1
|
Yang W, Shi M, Zhao T, Xu Z, Chu W. Unseen streams tracing emerging contaminants from stormwater to surface water: A brief review. J Environ Sci (China) 2025; 155:96-110. [PMID: 40246520 DOI: 10.1016/j.jes.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 04/19/2025]
Abstract
Emerging contaminants (ECs) have raised global concern due to their adverse effect on ecosystems and human health. However, the occurrence and transport of ECs in stormwater remain unclear. The impact of ECs from stormwater on surface water quality and ecosystem health is also poorly documented. In this review, we examined the variations in EC concentrations in surface water resulting from stormwater. During the wet weather, the concentrations of most investigated ECs, e.g., microplastics, per- and polyfluoroalkyl substances, and vehicle-related compounds, significantly increase in surface water, indicating that stormwater may be a critical source of these contaminants. Furthermore, the potential pathways of ECs from stormwater enter surface water are outlined. Studies demonstrate that surface runoff and combined sewer overflows are important pathways for ECs, with discharges comparable to or exceeding those from wastewater treatment plants. Illicit connection also plays an important part in elevated EC concentrations in surface water. Overall, our findings underscore the importance of stormwater as a source for ECs in surface waters, and urge for increased emphasis on, and reinforcement of, stormwater monitoring and control measures to minimize the transport of ECs into receiving water bodies.
Collapse
Affiliation(s)
- Wenyuan Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Minghao Shi
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China; Zhejiang Heda Technology, Co., Ltd., Jiaxing 314000, China; ZENNER Metering Technology (Shanghai) Ltd., Shanghai 201700, China
| | - Tiantao Zhao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Feng NX, Pan B, Huang HJ, Huang YT, Lyu H, Xiang L, Zhao HM, Liu BL, Li YW, Cai QY, Li DW, Mo CH. Uptake, translocation, and biotransformation of phthalate acid esters in crop plants: A comprehensive review. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137580. [PMID: 39952132 DOI: 10.1016/j.jhazmat.2025.137580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/05/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Phthalate acid esters (PAEs) are prevalent emerging contaminants in agricultural environments. The uptake of PAEs by crop plants has attracted extensive attention due to the risks posed to human health through transfer in food chains. Despite its importance, the interaction between PAEs and crop plants remains poorly understood. In this critical review, the occurrence of six priority control PAEs in various food crops grown in greenhouses and conventional farms is investigated, with detected concentrations reaching up to mg/kg (dry weight) levels. PAEs enter plants through roots, foliar gas, or foliar particle uptake. After entry, PAEs exhibit acropetal translocation from the root and basipetal translocation from the leaf. PAEs are transformed into various metabolites through hydroxylation, hydrolysis, and oxidation in phase I metabolism and further conjugated with biomolecules such as amino acids or sugars in phase II metabolism. Exposure to PAEs disrupts plant homeostasis and activated antioxidant enzymes to alleviate phytotoxicity. Dietary intake of PAEs-contaminated food crops presents potential risks to human health, particularly from fruit and root vegetables consumed by children, warranting specific attention. Furthermore, current knowledge gaps and future perspectives are proposed. This review provides a comprehensive assessment of the knowledge on the uptake, translocation, and transformation of PAEs in crop plants, emphasizing the need for an integrated investigation into the full life cycle of PAEs in plants to ensure food safety.
Collapse
Affiliation(s)
- Nai-Xian Feng
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou 510632, China.
| | - Bogui Pan
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou 510632, China.
| | - Hong-Jia Huang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou 510632, China
| | - Yi-Tong Huang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou 510632, China
| | - Hui Lyu
- School of Architecture and Planning, Foshan University, Foshan 528225, China
| | - Lei Xiang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou 510632, China
| | - Bai-Lin Liu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou 510632, China
| | - Da-Wei Li
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Ce-Hui Mo
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Zhang S, Guo Y, Zhu S, Guo L, Pan X, Xu J, Dong F, Zheng Y, Wu X. From field to table: Reducing residual toxicity and risk of four pesticides via washing and blanching of cowpea (Vigna unguiculata (L.) Walp.). Food Chem 2025; 474:143082. [PMID: 39904083 DOI: 10.1016/j.foodchem.2025.143082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
The presence of acetamiprid, chlorantraniliprole, thiamethoxam, and cyromazine residues in cowpea raises significant health concerns. This study evaluated pesticide residues through field tests and examined the effects of washing, blanching, and frying on residue removal. Washing for 20-60 s reduced residues by 17.6 % to 67.3 %, while blanching for 1-5 min eliminated 42.5 % to 70.9 %. Conversely, frying increased residues of cyromazine, chlorantraniliprole, and acetamiprid (PF > 1). Notably, washing for 40 s followed by blanching for 2 min effectively removed residues. For cowpea samples exposed to high doses, this combination significantly lowered thiamethoxam, acetamiprid, and chlorantraniliprole levels below the maximum residue limit (MRL). Density functional theory and toxicity estimation software tool analyses indicate that this method also reduces toxicity by degrading parent compounds into less-toxic metabolites. Moreover, even with recommended practices, cyromazine residues exceeded MRLs, highlighting the need for reevaluation. The washing-blanching combination ensures the safety of cowpea consumption.
Collapse
Affiliation(s)
- Shuangwei Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Yajing Guo
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Shanshan Zhu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Linlin Guo
- Shanghai AB Sciex Analytical Instrument Trading Co, Ltd, Beijing 100015, PR China
| | - Xinglu Pan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Jun Xu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Fengshou Dong
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Yongquan Zheng
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Xiaohu Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|
4
|
Kersting M, Machado ÊL, de Souza Schneider RDC, Lawisch Rodriguez A, Rieger A, Lemões Iepsen G, Lutterbeck CA. Performance of an integrated system for the treatment of veterinary hospital wastewaters: assessment of organic load and toxicity levels. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025:1-11. [PMID: 40241491 DOI: 10.1080/15226514.2025.2491063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Despite its toxic potential, the treatment of wastewaters generated at veterinary hospitals has been neglected. Thus, this is a pioneering study that addresses the treatment of this effluent through an integrated system composed of an upflow anaerobic sludge blanket (UASB), an anoxic filter (AF), an aerobic reactor (AR), a sludge thickener tank (STT) a horizontal flow subsurface constructed wetland (HFSSCW) and a parshall gutter (PG) and with a hydraulic retention time of 10 days. Approximately 5 m³ of wastewater is produced daily, with antibiotics and analgesics being the most commonly used classes of pharmaceutical compounds. Several of the analyzed parameters did not comply with national and international guidelines. In this context, the integrated treatment system demonstrated good results, achieving mean removals of: 98% for COD and 59% for BOD5; 87.5% for Total N and 44% for Total P; 83.8% and 69.9% for DOC and TDC; 95% and 65% for Turbidity and EC; and 78% for TDS. The bioassays with Allium cepa indicated a strong genotoxic potential of the raw wastewater, which was completely eliminated after treatment. Thus, it can be concluded that the integrated treatment system showed promising results regarding the treatment of the investigated wastewaters and can be considered a viable alternative to meet effluent disposal limits established in Brazilian and international standards, as well as significantly reduce their toxic potential.
Collapse
Affiliation(s)
- Maurício Kersting
- Postgraduate Program in Environmental Technology - PPGTA, University of Santa Cruz do Sul, Santa Cruz do Sul, Brazil
| | - Ênio Leandro Machado
- Postgraduate Program in Environmental Technology - PPGTA, University of Santa Cruz do Sul, Santa Cruz do Sul, Brazil
- Department of Sciences, Humanities and Education, University of Santa Cruz do Sul, UNISC, Santa Cruz do Sul, Brazil
| | - Rosana de Cassia de Souza Schneider
- Postgraduate Program in Environmental Technology - PPGTA, University of Santa Cruz do Sul, Santa Cruz do Sul, Brazil
- Department of Sciences, Humanities and Education, University of Santa Cruz do Sul, UNISC, Santa Cruz do Sul, Brazil
| | - Adriane Lawisch Rodriguez
- Postgraduate Program in Environmental Technology - PPGTA, University of Santa Cruz do Sul, Santa Cruz do Sul, Brazil
| | - Alexandre Rieger
- Postgraduate Program in Environmental Technology - PPGTA, University of Santa Cruz do Sul, Santa Cruz do Sul, Brazil
- Department of Life Sciences, University of Santa Cruz do Sul, UNISC, Santa Cruz do Sul, Brazil
| | - Guilherme Lemões Iepsen
- Department of Life Sciences, University of Santa Cruz do Sul, UNISC, Santa Cruz do Sul, Brazil
| | - Carlos Alexandre Lutterbeck
- Postgraduate Program in Environmental Technology - PPGTA, University of Santa Cruz do Sul, Santa Cruz do Sul, Brazil
- Department of Life Sciences, University of Santa Cruz do Sul, UNISC, Santa Cruz do Sul, Brazil
| |
Collapse
|
5
|
Zhou S, Qiao L, Jia Y, Khanal SK, Sun L, Lu H. Micro-nano bubble ozonation for effective treatment of ibuprofen-laden wastewater and enhanced anaerobic digestion performance. WATER RESEARCH 2025; 273:123006. [PMID: 39721508 DOI: 10.1016/j.watres.2024.123006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/26/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
The pharmaceutical industry plays a crucial role in driving global economic growth but also poses substantial environmental challenges, particularly in the efficient treatment of production wastewater. This study investigates the efficacy of micro-nano bubble (MNB) ozonation for treating high-strength ibuprofen (IBU)-laden wastewater (49.9 ± 2.3 mg/L) and mitigating its inhibitory effects on the anaerobic digestion (AD) of intralipid (IL)-laden wastewater. Our findings demonstrated that MNB ozonation achieved a 99.0 % removal efficiency of IBU within 70 min, significantly surpassing the 69.8 % efficiency observed with conventional ozonation under optimal conditions. Both conventional and MNB ozonation primarily transformed IBU through oxidation processes, including hydroxylation and the conversion of CH bonds to C = O groups, along with carbon cleavage. However, MNB ozonation markedly reduced the toxicity of IBU-laden wastewater by further transforming toxic by-products, particularly under mildly alkaline conditions (pH 7.2 and 9.0). This reduction in toxicity led to a significant improvement in subsequent AD performance; specifically, a 70-min MNB ozonation pretreatment enhanced methane production by 48.1 %, increased chemical oxygen demand removal by 35.6 %, and reduced fatty acid accumulation compared to the control without pretreatment. Additionally, the effluent from MNB ozonation positively impacted the microbial community, particularly by enriching syntrophic bacteria and methanogens. Overall, these findings offered new insights into the behavior and toxicity of IBU oxidation by-products in both conventional and MNB ozonation processes. Furthermore, this study proposed a novel strategy for the combined treatment of IBU- and IL-laden wastewaters, establishing a robust foundation for advancing MNB ozonation technology in engineered pharmaceutical wastewater treatment.
Collapse
Affiliation(s)
- Sining Zhou
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Lei Qiao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Yanyan Jia
- School of Ecology, Sun Yat-sen University, Shenzhen, PR China
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Ma̅noa, Honolulu, HI, United States; Department of Environmental Engineering, Korea University Sejong Campus, Sejong-ro 2511 Sejong 2511, Korea
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, PR China.
| |
Collapse
|
6
|
Wu H, Xiong Q, Wang Y, Xie F, Ma J, Tang Q, Chen Y, Sun Y, Li H, Liu Y, Ying G. Co-metabolism of Norfloxacin by Chlorella pyrenoidosa: Carbon source effects, biotransformation mechanisms, and key driving genes. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136971. [PMID: 39731893 DOI: 10.1016/j.jhazmat.2024.136971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/14/2024] [Accepted: 12/22/2024] [Indexed: 12/30/2024]
Abstract
Co-metabolism with appropriate carbon sources has been demonstrated to effectively enhance the removal of ubiquitous recalcitrant micropollutant by microalgae. However, the specific impacts of carbon sources on the co-metabolism of antibiotics by microalgae remain insufficiently explored. In this study, transcriptomics, gene network analysis, extracellular polymeric substances (EPS), and enzymatic activity involved in co-metabolic pathways of norfloxacin (NFX), were systematically evaluated to investigate the underlying biological mechanisms involved in NFX co-metabolism by Chlorella pyrenoidosa. Results revealed that glucose, glycine, sodium acetate, and sodium carbonate significantly enhanced NFX removal, with 10 mM glucose being the most effective and achieving a removal efficiency of 61.5 %. Glucose led to notable increase in microalgal biomass production, peroxidase enzyme activity, and EPS protein secretion, thereby accelerating NFX degradation. Mass balance analysis indicated that biotransformation was the primary mechanism for NFX removal as supported by the detection of fluorine element within microalgal cells. Eight major metabolites resulting from defluorination, piperazine ring transformation, decarboxylation, acetylation and oxidation reactions were identified. Furthermore, a transformation pathway was proposed based on mass spectrometry data of extracted NFX intermediates along with their formation dynamics. The four carbon sources exhibited distinct effects on the transcriptome of C. pyrenoidosa. Differentially expressed genes analysis revealed significant influence of these carbon sources on genes related to cytochrome P450 enzyme family, glutathione, and peroxidases, which played major roles in NFX co-metabolism. These findings provide unique insight into the specific impacts of carbon sources on microalgae-based NFX removal, revealing key metabolic genes and underlying biological mechanisms driving NFX co-metabolism by microalgae.
Collapse
Affiliation(s)
- Hengyu Wu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Qian Xiong
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, Scientific Observing and Experimental Station of South China Sea Fishery Resources and Environment, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangdong Provincial Observation and Research Station for Ecosystem in the Pearl River Estuary, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| | - Yichun Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Fengqi Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jiaru Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Qinglin Tang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yanfen Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yuehong Sun
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hao Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yousheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Guangguo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
7
|
Conceicao KC, Freitas LS, Villamar-Ayala CA. Behavior space-temporal of biofilters based on hazelnut shells/sawdust treating pharmaceutical and personal care products from domestic wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178891. [PMID: 40010246 DOI: 10.1016/j.scitotenv.2025.178891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 02/28/2025]
Abstract
Nature-based solutions (NBS) such as biofiltration are an efficient, eco-friendly, and economical alternative for wastewater treatment under decentralized contexts. However, the influence on removing emerging contaminants (pharmaceuticals and personal care products or PPCPs), considering different typologies and seasonality fate, has been little studied. In this work, four lab-scale biofiltration typologies (BM: Biofilter + microorganisms, BEM: Biofilter + earthworms + microorganisms, BH: Biofilter + microorganisms + plants + earthworms or Biofilter hybrid, BPM: Biofilter + plants + microorganisms) were monitored seasonally (April-December, 250 days), being fed with rural domestic wastewater. Zantedeschia aethiopica (L.) and Eisenia foetida Savigny were used as biotic components, interacting with organic support components (hazelnut shells and sawdust) for removal of organic matter, nutrients, and 4 PPCPs (caffeine, ibuprofen, losartan, and triclosan). The mass balance of PPCPs was carried out considering the input (influent), output (effluent), support (soil), and plant (root and stem/leaf). The results showed that the different evaluated typologies removed close to 100 % COD, up to 89 % NH4+-N, and up to 99 % coliforms. Meanwhile, caffeine, ibuprofen, losartan, and triclosan were removed between 34 and 100 %. Seasonality or biofiltration typology was non-significantly influential (p > 0.05). However, biofilter hybrid and the warm season were the most efficient for removing organic matter, nutrients, coliforms, and PPCPs. The PPCPs' fate was plants/substrate/effluent with values up to 36, 95, and 64 %, respectively. The effluent was caffeine's main fate. Substrate was the main fate of ibuprofen, losartan, and triclosan. Plants uptake caffeine as a carbon source.
Collapse
Affiliation(s)
- Kennedy C Conceicao
- Facultad de Ingeniería, Departamento de Ingeniería Civil en Obras Civiles, Universidad de Santiago de Chile (USACH), Av. Victor Jara 3659, Estación Central, Santiago, Chile; Facultad de Ingeniería, Departamento de Ingeniería Civil Química, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O ́Higgins 3363, Estación Central, Santiago, Chile; Escuela de Ingeniería, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 7500994, Chile
| | - Lisiane S Freitas
- Departamento de Química, Universidade Federal de Sergipe, São Cristóvão, Brazil
| | - Cristina A Villamar-Ayala
- Facultad de Ingeniería, Departamento de Ingeniería Civil en Obras Civiles, Universidad de Santiago de Chile (USACH), Av. Victor Jara 3659, Estación Central, Santiago, Chile; Programa para el Desarrollo de Sistemas Productivos Sostenibles, Facultad de Ingeniería, Universidad de Santiago de Chile (USACH), Av. Victor Jara 3769, Estación Central, Santiago, Chile.
| |
Collapse
|
8
|
Li D, Xing Y, Li L, Yao Y, Li Y, Zhu H, Du P, Wang F, Yu D, Yang F, Yao Z, Thomas KV. Accumulation, translocation and transformation of artificial sweeteners in plants: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125517. [PMID: 39667574 DOI: 10.1016/j.envpol.2024.125517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Artificial sweeteners (ASs) have become an increasingly significant concern as an emerging contaminant. The widespread utilization has given rise to environmental consequences that are progressively harder to disregard. ASs infiltrate both aquatic and terrestrial ecosystems through the discharge of wastewater effluents and the application of manure and biosolids. These compounds can be absorbed and accumulated by plants from soil, water and the atmosphere, posing potential risks to ecological systems and human health. However, limited data available on plant absorption, translocation, and metabolism of ASs hinders a comprehensive understanding of their impact on ecosystem. This study aims to comprehensively summarize the global distribution of ASs, along with elucidating patterns of their uptake and accumulation within plants. Furthermore, it seeks to elucidate the pivotal factors governing ASs absorption and translocation, encompassing hydrophilicity, ionic nature, plant physiology, and environmental conditions. Notably, there remains a significant knowledge gap in understanding the biodegradation of ASs within plants, with their specific degradation pathways and mechanisms largely unexplored, thereby necessitating further investigation. Additionally, this review provides valuable insights into the ecotoxicological effects of ASs on plants. Finally, it identifies research gaps and outlines potential avenues for future research, offering a forward-looking perspective on this critical issue.
Collapse
Affiliation(s)
- Dandan Li
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| | - Yeye Xing
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Li Li
- School of Public Health, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV, 89557-0274, USA
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yongcheng Li
- School of Public Health, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV, 89557-0274, USA
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Peng Du
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Fang Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Dayang Yu
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Fang Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Zhiliang Yao
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China.
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Queensland, Australia
| |
Collapse
|
9
|
Wang B, Xu H, Liu Y, Zhou K, Li X, Kong D, Chen J, He Y, Ji R. Unraveling phytoremediation mechanisms of the common reed (Phragmites australis) suspension cells towards ciprofloxacin: Xenobiotic transformation and metabolic reprogramming. WATER RESEARCH 2024; 266:122347. [PMID: 39216127 DOI: 10.1016/j.watres.2024.122347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Phytoremediation is an effective solution to treat pollution with antibiotic compounds in aquatic environments; however, the underlying mechanisms for plants to cope with antibiotic pollutants are obscure. Here we used cell suspension culture to investigate the distribution and transformation of ciprofloxacin (CIP) in common reed (Phragmites australis) plants, as well as the accompanying phenotypic and metabolic responses of plants. By means of radioactive isotope labelling, we found that in total 68 % of CIP was transformed via intracellular Phase I transformation (reduction and methylation), Phase Ⅱ conjugation (glycosylation), and Phase Ⅲ compartmentalization (cell-bound residue formation mainly in cell walls, 23 %). The reduction and glycosylation products were secreted by the cells. To mitigate stress induced by CIP and its transformation products, the cells activated the defense system by up-regulating both intra- and extra-cellular antioxidant metabolites (e.g., catechin, l-cystine, and dehydroascorbic acid), anti-C/N metabolism disorder metabolites (e.g., succinic acid), secreting signaling (e.g., nicotinic acid), and anti-stress (e.g., allantoin) metabolites. Notably, the metabolic reprogramming could be involved in the CIP transformation process (e.g., glycosylation). Our findings reveal the strategy of wetland plants to cope with the stress from CIP by transforming the xenobiotic compound and reprogramming metabolism, and provide novel insights into the fate of antibiotics and plant defense mechanisms during phytoremediation.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hang Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yu Liu
- Jiangsu Jinling Environment Co., Ltd., Nanjing 210003, China
| | - Kaiping Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xinyu Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Deyang Kong
- Nanjing Institute of Environmental Science, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing 210042, China
| | | | - Yujie He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China.
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
10
|
Fučík J, Fučík S, Rexroth S, Sedlář M, Gargošová HZ, Mravcová L. Pharmaceutical metabolite identification in lettuce (Lactuca sativa) and earthworms (Eisenia fetida) using liquid chromatography coupled to high-resolution mass spectrometry and in silico spectral library. Anal Bioanal Chem 2024; 416:6291-6306. [PMID: 39251428 PMCID: PMC11541386 DOI: 10.1007/s00216-024-05515-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024]
Abstract
Pharmaceuticals released into the aquatic and soil environments can be absorbed by plants and soil organisms, potentially leading to the formation of unknown metabolites that may negatively affect these organisms or contaminate the food chain. The aim of this study was to identify pharmaceutical metabolites through a triplet approach for metabolite structure prediction (software-based predictions, literature review, and known common metabolic pathways), followed by generating in silico mass spectral libraries and applying various mass spectrometry modes for untargeted LC-qTOF analysis. Therefore, Eisenia fetida and Lactuca sativa were exposed to a pharmaceutical mixture (atenolol, enrofloxacin, erythromycin, ketoprofen, sulfametoxazole, tetracycline) under hydroponic and soil conditions at environmentally relevant concentrations. Samples collected at different time points were extracted using QuEChERS and analyzed with LC-qTOF in data-dependent (DDA) and data-independent (DIA) acquisition modes, applying both positive and negative electrospray ionization. The triplet approach for metabolite structure prediction yielded a total of 3762 pharmaceutical metabolites, and an in silico mass spectral library was created based on these predicted metabolites. This approach resulted in the identification of 26 statistically significant metabolites (p < 0.05), with DDA + and DDA - outperforming DIA modes by successfully detecting 56/67 sample type:metabolite combinations. Lettuce roots had the highest metabolite count (26), followed by leaves (6) and earthworms (2). Despite the lower metabolite count, earthworms showed the highest peak intensities, closely followed by roots, with leaves displaying the lowest intensities. Common metabolic reactions observed included hydroxylation, decarboxylation, acetylation, and glucosidation, with ketoprofen-related metabolites being the most prevalent, totaling 12 distinct metabolites. In conclusion, we developed a high-throughput workflow combining open-source software with LC-HRMS for identifying unknown metabolites across various sample types.
Collapse
Affiliation(s)
- Jan Fučík
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic.
| | - Stanislav Fučík
- Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 3058/10, 616 00, Brno, Czech Republic
| | - Sascha Rexroth
- Shimadzu Europa GmbH, Albert-Hahn-Straße 6, 472 69, Duisburg, Germany
| | - Marian Sedlář
- CEITEC Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Helena Zlámalová Gargošová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Ludmila Mravcová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| |
Collapse
|
11
|
Liang J, Li C, Dang Y, Feng X, Ji X, Liu X, Zhao X, Zhang Q, Ren Z, Wang Y, Li Y, Qu G, Liu R. Occurrence of bisphenol A analogues in the aquatic environment and their behaviors and toxicity effects in plants. ENVIRONMENT INTERNATIONAL 2024; 193:109105. [PMID: 39489000 DOI: 10.1016/j.envint.2024.109105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/17/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Continuous technological and economic development has led to the extensive use of bisphenol A analogues (BPs) in products, leading to their release to aquatic environments and posing threats to aquatic plants. However, few papers have systemically reviewed the interactions between BPs and aquatic plants. This review comprehensively summarizes the properties, occurrence, fate, and hazardous influences of BPs on aquatic plants. BPs have been widely detected in the global aquatic environment, with concentrations generally ranging from a lower range of ng/L or ng/g to an upper range of μg/L or μg/g in surface water, groundwater, seawater, and sediments. Aquatic plants effectively uptake and translocate BPs, and metabolize them into new compounds. Meanwhile, BPs exposures have diverse toxic effects on the growth, photosynthesis, antioxidant, phytohormones, and structural integrity of aquatic plants. High-throughput omics assays provide significant evidence showing how BPs disturb gene transcription, proteins, and metabolism in plants. This review highlights the need for increased attention on the effects of emerging BPA alternatives, joint treatment, long-term exposure with environmental relevant doses, and potential hazards posed by ingesting polluted plants.
Collapse
Affiliation(s)
- Jiefeng Liang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Suzhou Research Institute, Shandong University, Suzhou, 215123, China
| | - Chuanjie Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xiaoxia Feng
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaomeng Ji
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoyun Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xingchen Zhao
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Qingzhe Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhihua Ren
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, 030006, China
| | - Yingjun Wang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Yiling Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Gunagbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Runzeng Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
12
|
Aryal M. Phytoremediation strategies for mitigating environmental toxicants. Heliyon 2024; 10:e38683. [PMID: 39430524 PMCID: PMC11490803 DOI: 10.1016/j.heliyon.2024.e38683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024] Open
Abstract
In natural environments, persistent pollutants such as heavy metals and organic compounds, are frequently sequestered in sediments, soils, and mineral deposits, rendering them biologically unavailable. This study examines phytoremediation, a sustainable technology that uses plants to remove pollutants from soil, water, and air. It discusses enhancing techniques such as plant selection, the use of plant growth-promoting bacteria, soil amendments, and genetic engineering. The study highlights the slow removal rates and the limited availability of plant species that are effective for specific pollutants. Furthermore, it investigates bioavailability and the mechanisms underlying root exudation and hyperaccumulation. Applications across diverse environments and innovative technologies, such as transgenic plants and nanoparticles, are also explored. Additionally, the potential for phytoremediation with bioenergy production is considered. The purpose of this study is to provide researchers, practitioners, and policymakers with valuable resources for sustainable solutions.
Collapse
Affiliation(s)
- Mahendra Aryal
- Department of Chemistry, Tribhuvan University, Tri-Chandra Campus, Kathmandu, 44600, Nepal
| |
Collapse
|
13
|
Nasr S, Dawood AS, Ibrahim AM, Abdel-Aziz MS, Fayad W, Abdelnaser A, El-Hady FKA. Anti-inflammatory potential of aspergillus unguis SP51-EGY: TLR4-dependent effects & chemical diversity via Q-TOF LC-HRMS. BMC Biotechnol 2024; 24:62. [PMID: 39294631 PMCID: PMC11411751 DOI: 10.1186/s12896-024-00890-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
Inflammation serves as an intricate defense mechanism for tissue repair. However, overactivation of TLR4-mediated inflammation by lipopolysaccharide (LPS) can lead to detrimental outcomes such as sepsis, acute lung injury, and chronic inflammation, often associated with cancer and autoimmune diseases. This study delves into the anti-inflammatory properties of "Aspergillus unguis isolate SP51-EGY" on LPS-stimulated RAW 264.7 macrophages. Through real-time qPCR, we assessed the expression levels of pivotal inflammatory genes, including iNOS, COX-2, TNF-α, and IL-6. Remarkably, our fungal extracts significantly diminished NO production and showed noteworthy reductions in the mRNA expression levels of the aforementioned genes. Furthermore, while Nrf2 is typically associated with modulating inflammatory responses, our findings indicate that the anti-inflammatory effects of our extracts are not Nrf2-dependent. Moreover, the chemical diversity of the potent extract (B Sh F) was elucidated using Q-TOF LC-HRMS, identifying 54 compounds, some of which played vital roles in suppressing inflammation. Most notably, compounds like granisetron, fenofibrate, and umbelliprenin were found to downregulate TNF-α, IL-1β, and IL-6 through the NF-κB signaling pathway. In conclusion, "Aspergillus unguis isolate SP51-EGY", isolated from the Red Sea, Egypt, has been unveiled as a promising TLR4 inhibitor with significant anti-inflammatory potentials, presenting novel insights for their potential therapeutic use in inflammation.
Collapse
Affiliation(s)
- Soad Nasr
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo (AUC), P.O. Box: 74, Cairo, 11835, Egypt
- Biochemical Engineering Department, Faculty of Energy and Environmental Engineering, The British University in Egypt, Suez Desert Road, P.O. Box: 43, El-Shorouk City, Cairo, 11837, Egypt
| | - Abdelhameed S Dawood
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo (AUC), P.O. Box: 74, Cairo, 11835, Egypt
| | - Amal Mosad Ibrahim
- Chemistry of Natural and Microbial Products Department, National Research Centre, Giza, 12622, Egypt
| | | | - Walid Fayad
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Giza, 12622, Egypt
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo (AUC), P.O. Box: 74, Cairo, 11835, Egypt.
| | - Faten K Abd El-Hady
- Chemistry of Natural and Microbial Products Department, National Research Centre, Giza, 12622, Egypt
| |
Collapse
|
14
|
Pan M, Lee LSH, Sham YT, Ho KCK, Zhang H. Phytoremediation of diclofenac and sulfamethoxazole in Arabidopsis thaliana cells and seedlings. CHEMOSPHERE 2024; 364:142989. [PMID: 39098350 DOI: 10.1016/j.chemosphere.2024.142989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Diclofenac (DLF), a widely recognized non-steroidal anti-inflammatory drug (NSAID), and sulfamethoxazole (SMX), a broad-spectrum sulfonamide antibiotic, are commonly prescribed medications that have raised concerns as significant contributors to pharmaceutical pollution in natural ecosystems despite their clinical effectiveness. This study investigates the potential phytoremediation pathways for these two drugs in plant systems by tracking and quantifying the fate of the parent compounds and their metabolites in Arabidopsis thaliana using cell and seedling cultures. Results indicated significant differences in the dissipation of DLF according to the treatment and time interaction within the cell cultures. Viable plant cells showed complete dissipation of DLF from an initial concentration of 2758 ng/mL in 96 h, whereas non-viable cells and blank solutions remained stable. The dissipation of SMX was comparable across viable, non-viable, and blanks, showing a minor decrease from 842 to 799 ng/mL over 120 h following the treatment of viable cells. DLF metabolites including 4'-hydroxy-diclofenac, 5-hydroxy-diclofenac, acyl-glutamatyl-diclofenac, 1-(2,6-dichlorophenyl)-5-hydroxy-2-indolinone, 5-sulfooxy-diclofenac, 5-glucopyranosyloxy-diclofenac, 1-(2,6-dichloro-4-hydroxyphenyl)-2-indolinone, and 4'-glucopyranosyloxy-diclofenac were recognized, likely formed through acylation, glutamyl conjugation, hydroxylation, dehydration, cyclization, sulfonation, and glucosidation. While for SMX, metabolites including sulfamethoxazole-glucuronide, nitroso-sulfamethoxazole, N4-acetylsulfamethoxazole, and N4-acetyl-5-OH-sulfamethoxazole were identified, potentially produced through glucuronidation, nitrosation, acetylation, and hydroxylation. Phase I metabolite concentrations of DLF and SMX peaked earlier than those of phase II metabolites. Hydroponic A. thaliana demonstrated comparable efficiencies in the phytoremediation of DLF and SMX, with concentrations varying from 1 mg/L to 10 mg/L. Detectable levels of both parent compounds and their metabolites confirmed successful absorption and metabolism within the plant system. This study provides valuable insights into the potential of phytoremediation as a sustainable approach for reducing the environmental toxicity of DLF and SMX and suggests comparable metabolic efficiency. These findings contribute to the growing body of knowledge on phytoremediation and its application in addressing pollution from pharmaceuticals and personal care products.
Collapse
Affiliation(s)
- Min Pan
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong SAR, China.
| | - Louis Shing Him Lee
- Department of Construction, Environment and Engineering, Technological and Higher Education Institute of Hong Kong, Shing Tai Road, Chai Wan, Hong Kong SAR, China
| | - Yik Tung Sham
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong SAR, China
| | - Kenrick Chun Kiu Ho
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong SAR, China
| | - Hao Zhang
- Department of Construction, Environment and Engineering, Technological and Higher Education Institute of Hong Kong, Shing Tai Road, Chai Wan, Hong Kong SAR, China
| |
Collapse
|
15
|
Menicagli V, Ruffini Castiglione M, Cioni E, Spanò C, Balestri E, De Leo M, Bottega S, Sorce C, Lardicci C. Stress responses of the seagrass Cymodocea nodosa to environmentally relevant concentrations of pharmaceutical ibuprofen: Ecological implications. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135188. [PMID: 39024758 DOI: 10.1016/j.jhazmat.2024.135188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Pharmaceuticals like ibuprofen (IBU) entering marine environments are of great concern due to their increasing consumption and impact on wildlife. No information on IBU toxicity to seagrasses is yet available. Seagrasses form key habitats and are threatened worldwide by multiple stressors. Here, the responses of the seagrass Cymodocea nodosa to a short-term exposure (12 days) to environmentally realistic IBU concentrations (0.25-2.5-25 µg L-1), both at organism (plant growth) and sub-organism level (oxidative status, photosynthetic efficiency, and specialized metabolites production), were assessed in mesocosm. Chemical analyses to detect the presence of IBU and its metabolites in seawater and plants were also performed. IBU did not affect plant growth but caused physiological alterations which varied in severity depending on its concentration. Concentrations of 0.25 and 2.5 µg L-1 resulted in oxidative stress, but an increased antioxidant enzyme activity enabled plants to tolerate stress. A concentration of 25 µg L-1 caused greater oxidative stress, reduced antioxidant enzyme activity and specialized metabolites production, and impaired photosynthetic machinery functioning (particularly PSII). IBU was detected in seawater but not in plants suggesting no bioaccumulation. These findings indicate that C. nodosa could not withstand high IBU stress, and this could reduce its resilience to additional environmental stressors.
Collapse
Affiliation(s)
- Virginia Menicagli
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy
| | - Monica Ruffini Castiglione
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy; Center for Instrument Sharing University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43-44, 56126 Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy
| | - Emily Cioni
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 33, 56126 Pisa, Italy
| | - Carmelina Spanò
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy
| | - Elena Balestri
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy; Center for Instrument Sharing University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43-44, 56126 Pisa, Italy.
| | - Marinella De Leo
- Center for Instrument Sharing University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43-44, 56126 Pisa, Italy; Department of Pharmacy, University of Pisa, Via Bonanno Pisano 33, 56126 Pisa, Italy
| | - Stefania Bottega
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy
| | - Carlo Sorce
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy
| | - Claudio Lardicci
- Center for Instrument Sharing University of Pisa (CISUP), University of Pisa, Lungarno Pacinotti 43-44, 56126 Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, 56124 Pisa, Italy; Department of Earth Sciences, University of Pisa, via S. Maria 53, 56126 Pisa, Italy
| |
Collapse
|
16
|
Fan P, Yu H, Lv T, Wang H, Li D, Tong C, Wu Z, Yu D, Liu C. Alien emergent aquatic plants develop better ciprofloxacin tolerance and metabolic capacity than one native submerged species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173030. [PMID: 38719043 DOI: 10.1016/j.scitotenv.2024.173030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Antibiotic pollution and biological invasion pose significant risks to freshwater biodiversity and ecosystem health. However, few studies have compared the ecological adaptability and ciprofloxacin (CIPR) degradation potential between alien and native macrophytes. We examined growth, physiological response, and CIPR accumulation, translocation and metabolic abilities of two alien plants (Eichhornia crassipes and Myriophyllum aquaticum) and one native submerged species (Vallisneria natans) exposed to CIPR at 0, 1 and 10 mg/L. We found that E. crassipes and M. aquaticum's growth were unaffected by CIPR while V. natans was significantly hindered under the 10 mg/L treatment. CIPR significantly decreased the maximal quantum yield of PSII, actual quantum yield of PSII and relative electron transfer rate in E. crassipes and V. natans but didn't impact these photosynthetic characteristics in M. aquaticum. All the plants can accumulate, translocate and metabolize CIPR. M. aquaticum and E. crassipes in the 10 mg/L treatment group showed greater CIPR accumulation potential than V. natans indicated by higher CIPR contents in their roots. The oxidative cleavage of the piperazine ring acts as a key pathway for these aquatic plants to metabolize CIPR and the metabolites mainly distributed in plant roots. M. aquaticum and E. crassipes showed a higher production of CIPR metabolites compared to V. natans, with M. aquaticum exhibiting the strongest CIPR metabolic ability, as indicated by the most extensive structural breakdown of CIPR and the largest number of potential metabolic pathways. Taken together, alien species outperformed the native species in ecological adaptability, CIPR accumulation and metabolic capacity. These findings may shed light on the successful invasion mechanisms of alien aquatic species under antibiotic pressure and highlight the potential ecological impacts of alien species, particularly M. aquaticum. Additionally, the interaction of antibiotic contamination and invasion might further challenge the native submerged macrophytes and pose greater risks to freshwater ecosystems.
Collapse
Affiliation(s)
- Pei Fan
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan 430072, PR China
| | - Haihao Yu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan 430072, PR China
| | - Tian Lv
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan 430072, PR China
| | - Huiyuan Wang
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan 430072, PR China
| | - Dexiang Li
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan 430072, PR China
| | - Chao Tong
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan 430072, PR China
| | - Zhonghua Wu
- Water Pollution Ecology Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Dan Yu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan 430072, PR China
| | - Chunhua Liu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
17
|
Kushwaha A, Goswami L, Kim BS, Lee SS, Pandey SK, Kim KH. Constructed wetlands for the removal of organic micropollutants from wastewater: Current status, progress, and challenges. CHEMOSPHERE 2024; 360:142364. [PMID: 38768790 DOI: 10.1016/j.chemosphere.2024.142364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
In this work, the practical utility of constructed wetlands (CWs) is described as a promising treatment option for micropollutants (MPs) in wastewater with the aid of their eco-friendly, low-energy, economically feasible, and ecologically sustainable nature. This paper offers a comprehensive review on CW technology with respect to the key strategies for MP removal such as phytoremediation, substrate adsorption, and microbial degradation. It explores the important factors controlling the performance of CWs (e.g., in terms of configurations, substrates, plant-microbe interactions, temperature, pH, oxygen levels, hydraulic loading rate, and retention time) along with the discussions on the pivotal role of microbial populations in CWs and plant-microbe cooperative remediation dynamics, particularly in relation to diverse organic MP patterns in CWs. As such, this review aims to provide valuable insights into the key strategies for optimizing MP treatment and for enhancing the efficacy of CW systems. In addition, the process-based models of constructed wetlands along with the numerical simulations based on the artificial neural network (ANN) method are also described in association with the data exploratory techniques. This work is thus expected to help open up new possibilities for the application of plant-microbe cooperative remediation approaches against diverse patterns of organic MPs present in CWs.
Collapse
Affiliation(s)
- Anamika Kushwaha
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Lalit Goswami
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Sang Soo Lee
- Department of Environmental & Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Sudhir Kumar Pandey
- Department of Botany, Guru Ghasidas Vishwavidyalaya (a central University) Bilaspur, Chhattisgarh, 495009, India
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
18
|
Rastogi A, Chaudhary S, Tiwari MK, Ghangrekar MM. Ibuprofen degradation by mixed bacterial consortia: Metabolic pathway and microbial community analysis. CHEMOSPHERE 2024; 359:142354. [PMID: 38759812 DOI: 10.1016/j.chemosphere.2024.142354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/08/2024] [Accepted: 05/15/2024] [Indexed: 05/19/2024]
Abstract
Degradation of ibuprofen, one of the most consumed drugs globally, by a mixed bacterial consortium was investigated. A contaminated hospital soil was used to enrich a bacterial consortium possessing the ability to degrade 4 mg/L ibuprofen in 6 days, fed on 6 mM acetate as a supplementary carbon source. Maximum ibuprofen degradation achieved was 99.51%, and for optimum ibuprofen degradation modelled statistically, the initial ibuprofen concentration, and temperature were determined to be 0.515 mg/L and 35 °C, respectively. The bacterial community analyses demonstrated an enrichment of Pseudomonas, Achromobacter, Bacillus, and Enterococcus in the presence of ibuprofen, suggesting their probable association with the biodegradation process. The biodegradation pathway developed using open-source metabolite predictors, GLORYx and BioTransformer suggested multiple degradation routes. Hydroxylation and oxidation were found to be the major mechanisms in ibuprofen degradation. Mono-hydroxylated metabolites were identified as well as predicted by the bioinformatics-based packages. Oxidation, dehydrogenation, super-hydroxylation, and hydrolysis were some other identified mechanisms.
Collapse
Affiliation(s)
- A Rastogi
- School of Environmental Science and Engineering, Indian Institute of Technology, Kharagpur, 721302, India.
| | - S Chaudhary
- Department of Biotechnology, College of Commerce, Arts and Science, Patna, 800020, India.
| | - M K Tiwari
- Department of Civil Engineering, Indian Institute of Technology, Kanpur, 208016, India; School of Water Resources, Indian Institute of Technology, Kharagpur, 721302, India.
| | - M M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology, Kharagpur, 721302, India.
| |
Collapse
|
19
|
Rabbani M, Taqi Rabbani M, Muthoni F, Sun Y, Vahidi E. Advancing phytomining: Harnessing plant potential for sustainable rare earth element extraction. BIORESOURCE TECHNOLOGY 2024; 401:130751. [PMID: 38685517 DOI: 10.1016/j.biortech.2024.130751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Rare earth elements (REEs) are pivotal for advanced technologies, driving a surge in global demand. Import dependency on clean energy minerals raises concerns about supply chain vulnerabilities and geopolitical risks. Conventional REEs productionis resource-intensive and environmentally harmful, necessitating a sustainable supply approach. Phytomining (agromining) utilizes plants for eco-friendly REE extraction, contributing to the circular economy and exploiting untapped metal resources in enriched soils. Critical parameters like soil pH, Casparian strip, and REE valence influence soil and plant uptake bioavailability. Hyperaccumulator species efficiently accumulate REEs, serving as energy resources. Despite a lack of a comprehensive database, phytomining exhibits lower environmental impacts due to minimal chemical usage and CO2 absorption. This review proposes phytomining as a system for REEs extraction, remediating contaminated areas, and rehabilitating abandoned mines. The phytomining of REEs offers a promising avenue for sustainable REEs extraction but requires technological advancements to realize its full potential.
Collapse
Affiliation(s)
- Mohsen Rabbani
- Department of Mining and Metallurgical Engineering, Mackay School of Earth Sciences and Engineering, University of Nevada, Reno, USA
| | | | - Frida Muthoni
- Department of Mining and Metallurgical Engineering, Mackay School of Earth Sciences and Engineering, University of Nevada, Reno, USA
| | - Ying Sun
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ehsan Vahidi
- Department of Mining and Metallurgical Engineering, Mackay School of Earth Sciences and Engineering, University of Nevada, Reno, USA.
| |
Collapse
|
20
|
Li B, Yao Z, Wei D, Guo L, Ma Z, Li C. Uptake, accumulation and metabolism of UV-320 in vegetables and its impact on growth and quality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171228. [PMID: 38402974 DOI: 10.1016/j.scitotenv.2024.171228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
UV-320 is classified as a Substance of Very High Concern (SVHC) by the European Chemicals Agency and has attracted significant attention due to its presence in the environment. Understanding the uptake, translocation and metabolic patterns of UV-320 in vegetables is essential for assessing their ability to bioaccumulate and potential risks to human health. In this study, we investigated the uptake and translocation of UV-320 in lettuce and radish by hydroponic experiments. The results showed that the root concentration factors (Croot/Csolution, RCF) of lettuce and radish were in the range of 47.9 to 464 mL/g and 194 to 787 mL/g, respectively. The transfer factors (Cshoot/Croot, TF) were observed to be 0.001-0.012 for lettuce and 0.02-0.05 for radish. Additionally, non-targeted screening identified twelve phase I and one phase II metabolites of UV-320 in vegetables, which were confirmed based on their molecular formulas and structures. The metabolic pathways involving oxidation, ketonylation and deamination were proposed in vegetables. Also, we have observed that UV-320 inhibits the growth of vegetables. Meanwhile, we evaluated the health risk of UV-320 in lettuce and radish and found that the consumption of lettuce is relatively safe, while the consumption of radish has a risk of HQ >1 for both adults and children, which should be seriously considered. This study provides valuable insights into the behavior and ecological risks of UV-320 in the environment.
Collapse
Affiliation(s)
- Bingru Li
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhenzhen Yao
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Dizhe Wei
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Linlin Guo
- Shanghai AB Sciex Analytical Instrument Trading Co, Ltd, Beijing 100015, China
| | - Zhihong Ma
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Cheng Li
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China.
| |
Collapse
|
21
|
Kumar Issac P, Ravindiran G, Velumani K, Jayaseelan A, Greff B, Mani R, Woong Chang S, Ravindran B, Kumar Awasthi M. Futuristic advancements in phytoremediation of endocrine disruptor Bisphenol A: A step towards sustainable pollutant degradation for rehabilitated environment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 179:216-233. [PMID: 38489980 DOI: 10.1016/j.wasman.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
Bisphenol A (BPA) accumulates in the environment at lethal concentrations because of its high production rate and utilization. BPA, originating from industrial effluent, plastic production, and consumer products, poses serious risks to both the environment and human health. The widespread aggregation of BPA leads to endocrine disruption, reactive oxygen species-mediated DNA damage, epigenetic modifications and carcinogenicity, which can disturb the normal homeostasis of the body. The living being in a population is subjected to BPA exposure via air, water and food. Globally, urinary analysis reports have shown higher BPA concentrations in all age groups, with children being particularly susceptible due to its occurrence in items such as milk bottles. The conventional methods are costly with a low removal rate. Since there is no proper eco-friendly and cost-effective degradation of BPA reported so far. The phytoremediation, green-biotechnology based method which is a cost-effective and renewable resource can be used to sequestrate BPA. Phytoremediation is observed in numerous plant species with different mechanisms to remove harmful contaminants. Plants normally undergo several improvements in genetic and molecular levels to withstand stress and lower levels of toxicants. But such natural adaptation requires more time and also higher concentration of contaminants may disrupt the normal growth, survival and yield of the plants. Therefore, natural or synthetic amendments and genetic modifications can improve the xenobiotics removal rate by the plants. Also, constructed wetlands technique utilizes the plant's phytoremediation mechanisms to remove industrial effluents and medical residues. In this review, we have discussed the limitations and futuristic advancement strategies for degrading BPA using phytoremediation-associated mechanisms.
Collapse
Affiliation(s)
- Praveen Kumar Issac
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Gokulam Ravindiran
- Department of Civil Engineering, VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad 500090, Telengana, India
| | - Kadhirmathiyan Velumani
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Arun Jayaseelan
- Centre for Waste Management, International Research Centre, Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Chennai 600119, Tamil Nadu, India
| | - Babett Greff
- Department of Food Science, Albert Kázmér Faculty of Agricultural and Food Sciences of Széchenyi István University, Lucsony street 15-17, 9200 Mosonmagyaróvár, Hungary
| | - Ravi Mani
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Soon Woong Chang
- Department of Environmental Energy & Engineering, Kyonggi University, Suwon-si, Gyeonggi-do 16227, South Korea
| | - Balasubramani Ravindran
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India; Department of Environmental Energy & Engineering, Kyonggi University, Suwon-si, Gyeonggi-do 16227, South Korea.
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, TaichengRoad3# Shaanxi, Yangling 712100, China.
| |
Collapse
|
22
|
Nkoh JN, Shang C, Okeke ES, Ejeromedoghene O, Oderinde O, Etafo NO, Mgbechidinma CL, Bakare OC, Meugang EF. Antibiotics soil-solution chemistry: A review of environmental behavior and uptake and transformation by plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120312. [PMID: 38340667 DOI: 10.1016/j.jenvman.2024.120312] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/21/2023] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
The increased use of antibiotics by humans for various purposes has left the environment polluted. Antibiotic pollution remediation is challenging because antibiotics exist in trace amounts and only highly sensitive detection techniques could be used to quantify them. Nevertheless, their trace quantity is not a hindrance to their transfer along the food chain, causing sensitization and the development of antibiotic resistance. Despite an increase in the literature on antibiotic pollution and the development and transfer of antibiotic-resistant genes (ARGs), little attention has been given to the behavior of antibiotics at the soil-solution interface and how this affects antibiotic adsorption-desorption interactions and subsequent uptake and transformation by plants. Thus, this review critically examines the interactions and possible degradation mechanisms of antibiotics in soil and the link between antibiotic soil-solution chemistry and uptake by plants. Also, different factors influencing antibiotic mobility in soil and the transfer of ARGs from one organism to another were considered. The mechanistic and critical analyses revealed that: (a) the charge characteristics of antibiotics at the soil-root interface determine whether they are adsorbed to soil or taken up by plants; (b) antibiotics that avoid soil colloids and reach soil pore water can be absorbed by plant roots, but their translocation to the stem and leaves depends on the ionic state of the molecule; (c) few studies have explored how plants adapt to antibiotic pollution and the transformation of antibiotics in plants; and (d) the persistence of antibiotics in cropland soils can be influenced by the content of soil organic matter, coexisting ions, and fertilization practices. Future research should focus on the soil/solution-antibiotic-plant interactions to reveal detailed mechanisms of antibiotic transformation by plants and whether plant-transformed antibiotics could be of environmental risk.
Collapse
Affiliation(s)
- Jackson Nkoh Nkoh
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; Department of Chemistry, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Chenjing Shang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
| | - Emmanuel Sunday Okeke
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P. O. Box 25305000100, Nairobi, Kenya; Department of Biochemistry, Faculty of Biological Science University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 China.
| | - Onome Ejeromedoghene
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P. O. Box 25305000100, Nairobi, Kenya; School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province, 211189, China
| | - Olayinka Oderinde
- Department of Chemistry, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Nelson Oshogwue Etafo
- Programa de Posgrado en Ciencia y Tecnología de Materiales, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing. J. Cárdenas Valdez S/N Republica, 25280 Saltillo, Coahuila Mexico
| | - Chiamaka Linda Mgbechidinma
- Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China; Department of Microbiology, University of Ibadan, Ibadan, Oyo State, 200243, Nigeria
| | - Omonike Christianah Bakare
- Department of Biological Sciences, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Elvira Foka Meugang
- School of Metallurgy & Environment, Central South University, 932 Lushan South Road, Changsha, 410083, China
| |
Collapse
|
23
|
Tang X, Chen L, Ding Y, Liu H, Li M, Yang Y. Impact of nanoplastics on the biodegradation, ecotoxicity, and key genes involved in imidacloprid metabolic pathways in papyrus (Cyperus papyrus L.). CHEMOSPHERE 2024; 349:140910. [PMID: 38072197 DOI: 10.1016/j.chemosphere.2023.140910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/19/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
Both nanoplastics (NPs) and imidacloprid (IMI) are widely distributed in the environment and have attracted significant attention due to their adverse effects on ecosystems. Constructed wetlands have the potential to remove IMI, but there is still limited understanding of how wetland plants interact with IMI, especially when influenced by different charged NPs. This study assessed their ecotoxicological effects, as well as the fate and transformation of IMI in papyrus (Cyperus papyrus L.) under the influence of different charged NPs and identified key driving genes in the plant. Results show that simultaneous exposure to positively charged PS-NH2 and IMI inhibited plant growth. The combined action of NPs and IMI intensified their toxicity, enhancing lipid peroxidation and altering antioxidant enzyme activities. The IMI removal efficiency, which was primarily driven by biodegradation, was 80.61%, 88.91%, and 74.71% in the IMI-alone, co-IMI/PS_COOH, and co-IMI/PS_NH2 systems, respectively. PS-NH2 restricted the roots-to-shoots translocation ability of IMI. PS-COOH enhanced IMI oxidation and nitro reduction, while PS-NH2 inhibited 2-OH-IMI dehydrogenation to IMI-olefin in papyrus. Transcriptomics and gene network analysis identified the genes encoding CYP450 enzymes, reductases, hydrolases, dehydrogenases, and peroxidases as those influencing IMI biodegradation. These enzymes play a crucial role in the hydroxylation, dehydrogenation, reduction, and oxidation processes during biodegradation of IMI in the presence of NPs. This study expands the understanding of the impact of differently charged NPs on the IMI remediation efficacy of papyrus, thus providing new insights into the phytoremediation of organic contaminants in constructed wetlands.
Collapse
Affiliation(s)
- Xiaoyan Tang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China; College of Geography and Resources, Sichuan Normal University, Chengdu 610101, China.
| | - Luying Chen
- College of Geography and Resources, Sichuan Normal University, Chengdu 610101, China
| | - Yang Ding
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China; College of Geography and Resources, Sichuan Normal University, Chengdu 610101, China
| | - Huanping Liu
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Muzi Li
- College of Geography and Resources, Sichuan Normal University, Chengdu 610101, China
| | - Yang Yang
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Department of Ecology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
24
|
Youssef YA, Abuarab ME, Mahrous A, Mahmoud M. Enhanced degradation of ibuprofen in an integrated constructed wetland-microbial fuel cell: treatment efficiency, electrochemical characterization, and microbial community dynamics. RSC Adv 2023; 13:29809-29818. [PMID: 37829716 PMCID: PMC10566547 DOI: 10.1039/d3ra05729a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023] Open
Abstract
Over the past few decades, there has been a growing concern regarding the fate and transport of pharmaceuticals, particularly antibiotics, as emerging contaminants in the environment. It has been proposed that the presence of antibiotics at concentrations typically found in wastewater can impact the dynamics of bacterial populations and facilitate the spread of antibiotic resistance. The efficiency of currently-used wastewater treatment technologies in eliminating pharmaceuticals is often insufficient, resulting in the release of low concentrations of these compounds into the environment. In this study, we addressed these challenges by evaluating how different influent ibuprofen (IBU) concentrations influenced the efficiency of a laboratory-scale, integrated constructed wetland-microbial fuel cell (CW-MFC) system seeded with Eichhornia crassipes, in terms of organic matter removal, electricity generation, and change of bacterial community structure compared to unplanted, sediment MFC (S-MFC) and abiotic S-MFC (AS-MFC). We observed that the addition of IBU (5 mg L-1) resulted in a notable decrease in chemical oxygen demand (COD) and electricity generation, suggesting that high influent IBU concentrations caused partial inhibition for the electroactive microbial community due to its complexity and aromaticity. However, CW-MFC could recover from IBU inhibition after an acclimation period compared to unplanted S-MFC, even though the influent IBU level was increased up to 20 mg L-1, suggesting that plants in CW-MFCs have a beneficial role in relieving the inhibition of anode respiration due to the presence of high levels of IBU; thus, promoting the metabolic activity of the electroactive microbial community. Similarly, IBU removal efficiency for CW-MFC (i.e., 49-62%) was much higher compared to SMFC (i.e., 29-42%), and AS-MFC (i.e., 20-22%) during all experimental phases. In addition, our high throughput sequencing revealed that the high performance of CW-MFCs compared to S-MFC was associated with increasing the relative abundances of several microbial groups that are closely affiliated with anode respiration and organic matter fermentation. In summary, our results show that the CW-MFC system demonstrates suitability for high removal efficiency of IBU and effective electricity generation.
Collapse
Affiliation(s)
- Youssef A Youssef
- Agricultural Engineering Department, Faculty of Agriculture, Cairo University Giza 12613 Egypt
| | - Mohamed E Abuarab
- Agricultural Engineering Department, Faculty of Agriculture, Cairo University Giza 12613 Egypt
| | - Ahmed Mahrous
- Agricultural Engineering Department, Faculty of Agriculture, Cairo University Giza 12613 Egypt
| | - Mohamed Mahmoud
- Water Pollution Research Department, National Research Centre 33 El-Buhouth St., Dokki Cairo 12311 Egypt
| |
Collapse
|
25
|
Wagner TV, Rempe F, Hoek M, Schuman E, Langenhoff A. Key constructed wetland design features for maximized micropollutant removal from treated municipal wastewater: A literature study based on 16 indicator micropollutants. WATER RESEARCH 2023; 244:120534. [PMID: 37659177 DOI: 10.1016/j.watres.2023.120534] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/20/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
The removal of micropollutants from wastewater by constructed wetlands (CWs) has been extensively studied and reviewed over the past years. However, most studies do not specifically focus on the removal of micropollutants from the effluent of conventional wastewater treatment plants (WWTP) that still contains micropollutants, but on the removal of micropollutants from raw wastewater. Raw wastewater has a significantly different composition compared to WWTP effluent, which positively or negatively affects micropollutant removal mechanisms. To determine the optimal CW design for post-treatment of WWTP effluent to achieve additional micropollutant removal, this review analyzes the removal of 16 Dutch indicator micropollutants for post-treatment technology evaluation from WWTP effluent by different types of CWs. It was concluded that CW systems with organic enhanced adsorption substrates reach the highest micropollutant removal efficiency as a result of adsorption, but that the longevity of the enhanced adsorption effect is not known in the systems studied until now. Aerobic biodegradation and photodegradation are other relevant removal mechanisms for the studied micropollutants. However, a current knowledge gap is whether active aeration to stimulate the aerobic micropollutant biodegradation results in an increased micropollutant removal from WWTP effluent. Further knowledge gaps that impede the wider application of CW systems for micropollutant removal from WWTP effluent and allow a fair comparison with other post-treatment technologies for enhanced micropollutant removal, such as ozonation and activated carbon adsorption, relate to i) saturation of enhanced adsorption substrate; ii) the analysis of transformation products and biological effects; iii) insights in the relationship between microbial community composition and micropollutant biodegradation; iv) plant uptake and in-plant degradation of micropollutants; v) establishing design rules for appropriate hydraulic loading rates and/or hydraulic retention times for CWs dedicated to micropollutant removal from WWTP effluent; and vi) the energy- and carbon footprint of different CW systems. This review finishes with detailed suggestions for future research directions that provide answers to these knowledge gaps.
Collapse
Affiliation(s)
- Thomas V Wagner
- Department of Environmental Technology, Wageningen University & Research, P. O. Box 17, 6700 EV, Wageningen, the Netherlands.
| | - Fleur Rempe
- TAUW B.V., Handelskade 37, 7400 AC Deventer, the Netherlands
| | - Mirit Hoek
- TAUW B.V., Handelskade 37, 7400 AC Deventer, the Netherlands
| | - Els Schuman
- LeAF B.V., Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Alette Langenhoff
- Department of Environmental Technology, Wageningen University & Research, P. O. Box 17, 6700 EV, Wageningen, the Netherlands
| |
Collapse
|
26
|
Yu X, Xing H, Sun J, Du X, Lu G, Zhu L. New insight into phytometabolism and phytotoxicity mechanism of widespread plasticizer di (2-ethylhexyl) phthalate in rice plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163254. [PMID: 37019237 DOI: 10.1016/j.scitotenv.2023.163254] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 05/27/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) as widely utilized plasticizer has aroused increasing concerns since its endocrine disrupting effects and continuous accumulation in biota. To date, the interaction mechanism between DEHP and rice plants has not been clearly illustrated at molecular level. Here, we investigated biological transformation and response of rice plants (Oryza sativa L.) to DEHP at realistic exposure concentrations. Nontargeted screening by UPLC-QTOF-MS was used to verify 21 transformation products derived from phase I metabolism (hydroxylation and hydrolysis) and phase II metabolism (conjugation with amino acids, glutathione, and carbohydrates) in rice. MEHHP-asp, MEHHP-tyr, MEHHP-ala, MECPP-tyr and MEOHP-tyr as the conjugation products with amino acids are observed for the first time. Transcriptomics analyses unraveled that DEHP exposure had strong negative effects on genes associated with antioxidative components synthesis, DNA binding, nucleotide excision repair, intracellular homeostasis, and anabolism. Untargeted metabolomics revealed that metabolic network reprogramming in rice roots was induced by DEHP, including nucleotide metabolism, carbohydrate metabolism, amino acid synthesis, lipid metabolism, synthesis of antioxidant component, organic acid metabolism and phenylpropanoid biosynthesis. The integrated analyses of interaction between differentially expressed genes (DEGs) and differentially expressed metabolites (DEMs) endorsed that metabolic network regulated by DEGs was significantly interfered by DEHP, resulting in cell dysfunction of roots and visible growth inhibition. Overall, these finding generated fresh perspective for crops security caused by plasticizer pollution and enhanced the public focus on dietary risk.
Collapse
Affiliation(s)
- Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Huanhuan Xing
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China; School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China.
| | - Xiaodong Du
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
27
|
Giri A, Pant D, Chandra Srivastava V, Kumar M, Kumar A, Goswami M. Plant -microbe assisted emerging contaminants (ECs) removal and carbon cycling. BIORESOURCE TECHNOLOGY 2023:129395. [PMID: 37380038 DOI: 10.1016/j.biortech.2023.129395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Continuous increase in the level of atmospheric CO2 and environmental contaminates has aggravated various threats resulting from environmental pollution and climate change. Research into plant -microbe interaction has been a central concern of ecology for over the year. However, despite the clear contribution of plant -microbe to the global carbon cycle, the role of plant -microbe interaction in carbon pools, fluxes and emerging contaminants (ECs) removal are still a poorly understood. The use of plant and microbes in ECs removal and carbon cycling is an attractive strategy because microbes operate as biocatalysts to remove contaminants and plant roots offer a rich niche for their growth and carbon cycling. However, bio-mitigation of CO2 and removal of ECs is still under research phase because of the CO2 capture and fixation efficiency is too low for industrial purposes and cutting-edge removal methods have not been created for such emerging contaminants.
Collapse
Affiliation(s)
- Anand Giri
- School of Civil and Environmental Engineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India
| | - Deepak Pant
- Departments of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala 176215, India.
| | - Vimal Chandra Srivastava
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttrakhand 247667, India
| | - Manoj Kumar
- Indian Oil Corporation R&D Centre, Sector 13, Faridabad, India
| | - Ashok Kumar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173234, India
| | - Meera Goswami
- Department of Zoology and Environmental Science, Gurukul Kangri (Deemed to Be University), Haridwar 249404, Uttarakhand, India
| |
Collapse
|
28
|
Dolu T, Nas B. Dissemination of nonsteroidal anti-inflammatory drugs (NSAIDs) and metabolites from wastewater treatment plant to soils and agricultural crops via real-scale different agronomic practices. ENVIRONMENTAL RESEARCH 2023; 227:115731. [PMID: 36958380 DOI: 10.1016/j.envres.2023.115731] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 05/08/2023]
Abstract
One of the most consumed pharmaceutical subgroups across the world is nonsteroidal anti-inflammatory drugs (NSAIDs). However, the dissemination of these compounds to the natural environments through agronomic practices is a serious global problem. The hypothesis of this study is to reveal the transition of selected NSAIDs, paracetamol (PAR), diclofenac (DCF), ibuprofen (IBU), and naproxen (NAP) together with six main metabolites, detected in raw/treated wastewater (RWW/TWW) and sewage sludge generated in an urban wastewater treatment plant (WWTP) to soils and agricultural crops (corn, barley, sunflower, and sugar beet) through two widely applied agronomic practices, irrigation with TWW and application of sewage sludge as soil amendment. In other words, the cycles of 10 NSAIDs have been evaluated by simultaneously monitoring their concentrations in RWW/TWW, sewage sludge, soils, and crops. It was determined that the parent compounds and detected metabolites were treated at quite higher removal efficiencies (93.4 - >99.9%) in the studied WWTP, while DCF was eliminated poorly (7.9-52.2%). However, although it changes seasonally for some compounds, it was determined that the concentrations of almost all investigated NSAIDs increased at the determined irrigation points in the discharge channel (DC) where agricultural irrigations were performed. Apart from that, DCF, NAP, and 2-hydroxyibuprofen (2-OH-IBU) were always detected in sewage sludge seasonally up to about 20.5, 11.3, and 3.7 ng/g, respectively. While 2-OH-IBU was determined as the dominant metabolite in RWW, TWW, and sewage sludge, the metabolite of 1-hydroxyibuprofen (1-OH-IBU) was determined as the dominant compound in soils. Although 1-OH-IBU was not detected in TWW and sewage sludge in any season, detecting this metabolite as a common compound in all investigated soils (up to 60.1 ng/kg) reveals that this compound is the primary transformation product of IBU in soils. It was observed that at least one of the metabolites of IBU (1-OH-IBU and/or 2-OH-IBU) was detected in all plants grown (up to 0.75 ng/g), especially during the periods when both agricultural practices were applied. In addition, the detection of 1-OH-IBU with increasing concentrations from root to shoots in corn grown as a result of both agronomic practices shows that this compound has a high translocation potential in the corn plant. Apart from this, it was determined that PAR was detected in corn (up to 43.3 ng/kg) and barley (up to 16.8 ng/kg) within the scope of irrigation with TWW, and NAP was detected in sugar beet (up to 11.2 ng/kg) through sewage sludge application.
Collapse
Affiliation(s)
- Taylan Dolu
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - Bilgehan Nas
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| |
Collapse
|
29
|
Liu X, Kümmel S, Trapp S, Richnow HH. Uptake and Transformation of Hexachlorocyclohexane Isomers (HCHs) in Tree Growth Rings at a Contaminated Field Site. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37267390 DOI: 10.1021/acs.est.3c01929] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The potential transformation of hexachlorocyclohexane isomers (HCHs) within tree trunks could have a significant impact on the use of phytoscreening. However, the transformation mechanisms of HCH in trunks particularly in growth rings are not yet well understood. Therefore, a field study on an HCH-contaminated field site was conducted to investigate the fate of HCH, particularly α-HCH in tree trunks using multielement compound-specific isotope analysis (ME-CSIA) and enantiomer fractionation. The results indicate that α-HCH was transformed, as evidenced by higher δ13C and δ37Cl values detected across different growth ring sections and in the bark compared to those in muck and soil. Remarkably, in the middle growth ring section, δ13C values of HCH were only marginally higher or comparable to those in muck, whereas δ37Cl values were higher than those of the muck, indicating a different transformation mechanism. Moreover, the δ37Cl values of β-HCH also increased in the tree trunks compared to those in soil and muck, implying a transformation of β-HCH. Additionally, dual-element isotope analysis revealed that there are different transformation mechanisms between the middle growth rings and other sections. Our findings suggest that the transformation of HCHs in trunks could bias quantitative phytoscreening approaches; however, ME-CISA offers an option to estimate the degradation extent.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Steffen Kümmel
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Stefan Trapp
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kongens Lyngby, Denmark
| | - Hans Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Isodetect GmbH, Deutscher Platz 5b, 04103 Leipzig, Germany
| |
Collapse
|
30
|
Tang X, Chen M, Li M, Liu H, Tang H, Yang Y. Do differentially charged nanoplastics affect imidacloprid uptake, translocation, and metabolism in Chinese flowering cabbage? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161918. [PMID: 36736408 DOI: 10.1016/j.scitotenv.2023.161918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/10/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Micro(nano)plastics are ubiquitous in the environment. Among the microplastics, imidacloprid (IMI) concentration has been increasing in some intensive agricultural regions, thus receiving increased attention. However, only a few studies have investigated the interaction of nanoplastics (polystyrene (PS)) and IMI in vegetable crops. We studied the effects of positively (PS-NH2) and negatively (PS-COOH) charged nanoplastics on the uptake, translocation, and degradation of IMI in Chinese flowering cabbage grown in Hoagland solution for 28 days. PS-NH2 co-exposure with IMI inhibited plant growth, resulting in decreased plant weight, height, and root length. Translocation of IMI from the roots to the shoots was significantly lower in the presence of PS-NH2, whereas PS-COOH accelerated the accumulation and translocation of IMI in plants, thus potentially affecting IMI metabolism in plants. Notably, IMI-NTG and 5-OH-IMI were the two dominant metabolites. PS-NH2 co-exposure with IMI induced significant oxidation stress and considerably affected the activities of superoxide dismutase (SOD) and peroxidase (POD), indicating that the antioxidant defense system was the main mechanism for reducing oxidative damage. Notably, both positively and negatively charged nanoplastics can accumulate in Chinese flowering cabbage. Plants in the PS-COOH alone treatment group had the highest concentration of nanoplastics in both roots and shoots. The accumulation of nanoplastics, IMI, and its metabolites in plants raises concerns about their combined potential toxicity because it compromises food safety.
Collapse
Affiliation(s)
- Xiaoyan Tang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610068, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan university, Guangzhou 510632, China; College of Geography and Resources, Sichuan Normal University, Chengdu 610101, China.
| | - Manjia Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Muzi Li
- College of Geography and Resources, Sichuan Normal University, Chengdu 610101, China
| | - Huanping Liu
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan university, Guangzhou 510632, China
| | - Hao Tang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610068, China; College of Geography and Resources, Sichuan Normal University, Chengdu 610101, China
| | - Yang Yang
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Institute of Hydrobiology, Jinan university, Guangzhou 510632, China.
| |
Collapse
|
31
|
Wang D, Ma Q, Lin H, Zhou J, Yuan S, Ma B, Bai Y, Qu J. Enhancement of micropollutant biotransformation by adding manganese sand in constructed wetlands. Heliyon 2023; 9:e15092. [PMID: 37089304 PMCID: PMC10119567 DOI: 10.1016/j.heliyon.2023.e15092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
Recent investigations have shown that the addition of manganese (Mn) sand to constructed wetlands (i.e., Mn-amended CWs) can improve the performance of organic micropollutants (MPs) removal. In addition to the direct oxidation and adsorption of Mn oxides, the indirect role of Mn oxides in MP biotransformation is crucial to the removal of MPs but has seldom been referred to. Herein, we constructed lab-scale CWs with or without the addition of natural Mn sand (∼35% Mn oxides) to decipher the influence of Mn oxides on the biotransformation of the six selected MPs which commonly existed in the wastewater. The experimental results showed that the addition of Mn sand to CWs can improve the removal of MPs (8.48% atrazine, 13.16% atenolol, and 6.27% sulfamethoxazole [pairwise Wilcoxon test p < 0.05]). Combining the detection of transformation products and metagenomic sequencing, we found that the enhanced removal of atrazine in the Mn-amended CWs was mainly due to the bioaugmented hydroxylation process. The enrichment of biotransformation-related genes and associated microbes of atenolol and sulfamethoxazole in Mn-amended CWs indicated that the addition of Mn sand to CWs can strengthen the biotransformation of MPs. Furthermore, we found that these MP-biodegrading microbes were widely present in the full-scale CWs. Overall, our research provides fundamental information and insights for further application of Mn-amended CWs in MP removal.
Collapse
|
32
|
Checa-Artos M, Barcos-Arias M, Sosa-Del Castillo D, Vanegas ME, Ruiz-Barzola O. Fitorremediación de cinco productos farmaceúticos registrados como contaminantes emergentes en medio acuoso empleando la especie Jacinto de Agua (Eichhornia crassipes). BIONATURA 2023. [DOI: 10.21931/rb/2023.08.01.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
La contaminación de los sistemas acuáticos de agua dulce constituye un problema ambiental recurrente en el ámbito mundial, que se agudiza cada vez más con la presencia frecuente de nuevos compuestos químicos, tal es el caso de los contaminantes emergentes, dentro de los cuales se incluyen los productos farmacéuticos. El objetivo de esta investigación fue estimar la capacidad de la especie jacinto de agua (Eichhornia crassipes) para remover del medio acuoso cinco fármacos altamente recetados y de venta libre como ciprofloxacina, ibuprofeno, sulfametaxazol, diclofenaco y acetaminofén. El trabajo se llevó a cabo en condiciones de invernadero a una temperatura de 25 0C y a un pH de 6,5; con una toma de muestras cada 24 h a diferentes concentraciones (3, 6, 9,12) mg/L.
Para el análisis de las muestras se utilizó Espectrofotometría UV-VIS con lectura directa de las absorbancias de cada uno de los fármacos.
Se empleó la metodología de superficies de respuesta para el análisis estadístico de los datos, lo que permitió determinar los modelos para establecer tiempos y concentraciones óptimas maximizando la absorción de cada producto farmacéutico, así como obtener las pendientes de crecimiento para definir hacia donde se puede proyectar el óptimo.
Los principales resultados en este estudio indican que E. crassipes removió 95% de diclofenaco en soluciones acuosas con una concentración de 3 mg/L en un tiempo de 24 h, seguido de ciprofloxacina y acetaminofén con una remoción máxima de 91,18% y 71% a las 96 h, respectivamente. Mientras que los más bajos porcentajes de remoción se obtuvo para ibuprofeno y sulfametaxazol con 57,56% y 36%, respectivamente.
En el presente estudio, se comprobó la alta capacidad de remoción E. crassipes de los cinco productos farmacéuticos en condiciones controladas, evidenciando una gran posibilidad de aplicación en el campo de la fitorremediación de contaminantes emergentes en medio acuoso, lo cual constituye un importante aporte en este ámbito de la investigación.
Palabras clave: Fitorremediación, contaminantes emergentes, jacinto de agua (Eichhornia crassipes), superficie de respuesta
Collapse
Affiliation(s)
- Miriam Checa-Artos
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km 30.5 Vía Perimetral, ESPOL, Apartado Postal: 09-01-5863, Guayaquil, Ecuador ; Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui S/N, Sangolquí-Ecuador
| | - Milton Barcos-Arias
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km 30.5 Vía Perimetral, ESPOL, Apartado Postal: 09-01-5863, Guayaquil, Ecuador; Facultad de Ingenierías. Universidad Espíritu Santo. Samborondón, Ecuador
| | - Daynet Sosa-Del Castillo
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km 30.5 Vía Perimetral, ESPOL, Apartado Postal: 09-01-5863, Guayaquil, Ecuador
| | - María Eulalia Vanegas
- Centro de Estudios Ambientales, Departamento de Química Aplicada y Sistemas de Producción, Facultad de Ciencias Químicas, Universidad de Cuenca, Av 12 de Abril y Agustín Cueva, Cuenca, Ecuador
| | - Omar Ruiz-Barzola
- Escuela Superior Politécnica del Litoral, Departamento de Estadística, Universidad de Salamanca, USal, Salamanca-España ESPOL, Facultad de Ciencias de la Vida, FCV, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km 30.5 Vía Perimetral, ESPOL, Apartado Postal: 09-01-5863, Guayaquil, Ecuador
| |
Collapse
|
33
|
Hossein M, Asha R, Bakari R, Islam NF, Jiang G, Sarma H. Exploring eco-friendly approaches for mitigating pharmaceutical and personal care products in aquatic ecosystems: A sustainability assessment. CHEMOSPHERE 2023; 316:137715. [PMID: 36621687 DOI: 10.1016/j.chemosphere.2022.137715] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Global water scarcity is exacerbated by climate change, population growth, and water pollution. Over half of the world's population will be affected by water shortages for at least a month annually by 2050 due toa lack of clean water sources. Even though recycling wastewater helps meet the growing demand, new pollutants, including pharmaceuticals and personal care products (PPCPs), pose a health threat since conventional methods cannot remove them and their environmental monitoring regulations are yet in place. Therefore, the current review aims to investigate and propose eco-friendly technologies for removing PPCPs from wastewater and their implementation strategies for ecosystem safety. Findings indicated the absence of a single wastewater treatment technology that can remove all PPCPs in a single operation. Instead, biotechnological methods are one of the alternatives that can remove PPCPs from aquatic environments. In this context, community involvement and knowledge transfer are identified keys to clean water resources' long-term sustainability.
Collapse
Affiliation(s)
- Miraji Hossein
- Department' of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, P. O. Box 338, Dodoma, Tanzania
| | - Ripanda Asha
- Department' of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, P. O. Box 338, Dodoma, Tanzania
| | - Ramadhani Bakari
- Department of Petroleum and Energy Engineering, The University of Dodoma, Dodoma, 41000, Tanzania
| | - Nazim Forid Islam
- Institutional Biotech Hub (IBT Hub), Department of Botany, Nanda Nath Saikia College, Titabar, Assam, 785630, India
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia.
| | - Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar (BTR), Assam, 783370, India.
| |
Collapse
|
34
|
Yang X, Wu J, Zhou Q, Zhu H, Zhang A, Sun J, Gan J. Congener-Specific Uptake and Metabolism of Bisphenols in Carrot Cells: Dissipation Kinetics, Biotransformation, and Enzyme Responses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1896-1906. [PMID: 36649116 DOI: 10.1021/acs.jafc.2c08197] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Food consumption has been considered a key pathway of bisphenol compound (BP) exposure for humans. However, there is a lack of evidence concerning their congener-specific behavior and metabolism in plants. Herein, we examined the uptake and metabolism of five BPs in plants using carrot cells. Bisphenol S (BPS) and bisphenol AF (BPAF) exhibited substantially lower dissipation rates in the cells than the other BPs, indicating a strong selectivity in the uptake and metabolism among bisphenol congeners. For a total of 23 metabolites of BPs, the predominant biotransformation pathways were found to be glycosylation, methoxylation, and conjugation, while hydroxylation, methylation, and glutathionylation were only observed for some BPs. The changes in the mRNA expression of cytochrome P450 (P450) and the activities of glycosyltransferase and glutathione S-transferase were remarkably higher in cells exposed to bisphenol F, bisphenol A, and bisphenol B than in cells exposed to BPS and BPAF, indicating congener specificity in their effects on enzymes and the associated biotransformation processes. Consequently, the potential congener-specific differences in plant uptake, metabolism, and accumulation must be considered when assessing the environmental risks posed by these commonly used plasticizers.
Collapse
Affiliation(s)
- Xindong Yang
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou310014, China
| | - Juan Wu
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou310014, China
| | - Qinghua Zhou
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou310014, China
| | - Haofeng Zhu
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou310014, China
| | - Anping Zhang
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou310014, China
| | - Jianqiang Sun
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou310014, China
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, California92521, United States
| |
Collapse
|
35
|
Hou G, Huang Z, Ding X, Liu C. Exploring bisphenol S removal mechanism with multi-enzymes extracted from waste sludge and reed sediment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16156-16165. [PMID: 36175734 DOI: 10.1007/s11356-022-23310-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
4,4'-Sulfonyl-diphenol (BPS), as a widespread environmental hormone-like micropollutant, is difficult to be degraded in the environment. In this study, the removal of BPS with multi-enzymes extracted from waste sludge and reed sediment was studied at 298 K, 310 K, and 328 K. Results show that BPS could be removed efficiently and was time-temperature dependent, which could involve enzymolysis and bio-flocculation. The mechanism and pathways of the enzymolysis were identified with ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Polymerization of BPS with enzymolysis further improved the removal by bio-flocculation due to the production of BPS oligomers. Furthermore, the interaction mechanism between BPS and multi-enzyme was explored through a series of spectroscopic experiments. Results show that more loose skeletal structure of the multi-enzymes and more hydrophobic microenvironment of the amino acid residues are responsible for the removal of BPS. This research not only provided a method for refractory micropollutants removal but also a way for the utilization of waste sludge and reed sediment.
Collapse
Affiliation(s)
- Guangying Hou
- School of Environmental Science and Engineering, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
- Jinan Municipal City Administration, Jinan, Shandong, 250021, People's Republic of China
| | - Zaihui Huang
- School of Environmental Science and Engineering, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Xiaohu Ding
- Weifang Ecological Environmental Protection Bureau, Weifang, Shandong, 261071, People's Republic of China
| | - Chunguang Liu
- School of Environmental Science and Engineering, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China.
- Shandong Kailin Environmental Protection Equipment Co., Ltd, Southeast Corner of the Intersection of Beihuan Road and Gudui Road, Juye County, Shandong Province, 274000, People's Republic of China.
| |
Collapse
|
36
|
Kavusi E, Shahi Khalaf Ansar B, Ebrahimi S, Sharma R, Ghoreishi SS, Nobaharan K, Abdoli S, Dehghanian Z, Asgari Lajayer B, Senapathi V, Price GW, Astatkie T. Critical review on phytoremediation of polyfluoroalkyl substances from environmental matrices: Need for global concern. ENVIRONMENTAL RESEARCH 2023; 217:114844. [PMID: 36403653 DOI: 10.1016/j.envres.2022.114844] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Poly- and perfluoroalkyl substances (PFAS) are a class of emerging organic contaminants that are impervious to standard physicochemical treatments. The widespread use of PFAS poses serious environmental issues. PFAS pollution of soils and water has become a significant issue due to the harmful effects of these chemicals both on the environment and public health. Owing to their complex chemical structures and interaction with soil and water, PFAS are difficult to remove from the environment. Traditional soil remediation procedures have not been successful in reducing or removing them from the environment. Therefore, this review focuses on new phytoremediation techniques for PFAS contamination of soils and water. The bioaccumulation and dispersion of PFAS inside plant compartments has shown great potential for phytoremediation, which is a promising and unique technology that is realistic, cost-effective, and may be employed as a wide scale in situ remediation strategy.
Collapse
Affiliation(s)
- Elaheh Kavusi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Behnaz Shahi Khalaf Ansar
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Samira Ebrahimi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ritika Sharma
- Department of Botany, Central University of Jammu, Jammu and Kashmir, India
| | - Seyede Shideh Ghoreishi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | | - Sima Abdoli
- Department of Soil Science and Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zahra Dehghanian
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Behnam Asgari Lajayer
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | | | - G W Price
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Tess Astatkie
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| |
Collapse
|
37
|
Jain M, Majumder A, Gupta AK, Ghosal PS. Application of a new baffled horizontal flow constructed wetland-filter unit (BHFCW-FU) for treatment and reuse of petrochemical industry wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116443. [PMID: 36228396 DOI: 10.1016/j.jenvman.2022.116443] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/19/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
The shortage of water resources and generation of large quantum of wastewater has posed a significant concern to the environment and public health. Recent research on wastewater treatment has started to focus on reusing wastewater for different activities to reduce the stress on natural water resources. Constructed wetland (CWs) is a low-cost wastewater treatment option. However, some drawbacks include large areal requirements and the need for tertiary treatment units for reusable effluent. In this study, a novel composite baffled horizontal flow CW filter unit (BHFCW-FU) was developed to overcome the drawbacks of the conventional CW. The BHFCW-FU planted with Chrysopogon zizanioides provided a nine times longer flow path, and the adjoined variable depth dual media filter reduced the total area requirement and served as a polishing unit. On average, the BHFCW-FU with horizontal sub-surface flow regime could efficiently remove around 93.93%, 87.20%, and 66.25% of turbidity, phenol, and COD, respectively, from real petrochemical wastewater (initial turbidity: 29.6 NTU, phenol: 4.52 mg/L, and COD: 381 mg/L) and rendered the effluent quality reusable for irrigation, industrial, and other environmental purposes. In synthetic wastewater (initial turbidity: 754 NTU, phenol: 10.87 mg/L, and COD: 1691 mg/L), the removal efficiency of turbidity, phenol, and COD were 99.50%, 93.73%, and 87.05%, respectively. In-depth substrate characterization was done to study the removal mechanism. The developed BHFCW-FU required less space and maintenance, provided reusable effluent, and overcame the drawbacks of conventional CWs. Hence, it may show immense potential as an effective wastewater treatment.
Collapse
Affiliation(s)
- Mahak Jain
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Partha Sarathi Ghosal
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
38
|
Zhang H, Wang XC, Zheng Y, Dzakpasu M. Removal of pharmaceutical active compounds in wastewater by constructed wetlands: Performance and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116478. [PMID: 36272291 DOI: 10.1016/j.jenvman.2022.116478] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/22/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The occurrence of pharmaceutical active compounds (PhACs) in aquatic environments is a cause for concern due to potential adverse effects on human and ecosystem health. Constructed wetlands (CWs) are cost-efficient and sustainable wastewater treatment systems for the removal of these PhACs. The removal processes and mechanisms comprise a complex interplay of photodegradation, biodegradation, phytoremediation, and sorption. This review synthesized the current knowledge on CWs for the removal of 20 widely detected PhACs in wastewater. In addition, the major removal mechanisms and influencing factors are discussed, enabling comprehensive and critical understanding for optimizing the removal of PhACs in CWs. Consequently, potential strategies for intensifying CWs system performance for PhACs removal are discussed. Overall, the results of this review showed that CWs performance in the elimination of some pharmaceuticals was on a par with conventional wastewater treatment plants (WWTPs) and, for others, it was above par. Furthermore, the findings indicated that system design, operational, and environmental factors played important but highly variable roles in the removal of pharmaceuticals. Nonetheless, although CWs were proven to be a more cost-efficient and sustainable technology for pharmaceuticals removal than other engineered treatment systems, there were still several research gaps to be addressed, mainly including the fate of a broad range of emerging contaminants in CWs, identification of specific functional microorganisms, transformation pathways of specific pharmaceuticals, assessment of transformation products and the ecotoxicity evaluation of CWs effluents.
Collapse
Affiliation(s)
- Hengfeng Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Xiaochang C Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Yucong Zheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Mawuli Dzakpasu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China.
| |
Collapse
|
39
|
Shahriar A, Hanigan D, Verburg P, Pagilla K, Yang Y. Modeling the fate of ionizable pharmaceutical and personal care products (iPPCPs) in soil-plant systems: pH and speciation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120367. [PMID: 36240970 DOI: 10.1016/j.envpol.2022.120367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
A model was developed to simulate the pH-dependent speciation and fate of ionizable pharmaceutical and personal care products (iPPCPs) in soils and their plant uptake during thedt application of reclaimed wastewater to agricultural soils. The simulation showed that pH plays an important role in regulating the plant uptake of iPPCPs, i.e., ibuprofen (IBU; with a carboxylic group), triclosan (TCS; phenolic group), and fluoxetine (FXT; amine group) as model compounds. It took 89-487 days for various iPPCPs to reach the steady-state concentrations in soil and plant tissues. The simulated steady-state concentrations of iPPCPs in plant tissues at pH 9 is 2.2-2.3, 2.5-2.6, and 1.07-1.08 times that at pH 5 for IBU, TCS, and FXT, respectively. Assuming sorption only for neutral compounds led to miscalculation of iPPCPs concentrations in plant tissues by up to one and half orders magnitude. Efflux of compounds in soil, lettuce leaf, and soybean pods was primarily contributed by their degradation in soil and dilution due to plant tissue growth. Overall, the results demonstrated the importance of considering pH and speciation of iPPCPs when simulating their fate in the soil-plant system and plant uptake.
Collapse
Affiliation(s)
- Abrar Shahriar
- Department of Civil and Environmental Engineering, University of Nevada, Reno, 1664 N Virginia St, Reno, NV, 89557, USA
| | - David Hanigan
- Department of Civil and Environmental Engineering, University of Nevada, Reno, 1664 N Virginia St, Reno, NV, 89557, USA
| | - Paul Verburg
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, 1664 N Virginia St, Reno, NV, 89557, USA
| | - Krishna Pagilla
- Department of Civil and Environmental Engineering, University of Nevada, Reno, 1664 N Virginia St, Reno, NV, 89557, USA
| | - Yu Yang
- Department of Civil and Environmental Engineering, University of Nevada, Reno, 1664 N Virginia St, Reno, NV, 89557, USA.
| |
Collapse
|
40
|
Ravichandran MK, Philip L. Fate of carbamazepine and its effect on physiological characteristics of wetland plant species in the hydroponic system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157337. [PMID: 35842149 DOI: 10.1016/j.scitotenv.2022.157337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Plants play a cardinal role in removing various pollutants through the synergistic interaction with filling materials and microbes of constructed wetlands (CWs). However, the information regarding the selection of plant species to remove pharmaceutically active compounds (PhACs) is not adequate. The present study attempted to select an appropriate plant species for CWs, considering their characteristics and physiological response to PhACs. In this regard, batch hydroponics studies were carried out to assess the removal, fate, and antioxidative response of carbamazepine (CBZ) in four wetland plant species (Canna indica, Colocasia esculenta, Phragmites australis, and Chrysopogon zizanioides). The specific uptake potential of CBZ (in terms of plant dry biomass) was found to be in the order: C. indica (14.48 mg/g) >P. australis (11.71 mg/g) >C. esculenta (8.67 mg/g) >C. zizanioides (6.04 mg/g). The results showed that exposure to CBZ (0-30 days) caused an accumulation of reactive oxygen species (ROS) in the plant tissues, causing a decline in chlorophyll content, root activity, and increased oxidative stress. However, the selected plants could recover from the oxidative damages to a certain extent in the recuperation phase (31-60 days). C. indica exhibited relatively lesser ROS accumulation and oxidative damage during the experimental phase than other selected plants. The study also showed that plant biomass, transpiration rate, chlorophyll content, root exudates, and root activity influenced the removal of CBZ by various plants (r - 0.76 to 0.98, P < 0.05). The mass balance analysis indicated that a significant proportion of CBZ (49.2 to 72.7 %) underwent metabolism in the plant tissues. Apart from higher removal, lesser accumulation, and lower oxidation stress, multi-criteria decision analysis showed that C. indica is a potential plant species for the removal of CBZ.
Collapse
Affiliation(s)
- Manthiram Karthik Ravichandran
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Ligy Philip
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| |
Collapse
|
41
|
Li R, Wang S, Chang J, Pan X, Dong F, Li Z, Zheng Y, Li Y. Insight into the uptake and metabolism of a new insecticide cyetpyrafen in plants. ENVIRONMENT INTERNATIONAL 2022; 169:107522. [PMID: 36137426 DOI: 10.1016/j.envint.2022.107522] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/19/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
As new agrochemicals are continuously introduced into agricultural systems, it is essential to investigate their uptake and metabolism by plants to better evaluate their fate and accumulation in crops and the subsequent risks to human exposure. In this study, the uptake and elimination kinetics and transformation of a novel insecticide, cyetpyrafen, in two model crops (lettuce and rice) were first evaluated by hydroponic experiments. Cyetpyrafen was rapidly taken up by plant roots and reached a steady state within 24 h, and it was preferentially accumulated in root parts with root concentration factors up to 2670 mL/g. An uptake mechanism study suggested that root uptake of cyetpyrafen was likely to be dominated by passive diffusion and was difficult to transport via xylem and phloem. Ten phase I and three phase II metabolites of cyetpyrafen were tentatively identified in the hydroponic-plant system through a nontarget screening strategy. The structures of two main metabolites (M-309 and M-391) were confirmed by synthesized standards. The metabolic pathways were proposed including hydroxylation, hydrolysis, dehydrogenation, dehydration and conjugation, which were assumed to be regulated by cytochrome P450, carboxylesterase, glycosyltransferase, glutathione S-transferases and peroxidase. Cyetpyrafen and its main metabolites (M-409, M-309 and M-391) were estimated to be harmful/toxic toward nontarget organisms by theoretical calculation. The high bioaccumulation and extensive transformation of cyetpyrafen highlighted the necessity for systematically assessing the crop uptake and metabolism of new agrochemicals.
Collapse
Affiliation(s)
- Runan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Sijia Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jinhe Chang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Zhiyuan Li
- Shanghai AB Sciex Analytical Instrument Trading Co, Ltd, Beijing 100015, PR China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yuanbo Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
42
|
Lei Y, Rijnaarts H, Langenhoff A. Mesocosm constructed wetlands to remove micropollutants from wastewater treatment plant effluent: Effect of matrices and pre-treatments. CHEMOSPHERE 2022; 305:135306. [PMID: 35714955 DOI: 10.1016/j.chemosphere.2022.135306] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/10/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The contamination of the aquatic environment by micropollutants (MPs) brings risks for the ecosystem and human health. Constructed wetlands (CWs) were an eco-friendly technology to remove MPs from wastewater treatment plant effluent. In this study, the removal of MPs was evaluated in seven vertical flow mesocosm CWs with different configurations, including different support matrices (sand and a combination of bark-biochar), light pre-treatments (UVC and sunlight) or bioaugmentation in support matrices (activated sludge). The CWs with bark-biochar as support matrix significantly enhanced the removal of irbesartan and carbamazepine (>40 %), compared to the CW filled with the conventional support matrix sand. UVC irradiation as pre-treatment was more efficient in removing MPs than sunlight irradiation. After UVC pre-treatment, less MPs accumulated in the plants in the subsequent CW unit compared to the CW unit without any pre-treatment. Moreover, in the UVC combined CW system, less sulfamethoxazole, furosemide, mecoprop and diclofenac were accumulated in the plants (<0.5 μg) than other MPs (>3 μg). The addition of 0.5 % activated sludge combined with the aeration of influent did not improve MP removal in the CW. Considering the application, a bark-biochar based CW combined with UVC pre-treatment will result in more MP removal than a conventional sand CW.
Collapse
Affiliation(s)
- Yu Lei
- Environmental Technology, Wageningen University & Research, 6700 AA, Wageningen, the Netherlands
| | - Huub Rijnaarts
- Environmental Technology, Wageningen University & Research, 6700 AA, Wageningen, the Netherlands
| | - Alette Langenhoff
- Environmental Technology, Wageningen University & Research, 6700 AA, Wageningen, the Netherlands.
| |
Collapse
|
43
|
Nie X, Wang L. Plant species compositions alleviate toxicological effects of bisphenol A by enhancing growth, antioxidant defense system, and detoxification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:65755-65770. [PMID: 35501435 DOI: 10.1007/s11356-022-20402-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Bisphenol A (BPA), a broadly disseminated endocrine disturbing chemicals in environment, is harmful to creatures and plants. Plants can uptake and metabolize BPA, but a single plant species ability is limited. Undeniably, plant species compositions have a more vital ability to remove pollutants than a single plant species. However, the mechanisms of plant species compositions alleviating toxicological effects of bisphenol A are poorly understood. Here, we administered plant species compositions, which based on a full-factorial design of Phragmites australis (A), Typha latifolia (B), and Arundo donax (C), to unveil their role in BPA exposure. The results illustrated that the root activity, biomass, and photosynthetic pigment contents of the mixed hydroponic group (e.g., sp(ABC)) were significantly increased under concentration of BPA(1.5, 5, and 10 mg L-1), which showed that the root activity, fresh weight, dry weight, chlorophyll a, and total chlorophyll contents of shoots were increased. While mixed-hydroponic culture groups (e.g., sp(AB), sp(ABC)) significantly increased antioxidant enzyme activity and antioxidant substances under concentration of BPA(5 and 10 mg L-1), it astoundingly diminished responsive oxygen species (ROS) and malondialdehyde (MDA) substance, proposing that mixed-hydroponic culture groups calmed oxidative stress. Further analysis revealed that mixed-hydroponic culture groups (e.g., sp(AB), sp(AC), sp(ABC)) of 1.5, 5, and 10 mg L-1 BPA exposure significantly increased detoxification enzyme activity of NADPH-cytochrome P450 reductase (CPR), glutathione S-transferase (GST), and glycosyltransferase (GT). Moreover, mixed-hydroponic culture groups (e.g., sp(AB), sp(AC), sp(ABC)) decreased the BPA substance in leaves, proposing that mixed-hydroponic culture groups advanced BPA metabolism by improving CPR, GST, and GT enzyme activities. These results demonstrated that a mixed-hydroponic culture strategy can alleviate BPA phytotoxicity and possibly offer natural and potential phytoremediation methods for BPA.
Collapse
Affiliation(s)
- Xianguang Nie
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Lin Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
44
|
Bhanse P, Kumar M, Singh L, Awasthi MK, Qureshi A. Role of plant growth-promoting rhizobacteria in boosting the phytoremediation of stressed soils: Opportunities, challenges, and prospects. CHEMOSPHERE 2022; 303:134954. [PMID: 35595111 DOI: 10.1016/j.chemosphere.2022.134954] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 05/02/2023]
Abstract
Soil is considered as a vital natural resource equivalent to air and water which supports growth of the plants and provides habitats to microorganisms. Changes in soil properties, productivity, and, inevitably contamination/stress are the result of urbanisation, industrialization, and long-term use of synthetic fertiliser. Therefore, in the recent scenario, reclamation of contaminated/stressed soils has become a potential challenge. Several customized, such as, physical, chemical, and biological technologies have been deployed so far to restore contaminated land. Among them, microbial-assisted phytoremediation is considered as an economical and greener approach. In recent decades, soil microbes have successfully been used to improve plants' ability to tolerate biotic and abiotic stress and strengthen their phytoremediation capacity. Therefore, in this context, the current review work critically explored the microbial assisted phytoremediation mechanisms to restore different types of stressed soil. The role of plant growth-promoting rhizobacteria (PGPR) and their potential mechanisms that foster plants' growth and also enhance phytoremediation capacity are focussed. Finally, this review has emphasized on the application of advanced tools and techniques to effectively characterize potent soil microbial communities and their significance in boosting the phytoremediation process of stressed soils along with prospects for future research.
Collapse
Affiliation(s)
- Poonam Bhanse
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manish Kumar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Lal Singh
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China.
| | - Asifa Qureshi
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
45
|
Ruan W, Wang J, Huang J, Tai Y, Wang R, Zhu W, Yang Y. The in vivo and vitro degradation of sulfonamides in wetland plants reducing phytotoxicity and environmental pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64972-64982. [PMID: 35482241 DOI: 10.1007/s11356-022-20395-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Aquatic plants can be used for in situ remediation of water-borne pharmaceutical compounds; however, such information and that of the potential risks of metabolites released into the environment are limited. This study determined the capacity of Canna indica and Acorus calamus used in the remediation of water-borne sulfonamides (SA). The tolerance, removal, accumulation, and biotransformation of various water-borne SAs were investigated in vivo by exposing plants to SA solutions (50 µg/L and 500 µg/L). After 28 days, C. indica removed more SAs (89.3-97.8%) than A. calamus (12.8-84.6%) and non-planted systems (8.0-69.3%). The SA removal results, except from the A. calamus system with 500 µg/L SA, fit the first-order kinetics model. The estimated half-lives of all SAs were 3-40 h and 2-60 h in the C. indica and A. calamus systems, respectively. In vivo biotransformation and rhizosphere degradation were the major phyto-removal mechanisms, constituting 24.9-81.1% and 0.0-37.1% of all SAs in the C. indica and A. calamus systems, respectively. SA acetyl metabolites were detected only in plant tissues supporting evidence for plant metabolic processes without risk into the environment. SA metabolism including oxidation, methylation, and conjugation via acetylation was potentially beneficial to accumulation and tolerate stress of antibiotic. Canna indica was more suitable for cleaning SA. Our findings better clarify the potential and low risks of phytoremediation in antibiotic-contaminated waters.
Collapse
Affiliation(s)
- Weifeng Ruan
- Institute of Hydrobiology and Department of Ecology, Jinan University, 601 Huangpu West Road, Guangzhou, 510632, China
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Jiaxi Wang
- Institute of Hydrobiology and Department of Ecology, Jinan University, 601 Huangpu West Road, Guangzhou, 510632, China
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Jie Huang
- Institute of Hydrobiology and Department of Ecology, Jinan University, 601 Huangpu West Road, Guangzhou, 510632, China
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Yiping Tai
- Institute of Hydrobiology and Department of Ecology, Jinan University, 601 Huangpu West Road, Guangzhou, 510632, China.
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China.
| | - Rui Wang
- College of Life Science, Sichuan Normal University, Chengdu, 610041, China
| | - Weipeng Zhu
- Institute of Hydrobiology and Department of Ecology, Jinan University, 601 Huangpu West Road, Guangzhou, 510632, China
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| | - Yang Yang
- Institute of Hydrobiology and Department of Ecology, Jinan University, 601 Huangpu West Road, Guangzhou, 510632, China
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China
| |
Collapse
|
46
|
Mondal NK, Debnath P. Impact of two commercially available hair dyes on germination, morpho-physiology, and biochemistry of Cicer arietinum L. and cytotoxicity study on Allium cepa L. root tip. ENVIRONMENTAL RESEARCH 2022; 208:112681. [PMID: 35016865 DOI: 10.1016/j.envres.2022.112681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 12/16/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Contamination of agricultural land and surface water by personal care products and pharmaceutical constituents is a potential environmental threat. The active ingredients of personal care products are life-threatening for users. Present work highlighted the efficacy of the different components of two commercially available hair dyes (synthetic and herbal) on germination, morpho-physiological, biochemical parameters of Cicer arietinum, and cytotoxicity study by Allium cepa root tip. Different treatments such as T1 (control), T2 (cream colour rich), T3 (developer) (The ingredients T2 and T3 are from the same hair dye), T4 (an equal mixture of T2 and T3), and T5 (herbal dye) were considered to run this experiment. The results revealed that all the treatments improve germination with respect to control. Moreover, GSI data suggests that T2 showed the highest germination speed and T3 showed the lowest with respect to other treatments. But root lengths are severely affected by the treatments T3 (100% developer of synthetic hair dye), T4 (an equal mixture of T2 (100% cream colour rich) and T3), and T5 (100% herbal hair dye) with respect to control.T2 also showed the highest root tolerance of all treatments other than control. Similarly, one-way ANOVA results revealed that both fresh weight of roots (p ≤ 0.03) and shoots (p ≤ 0.03) are statistically significant among the different treatments. Moreover, both proline and root ion leakage are higher in the treatment T4 and T5 with respect to control, respectively. On the other hand, the cytotoxicity study highlighted that treatments T3 and T4 showed a higher level of aberration and significantly lower mitotic index compared to treatment T5. Therefore, finally, it may be concluded that both individual and combined forms of ingredients of hair dyes are toxic with respect to cell division and overall plant growth and development.
Collapse
Affiliation(s)
- Naba Kumar Mondal
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, West Bengal, India.
| | - Priyanka Debnath
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, West Bengal, India
| |
Collapse
|
47
|
Alsafran M, Usman K, Ahmed B, Rizwan M, Saleem MH, Al Jabri H. Understanding the Phytoremediation Mechanisms of Potentially Toxic Elements: A Proteomic Overview of Recent Advances. FRONTIERS IN PLANT SCIENCE 2022; 13:881242. [PMID: 35646026 PMCID: PMC9134791 DOI: 10.3389/fpls.2022.881242] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/11/2022] [Indexed: 05/03/2023]
Abstract
Potentially toxic elements (PTEs) such as cadmium (Cd), lead (Pb), chromium (Cr), and arsenic (As), polluting the environment, pose a significant risk and cause a wide array of adverse changes in plant physiology. Above threshold accumulation of PTEs is alarming which makes them prone to ascend along the food chain, making their environmental prevention a critical intervention. On a global scale, current initiatives to remove the PTEs are costly and might lead to more pollution. An emerging technology that may help in the removal of PTEs is phytoremediation. Compared to traditional methods, phytoremediation is eco-friendly and less expensive. While many studies have reported several plants with high PTEs tolerance, uptake, and then storage capacity in their roots, stem, and leaves. However, the wide application of such a promising strategy still needs to be achieved, partly due to a poor understanding of the molecular mechanism at the proteome level controlling the phytoremediation process to optimize the plant's performance. The present study aims to discuss the detailed mechanism and proteomic response, which play pivotal roles in the uptake of PTEs from the environment into the plant's body, then scavenge/detoxify, and finally bioaccumulate the PTEs in different plant organs. In this review, the following aspects are highlighted as: (i) PTE's stress and phytoremediation strategies adopted by plants and (ii) PTEs induced expressional changes in the plant proteome more specifically with arsenic, cadmium, copper, chromium, mercury, and lead with models describing the metal uptake and plant proteome response. Recently, interest in the comparative proteomics study of plants exposed to PTEs toxicity results in appreciable progress in this area. This article overviews the proteomics approach to elucidate the mechanisms underlying plant's PTEs tolerance and bioaccumulation for optimized phytoremediation of polluted environments.
Collapse
Affiliation(s)
- Mohammed Alsafran
- Agricultural Research Station (ARS), Office of VP for Research and Graduate Studies, Qatar University, Doha, Qatar
- Central Laboratories Unit (CLU), Office of VP for Research and Graduate Studies, Qatar University, Doha, Qatar
| | - Kamal Usman
- Agricultural Research Station (ARS), Office of VP for Research and Graduate Studies, Qatar University, Doha, Qatar
| | - Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Muhammad Rizwan
- Office of Academic Research, Office of VP for Research and Graduate Studies, Qatar University, Doha, Qatar
| | - Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research and Graduate Studies, Qatar University, Doha, Qatar
| | - Hareb Al Jabri
- Center for Sustainable Development (CSD), College of Arts and Sciences, Qatar University, Doha, Qatar
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
48
|
Lei Y, Carlucci L, Rijnaarts H, Langenhoff A. Phytoremediation of micropollutants by Phragmites australis, Typha angustifolia, and Juncus effuses. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:82-88. [PMID: 35414315 DOI: 10.1080/15226514.2022.2057422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Micropollutants (MPs) include organic chemicals, for example, pharmaceuticals and personal care products. MPs have been detected in the aquatic environment at low concentrations (ng/L-µg/L), which may lead to negative impacts on the ecosystem and humans. Phytoremediation is a green clean-up technology, which utilizes plants and their associated rhizosphere microorganisms to remove pollutants. The selection of plant species is important for the effectiveness of the phytoremediation of MPs. The plant species Phragmites australis, Typha angustifolia, and Juncus effuses are often used for MP removal. In this study, batch experiments were conducted to select plant species with an optimal ability to remove MPs, study the effect of temperature on MP removal in plants and the phytotoxicity of MPs. This study also explored the degradation of a persistent MP propranolol in plants in more detail. Data show that all three investigated plant species removed most MPs efficiently (close to 100 %) at both 10 and 21.5 °C. The tested plant species showed a different ability to translocate and accumulate propranolol in plant tissues. Typha angustifolia and Juncus effuses had a higher tolerance to the tested MPs than Phragmites australis. Typha angustifolia and Juncus effuses are recommended to be applied for phytoremediation of MPs.Novelty statement The novelty of this study is the selection of Typha angustifolia and Juncus effuses as proper plant species for phytoremediation of micropollutants (MPs). These two plant species were selected due to their good ability to remove MPs, tolerate low temperature, and resist the toxicity of MPs. The outcomes from this study can also be applied for constructed wetlands in removing MPs from wastewater. This study demonstrates the uptake and degradation processes of persistent MP propranolol in plants in more detail. Understanding the degradation mechanisms of a MP in plants is significant not only for the application of phytoremediation on MP removal but also for the development of constructed wetland studies.
Collapse
Affiliation(s)
- Yu Lei
- Environmental Technology, Wageningen University & Research, Wageningen, Netherlands
| | - Livio Carlucci
- Environmental Technology, Wageningen University & Research, Wageningen, Netherlands
| | - Huub Rijnaarts
- Environmental Technology, Wageningen University & Research, Wageningen, Netherlands
| | - Alette Langenhoff
- Environmental Technology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
49
|
Ren Y, Cui GD, He LS, Yao H, Zi CY, Gao YX. Traditional Uses, Phytochemistry, Pharmacology and Toxicology of Rhizoma phragmitis: A Narrative Review. Chin J Integr Med 2022; 28:1127-1136. [PMID: 35319074 PMCID: PMC8940586 DOI: 10.1007/s11655-022-3572-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 11/25/2022]
Abstract
Rhizoma phragmitis is a common Chinese herbal medicine whose effects are defined as ‘clearing heat and fire, promoting fluid production to quench thirst, eliminating irritability, stopping vomiting, and disinhibiting urine’. During the Novel Coronavirus epidemic in 2020, the Weijing Decoction and Wuye Lugen Decoction, with Rhizoma phragmitis as the main herbal component, were included in The Pneumonia Treatment Protocol for Novel Coronavirus Infection (Trial Version 5) due to remarkable antiviral effects. Modern pharmacological studies have shown that Rhizoma phragmitis has antiviral, antioxidative, anti-inflammatory, analgesic, and hypoglycemic functions, lowers blood lipids and protects the liver and kidney. This review aims to provide a systematic summary of the botany, traditional applications, phytochemistry, pharmacology and toxicology of Rhizoma phragmitis.
Collapse
Affiliation(s)
- Yuan Ren
- Department of Rheumatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Ge-Dan Cui
- Department of Rheumatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Li-Sha He
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Huan Yao
- Department of Rheumatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Chang-Yan Zi
- Department of Rheumatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yong-Xiang Gao
- International Education College, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
50
|
Wen J, Li Z, Jin C, Chen J, Cai C. Fe oxides and fulvic acids together promoted the migration of Cd(II) to the root surface of Phragmites australis. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127998. [PMID: 34986567 DOI: 10.1016/j.jhazmat.2021.127998] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/22/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Dissolved organic matter (DOM) or iron/manganese (hydro)oxides were important factors in the migration of Cd in sediments of wetlands. DOM and Fe oxides simultaneously affect the longitudinal and transverse migration of Cd in wetlands sediments of plants was still unclear. In this study, a 14-day rhizobox experiment was conducted and the result showed that the rhizosphere effect of Cd migration was only limited to the upper layer of sediments (- 2 to - 4 cm). Fe with fulvic acid (FA) simultaneously existed can precipitate Cd(II) from supernatant to sediments downward. Fe oxides at sediment concentration could effectively prevent Cd(II) from migrating to root surface (0.21 vs 0.02 at%). While Fe oxides with FA together at sediment concentration could effectively promoted the migration of Cd(II) to root surface (0.07 vs 0.08 at%). The formation of organo-metallic complexes of Fe in the presence of FA profoundly proved this finding (increased by ~33.0%). And the polysaccharides and aromatics in organic matter were the chief functional groups participating in the incorporation of Cd and Fe oxides. The findings reveal the migration rules of Cd(II) in sediments by FA and Fe oxides and give an insight into the mechanisms of Cd(II) migration to the root surface around wetland plants.
Collapse
Affiliation(s)
- Jiajun Wen
- College of Geographic Science, Hunan Normal University, Changsha 410081, PR China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhongwu Li
- College of Geographic Science, Hunan Normal University, Changsha 410081, PR China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Changsheng Jin
- College of Geographic Science, Hunan Normal University, Changsha 410081, PR China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jia Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Changqing Cai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|