3.014 copies ×106/L. The concentration of SARS-CoV-2 in the sludge rose along with confirmed hospitalization cases in March, while wastewater SARS-CoV-2 concentrations rose 2 weeks earlier along with numbers of new confirmed cases. Mutations of variants of concern, Gamma and Delta, were identified in sludge samples in the same months that they became dominant in the corresponding regions. Our results indicate that, although monitoring of sewage sludge was not effective in anticipating infection numbers, it is a promising way to gain insight into the epidemiological situation in a city or region.
Collapse
Affiliation(s)
- João Pedro Stepan Wagner
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, Porto Alegre 90650-001, Brasil
| | - Maria Fernanda Rech
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, Porto Alegre 90650-001, Brasil
| | - Bruno Aschidamini Prandi
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brasil
| | - Ana Cláudia Franco
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brasil
| | - Caroline Rigotto
- Departamento de Virologia, Instituto de Ciências da Saúde, Laboratório de Microbiologia Molecular Universidade Feevale, Novo Hamburgo 93525-075, Brasil E-mail:
| | - Fabiana Horn
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, Porto Alegre 90650-001, Brasil
| |
Collapse
|
8
|
Cheshomi N, Alum A, Smith MF, Lim ES, Conroy-Ben O, Abbaszadegan M. Viral concentration method biases in the detection of viral profiles in wastewater. Appl Environ Microbiol 2025; 91:e0133924. [PMID: 39641602 PMCID: PMC11784009 DOI: 10.1128/aem.01339-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Viral detection methodologies used for wastewater-based epidemiology (WBE) studies have a broad range of efficacies. The complex matrix and low viral particle load in wastewater emphasize the importance of the concentration method. This study focused on comparing three commonly used virus concentration methods: polyethylene glycol precipitation (PEG), immuno-magnetic nanoparticles (IMNP), and electronegative membrane filtration (EMF). Influent and effluent wastewater samples were processed by the methods and analyzed by DNA/RNA quantification and sequencing for the detection of human viruses. SARS-COV-2, Astrovirus, and Hepatitis C virus were detected by all the methods in both sample types. PEG precipitation resulted in the detection of 20 types of viruses in influent and 16 types in effluent samples. The corresponding number of virus types detected was 21 and 11 for IMNP, and 16 and 8 for EMF. Certain viruses were unique to only one concentration method. For example, PEG detected three types of viruses in influent and six types in effluent compared to IMNP, which detected seven types in influent and one type in effluent samples. However, the EMF method appeared to be the least effective, detecting three types in influent and none in effluent samples. Rotavirus was detected in influent sample using IMNP method, whereas EMF and PEG methods failed to yield a similar outcome. Consequently, the potential false negative results pose a risk to the credibility of WBE applications. Therefore, implementation of a proper concentration technique is critical to minimize method biases and ensure accurate viral profiling in WBE studies.IMPORTANCEIn recent years, significant research efforts have been focused on the development of viral detection methodology for wastewater-based epidemiology studies, showing a range of variability in detection efficacies. A proper methodology is essential for an appropriate evaluation of disease prevalence and community health in such studies and necessitates designing a concentration method based on the target pathogenic virus. There remains a need for comparative performance evaluations of methods in the context of detection efficiencies. This study highlights the significant impact of sample matrix, viral structure, and nucleic acid composition on the efficacy of viral concentration methods. Assessing WBE techniques to ensure accurate detection and understanding of viral presence within wastewater samples is critical for revealing viral profiles in municipality wastewater samples.
Collapse
Affiliation(s)
- Naeema Cheshomi
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
- Water and Environmental Technology Center, Arizona State University, Tempe, Arizona, USA
| | - Absar Alum
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
- Water and Environmental Technology Center, Arizona State University, Tempe, Arizona, USA
| | - Matthew F. Smith
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Efrem S. Lim
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Otakuye Conroy-Ben
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
| | - Morteza Abbaszadegan
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
- Water and Environmental Technology Center, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
9
|
Farmer-Diaz K, Matthew-Bernard M, Cheetham S, Mitchell K, Macpherson CNL, Ramos-Nino ME. Optimized Aluminum Hydroxide Adsorption-Precipitation for Improved Viral Detection in Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:148. [PMID: 40003374 PMCID: PMC11855335 DOI: 10.3390/ijerph22020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/31/2024] [Accepted: 01/21/2025] [Indexed: 02/27/2025]
Abstract
Wastewater-based epidemiology (WBE) is a valuable tool for monitoring pathogen spread in communities; however, current protocols mainly target non-enveloped viruses. This study addresses the need for standardized methods to detect both enveloped and non-enveloped viruses by testing four aluminum hydroxide adsorption-precipitation techniques. Wastewater samples were spiked with an enveloped virus surrogate (Φ6 bacteriophage) and a non-enveloped virus surrogate (MS2 coliphage), and viral recovery was assessed using reverse-transcription quantitative PCR (RT-qPCR). The highest recovery for the enveloped virus was achieved with AlCl3 at pH 3.5, a 15 min flocculation time, and a 3% elution solution concentration. For the non-enveloped virus, optimal recovery was found with AlCl3 at pH 6.0, no flocculation time, and a 10% elution solution. The best method for recovering both virus types used AlCl3 at pH 6.0, 15 min flocculation, and a 3% elution solution concentration. This study shows that while optimal conditions vary between virus types, a standardized AlCl3 flocculation protocol can efficiently recover both, providing a cost-effective approach for outbreak monitoring in Grenada.
Collapse
Affiliation(s)
- Karla Farmer-Diaz
- Department of Microbiology, Immunology, and Pharmacology, School of Medicine, St. George’s University, St George P.O Box 7, Grenada; (K.F.-D.); (M.M.-B.)
| | - Makeda Matthew-Bernard
- Department of Microbiology, Immunology, and Pharmacology, School of Medicine, St. George’s University, St George P.O Box 7, Grenada; (K.F.-D.); (M.M.-B.)
| | - Sonia Cheetham
- Department of Pathobiology, School of Veterinary Medicine, St. George’s University, St George P.O Box 7, Grenada;
| | - Kerry Mitchell
- Department of Public Health and Preventive Medicine, School of Medicine, St. George’s University, St George P.O Box 7, Grenada;
| | | | - Maria E. Ramos-Nino
- Department of Microbiology, Immunology, and Pharmacology, School of Medicine, St. George’s University, St George P.O Box 7, Grenada; (K.F.-D.); (M.M.-B.)
| |
Collapse
|
10
|
Wu H, Brighton K, Chen J, Shuai D, Aw TG. Quantification of Particle-Associated Viruses in Secondary Treated Wastewater Effluent. FOOD AND ENVIRONMENTAL VIROLOGY 2025; 17:19. [PMID: 39812936 PMCID: PMC11735553 DOI: 10.1007/s12560-025-09634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
Viruses can interact with a broad range of inorganic and organic particles in water and wastewater. These associations can protect viruses from inactivation by quenching chemical disinfectants or blocking ultraviolet light transmission, and a much higher dosage of disinfectants is required to inactivate particle-associated viruses than free viruses. There have been only few studies of the association of viruses with particles in wastewater, particularly in secondary treated effluent. As secondary effluent is the source water to the reclaimed water treatment system, this study quantified indigenous enteric viruses, and viral indicators associated with particles in secondary effluents collected from five full-scale water reclamation facilities in the United States. Particle-associated viruses were enumerated using a sequential filtration followed by microfluidic digital PCR. This study showed that enteric viruses and viral indicators (crAssphage and pepper mild mottle virus, PMMoV) were attached to particles of different sizes in secondary effluent. Significantly higher concentrations of RNA viruses including PMMoV, norovirus, and enterovirus were detected in filtrate of the sequential filtration, which contained particles < 0.45 µm. DNA viruses including adenovirus and crAssphage were found to be more associated with larger particles in secondary effluent. Overall, high correlations were observed between viral indicators and enteric viruses, supporting the use of crAssphage and PMMoV to evaluate virus removal efficiency in water and wastewater treatment processes. The association of viruses with particles in wastewater has significant implications on wastewater treatment and disinfection processes as well as virus enumeration in wastewater.
Collapse
Affiliation(s)
- Huiyun Wu
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA, 70112, USA
- Department of Civil and Environmental Engineering, Washington State University, Pullman, Washington, USA
| | - Keegan Brighton
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA, 70112, USA
| | - Jiahao Chen
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC, USA
| | - Danmeng Shuai
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC, USA
| | - Tiong Gim Aw
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA, 70112, USA.
| |
Collapse
|
11
|
Holzer C, Ho J, Tiehm A, Stange C. Wastewater monitoring - passive sampling for the detection of SARS-CoV-2 and antibiotic resistance genes in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178244. [PMID: 39729846 DOI: 10.1016/j.scitotenv.2024.178244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024]
Abstract
As a lesson learned from the COVID-19 pandemic, wastewater-based epidemiology was recognised and used as an important method for surveillance and early detection of SARS-CoV-2. As a result, consideration of wastewater as a source of public health information has gained new prominence, and there is consensus that similar approaches can be used to detect the spread of other viral pathogens or antimicrobial resistance (AMR) in populations. However, the implementation of wastewater monitoring poses challenges in terms of obtaining representative and meaningful samples. In particular, it is difficult to sample small catchments, critical facilities (e.g. hospitals) or low-income countries where the use of automatic water samplers is not possible or the samplers are not available. To overcome these problems, this study developed a low-cost and easy-to-use passive sampler based on activated carbon as an adsorbent with a corresponding elution/extraction protocol that allows the detection of viruses and antibiotic resistance genes in wastewater. Monitoring of SARS-CoV-2 with these passive samplers at the influent of a wastewater treatment plant over a period of 1.5 months showed a positive correlation with monitoring with 24-h composite samples in the catchment area. Analysis of the nucleic acid extracts for antibiotic resistance genes showed the presence of clinically relevant carbapenemase genes such as blaKPC-3 and blaNDM-1 in the wastewater samples, with these genes being detected more reliably by the passive samplers than in the 24-h composite samples. This study therefore demonstrated that passive samplers provide reproducible SARS-CoV-2 RNA and antibiotic resistance gene signals from wastewater and a time-integrated measurement of the sampled matrix with high sensitivity.
Collapse
Affiliation(s)
- C Holzer
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, D-76139 Karlsruhe, Germany
| | - J Ho
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, D-76139 Karlsruhe, Germany
| | - A Tiehm
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, D-76139 Karlsruhe, Germany
| | - C Stange
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, D-76139 Karlsruhe, Germany.
| |
Collapse
|
12
|
Ando H, Murakami M, Kitajima M, Reynolds KA. Wastewater-based estimation of temporal variation in shedding amount of influenza A virus and clinically identified cases using the PRESENS model. ENVIRONMENT INTERNATIONAL 2025; 195:109218. [PMID: 39719757 DOI: 10.1016/j.envint.2024.109218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/15/2024] [Accepted: 12/15/2024] [Indexed: 12/26/2024]
Abstract
Wastewater-based estimation of infectious disease prevalence in real-time assists public health authorities in developing effective responses to current outbreaks. However, wastewater-based estimation for IAV remains poorly demonstrated, partially because of a lack of knowledge about temporal variation in shedding amount of an IAV-infected person. In this study, we applied two mathematical models to previously collected wastewater and clinical data from four U.S. states during the 2022/2023 influenza season, dominated by the H3N2 subtype. First, we modeled the relationship between the detection probability of IAV in wastewater and FluA case counts, using a logistic function. The model revealed that a 50 % probability of IAV detection in wastewater corresponds to 0.53 (95 % CrI: 0.35-0.78) cases per 100,000 people, as observed in clinical surveillance over two weeks. Next, we applied the previously developed PRESENS model to IAV wastewater concentration data from California, revealing rapid and prolonged virus shedding patterns. The estimated shedding model was incorporated into an extended version of the PRESENS model to assess the variability in the relationship between IAV concentrations and case numbers across other states, including Massachusetts, New Jersey, and Utah. As a result, our analysis demonstrated the effectiveness of normalizing IAV concentrations with PMMoV (Pepper mild mottle virus) to accurately understand spatial distribution patterns of IAV prevalence. We successfully estimated FluA case counts from wastewater concentrations within a factor of two for 80 % of data from a state where 34 % of the state population was monitored by wastewater surveillance. Importantly, wastewater-based estimates provided real-time or leading insights (0-2 days) compared to clinical case detection in the three states, enabling early understanding of the incidence trends by limiting delays in data publication. These findings highlight the potential of wastewater surveillance to detect IAV outbreaks in near real-time and enhance efficiency of the infectious disease management.
Collapse
Affiliation(s)
- Hiroki Ando
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85724, United States
| | - Michio Murakami
- Center for Infectious Disease Education and Research, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masaaki Kitajima
- Research Center for Water Environment Technology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Kelly A Reynolds
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85724, United States.
| |
Collapse
|
13
|
Carducci A, Federigi I, Pagani A, Atomsa NT, Conte B, Angori A, Lauretani G, Profili F, Viviani L, Odone A, Verani M. Wastewater-based surveillance of respiratory viruses in Northern Tuscany (Italy): Challenges and added value for public health purposes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177752. [PMID: 39616910 DOI: 10.1016/j.scitotenv.2024.177752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
During the COVID-19 pandemic, wastewater-based surveillance (WBS) showed great potential as an early warning system and could complement human clinical surveillance. This study aimed to highlight the added value of WBS for respiratory infections alongside different clinical surveillance systems. Sewage collected at the entry of four Wastewater Treatment Plants in Northern Tuscany (Italy) were analyzed for SARS-CoV-2, Human Adenovirus (HAdV), Respiratory Syncytial Virus (RSV) and Influenza Virus (IV), over two years. Clinical data for COVID-19 were available for the study area, while data for other viruses came from national virological surveillance. For SARS-CoV-2, the correlation was highly significant between clinical and hospitalization data (ρ = 0.8460), but not significant between wastewater and clinical or hospitalization data (ρ = 0.1682 and ρ = 0.0569, respectively). SARS-CoV-2 RNA was found in wastewater even in period when clinical cases were not reported, indicating a continuous community circulation. HAdVs were detected in 74.3 % of samples, but most of the sequences identified belonged to enteric species (HAdV-F41), indicating the need of distinguishing the species causing respiratory diseases for the surveillance. RSV were found only in winter 2022-2023, while IV had not been detected in wastewater, probably due to poor test sensitivity. In conclusion, although there may be various challenges in testing different targets, WBS can provide pathogen-specific situational assessment which complements existing surveillance systems.
Collapse
Affiliation(s)
- Annalaura Carducci
- Department of Biology, University of Pisa, Laboratory of Hygiene and Environmental Virology, Pisa, Italy.
| | - Ileana Federigi
- Department of Biology, University of Pisa, Laboratory of Hygiene and Environmental Virology, Pisa, Italy.
| | - Alessandra Pagani
- Department of Biology, University of Pisa, Laboratory of Hygiene and Environmental Virology, Pisa, Italy.
| | - Nebiyu Tariku Atomsa
- Department of Biology, University of Pisa, Laboratory of Hygiene and Environmental Virology, Pisa, Italy.
| | - Beatrice Conte
- Department of Biology, University of Pisa, Laboratory of Hygiene and Environmental Virology, Pisa, Italy.
| | - Alessandra Angori
- Department of Biology, University of Pisa, Laboratory of Hygiene and Environmental Virology, Pisa, Italy.
| | - Giulia Lauretani
- Department of Biology, University of Pisa, Laboratory of Hygiene and Environmental Virology, Pisa, Italy.
| | - Francesco Profili
- Regional Health Agency of Tuscany, Epidemiological Observatory, Florence, Italy.
| | - Luca Viviani
- PhD National Program in One Health Approaches to Infectious Diseases and Life Science Research, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy.
| | - Anna Odone
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy; Medical Direction, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Marco Verani
- Department of Biology, University of Pisa, Laboratory of Hygiene and Environmental Virology, Pisa, Italy.
| |
Collapse
|
14
|
Zhang J, Zhang J, Sano D, Chen R. Comparison of activated sludge and virus interactions in aerobic and anaerobic membrane bioreactors. iScience 2024; 27:111450. [PMID: 39735431 PMCID: PMC11681883 DOI: 10.1016/j.isci.2024.111450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/10/2024] [Accepted: 11/19/2024] [Indexed: 12/31/2024] Open
Abstract
Membrane bioreactors (MBRs) are effective sewage treatment technologies, yet the differences in virus removal efficiency between aerobic (AeMBR) and anaerobic membrane bioreactors (AnMBR), remain inadequately understood. This study compared the virus removal efficiency of AeMBR and AnMBR, focusing on the interactions between aerobic (AeS) and anaerobic (AnS) activated sludge and viruses in the sewage treatment process. Results showed average log removal values (LRVs) for MS2 of 2.53 ± 0.54 in AeMBR and 1.64 ± 0.90 in AnMBR due to the higher virus inactivation in the aerobic mixed liquor. The virus concentration in AnS was greater than in AeS, consistent with the predictions from the pseudo-second-order kinetic model. Soluble extracellular polymeric substances (S-EPS) were key to virus adsorption in AeS, while tightly bound EPS (TB-EPS) were significant in AnS. Additionally, more fluorescent substances in AnS contributed to virus adsorption, while more functional groups in AeS offered adsorption sites.
Collapse
Affiliation(s)
- Jinfan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi’an University Architecture and Technology, No. 13 Yanta Road, Xi’an 710055, P.R. China
| | - Jie Zhang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi’an University Architecture and Technology, No. 13 Yanta Road, Xi’an 710055, P.R. China
| | - Daisuke Sano
- Department of Civil and Environment Engineering, Graduate School of Engineering, Tohoku University, Aoba 606-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
- Department of Frontier Sciences for Advanced Environment, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Rong Chen
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi’an University Architecture and Technology, No. 13 Yanta Road, Xi’an 710055, P.R. China
- International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi’an University of Architecture and Technology, No. 13 Yanta Road, Xi’an 710055, P.R. China
| |
Collapse
|
15
|
Shruti VC, Kutralam-Muniasamy G, Pérez-Guevara F. Viruses in the era of microplastics and plastispheres: Analytical methods, advances and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177010. [PMID: 39427901 DOI: 10.1016/j.scitotenv.2024.177010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Research on microplastics and plastispheres now incorporates the study of viruses to evaluate their effects on the environment and human health. Sharing these new discoveries with the scientific community is crucial to fostering further research and collaborations. However, the current research and methodologies used are fragmented. To address this issue, this paper reviews the literature and the use of methodology developments in each study, identifying four emerging research areas: (1) viral interactions with microplastics; (2) viral population, diversity, and function in plastispheres; (3) the effects of viruses and plastic particles in host-associated environments; and (4) the impacts of viruses within plastispheres. To that end, the article is structured to streamline navigation and help readers easily access existing approaches, recent advancements, key findings, challenges, and opportunities in these areas. Our synthesis reveals that research methods include biochemical assays, omics techniques, spectroscopic analysis, and molecular and bioinformatic tools. Various mechanisms enable viruses to attach to microplastics and plastispheres, leading to widespread distribution and contributing to toxic effects and gene transfer. While the growing evidence is intriguing, there is still much to uncover about their ecological interactions, functions, and impacts.
Collapse
Affiliation(s)
- V C Shruti
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico.
| | - Gurusamy Kutralam-Muniasamy
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico.
| | - Fermín Pérez-Guevara
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico; Nanoscience & Nanotechnology Program, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
16
|
Toancha K, Borges A, Lázaro L, Teixeira N, Lima AK, Gonçalves A, Winter D, Santos A, do Nascimento M, de Sousa AB, May J, Sequeira YS, Neto RMA, Fernandez-Cassi X, Schuldt K. Wastewater-based surveillance for Hepatitis A virus, Enterovirus, Poliovirus, and SARS-CoV-2 in São Tomé and Príncipe: A pilot study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176923. [PMID: 39427898 DOI: 10.1016/j.scitotenv.2024.176923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Wastewater-based surveillance is a valuable tool for monitoring pathogen transmission in communities, especially in regions where formal surveillance systems are limited. AIM The aim of this study was to implement and evaluate a wastewater-based monitoring system for viral pathogens in São Tomé and Príncipe. METHODS A total of 122 water samples were collected bi-weekly from June 2022 to July 2023 at six locations in São Tomé city and analysed for molecular detection of Hepatitis A Virus (HAV), Enterovirus (EV), Poliovirus (PV), SARS-CoV-2, as well as JC-Polyomavirus (JCPyV) and pepper mild mottle virus (PMMoV) as indicators of human contamination. Prevalence was analysed per pathogen and across sampling locations. Results for SARS-CoV-2 were assessed together with notifications from national COVID-19 surveillance. Further, we estimated resources needed to establish a wastewater-based approach to assess community-level transmission of viral pathogens. RESULTS All 122 and 117 samples were found positive for PMMoV and JCPyV, respectively, demonstrating a high level of human contamination at all sampling locations. The prevalence of HAV and EV ranged from 0 % to 59 % and 56 % respectively. Consistent with national surveillance data the highest proportion of SARS-CoV-2 positive water samples coincides with the highest number of COVID-19 cases reported during the study, demonstrating the potential of wastewater-based surveillance to identify signals. In addition, for SARS-CoV-2 this approach provided evidence of continuous circulation of the virus in the community, most importantly during weeks when no COVID-19 cases were reported. CONCLUSION Our findings provide evidence of high transmission of HAV and EV in communities in São Tomé and continuous circulation of SARS-CoV-2, even in weeks without COVID-19 case notifications. This study demonstrates that monitoring of viral pathogens in humanly impacted open water streams and sewage tanks is a valuable tool to complement clinical surveillance in resource-limited settings.
Collapse
Affiliation(s)
- Katia Toancha
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | - Adjaia Borges
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | - Lazismino Lázaro
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | - Nilton Teixeira
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | - Anery Katia Lima
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | - Anabela Gonçalves
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | - Doris Winter
- Infectious Disease Epidemiology Department, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany
| | - Asmiralda Santos
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | - Marcos do Nascimento
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | | | - Jürgen May
- Infectious Disease Epidemiology Department, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems, Germany; Tropical Medicine II, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Yardlene Sacramento Sequeira
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | - Rosa Maria Afonso Neto
- National Reference Laboratory for Tuberculosis and Emerging Diseases, Ministry of Health, São Tomé, São Tomé and Príncipe
| | - Xavier Fernandez-Cassi
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Science, University of Barcelona, Spain
| | - Kathrin Schuldt
- Infectious Disease Epidemiology Department, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
17
|
Yang W, Cai C, Wang S, Wang X, Dai X. Unveiling the inactivation mechanisms of different viruses in sludge anaerobic digestion based on factors identification and damage analysis. BIORESOURCE TECHNOLOGY 2024; 413:131541. [PMID: 39341425 DOI: 10.1016/j.biortech.2024.131541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Despite anaerobic digestion having potential for pathogen reduction in sewage sludge, the behaviors of viruses as the primary health concern are rarely studied. This study investigated the inactivation kinetics and mechanisms of four typical virus surrogates with different structures in mesophilic (MAD) and thermophilic (TAD) anaerobic digestion of sludge. Virus inactivation in MAD was virus-type-dependent correspondingly to different function loss. Temperature drove the faster inactivation proceeding for enveloped Phi6, while temperature and ammonia were the critical inactivation factors for nonenveloped MS2, causing genome degradation and protein functional damage. Interaction with sludge solids played critical role in DNA viruses T4 and Phix174 inactivation via inducing host binding function damage. By comparison, TAD enhanced viral protein denaturation, bringing efficient inactivation with reducing heterogeneity among nonenveloped viruses. These insights into unique virus behaviors in anaerobic digestion systems can provide guidance for developing more effective disinfection protocols and improving sludge biosafety.
Collapse
Affiliation(s)
- Wan Yang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Chen Cai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China.
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
18
|
Ando H, Reynolds KA. Wastewater-based effective reproduction number and prediction under the absence of shedding information. ENVIRONMENT INTERNATIONAL 2024; 194:109128. [PMID: 39566444 DOI: 10.1016/j.envint.2024.109128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
Estimating effective reproduction number (Re) and predicting disease incidences are essential to formulate effective strategies for disease control. Although recent studies developed models for inferring Re from wastewater-based data, they require information on shedding dynamics. Here, we proposed a framework of Re estimation and prediction without shedding information. The framework consists of a space-state model for smoothing wastewater-based data and a renewal equation modified for wastewater-based data. The applicability of the framework was tested with simulated data and real-world data on Influenza A virus (IAV) and SARS-CoV-2 concentration in wastewater in 2022/2023 season in the USA. We confirmed the state-space model effectively fits various simulated epidemic curves and real-world data. In simulations, we found wastewater-based Re (Reww) closely aligns with instantaneous clinical Re when shedding dynamics are rapid. For more prolonged shedding, Reww approximates a smoothed Re over time. We also observed the necessary sampling frequency to trace dynamics of wastewater concentration and Reww accurately in the framework varies depending on the precision of detection methods, the epidemic status, the transmissibility of infectious diseases, and shedding dynamics. By applying our framework to real-world data, we found Reww for SARS-CoV-2 showed similar trend and values to clinically-based Re. Reww for IAV ranged from 0.66 to 1.52 with a clear peak in the winter season, which agrees with previously reported Re. We also succeeded in predicting wastewater concentration in a few weeks from available wastewater-based data. These results indicate that our framework potentially enables near real-time monitoring of approximated Re and prediction of infectious disease dynamics through wastewater surveillance, which limits the delay between infection and reporting. Our framework is useful especially for regions where reliable clinical surveillance is not available and notifiable surveillance is abolished, and can be expanded to multiple infectious diseases that have been detected from wastewater.
Collapse
Affiliation(s)
- Hiroki Ando
- Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Avenue, Tucson, AZ 85724, United States.
| | - Kelly A Reynolds
- Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N. Martin Avenue, Tucson, AZ 85724, United States.
| |
Collapse
|
19
|
Chaqroun A, El Soufi G, Gerber Z, Loutreul J, Cluzel N, Delafoy D, Sandron F, Di Jorio L, Raffestin S, Maréchal V, Gantzer C, Olaso R, Deleuze JF, Rohr O, Boudaud N, Wallet C, Bertrand I. Definition of a concentration and RNA extraction protocol for optimal whole genome sequencing of SARS-CoV-2 in wastewater (ANRS0160). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175823. [PMID: 39197764 DOI: 10.1016/j.scitotenv.2024.175823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/26/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Monitoring the presence of RNA from emerging pathogenic viruses, such as SARS-CoV-2, in wastewater (WW) samples requires suitable methods to ensure an effective response. Genome sequencing of WW is one of the crucial methods, but it requires high-quality RNA in sufficient quantities, especially for monitoring emerging variants. Consequently, methods for viral concentration and RNA extraction from WW samples have to be optimized before sequencing. The purpose of this study was to achieve high coverage (≥ 90 %) and sequencing depth (at least ≥200×) even for low initial RNA concentrations (< 105 genome copies (GC)/L) in WW. A further objective was to determine the range of SARS-CoV-2 RNA concentrations that allow high-quality sequencing, and the optimal sample volume for analysis. Ultrafiltration (UF) methods were used to concentrate viral particles from large influent samples (up to 500 mL). An RNA extraction protocol using silica beads, neutral phenol-chloroform treatment, and a PCR inhibitor removal kit was chosen for its effectiveness in extracting RNA and eliminating PCR inhibitors, as well as its adaptability for use with large influent samples. Recovery rates ranged from 24 % to 63 % (N = 17) for SARS-CoV-2 naturally present in WW samples. 200 mL WW samples can be enough for UF concentration, as they showed high quality sequencing analyses with between 5 × 104 GC/L and 6 × 103 GC/L. Below 6 × 103 GC/L, high-quality sequencing was also achieved for ∼40 % of the samples using 500 mL of WW. Sequencing analysis for variant detection was performed on 200 mL WW samples with coverage of >95 % and sequencing depth of >1000×. Analyses revealed the predominance of variant EG.5, known as Eris (66 %-100 %). The use of UF methods in combination with a suitable RNA extraction protocol appear promising for sequencing enveloped viruses in WW in a context of viral emergence.
Collapse
Affiliation(s)
- Ahlam Chaqroun
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France; OBEPINE consortium, Paris, France
| | - Ghina El Soufi
- Université de Strasbourg, UPR CNRS 9002 ARN, F-67300 Schiltigheim, France; Université de Strasbourg, IUT Louis Pasteur, F-67300 Schiltigheim, France; OBEPINE consortium, Paris, France
| | - Zuzana Gerber
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, F-91057 Evry, France
| | - Julie Loutreul
- ACTALIA, F-50000 Saint Lô, France; OBEPINE consortium, Paris, France
| | - Nicolas Cluzel
- Maison des Modélisations Ingénieries et Technologies (SUMMIT), Sorbonne Université, Paris 75005, France; OBEPINE consortium, Paris, France
| | - Damien Delafoy
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, F-91057 Evry, France
| | - Florian Sandron
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, F-91057 Evry, France
| | - Léo Di Jorio
- Université de Strasbourg, UPR CNRS 9002 ARN, F-67300 Schiltigheim, France; Université de Strasbourg, IUT Louis Pasteur, F-67300 Schiltigheim, France; OBEPINE consortium, Paris, France
| | - Stéphanie Raffestin
- Institut Pasteur de la Guyane, French Guiana, Cayenne 97300, France; OBEPINE consortium, Paris, France
| | - Vincent Maréchal
- INSERM, Centre de Recherche Saint-Antoine, Sorbonne Université, Paris 75012, France; OBEPINE consortium, Paris, France
| | - Christophe Gantzer
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France; OBEPINE consortium, Paris, France
| | - Robert Olaso
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, F-91057 Evry, France
| | - Jean-François Deleuze
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, F-91057 Evry, France
| | - Olivier Rohr
- Université de Strasbourg, UPR CNRS 9002 ARN, F-67300 Schiltigheim, France; Université de Strasbourg, IUT Louis Pasteur, F-67300 Schiltigheim, France; OBEPINE consortium, Paris, France
| | - Nicolas Boudaud
- ACTALIA, F-50000 Saint Lô, France; OBEPINE consortium, Paris, France
| | - Clémentine Wallet
- Université de Strasbourg, UPR CNRS 9002 ARN, F-67300 Schiltigheim, France; Université de Strasbourg, IUT Louis Pasteur, F-67300 Schiltigheim, France; OBEPINE consortium, Paris, France
| | - Isabelle Bertrand
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France; OBEPINE consortium, Paris, France.
| |
Collapse
|
20
|
Manoha C, Dequiedt AL, Thery L, Marotel M, Pez F, Vouillon B, Gueneau E, de Rougemont A. Multisite community-scale monitoring of respiratory and enteric viruses in the effluent of a nursing home and in the inlet of the local wastewater treatment plant. Appl Environ Microbiol 2024; 90:e0115824. [PMID: 39387558 PMCID: PMC11577779 DOI: 10.1128/aem.01158-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
The aim of this study was to evaluate whether community-level monitoring of respiratory and enteric viruses in wastewater can provide a comprehensive picture of local virus circulation. Wastewater samples were collected weekly at the wastewater treatment plant (WWTP) inlet and at the outlet of a nearby nursing home (NH) in Burgundy, France, during the winter period of 2022/2023. We searched for the pepper mild mottle virus as an indicator of fecal content as well as for the main respiratory viruses [severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza, and respiratory syncytial virus] and enteric viruses (rotavirus, sapovirus, norovirus, astrovirus, and adenovirus). Samples were analyzed using real-time reverse transcription PCR-based methods. SARS-CoV-2 was the most frequently detected respiratory virus, with 66.7% of positive samples from the WWTP and 28.6% from the NH. Peaks of SARS-CoV-2 were consistent with the chronological incidence of infections recorded in the sentinel surveillance and the nearby hospital databases. The number of positive samples was lower in the NH than in WWTP for the three respiratory viruses. Enteric viruses were frequently detected, most often sapovirus and norovirus genogroup II, accounting both for 77.8% of positive samples in the WWTP and 57.1% and 37%, respectively, in the NH. The large circulation of sapovirus was unexpected in particular in the NH. Combined wastewater surveillance using simple optimized methods can be a valuable tool for monitoring viral circulation and may serve as a suitable early warning system for identifying both local outbreaks and the onset of epidemics. These results encourage the application of wastewater-based surveillance (WBS) to SARS-CoV2, norovirus, and sapovirus.IMPORTANCEWBS provides valuable information on the spread of epidemic viruses in the environment using appropriate and sensitive detection methods. By monitoring the circulation of viruses using reverse transcription PCR methods in wastewater from the inlet of a wastewater treatment plant and the outlet of a nearby retirement home (connected to the same collective sewer network), we aimed to demonstrate that implementing combined WBS at key community sites allows effective detection of the occurrence of respiratory (influenza, respiratory syncytial virus, and SARS-CoV-2) and enteric (norovirus, rotavirus, and sapovirus) virus infections within a given population. This analysis on a localized scale provided new information on the viral circulation in the two different sites. Implementing WBS to monitor the circulation or the emergence of infectious diseases is an important means of alerting the authorities and improving public health management. WBS could participate actively to the health of humans, animals, and the environment.
Collapse
Affiliation(s)
- Catherine Manoha
- Laboratory of Virology, University Hospital of Dijon Bourgogne, Dijon, France
| | - Anne-Laure Dequiedt
- Departmental Laboratory of Côte d’Or, Departmental Council of Côte-d'Or, Dijon, France
| | - Lucie Thery
- National Reference Centre for Gastroenteritis Viruses, University Hospital of Dijon Bourgogne, Dijon, France
| | - Marina Marotel
- Departmental Laboratory of Côte d’Or, Departmental Council of Côte-d'Or, Dijon, France
| | | | - Bruno Vouillon
- Departmental Laboratory of Côte d’Or, Departmental Council of Côte-d'Or, Dijon, France
| | - Eric Gueneau
- Departmental Laboratory of Côte d’Or, Departmental Council of Côte-d'Or, Dijon, France
| | - Alexis de Rougemont
- Laboratory of Virology, University Hospital of Dijon Bourgogne, Dijon, France
- National Reference Centre for Gastroenteritis Viruses, University Hospital of Dijon Bourgogne, Dijon, France
| |
Collapse
|
21
|
Yang S, Jiao Y, Dong Q, Li S, Xu C, Liu Y, Sun L, Huang X. Evaluating approach uncertainties of quantitative detection of SARS-CoV-2 in wastewater: Concentration, extraction and amplification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175285. [PMID: 39102960 DOI: 10.1016/j.scitotenv.2024.175285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/10/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Substantial uncertainties pose challenges to the accuracy of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) quantification in wastewater. We conducted a comprehensive evaluation of two concentration methods, three nucleic acid extraction methods, and the amplification performance of eight primer-probe sets. Our results showed that the two concentration methods exhibited similar recovery rates. Specifically, using a 30 kDa cut-off ultrafilter and a centrifugal force of 2500 g achieved the highest virus recovery rates (27.32 ± 8.06 % and 26.37 ± 7.77 %, respectively), with lower corresponding quantification uncertainties of 29.51 % and 29.47 % in ultrafiltration methods. Similarly, a 15 % PEG concentration with 1.5 M NaCl markedly improved virus recovery (26.76 ± 5.92 % and 28.47 ± 6.74 %, respectively), and reducing variation to 22.16 % and 23.66 % in the PEG precipitation method. Additionally, employing a vigorous bead-beating approach at 6 m/s during viral RNA extraction significantly increased RNA yield, with an efficiency reaching up to 82.18 %. Among the evaluated eight primer-probe sets, the E_Sarbeco primer-probe set provided the most stable and consistent quantitative results across various sample matrices. These findings are crucial for establishing robust viral quantification protocols and enhancing methodological precision for effective wastewater surveillance, enabling sensitive and precise detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Shaolin Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China
| | - Yang Jiao
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing 100021, China
| | - Qian Dong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China
| | - Siqi Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China
| | - Chenyang Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China.
| | - Lingli Sun
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing 100021, China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China.
| |
Collapse
|
22
|
Bastardo-Méndez M, Rangel HR, Pujol FH, Grillet ME, Jaspe RC, Malaver N, Rodríguez M, Zamora-Figueroa A. Detection of SARS-CoV-2 in wastewater as an earlier predictor of COVID-19 epidemic peaks in Venezuela. Sci Rep 2024; 14:27294. [PMID: 39516586 PMCID: PMC11549330 DOI: 10.1038/s41598-024-78982-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Wastewater-based epidemiological surveillance has proven to be a useful and cost-effective tool for detecting COVID-19 outbreaks. Here, our objective was to evaluate its potential as an early warning system in Venezuela by detecting SARS-CoV-2 RNA in wastewater and its correlation with reported cases of COVID-19. Viral RNA was concentrated from wastewater collected at various sites in Caracas (northern Venezuela), from September 2021 to July 2023, using the polyethylene glycol (PEG) precipitation method. Viral quantification was performed by RT-qPCR targeting the N1 and ORF1ab genes. A significant association (p < 0.05) was found between viral load in wastewater and reported cases of COVID-19 up to six days after sampling. During the whole study, two populated areas of the city were persistent hotspots of viral infection. The L452R mutation, suggestive of the presence of the Delta variant, was identified in the only sample where a complete genomic sequence could be obtained. Significant differences (p < 0.05) between the physicochemical conditions of the wastewater samples positive and negative for the virus were found. Our results support proof of concept that wastewater surveillance can serve as an early warning system for SARS-CoV-2 outbreaks, complementing public health surveillance in those regions where COVID-19 is currently underreported.
Collapse
Affiliation(s)
- Marjorie Bastardo-Méndez
- Laboratorio de Ecología de Microorganismos, Centro de Ecología Aplicada, Instituto de Zoología y Ecología Tropical, Facultad de Ciencias, Universidad Central de Venezuela (UCV), Caracas, Venezuela
| | - Héctor R Rangel
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC), Altos de Pipe, Miranda, Venezuela
| | - Flor H Pujol
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC), Altos de Pipe, Miranda, Venezuela
| | - María-Eugenia Grillet
- Centro de Ecología y Evolución, Instituto de Zoología y Ecología Tropical, Facultad de Ciencias, Universidad Central de Venezuela (UCV), Caracas, Venezuela
| | - Rossana C Jaspe
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC), Altos de Pipe, Miranda, Venezuela
| | - Nora Malaver
- Laboratorio de Ecología de Microorganismos, Centro de Ecología Aplicada, Instituto de Zoología y Ecología Tropical, Facultad de Ciencias, Universidad Central de Venezuela (UCV), Caracas, Venezuela
| | - María Rodríguez
- Laboratorio de Ecología de Microorganismos, Centro de Ecología Aplicada, Instituto de Zoología y Ecología Tropical, Facultad de Ciencias, Universidad Central de Venezuela (UCV), Caracas, Venezuela
| | - Alejandra Zamora-Figueroa
- Laboratorio de Ecología de Microorganismos, Centro de Ecología Aplicada, Instituto de Zoología y Ecología Tropical, Facultad de Ciencias, Universidad Central de Venezuela (UCV), Caracas, Venezuela.
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC), Altos de Pipe, Miranda, Venezuela.
| |
Collapse
|
23
|
Haldar T, Katarmal P, Roy B, Koratkar S. Dengue and chikungunya virus dynamics, identification, and monitoring in wastewater. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1166. [PMID: 39499336 DOI: 10.1007/s10661-024-13341-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 10/25/2024] [Indexed: 11/07/2024]
Abstract
Monitoring wastewater is an effective strategy for supporting clinical surveillance for viral infections. Wastewater monitoring, also known as wastewater-based epidemiology (WBE), uses existing wastewater collection networks to obtain a composite sample of a population that can be used to predict disease dynamics in a specific area. Viruses such as dengue and chikungunya are primarily transmitted through the bites of infected Aedes mosquito species. The prevalence of the Aedes mosquito in tropical and subtropical regions makes these diseases a serious threat to public health. Employing wastewater surveillance, monitoring, and regulating the spread of diseases like dengue and chikungunya-notably caused by mosquitoes-has been recommended. However, understanding the dynamics of viral release and its persistence in wastewater is critical for monitoring purposes. Although methods for recovering RNA for some viruses from wastewater have been developed, the same approach does not work equally well for viruses such as dengue and chikungunya due to low levels of viral RNA and susceptibility to degradation. As a result, a tailored approach to recovering these viruses from wastewater is required. This review summarizes viral release from infected hosts, its dynamics, and approaches for dengue and chikungunya wastewater surveillance. The review also identifies existing knowledge gaps in viral persistence in wastewater and recovery.
Collapse
Affiliation(s)
- Tiyasa Haldar
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University), Lavale, Pune, 412115, Maharashtra, India
| | - Poonam Katarmal
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University), Lavale, Pune, 412115, Maharashtra, India
| | - Bishnudeo Roy
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University), Lavale, Pune, 412115, Maharashtra, India
- Department of Biosciences and Technology, MIT World Peace University, Pune, India
| | - Santosh Koratkar
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University), Lavale, Pune, 412115, Maharashtra, India.
| |
Collapse
|
24
|
Yang Y, Tan J, Wang F, Sun W, Shi H, Cheng Z, Xie Y, Zhou X. Preconcentration and detection of SARS-CoV-2 in wastewater: A comprehensive review. Biosens Bioelectron 2024; 263:116617. [PMID: 39094290 DOI: 10.1016/j.bios.2024.116617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Severe acute respiratory syndrome coronaviruses 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) affected the health of human beings and the global economy. The patients with SARS-CoV-2 infection had viral RNA or live infectious viruses in feces. Thus, the possible transmission of SARS-CoV-2 through wastewater received great attentions. Moreover, SARS-CoV-2 in wastewater can serve as an early indicator of the infection within communities. We summarized the preconcentration and detection technology of SARS-CoV-2 in wastewater aiming at the complex matrices of wastewater and low virus concentration and compared their performance characteristics. We described the emerging tests that would be possible to realize the rapid detection of SARS-CoV-2 in fields and encourage academics to advance their technologies beyond conception. We concluded with a brief discussion on the outlook for integrating preconcentration and the detection of SARS-CoV-2 with emerging technologies.
Collapse
Affiliation(s)
- Yihan Yang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jisui Tan
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Fan Wang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Weiming Sun
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hanchang Shi
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhao Cheng
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yangcun Xie
- Chinese Academy of Environmental Planning, Beijing, 100043, China.
| | - Xiaohong Zhou
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
25
|
Farkas K, Fletcher J, Oxley J, Ridding N, Williams RC, Woodhall N, Weightman AJ, Cross G, Jones DL. Implications of long-term sample storage on the recovery of viruses from wastewater and biobanking. WATER RESEARCH 2024; 265:122209. [PMID: 39126986 DOI: 10.1016/j.watres.2024.122209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Wastewater-based monitoring has been widely implemented worldwide for the tracking of SARS-CoV-2 outbreaks and other viral diseases. In many surveillance programmes, unprocessed and processed wastewater samples are often frozen and stored for long periods of time in case the identification and tracing of an emerging health threat becomes necessary. However, extensive sample bioarchives may be difficult to maintain due to limitations in ultra-freezer capacity and associated cost. Furthermore, the stability of viruses in such samples has not been systematically investigated and hence the usefulness of bioarchives is unknown. In this study, we assessed the stability of SARS-CoV-2, influenza viruses, noroviruses and the faecal indicator virus, crAssphage, in raw wastewater and purified nucleic aacid extracts stored at -80 °C for 6-24 months. We found that the isolated viral RNA and DNA showed little signs of degradation in storage over 8-24 months, whereas extensive decay viral and loss of qPCR signal was observed during the storage of raw unprocessed wastewater. The most stable viruses were noroviruses and crAssphage, followed by SARS-CoV-2 and influenza A virus. Based on our findings, we conclude that bioarchives comprised of nucleic acid extracts derived from concentrated wastewater samples may be archived long-term, for at least two years, whereas raw wastewater samples may be discarded after one year.
Collapse
Affiliation(s)
- Kata Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK.
| | - Jessica Fletcher
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - James Oxley
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Nicola Ridding
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Rachel C Williams
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Nick Woodhall
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Andrew J Weightman
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Gareth Cross
- Science Evidence Advice Division, Health and Social Services Group, Welsh Government, Cathays Park, Cardiff, CF10 3NQ, UK
| | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| |
Collapse
|
26
|
Shanmugam BK, Alqaydi M, Abdisalam D, Shukla M, Santos H, Samour R, Petalidis L, Oliver CM, Brudecki G, Salem SB, Elamin W. A Narrative Review of High Throughput Wastewater Sample Processing for Infectious Disease Surveillance: Challenges, Progress, and Future Opportunities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1432. [PMID: 39595699 PMCID: PMC11593539 DOI: 10.3390/ijerph21111432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 11/28/2024]
Abstract
During the recent COVID-19 pandemic, wastewater-based epidemiological (WBE) surveillance played a crucial role in evaluating infection rates, analyzing variants, and identifying hot spots in a community. This expanded the possibilities for using wastewater to monitor the prevalence of infectious diseases. The full potential of WBE remains hindered by several factors, such as a lack of information on the survival of pathogens in sewage, heterogenicity of wastewater matrices, inconsistent sampling practices, lack of standard test methods, and variable sensitivity of analytical techniques. In this study, we review the aforementioned challenges, cost implications, process automation, and prospects of WBE for full-fledged wastewater-based community health screening. A comprehensive literature survey was conducted using relevant keywords, and peer reviewed articles pertinent to our research focus were selected for this review with the aim of serving as a reference for research related to wastewater monitoring for early epidemic detection.
Collapse
Affiliation(s)
| | - Maryam Alqaydi
- RASID Laboratory, M42 Healthcare, Abu Dhabi P.O. Box 4200, United Arab Emirates
| | - Degan Abdisalam
- RASID Laboratory, M42 Healthcare, Abu Dhabi P.O. Box 4200, United Arab Emirates
| | - Monika Shukla
- RASID Laboratory, M42 Healthcare, Abu Dhabi P.O. Box 4200, United Arab Emirates
| | - Helio Santos
- RASID Laboratory, M42 Healthcare, Abu Dhabi P.O. Box 4200, United Arab Emirates
| | - Ranya Samour
- RASID Laboratory, M42 Healthcare, Abu Dhabi P.O. Box 4200, United Arab Emirates
| | - Lawrence Petalidis
- RASID Laboratory, M42 Healthcare, Abu Dhabi P.O. Box 4200, United Arab Emirates
| | | | - Grzegorz Brudecki
- RASID Laboratory, M42 Healthcare, Abu Dhabi P.O. Box 4200, United Arab Emirates
| | - Samara Bin Salem
- Abu Dhabi Quality and Conformity Council (ADQCC), Abu Dhabi P.O. Box 2282, United Arab Emirates
| | - Wael Elamin
- RASID Laboratory, M42 Healthcare, Abu Dhabi P.O. Box 4200, United Arab Emirates
| |
Collapse
|
27
|
Boehm AB, Wolfe MK, Bidwell AL, Zulli A, Chan-Herur V, White BJ, Shelden B, Duong D. Human pathogen nucleic acids in wastewater solids from 191 wastewater treatment plants in the United States. Sci Data 2024; 11:1141. [PMID: 39420189 PMCID: PMC11487133 DOI: 10.1038/s41597-024-03969-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
We measured concentrations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants, influenza A and B viruses, respiratory syncytial virus, human metapneumovirus, enterovirus D68, human parainfluenza types 1, 2, 3, 4a, and 4b in aggregate, norovirus genotype II, rotavirus, Candida auris, hepatitis A virus, human adenovirus, mpox virus, H5 influenza A virus, and pepper mild mottle virus nucleic acids in wastewater solids prospectively at 191 wastewater treatment plants in 40 states across the United States plus Washington DC. Measurements were made two to seven times per week from 1 January 2022 to 30 June 2024, depending on wastewater treatment plant staff availability. Measurements were made using droplet digital (reverse-transcription-) polymerase chain reaction (ddRT-PCR) following best practices for making environmental molecular biology measurements. These data can be used to better understand disease occurrence in communities contributing to the wastewater.
Collapse
Affiliation(s)
- Alexandria B Boehm
- Department of Civil & Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, CA, USA.
| | - Marlene K Wolfe
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Amanda L Bidwell
- Department of Civil & Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, CA, USA
| | - Alessandro Zulli
- Department of Civil & Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, CA, USA
| | | | | | | | | |
Collapse
|
28
|
Korajkic A, McMinn BR, Pemberton AC, Kelleher J, Ahmed W. The comparison of decay rates of infectious SARS-CoV-2 and viral RNA in environmental waters and wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174379. [PMID: 38955270 PMCID: PMC11290430 DOI: 10.1016/j.scitotenv.2024.174379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Understanding the decay characteristics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater and ambient waters is important for multiple applications including assessment of risk of exposure associated with handling wastewater samples, public health risk associated with recreation in wastewater polluted ambient waters and better understanding and interpretation of wastewater-based epidemiology (WBE) results. We evaluated the decay rates of infectious SARS-CoV-2 and viral RNA in wastewater and ambient waters under temperature regimes representative of seasonal fluctuations. Infectious virus was seeded in autoclaved primary wastewater effluent, final dechlorinated wastewater effluent, lake water, and marine water at a final concentration of 6.26 ± 0.07 log10 plaque forming units per milliliter. Each suspension was incubated at either 4°, 25°, and 37 °C. Samples were initially collected on an hourly basis, then approximately every other day for 15 days. All samples were analyzed for infectious virus via a plaque assay using the Vero E6 cell line, and viral gene copy levels were quantified with the US CDC's N1 and N2 reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) assays. The infectious virus decayed significantly faster (p ≤ 0.0214) compared to viral RNA, which persisted for the duration of the study irrespective of the incubation conditions. The initial loss (within 15 min of seeding) as well as decay of infectious SARS-CoV-2 was significantly faster (p ≤ 0.0387) in primary treated wastewater compared to other water types, but viral RNA did not degrade appreciably in this matrix until day 15. Overall, temperature was the most important driver of decay, and after 24 h, no infectious SARS-CoV-2 was detected at 37 °C in any water type. Moreover, the CDC N2 gene assay target decayed significantly (p ≤ 0.0174) faster at elevated temperatures compared to CDC N1, which has important implications for RT-qPCR assay selection for WBE approach.
Collapse
Affiliation(s)
- Asja Korajkic
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States.
| | - Brian R McMinn
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Adin C Pemberton
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Julie Kelleher
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct 41 Boggo Road, Qld 4102, Australia
| |
Collapse
|
29
|
Zhao L, Guzman HP, Xagoraraki I. Comparative analyses of SARS-CoV-2 RNA concentrations in Detroit wastewater quantified with CDC N1, N2, and SC2 assays reveal optimal target for predicting COVID-19 cases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174140. [PMID: 38906283 DOI: 10.1016/j.scitotenv.2024.174140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
To monitor COVID-19 through wastewater surveillance, global researchers dedicated significant endeavors and resources to develop and implement diverse RT-qPCR or RT-ddPCR assays targeting different genes of SARS-CoV-2. Effective wastewater surveillance hinges on the appropriate selection of the most suitable assay, especially for resource-constrained regions where scant technical and socioeconomic resources restrict the options for testing with multiple assays. Further research is imperative to evaluate the existing assays through comprehensive comparative analyses. Such analyses are crucial for health agencies and wastewater surveillance practitioners in the selection of appropriate methods for monitoring COVID-19. In this study, untreated wastewater samples were collected weekly from the Detroit wastewater treatment plant, Michigan, USA, between January and December 2023. Polyethylene glycol precipitation (PEG) was applied to concentrate the samples followed by RNA extraction and RT-ddPCR. Three assays including N1, N2 (US CDC Real-Time Reverse Transcription PCR Panel for Detection of SARS-CoV-2), and SC2 assay (US CDC Influenza SARS-CoV-2 Multiplex Assay) were implemented to detect SARS-CoV-2 in wastewater. The limit of blank and limit of detection for the three assays were experimentally determined. SARS-CoV-2 RNA concentrations were evaluated and compared through three statistical approaches, including Pearson and Spearman's rank correlations, Dynamic Time Warping, and vector autoregressive models. N1 and N2 demonstrated the highest correlation and most similar time series patterns. Conversely, N2 and SC2 assay demonstrated the lowest correlation and least similar time series patterns. N2 was identified as the optimal target to predict COVID-19 cases. This study presents a rigorous effort in evaluating and comparing SARS-CoV-2 RNA concentrations quantified with N1, N2, and SC2 assays and their interrelations and correlations with clinical cases. This study provides valuable insights into identifying the optimal target for monitoring COVID-19 through wastewater surveillance.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct., East Lansing, MI 48823, USA
| | - Heidy Peidro Guzman
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct., East Lansing, MI 48823, USA
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, 1449 Engineering Research Ct., East Lansing, MI 48823, USA.
| |
Collapse
|
30
|
Purves K, Reynolds LJ, Sala-Comorera L, Martin NA, Dahly DL, Meijer WG, Fletcher NF. Decay of RNA and infectious SARS-CoV-2 and murine hepatitis virus in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173877. [PMID: 38871327 DOI: 10.1016/j.scitotenv.2024.173877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Wastewater-based epidemiology (WBE) has been an important tool for population surveillance during the COVID-19 pandemic and continues to play a key role in monitoring SARS-CoV-2 infection levels following reductions in national clinical testing schemes. Studies measuring decay profiles of SARS-CoV-2 in wastewater have underscored the value of WBE, however investigations have been hampered by high biosafety requirements for SARS-CoV-2 infection studies. Therefore, surrogate viruses with lower biosafety standards have been used for SARS-CoV-2 decay studies, such as murine hepatitis virus (MHV), but few studies have directly compared decay rates of both viruses. We compared the persistence of SARS-CoV-2 and MHV in wastewater, using 50 % tissue culture infectious dose (TCID50) and reverse transcription quantitative polymerase chain reaction (RT-qPCR) assays to assess infectious virus titre and viral gene markers, respectively. Infectious SARS-CoV-2 and MHV indicate similar endpoints, however observed early decay characteristics differed, with infectious SARS-CoV-2 decaying more rapidly than MHV. We find that MHV is an appropriate infectious virus surrogate for viable SARS-CoV-2, however inconsistencies exist in viral RNA decay parameters, indicating MHV may not be a suitable nucleic acid surrogate across certain temperature regimes. This study highlights the importance of sample preparation and the potential for decay rate overestimation in wastewater surveillance for SARS-CoV-2 and other pathogens.
Collapse
Affiliation(s)
- Kevin Purves
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Ireland
| | - Liam J Reynolds
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Ireland
| | - Laura Sala-Comorera
- Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, University of Barcelona, Spain
| | - Niamh A Martin
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Ireland
| | - Darren L Dahly
- Health Research Board Clinical Research Facility, University College Cork, Ireland; School of Public Health, University College Cork, Ireland
| | - Wim G Meijer
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Ireland
| | - Nicola F Fletcher
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Ireland.
| |
Collapse
|
31
|
Chaqroun A, Bertrand I, Wurtzer S, Moulin L, Boni M, Soubies S, Boudaud N, Gantzer C. Assessing infectivity of emerging enveloped viruses in wastewater and sewage sludge: Relevance and procedures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173648. [PMID: 38825204 DOI: 10.1016/j.scitotenv.2024.173648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
The emergence of SARS-CoV-2 has heightened the need to evaluate the detection of enveloped viruses in the environment, particularly in wastewater, within the context of wastewater-based epidemiology. The studies published over the past 80 years focused primarily on non-enveloped viruses due to their ability to survive longer in environmental matrices such as wastewater or sludge compared to enveloped viruses. However, different enveloped viruses survive in the environment for different lengths of time. Therefore, it is crucial to be prepared to assess the potential infectious risk that may arise from future emerging enveloped viruses. This will require appropriate tools, notably suitable viral concentration methods that do not compromise virus infectivity. This review has a dual purpose: first, to gather all the available literature on the survival of infectious enveloped viruses, specifically at different pH and temperature conditions, and in contact with detergents; second, to select suitable concentration methods for evaluating the infectivity of these viruses in wastewater and sludge. The methodology used in this data collection review followed the systematic approach outlined in the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) guidelines. Concentration methods cited in the data gathered are more tailored towards detecting the enveloped viruses' genome. There is a lack of suitable methods for detecting infectious enveloped viruses in wastewater and sludge. Ultrafiltration, ultracentrifugation, and polyethylene glycol precipitation methods, under specific/defined conditions, appear to be relevant approaches. Further studies are necessary to validate reliable concentration methods for detecting infectious enveloped viruses. The choice of culture system is also crucial for detection sensitivity. The data also show that the survival of infectious enveloped viruses, though lower than that of non-enveloped ones, may enable environmental transmission. Experimental data on a wide range of enveloped viruses is required due to the variability in virus persistence in the environment.
Collapse
Affiliation(s)
- Ahlam Chaqroun
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | | | | | | | - Mickael Boni
- French Armed Forces Biomedical Research Institute, 91220 Brétigny-sur-Orge, France
| | | | | | | |
Collapse
|
32
|
Gong J, Or CY, Sze ETP, Man-Ngai Chan S, Wu PL, Poon PMY, Law AKY, Ulrychová L, Hodek J, Weber J, Ouyang H, Yang M, Eilts SM, Torremorell M, Knobloch Y, Hogan CJ, Atallah C, Davies J, Winkler J, Gordon R, Zarghanishiraz R, Zabihi M, Christianson C, Taylor D, Rabinowitz A, Baylis J, Brinkerhoff J, Little JP, Li R, Moldenhauer J, Mansour MK. Effect of multifunctional cationic polymer coatings on mitigation of broad microbial pathogens. Microbiol Spectr 2024; 12:e0409723. [PMID: 39101823 PMCID: PMC11370243 DOI: 10.1128/spectrum.04097-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/12/2024] [Indexed: 08/06/2024] Open
Abstract
Infection control measures to prevent viral and bacterial infection spread are critical to maintaining a healthy environment. Pathogens such as viruses and pyogenic bacteria can cause infectious complications. Viruses such as SARS-CoV-2 are known to spread through the aerosol route and on fomite surfaces, lasting for a prolonged time in the environment. Developing technologies to mitigate the spread of pathogens through airborne routes and on surfaces is critical, especially for patients at high risk for infectious complications. Multifunctional coatings with a broad capacity to bind pathogens that result in inactivation can disrupt infectious spread through aerosol and inanimate surface spread. This study uses C-POLAR, a proprietary cationic, polyamine, organic polymer with a charged, dielectric property coated onto air filtration material and textiles. Using both SARS-CoV-2 live viral particles and bovine coronavirus models, C-POLAR-treated material shows a dramatic 2-log reduction in circulating viral inoculum. This reduction is consistent in a static room model, indicating simple airflow through a static C-POLAR hanging can capture significant airborne particles. Finally, Gram-positive and Gram-negative bacteria are applied to C-POLAR textiles using a viability indicator to demonstrate eradication on fomite surfaces. These data suggest that a cationic polymer surface can capture and eradicate human pathogens, potentially interrupting the infectious spread for a more resilient environment. IMPORTANCE Infection control is critical for maintaining a healthy home, work, and hospital environment. We test a cationic polymer capable of capturing and eradicating viral and bacterial pathogens by applying the polymer to the air filtration material and textiles. The data suggest that the simple addition of cationic material can result in the improvement of an infectious resilient environment against viral and bacterial pathogens.
Collapse
Affiliation(s)
- Jianliang Gong
- C-POLAR Technologies Inc., West Vancouver, British Columbia, Canada
| | - Chun-Yin Or
- C-POLAR Technologies Inc., West Vancouver, British Columbia, Canada
| | - Eric Tung-Po Sze
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Sidney Man-Ngai Chan
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China
| | - Pak-Long Wu
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China
| | - Peggy Miu-Yee Poon
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China
| | - Anthony K. Y. Law
- Department of Mechanical Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - Lucie Ulrychová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
- Department of Genetics and Microbiology, Charles University, Faculty of Sciences, Prague, Czechia
| | - Jan Hodek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Hui Ouyang
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Mechanical Engineering University of Texas-Dallas, Richardson, Texas, USA
| | - My Yang
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| | - Stephanie M. Eilts
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Montserrat Torremorell
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| | - Yaakov Knobloch
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christopher J. Hogan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christine Atallah
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Juliette Davies
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - John Winkler
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Ryan Gordon
- School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| | - Reza Zarghanishiraz
- School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| | - Mojtaba Zabihi
- School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| | - Cole Christianson
- School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| | - Deanne Taylor
- School of Nursing, University of British Columbia, Kelowna, British Columbia, Canada
- Interior Health Authority, Kelowna, British Columbia, Canada
- Rural Coordination Center of British Columbia, Vancouver, British Columbia, Canada
| | - Alan Rabinowitz
- Rural Coordination Center of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- St. Paul’s Hospital, Vancouver, British Columbia, Canada
| | - Jared Baylis
- Interior Health Authority, Kelowna, British Columbia, Canada
- Department of Emergency Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joshua Brinkerhoff
- School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| | - Jonathan P. Little
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Ri Li
- School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada
| | | | - Michael K. Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Hayes EK, Gagnon GA. From capture to detection: A critical review of passive sampling techniques for pathogen surveillance in water and wastewater. WATER RESEARCH 2024; 261:122024. [PMID: 38986282 DOI: 10.1016/j.watres.2024.122024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/05/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024]
Abstract
Water quality, critical for human survival and well-being, necessitates rigorous control to mitigate contamination risks, particularly from pathogens amid expanding urbanization. Consequently, the necessity to maintain the microbiological safety of water supplies demands effective surveillance strategies, reliant on the collection of representative samples and precise measurement of contaminants. This review critically examines the advancements of passive sampling techniques for monitoring pathogens in various water systems, including wastewater, freshwater, and seawater. We explore the evolution from conventional materials to innovative adsorbents for pathogen capture and the shift from culture-based to molecular detection methods, underscoring the adaptation of this field to global health challenges. The comparison highlights passive sampling's efficacy over conventional techniques like grab sampling and its potential to overcome existing sampling challenges through the use of innovative materials such as granular activated carbon, thermoplastics, and polymer membranes. By critically evaluating the literature, this work identifies standardization gaps and proposes future research directions to augment passive sampling's efficiency, specificity, and utility in environmental and public health surveillance.
Collapse
Affiliation(s)
- Emalie K Hayes
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Graham A Gagnon
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
34
|
Julian TR, Devaux AJ, Brülisauer L, Conforti S, Rusch JC, Gan C, Bagutti C, Stadler T, Kohn T, Ort C. Monitoring an Emergent Pathogen at Low Incidence in Wastewater Using qPCR: Mpox in Switzerland. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:269-279. [PMID: 38780822 PMCID: PMC11422434 DOI: 10.1007/s12560-024-09603-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Wastewater-based epidemiology offers a complementary approach to clinical case-based surveillance of emergent diseases and can help identify regions with infected people to prioritize clinical surveillance strategies. However, tracking emergent diseases in wastewater requires reliance on novel testing assays with uncertain sensitivity and specificity. Limited pathogen shedding may cause detection to be below the limit of quantification or bordering the limit of detection. Here, we investigated how the definition of limit of detection for quantitative polymerase chain reaction (qPCR) impacts epidemiological insights during an mpox outbreak in Switzerland. 365 wastewater samples from three wastewater treatment plants in Switzerland from 9 March through 31 October 2022 were analyzed for mpox DNA using qPCR. We detected mpox DNA in 22% (79 of 365) wastewater samples based on a liberal definition of qPCR detection as any exponentially increasing fluorescence above the threshold. Based on a more restrictive definition as the lowest concentration at which there is 95% likelihood of detection, detection was 1% (5 of 365). The liberal definition shows high specificity (90%) and accuracy (78%), but moderate sensitivity (64%) when benchmarked against available clinical case reporting, which contrasts with higher specificity (98%) but lower sensitivity (10%) and accuracy (56%) of the 95% likelihood definition. Wastewater-based epidemiology applied to an emergent pathogen will require optimizing public health trade-offs between reporting data with high degrees of uncertainty and delaying communication and associated action. Information sharing with relevant public health stakeholders could couple early results with clear descriptions of uncertainty.Impact Statement: When a novel pathogen threatens to enter a community, wastewater-based epidemiology offers an opportunity to track its emergence and spread. However, rapid deployment of methods for to detect a novel pathogen may rely on assays with uncertain sensitivity and specificity. Benchmarking the detection of mpox DNA in Swiss wastewaters with reported clinical cases in 2022, we demonstrate how definitions of detection of a qPCR assay influence epidemiological insights from wastewater. The results highlight the need for information sharing between public health stakeholders that couple early insights from wastewater with descriptions of methodological uncertainty to optimize public health actions.
Collapse
Affiliation(s)
- Timothy R Julian
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600, Dübendorf, Switzerland.
- Swiss Tropical and Public Health Institute, 4123, Allschwil, Switzerland.
- University of Basel, 4001, Basel, Switzerland.
| | - Alexander J Devaux
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600, Dübendorf, Switzerland
| | - Laura Brülisauer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600, Dübendorf, Switzerland
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Sheena Conforti
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600, Dübendorf, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4009, Basel, Switzerland
| | - Johannes C Rusch
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600, Dübendorf, Switzerland
| | - Charles Gan
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600, Dübendorf, Switzerland
| | | | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zurich, 4009, Basel, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Tamar Kohn
- Laboratory of Environmental Virology, School of Architecture, Civil and Environmental Engineering, (ENAC), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christoph Ort
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600, Dübendorf, Switzerland
| |
Collapse
|
35
|
Cha G, Huang Y, Graham KE, Luo A, Chen W, Hatt JK, Konstantinidis KT, Xie X. Cold-chain free nucleic acid preservation using porous super-absorbent polymer (PSAP) beads to facilitate wastewater surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173468. [PMID: 38788933 DOI: 10.1016/j.scitotenv.2024.173468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
The instability of viral targets including SARS-CoV-2 in sewage is an important challenge in wastewater monitoring projects. The unrecognized interruptions in the 'cold-chain' transport from the sample collection to RNA quantification in the laboratory may undermine the accurate quantification of the virus. In this study, bovine serum albumin (BSA)-modified porous superabsorbent polymer (PSAP) beads were applied to absorb raw sewage samples as a simple method for viral RNA preservation. The preservation efficiency for SARS-CoV-2 and pepper mild mottle virus (PMMoV) RNA were examined during storage for 14 days at 4 °C or room temperature against the control (no beads applied). While a non-significant difference was observed at 4 °C (∼80 % retention for both control and PSAP-treated sewage), the reduction of SARS-CoV-2 RNA concentrations was significantly lower in sewage retrieved from PSAP beads (25-40 % reduction) compared to control (>60 % reduction) at room temperature. On the other hand, the recovery of PMMoV, known for its high persistence in raw sewage, from PSAP beads or controls were consistently above 85 %, regardless of the storage temperature. Our results demonstrate the applicability of PSAP beads to wastewater-based epidemiology (WBE) projects for preservation of SARS-CoV-2 RNA in sewage, especially in remote settings with no refrigeration capabilities.
Collapse
Affiliation(s)
- Gyuhyon Cha
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yixuan Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Katherine E Graham
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Anjin Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Wensi Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Janet K Hatt
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Xing Xie
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
36
|
Faleye TOC, Skidmore P, Elyaderani A, Adhikari S, Kaiser N, Smith A, Yanez A, Perleberg T, Driver EM, Halden RU, Varsani A, Scotch M. Exploring Canine Picornavirus Diversity in the USA Using Wastewater Surveillance: From High-Throughput Genomic Sequencing to Immuno-Informatics and Capsid Structure Modeling. Viruses 2024; 16:1188. [PMID: 39205161 PMCID: PMC11359023 DOI: 10.3390/v16081188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024] Open
Abstract
The SARS-CoV-2 pandemic resulted in a scale-up of viral genomic surveillance globally. However, the wet lab constraints (economic, infrastructural, and personnel) of translating novel virus variant sequence information to meaningful immunological and structural insights that are valuable for the development of broadly acting countermeasures (especially for emerging and re-emerging viruses) remain a challenge in many resource-limited settings. Here, we describe a workflow that couples wastewater surveillance, high-throughput sequencing, phylogenetics, immuno-informatics, and virus capsid structure modeling for the genotype-to-serotype characterization of uncultivated picornavirus sequences identified in wastewater. Specifically, we analyzed canine picornaviruses (CanPVs), which are uncultivated and yet-to-be-assigned members of the family Picornaviridae that cause systemic infections in canines. We analyzed 118 archived (stored at -20 °C) wastewater (WW) samples representing a population of ~700,000 persons in southwest USA between October 2019 to March 2020 and October 2020 to March 2021. Samples were pooled into 12 two-liter volumes by month, partitioned (into filter-trapped solids [FTSs] and filtrates) using 450 nm membrane filters, and subsequently concentrated to 2 mL (1000×) using 10,000 Da MW cutoff centrifugal filters. The 24 concentrates were subjected to RNA extraction, CanPV complete capsid single-contig RT-PCR, Illumina sequencing, phylogenetics, immuno-informatics, and structure prediction. We detected CanPVs in 58.3% (14/24) of the samples generated 13,824,046 trimmed Illumina reads and 27 CanPV contigs. Phylogenetic and pairwise identity analyses showed eight CanPV genotypes (intragenotype divergence <14%) belonging to four clusters, with intracluster divergence of <20%. Similarity analysis, immuno-informatics, and virus protomer and capsid structure prediction suggested that the four clusters were likely distinct serological types, with predicted cluster-distinguishing B-cell epitopes clustered in the northern and southern rims of the canyon surrounding the 5-fold axis of symmetry. Our approach allows forgenotype-to-serotype characterization of uncultivated picornavirus sequences by coupling phylogenetics, immuno-informatics, and virus capsid structure prediction. This consequently bypasses a major wet lab-associated bottleneck, thereby allowing resource-limited settings to leapfrog from wastewater-sourced genomic data to valuable immunological insights necessary for the development of prophylaxis and other mitigation measures.
Collapse
Affiliation(s)
- Temitope O. C. Faleye
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Peter Skidmore
- College of Health Solutions, Arizona State University, Tempe, AZ 85287, USA
| | - Amir Elyaderani
- College of Health Solutions, Arizona State University, Tempe, AZ 85287, USA
| | - Sangeet Adhikari
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
| | - Nicole Kaiser
- College of Health Solutions, Arizona State University, Tempe, AZ 85287, USA
| | - Abriana Smith
- College of Health Solutions, Arizona State University, Tempe, AZ 85287, USA
| | - Allan Yanez
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Tyler Perleberg
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Erin M. Driver
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Rolf U. Halden
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA
| | - Arvind Varsani
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
| | - Matthew Scotch
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- College of Health Solutions, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
37
|
Carmo dos Santos M, Cerqueira Silva AC, dos Reis Teixeira C, Pinheiro Macedo Prazeres F, Fernandes dos Santos R, de Araújo Rolo C, de Souza Santos E, Santos da Fonseca M, Oliveira Valente C, Saraiva Hodel KV, Moraes dos Santos Fonseca L, Sampaio Dotto Fiuza B, de Freitas Bueno R, Bittencourt de Andrade J, Aparecida Souza Machado B. Wastewater surveillance for viral pathogens: A tool for public health. Heliyon 2024; 10:e33873. [PMID: 39071684 PMCID: PMC11279281 DOI: 10.1016/j.heliyon.2024.e33873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/03/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
A focus on water quality has intensified globally, considering its critical role in sustaining life and ecosystems. Wastewater, reflecting societal development, profoundly impacts public health. Wastewater-based epidemiology (WBE) has emerged as a surveillance tool for detecting outbreaks early, monitoring infectious disease trends, and providing real-time insights, particularly in vulnerable communities. WBE aids in tracking pathogens, including viruses, in sewage, offering a comprehensive understanding of community health and lifestyle habits. With the rise in global COVID-19 cases, WBE has gained prominence, aiding in monitoring SARS-CoV-2 levels worldwide. Despite advancements in water treatment, poorly treated wastewater discharge remains a threat, amplifying the spread of water-, sanitation-, and hygiene (WaSH)-related diseases. WBE, serving as complementary surveillance, is pivotal for monitoring community-level viral infections. However, there is untapped potential for WBE to expand its role in public health surveillance. This review emphasizes the importance of WBE in understanding the link between viral surveillance in wastewater and public health, highlighting the need for its further integration into public health management.
Collapse
Affiliation(s)
- Matheus Carmo dos Santos
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Ana Clara Cerqueira Silva
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Carine dos Reis Teixeira
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Filipe Pinheiro Macedo Prazeres
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Rosângela Fernandes dos Santos
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Carolina de Araújo Rolo
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Emanuelle de Souza Santos
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Maísa Santos da Fonseca
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Camila Oliveira Valente
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Katharine Valéria Saraiva Hodel
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Larissa Moraes dos Santos Fonseca
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Bianca Sampaio Dotto Fiuza
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Rodrigo de Freitas Bueno
- Federal University of ABC. Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo, Brazil
| | - Jailson Bittencourt de Andrade
- University Center SENAI CIMATEC, SENAI CIMATEC, Salvador, 41650-010, Bahia, Brazil
- Centro Interdisciplinar de Energia e Ambiente – CIEnAm, Federal University of Bahia, Salvador, 40170-115, Brazil
| | - Bruna Aparecida Souza Machado
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
- University Center SENAI CIMATEC, SENAI CIMATEC, Salvador, 41650-010, Bahia, Brazil
| |
Collapse
|
38
|
Kutralam-Muniasamy G, Shruti VC, Pérez-Guevara F. Plastisphere-hosted viruses: A review of interactions, behavior, and effects. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134533. [PMID: 38749241 DOI: 10.1016/j.jhazmat.2024.134533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024]
Abstract
Microbial communities, including bacteria, diatoms, and fungi, colonize plastic surfaces, forming biofilms known as the "plastisphere." Recent research has revealed that plastispheres also host a wide range of viruses, sparking interest in microbial ecology and virology. This shared habitat allows viruses to replicate, interact, infect, and spread, potentially impacting the environment and human health. Consequently, viruses attached to microplastics are now recognized to have broad effects on cellular and immune responses. However, the ecology and implications of viruses hosted in plastisphere habitats remain poorly understood, highlighting their fundamental importance as a subject of study. This review explores various pathways for virus attachment to plastispheres, factors influencing these interactions, their impacts within plastisphere and host-associated environments, and associated issues. It also summarizes current research and identifies knowledge gaps. We anticipate that this paper will help improve our predictive understanding of plastisphere viruses in natural settings and emphasizes the need for more research in real-world environments to advance the field.
Collapse
Affiliation(s)
- Gurusamy Kutralam-Muniasamy
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, México.
| | - V C Shruti
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, México
| | - Fermín Pérez-Guevara
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, México; Nanoscience & Nanotechnology Program, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, México
| |
Collapse
|
39
|
Subroyen S, Pillay L, Bux F, Kumari S. Evaluating storage conditions and enhancement strategies on viral biomarker recovery for WBE applications. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:213-224. [PMID: 39007315 DOI: 10.2166/wst.2024.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/31/2024] [Indexed: 07/16/2024]
Abstract
Wastewater-based epidemiology (WBE) is a valuable disease surveillance tool. However, little is known on how factors such as transportation, storage, and wastewater characteristics influence the accuracy of the quantification methods. Hence, this study investigated the impact of storage temperatures and physicochemical characteristics of wastewater on SARS-CoV-2 and influenza A stability using droplet digital PCR. Additionally, strategies to enhance viral recovery were explored. Municipal influent wastewater stored between ±25 and -80 °C was assessed for a period of 84 days to determine viral degradation. Degradation up to 94.1% of influenza A and SARS-CoV-2 was observed in all samples with the highest at ±25 °C. Viral degradation was correlated to the changes in wastewater physicochemical characteristics. The low degradation observed of SARS-CoV-2 in the spiked pellets were indicative of viral adhesion to wastewater solids, which correlated with changes in pH. Ultrasonication frequencies ranging from 4 to 16 kHz, increased SARS-CoV-2 concentrations in the supernatant between 3.30 and 35.65%, indicating viral RNA attachment to wastewater solids. These results highlight the importance of additional pretreatment methods for maximizing RNA recovery from wastewater samples. Based on these findings, it was deduced that wastewater preservation studies are essential, and pretreatment should be included in the WBE methodology.
Collapse
Affiliation(s)
- Sueyanka Subroyen
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Leanne Pillay
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa E-mail:
| |
Collapse
|
40
|
Goitom E, Ariano S, Gilbride K, Yang MI, Edwards EA, Peng H, Dannah N, Farahbakhsh F, Hataley E, Sarvi H, Sun J, Waseem H, Oswald C. Identification of environmental and methodological factors driving variability of Pepper Mild Mottle Virus (PMMoV) across three wastewater treatment plants in the City of Toronto. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172917. [PMID: 38701931 DOI: 10.1016/j.scitotenv.2024.172917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
PMMoV has been widely used to normalize the concentration of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA, influenza, and respiratory syncytial virus (RSV) to account for variations in the fecal content of wastewater. PMMoV is also used as an internal RNA recovery control for wastewater-based epidemiology (WBE) tests. While potentially useful for the interpretation of WBE data, previous studies have suggested that PMMoV concentration can be affected by various physico-chemical characteristics of wastewater. There is also the possibility that laboratory methods, particularly the variability in centrifugation steps to remove supernatant from pellets can cause PMMoV variability. The goal of this study is to improve our understanding of the main drivers of PMMoV variability by assessing the relationship between PMMoV concentration, the physico-chemical characteristics of wastewater, and the methodological approach for concentrating wastewater samples. We analyzed 24-hour composite wastewater samples collected from the influent stream of three wastewater treatment plants (WWTPs) located in the City of Toronto, Ontario, Canada. Samples were collected 3 to 5 times per week starting from the beginning of March 2021 to mid-July 2023. The influent flow rate was used to partition the data into wet and dry weather conditions. Physico-chemical characteristics (e.g., total suspended solids (TSS), biological oxygen demand (BOD), alkalinity, electrical conductivity (EC), and ammonia (NH3)) of the raw wastewater were measured, and PMMoV was quantified. Spatial and temporal variability of PMMoV was observed throughout the study period. PMMoV concentration was significantly higher during dry weather conditions. Multiple linear regression analysis demonstrates that the number and type of physico-chemical parameters that drive PMMoV variability are site-specific, but overall BOD and alkalinity were the most important predictors. Differences in PMMoV concentration for a single WWTP between two different laboratory methods, along with a weak correlation between pellet mass and TSS using one method may indicate that differences in sample concentration and subjective subsampling bias could alter viral recovery and introduce variability to the data.
Collapse
Affiliation(s)
- Eyerusalem Goitom
- Department of Geography & Environmental Studies, Toronto Metropolitan University, Canada
| | - Sarah Ariano
- Department of Geography & Environmental Studies, Toronto Metropolitan University, Canada; Department of Earth and Planetary Sciences, McGill University, Canada
| | - Kim Gilbride
- Department of Chemistry & Biology, Toronto Metropolitan University, Canada
| | - Minqing Ivy Yang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Canada; School of the Environment, University of Toronto, Canada
| | - Nora Dannah
- Department of Chemistry & Biology, Toronto Metropolitan University, Canada
| | - Farnaz Farahbakhsh
- Department of Chemistry & Biology, Toronto Metropolitan University, Canada
| | - Eden Hataley
- Department of Geography & Environmental Studies, Toronto Metropolitan University, Canada
| | - Hooman Sarvi
- Department of Chemistry & Biology, Toronto Metropolitan University, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Canada
| | - Hassan Waseem
- Department of Chemistry & Biology, Toronto Metropolitan University, Canada
| | - Claire Oswald
- Department of Geography & Environmental Studies, Toronto Metropolitan University, Canada.
| |
Collapse
|
41
|
Maneein S, Sangsanont J, Limpiyakorn T, Sirikanchana K, Rattanakul S. The coagulation process for enveloped and non-enveloped virus removal in turbid water: Removal efficiencies, mechanisms and its application to SARS-CoV-2 Omicron BA.2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172945. [PMID: 38703849 DOI: 10.1016/j.scitotenv.2024.172945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
The coagulation process has a high potential as a treatment method that can handle pathogenic viruses including emerging enveloped viruses in drinking water treatment process which can lower infection risk through drinking water consumption. In this study, a surrogate enveloped virus, bacteriophage Փ6, and surrogate non-enveloped viruses, including bacteriophage MS-2, T4, ՓX174, were used to evaluate removal efficiencies and mechanisms by the conventional coagulation process with alum, poly‑aluminum chloride, and ferric chloride at pH 5, 7, and 9 in turbid water. Also, treatability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a recent virus of global concern by coagulation was evaluated as SARS-CoV-2 can presence in drinking water sources. It was observed that an increase in the coagulant dose enhanced the removal efficiency of turbidity and viruses, and the condition that provided the highest removal efficiency of enveloped and non-enveloped viruses was 50 mg/L of coagulants at pH 5. In addition, the coagulation process was more effective for enveloped virus removal than for the non-enveloped viruses, and it demonstrated reduction of SARS-CoV-2 Omicron BA.2 over 0.83-log with alum. According to culture- and molecular-based assays (qPCR and CDDP-qPCR), the virus removal mechanisms were floc adsorption and coagulant inactivation. Through inactivation with coagulants, coagulants caused capsid destruction, followed by genome damage in non-enveloped viruses; however, damage to a lipid envelope is suggested to contribute to a great extend for enveloped virus inactivation. We demonstrated that conventional coagulation is a promising method for controlling emerging and re-emerging viruses in drinking water.
Collapse
Affiliation(s)
- Siriwara Maneein
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Jatuwat Sangsanont
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Water Science and Technology for Sustainable Environmental Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tawan Limpiyakorn
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand
| | - Surapong Rattanakul
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand.
| |
Collapse
|
42
|
Robbins AA, Gallagher TL, Toledo DM, Hershberger KC, Salmela SM, Barney RE, Szczepiorkowski ZM, Tsongalis GJ, Martin IW, Hubbard JA, Lefferts JA. Analytical validation of a semi-automated methodology for quantitative measurement of SARS-CoV-2 RNA in wastewater collected in northern New England. Microbiol Spectr 2024; 12:e0112223. [PMID: 38747589 PMCID: PMC11323974 DOI: 10.1128/spectrum.01122-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/11/2024] [Indexed: 06/06/2024] Open
Abstract
Wastewater-based epidemiology (WBE) can be used to monitor the community presence of infectious disease pathogens of public health concern such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Viral nucleic acid has been detected in the stool of SARS-CoV-2-infected individuals. Asymptomatic SARS-CoV-2 infections make community monitoring difficult without extensive and continuous population screening. In this study, we validated a procedure that includes manual pre-processing, automated SARS-CoV-2 RNA extraction and detection workflows using both reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) and reverse transcriptase droplet digital PCR (RT-ddPCR). Genomic RNA and calibration materials were used to create known concentrations of viral material to determine the linearity, accuracy, and precision of the wastewater extraction and SARS-CoV-2 RNA detection. Both RT-qPCR and RT-ddPCR perform similarly in all the validation experiments, with a limit of detection of 50 copies/mL. A wastewater sample from a care facility with a known outbreak was assessed for viral content in replicate, and we showed consistent results across both assays. Finally, in a 2-week survey of two New Hampshire cities, we assessed the suitability of our methods for daily surveillance. This paper describes the technical validation of a molecular assay that can be used for long-term monitoring of SARS-CoV-2 in wastewater as a potential tool for community surveillance to assist with public health efforts.IMPORTANCEThis paper describes the technical validation of a molecular assay that can be used for the long-term monitoring of SARS-CoV-2 in wastewater as a potential tool for community surveillance to assist with public health efforts.
Collapse
Affiliation(s)
- Ashlee A. Robbins
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Torrey L. Gallagher
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Diana M. Toledo
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- The Broad Institute at MIT and Harvard, Cambridge, Massachusetts, USA
| | - K. Chase Hershberger
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Sabrina M. Salmela
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Rachael E. Barney
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Zbigniew M. Szczepiorkowski
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Gregory J. Tsongalis
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Isabella W. Martin
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jacqueline A. Hubbard
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Joel A. Lefferts
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
43
|
Oloye FF, Xie Y, Asadi M, Challis JK, Osunla CA, Xia P, Cantin J, Femi-Oloye OP, Brinkmann M, McPhedran KN, Sadowski M, Pandey S, Jones PD, Mangat C, Servos MR, Giesy JP. Solid-liquid distribution of SARS-CoV-2 in primary effluent of a wastewater treatment plant. MethodsX 2024; 12:102645. [PMID: 38524303 PMCID: PMC10957428 DOI: 10.1016/j.mex.2024.102645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024] Open
Abstract
Distributions of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and fecal viral biomarkers between solid and liquid phases of wastewater are largely unknown. Herein, distributions of SARS-CoV-2, Pepper Mild Mottle Virus (PMMoV), and F-RNA bacteriophage group II (FRNAPH-II) were determined by viral RNA RT-qPCR. Comparison of viral recovery using three conventional fractionation methods included membrane filtration, a combination of mid-speed centrifugation and membrane filtration, and high-speed centrifugation. SARS-CoV-2 partitioned to the solids fraction in greater abundance compared to liquid fractions in a combination of mid-speed centrifugation and membrane filtration and high-speed centrifugation, but not in membrane filtration method in a particular assay, while fecal biomarkers (PMMoV and FRNAPH-II) exhibited the reciprocal relationship. The wastewater fractionation method had minimal effects on the solids-liquids distribution for all viral and phage markers tested; however, viral RNA load was significantly greater in solid-liquid fractions viral RNA loads compared with the than whole-wastewater PEG precipitation. A RNeasy PowerWater Kit with PCR inhibitor removal resulted in greater viral RNA loads and lesser PCR inhibition compared to a QIAamp Viral RNA Mini Kit without PCR inhibitor removal. These results support the development of improved methods and interpretation of WBE of SARS-CoV-2. •Distribution of SARS-CoV-2 to liquid and solid portions was addressed.•Addressing PCR inhibition is important in wastewater-based epidemiology.•Fraction methods have minimal effect.
Collapse
Affiliation(s)
- Femi F. Oloye
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yuwei Xie
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing 210042, China
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Mohsen Asadi
- Department of Civil, Geological and Environmental Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Charles A. Osunla
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Pu Xia
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jenna Cantin
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kerry N. McPhedran
- Department of Civil, Geological and Environmental Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mike Sadowski
- Saskatoon Water Department, Wastewater Treatment Plant, City of Saskatoon, Saskatoon, SK, Canada
| | - Sudhir Pandey
- Saskatoon Water Department, Wastewater Treatment Plant, City of Saskatoon, Saskatoon, SK, Canada
| | - Paul D. Jones
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada
| | - Chand Mangat
- Antimicrobial Resistance and Nosocomial Infections, National Microbiology Laboratory / Public Health Agency of Canada, Canada
| | - Mark R. Servos
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - John P. Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Environmental Sciences, Baylor University, Waco, TX, USA
- Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
44
|
Ousset MJ, Pianciola LA, Mazzeo M, Oteiza JM, Jaureguiberry MS, Venturino A, Barril PA. Improved SARS-CoV-2 RNA recovery in wastewater matrices using a CTAB-based extraction method. J Virol Methods 2024; 327:114918. [PMID: 38556176 DOI: 10.1016/j.jviromet.2024.114918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Wastewater-based epidemiology has allowed tracking the magnitude and distribution of SARS-CoV-2 in communities, allowing public health officials to prepare for impending outbreaks. While many factors influence recovery of SARS-CoV-2 from wastewater, proper extraction, concentration, and purification of RNA are key steps to ensure accurate detection of viral particles. The aim of this study was to compare the efficiency of four commonly used RNA extraction methods for detection of the SARS-CoV-2 RNA genome in sewage samples artificially inoculated with the virus, in order to identify a protocol that improves viral recovery. These methods included CTAB-based, TRIzol-based, and guanidinium thiocyanate (GTC)-based extraction procedures coupled with silica spin column-based purification, and an automated extraction/purification protocol using paramagnetic particles. Following RNA extraction, virus recovery rates were compared using RT-qPCR-based detection. The CTAB-based approach yielded the highest recovery rates and was the only method to consistently demonstrate stable virus recovery percentages regardless of the specific physicochemical characteristics of the samples tested. The TRIzol method proved to be the second most effective, yielding significantly higher recovery rates compared to both the GTC-based and the automated extraction methods. These results suggest that the CTAB-based approach could be a useful tool for the recovery of viral RNA from complex wastewater matrices.
Collapse
Affiliation(s)
- María Julia Ousset
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC), CONICET- Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén 8300, Argentina.
| | - Luis Alfredo Pianciola
- Laboratorio Central "Mg. Luis Alfredo Pianciola", Ministerio de Salud de la Provincia de Neuquén, Gregorio Martinez 65, Neuquén 8300, Argentina
| | - Melina Mazzeo
- Laboratorio Central "Mg. Luis Alfredo Pianciola", Ministerio de Salud de la Provincia de Neuquén, Gregorio Martinez 65, Neuquén 8300, Argentina
| | - Juan Martín Oteiza
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Microbiología de los Alimentos, Centro de Investigación y Asistencia Técnica a la Industria (CIATI), Expedicionarios del Desierto 1310, Centenario, Neuquén 8309, Argentina
| | - María Soledad Jaureguiberry
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC), CONICET- Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén 8300, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Andrés Venturino
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC), CONICET- Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén 8300, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Patricia Angélica Barril
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Microbiología de los Alimentos, Centro de Investigación y Asistencia Técnica a la Industria (CIATI), Expedicionarios del Desierto 1310, Centenario, Neuquén 8309, Argentina
| |
Collapse
|
45
|
Zheng X, Zhao K, Xue B, Deng Y, Xu X, Yan W, Rong C, Leung K, Wu JT, Leung GM, Peiris M, Poon LLM, Zhang T. Tracking diarrhea viruses and mpox virus using the wastewater surveillance network in Hong Kong. WATER RESEARCH 2024; 255:121513. [PMID: 38555782 DOI: 10.1016/j.watres.2024.121513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/14/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
The wastewater surveillance network successfully established for COVID-19 showed great potential to monitor other infectious viruses, such as norovirus, rotavirus and mpox virus. In this study, we established and validated detection methods for these viruses in wastewater. We developed a supernatant-based method to detect RNA viruses from wastewater samples and applied it to the monthly diarrhea viruses (norovirus genogroup I & II, and rotavirus) surveillance in wastewater treatment plants (WWTPs) at a city-wide level for 16 months. Significant correlations were observed between the diarrhea viruses concentrations in wastewater and detection rates in faecal specimens by clinical surveillance. The highest norovirus concentration in wastewater was obtained in winter, consistent with the seasonal pattern of norovirus outbreak in Hong Kong. Additionally, we established a pellet-based method to monitor DNA viruses in wastewater and detected weak signals for mpox virus in wastewater from a WWTP serving approximately 16,700 people, when the first mpox patient in Hong Kong was admitted to the hospital within the catchment area. Genomic sequencing provided confirmatory evidence for the validity of the results. Our findings emphasized the efficacy of the wastewater surveillance network in WWTPs as a cost-effective tool to track the transmission trend of diarrhea viruses and to provide sensitive detection of novel emerging viruses such as mpox virus in low-prevalence areas. The developed methods and surveillance results provide confidence for establishing robust wastewater surveillance programs to control infectious diseases in the post-pandemic era.
Collapse
Affiliation(s)
- Xiawan Zheng
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Keyue Zhao
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Bingjie Xue
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiaoqing Xu
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Weifu Yan
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chao Rong
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Kathy Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China; Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong, China; The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Joseph T Wu
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China; Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong, China; The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Gabriel M Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China; Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong, China
| | - Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China; HKU-Pasteur Research Pole, The University of Hong Kong, Sassoon Road, Hong Kong, China; Centre For Immunology and Infection (C2i), Hong Kong Science Park, Hong Kong, China
| | - Leo L M Poon
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China; HKU-Pasteur Research Pole, The University of Hong Kong, Sassoon Road, Hong Kong, China; Centre For Immunology and Infection (C2i), Hong Kong Science Park, Hong Kong, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China; School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China; Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, Hong Kong, China.
| |
Collapse
|
46
|
Boehm AB, Wolfe MK, White BJ, Hughes B, Duong D, Banaei N, Bidwell A. Human norovirus (HuNoV) GII RNA in wastewater solids at 145 United States wastewater treatment plants: comparison to positivity rates of clinical specimens and modeled estimates of HuNoV GII shedders. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:440-447. [PMID: 37550566 PMCID: PMC11222142 DOI: 10.1038/s41370-023-00592-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Human norovirus (HuNoV) is a leading cause of disease globally, yet actual incidence is unknown. HuNoV infections are not reportable in the United States, and surveillance is limited to tracking severe illnesses or outbreaks. Wastewater monitoring for HuNoV has been done previously and results indicate it is present in wastewater influent and concentrations are associated with HuNoV infections in the communities contributing to wastewater. However, work has mostly been limited to monthly samples of liquid wastewater at one or a few wastewater treatment plants (WWTPs). OBJECTIVE The objectives of this study are to investigate whether HuNoV GII preferentially adsorbs to wastewater solids, investigate concentrations of HuNoV GII in wastewater solids in wastewater treatment plants across the county, and explore how those relate to clinical measures of disease occurrence. In addition, we aim to develop and apply a mass-balance model that predicts the fraction of individuals shedding HuNoV in their stool based on measured concentrations in wastewater solids. METHODS We measured HuNoV GII RNA in matched wastewater solids and liquid influent in 7 samples from a WWTP. We also applied the HuNoV GII assay to measure viral RNA in over 6000 wastewater solids samples from 145 WWTPs from across the United States daily to three times per week for up to five months. Measurements were made using digital droplet RT-PCR. RESULTS HuNoV GII RNA preferentially adsorbs to wastewater solids where it is present at 1000 times the concentration in influent. Concentrations of HuNoV GII RNA correlate positively with clinical HuNoV positivity rates. Model output of the fraction of individuals shedding HuNoV is variable and uncertain, but consistent with indirect estimates of symptomatic HuNoV infections in the United States. IMPACT STATEMENT Illness caused by HuNoV is not reportable in the United States so there is limited data on disease occurrence. Wastewater monitoring can provide information about the community spread of HuNoV. Data from wastewater can be available within 24 h of sample receipt at a laboratory. Wastewater is agnostic to whether individuals seek medical care, are symptomatic, and the severity of illness. Knowledge gleaned from wastewater may be used by public health professionals to make recommendations on hand washing, surface disinfection, or other behaviors to reduce transmission of HuNoV, or medical doctors to inform clinical decision making.
Collapse
Affiliation(s)
- Alexandria B Boehm
- Department of Civil & Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, CA, USA.
| | - Marlene K Wolfe
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | | | | | | | - Niaz Banaei
- Stanford Health Care Clinical Microbiology Laboratory, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Amanda Bidwell
- Department of Civil & Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, CA, USA
| |
Collapse
|
47
|
Dlamini M, Msolo L, Ehi Ebomah K, Nontongana N, Ifeanyi Okoh A. A systematic review on the incidence of influenza viruses in wastewater matrices: Implications for public health. PLoS One 2024; 19:e0291900. [PMID: 38662758 PMCID: PMC11045120 DOI: 10.1371/journal.pone.0291900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/05/2024] [Indexed: 04/28/2024] Open
Abstract
Influenza viruses pose a significant public health threat, necessitating comprehensive surveillance strategies to enhance early detection and preventive measures. This systematic review investigates the incidence of influenza viruses in wastewater matrices, aiming to elucidate the potential implications for public health. The study synthesizes existing literature, employing rigorous inclusion criteria to identify relevant studies conducted globally. The essence of the problem lies in the gaps of traditional surveillance methods, which often rely on clinical data and may underestimate the true prevalence of influenza within communities. Wastewater-based epidemiology offers a novel approach to supplementing these conventional methods, providing a broader and more representative assessment of viral circulation. This review systematically examines the methodologies employed in the selected studies, including virus concentration techniques and molecular detection methods, to establish a standardized framework for future research. Our findings reveal a consistent presence of influenza viruses in diverse wastewater matrices across different geographic locations and seasons. Recommendations for future research include the standardization of sampling protocols, improvement of virus concentration methods, and the integration of wastewater surveillance into existing public health frameworks. In conclusion, this systematic review contributes to the understanding of influenza dynamics in wastewater matrices, offering valuable insights for public health practitioners and policymakers. Implementation of wastewater surveillance alongside traditional methods can enhance the resilience of public health systems and better prepare communities for the challenges posed by influenza outbreaks.
Collapse
Affiliation(s)
- Mbasa Dlamini
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Biochemistry and Microbiology, Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, Alice, South Africa
| | - Luyanda Msolo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Biochemistry and Microbiology, Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, Alice, South Africa
| | - Kingsley Ehi Ebomah
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Biochemistry and Microbiology, Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, Alice, South Africa
| | - Nolonwabo Nontongana
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Biochemistry and Microbiology, Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, Alice, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Biochemistry and Microbiology, Applied and Environmental Microbiology Research Group (AEMREG), University of Fort Hare, Alice, South Africa
| |
Collapse
|
48
|
White A, Iverson G, Wright L, Fallon JT, Briley KP, Yin C, Huang W, Humphrey C. Wastewater based epidemiology as a surveillance tool during the current COVID-19 pandemic on a college campus (East Carolina University) and its accuracy in predicting SARS-CoV-2 outbreaks in dormitories. PLoS One 2024; 19:e0289906. [PMID: 38635813 PMCID: PMC11025953 DOI: 10.1371/journal.pone.0289906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/23/2024] [Indexed: 04/20/2024] Open
Abstract
The COVID-19 outbreak led governmental officials to close many businesses and schools, including colleges and universities. Thus, the ability to resume normal campus operation required adoption of safety measures to monitor and respond to COVID-19. The objective of this study was to determine the efficacy of wastewater-based epidemiology as a surveillance method in monitoring COVID-19 on a college campus. The use of wastewater monitoring as part of a surveillance program to control COVID-19 outbreaks at East Carolina University was evaluated. During the Spring and Fall 2021 semesters, wastewater samples (N = 830) were collected every Monday, Wednesday, and Friday from the sewer pipes exiting the dormitories on campus. Samples were analyzed for SARS-CoV-2 and viral quantification was determined using qRT-PCR. During the Spring 2021 semester, there was a significant difference in SARS-CoV-2 virus copies in wastewater when comparing dorms with the highest number student cases of COVID-19 and those with the lowest number of student cases, (p = 0.002). Additionally, during the Fall 2021 semester it was observed that when weekly virus concentrations exceeded 20 copies per ml, there were new confirmed COVID-19 cases 85% of the time during the following week. Increases in wastewater viral concentration spurred COVID-19 swab testing for students residing in dormitories, aiding university officials in effectively applying COVID testing policies. This study showed wastewater-based epidemiology can be a cost-effective surveillance tool to guide other surveilling methods (e.g., contact tracing, nasal/salvia testing, etc.) to identify and isolate afflicted individuals to reduce the spread of pathogens and potential outbreaks within a community.
Collapse
Affiliation(s)
- Avian White
- Environmental Health Sciences Program, Department of Health Education and Promotion, East Carolina University, Greenville, NC, United States of America
| | - Guy Iverson
- Environmental Health Sciences Program, Department of Health Education and Promotion, East Carolina University, Greenville, NC, United States of America
| | - LaNika Wright
- Executive Director Student Health Services, East Carolina University, Greenville, NC, United States of America
- Associate Vice Chancellor of Health and Wellbeing, East Carolina University, Greenville, NC, United States of America
| | - John T. Fallon
- Department of Pathology and Laboratory Medicine, East Carolina University, Greenville, NC, United States of America
| | - Kimberly P. Briley
- Department of Pathology and Laboratory Medicine, East Carolina University, Greenville, NC, United States of America
| | - Changhong Yin
- Department of Pathology and Laboratory Medicine, East Carolina University, Greenville, NC, United States of America
| | - Weihua Huang
- Department of Pathology and Laboratory Medicine, East Carolina University, Greenville, NC, United States of America
| | - Charles Humphrey
- Environmental Health Sciences Program, Department of Health Education and Promotion, East Carolina University, Greenville, NC, United States of America
| |
Collapse
|
49
|
Zhang M, Roldan-Hernandez L, Boehm A. Persistence of human respiratory viral RNA in wastewater-settled solids. Appl Environ Microbiol 2024; 90:e0227223. [PMID: 38501669 PMCID: PMC11022535 DOI: 10.1128/aem.02272-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Wastewater-based epidemiology has emerged as a valuable tool for monitoring respiratory viral diseases within communities by analyzing concentrations of viral nucleic-acids in wastewater. However, little is known about the fate of respiratory virus nucleic-acids in wastewater. Two important fate processes that may modulate their concentrations in wastewater as they move from household drains to the point of collection include sorption or partitioning to wastewater solids and degradation. This study investigated the decay kinetics of genomic nucleic-acids of seven human respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), respiratory syncytial virus (RSV), human coronavirus (HCoV)-OC43, HCoV-229E, HCoV-NL63, human rhinovirus (HRV), and influenza A virus (IAV), as well as pepper mild mottle virus (PMMoV) in wastewater solids. Viruses (except for PMMoV) were spiked into wastewater solids and their concentrations were followed for 50 days at three different temperatures (4°C, 22°C, and 37°C). Viral genomic RNA decayed following first-order kinetics with decay rate constants k from 0 to 0.219 per day. Decay rate constants k were not different from 0 for all targets in solids incubated at 4°C; k values were largest at 37°C and at this temperature, k values were similar across nucleic-acid targets. Regardless of temperature, there was limited viral RNA decay, with an estimated 0% to 20% reduction, over the typical residence times of sewage in the piped systems between input and collection point (<1 day). The k values reported herein can be used directly in fate and transport models to inform the interpretation of measurements made during wastewater surveillance.IMPORTANCEUnderstanding whether or not the RNA targets quantified for wastewater-based epidemiology (WBE) efforts decay during transport between drains and the point of sample collection is critical for data interpretation. Here we show limited decay of viral RNA targets typically measured for respiratory disease WBE.
Collapse
Affiliation(s)
- Mengyang Zhang
- Department of Civil and Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, California, USA
| | - Laura Roldan-Hernandez
- Department of Civil and Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, California, USA
| | - Alexandria Boehm
- Department of Civil and Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, California, USA
| |
Collapse
|
50
|
Zhang M, Leong MW, Mitch WA, Blish CA, Boehm A. Persistence and free chlorine disinfection of human coronaviruses and their surrogates in water. Appl Environ Microbiol 2024; 90:e0005524. [PMID: 38511945 PMCID: PMC11022552 DOI: 10.1128/aem.00055-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
The coronavirus disease 2019 pandemic illustrates the importance of understanding the behavior and control of human pathogenic viruses in the environment. Exposure via water (drinking, bathing, and recreation) is a known route of transmission of viruses to humans, but the literature is relatively void of studies on the persistence of many viruses, especially coronaviruses, in water and their susceptibility to chlorine disinfection. To fill that knowledge gap, we evaluated the persistence and free chlorine disinfection of human coronavirus OC43 (HCoV-OC43) and its surrogates, murine hepatitis virus (MHV) and porcine transmissible gastroenteritis virus (TGEV), in drinking water and laboratory buffer using cell culture methods. The decay rate constants of human coronavirus and its surrogates in water varied, depending on virus and water matrix. In drinking water without disinfectant addition, MHV showed the largest decay rate constant (estimate ± standard error, 2.25 ± 0.09 day-1) followed by HCoV-OC43 (0.99 ± 0.12 day-1) and TGEV (0.65 ± 0.06 day-1), while in phosphate buffer without disinfectant addition, HCoV-OC43 (0.51 ± 0.10 day-1) had a larger decay rate constant than MHV (0.28 ± 0.03 day-1) and TGEV (0.24 ± 0.02 day-1). Upon free chlorine disinfection, the inactivation rates of coronaviruses were independent of free chlorine concentration and were not affected by water matrix, though they still varied between viruses. TGEV showed the highest susceptibility to free chlorine disinfection with the inactivation rate constant of 113.50 ± 7.50 mg-1 min-1 L, followed by MHV (81.33 ± 4.90 mg-1 min-1 L) and HCoV-OC43 (59.42 ± 4.41 mg-1 min-1 L). IMPORTANCE This study addresses an important knowledge gap on enveloped virus persistence and disinfection in water. Results have immediate practical applications for shaping evidence-based water policies, particularly in the development of disinfection strategies for pathogenic virus control.
Collapse
Affiliation(s)
- Mengyang Zhang
- Department of Civil and Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, California, USA
| | - Michelle Wei Leong
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - William A. Mitch
- Department of Civil and Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, California, USA
| | - Catherine A. Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Alexandria Boehm
- Department of Civil and Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, California, USA
| |
Collapse
|