1
|
Meng Z, Xue Q, Wang Z, Liang L, Ji X, Lu X, Mo X, He M. Source apportionment, criteria derivation, and health risk assessment of heavy metals in urban green space soils. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:1341-1353. [PMID: 40223558 DOI: 10.1039/d4em00619d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Urban green spaces play a crucial role in maintaining urban resilience and offering opportunities for outdoor activities to residents. The potential hazards of heavy metals in the soils of these green spaces have raised significant concerns. A total of 130 topsoil samples containing seven heavy metals were collected from 50 urban green spaces in Tianjin, China. The study aimed to identify and quantify the potential sources of these heavy metals, establish general assessment criteria (GAC) for the metals, and evaluate the associated human health risks based on their concentration and sources. The findings indicated minimal pollution from heavy metals in the soils of Tianjin's urban green spaces. Through the use of positive matrix factorization (PMF), correlation analysis, and spatial interpolation, the study identified four main sources of heavy metals: traffic emissions, natural sources, industrial activities, and agricultural activities. Discrepancies between the contaminated land exposure assessment (CLEA) model-derived GAC and China's soil screening values were attributed to differences in land use scenarios. Moreover, concentration-specific health risk assessments revealed that protection area green spaces posed a higher risk to human health compared to park green spaces. The study also highlighted that natural factors correlated with cobalt and agricultural activities related to arsenic significantly contributed to non-carcinogenic risks in both adults and children. Arsenic-related agricultural activities were identified as key contributors to carcinogenic risks in children. The findings of this study are valuable for establishing soil quality standards, and provide a reference for the prevention and control of heavy metal pollution in urban greenfield soils as well as for the protection of the health of urban populations.
Collapse
Affiliation(s)
- Zirui Meng
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin 300382, China.
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qing Xue
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin 300382, China.
| | - Ziyi Wang
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin 300382, China.
| | - Limin Liang
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin 300382, China.
| | - Xijie Ji
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin 300382, China.
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xueqiang Lu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xunqiang Mo
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin 300382, China.
| | - Mengxuan He
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin 300382, China.
| |
Collapse
|
2
|
Gao Y, Gao W, Liu Y, Zou D, Li Y, Lin Y, Zhao J. A comprehensive review of microplastic aging: Laboratory simulations, physicochemical properties, adsorption mechanisms, and environmental impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177427. [PMID: 39522785 DOI: 10.1016/j.scitotenv.2024.177427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
As a new type of ecological environment problem, microplastic pollution is a severe challenge faced by the world, and its threat and potential risk to the ecosystem have become a hot research spot in the current environmental field. Microplastics (MPs) in the natural environment will experience aging effect, aging will change the physical and chemical properties of MPs and affect the adsorption behavior. Recently reported characterization techniques of MPs and laboratory simulation of aging are reviewed. The aging mechanism between MPs and different pollutants and the intervention mechanism of environmental factors (MPs, pollutants and water quality environment) were revealed. In addition, to further understand the potential ecological toxicity of MPs after aging, the release and harm of additives during aging, produce the environmentally persistent free radicals, and the mechanism of reactive oxygen species (ROS) removal of pollutants adsorbed on the surface of MPs were summarized. Future research efforts should focus more on bridging the disparity between laboratory aging simulations and natural environmental conditions to enhance the authenticity and ecological relevance of such studies. The ROS production mechanism of MPs provides a reference direction for removing pollutants adsorbed by aged MPs.
Collapse
Affiliation(s)
- Yu Gao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China; Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Wei Gao
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuzhi Liu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Jiefang Road 2519, Changchun 130021, China
| | - Donglei Zou
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Jiefang Road 2519, Changchun 130021, China
| | - Yuan Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Jiefang Road 2519, Changchun 130021, China
| | - Yingzi Lin
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China.
| | - Jun Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region.
| |
Collapse
|
3
|
Zhang Y, Zhou Y, Wang H, Xiao K, Luo Z, Li Y, Xing R, Jiang K, Fu D, Liu W, Tao S, Shen G. Environmental Persistent Free Radicals in highly polluted soils and the association with polycyclic aromatic compounds. ENVIRONMENTAL RESEARCH 2024; 262:119853. [PMID: 39218337 DOI: 10.1016/j.envres.2024.119853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/18/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Environmental persistent free radicals (EPFRs), as emerging contaminants in environment, can induce oxidative stress causing severe adverse health outcomes. The formation of EPFRs is thought to be associated with the transformation of aromatic compounds like polycyclic aromatic hydrocarbons (PAHs). Herein this study firstly evaluated EPFRs in industrial soils being highly polluted by PAHs, and explored its associated with PAHs, with the modification of soil organic matter content. Soil EPFRs from two industrial plants were 4.1 × 1016 and 4.5 × 1016 spins/g, respectively, that were significantly higher than the levels in the surrounding areas. Carbon-centered EPFRs account for approximately 80% inside the plant, but outside the plants, nearly 50-70% of EPFRs were carbon-centered with adjacent heteroatoms. As one important precursor of EPFRs, PAHs exhibited a significantly positive correlation with EPFRs in industrial soils (p < 0.05), explaining 40%-60% of the variation in EPFRs concentration in the present study. The relationship between soil organic matter and EPFRs concentration normalized by PAHs forms an inverted V-shape, suggesting an inhibition effect of soil organic matter on the EPFR formation potentials from PAHs, that is worthy to be further examed in future laboratory and field experiments.
Collapse
Affiliation(s)
- Yongqiang Zhang
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, China
| | - Yousong Zhou
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, China
| | - Hanchen Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Kai Xiao
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, China
| | - Zhihan Luo
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, China
| | - Yaojie Li
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, China
| | - Ran Xing
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, China
| | - Ke Jiang
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, China
| | - Donglei Fu
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, China
| | - Wenxin Liu
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, China
| | - Shu Tao
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, China
| | - Guofeng Shen
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, China; School of Ecology and Environment, Zhengzhou University, Zhengzhou, 45001, China.
| |
Collapse
|
4
|
Ma X, Guan DX, Zhang C, Yu T, Li C, Wu Z, Li B, Geng W, Wu T, Yang Z. Improved mapping of heavy metals in agricultural soils using machine learning augmented with spatial regionalization indices. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135407. [PMID: 39116745 DOI: 10.1016/j.jhazmat.2024.135407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
The accurate spatial mapping of heavy metal levels in agricultural soils is crucial for environmental management and food security. However, the inherent limitations of traditional interpolation methods and emerging machine-learning techniques restrict their spatial prediction accuracy. This study aimed to refine the spatial prediction of heavy metal distributions in Guangxi, China, by integrating machine learning models and spatial regionalization indices (SRIs). The results demonstrated that random forest (RF) models incorporating SRIs outperformed artificial neural network and support vector regression models, achieving R2 values exceeding 0.96 for eight heavy metals on the test data. Hierarchical clustering for feature selection further improved the model performance. The optimized RF models accurately predicted the heavy metal distributions in agricultural soils across the province, revealing higher levels in the central-western regions and lower levels in the north and south. Notably, the models identified that 25.78 % of agricultural soils constitute hotspots with multiple co-occurring heavy metals, and over 6.41 million people are exposed to excessive soil heavy metal levels. Our findings provide valuable insights for the development of targeted strategies for soil pollution control and agricultural soil management to safeguard food security and public health.
Collapse
Affiliation(s)
- Xudong Ma
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaosheng Zhang
- International Network for Environment and Health, School of Geography, Archaeology and Irish Studies, University of Galway, Ireland
| | - Tao Yu
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Cheng Li
- Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, Guangxi 541004, China
| | - Zhiliang Wu
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Bo Li
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Wenda Geng
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Tiansheng Wu
- Guangxi Institute of Geological Survey, Nanning 530023, China
| | - Zhongfang Yang
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China.
| |
Collapse
|
5
|
Liu J, Liu C, Zheng J, Zhang X, Zheng K, Zhuang J. Response of Plant Endophyte Communities to Heavy Metal Stress and Plant Growth Promotion by the Endophyte Serratia marcescens (Strain JG1). PLANTS (BASEL, SWITZERLAND) 2024; 13:2755. [PMID: 39409625 PMCID: PMC11479206 DOI: 10.3390/plants13192755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
Effects of heavy metals on soil microbial communities have been extensively studied due to their persistence in the environment and imposed threats to living organisms; however, there is a lack of in-depth studies of the impacts of heavy metals on plant endophyte communities. Therefore, the responses of plant endophyte communities to different concentrations of heavy metals were investigated in this study. The endophyte communities of plants existing in severely (W1, Pb, 110.49 mg/kg, Cd, 1.11 mg/kg), moderately (W2, Pb, 55.06 mg/kg, Cd, 0.48 mg/kg), and mildly (W3, Pb, 39.06 mg/kg, Cd, 0.20 mg/kg) contaminated soils were analyzed by 16s rRNA high-throughput Illumina sequencing. Furthermore, networks were constructed to illustrate the relationships between microorganisms and environmental factors. High-quality sequences were clustered at a 97% similarity level. Results revealed that the diversity of the community and relative abundance of Cyanobacteria phylum increased with decreasing levels of pollution. Cyanobacteria and Proteobacteria were found to be the dominant phylum, while Methylobacterium and Sphingomonas were observed as the dominant genus. Tukey's HSD test showed that the relative abundances of Cyanobacteria and Proteobacteria phyla and Methylobacterium and Sphingomonas genera differed significantly (p < 0.01) among the plants of the three sample sites. Environmental factor analysis revealed a significant negative correlation (p < 0.01) of Cyanobacteria and a significant positive correlation (p < 0.01) of Methylobacterium with the heavy metal content in the environment. These findings suggest that Cyanobacteria and Methylobacterium may be phylum and genus indicators, respectively, of heavy metal toxicity. Tax4Fun analysis showed the effect of heavy metal toxicity on the abundance of genes involved in plant metabolism. In addition, culturable endophytic strains were isolated to study their resistance to heavy metal stress and their ability to promote plant growth. The potting tests showed that the JG1 strain was tolerant to heavy metals, and it could significantly promote the growth of the host plant under stress caused by multiple heavy metals. Compared to the control, the JG1-treated plants showed a 23.14% increase in height and a 12.84% increase in biomass. Moreover, AP, AK, and HN contents in JG1-treated plants were 20.87%, 12.55%, and 9.03% higher, respectively, under heavy metal stress. The results of this study provide a scientific basis for the construction of an efficient plant endophyte restoration system.
Collapse
Affiliation(s)
- Jiayi Liu
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Chao Liu
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Jiaxin Zheng
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoxia Zhang
- China Construction First Group Co., Ltd., Beijing 100000, China
| | - Kang Zheng
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Jiayao Zhuang
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Feng Z, Chen W, Meng Y, Lu H, Shi X, Zhang J. Spatial variability and source analysis of soil heavy metals: A case study of the key planting area of special agricultural products in Cangxi County, China. PLoS One 2024; 19:e0303387. [PMID: 38728351 PMCID: PMC11086846 DOI: 10.1371/journal.pone.0303387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Heavy metal pollution in farmland soil represents a considerable risk to ecosystems and human health, constituting a global concern. Focusing on a key area for the cultivation of special agricultural products in Cangxi County, we collected 228 surface soil samples. We analyzed the concentration, spatial distribution, and pollution levels of six heavy metals (Cr, Cu, Pb, Ni, Zn, and Hg) in the soil. Moreover, we investigated the sources and contribution rates of these heavy metals using Principal Component Analysis/Absolute Principal Component Scores (PCA/APCS) and Positive Matrix Factorization (PMF) models. Our findings indicate that none of the six metals exceeded the pollution thresholds for farmland soils. However, the mean concentrations of Cr and Ni surpassed the background levels of Sichuan Province. A moderate spatial correlation existed between Pb and Ni, attributable to both natural and anthropogenic factors, whereas Zn, Cu, Hg, and Cr displayed a strong spatial correlation, mainly due to natural factors. The spatial patterns of Cr, Cu, Zn, Pb, and Ni were similar, with higher concentrations in the northern and eastern regions and lower concentrations centrally. Hg's spatial distribution differed, exhibiting a broader range of lower values. The single pollution index evaluation showed that Cr and Ni were low pollution, and the other elements were no pollution. The average value of comprehensive pollution index is 0.994, and the degree of pollution is close to light pollution. Predominantly, higher pollution levels in the northern and eastern regions, lower around reservoirs. The PCA/APCS model identified two main pollution sources: agricultural traffic mixed source (65.2%) and natural parent source (17.2%). The PMF model delineated three sources: agricultural activities (32.59%), transportation (30.64%), and natural parent sources (36.77%). Comparatively, the PMF model proved more accurate and reliable, yielding findings more aligned with the study area's actual conditions.
Collapse
Affiliation(s)
- Ziwei Feng
- College of Geography and Planning, Chengdu University of Technology, Chengdu, China
| | - Wende Chen
- College of Geography and Planning, Chengdu University of Technology, Chengdu, China
| | - Yichen Meng
- College of Geography and Planning, Chengdu University of Technology, Chengdu, China
| | - Haixia Lu
- College of Geography and Planning, Chengdu University of Technology, Chengdu, China
| | - Xinyi Shi
- College of Geography and Planning, Chengdu University of Technology, Chengdu, China
| | - Jiajun Zhang
- College of Geography and Planning, Chengdu University of Technology, Chengdu, China
| |
Collapse
|
7
|
Xin J. Enhancing soil health to minimize cadmium accumulation in agro-products: the role of microorganisms, organic matter, and nutrients. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123890. [PMID: 38554840 DOI: 10.1016/j.envpol.2024.123890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/03/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Agro-products accumulate Cd from the soil and are the main source of Cd in humans. Their use must therefore be minimized using effective strategies. Large soil beds containing low-to-moderate Cd-contamination are used to produce agro-products in many developing countries to keep up with the demand of their large populations. Improving the health of Cd-contaminated soils could be a cost-effective method for minimizing Cd accumulation in crops. In this review, the latest knowledge on the physiological and molecular mechanisms of Cd uptake and translocation in crops is presented, providing a basis for developing advanced technologies for producing Cd-safe agro-products. Inoculation of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi, application of organic matter, essential nutrients, beneficial elements, regulation of soil pH, and water management are efficient techniques used to decrease soil Cd bioavailability and inhibiting the uptake and accumulation of Cd in crops. In combination, these strategies for improving soil health are environmentally friendly and practical for reducing Cd accumulation in crops grown in lightly to moderately Cd-contaminated soil.
Collapse
Affiliation(s)
- Junliang Xin
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Heng Hua Road 18, Hengyang 421002, China.
| |
Collapse
|
8
|
Li Y, He T, Ding F, Li X, Huang Y, He E, Cai H, Shi P, Liu J, Li Y, Qu R, Zheng W, Xie Y, Liu X, Zhao L, Liu M. The inventory of pollutants in brownfield sites: An innovative strategy for prevention and control of soil pollution in China. Sci Bull (Beijing) 2024; 69:566-569. [PMID: 38218633 DOI: 10.1016/j.scib.2023.12.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Affiliation(s)
- Ye Li
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Tianhao He
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Fangfang Ding
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaofei Li
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Ye Huang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Erkai He
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Hongming Cai
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Peili Shi
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Jian Liu
- College of Environmental Natural Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan Li
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wang Zheng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yunfeng Xie
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Xingmei Liu
- College of Environmental Natural Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
9
|
Ni X, Liu Z, Wang J, Dong M, Wang R, Qi Z, Xu H, Jiang C, Zhang Q, Wang J. Optimizing the development of contaminated land in China: Exploring machine-learning to identify risk markers. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133057. [PMID: 38043429 DOI: 10.1016/j.jhazmat.2023.133057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Often available for use, previously developed land, which includes residential and commercial/industrial areas, presents a significant challenge due to the risk to human health. China's 2018 release of health risk assessment standards for land reuse aimed to bridge this gap in soil quality standards. Despite this, the absence of representative indicators strains risk managers economically and operationally. We improved China's land redevelopment approach by leveraging a dataset of 297,275 soil samples from 352 contaminated sites, employing machine learning. Our method incorporating soil quality standards from seven countries to discern patterns for establishing a cost-effective evaluative framework. Our research findings demonstrated that detection costs could be curtailed by 60% while maintaining consistency with international soil standards (prediction accuracy = 90-98%). Our findings deepen insights into soil pollution, proposing a more efficient risk assessment system for land redevelopment, addressing the current dearth of expertise in evaluating land development in China.
Collapse
Affiliation(s)
- Xiufeng Ni
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zeyuan Liu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jizhong Wang
- Zhejiang Ecological Civilization Academy, Anji 313300, China
| | - Mengting Dong
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ruwei Wang
- School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Zhulin Qi
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haolong Xu
- Center of Air Quality Simulation and System Analysis, Chinese Academy of Environmental Planning, Beijing 100012, China
| | - Chao Jiang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qingyu Zhang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Ecological Civilization Academy, Anji 313300, China.
| | - Jinnan Wang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory of Environmental Pollution Control Technology, Hangzhou 310000, China; State Environmental Protection Key Laboratory of Environmental Planning and Policy Simulation, Chinese Academy of Environmental Planning, Beijing 100041, China.
| |
Collapse
|
10
|
Zhang H, Yang Y, Ma S, Yuan W, Gao M, Li T, Wei Y, Wang Y, Xiong Y, Li A, Zhao B. Development of a Multifaceted Perspective for Systematic Analysis, Assessment, and Performance for Environmental Standards of Contaminated Sites. ACS OMEGA 2024; 9:3078-3091. [PMID: 38284061 PMCID: PMC10809668 DOI: 10.1021/acsomega.3c05187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024]
Abstract
Contaminated soil and groundwater can pose significant risks to human health and ecological environments, making the remediation of contaminated sites a pressing and sustained challenge. It is significant to identify key performance indicators and advance environmental management standards of contaminated sites. The traditional study currently focuses on the inflexible collection of related files and displays configurable limitations regarding integrated assessment and in-depth analysis of published standards. In addition, there is a relative lack of research focusing on the analysis of different types of standard documents. Herein, we introduce a cross-systematic retrospective and review for the development of standards of the contaminated sites, including the comprehensive framework, multifaceted analysis, and improved suggestion of soil and groundwater standards related to the environment. The classification and structural characteristics of different types of files are systematically analyzed of over 300 national, trade, local, and group standards for the contaminated sites. It exhibits that trade standards are the main types and testing methods are the important format within numerical considerations of soil standards. The guide standard serves as a crucial component in environmental management for investigating, assessing, and remediating of contaminated sites. Future improvement plans and development directions are proposed for advancing robust technical support for effective soil contamination prevention and control. This multidimensional analysis and the accompanying suggestions can provide improved guidance for Chinese environmental management of contaminated sites and sparkle the application of standards in a wide range of countries.
Collapse
Affiliation(s)
- Hao Zhang
- Technical
Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, PR China
| | - Yang Yang
- Technical
Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, PR China
| | - Shaobing Ma
- Technical
Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, PR China
| | - Wenchao Yuan
- Technical
Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, PR China
| | - Mingjun Gao
- Technical
Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, PR China
| | - Tongtong Li
- Technical
Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, PR China
| | - Yuquan Wei
- China
Agricultural University, Beijing 100193, PR China
| | - Yanwei Wang
- Technical
Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, PR China
| | - Yanna Xiong
- Technical
Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, PR China
| | - Aiyang Li
- Chinese
Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Bin Zhao
- Institute
of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
- Norwegian
University of Life Sciences, Department
of Environmental Sciences, 5003, N-1432 Ås, Norway
| |
Collapse
|
11
|
Jiao S, Hou X, Zhao G, Feng Y, Zhang S, Zhang H, Liu J, Jiang G. Migration of polycyclic aromatic hydrocarbons in the rhizosphere micro-interface of soil-ryegrass (Lolium perenne L.) system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166299. [PMID: 37586525 DOI: 10.1016/j.scitotenv.2023.166299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
The unclear multi-media and multi-interface processes of polycyclic aromatic hydrocarbons (PAHs) in environments have drawn great concern. Here, 16 controlled PAHs were selected to reveal the differences in the bioavailability and migration of congeners in soil-ryegrass exposure system. The presence of ryegrass in the exposure groups (with newly introduced PAHs) resulted in a decrease in PAHs dissipation (31.3 %) from soil compared to the unplanted groups (43.2 %). The presence of ryegrass inhibited the soil-air exchange process, which has not been widely reported. PAH congeners with less benzene rings (molecular weight < B[a]A) had consistent bioavailability before and after long-term aging, the competition between adsorption/absorption to plants and soil was not strong (RCFs < 3.5), and their migration in the rhizosphere rapidly reached equilibrium. PAH congeners with more benzene rings (molecular weight ≥ B[a]A) adsorbed to soil particles and significantly decreased their bioavailability after long-term aging. Their concentrations in the rhizosphere were stable and lower than bulk soil, revealing their slow equilibrium process in soil. In addition, PAHs with larger molecular weight and KOW showed less migration at the rhizosphere micro-interface. The migration behavior of congeners with close KOW depended on their molecular structure. Congeners with non-symmetric K-region or L-region showed greater migration ability in the rhizosphere. These findings revealed the fate of PAHs, especially different PAH congeners, in the rhizosphere interfaces for the first time, and explored the molecular mechanisms that affect their rhizosphere behaviors, improving the understanding and knowledge of PAHs in the microenvironment, providing new data on evaluating and controlling the environmental risks of PAHs.
Collapse
Affiliation(s)
- Suning Jiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingwang Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ganghui Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Yue Feng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Shuyan Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongrui Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
12
|
Cheng Y, Ma J, Li S, Tang Q, Shi W, Liang Y, Shi G, Qian F. Dietary cadmium health risk assessment for the Chinese population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82421-82436. [PMID: 37326726 DOI: 10.1007/s11356-023-28199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd) has high rates of soil-to-plant transference, coupled with its non-biodegradability and persistence; long-term management of Cd in agriculture is thus required to ensure better soil and food security and safety. Identifications of regions with high soil Cd concentration or high dietary Cd intakes are critical public health priorities. Human health risk assessment for dietary Cd intake was thus undertaken by employing three approaches: FCA (food chain approach), TDA (total diet approach), and FQA (food quality approach). The correlation between green/total vegetable consumption rates and dietary Cd intake from vegetables was statistically significant. For consumption, the hazard quotients (HQs) calculated by FCA and TDA were all less than 1 except for Hunan and Sichuan province. For rice consumption, the HQs derived by FCA or TDA approach for eight provinces exceeded 1. Residents in Hubei, Guangxi, Jilin, Zhejiang, Liaoning, Shanghai, Sichuan, and Guangxi were more vulnerable due to their notable higher consumption rates.Weighted rankings of the health risk levels were determined to derive the comparative risk management priority. For Cd intake from vegetables, four provinces/cities have high relative priority; for Cd intake from grains, three provinces have high relative priority. The comparative risk management priority for Hunan and Sichuan was high for dietary intake from vegetables or rice. Weighted average HQs were derived to determine the integrated dietary Cd intake health risk levels for dietary intake from vegetables or grains. The risk levels for Hunan, Guangxi, Sichuan, and Zhejiang are high, so effective measures should be taken to reduce Cd dietary intakes to ensure health protection.It is envisaged that the methodology employed in this study could provide useful insights into how various approaches can be integrated to determine human health risk levels for Cd intake, so more effective and targeted measures can be taken accordingly for the relevant regions.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China.
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China.
| | - Jun Ma
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Siqi Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Qiuyue Tang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Weilin Shi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Yuan Liang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Guangyu Shi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Feiyue Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
13
|
Lian W, Shi W, Tian S, Gong X, Yu Q, Lu H, Liu Z, Zheng J, Wang Y, Bian R, Li L, Pan G. Preparation and application of biochar from co-pyrolysis of different feedstocks for immobilization of heavy metals in contaminated soil. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 163:12-21. [PMID: 36989826 DOI: 10.1016/j.wasman.2023.03.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/01/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
Co-pyrolysis is a potentially effective method for both biomass waste management and multi-functional biochar-based product design. It involves the thermochemical decomposition of biomass waste under anoxic conditions, which can reduce the cost of disposal and produce biochar with beneficial properties. Herein, this study aimed to investigate the properties and environmental applications of biochar from single- and mixed- feedstocks of wheat straw, rice husk, pig manure, and oyster shell at 450 ℃, respectively. A pot experiment with Chinese cabbage was carried out to compare the effects of biochars with limestone on soil Cd and Pb immobilization at two harvest periods. The results indicated that co-pyrolysis of various biomasses exhibited synthetic effects on promoting the calorific value of syngas and enhancing the quality of produced biochar. The pot experiment revealed a significant promotion on soil pH, soil organic matter, cation exchange capacity, and soluble Ca, which consequently reduced Cd and Pb availability. In contrast with limestone treatment, soil amendment with single biomass-derived and co-pyrolysis-derived (COPB) biochars had a significant positive impact on soil fertility and microbial biomass. Application of COPB at a 0.5% dosage consistently and most effectively enhanced the shoot biomass, increased leaf Vitamin C content but reduced leaf content of nitrate and heavy metals in both harvests. Using COPB for soil remediation would be financially visible due to the enhancement of crop yield. Therefore, this study proposes a strategy for targeted enhancement of the functions of biochar derived from co-pyrolysis of selected biomass waste for soil remediation and agricultural production.
Collapse
Affiliation(s)
- Wanli Lian
- Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Wei Shi
- Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; School of Water Conservancy and Hydroeletric Power, Hebei University of Engineering, Handan 056038, China
| | - Shuai Tian
- Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Xueliu Gong
- Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Qiuyu Yu
- Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Haifei Lu
- Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Zhiwei Liu
- Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Jufeng Zheng
- Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Yan Wang
- Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Rongjun Bian
- Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China.
| | - Lianqing Li
- Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Genxing Pan
- Institute of Resources, Ecosystem and Environment of Agriculture, and Center of Biochar and Green Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| |
Collapse
|
14
|
Zhang Q, Wang L, Xiao Y, Liu Q, Zhao F, Li X, Tang L, Liao X. Migration and transformation of Cd in four crop rotation systems and their potential for remediation of Cd-contaminated farmland in southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163893. [PMID: 37146815 DOI: 10.1016/j.scitotenv.2023.163893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/29/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
A crop rotation system combining agricultural production with phytoremediation is an economical and sustainable method of remediation of cadmium (Cd)-contaminated farmland. This study focuses on migration and transformation of Cd in rotation systems and the influencing factors. In a two-year field experiment, four rotation systems were evaluated: traditional rice and oilseed rape (TRO), low-Cd rice and oilseed rape (LRO), maize and oilseed rape (MO), and soybean and oilseed rape (SO). Oilseed rape is a remediation plant in rotation systems. Compared to 2020, the grain Cd concentrations of traditional rice, low-Cd rice, and maize in 2021 decreased by 73.8 %, 65.7 %, and 24.0 % (below the safety limits), respectively. However, soybean increased by 71.4 %. The LRO system featured the highest oil content of rapeseed (about 50 %) and economic output/input ratio (1.34). Removal efficiency of total Cd in soil was 10.03 % (TRO) > 8.3 % (LRO) > 5.32 % (SO) > 3.21 % (MO). Crop uptake of Cd was influenced by bioavailability of soil Cd, and soil environmental factors regulated the bioavailable Cd. Redundancy analysis (RDA) indicated that soil nitrate‑nitrogen (NO3--N) had a dominant impact on bioavailable Cd in soil, with variance contributions of 56.7 % for paddy-upland (TRO and LRO) and 53.5 % for dryland (MO and SO) rotation systems. The difference reflected that ammonium N (NH4+-N) was a secondary factor in paddy-upland rotations, while it was the available phosphorus (P) in dryland rotations, with variance contributions of 10.4 % and 24.3 %, respectively. The comprehensive evaluation of crop safety, production, economic benefits, and remediation efficiency revealed that the LRO system was efficient and more acceptable to local farmers, providing a new direction for the utilization and remediation of Cd-contaminated farmland.
Collapse
Affiliation(s)
- Qingying Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Beijing 100101, China
| | - Yuxuan Xiao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Qiqing Liu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fenghua Zhao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Xiaofang Li
- Oil Crops Research Institute, Hengyang Academy of Agricultural Sciences, Hengyang 421000, China
| | - Liping Tang
- Oil Crops Research Institute, Hengyang Academy of Agricultural Sciences, Hengyang 421000, China
| | - Xiaoyong Liao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Beijing 100101, China.
| |
Collapse
|
15
|
Wang X, Zhang Y, Zhang Y, Xu C. Remediation of Cr(VI)-contaminated soil by sulfidated zero-valent iron: The effect of citric acid as eluant and modifying agent. CHEMOSPHERE 2023; 313:137436. [PMID: 36462563 DOI: 10.1016/j.chemosphere.2022.137436] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/11/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Leaching and chemical reduction are two commonly used methods for Cr(VI)-contaminated soil remediation. Leaching focuses more on leaching Cr(VI) out of the soil. Chemical reduction has the disadvantages of poor fluidity of reductant. Combining these two remediation methods, this study investigated the performance of Cr(VI)-contaminated soil when H2O and citric acid were used as eluant separately and sulfidated zero-valent iron (SZVI) as reductant. And based on the properties of Cr(VI) chelated with -COOH to form a complex and the characteristics of -OH anchored to FeSx, citric acid modified SZVI (Cit-SZVI) was prepared. The prepared Cit-SZVI was characterized by SEM-EDS, XPS, XRD to study its surface properties. The transformation of Cr species in soil was explored by BCR sequential extraction. The results indicated Cr(VI) removal by SZVI was significantly promoted when citric acid as eluant compared with H2O. With SZVI dosage of 2.0 wt%, 23.1 mg/L Cr(VI) was basically removed within 60 min when citric acid as eluant, while only 60% Cr(VI) was removed when H2O as eluant even after 3 h. The kobs of Cit-SZVI was 1.4 times that of SZVI when H2O as eluant. The characterization of Cit-SZVI showed that more FeSx was formed on the surface of the Cit-SZVI, and more -OH of citric acid was anchored to FeSx, leaving -COOH available to chelate Cr(VI). Compared with H2O as eluant and SZVI/Cit-SZVI as reducing agent, the removal effect of Cr(VI) was the best when citric acid as eluant and SZVI as reducing agent. BCR sequential extraction showed that Cr(VI) was effectually fixed, weak acid extractable Cr proportion decreased significantly and residual Cr proportion increased in the treated soil. The combination of leaching and chemical reduction proposed in this study can greatly enhance the Cr(VI) removal effect in soil, which is important for the remediation of Cr(VI)-contaminated soil.
Collapse
Affiliation(s)
- Xiao Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yanshi Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yue Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Chunhua Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
16
|
Mtemi WM, Xu X, Liu S, Qiu G, Wang X, Goodale E, Jiang A. Metal and metalloid sources apportionment in soil of two major agroecosystems of southern China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:311. [PMID: 36656415 DOI: 10.1007/s10661-023-10938-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Apportioning the sources of metals/metalloids is a critical step toward soil quality protection and ecological restoration. The objective of this study was to identify the potential sources of contamination of As, Cd, Cr, Cu, Hg, Mn, Pb, and Zn, and determine the contribution rates of each source, to rice and sugarcane agroecosystems of southwestern Guangxi, southern China. We collected a total of 300 soil samples at a former lead-zinc mine and at two reference sites, 6 and 60 km away from the mine, sampling both agroecosystems at each site. Overall, the positive matrix factorization (PMF) receptor model revealed that in rice paddies at the mine site, mining activities had the highest contribution (60.7% of all examined metals/metalloids), followed by irrigation (25.8%), and agrochemical application (13.5%). At the close reference site, agrochemical application contributed 42.8%, followed by irrigation (22.7%), natural sources (17.4%), and mining activities (17.2%). At the far reference site, agrochemical application was predominant (40.6%), followed by irrigation (32.5%), and natural sources (26.9%). In comparison, at the mine site and the close reference site in sugarcane ecosystems, agrochemical application was predominant (50.1% and 57.4%, respectively), followed by mining activities (49.9% and 42.6%). At the far reference site, agrochemical application contributed 51.2%, followed by natural sources (48.8%). Therefore, the PMF model indicated that the optimal solution was four or three sources per site for rice paddies, but only two sources per site for sugarcane, suggesting that sources of metal/metalloid contamination were more complicated in rice paddy than in sugarcane agroecosystems.
Collapse
Affiliation(s)
- Wambura M Mtemi
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, Guangxi University, Nanning, Guangxi, China.
- College of Natural Resources Management and Tourism, Mwalimu Julius K. Nyerere University of Agriculture and Technology (MJNUAT), P.O Box 976, Musoma, Tanzania.
| | - Xiaohang Xu
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Shilong Liu
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Xueli Wang
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, Guangxi University, Nanning, Guangxi, China
| | - Eben Goodale
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, Jiangsu, China
| | - Aiwu Jiang
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
17
|
Xu M, Yang L, Chen Y, Jing H, Wu P, Yang W. Selection of rice and maize varieties with low cadmium accumulation and derivation of soil environmental thresholds in karst. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114244. [PMID: 36326557 DOI: 10.1016/j.ecoenv.2022.114244] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) is considered the primary dietary toxic element. Previous studies have demonstrated significant differences in heavy metal accumulation among crop species. However, this information in karst areas with low heavy metal activity is missing. In this study, the uptake and accumulation characteristics of cadmium in soil-crop samples of group 504 in the core karst region of East Asia were analyzed. Cadmium low-accumulating maize and rice were screened using cluster and Pareto analytic methods. In addition, a new method, the species-sensitive distribution model (SSD), was proposed, which could be used to estimate the environmental threshold for cadmium in regional cropland. The results showed that both maize and rice soils in the research area were contaminated with varying degrees of cadmium. The total concentrations of cadmium ω(T-Cd) in maize and rice fields are 0.18-1.32 and 0.20-4.42 mg kg-1, respectively. The ω(T-Cd) of heavy metals in maize kernels and rice grains is 0.002-0.429 and 0.003-0.393 mg kg-1, respectively. The bioaccumulation factor (BCF) of cadmium in maize ranged from 0.0079 to 0.9701, with a coefficient of variation of 1.71; the BCF of cadmium in rice ranged from 0.0074 to 0.1345, with a coefficient of variation of 0.99. According to cluster and Pareto analyses, the maize crop varieties with low cadmium accumulation suitable for local cultivation were screened as JHY809, JDY808, AD778, SN3H and SY13, and the rice varieties were DMY6188, GY725, NY6368, SY451 and DX4103. In addition, the environmental cadmium threshold ranges of 0.30-10.05 mg kg-1 and 0.89-24.39 mg kg-1 for maize and rice soils, respectively, were deduced in this study. This threshold will ensure that 5-95% of maize and rice will not be contaminated with cadmium in the soil.
Collapse
Affiliation(s)
- Mengqi Xu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 500025, China.
| | - Liyu Yang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 500025, China.
| | - Yonglin Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 500025, China.
| | - Haonan Jing
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 500025, China.
| | - Pan Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 500025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China.
| | - Wentao Yang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 500025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China.
| |
Collapse
|
18
|
Han F, Deng Y, Liu Q, Zhou Y, Wang J, Huang Y, Zhang Q, Bian J. Construction and application of the knowledge graph method in management of soil pollution in contaminated sites: A case study in South China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115685. [PMID: 35816963 DOI: 10.1016/j.jenvman.2022.115685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/24/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Contaminated sites are a main cause of urban soil problems and have led to increasing pollution and public risk in China as a result of the rapid growth of industrial and urban land use. Because land pollution involves extensive multi-source heterogeneous information, identifying the risk of urban soil pollution efficiently and predicting pollution-related events are important for urban environmental management. Knowledge graphs (KGs) have unique advantages in dealing with massive amounts of information. This study attempts to construct a KG of contaminated sites in South China to explore its feasibility and effectiveness in urban soil environmental management. The results demonstrate that KGs have a favorable effect in information retrieval, knowledge reasoning, and visualization. Studied cases in this article demonstrate that the KG model can achieve many functions, including the display of global information of polluted sites, and discovery of regional distribution of characteristic pollutants and main pollutants of specific industries, based on special query syntax. However, this approach is limited by some technical difficulties, such as knowledge mining of natural resources, which must be overcome in future studies to improve the operability of KG technologies.
Collapse
Affiliation(s)
- Feng Han
- School of Earth Science and Engineering, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Geological Processes and Mineral Resources Exploration, Zhuhai, 519082, China
| | - Yirong Deng
- Guangdong Provincial Key Lab of Geodynamics and Geohazards, Environmental Academy of Guangdong, Guangzhou, 510045, China
| | - Qiyuan Liu
- School of Earth Science and Engineering, Sun Yat-sen University, Zhuhai 519082, China; Chinese Research Academy of Environment Science, Beijing, 100012, China
| | - Yongzhang Zhou
- School of Earth Science and Engineering, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Geological Processes and Mineral Resources Exploration, Zhuhai, 519082, China.
| | - Jun Wang
- Guangdong Provincial Key Lab of Geodynamics and Geohazards, Environmental Academy of Guangdong, Guangzhou, 510045, China
| | - Yongjian Huang
- Guangzhou Xuanyuan Research Institute, Guangzhou, 510006, China
| | - Qianlong Zhang
- School of Earth Science and Engineering, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Geological Processes and Mineral Resources Exploration, Zhuhai, 519082, China
| | - Jing Bian
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
19
|
Zhang H, Li A, Wei Y, Miao Q, Xu W, Zhao B, Guo Y, Sheng Y, Yang Y. Development of a new methodology for multifaceted assessment, analysis, and characterization of soil contamination. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129542. [PMID: 35810516 DOI: 10.1016/j.jhazmat.2022.129542] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
It is important to identify key performance and core progress features of soil contamination management practices. Traditional research currently focuses on numerical statistics of contaminated sites but exhibits structural limitations regarding cross-assessment and in-depth analysis of published findings. Herein, we report a multidimensional perspective to assess the environmental management performance of soil contamination via systematic and historical development of construction land risk control and remediation lists (RCRLs). The considered contaminated sites are mainly concentrated in Northern China, Yangtze River Delta, Pearl River Delta, and Sichuan-Chongqing regions. Monthly historical overviews indicate that most lists are updated 4-5 times within 32 months. Direct chemical-related industrial production results in the largest number of contaminated sites. Arsenic and lead are the most common heavy metals of concern in soil contamination. The fiscal revenue index exhibits the best positive performance in terms of the number of contaminated sites. By employing the site number, update frequency, and published contents of different calculation proportions, ten types of integrated assessment indicators (IAIs) are established to evaluate the environmental achievements in various provincial regions in regard to soil contamination protection. This multifaceted strategy can provide advanced guidance for Chinese environmental management and expand the application of soil pollution risk control and remediation in a wide range of countries.
Collapse
Affiliation(s)
- Hao Zhang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, PR China; School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Aiyang Li
- School of Environment, Tsinghua University, Beijing 100084, PR China; Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yuquan Wei
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Qiuci Miao
- School of Environment, Tsinghua University, Beijing 100084, PR China; Chinese Academy of Environmental Planning, Beijing 100012, PR China
| | - Wenxin Xu
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Bin Zhao
- School of Environment, Tsinghua University, Beijing 100084, PR China; Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China.
| | - Yang Guo
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yizhi Sheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Yang Yang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, PR China.
| |
Collapse
|
20
|
Zhou Z, Liu W, Wang H, Yang J. The Impact of Environmental Regulation on Agricultural Productivity: From the Perspective of Digital Transformation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10794. [PMID: 36078511 PMCID: PMC9518484 DOI: 10.3390/ijerph191710794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
China's goal of becoming a strong agricultural country cannot be achieved without the modernization and digital transformation of the agricultural sector. Presently, China's agriculture has ushered in the era of digital economy transformation. The digital transformation of agriculture has played a huge role in improving agricultural productivity, promoting sustainable development of China's agricultural economy, and achieving sustainable development goals. The deep integration of digital economy and agricultural economy has become an important issue of The Times. This study uses a two-way fixed-effects model and an instrumental variable method to examine the impact of environmental regulation on agricultural total factor productivity. Using the method of mechanism analysis, the conduction path of improving agricultural productivity under the means of environmental regulation is discussed. Therefore, the visualization analysis results based on the panel data of Chinese agricultural enterprises from 2011 to 2019 show that the distribution of digital transformation and productivity level of enterprises is uneven and tends to be stable in space. The empirical analysis results show that there is a direct and significant positive relationship between voluntary environmental regulation and agricultural total factor productivity. The results of mechanism analysis show that, under the means of environmental regulation, digital transformation plays an indirect role in improving agricultural productivity. On the basis of enriching and deepening the theoretical extension of the "Porter Hypothesis", this study subtly incorporates environmental regulation, digital transformation, and agricultural productivity into a unified framework, expanding existing research.
Collapse
Affiliation(s)
- Zhiqiang Zhou
- School of Business, Hunan University of Science and Technology, Yuhu District, Xiangtan 411201, China
- School of Metallurgy and Environment, Central South University, Yuelu District, Changsha 410083, China
| | - Wenyan Liu
- School of Business, Hunan University of Science and Technology, Yuhu District, Xiangtan 411201, China
| | - Huilin Wang
- School of Business, Hunan University of Science and Technology, Yuhu District, Xiangtan 411201, China
- International College, National Institute of Development Administration, 118 Moo3, Sereethai Road, Klong-Chan, Bangkapi, Bangkok 10240, Thailand
| | - Jingyu Yang
- Department of Medical Bioinformatics, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
21
|
Qiu H, Lou Z, Gu X, Sun Y, Wang J, Zhang W, Cao X. Smart 6S roadmap for deciphering the migration and risk of heavy metals in soil and groundwater systems at brownfield sites nationwide in China. Sci Bull (Beijing) 2022; 67:1295-1299. [PMID: 36546256 DOI: 10.1016/j.scib.2022.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziyang Lou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xueyuan Gu
- School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yuanyuan Sun
- School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Wei Zhang
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
22
|
Li J, Peng D, Ouyang Z, Liu P, Fang L, Guo X. Occurrence status of microplastics in main agricultural areas of Xinjiang Uygur Autonomous Region, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154259. [PMID: 35278564 DOI: 10.1016/j.scitotenv.2022.154259] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/10/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
A large number of plastic products are used in the process of agricultural production, and the recycling efficiency is low, which leads to the production of a large number of microplastics. Therefore, the microplastic contamination in agricultural areas requires being investigated urgently. In addition, the occurrence characteristics of microplastics are also different in agricultural areas with various land use modes. In this study, the main agricultural areas in Xinjiang are taken as the research object. The abundance of microplastics in the main agricultural areas in Xinjiang ranges from 288 to 1452 items/kg. The shape of microplastics is mainly bulks, and white microplastics account for the highest proportion, and the majority of their sizes are less than 0.5 mm. The risk assessment results show that the contamination risk index of microplastics in this area is 108.92 and the risk level is grade III. The research shows that there is little difference in the abundance of microplastics between paddy field and garden land, which may be because there are few sources of microplastics in the land of these two utilization modes, and the potential pollution sources are similar, such as the atmospheric deposition of microplastics, the falling of fibers on people's clothes during farming, and the agricultural use of sludge. This study can provide a reference for further study on the existing circumstances of microplastics in agricultural areas.
Collapse
Affiliation(s)
- Jianlong Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dan Peng
- Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen, Guangdong 518172, China.
| | - Zhuozhi Ouyang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Peng Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources, Yangling 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
23
|
Zhao G, Ma Y, Liu Y, Cheng J, Wang X. Source analysis and ecological risk assessment of heavy metals in farmland soils around heavy metal industry in Anxin County. Sci Rep 2022; 12:10562. [PMID: 35732673 PMCID: PMC9217823 DOI: 10.1038/s41598-022-13977-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/31/2022] [Indexed: 12/07/2022] Open
Abstract
Studying the pollution status, spatial distribution characteristics, and sources of heavy metals in farmland soil in Anxin County will provide a method basis for the next step of soil remediation. This study investigates the contents of Zn, Cu, Pb, Cd, and Ni in wheat grains and soil samples. Moreover, different methods are used to evaluate soil heavy metal pollution. The results show that the soil in the study area is weakly alkaline. Cu, Zn, and Ni contents in the ground are lower than the risk screening values for soil contamination of agricultural land. In comparison, Cd and Pb contents are higher than the screening value of soil pollution risk of agricultural land, and the proportion of points lower than the control value of soil pollution risk of agricultural land are 64.58% and 16.67%, respectively. The farmland with high Cd and Pb content is mainly distributed near roads and factories and concentrated primarily on 0-20 cm topsoil. The Cd content in wheat grains meets the standard, but 4.17% of the samples are close to 0.1 mg kg−1 (more than 0.09 mg kg−1). The Pb content of 50% of the wheat grain samples exceeds the lead limit in the standard. The evaluation results of the single factor pollution index and geoaccumulation index show that the pollution degree of heavy metals in the soil is Cd > Pb > Cu > Zn > Ni. The potential ecological risk index in the study area is 288.83, and the soil heavy metal pollution is at a moderate-considerable ecological risk level. The average value of Cd's single-factor environmental risk index is 233.51, which belongs to the high environmental risk and is the main influencing factor. Cd and Pb in soil are significantly disturbed by the production activities of heavy metal processing enterprises around the farmland. It is speculated that there are two primary sources of soil heavy metal pollution in the study area. Cd, Pb, Zn, and Cu are mainly industrial and mobile sources, and Ni is primarily agricultural and natural sources.
Collapse
Affiliation(s)
- Guoliang Zhao
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
| | - Ye Ma
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
| | - Yuzhen Liu
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
| | - Jiemin Cheng
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China.
| | - Xiaofeng Wang
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
24
|
Bielecka J, Markiewicz-Żukowska R, Puścion-Jakubik A, Grabia M, Nowakowski P, Soroczyńska J, Socha K. Gluten-Free Cereals and Pseudocereals as a Potential Source of Exposure to Toxic Elements among Polish Residents. Nutrients 2022; 14:2342. [PMID: 35684142 PMCID: PMC9182656 DOI: 10.3390/nu14112342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Nutritional food quality plays a crucial role in maintaining human health. However, food and drinking water, along with occupational exposure, are the main routes of exposure to toxic elements for humans. The main aim of this study was to determine the content of As, Cd, Pb and Hg in naturally gluten-free grains and products made from buckwheat, millet, maize, quinoa and oat. The safety of consumption of the products tested was also assessed. METHODS The contents of As, Cd and Pb were determined using inductively coupled plasma mass spectrometry (ICP-MS). To measure Hg, an atomic absorption spectrometry method (AAS) with the amalgamation technique was applied. To assess the level of consumption of the tested products, an online survey was conducted. To estimate health risk, three indicators were used: the target hazard quotient (THQ), cancer risk (CR) and hazard index (HI). The research material obtained 242 different samples without replications. RESULTS The highest average content of As, Cd, Pb and Hg were observed for the following groups of products: oat (10.19 µg/kg), buckwheat (48.35 µg/kg), millet (74.52 µg/kg) and buckwheat (1.37 µg/kg), respectively. For six samples, exceedance of established limits was found-three in the case of Cd and three of Pb. Due to the lack of established limits, As and Hg content of the tested products was not compared. Generally, no increased health risks were identified. CONCLUSIONS Based on the obtained results, the consumption of gluten-free cereals and pseudocereals available on the Polish market seems to be safe. However, there is a great need to establish maximum levels of the toxic elements, especially As and Hg in cereal products in European legislation.
Collapse
Affiliation(s)
| | - Renata Markiewicz-Żukowska
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Mickiewicza 2D Street, 15-222 Białystok, Poland; (J.B.); (A.P.-J.); (M.G.); (P.N.); (J.S.); (K.S.)
| | | | | | | | | | | |
Collapse
|
25
|
Wang Y, Wang S, Jiang L, Ma L, Li X, Zhong M, Zhang W. Does the Geographic Difference of Soil Properties Matter for Setting Up the Soil Screening Levels in Large Countries Like China? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5684-5693. [PMID: 35443131 DOI: 10.1021/acs.est.1c08771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
China issued the unified national soil screening levels (NSSLs) in 2018 to assist the regulation of contaminated sites, but the applicability of NSSLs was not thoroughly evaluated. Datasets from the National Qinghai-Tibet Plateau Scientific Data Center indicated great variability of soil organic matter (0.8-173 g/kg), soil water content (0.05-0.6), soil porosity (0.4-0.6), and soil bulk density (1.11-1.59 kg/m3). We analyzed the effects of soil properties on the derivation of SSLs by using Monte Carlo simulations. The soil factors mainly affected the inhalation exposure pathway of volatile organic compounds (VOCs). They had an effect of more than two orders of magnitude on SSLs for most selected VOCs, particularly with the parameters 0.35 > Henry's law constant > 0.1 and carbon-water distribution coefficient of >100. We compared NSSLs with the recommended SSLs assuming fifth percentile by using Monte Carlo simulations. In general, NSSLs were not sufficient to identify contaminated sites that require additional investigation in the south, central, and northwest regions but were too conservative in screening sites out that required no further action in the east and northeast regions. Our framework and findings may contribute to more scientific and effective soil quality management in other large countries.
Collapse
Affiliation(s)
- Yang Wang
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | - Shijie Wang
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | - Lin Jiang
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | - Lin Ma
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | - Xiaoyan Li
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | - Maosheng Zhong
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | - Wenyu Zhang
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| |
Collapse
|
26
|
Yang B, Qiu H, Zhang P, He E, Xia B, Liu Y, Zhao L, Xu X, Cao X. Modeling and visualizing the transport and retention of cationic and oxyanionic metals (Cd and Cr) in saturated soil under various hydrochemical and hydrodynamic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:151467. [PMID: 34742969 DOI: 10.1016/j.scitotenv.2021.151467] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Cationic and oxyanionic metals are widely existed in the aquatic and soil environment with the process of industrialization and they may behave different transport properties in aquifer systems due to the opposite charges. In this study, the comparative transport behaviors of Cd2+ and CrO42- in water-saturated soil columns were investigated under a variety of hydrochemical and hydraulic conditions such as pH, ionic strength (IS), and flow rate. The transport mechanisms of Cd(II) and Cr(VI) were explored by fitting the breakthrough curves with a two-site non-equilibrium transport model. Results indicated that high solution pH inhibited the transport of Cd(II) due to the enhanced electrostatic interaction. In contrast, the migration of Cr(VI) was promoted with the least amount of Cr(VI) (1.23 mg) being retained in soil at high pH, ascribing to the stronger electrostatic repulsion between anions and soil surface. Meanwhile, high pH conditions were not favorable for the participation of reduced iron in the reduction process of Cr(VI), resulting in the least amount of Cr(III) detected (22%). The increase in ionic strength decreased the negativity of the potential at the adsorption plane, which enhanced the transport of cationic Cd(II) and the retardation of anionic Cr(VI). In addition, the increase in flow rate facilitated the transport of Cd(II) and Cr(VI), mainly due to the decreasing contacting with porous media and enhanced dispersion effect. These findings demonstrated that the fate and environmental behavior of metal cations and anions differed with the change of hydrochemical and hydrodynamic properties, which should be considered for the risk assessment and remediation of metal contaminated sites.
Collapse
Affiliation(s)
- Bin Yang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Peihua Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Bing Xia
- Anhui Academy of Environmental Science Research, Hefei 230051, China
| | - Yang Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
27
|
Wang MY, Li MY, Ning H, Xue RY, Liang JH, Wang N, Luo XS, Li G, Juhasz AL, Ma LQ, Li HB. Cadmium oral bioavailability is affected by calcium and phytate contents in food: Evidence from leafy vegetables in mice. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127373. [PMID: 34879567 DOI: 10.1016/j.jhazmat.2021.127373] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
To test high cadmium (Cd) concentration may not be high in health risk when considering Cd bioavailability, we assessed variation of Cd relative bioavailability (RBA, relative to CdCl2) using a mouse assay for 14 vegetables of water spinach, amaranth, and pakchoi. Cadmium concentration varied from 0.13 ± 0.01-0.37 ± 0.00 μg g-1 fw. Cadmium-RBA also varied significantly from 22.9 ± 2.12-77.2 ± 4.46%, however, the variation was overall opposite to that of Cd concentration, as indicated by a strong negative correlation between Cd-RBA and Cd concentration (R2 = 0.43). Based on both Cd concentration and bioavailability, the identified high-Cd pakchoi variety resulted in significantly lower Cd intake than the high-Cd varieties of water spinach and amaranth (4.74 ± 0.05 vs. 10.1 ± 0.54 and 8.03 ± 0.04 μg kg-1 bw week-1) due to significantly lower Cd-RBA (22.9 ± 2.12 vs. 77.2 ± 4.46 and 51.3 ± 2.93%). The lower Cd-RBA in pakchoi was due to its significantly higher Ca and lower phytate concentrations, which facilitated the role of Ca in inhibiting intestinal Cd absorption. This was ascertained by observation of decreased Cd-RBA (90.5 ± 12.0% to 63.5 ± 5.53%) for a water spinach when elevating its Ca concentration by 30% with foliar Ca application. Our results suggest that to assess food Cd risk, both total Cd and Cd bioavailability should be considered.
Collapse
Affiliation(s)
- Meng-Yu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Meng-Ya Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Han Ning
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Rong-Yue Xue
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jia-Hui Liang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Ning Wang
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
| | - Xiao-San Luo
- Jiangsu Key Laboratory of Agricultural Meteorology, International Center for Ecology, Meteorology, and Environment, Nanjing University of Information Science & Technology, Nanjing 210044, People's Republic of China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China.
| |
Collapse
|
28
|
Study of solidification and stabilization of heavy metals by passivators in heavy metal-contaminated soil. OPEN CHEM 2022. [DOI: 10.1515/chem-2021-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
In this study, the indoor constant temperature culture experiment was used to explore the mutual transformation of different forms of heavy metals. Appropriate types of passivating agents were screened, and the optimal addition amount was determined to realize the solidification and stabilization of heavy metals. The results showed that the dissolved copper (Cu), zinc (Zn), and lead (Pb) contents of the zeolite-treated soil decreased to the lowest. They were 219, 819, and 40 g/kg, respectively, which were 31.2, 6.5, and 38.5% lower than no passivating agent added (the control); the dissolved Cu, Zn, and Pb content gradually increased with the extension of time; 5% zeolite (Z4) treatment had the highest average content of Cu, Zn, and Pb in the residue state, respectively, 24, 48, and 19 mg/kg; and at the end of the test, the residual Zn content of Z4 treatment reached 50 mg/kg, which was 72.4% higher than that of the control. A comprehensive analysis of the changes in the dissolved state of the four heavy metals in the soil shows that Cu, Zn, cadmium (Cd), and Pb treated with zeolite have the best effect, followed by sepiolite, and finally palygorskite. Therefore, 5% zeolite can be used for the passivation restoration of heavy metals Cu, Zn, Cd, and Pb in the soil.
Collapse
|
29
|
A SEEC Model Based on the DPSIR Framework Approach for Watershed Ecological Security Risk Assessment: A Case Study in Northwest China. WATER 2022. [DOI: 10.3390/w14010106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The DPSIR model is a conceptual model established by the European Environment Agency to solve environmental problems. It provides an overall framework for analysis of environmental problems from five aspects: driving force (D), pressure (P), state (S), impact (I), and response (R). Through use of the DPSIR model framework, this paper presents the SEEC model approach for evaluating watershed ecological security. The SEEC model considers four aspects: socioeconomic impact (S), ecological health (E), ecosystem services function (E), and control management (C). Through screening, 38 evaluation indicators of the SEEC model were determined. The evaluation results showed that the ecological security index of the study area was >80, indicating a generally safe level. The lowest score was mainly attributable to the low rate of treatment of rural domestic sewage. The water quality status was used to evaluate the applicability of the SEEC model, and the calculation results indicated that the higher the score of the ecological security evaluation results, the better the water quality status. The findings show that the SEEC model demonstrates satisfactory applicability to evaluation of watershed ecological security.
Collapse
|
30
|
Wu J, Xiong Y, Ge Y, Yuan W. A sustainability assessment-based methodology for the prioritization of contaminated site risk management options. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:7503-7513. [PMID: 34476702 DOI: 10.1007/s11356-021-15911-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/06/2021] [Indexed: 05/21/2023]
Abstract
Contaminated site management is a multiple objective decision-making that generally involves different factors, such as performance of technology, environmental effects, cost, and social influence. In this study, we developed a sustainability assessment-based methodology for the prioritization of contaminated site risk management options. We integrate remediation sustainable assessment and redevelopment sustainable assessment in one framework and allow the optimization of indicators. The framework started with the definition of site management type, then investigating site characterization, screening indicators, quantifying of indicator, selecting assessment model, selecting primary options, assessment with uncertainty analysis, and determining of preferred options. To demonstrate the utility of the framework, results are presented in a contaminate site in southwest China for two risk management decisions, site remediation and site redevelopment. We used different approaches to evaluate the stability and robustness of assessment results, including Monte Carlo simulation, scenario analysis, and sensitivity analysis. The demonstration showed that attention has to be paid to the proper description of the site, the principles of the procedure, and the decision criteria.
Collapse
Affiliation(s)
- Jin Wu
- Faculty of Architecture Civil and Transportation Engineering Beijing, University of Technology, Beijing, 100124, China
| | - Yanna Xiong
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China.
| | - Yinxin Ge
- Faculty of Architecture Civil and Transportation Engineering Beijing, University of Technology, Beijing, 100124, China
| | - Wenchao Yuan
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| |
Collapse
|
31
|
Behind the Land Use Mix: Measuring the Functional Compatibility in Urban and Sub-Urban Areas of China. LAND 2021. [DOI: 10.3390/land11010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Land use mix (LUM) has long been employed as one of the key methods to improve urban vibrancy and optimize built-up areas. Within the urban studies discipline, LUM is usually defined as a functional compatible but diverse land use pattern. However, its quantitative methodological approaches thereby heavily rely on the diversity of land use and fail to consider functional compatibility as another critical defining characteristic, providing only a partial picture of land use pattern. Thus, reviewing LUM’s concepts and definitions, this paper develops a new index to describe functional compatibility according to the spatial segregation measurements. To evaluate and provide empirical evidence of the proposed index, this paper selects the medium-sized city of Xiangtan as a case study. The findings demonstrate that Xiangtan exhibits a quite compatible land use pattern to a certain extent. In addition, particular clusters with relatively incompatible land use patterns are observed, which are closely linked to a special historical working unit, the ‘Danwei’ compounds, and a special rural planning authority, ‘Township-Village-Enterprise’, in China. Finally, an integrated evaluation is conducted based on the proposed index and Shannon entropy index, which can be regarded as a useful tool in future land use planning while contributing to shaping a sustainable form of urban development.
Collapse
|
32
|
Agyeman PC, John K, Kebonye NM, Borůvka L, Vašát R, Drábek O. A geostatistical approach to estimating source apportionment in urban and peri-urban soils using the Czech Republic as an example. Sci Rep 2021; 11:23615. [PMID: 34880329 PMCID: PMC8654948 DOI: 10.1038/s41598-021-02968-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/22/2021] [Indexed: 11/09/2022] Open
Abstract
Unhealthy soils in peri-urban and urban areas expose individuals to potentially toxic elements (PTEs), which have a significant influence on the health of children and adults. Hundred and fifteen (n = 115) soil samples were collected from the district of Frydek Mistek at a depth of 0-20 cm and measured for PTEs content using Inductively coupled plasma-optical emission spectroscopy. The Pearson correlation matrix of the eleven relevant cross-correlations suggested that the interaction between the metal(loids) ranged from moderate (0.541) correlation to high correlation (0.91). PTEs sources were calculated using parent receptor model positive matrix factorization (PMF) and hybridized geostatistical based receptor model such as ordinary kriging-positive matrix factorization (OK-PMF) and empirical Bayesian kriging-positive matrix factorization (EBK-PMF). Based on the source apportionment, geogenic, vehicular traffic, phosphate fertilizer, steel industry, atmospheric deposits, metal works, and waste disposal are the primary sources that contribute to soil pollution in peri-urban and urban areas. The receptor models employed in the study complemented each other. Comparatively, OK-PMF identified more PTEs in the factor loadings than EBK-PMF and PMF. The receptor models performance via support vector machine regression (SVMR) and multiple linear regression (MLR) using root mean square error (RMSE), R square (R2) and mean square error (MAE) suggested that EBK-PMF was optimal. The hybridized receptor model increased prediction efficiency and reduced error significantly. EBK-PMF is a robust receptor model that can assess environmental risks and controls to mitigate ecological performance.
Collapse
Affiliation(s)
- Prince Chapman Agyeman
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500, Prague, Czech Republic.
| | - Kingsley John
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500, Prague, Czech Republic
| | - Ndiye Michael Kebonye
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500, Prague, Czech Republic
| | - Luboš Borůvka
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500, Prague, Czech Republic
| | - Radim Vašát
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500, Prague, Czech Republic
| | - Ondřej Drábek
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500, Prague, Czech Republic
| |
Collapse
|
33
|
Jiang S, Duan L, Dai G, Shu Y. Immobilization of heavy metal(loid)s in acid paddy soil by soil replacement-biochar amendment technology under normal wet condition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68886-68896. [PMID: 34279780 DOI: 10.1007/s11356-021-14757-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/02/2021] [Indexed: 05/22/2023]
Abstract
The remediation of agricultural soil contaminated by acid mine drainages (AMD) with extreme acidity and elevated concentrations of metal(loid)s still remains to be solved. In the present study, the combination of soil replacement-biochar (BC) amendment was adopted in 270-day incubation experiments to evaluate the effect on the metal(loids) (As, Pb, Cu, Cd, and Zn) immobilization and soil properties (pH, dissolved organic carbon (DOC), redox potential (Eh), and soil water holding capacity (SWC)). The incubation study showed that soil replacement-biochar amendment improved soil health by changing soil properties, which in turn exhibited significant effects on CaCl2-extracted metal(loid)s. The combination of soil replacement and biochar amendment exhibited positive effect on the immobilization of Pb, Cu, Cd, and Zn, while, the risk of As and Cd mobility induced by biochar in the ageing process should be paid attention. Further laboratory seed germination study suggested that soil replacement-biochar amendment could effectively alleviate the stress of metal(loid)s, with the treatment of S50BC achieving the best remediation results. The results of this study suggested that soil replacement-biochar amendment was a promising remediation technology for agricultural soil contaminated by AMD. Graphical abstract.
Collapse
Affiliation(s)
- Shaojun Jiang
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
- SCNU Environmental Research Institute, South China Normal University, Guangzhou, 510006, China
| | - Lianxin Duan
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
- SCNU Environmental Research Institute, South China Normal University, Guangzhou, 510006, China
| | - Guangling Dai
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Yuehong Shu
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| |
Collapse
|
34
|
Zakari S, Jiang X, Zhu X, Liu W, Allakonon MGB, Singh AK, Chen C, Zou X, Akponikpè PBI, Dossa GGO, Yang B. Influence of sulfur amendments on heavy metals phytoextraction from agricultural contaminated soils: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117820. [PMID: 34329071 DOI: 10.1016/j.envpol.2021.117820] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 05/28/2023]
Abstract
Heavy metal pollution is becoming recurrent and threatens biota biosafety in many agricultural fields. Diverse solutions explore the application of amendments to enable remediation. Sulfur represents a nonmetallic chemical element that actively affects heavy metals phytoextraction, and promotes and alternatively mitigates soil functions. In this study, we conduct a meta-analysis to synthesize the current knowledge on the influence of sulfur amendments on plants heavy metals uptake from contaminated soil media. Random-effects model was used to summarize effect sizes from 524 data points extracted from 30 peer reviewed studies. The phytoextraction of cadmium, chromium and nickel were 1.6-, 3.3-, and 12.6-fold, respectively, higher when sulfur amendment was applied; while copper uptake was 0.3-fold lower. Irrespective of the sulfur type, heavy metal extraction increased with the raising sulfur stress. Individual organs showed significant differences of heavy metal uptake between sulfur applied and non-sulfur treatments, and combined organs did not. The heavy metals uptake in leaves and roots were higher in sulfur applied than non-sulfur applied treatments, while those in grain, husk, and stalks were lower. The heavy metals phytoextraction (response ratio) followed the order roots > leaves > stalk > grain > husk. Moreover, heavy metals uptake was 2-fold higher in the sulfur applied than the non-sulfur treatments under ideal (5.5-8) and alkaline conditions (8-14), and 0.2-fold lower under acidic pH (1-5.5). Cadmium, manganese and nickel, and chromium were the most extracted under sulfur application by Vicia sp., Sorghum sp. and Brassica sp., respectively; while chromium, manganese, and iron were the most uptake without sulfur amendments by Oryza sp., Zea sp. and Sorghum sp., respectively. Our study highlights that the influence of sulfur on heavy metal phytoextraction depends on the single or combined effects of sulfur stress intensity, sulfur compounds, plant organ, plant type, and soil pH condition.
Collapse
Affiliation(s)
- Sissou Zakari
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China; Laboratory of Hydraulics and Environmental Modeling (HydroModE-Lab), Faculté d'Agronomie, Université de Parakou, 03 BP 351, Parakou, Benin
| | - Xiaojin Jiang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
| | - Xiai Zhu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
| | - Wenjie Liu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China.
| | - M Gloriose B Allakonon
- Laboratory of Hydraulics and Environmental Modeling (HydroModE-Lab), Faculté d'Agronomie, Université de Parakou, 03 BP 351, Parakou, Benin
| | - Ashutosh Kumar Singh
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
| | - Chunfeng Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
| | - Xin Zou
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
| | - P B Irénikatché Akponikpè
- Laboratory of Hydraulics and Environmental Modeling (HydroModE-Lab), Faculté d'Agronomie, Université de Parakou, 03 BP 351, Parakou, Benin
| | - Gbadamassi G O Dossa
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
| | - Bin Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
| |
Collapse
|
35
|
Yang S, Taylor D, Yang D, He M, Liu X, Xu J. A synthesis framework using machine learning and spatial bivariate analysis to identify drivers and hotspots of heavy metal pollution of agricultural soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117611. [PMID: 34174665 DOI: 10.1016/j.envpol.2021.117611] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Source apportionment can be an effective tool in mitigating soil pollution but its efficacy is often limited by a lack of information on the factors that influence the accumulation of pollutants at a site. In response to this limitation and focusing on a suite of heavy metals identified as priorities for pollution control, the study established a comprehensive pollution control framework using factor identification coupled with spatial agglomeration for agricultural soils in an industrialized part of Zhejiang Province, China. In addition to elucidating the key role of industrial and traffic activities on heavy metal accumulation through implementing a receptor model, specific influencing factors were identified using a random forest model. The distance from the soil sample location to the nearest likely industrial source was the most important factor in determining cadmium and copper concentrations, while distance to the nearest road was more important for lead and zinc pollution. Soil parent materials, pH, organic matter, and clay particle size were the key factors influencing accumulation of arsenic, chromium, and nickel. Spatial auto-correlation between levels of soil metal pollution and industrial agglomeration can enable a more targeted approach to pollution control measures. Overall, the approach and results provide a basis for improved accuracy in source apportionment, and thus improved soil pollution control, at the regional scale.
Collapse
Affiliation(s)
- Shiyan Yang
- College of Environmental & Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China; Department of Geography, National University of Singapore, 117650, Singapore
| | - David Taylor
- Department of Geography, National University of Singapore, 117650, Singapore
| | - Dong Yang
- College of Environmental & Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Mingjiang He
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Xingmei Liu
- College of Environmental & Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.
| | - Jianming Xu
- College of Environmental & Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
36
|
Osman HEM, Abdel-Hamed EMW, Al-Juhani WSM, Al-Maroai YAO, El-Morsy MHEM. Bioaccumulation and human health risk assessment of heavy metals in food crops irrigated with freshwater and treated wastewater: a case study in Southern Cairo, Egypt. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:50217-50229. [PMID: 33948848 DOI: 10.1007/s11356-021-14249-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/29/2021] [Indexed: 05/28/2023]
Abstract
Food safety has often attracted attention worldwide. Few studies have investigated the heavy metal (HM) pollution and health risk assessment of crops and vegetables. The current work was conducted to evaluate the human risk assessment of HM (Cu, Cd, Cr, Pb, and Zn) in radish, lettuce, tomato, onion, turnip, squash, okra, sunflower, Jews mallow, and garden rocket cultivated in treated wastewater (TWW)-irrigated sites as compared with those cultivated in freshwater (FW)-irrigated sites. Irrigation water, soil, and different plants were collected from 6 farmlands irrigated with TWW and two agricultural sites irrigated with FW (Nile river). Heavy metal transfer factor (HMTF), chronic daily intake of metals (CDIM), health hazard risk (HR), and health hazard index (HI) were estimated. The results showed that the tested HM levels in FW and TWW were below the Food and Agriculture Organization (FAO) and Egyptian standards recommended for irrigation. In soil samples, HM levels were below the permissible limits for both tested sites. The HM in soil and plants grew in TWW-irrigated sites possessed multiple levels higher than those grown in FW-irrigated sites. Among different plants, HM levels in the edible parts of plants grown in TWW-irrigated sites followed in decreasing order: tomato > sunflower >Jew's mallow = turnip = squash > lettuce > okra = radish > onion > garden rocket. The mean CDIM and HR values of plants irrigated using TWW were higher than those irrigated using FW. Furthermore, HR values for all plants grown in polluted and unpolluted sites were < 1 except Cd in plants grown in the TWW-irrigated farmlands. The mean HI for radish, lettuce, tomato, onion, turnip, squash, okra, sunflower, Jews mallow, and garden rocket grown in TWW-irrigated sites were 2.08, 2.39, 1.76, 1.53, 2.08, 1.80, 2.03, 1.91, 1.82, and 1.44 (for adult), and 2.39, 2.75, 2.71, 1.75, 2.38, 2.06, 2.33, 2.69, 2.10, and 1.65 (for children). Plants irrigated with TWW showed a higher HMTF than plants irrigated with FW. Jew's mallow and okra irrigated with TWW had a maximum HMTF. Consequently, different practical measures can be taken to minimize the HM levels in agricultural foodstuffs. These measures include preventing the excessive application of pesticides and fertilizers for crop production and continuous monitoring of different foodstuffs in the market.
Collapse
Affiliation(s)
| | | | - Widad Saleem Mubarak Al-Juhani
- Biology Department, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Research Laboratories Centre, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Yaser Ayesh Omer Al-Maroai
- Biology Department, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
- Research Laboratories Centre, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohamed Helmy El-Metwally El-Morsy
- Deanship of Scientific Research, Umm Al-Qura University, Al Mukarramah, Makkah, Saudi Arabia
- Plant Ecology and Range Management Department, Desert Research Center, Cairo, Egypt
| |
Collapse
|
37
|
Cheng Y, Nathanail CP. Regional human health risk assessment of cadmium and hexachlorocyclohexane for agricultural land in China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:3715-3732. [PMID: 33687605 DOI: 10.1007/s10653-021-00868-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Widespread pollution of agricultural soil is posing great risks to food safety and human health. The absence of human health-based Generic Assessment Criteria (GAC) for agricultural land means Chinese farmers struggle to manage these risks efficiently and effectively. Cadmium (Cd) and hexachlorocyclohexane (HCH), two of the most concerned contaminants, demonstrate threshold toxicity meaning that background exposure (MDIoral) is considered when deriving soil Generic Assessment Criteria (GAC). The CLEA (Contaminated Land Exposure Assessment) model was used to derive GAC for Cd and HCH that reflect differences in diet and soil characteristics across 19 provinces/cities. For both cadmium and alpha-HCH, Sichuan had the lowest GAC of 0.379 mg kg-1 and 0.0136 mg kg-1, respectively, resulting from its significant high MDIoral values, which are approximately six to nine times larger than the average MDIoral for all the 19 provinces/cities. Jiangxi province had the highest GAC of 1.230 mg kg-1 and 0.0866 mg kg-1, respectively, for cadmium and alpha-HCH, caused by its notable low MDIoral values and low vegetable consumption rate. Human health risk assessment based on regional GAC for Cd revealed that agricultural land with very high to high risks is located in southern China, while very low-risk land is located in northern China. For HCH, alpha- and gamma-HCH pose negligible health risks, but beta-HCH poses some health risk in some of the provinces/cities. When applying the regional GAC for beta-HCH, agricultural land in Beijing and Sichuan posed the highest risk, and those in Heilongjiang and Jiangxi had the lowest risk. This reflects the significant influence of background and vegetable consumption pathway on the GAC. Regional GACs could simplify and speed up risk assessment of agricultural land in different regions of China, by avoiding the need to calculate site-specific assessment criteria, thus saving time and money by avoiding over or under remediation.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China.
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China.
| | | |
Collapse
|
38
|
Liu Z, Bai Y, Luo L, Wan J, Wang W, Zhao G. Effects of high dose copper on plant growth and mineral nutrient (Zn, Fe, Mg, K, Ca) uptake in spinach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37471-37481. [PMID: 33713267 DOI: 10.1007/s11356-021-13395-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Loessal soil is one of the main cultivated soils in northwest China. Part of its distribution area was irrigated with industrial wastewater in past three decades. This caused heavy metal contamination in the soil. It had induced toxicity on crops and also threatened local human health for now. Based on a field plot experiment, effects of different Cu concentrations (from 45 to 2000 mg kg-1) in loessal soil on spinach plant growth and uptake of mineral nutrients (Zn, Fe, Mg, K, and Ca) by spinach were investigated. The Cu addition increased available concentrations of mineral nutrients in loessal soil and concentrations of Cu, Zn, Mg, and Ca in roots. The translocation of mineral nutrients from roots to leaves was inhibited under Cu addition, inducing their decrease in leaves. The EC10 and EC50 of soil Cu in relative dry weights of leaves were 240.33 mg kg-1 and 1205.04 mg kg-1, respectively. The PLS-PM analysis showed that available concentrations of nutrients in soil were only affected by Cu in soil positively, nutrients in roots were mainly affected by Cu in soil and Cu in leaves positively, nutrients in leaves were mainly affected by Cu in roots negatively, translocation of nutrients in spinach and plant growth were principally affected by Cu in leaves negatively, and the total effect of Cu in leaves on nutrients in roots and leaves, translocation of nutrients in spinach, and plant growth was the highest. Our results indicated that the phytotoxicity of Cu including spinach growth inhibition and mineral disorder in spinach was mainly affected by the Cu concentrations in leaves.
Collapse
Affiliation(s)
- Zheng Liu
- Gansu Provincial Key Discipline "Analysis and Treatment of Regional Typical Environmental Pollutants," School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, 730070, China.
- Provincial Key Laboratory of Gansu Higher Education for City Environmental Pollution Control, School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, 730070, China.
| | - Ying Bai
- Gansu Academy of Environmental Science, Lanzhou, 730030, China
| | - Lixia Luo
- Gansu Provincial Key Discipline "Analysis and Treatment of Regional Typical Environmental Pollutants," School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, 730070, China
- Provincial Key Laboratory of Gansu Higher Education for City Environmental Pollution Control, School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, 730070, China
| | - Jundi Wan
- Gansu Provincial Key Discipline "Analysis and Treatment of Regional Typical Environmental Pollutants," School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, 730070, China
- Provincial Key Laboratory of Gansu Higher Education for City Environmental Pollution Control, School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, 730070, China
| | - Wei Wang
- Gansu Provincial Key Discipline "Analysis and Treatment of Regional Typical Environmental Pollutants," School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, 730070, China
- Provincial Key Laboratory of Gansu Higher Education for City Environmental Pollution Control, School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, 730070, China
| | - Guohu Zhao
- Gansu Provincial Key Discipline "Analysis and Treatment of Regional Typical Environmental Pollutants," School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, 730070, China
- Provincial Key Laboratory of Gansu Higher Education for City Environmental Pollution Control, School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, 730070, China
| |
Collapse
|
39
|
Liu J, Zhao S, Zhang R, Dai Y, Zhang C, Jia H, Guo X. How important is abiotic dissipation in natural attenuation of polycyclic aromatic hydrocarbons in soil? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143687. [PMID: 33261877 DOI: 10.1016/j.scitotenv.2020.143687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/19/2020] [Accepted: 11/01/2020] [Indexed: 06/12/2023]
Abstract
Natural attenuation capacity, as one of the most important ecosystem functions in soil, plays a vital role in the detoxification of organic pollutants such as polycyclic aromatic hydrocarbons (PAHs). However, despite the role of biodegradation is established, the contribution of abiotic dissipation to natural attenuation has long been overlooked. Herein, the abiotic dissipations of 16 types of PAHs in a past coking site and of anthracene (ANT) in various cultivated soils were studied. Results showed that the contributions of abiotic dissipation to the total attenuation were in a wide range from 11.8 to 99.7% depending on the types of PAHs. Specifically, abiotic dissipation is higher for heavy PAHs (68.3-99.7%) than for light PAHs (11.8-71.5%), with the exception of ANT (80.7%). Similarly, the contribution of abiotic dissipation to ANT attenuation ranged from 30.7 to 68.6% in eight soils. The abiotic dissipation rate of ANT followed the order of lateritic-red earth > gray-desery soil > coastal solonchaks > cumulated-irrigated soil > cinnamon soil > fluvo-aquic soil > purplish soil ~ yellow-brown earth, which was positively correlated with transition metal contents in soils. These findings demonstrated that the abiotic dissipation of PAHs is determined by both molecule properties and soil types. Overall, this work provided valuable insights into clarifying the roles of abiotic dissipation in PAH attenuation in soil.
Collapse
Affiliation(s)
- Jinbo Liu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Song Zhao
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Ru Zhang
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Yunchao Dai
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Chi Zhang
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Hanzhong Jia
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China.
| | - Xuetao Guo
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| |
Collapse
|
40
|
Yang S, Gu S, He M, Tang X, Ma LQ, Xu J, Liu X. Policy adjustment impacts Cd, Cu, Ni, Pb and Zn contamination in soils around e-waste area: Concentrations, sources and health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140442. [PMID: 32615436 DOI: 10.1016/j.scitotenv.2020.140442] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/16/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
Pollution control policies (PCP) have been implemented in some e-waste dismantling areas in China to curb metal contamination since 2012. We investigated the effects of policy intervention on the concentrations, sources and health risks of heavy metals in soils. Post-implementation, among Cd, Cu, Ni, Pb and Zn, Pb levels declined while the Cd, Cu, Ni and Zn concentrations in soils were not impacted. Changes in their pollution indices and health risks were also similar. After the PCP, the contribution of traffic emission significantly decreased, while natural and industrial contribution increased due to the heighten background input and relocation of small e-waste dismantling workshops. Risk assessment showed that total cancer risk of five metals also slightly increased. Thus, policy intervention might be effective in controlling the release of some metals from e-waste dismantling. However, the performance of control measures varied depending on both source emission and geochemical properties of the metals. This study reveal the ongoing need of stricter supervision, targeted emission reduction and more-effective soil remediation actions to alleviate soil contamination from e-waste dismantling.
Collapse
Affiliation(s)
- Shiyan Yang
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Shunbin Gu
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Mingjiang He
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Xianjin Tang
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Lena Q Ma
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Jianming Xu
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Xingmei Liu
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
41
|
Investigating the Aging Effects of Biochar on Soil C and Si Dissolution and the Interactive Impact on Copper Immobilization. Molecules 2020; 25:molecules25184319. [PMID: 32967080 PMCID: PMC7570456 DOI: 10.3390/molecules25184319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 11/17/2022] Open
Abstract
Aging tests were used to investigate the long-term effects of BC on the immobilization of Cu, and the soil silicon dissolution of three types soils (black soil, (BS), vegetable garden soil (VS) and red soil (RS)). Litchi branch biochars (BC) at 10% (w/w) were incubated with three Cu (400 mg/kg) contaminated soils. The effect on soil properties of pH, soil organic carbon (SOC), dissolved organic carbon (DOC) and available silicon content were investigated, along with the speciation distribution of Cu. The results indicated that SOC, DOC, and available silicon content (except, BC300) increased with the application of BCs. On the other hand, the DTPA (diethylenetriaminepentaacetic acid) extractable Cu content in BS, VS and RS soils were reduced by 4–12%, 18–25%, and 12–19%, respectively. The Cu availability in all soils first increased, and then decreased during the aging process. The sum of the other four fractions, including the carbonate fraction and the inert component increased by 4–4.5% (BS), 1.4–2.1% (VS), and 0.5–1% (RS) respectively, over the long-term process. Moreover, during the whole aging process, the soil properties (such as pH, SOC, DOC and available silicon content) were almost stable. This study demonstrates that BCs, especially those produced at a higher temperature, are superior to those been produced at 300 °C in immobilizing Cu and releasing available silicon in soils. However, the remediation efficiencies were restricted by the soil type contamination status and remediation time.
Collapse
|
42
|
Wang Y, Xu Y, Qin X, Liang X, Huang Q, Peng Y. Effects of EDDS on the Cd uptake and growth of Tagetes patula L. and Phytolacca americana L. in Cd-contaminated alkaline soil in northern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25248-25260. [PMID: 32342425 DOI: 10.1007/s11356-020-08877-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Phytoextraction has been considered an effective and environment-friendly method for removing heavy metals from contaminated soil. However, the efficiency, mechanism, and adaptability of phytoextraction by hyperaccumulators in Cd-polluted weakly alkaline soil have not been investigated in detail. In this study, pot experiments were conducted to evaluate the enhanced effects of S,S-ethylenediamine disuccinic acid (EDDS) on phytoextraction in alkaline soil by measuring the degradation kinetic characteristics of EDDS and Cd absorption dynamics of Tagetes patula L. (T. patula) and Phytolacca americana L. (P. americana) for a period of 55 days. Results showed that the half-life of EDDS varied from 4.20-7.07 days and 3.35-4.36 days for T. patula and P. americana, respectively. EDDS-activated Cd reached saturation at a low dosage (1 mM) and a single application of EDDS was found to be better than double applications. The activation of EDDS on Cd applied before 45 days of harvest was better than that before 15 days of harvest, and disappeared after a 35-day application. Correspondingly, the Cd concentration in P. americana and T. patula leaves increased significantly after 3 days of the EDDS application. However, T. patula had a biomass 2.57 times and Cd absorption capacity 10.06 times higher than P. americana. EDDS showed almost no influence on the stem and leaf biomass of T. patula; however, the root weight decreased by 9.44-71.77%. The Cd concentration in T. patula leaves of all the treatments was 1.00-1.81 times that of the control group. In comparison with other treatments, the EDDS application (3 mM) before 15 days of harvest extracted the highest amount of Cd (601.45 μg/pot) in T. patula shoots, reaching 1.40 times that in the control group. Therefore, T. patula might be a more suitable phytoremediator for Cd-polluted alkaline soil than P. americana; the most effective method was the EDDS application (3 mM) before 15 days of harvest.
Collapse
Affiliation(s)
- Yale Wang
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Tianjin, 300191, People's Republic of China
- Key Laboratory of Original Environmental Pollution Control, Ministry of Agriculture and Rural Affairs, Ministry of Agriculture, Agro-Environmental Protection Institute, Tianjin, 300191, People's Republic of China
| | - Yingming Xu
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Tianjin, 300191, People's Republic of China.
- Key Laboratory of Original Environmental Pollution Control, Ministry of Agriculture and Rural Affairs, Ministry of Agriculture, Agro-Environmental Protection Institute, Tianjin, 300191, People's Republic of China.
| | - Xu Qin
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Tianjin, 300191, People's Republic of China
- Key Laboratory of Original Environmental Pollution Control, Ministry of Agriculture and Rural Affairs, Ministry of Agriculture, Agro-Environmental Protection Institute, Tianjin, 300191, People's Republic of China
| | - Xuefeng Liang
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Tianjin, 300191, People's Republic of China
- Key Laboratory of Original Environmental Pollution Control, Ministry of Agriculture and Rural Affairs, Ministry of Agriculture, Agro-Environmental Protection Institute, Tianjin, 300191, People's Republic of China
| | - Qingqing Huang
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Tianjin, 300191, People's Republic of China
- Key Laboratory of Original Environmental Pollution Control, Ministry of Agriculture and Rural Affairs, Ministry of Agriculture, Agro-Environmental Protection Institute, Tianjin, 300191, People's Republic of China
| | - Yunying Peng
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Tianjin, 300191, People's Republic of China
- Key Laboratory of Original Environmental Pollution Control, Ministry of Agriculture and Rural Affairs, Ministry of Agriculture, Agro-Environmental Protection Institute, Tianjin, 300191, People's Republic of China
| |
Collapse
|
43
|
Li SW, Li MY, Sun HJ, Li HB, Ma LQ. Lead bioavailability in different fractions of mining- and smelting-contaminated soils based on a sequential extraction and mouse kidney model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114253. [PMID: 32179223 DOI: 10.1016/j.envpol.2020.114253] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/10/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
Lead bioavailability in contaminated soils varies considerably depending on Pb speciation and sources of contamination. However, little information is available on bioavailability of Pb associated with different fractions. In this study, the Tessier sequential extraction was used to fractionate Pb in 3 contaminated soils to exchangeable (F1), carbonate-bound (F2), Fe/Mn oxides-bound (F3), organic-bound (F4), and residual fractions (F5). In addition, soil residues after F1-F2 extraction (F345), F1-F3 extraction (F45), and F1-F4 extraction (F5) were measured for Pb relative bioavailability (RBA) using a mouse kidney model. Based on the mouse model, Pb-RBA in the soils was 44-93%, which decreased to 43-89%, 28-75%, and 15-68% in the F345, F45, and F5 fractions, respectively. Based on Pb-RBA in the soil residues, Pb-RBA in different fractions was calculated based on a mass balance. The data showed that Pb-RBA was the highest (∼100%) in the exchangeable and carbonate fraction, and the lowest (15-68%) in the residual fraction. In addition, Pb in the first three fractions (F1-F3) contributed most (83-89%) to bioavailable Pb in contaminated soils. Our study shed light on oral bioavailability of Pb in contaminated soils of different fractions based on sequential extraction and provide important information for soil remediation.
Collapse
Affiliation(s)
- Shi-Wei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Meng-Ya Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Hong-Jie Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
44
|
Wang C, Yin H, Bi L, Su J, Zhang M, Lyu T, Cooper M, Pan G. Highly efficient and irreversible removal of cadmium through the formation of a solid solution. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121461. [PMID: 31685320 DOI: 10.1016/j.jhazmat.2019.121461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Sulfur-containing materials are very attractive for the efficient decontamination of some heavy metals. However, the effective and irreversible removal of Cd2+, coupled with a high uptake efficiency, remains a great challenge due to the relatively low bond dissociation energy of CdS. Herein, we propose a new strategy to overcome this challenge, by the incorporation of Cd2+ into a stable ZnxCd1-xS solid solution, rather than into CdS. This can be realised through the adsorption of Cd2+ by ZnS nanoparticles, which have exhibited a Cd2+ uptake capacity of approximate 400 mg g-1. Through this adsorption mechanism, the Cd2+ concentration in a contaminated solution could effectively be reduced from 50 ppb to <3 ppb, a WHO limit acceptable for drinking water. In addition, ZnS continued to exhibit this noteworthy uptake capacity even in the presence of Cu2+, Pb2+, and Hg2+. ZnS displayed high chemical stability. Particles aged in air for 3 months still retained a> 80% uptake capacity for Cd2+, compared with only 9% uptake capacity for similarly-aged FeS particles. This work reveals a new mechanism for Cd2+ removal with ZnS and establishes a valuable starting point for further studies into the formation of solid solutions for hazardous heavy metal removal applications.
Collapse
Affiliation(s)
- Chen Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hui Yin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Lei Bi
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China.
| | - Jing Su
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Meiyi Zhang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China
| | - Tao Lyu
- School of Animal, Rural, and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, NG25 0QF, UK; Centre of Integrated Water-Energy-Food Studies (iWEF), School of Animal, Rural, and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, NG25 0QF, UK
| | - Mick Cooper
- School of Animal, Rural, and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, NG25 0QF, UK; Centre of Integrated Water-Energy-Food Studies (iWEF), School of Animal, Rural, and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, NG25 0QF, UK
| | - Gang Pan
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China; School of Animal, Rural, and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, NG25 0QF, UK; Centre of Integrated Water-Energy-Food Studies (iWEF), School of Animal, Rural, and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, NG25 0QF, UK; Beijing Advanced Science and Innovation Center of CAS, Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
45
|
Cheng Y, Nathanail CP, Ja'afaru SW. Generic assessment criteria for human health risk management of agricultural land scenario in Jiangsu Province, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134071. [PMID: 32380600 DOI: 10.1016/j.scitotenv.2019.134071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/12/2019] [Accepted: 08/22/2019] [Indexed: 06/11/2023]
Abstract
The widespread of agricultural soil pollution in China is posing great risks to food safety and human health. Lack of human health-based generic assessment criteria (GAC) for Chinese agricultural land makes it impossible to efficiently screen and assess the risks unless site-specific risk assessments being carried out, which are both time-consuming and costly. This paper has thus derived the first set human health-based generic assessment criteria (GAC) for 13 substances of concern (including isomers) using the CLEA model for agricultural land scenario in Jiangsu province of China. As there is no authoritative human health risk assessment model in China yet, this paper has determined and demonstrated the applicability of the CLEA model to Chinese agricultural land exposure scenarios. The derived GAC are generally less stringent than the current two Chinese standards (i.e. GB 15618-2018, GB36600-2018) for most substances except for five substances (including cadmium, nickel, alpha-HCH, beta-HCH and gamma-HCH) for which the oral background intake accounts for 50% of the Total Daily Intake. This indicates that the two Chinese soil quality standards maybe over conservative, and oral background intake (i.e. MDIoral) can be a critical parameter when deriving regional GAC for Chinese agricultural land scenarios. Since there is a notable regional difference in MDIoral for some of the substances of concern, as well as in the vegetable consumption rates and vegetable varieties consumed, it is considered necessary to derive GAC for other provinces of China for agricultural land scenario, to further examine the sensitivity of MDIoral on GAC. In addition, the 13 substances of concern in this paper are some of the most prevalent contaminants in agricultural soils in China, but GAC for some emerging new contaminants, such as thallium, vanadium, should also be derived in further research.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China.
| | | | | |
Collapse
|
46
|
Li F, Zheng Y, Tian J, Ge F, Liu X, Tang Y, Feng C. Cupriavidus sp. strain Cd02-mediated pH increase favoring bioprecipitation of Cd 2+ in medium and reduction of cadmium bioavailability in paddy soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109655. [PMID: 31525561 DOI: 10.1016/j.ecoenv.2019.109655] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the effects of Cupriavidus sp. strain Cd02-mediated increase on biosorption and bioprecipitation of Cd2+ during the 144-h cultivation time as well as evaluated effectivenesses of changing soil pH and bioavailability of cadmium after bioaugmentation of strain Cd02 into Cd-contaminated paddy soil for 15 days. Results showed that strain Cd02-induced pH increase of the culture medium (from 7.40 to 8.68) facilitated biosorption of Cd2+ on Cd02 cell surface (4.82 mg/mg) and extracellular bioprecipitation in form of cadmium carbonate (3.07 mg/mg). Also, the pH values of Cd-contaminated paddy soil increased by 1.41 units after strain Cd02 was applied for 15 days, which thereby promoted the decrease of exchangeable fraction of Cd2+ by 6.5% in the tested paddy soil. Meanwhile, strain Cd02 could prosperously live in paddy soils after bioaugmentation. These results suggest that strain Cd02 may be applicable for bioremediation of the heavy metal-contaminated soils by bioaugmentation.
Collapse
Affiliation(s)
- Feng Li
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, PR China; Hunan Engineering Laboratory for High Efficiency Purification Technology and Its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, PR China.
| | - Yang Zheng
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, PR China; Hunan Engineering Laboratory for High Efficiency Purification Technology and Its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, PR China
| | - Jiang Tian
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, PR China; Hunan Engineering Laboratory for High Efficiency Purification Technology and Its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, PR China
| | - Fei Ge
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, PR China; Hunan Engineering Laboratory for High Efficiency Purification Technology and Its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, PR China
| | - Xingwang Liu
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, PR China; Hunan Engineering Laboratory for High Efficiency Purification Technology and Its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, PR China
| | - Yixin Tang
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, PR China; Hunan Engineering Laboratory for High Efficiency Purification Technology and Its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, PR China
| | - Chuang Feng
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, PR China; Hunan Engineering Laboratory for High Efficiency Purification Technology and Its Application on Complex Heavy Metal Wastewater Treatment, Xiangtan, 411105, PR China
| |
Collapse
|
47
|
Xie S, Yang F, Feng H, Wei C, Wu F. Assessment of Potential Heavy Metal Contamination in the Peri-urban Agricultural Soils of 31 Provincial Capital Cities in China. ENVIRONMENTAL MANAGEMENT 2019; 64:366-380. [PMID: 31377846 DOI: 10.1007/s00267-019-01196-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
To obtain a general understanding of heavy metal contamination in peri-urban agricultural soils in China, this study investigates the concentrations of eight heavy metals, i.e., Cd, Pb, Zn, As, Cu, Cr, Hg, and Ni, in the peri-urban agricultural soils of 31 provincial capital cities in China. The data were obtained via exhaustive literature searches in both the Web of Science and China National Knowledge Infrastructure (CNKI) as well as from statistical yearbooks published in China. To evaluate the pollution status of each city and identify a variety of potential sources, various contamination indexes, e.g., the enrichment factor (EF), geoaccumulation index (Igeo), and integrated pollution index (IPI), were calculated based on the peri-urban agricultural soil dataset. The results of the analysis of the heavy metal concentrations, EF values and Igeo values showed that the peri-urban agricultural soils were enriched in most heavy metals, and Cd and Hg concentrations greatly exceeded the Chinese Environmental Protection Administration (CEPA) guidelines. The IPI results showed that 15 of the 31 cities, i.e., 48%, exhibited varying extents of heavy metal pollution. Although the mean IPI value for peri-urban agricultural soils in all cities (0.83) was slightly lower than that for urban soil (0.9), the IPI values for peri-urban agricultural soils from 65% of the cities were greater than those for urban soils, indicating that peri-urban agricultural soils are more polluted than urban soils in these large cities. These results are important for guiding future research on heavy metal pollution in peri-urban agricultural soils of presently expanding Chinese cities.
Collapse
Affiliation(s)
- Shaowen Xie
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology, 510650, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Fen Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hanxiao Feng
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chaoyang Wei
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100021, Beijing, China
| |
Collapse
|
48
|
Guan X, Yang H, Sun Y, Qiao J. Enhanced immobilization of chromium(VI) in soil using sulfidated zero-valent iron. CHEMOSPHERE 2019; 228:370-376. [PMID: 31042610 DOI: 10.1016/j.chemosphere.2019.04.132] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/13/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
Batch tests were conducted in this study to evaluate the influence of sulfidation on the remediation of Cr(VI) in soil by zero-valent iron (ZVI). It was demonstrated that sulfidated ZVI synthesized by ball-milling with elemental sulfur (S-ZVIbm) could reduce and immobilize Cr(VI) in soil more rapidly and efficiently than unamended ZVI (ZVIbm). Specifically, with the optimal S/Fe molar ratio of 0.05 and ZVI dosage of 5 wt%, S-ZVIbm could completely sequestrate water soluble Cr(VI) (as high as 17.5 mg/L) within 3 h, while negligible Cr(VI) was reduced by ZVIbm over a 3-day incubation period under identical conditions. Furthermore, sequential extraction analysis revealed that S-ZVIbm treatment also promoted the conversion of exchangeable Cr to more stable forms (i.e., mainly as FeMn oxides bound fraction). XPS analysis showed that reduction was the main Cr(VI) remediation mechanism by ZVI, and alkaline extraction experiments further demonstrated Cr(VI) concentration in soil could be decreased from 153.6 mg/kg to 23.4 and 131.6 mg/kg by S-ZVIbm and ZVIbm, respectively. A magnetic separation process was introduced in this study to physically remove the residual ZVI particles and attached iron (hydr)oxides so as to minimize the re-release risk of immobilized Cr. Results revealed that, 71-89% of the added Fe and 9.5-33.6% of Cr could be retrieved from S-ZVIbm-treated soil. These findings highlighted the potential of S-ZVIbm as a promising amendment for immobilizing Cr(VI) in soil and the potential of magnetic separation as an alternative option for preventing the re-mobilization of sequestered Cr.
Collapse
Affiliation(s)
- Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai, 200092, PR China.
| | - Hongyi Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Yuankui Sun
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Junlian Qiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
49
|
Li R, Huang H, Wang JJ, Liang W, Gao P, Zhang Z, Xiao R, Zhou B, Zhang X. Conversion of Cu(II)-polluted biomass into an environmentally benign Cu nanoparticles-embedded biochar composite and its potential use on cyanobacteria inhibition. JOURNAL OF CLEANER PRODUCTION 2019; 216:25-32. [DOI: 10.1016/j.jclepro.2019.01.186] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
50
|
Shi K, Yang Q, Li Y, Sun X. Mapping and evaluating cultivated land fallow in Southwest China using multisource data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:987-999. [PMID: 30453268 DOI: 10.1016/j.scitotenv.2018.11.172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/24/2018] [Accepted: 11/11/2018] [Indexed: 06/09/2023]
Abstract
Accurately and effectively mapping and evaluating cultivated land fallow has already become an important issue that has received much attention in China. However, systematically analysing regional cultivated land fallow remains inadequate because current studies have mainly focused on quantifying cultivated land fallow using statistical data based on administrative units or a single aspect of cultivated land fallow using high or medium spatial resolution images at the local or regional scales. Against the existing shortcomings, this study first developed an integrated index of cultivated land fallow (ILF) for mapping and evaluating cultivated land fallow in Southwest China using multisource spatial data. The performance of the ILF was validated by comparing its results with Google Earth images and ecological carrying capacity of cultivated land (TEC). And the spatial distribution of cultivated land fallow in Southwest China was evaluated at the regional, provincial and metropolitan scales. The results revealed that the ILF provided a reliable evaluation of cultivated land fallow in Southwest China. Compared to the Google earth images, the pixel with the high ILF value was the cultivated land that was found to prioritize fallow. There was also a significant correlation between ILF and TEC at the prefectural level in Sichuan, with an R2 value >0.65. In Southwest China, the cultivated land related to highly appropriate fallow (HAF) accounted for 5.73% of the total cultivated land in 2010. The cultivated land related to inappropriate fallow (IF) accounted for 53.26% and 37.36% in Sichuan and Chongqing but only comprised 22.90% and 19.72% in Yunnan and Guizhou, respectively. Special attention needs to be paid to Guiyang and Kunming, where the HAF made up 25.38% and 17.48% of their total cultivated land, respectively. Human activities have been found to already become the most important impact factors for cultivated land fallow in Southwest China. This study is especially valuable for providing a scientific basis for policy-making on viable cultivated land fallow policy in Southwest China.
Collapse
Affiliation(s)
- Kaifang Shi
- Chongqing Engineering Research Centre for Remote Sensing Big Data Application, School of Geographical Sciences, Southwest University, 2 Tiansheng Rd, Chongqing 400715, China; Research Base of Karst Eco-environments at Nanchuan in Chongqing, Ministry of Nature Resources, School of Geographical Sciences, Southwest University, 2 Tiansheng Rd, Chongqing 400715, China
| | - Qingyuan Yang
- Research Base of Karst Eco-environments at Nanchuan in Chongqing, Ministry of Nature Resources, School of Geographical Sciences, Southwest University, 2 Tiansheng Rd, Chongqing 400715, China; Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, Chongqing 400715, China.
| | - Yuanqing Li
- Research Base of Karst Eco-environments at Nanchuan in Chongqing, Ministry of Nature Resources, School of Geographical Sciences, Southwest University, 2 Tiansheng Rd, Chongqing 400715, China; Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Xiufeng Sun
- College of Horticulture and Landscape Architecture, Southwest University, 2 Tiansheng Rd, Chongqing 400715, China
| |
Collapse
|