1
|
Tsuchiya N, Ikemori F, Kawasaki K, Yamada R, Hata M, Furuuchi M, Iwamoto Y, Kaneyasu N, Sadanaga Y, Watanabe T, Kameda T, Minami M, Nakamura T, Matsuki A. Linking Combustion-Derived Magnetite and Black Carbon: Insights from Magnetic Characterization of PM 2.5 in Downwind East Asia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40402010 DOI: 10.1021/acs.est.4c14187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Combustion-derived magnetite has recently attracted attention for its health risks and potential impact on atmospheric heating/cooling. This study provides new observational insights into the relationship between black carbon (BC) and magnetite at a remote site in East Asia, Japan, focusing on combustion sources, seasonal trends, and potential overestimation of BC by the light-absorbing magnetite. Magnetic measurements of PM2.5 samples, complemented by detailed chemical analyses, reveal similar temporal variations between BC and magnetite while demonstrating that the relative abundance of magnetite to BC varies by combustion source, driving seasonal trends. Magnetite abundance during combustion episodes was found to follow the order: coal > oil > biomass, with mass concentrations roughly estimated via magnetization to be 9-10%, 5-6%, and <2% of BC, respectively. Furthermore, magnetite was estimated to contribute up to 5% of the BC absorption coefficient, suggesting the considerable overestimation of BC depending on the source. Although regionality and source mixing should be further verified, these findings show that magnetic measurements of archived samples can offer valuable contributions to reconstructing long-term combustion trends or overestimates in conventional observations of BC.
Collapse
Affiliation(s)
- Nozomu Tsuchiya
- Graduate School of Natural Science & Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Graduate School of Energy Science, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Fumikazu Ikemori
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Nagoya City Institute for Environmental Science, 5-16-8 Toyoda, Minami-ku, Nagoya 457-0841, Japan
- Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Kazuo Kawasaki
- School of Sustainable Design, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Reina Yamada
- Graduate School of Natural Science & Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Mitsuhiko Hata
- Graduate School of Natural Science & Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Masami Furuuchi
- Graduate School of Natural Science & Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoko Iwamoto
- Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521, Japan
| | - Naoki Kaneyasu
- Atmospheric Environment Research Group, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba 305-8561, Japan
- Fukushima Institute for Research, Education and Innovation, 40-1 Yazawa-machi, Gongendo, Namie-machi, Fukushima 979-1521, Japan
| | - Yasuhiro Sadanaga
- Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan
| | - Takahiro Watanabe
- Tono Geoscience Center, Japan Atomic Energy Agency, 959-31 Jorinji, Izumi-cho, Toki 509-5102, Japan
| | - Takayuki Kameda
- Graduate School of Energy Science, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masayo Minami
- Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Toshio Nakamura
- Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Atsushi Matsuki
- Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
2
|
Chen-Ming G, Bo W, Xiao-Han S. Biomagnetic monitoring of urban atmospheric pollution: A review of magnetic signatures from different types of plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178518. [PMID: 39824111 DOI: 10.1016/j.scitotenv.2025.178518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/20/2025]
Abstract
Biomagnetic monitoring has rapidly emerged as a valuable tool in urban atmospheric pollution (UAP) assessment due to its high spatial resolution, complementing traditional monitoring systems. This review systematically elucidates the principles of plant dust retention and the factors influencing it, while also reviewing the advancements in global research on UAP monitoring through the magnetic properties of various plant species. We provide a comprehensive analysis of the current applications of biomagnetic monitoring in UAP and identify critical challenges, including species-specific monitoring discrepancies, complex pollution sources, and non-standardized sample preparation methods. Additionally, we propose future research directions to address these challenges and enhance the efficacy of biomagnetic monitoring in UAP.
Collapse
Affiliation(s)
- Gu Chen-Ming
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Wang Bo
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Sun Xiao-Han
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
3
|
Gamelas CA, Canha N, Justino AR, Nunes A, Nunes S, Dionísio I, Kertesz Z, Almeida SM. Strawberry Plant as a Biomonitor of Trace Metal Air Pollution-A Citizen Science Approach in an Urban-Industrial Area near Lisbon, Portugal. PLANTS (BASEL, SWITZERLAND) 2024; 13:3587. [PMID: 39771285 PMCID: PMC11679698 DOI: 10.3390/plants13243587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/05/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025]
Abstract
A biomonitoring study of air pollution was developed in an urban-industrial area (Seixal, Portugal) using leaves of strawberry plants (Fragaria × ananassa Duchesne ex Rozier) as biomonitors to identify the main sources and hotspots of air pollution in the study area. The distribution of exposed strawberry plants in the area was based on a citizen science approach, where residents were invited to have the plants exposed outside their homes. Samples were collected from a total of 49 different locations, and their chemical composition was analyzed for 22 chemical elements using X-ray Fluorescence spectrometry. Source apportionment tools, such as enrichment factors and principal component analysis (PCA), were used to identify three different sources, one geogenic and two anthropogenic (steel industry and traffic), besides plant major nutrients. The spatial distribution of elemental concentrations allowed the identification of the main pollution hotspots in the study area. The reliability of using strawberry leaves as biomonitors of air pollution was evaluated by comparing them with the performance of transplanted lichens by regression analysis, and a significant relation was found for Fe, Pb, Ti, and Zn, although with a different accumulation degree for the two biomonitors. Furthermore, by applying PCA to the lichen results, the same pollution sources were identified.
Collapse
Affiliation(s)
- Carla A. Gamelas
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela, Portugal (S.M.A.)
- Instituto Politécnico de Setúbal, Escola Superior de Tecnologia de Setúbal, Campus do IPS, Estefanilha, 2914-508 Setúbal, Portugal
| | - Nuno Canha
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela, Portugal (S.M.A.)
- HyLab—Green Hydrogen Collaborative Laboratory, Estrada Nacional 120-1, Central Termoelétrica, 7520-089 Sines, Portugal
| | - Ana R. Justino
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela, Portugal (S.M.A.)
| | - Alexandra Nunes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela, Portugal (S.M.A.)
| | - Sandra Nunes
- Instituto Politécnico de Setúbal, Escola Superior de Ciências Empresariais, Campus do IPS, Estefanilha, 2914-508 Setúbal, Portugal;
- Center for Mathematics and Applications, NOVAMATH, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Isabel Dionísio
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela, Portugal (S.M.A.)
| | - Zsofia Kertesz
- HUN-REN Institute for Nuclear Research (ATOMKI), 4026 Debrecen, Hungary;
| | - Susana Marta Almeida
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela, Portugal (S.M.A.)
| |
Collapse
|
4
|
Ye J, Wu J, Shi T, Chen C, Li J, Wang P, Song Y, Yu Q, Zhu Z. New magnetic proxies to reveal source and bioavailability of heavy metals in contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135665. [PMID: 39217926 DOI: 10.1016/j.jhazmat.2024.135665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/21/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Environmental magnetism plays an important role in monitoring heavy metal pollution, but most studies are confined to indicating only the levels of heavy metals using magnetic parameters. This study established new magnetic proxies for accurately depicting the sources and bioavailability of heavy metals in contaminated soils. We observed different relationships between χ and SIRM in the soils contaminated by non-ferrous metal smelting compared to those polluted by coal combustion and steel smelting. Furthermore, we found that the soft magnetic components (IRMsoft) in the soils were mainly controlled by the non-ferrous metal smelting activities, while the hard magnetic components (HIRM) might be affected by the iron erosion. These new magnetic proxies enriched the source composition spectrum and improved the accuracy of the source apportionment analyses (principal component analysis and positive matrix factorization), yielding a result that was comparable to that by Pb isotope fingerprinting. We also found strong relationships between magnetic parameters (especially IRMsoft) and bioavailable fractions of heavy metals, indicating that magnetic measurement may be a powerful tool for monitoring the bioavailability of heavy metals. This study expands the application fields of magnetism in environmental science research.
Collapse
Affiliation(s)
- Jiaxin Ye
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Jin Wu
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Taiheng Shi
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Canzhi Chen
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Junjie Li
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Pengcong Wang
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Youpeng Song
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Qianqian Yu
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Zongmin Zhu
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
5
|
Bondar KM, Tsiupa IV. Long- and short-term pollution effect in megapolis assessed from magnetic and geochemical measurements on soils, tree trunk bark, and air filters. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1041. [PMID: 39388036 PMCID: PMC11467103 DOI: 10.1007/s10661-024-13194-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024]
Abstract
This study identifies factors influencing spatial and temporal variations in magnetic susceptibility and heavy metal content in soils and airborne particulate matter within the Kyiv megapolis, Ukraine, and highlights how source apportionment differs in the long and short run. Topsoil magnetic susceptibility anomalies of > 70 × 10-8 m3kg-1 are observed around old factories. The tree bark magnetic susceptibility map provides a record of industry general low emissions for the last 2-3 decades. The patterns of both spatial distributions confirm that factory emissions dominate the composition of particulate falling on the ground in urban area, with exclusion of streets with heavy traffic. Enhanced concentrations of Cu, Ni, and Zn have been found in urban soils, showing a positive correlation with magnetic susceptibility. Re-suspended road dust dominates temporal variation of particulate matter magnetic susceptibility collected on air filters. The air at busy streets is cleaner in winter, when the street dust gets immobilized by snow cover or freezing. Industries in Kyiv pose no significant effect on air quality; the concentrations of Cr, Ni, Cu, Zn, Cd, and Pb are at normal urban level with the exception of the near vicinity to factories. Air in streets with heavy traffic is enriched with Fe and Mn. Principal component analysis reveals different pattern of air pollution for the busy streets and yard areas. Yards are less affected by road dust; thus, contribution of industrial emissions can be distinguished. The results provide context for further quantification of any alterations in ecological state of Kyiv megapolis that may have arisen from socio-economic shocks and direct threats connected to the current war.
Collapse
Affiliation(s)
- Kseniia M Bondar
- Institute of Geophysics, Polish Academy of Sciences, Ksiecia Janusza 64, 01-452, Warsaw, Poland.
- Taras Shevchenko National University of Kyiv, 90 Vasylkivska Str, Kiev, 03022, Ukraine.
| | - Iryna V Tsiupa
- Taras Shevchenko National University of Kyiv, 90 Vasylkivska Str, Kiev, 03022, Ukraine
| |
Collapse
|
6
|
Wang G, Hou Y, Xin Q, Ren F, Yang F, Su S, Li W. Evaluation of atmospheric particulate matter pollution characteristics in Shanghai based on biomagnetic monitoring technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173689. [PMID: 38825203 DOI: 10.1016/j.scitotenv.2024.173689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/10/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Atmospheric particulate matter (PM) pollution is one of the world's most serious environmental challenges, and it poses a significant threat to environmental quality and human health. Biomagnetic monitoring of PM has great potential to improve spatial resolution and provide alternative indicators for large area measurements, with respect and complementary to standard air quality monitoring stations. In this study, 160 samples of evergreen plant leaves were collected from park green spaces within five different functional areas of Shanghai. Magnetic properties were investigated to understand the extent and nature of particulate pollution and the possible sources, and to assess the suitability of various plant leaves for urban particulate pollution monitoring. The results showed that magnetic particles of the plant leaf-adherent PM were predominantly composed of pseudo-single domain (PSD) and multi-domain (MD) ferrimagnetic particles. Magnolia grandiflora, as a large evergreen arbor with robust PM retention capabilities, proved to be a more suitable candidate for monitoring urban particulate pollution compared to Osmanthus fragrans, a small evergreen arbor, and Aucuba japonica Thunb. var. variegata and Photinia serratifolia, evergreen shrubs. Meanwhile, there were significant differences in the spatial distribution of the magnetic particle content and heavy metal enrichment of the samples, mainly showing regional variations of industrial area > traffic area > commercial area > residential area > clean area. Additionally, the combination with the results of scanning electron microscopy, shows that industrial production (metal smelting, coal burning), transport and other activities are the main sources of particulate pollution. Plant leaves can be used as an effective tool for urban particulate pollution monitoring and assessment of atmospheric particulate pollution characteristics, and the technique provided useful information on particle size, mineralogy and possible sources.
Collapse
Affiliation(s)
- Guan Wang
- Department of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yumei Hou
- Department of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qian Xin
- Department of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Feifan Ren
- Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Disaster Reduction in Civil Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China.
| | - Fan Yang
- Department of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shiguang Su
- Department of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wenxin Li
- Department of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
7
|
Papatola F, Slimani S, Peddis D, Pellis A. Biocatalyst immobilization on magnetic nano-architectures for potential applications in condensation reactions. Microb Biotechnol 2024; 17:e14481. [PMID: 38850268 PMCID: PMC11162105 DOI: 10.1111/1751-7915.14481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024] Open
Abstract
In this review article, a perspective on the immobilization of various hydrolytic enzymes onto magnetic nanoparticles for synthetic organic chemistry applications is presented. After a first part giving short overview on nanomagnetism and highlighting advantages and disadvantages of immobilizing enzymes on magnetic nanoparticles (MNPs), the most important hydrolytic enzymes and their applications were summarized. A section reviewing the immobilization techniques with a particular focus on supporting enzymes on MNPs introduces the reader to the final chapter describing synthetic organic chemistry applications of small molecules (flavour esters) and polymers (polyesters and polyamides). Finally, the conclusion and perspective section gives the author's personal view on further research discussing the new idea of a synergistic rational design of the magnetic and biocatalytic component to produce novel magnetic nano-architectures.
Collapse
Affiliation(s)
- F. Papatola
- Dipartimento di Chimica e Chimica IndustrialeUniversità di GenovaGenoaItaly
| | - S. Slimani
- Dipartimento di Chimica e Chimica IndustrialeUniversità di GenovaGenoaItaly
- CNRIstituto di Struttura Della Materia, nM2‐LabMonterotondo Scalo (Roma)Italy
| | - D. Peddis
- Dipartimento di Chimica e Chimica IndustrialeUniversità di GenovaGenoaItaly
- CNRIstituto di Struttura Della Materia, nM2‐LabMonterotondo Scalo (Roma)Italy
| | - A. Pellis
- Dipartimento di Chimica e Chimica IndustrialeUniversità di GenovaGenoaItaly
| |
Collapse
|
8
|
Amirmohammadi M, Khademi H, Ayoubi S, Faz A. Pine needles as bioindicator and biomagnetic indicator of selected metals in the street dust, a case study from southeastern Iran. CHEMOSPHERE 2024; 352:141281. [PMID: 38272138 DOI: 10.1016/j.chemosphere.2024.141281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 01/04/2024] [Accepted: 01/21/2024] [Indexed: 01/27/2024]
Abstract
Among the different approaches currently being used to evaluate the contamination level of street dust, the magnetic susceptibility of dust and urban tree leaves has received little attention. The key objectives of this study were: (i) to investigate the feasibility of using pine needles as a bioindicator and biomagnetic indicator for estimating the concentration of selected metals in street dust, and (ii) to predict the contamination level of street dust by selected metals using magnetic susceptibility. Street dust and pine tree needle samples were taken from 60 locations in three adjacent cities in Kerman province (Kerman, Rafsanjan, and Sirjan), southeastern Iran. The total concentrations of selected metals, including Cu, Zn, Fe, Mn, Ni, and Pb, and the magnetic susceptibility (χlf and χhf) values of both pine tree needles and street dust samples were determined. Among the three cities studied, samples from Kerman showed the highest magnetic susceptibility and metal concentration values. This could be attributed to the larger size and much higher population density of this city, with more industrial activities and urban traffic than the other two cities investigated. The results also showed that the concentrations of metals in pine needles were strongly correlated (p < 0.01) with those in street dust. The magnetic susceptibility of pine needles and the concentrations of Fe, Pb, Zn, Cu, Ni, and Mn in street dust showed a statistically significant correlation (p < 0.01). A strong and statistically significant correlation (p < 0.01) was also found between magnetic susceptibility and the concentration of metals in pine needles. In conclusion, strong relationships between magnetic properties and metal concentrations of pine needles with those of street dust samples seem to make pine needles a good bioindicator and biomagnetic estimator of the contamination level of metals in street dust.
Collapse
Affiliation(s)
- Mohammad Amirmohammadi
- Department of Soil Science, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Hossein Khademi
- Department of Soil Science, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Shamsollah Ayoubi
- Department of Soil Science, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Angel Faz
- Sustainable Use, Management and Reclamation of Soil and Water Research Group, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203, Cartagena, Murcia, Spain.
| |
Collapse
|
9
|
Chaparro MAE, Buitrago Posada D, Chaparro MAE, Molinari D, Chiavarino L, Alba B, Marié DC, Natal M, Böhnel HN, Vaira M. Urban and suburban's airborne magnetic particles accumulated on Tillandsia capillaris. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167890. [PMID: 37852491 DOI: 10.1016/j.scitotenv.2023.167890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/26/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Air particle pollution is a current issue that can cause adverse problems to human health and the urban environment. A fraction of these emitted particles is magnetite and iron-rich materials, which may be accumulated by biological indicators and effectively characterized by environmental magnetism methods. Thus, we studied this emitted particle fraction using the epiphytic species Tillandsia capillaris growing in northwestern Argentina's urban, suburban, and rural areas. The accumulated airborne magnetic particles' properties revealed valuable information regarding potentially toxic elements, magnetic mineralogy, sizes, morphology, and concentration. Magnetite was detected in samples from all studied areas, and its remanent coercivity values (Hcr = 32.1-42.6 mT) in (sub)urban sites are similar to other reported cities in Latin America. The concentration of these airborne magnetic particles AMP varied between urban sites (mean and (s.d.) values of in situ magnetic susceptibility κis = 16.2 (9.4) × 10-6 SI, and specific magnetic susceptibility χ = 61.9 (31.4) × 10-8 m3 kg-1) and suburban sites (κis = 13.9 (9.9) × 10-6 SI, and χ = 43.9 (32.2) × 10-8 m3 kg-1), and it was distinctively higher than in clean sites. The spatial distribution of AMP was analyzed using a geostatistical model for the concentration-dependent magnetic parameter κis, which showed zones with high magnetic particle accumulation associated with vehicular traffic in the city and industrial emission in a suburban site. Among concentration-dependent magnetic parameters, the κis is recommended for magnetic biomonitoring because Tillandsia species' individuals are not processed for laboratory measurements, preserving them and allowing us the possibility of measurements over time.
Collapse
Affiliation(s)
- Marcos A E Chaparro
- Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (CIFICEN), UNCPBA-CICPBA-CONICET, Pinto 399, 7000 Tandil, Argentina; Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Exactas, IFAS, Tandil, Buenos Aires, Argentina.
| | - Daniela Buitrago Posada
- Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (CIFICEN), UNCPBA-CICPBA-CONICET, Pinto 399, 7000 Tandil, Argentina
| | - Mauro A E Chaparro
- Centro Marplatense de Investigaciones Matemáticas (CEMIM-UNMdP-CICPBA), Universidad Nacional de Mar del Plata (UNMdP), Diagonal J. B. Alberdi 2695, Mar del Plata, Argentina
| | - Daniela Molinari
- Centro Marplatense de Investigaciones Matemáticas (CEMIM-UNMdP-CICPBA), Universidad Nacional de Mar del Plata (UNMdP), Diagonal J. B. Alberdi 2695, Mar del Plata, Argentina
| | - Lucas Chiavarino
- Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (CIFICEN), UNCPBA-CICPBA-CONICET, Pinto 399, 7000 Tandil, Argentina
| | - Brenda Alba
- Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (CIFICEN), UNCPBA-CICPBA-CONICET, Pinto 399, 7000 Tandil, Argentina
| | - Débora C Marié
- Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (CIFICEN), UNCPBA-CICPBA-CONICET, Pinto 399, 7000 Tandil, Argentina
| | - Marcela Natal
- Centro Marplatense de Investigaciones Matemáticas (CEMIM-UNMdP-CICPBA), Universidad Nacional de Mar del Plata (UNMdP), Diagonal J. B. Alberdi 2695, Mar del Plata, Argentina
| | - Harald N Böhnel
- Centro de Geociencias (CGeo), Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla No. 3001, 76230 Querétaro, Mexico
| | - Marcos Vaira
- Instituto de Ecorregiones Andinas (INECOA, CONICET), Universidad Nacional de Jujuy (UNJu), Avenida Bolivia 1711, 4600 San Salvador de Jujuy, Argentina
| |
Collapse
|
10
|
Su Z, Yang S, Han H, Bai Y, Luo W, Wang Q. Is biomagnetic leaf monitoring still an effective method for monitoring the heavy metal pollution of atmospheric particulate matter in clean cities? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167564. [PMID: 37802355 DOI: 10.1016/j.scitotenv.2023.167564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/27/2023] [Accepted: 10/01/2023] [Indexed: 10/10/2023]
Abstract
The development of a reasonable method for predicting heavy metals (HMs) pollution in atmospheric particulate matter (PM) remains challenging. This paper presents an elution-filtration method to collect PM from the surface of Osmanthus fragrans in a very clean area (Guiyang, China). The aim is to evaluate the effectiveness of biomagnetic leaf monitoring as a simple and rapid method for assessing HMs pollution in clean cities. For this purpose, we determined the magnetic parameters and concentrations of selected HMs in PM samples to investigate their relationships. The results showed that the magnetic minerals in PM samples were mainly low coercivity ferrimagnetic minerals, with a small amount of high coercivity minerals. The types of magnetic minerals were generally single, and the magnetic domain state was pseudo-single domain (PSD). There was a significant correlation between magnetic parameters and the heavy metal (HM) concentrations in PM. Low-field magnetic susceptibility (χ) could be used as an ideal proxy for determining anthropogenic HM pollution. Traffic emissions were the main atmospheric pollution source in urban Guiyang. Due to the incomplete traffic network and large traffic flow, traffic congestion (TC) often occurred at road intersections in the northwest and southwest corners of the city, resulting in the highest concentration of magnetic minerals and the most severe PM pollution. To mitigate atmospheric PM pollution and protect public health, it is strongly recommended that municipal authorities prioritize urban planning and traffic management to address TC. Measures should be implemented urgently to alleviate stop-and-go traffic.
Collapse
Affiliation(s)
- Zhihua Su
- School of Management Science and Engineering, Guizhou University of Finance and Economics, Guiyang 550025, China.
| | - Shixiong Yang
- Laboratory for Marine Geology, Laoshan Laboratory, Qingdao 266237, China; Key Laboratory of Coastal Wetland Biogeosciences, Qingdao Institute of Marine Geology, China Geological Survey, Qingdao 266071, China.
| | - Huiqing Han
- School of Architecture and Urban Planning, Guizhou Institute of Technology, Guiyang 550003, China
| | - Yumei Bai
- School of Management Science and Engineering, Guizhou University of Finance and Economics, Guiyang 550025, China
| | - Wei Luo
- School of Management Science and Engineering, Guizhou University of Finance and Economics, Guiyang 550025, China
| | - Qian Wang
- School of Management Science and Engineering, Guizhou University of Finance and Economics, Guiyang 550025, China
| |
Collapse
|
11
|
Koch K, Wuyts K, Denys S, Samson R. The influence of plant species, leaf morphology, height and season on PM capture efficiency in living wall systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167808. [PMID: 37838055 DOI: 10.1016/j.scitotenv.2023.167808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Green infrastructure (GI) is already known to be a suitable way to enhance air quality in urban environments. Living wall systems (LWS) can be implemented in locations where other forms of GI, such as trees or hedges, are not suitable. However, much debate remains about the variables that influence their particulate matter (PM) accumulation efficiency. This study attempts to clarify which plant species are relatively the most efficient in capturing PM and which traits are decisive when it comes to the implementation of a LWS. We investigated 11 plant species commonly used on living walls, located close to train tracks and roads. PM accumulation on leaves was quantified by magnetic analysis (Saturation Isothermal Remanent Magnetization (SIRM)). Several leaf morphological variables that could potentially influence PM capture were assessed, as well as the Wall Leaf Area Index. A wide range in SIRM values (2.74-417 μA) was found between all species. Differences in SIRM could be attributed to one of the morphological parameters, namely SLA (specific leaf area). This suggest that by just assessing SLA, one can estimate the PM capture efficiency of a plant species, which is extremely interesting for urban greeners. Regarding temporal variation, some species accumulated PM over the growing season, while others actually decreased in PM levels. This decrease can be attributed to rapid leaf expansion and variations in meteorology. Correct assessment of leaf age is important here; we suggest individual labeling of leaves for further studies. Highest SIRM values were found close to ground level. This suggests that, when traffic is the main pollution source, it is most effective when LWS are applied at ground level. We conclude that LWS can act as local sinks for PM, provided that species are selected correctly and systems are applied according to the state of the art.
Collapse
Affiliation(s)
- Kyra Koch
- Research group ENdEMIC, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan, 171 2020 Antwerp, Belgium.
| | - Karen Wuyts
- Research group ENdEMIC, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan, 171 2020 Antwerp, Belgium
| | - Siegfried Denys
- Research group DuEL, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan, 171 2020 Antwerp, Belgium
| | - Roeland Samson
- Research group ENdEMIC, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan, 171 2020 Antwerp, Belgium
| |
Collapse
|
12
|
Milićević T, Relić D, Urošević MA, Castanheiro A, Roganović J, Samson R, Popović A. Non-destructive techniques for the determination of magnetic particle and element contents in grapevine leaves and soil as an eco-sustainable tool for environmental pollution assessment in the agricultural areas. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:858. [PMID: 37335393 DOI: 10.1007/s10661-023-11402-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/16/2023] [Indexed: 06/21/2023]
Abstract
The concentration of magnetic particulate matter (PM) on the leaf surface (an indicator of current pollution) and topsoil (an indicator of magnetic PMs which have geogenic natural signal or historical pollution origin) was assessed in agricultural areas (conventional and organic vineyards). The main aim of this study was to explore whether magnetic parameters such as saturation isothermal remanent magnetization (SIRM) and mass-specific magnetic susceptibility (χ) can be a proxy for magnetic particulate matter (PM) pollution and associated potentially toxic elements (PTEs) in agricultural areas. Besides, wavelength dispersive X-ray fluorescence spectroscopy (WD-XRF) was investigated as a screening method for total PTE content in soil and leaf samples. Both magnetic parameters (SIRM and χ) pinpoint soil pollution, while SIRM was more suitable for evaluating magnetic PM accumulated on leaves. The values of both magnetic parameters were significantly (p < 0.01) correlated within the same type of sample (soil-soil or leaf-leaf), but not between different matrixes (soil-leaf). Differences between magnetic particles' grain sizes among vegetation seasons in vineyards were obtained by observing the SIRM/χ ratio. WD-XRF was revealed to be an appropriate screening method for soil and leaf total element contents in agricultural ambient. For a more precise application of WD-XRF leaf measurements, specific calibration using a similar matrix to plant material is required. In parallel, measurements of SIRM, χ, and element content (by WD-XRF) can be recommended as user-friendly, fast, and eco-sustainable techniques for determining magnetic PM and PTE pollution hotspots in agricultural ambient.
Collapse
Affiliation(s)
- Tijana Milićević
- Environmental Physics Laboratory, Institute of Physics Belgrade, National Institute of the Republic of Serbia, University of Belgrade, Pregrevica 118, 11080, Belgrade, Serbia.
| | - Dubravka Relić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia
| | - Mira Aničić Urošević
- Environmental Physics Laboratory, Institute of Physics Belgrade, National Institute of the Republic of Serbia, University of Belgrade, Pregrevica 118, 11080, Belgrade, Serbia
| | - Ana Castanheiro
- Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Jovana Roganović
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia
| | - Roeland Samson
- Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Aleksandar Popović
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia
| |
Collapse
|
13
|
Letaïef S, Camps P, Carvallo C. A supervised machine learning approach to classify traffic-derived PM sources based on their magnetic properties. ENVIRONMENTAL RESEARCH 2023; 231:116006. [PMID: 37150384 DOI: 10.1016/j.envres.2023.116006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/15/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
Environmental magnetism techniques are increasingly used to map the deposition of particulate pollutants on any type of accumulative surfaces. The present study is part of a collective effort that begun in recent years to evaluate the efficiency of these techniques involving a large range of measurements to trace the source signals. Here we explore the possibilities provided by the very simple but robust k-near-neighbors algorithm (kNN) for classification in a source-to-sink approach. For this purpose, in a first phase, the magnetic properties of the traffic-related sources of particulate matter (tire, brake pads, exhaust pipes, etc.) are used to parameterize and train the model. Then, the magnetic parameters measured on accumulating surfaces exposed to a polluted air as urban plant leaves and passive filters are confronted to the model. The results are very encouraging. The algorithm predicts the dominant traffic-related sources for different kinds of accumulative surfaces. The model predictions are generally consistent according to the sampling locations. Its resolution seems adequate since different dominant sources could be identified within one street. We demonstrate the possibility to trace traffic-derived pollutants from sources to sinks based only on magnetic properties, and to eventually quantify their contributions in the total magnetic signal measured. Because magnetic mapping has a high-resolution efficiency, these results open the opportunity to complement conventional methods used to measure air quality and to improve the numerical models of pollutant dispersion.
Collapse
Affiliation(s)
- Sarah Letaïef
- Géosciences Montpellier, Université de Montpellier, CNRS, Montpellier, France.
| | - Pierre Camps
- Géosciences Montpellier, Université de Montpellier, CNRS, Montpellier, France.
| | - Claire Carvallo
- Sorbonne Université, UMR 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, F-75005, Paris, France.
| |
Collapse
|
14
|
Van Mensel A, Wuyts K, Pinho P, Muyshondt B, Aleixo C, Orti MA, Casanelles-Abella J, Chiron F, Hallikma T, Laanisto L, Moretti M, Niinemets Ü, Tryjanowski P, Samson R. The magnetic signal from trunk bark of urban trees catches the variation in particulate matter exposure within and across six European cities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50883-50895. [PMID: 36807862 DOI: 10.1007/s11356-023-25397-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 01/14/2023] [Indexed: 04/16/2023]
Abstract
Biomagnetic monitoring increasingly is applied to assess particulate matter (PM) concentrations, mainly using plant leaves sampled in small geographical area and from a limited number of species. Here, the potential of magnetic analysis of urban tree trunk bark to discriminate between PM exposure levels was evaluated and bark magnetic variation was investigated at different spatial scales. Trunk bark was sampled from 684 urban trees of 39 genera in 173 urban green areas across six European cities. Samples were analysed magnetically for the Saturation isothermal remanent magnetisation (SIRM). The bark SIRM reflected well the PM exposure level at city and local scale, as the bark SIRM (i) differed between the cities in accordance with the mean atmospheric PM concentrations and (ii) increased with the cover of roads and industrial area around the trees. Furthermore, with increasing tree circumferences, the SIRM values increased, as a reflection of a tree age effect related to PM accumulation over time. Moreover, bark SIRM was higher at the side of the trunk facing the prevailing wind direction. Significant relationships between SIRM of different genera validate the possibility to combine bark SIRM from different genera to improve sampling resolution and coverage in biomagnetic studies. Thus, the SIRM signal of trunk bark from urban trees is a reliable proxy for atmospheric coarse to fine PM exposure in areas dominated by one PM source, as long as variation caused by genus, circumference and trunk side is taken into account.
Collapse
Affiliation(s)
- Anskje Van Mensel
- Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium.
| | - Karen Wuyts
- Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Pedro Pinho
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Babette Muyshondt
- Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Cristiana Aleixo
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Marta Alos Orti
- Chair of Biodiversity and Nature Tourism, Estonian University of Life Sciences, Tartu, Estonia
| | - Joan Casanelles-Abella
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Landscape Ecology, Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - François Chiron
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91405, Orsay, France
| | - Tiit Hallikma
- Chair of Biodiversity and Nature Tourism, Estonian University of Life Sciences, Tartu, Estonia
| | - Lauri Laanisto
- Chair of Biodiversity and Nature Tourism, Estonian University of Life Sciences, Tartu, Estonia
| | - Marco Moretti
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Tartu, Estonia
| | - Piotr Tryjanowski
- Department of Zoology, Poznan University of Life Sciences, Poznan, Poland
| | - Roeland Samson
- Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
15
|
Kardel F, Karbalaei Hassan S, Rashid H, Dehbandi R, Hopke PK, Abbasi S. Environmental magnetic signatures in mangrove ecosystems in northern Persian Gulf: Implication for pollution assessment in marine environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160083. [PMID: 36356772 DOI: 10.1016/j.scitotenv.2022.160083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Magnetic properties of root, bark, and leaf of mangrove (Avicenna marina) and sediment were determined for pollution assessment at three locations in the northern coast of the Persian Gulf. The study revealed that the sources of the particles deposited on leaf surfaces can be discriminated via saturation isothermal remanent magnetization (SIRM) values and heavy metal. However, different factors including wind direction, size of the magnetic particles and crown density, play a role using SIRM for biomonitoring of atmospheric particulate matter. For leaves, the significant correlations between SIRM and leaf elemental contents indicated that the deposited particles on their surface mainly have geogenic sources. The magnetic analyses revealed that leaves are more suitable than bark for monitoring atmospheric pollution using mangrove trees due to the effect of different factors including dense crown of trees, washing of tree trunk by sea waves, and elements translocation from roots and sediments. Instead, the positive and significant correlation between the SIRM values for sediments and mangrove roots, and no or negative correlation between sediments and roots with barks and leaves indicates that the magnetic properties of the sediments and mangrove roots are suitable indicators of pollution in aquatic environment.
Collapse
Affiliation(s)
- Fatemeh Kardel
- Department of Environmental Science, Faculty of Marine and Environmental Sciences, University of Mazandaran, P.O. Box: 416, Babolsar, Mazandaran, Iran.
| | - Shadi Karbalaei Hassan
- Department of Environmental Science, Faculty of Marine and Environmental Sciences, University of Mazandaran, P.O. Box: 416, Babolsar, Mazandaran, Iran
| | - Hamideh Rashid
- Geological Survey of Iran, Azadi Square, Meraj Avenue, 13185-1494 Tehran, Iran
| | - Reza Dehbandi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY 14642, USA
| | - Sajjad Abbasi
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz 71454, Iran; Centre for Environmental Studies and Emerging Pollutants (ZISTANO), Shiraz University, Shiraz, Iran
| |
Collapse
|
16
|
Chen D, Yin S, Zhang X, Lyu J, Zhang Y, Zhu Y, Yan J. A high-resolution study of PM 2.5 accumulation inside leaves in leaf stomata compared with non-stomatal areas using three-dimensional X-ray microscopy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158543. [PMID: 36067857 DOI: 10.1016/j.scitotenv.2022.158543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/06/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Plant leaves retain atmospheric particulate matter (PM) on their surfaces, helping PM removal and risk reduction of respiratory tract infection. Several processes (deposition, resuspension, rainfall removal) can influence the PM accumulation on leaves and different leaf microstructures (e.g., trichomes, epicuticular waxes) can also be involved in retaining PM. However, the accumulation and distribution of PM on leaves, particularly at the stomata, are unclear, and the lack of characterization methods limits our understanding of this process. Thus, in this study, we aimed to explore the pathway through which PM2.5 (aerodynamic diameter ≤ 2.5 μm) enters plant leaves, and the penetration depth of PM2.5 along the entry route. Here, an indoor experiment using diamond powder as a tracer to simulate PM2.5 deposition on leaves was carried out. Then, the treated and non-treated leaves were scanned by using three-dimensional (3D) X-ray microscopy. Next, the grayscale value of the scanned images was used to compare PM2.5 accumulation in stomatal and non-stomatal areas of the treated and non-treated leaves, respectively. Finally, a total PM2.5 volume from the abaxial epidermis was calculated. The results showed that, first, a large amount of PM2.5 accumulates within leaf stomata, whereas PM2.5 does not accumulate at non-stomatal areas. Then, the penetration depth of PM2.5 in stomata of most tree species was 5-14 μm from the abaxial epidermis. For the first time, 3D X-ray microscope scanning was used to confirm that a pathway by which PM2.5 enters the leaves is through the stomata, which is fundamental for further research on how PM2.5 translocates and interacts with tissues and cells in leaves.
Collapse
Affiliation(s)
- Dele Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China
| | - Shan Yin
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China; Key Laboratory for Urban Agriculture, Ministry of Agriculture and Rural Affairs, 800 Dongchuan Rd., Shanghai 200240, China.
| | - Xuyi Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China
| | - Junyao Lyu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China
| | - Yiran Zhang
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China
| | - Yanhua Zhu
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China; Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Jingli Yan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China
| |
Collapse
|
17
|
Muyshondt B, Wuyts K, Van Mensel A, Smets W, Lebeer S, Aleixo C, Alós Ortí M, Casanelles-Abella J, Chiron F, Giacomo P, Laanisto L, Moretti M, Niinemets Ü, Pinho P, Tryjanowski P, Woszczyło P, Samson R. Phyllosphere bacterial communities in urban green areas throughout Europe relate to urban intensity. FEMS Microbiol Ecol 2022; 98:6695091. [PMID: 36085374 DOI: 10.1093/femsec/fiac106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/25/2022] [Accepted: 09/07/2022] [Indexed: 12/14/2022] Open
Abstract
The phyllosphere harbours a diverse and specific bacterial community, which influences plant health and ecosystem functioning. In this study, we investigated the impact of urban green areas connectivity and size on the composition and diversity of phyllosphere bacterial communities. Hereto, we evaluated the diversity and composition of phyllosphere bacterial communities of 233 Platanus x acerifolia and Acer pseudoplatanus trees in 77 urban green areas throughout 6 European cities. The community composition and diversity significantly differed between cities but only to a limited extent between tree species. We could show that urban intensity correlated significantly with the community composition of phyllosphere bacteria. In particular, a significant correlation was found between the relative abundances for 29 out of the 50 most abundant families and the urban intensity: the abundances of classic phyllosphere families, such as Acetobacteraceae, Planctomycetes, and Beijerinkiaceae, decreased with urban intensity (i.e. more abundant in areas with more green, lower air pollution, and lower temperature), while those related to human activities, such as Enterobacteriaceae and Bacillaceae, increased with urban intensity. The results of this study suggest that phyllosphere bacterial communities in European cities are associated with urban intensity and that effect is mediated by several combined stress factors.
Collapse
Affiliation(s)
- Babette Muyshondt
- Environmental Ecology and Applied Microbiology (ENdEMIC), Department of Bioscience Engineering, University of Antwerp, 2000, Antwerp, Belgium
| | - Karen Wuyts
- Environmental Ecology and Applied Microbiology (ENdEMIC), Department of Bioscience Engineering, University of Antwerp, 2000, Antwerp, Belgium
| | - Anskje Van Mensel
- Environmental Ecology and Applied Microbiology (ENdEMIC), Department of Bioscience Engineering, University of Antwerp, 2000, Antwerp, Belgium
| | - Wenke Smets
- Environmental Ecology and Applied Microbiology (ENdEMIC), Department of Bioscience Engineering, University of Antwerp, 2000, Antwerp, Belgium
| | - Sarah Lebeer
- Environmental Ecology and Applied Microbiology (ENdEMIC), Department of Bioscience Engineering, University of Antwerp, 2000, Antwerp, Belgium
| | - Cristiana Aleixo
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, 3810-135, Lisbon, Portugal
| | - Marta Alós Ortí
- Chair of Biodiversity and Nature Tourism, Estonian University of Life Sciences, 51005, Tartu, Estonia
| | - Joan Casanelles-Abella
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, CH-8903, Birmensdorf, Switzerland.,Landscape Ecology, Institute of Terrestrial Ecosystems, ETH Zurich, CH-8092, Zurich, Switzerland
| | - François Chiron
- CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, 91405 Orsay, France
| | - Puglielli Giacomo
- Chair of Biodiversity and Nature Tourism, Estonian University of Life Sciences, 51005, Tartu, Estonia
| | - Lauri Laanisto
- Chair of Biodiversity and Nature Tourism, Estonian University of Life Sciences, 51005, Tartu, Estonia
| | - Marco Moretti
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, CH-8903, Birmensdorf, Switzerland
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, 51006, Tartu, Estonia
| | - Pedro Pinho
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, 3810-135, Lisbon, Portugal
| | - Piotr Tryjanowski
- Department of Zoology, Poznan University of Life Sciences, 60-637, Poland
| | - Patrycja Woszczyło
- Department of Zoology, Poznan University of Life Sciences, 60-637, Poland
| | - Roeland Samson
- Environmental Ecology and Applied Microbiology (ENdEMIC), Department of Bioscience Engineering, University of Antwerp, 2000, Antwerp, Belgium
| |
Collapse
|
18
|
Tribaudino M, Solzi M, Mantovani L, Zaccara P, Groppi E. Magnetic particle monitoring on leaves in winter: a pilot study on a highly polluted location in the Po plain (Northern Italy). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63171-63181. [PMID: 35451717 PMCID: PMC9027023 DOI: 10.1007/s11356-022-20247-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Environmental monitoring in Northern Italy, one of the most polluted areas in Europe, is of paramount importance. Leaf monitoring throughout magnetic and scanning electron microscopy (SEM-EDS) analysis could be considered a good complementary analysis to sampling stations, but the lack of evergreen plants in the northern Italy towns may hinder magnetic leaf analysis in the winter season. Therefore, we tested three species of urban vegetation, which are evergreen and commonly found in urban environment, namely Hedera helix L., Parietaria officinalis L. and Rubus caesius L. Magnetic susceptibility, chosen as a simple parameter suitable for monitoring, was measured in seven stations, during the period 25 January 2019 to 8 March 2019 at a weekly step, in the cities of Torino and Parma in the same days. P. officinalis and R. caesius showed the best response, but also H. helix was suitable to detect highly polluted areas. In Torino, the magnetic susceptibility decreased in the last sampling, together with PM10, whereas in Parma it increased, likely for the beginning of the academic period in the University Campus. SEM-EDS analysis was done comparing leaves from the same plant sampled in February 2019, in highly polluted conditions, and in May 2020, after 2 months of very limited traffic, due to national lockdown. Silicate grains of natural minerals, sized between 10 and 20 µm, are present in both samples, whereas Fe oxides, about one micron size, possibly coming from car brake consumption, are prominent in the February 2019 sample. Magnetic susceptibility of leaves form the examined species looks promising to spot urban sites with high metal pollution.
Collapse
Affiliation(s)
- Mario Tribaudino
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 157/a, Parma, Italy
| | - Massimo Solzi
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/a, Parma, Italy
| | - Luciana Mantovani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 157/a, Parma, Italy.
| | - Patrizia Zaccara
- Liceo Scientifico Statale "Gobetti-Segrè", Via Maria Vittoria, 39 bis, Turin, Italy
| | - Elisa Groppi
- Liceo Scientifico "G. Ulivi", Viale Maria Luigia, 3, Parma, Italy
| |
Collapse
|
19
|
Winkler A, Contardo T, Lapenta V, Sgamellotti A, Loppi S. Assessing the impact of vehicular particulate matter on cultural heritage by magnetic biomonitoring at Villa Farnesina in Rome, Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153729. [PMID: 35143797 DOI: 10.1016/j.scitotenv.2022.153729] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Magnetic biomonitoring methodologies were applied at Villa Farnesina, Rome, a masterpiece of the Italian Renaissance, with loggias frescoed by renowned artists such as Raffaello Sanzio. Plant leaves were sampled in September and December 2020 and lichen transplants were exposed from October 2020 to early January 2021 at increasing distances from the main trafficked road, Lungotevere Farnesina, introducing an outdoor vs. indoor mixed sampling design aimed at assessing the impact of vehicular particulate matter (PM) on the Villa Loggias. The magnetic properties of leaves and lichens - inferred from magnetic susceptibility values, hysteresis loops and first order reversal curves - showed that the bioaccumulation of magnetite-like particles, associated with trace metals such as Cu, Ba and Sb, decreased exponentially with the distance from the road, and was mainly linked to metallic emission from vehicle brake abrasion. For the frescoed Halls, ca. 30 m from the road, the exposure to traffic-related emissions was very limited or negligible. Tree and shrub leaves of the Lungotevere and of the Villa's Gardens intercepted much traffic-derived PM, thus being able to protect the indoor cultural heritage and providing an essential conservation service. It is concluded that the joint use of magnetic and chemical analyses can profitably be used for evaluating the impact of particulate pollution on cultural heritage within complex metropolitan contexts as a preventive conservation measure.
Collapse
Affiliation(s)
- Aldo Winkler
- Istituto Nazionale di Geofisica e Vulcanologia, 00143 Rome, Italy.
| | - Tania Contardo
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | | | | | - Stefano Loppi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| |
Collapse
|
20
|
Chen H, Xia DS, Wang B, Liu H, Ma X. Pollution monitoring using the leaf-deposited particulates and magnetism of the leaves of 23 plant species in a semi-arid city, Northwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:34898-34911. [PMID: 35040062 DOI: 10.1007/s11356-021-16686-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/19/2021] [Indexed: 06/14/2023]
Abstract
We conducted a study of the leaf-deposited particles and magnetism of plant leaves in different functional areas (traffic areas, parks, and residential areas) in Lanzhou, China. The saturation isothermal remanent magnetization (SIRM) of the washed and unwashed leaves of 23 plant species (including evergreen shrubs, deciduous shrubs, deciduous liana species, and deciduous trees) at three sampling heights (0.5 m, 1.5 m, and 2.5 m) was measured. In addition, the mass of the leaf-deposited particles was measured using the elution-filtration method and the leaf morphological characteristics were determined by scanning electronic microscope (SEM) analysis. The results revealed significant differences in particle retention capacity among the 23 plant species, with evergreen shrub species at the heights of 0.5 m and 1.5 m having higher particle concentrations. Buxus sinica, Buxus megistophylla, Prunus cerasifera, and Ligustrum×vicaryi were the most effective plant species for accumulating particles. The SEM results showed that leaves with a relatively complex adaxial surface (such as deep grooves and protrusions) were more effective at accumulating particles. The SIRM of washed leaves, unwashed leaves, and leaf-deposited particles were significantly higher in traffic areas than in parks and residential areas. In addition, significant correlations were found between SIRM of unwashed leaves and leaf-deposited particles and the mass of leaf-deposited particles, and therefore the leaf magnetic properties effectively reflect levels of PM pollution under different environmental conditions. Overall, our results provide a valuable reference for the selection of plant species with high particle retention capacity that is suitable for urban greening and pollution mitigation.
Collapse
Affiliation(s)
- Hong Chen
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Dun-Sheng Xia
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Bo Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, 688#, Yingbin Road, Jinhua, 321004, Zhejiang Province, China.
| | - Hui Liu
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoyi Ma
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
21
|
Atmospheric Concentration of CO 2 and PM 2.5 at Salina, Stromboli, and Vulcano Islands (Italy): How Anthropogenic Sources, Ordinary Volcanic Activity and Unrests Affect Air Quality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084833. [PMID: 35457709 PMCID: PMC9027128 DOI: 10.3390/ijerph19084833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 12/05/2022]
Abstract
Geogenic and anthropogenic sources of atmospheric particulate and CO2 can lead to threats to human health in volcanic areas. Although the volcanic CO2 hazard is a topic frequently debated in the related scientific literature, space and time distribution of PM2.5 are poorly known. The results of combined CO2/PM2.5 surveys, carried out at Salina, Stromboli, and Vulcano islands (Aeolian archipelago, Italy) in the years 2020–2021, and integrated with investigations on bioaccumulation of metallic particulate matter by the mean of data on the magnetic properties of oleander leaves, are presented in this work. The retrieved results indicate that no significant anthropogenic sources for both CO2 and PM2.5 are active in these islands, at the net of a minor contribution due to vehicular traffic. Conversely, increments in volcanic activity, as the unrest experienced by Vulcano island since the second half of 2021, pose serious threats to human health, due to the near-ground accumulation of CO2, and the presence of suspended micro-droplets of condensed hydrothermal vapor, fostering the diffusion of atmophile viruses, such as the COVID-19. Gas hazard conditions can be generated, not only by volcanic vents or fumarolic fields, but also by unconventional sources, such as the outgassing from shallow hydrothermal aquifers through drilled or hand-carved wells.
Collapse
|
22
|
Chen Y, Zhang W, Dong C, Hutchinson SM, Feng H. Characteristics of iron-containing magnetic particles in household dust from an urban area: A case study in the megacity of Shanghai. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127212. [PMID: 34879540 DOI: 10.1016/j.jhazmat.2021.127212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
In order to characterize the magnetic properties and trace sources of household dust particles, magnetic measurements, geochemical and SEM/TEM analyses were performed on vacuum dust from 40 homes in Shanghai, China. Iron-containing magnetic particles (IMPs) in the household dust were dominated by magnetite, while maghemite, hematite and metallic iron were also present. The IMPs were mainly composed of coarse-grained particles (e.g., >0.1 µm). Ultrafine superparamagnetic (SP) grains (<30 nm) increased proportionately with the abundance of the total IMPs. Household dust had more and coarser IMPs than background soil, but less and finer IMPs than street dust and industrial emissions (coal combustion and metallurgy). Metallic Fe and spherical IMPs, originating from brake wear abrasion and coal combustion, respectively, have been observed using the SEM/TEM. Contents of magnetic particles were positively correlated to Mo, Ni and Sb, while HIRM was associated with As, Mo, Pb and Sb. The multiple lines of evidence including magnetic measurements, geochemical and SEM/TEM analyses suggested that industrial and traffic emissions and street dust were dominant contributors to the IMPs. Such an approach can help to establish more precisely the sources of household dust particles and could be applied to other indoor contexts and further urban environments.
Collapse
Affiliation(s)
- Yinglu Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 201100, PR China
| | - Weiguo Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 201100, PR China
| | - Chenyin Dong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| | - Simon M Hutchinson
- School of Science, Engineering and Environment, University of Salford, Gt. Manchester M5 4WT, UK
| | - Huan Feng
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, USA
| |
Collapse
|
23
|
Gignac F, Righi V, Toran R, Errandonea LP, Ortiz R, Nieuwenhuijsen M, Creus J, Basagaña X, Balestrini M. Co-creating a local environmental epidemiology study: the case of citizen science for investigating air pollution and related health risks in Barcelona, Spain. Environ Health 2022; 21:11. [PMID: 35022033 PMCID: PMC8753829 DOI: 10.1186/s12940-021-00826-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/26/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND While the health risks of air pollution attract considerable attention, both scholarly and within the general population, citizens are rarely involved in environmental health research, beyond participating as data subjects. Co-created citizen science is an approach that fosters collaboration between scientists and lay people to engage the latter in all phases of research. Currently, this approach is rare in environmental epidemiology and when co-creation processes do take place, they are often not documented. This paper describes the first stages of an ongoing co-created citizen science epidemiological project in Barcelona (Spain), that included identifying topics that citizens wish to investigate as regards air pollution and health, formulating their concerns into research questions and co-designing the study protocol. This paper also reflects key trade-offs between scientific rigor and public engagement and provides suggestions to consider when applying citizen science to environmental health studies. METHODS Experts created an online survey and analyzed responses with descriptive statistics and qualitative coding. A pop-up intervention was held to discuss with citizens their concerns about air pollution and health. Later on, a community meeting was organized to narrow down the research topics and list potential research questions. In an online survey, citizens were asked to vote for the research question they would like to investigate with the experts. A workshop was held to choose a study design in which citizens would like to partake to answer their preferred research question. RESULTS According to 488 respondents from the first survey, cognitive and mental health were the main priorities of investigation. Based on the second survey, with 27% of the votes from 556 citizens, the most popular research question was, "How does air pollution together with noise and green/blue spaces affect mental health?". The study design selected was an observational study in which citizens provide daily repeated measures of different cognitive and mental health outcomes and relate them to the air pollution concentrations. CONCLUSIONS Based on the co-creation activities and the results obtained, we conclude that applying citizen science in an environmental health project is valuable for researchers despite some challenges such as engaging citizens and maximizing representativity.
Collapse
Affiliation(s)
- Florence Gignac
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | | | - Raül Toran
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | | | - Rodney Ortiz
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | | | - Xavier Basagaña
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | | |
Collapse
|
24
|
Ingo GM, Riccucci C, Pisani G, Pascucci M, D'Ercole D, Guerriero E, Boccaccini F, Falso G, Zambonini G, Paolini V, Di Carlo G. The vehicle braking systems as main source of inhalable airborne magnetite particles in trafficked areas. ENVIRONMENT INTERNATIONAL 2022; 158:106991. [PMID: 34991252 DOI: 10.1016/j.envint.2021.106991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Magnetite (Fe3O4) nano-particles (MNPs) have been found in human tissues and causally linked to serious illnesses. The possible negative role of MNPs has been not still fully ascertained even though MNPs might cause health effects due to their magnetic property, redox activity and surface charge. The origin of MNPs in human tissues still remains to be unambiguously identified since biological processes, natural phenomena and anthropogenic production have been proposed. According to this latter increasingly convincing hypothesis, anthropogenic MNPs might enter mainly in the human body via inhalation, penetrate deeply into the lungs and in the alveoli and also migrate into the blood circulation and gather in the extrapulmonary organs and central nervous system. In order to identify the releasing source of the potentially inhalable MNPs, we pioneered an innovative approach to rapidly investigate elemental profile and morphology of a large number of airborne micron and sub-micron-sized Fe-bearing particles (FePs). The study was performed by collecting a large amount of micron and sub-micron sized inhalable airborne FePs in trafficked and densely frequented areas of Rome (Italy). Then, we have investigated individually the elemental profile and morphology of the collected particles by means of high-spatial resolution scanning electron microscopy, energy dispersive spectroscopy and an automated software purposely developed for the metal-bearing particles analysis. On the basis of specific elemental tracing features, the investigation reveals that almost the total amount of the airborne FePs is released by the vehicle braking systems mainly in the form of magnetite. Furthermore, we point out that our approach might be more generally used to identify the releasing sources of different inorganic airborne particles and to contribute to establish more accurately the impact of specific natural or anthropogenic particles on the environment and human health.
Collapse
Affiliation(s)
- Gabriel M Ingo
- Institute for the Study of Nanostructured Materials, National Research Council, Rome 1 Research Area, via Salaria km 29.3, 00016 Monterotondo, Rome, Italy.
| | - Cristina Riccucci
- Institute for the Study of Nanostructured Materials, National Research Council, Rome 1 Research Area, via Salaria km 29.3, 00016 Monterotondo, Rome, Italy
| | - Gianluca Pisani
- Central Anticrime Directorate of the Italian National Police, Forensic Science Police Service, via Tuscolana 1548, 00173 Rome, Italy
| | - Marianna Pascucci
- Institute for the Study of Nanostructured Materials, National Research Council, Rome 1 Research Area, via Salaria km 29.3, 00016 Monterotondo, Rome, Italy
| | - Daniele D'Ercole
- Central Anticrime Directorate of the Italian National Police, Forensic Science Police Service, via Tuscolana 1548, 00173 Rome, Italy
| | - Ettore Guerriero
- Institute of Atmospheric Pollution Research, National Research Council, Rome 1 Research Area, via Salaria km 29.3, 00016 Monterotondo, Rome, Italy
| | - Francesca Boccaccini
- Institute for the Study of Nanostructured Materials, National Research Council, Rome 1 Research Area, via Salaria km 29.3, 00016 Monterotondo, Rome, Italy; University of Rome "Sapienza", p.le Aldo Moro 5, 00185 Rome, Italy
| | - Giacomo Falso
- Central Anticrime Directorate of the Italian National Police, Forensic Science Police Service, via Tuscolana 1548, 00173 Rome, Italy
| | - Gianpaolo Zambonini
- Central Anticrime Directorate of the Italian National Police, Forensic Science Police Service, via Tuscolana 1548, 00173 Rome, Italy
| | - Valerio Paolini
- Institute of Atmospheric Pollution Research, National Research Council, Rome 1 Research Area, via Salaria km 29.3, 00016 Monterotondo, Rome, Italy
| | - Gabriella Di Carlo
- Institute for the Study of Nanostructured Materials, National Research Council, Rome 1 Research Area, via Salaria km 29.3, 00016 Monterotondo, Rome, Italy
| |
Collapse
|
25
|
Winkler A, Amoroso A, Di Giosa A, Marchegiani G. The effect of Covid-19 lockdown on airborne particulate matter in Rome, Italy: A magnetic point of view. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118191. [PMID: 34547660 PMCID: PMC8443154 DOI: 10.1016/j.envpol.2021.118191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 05/08/2023]
Abstract
Between 9 March and 18 May 2020, strict lockdown measures were adopted in Italy for containing the COVID-19 pandemic: in Rome, despite vehicular traffic on average was more than halved, it was not observed a evident decrease of the airborne particulate matter (PM) concentrations, as assessed by air quality data. In this study, daily PM10 filters were collected from selected automated stations operated in Rome by the regional network of air quality monitoring: their magnetic properties - including magnetic susceptibility, hysteresis parameters and FORC (first order reversal curves) diagrams - were compared during and after the lockdown, for outlining the impact of the COVID-19 measures on airborne particulate matter. In urban traffic sites, the PM10 concentrations did not significantly change after the end of the lockdown, when vehicular traffic promptly returned to its usual levels; conversely, the average volume and mass magnetic susceptibilities approximately doubled, and the linear correlation between volume magnetic susceptibility and PM10 concentration became significant, pointing out the link between PM10 concentrations and the increasing levels of traffic-related magnetic emissions. Magnetite-like minerals, attributed to non-exhaust brakes emissions, dominated the magnetic fraction of PM10 near urban traffic sites, with natural magnetic components emerging in background sites and during exogenous dusts atmospheric events. Magnetic susceptibility constituted a fast and sensitive proxy of vehicular particulate emissions: the magnetic properties can play a relevant role in the source apportionment of PM10, especially when unsignificant variations in its concentration levels may mask important changes in the traffic-related magnetic fraction. As a further hint, increasing attention should be drawn to the reduction of brake wear emissions, that are overcoming by far fuel exhausts as the main particulate pollutant in traffic contexts.
Collapse
Affiliation(s)
- Aldo Winkler
- Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata, 605, 00143, Rome, Italy.
| | - Antonio Amoroso
- ARPA Lazio, Regional Environmental Protection Agency, Rome, Italy
| | | | | |
Collapse
|
26
|
Diener A, Mudu P. How can vegetation protect us from air pollution? A critical review on green spaces' mitigation abilities for air-borne particles from a public health perspective - with implications for urban planning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148605. [PMID: 34271387 DOI: 10.1016/j.scitotenv.2021.148605] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/29/2021] [Accepted: 06/18/2021] [Indexed: 05/25/2023]
Abstract
Air pollution causes the largest death toll among environmental risks globally, but interventions to purify ambient air remain inadequate. Vegetation and green spaces have shown reductive effects on air-borne pollutants concentrations, especially of particulate matter (PM). Guidance on green space utilisation for air quality control remains scarce, however, as does its application in practise. To strengthen the foundation for research and interventions, we undertook a critical review of the state of science from a public health perspective. We used inter-disciplinary search strategies for published reviews on green spaces and air pollution in key scientific databases. Using the PRISMA checklist, we systematically identified reviews with quantitative analyses. For each of the presented PM mitigation mechanisms, we conducted additional searches focused on the most recent articles published between 2016 and early 2021. The included reviews differentiate three mitigation mechanisms of green spaces for PM: deposition, dispersion and modification. The most studied mechanism is deposition, particularly measures of mass and settling velocity of PM on plant leaves. We consolidate how green space setups differ by scale and context in their potentials to reduce peak exposures, stationary (point) or mobile (line) pollution sources, and the potentially most harmful PM components. The assessed findings suggest diverse optimisation options for green space interventions, particularly concerning plant selection, spatial setup, ventilation and maintenance - all alongside the consideration of supplementary vegetation effects like on temperature or water. Green spaces' reductive effects on air-borne PM concentrations are considerable, multi-mechanistic and varied by scale, context and vegetation characteristics. Such effect-modifying factors must be considered when rethinking public space design, as accelerated by the COVID-19 pandemic. Weak linkages amid involved disciplines motivate the development of a research framework to strengthen health-oriented guidance. We conclude on an urgent need for an integrated and risk-based approach to PM mitigation through green space interventions.
Collapse
Affiliation(s)
- Arnt Diener
- European Centre for Environment and Health, Regional Office for Europe, World Health Organization, Platz der Vereinten Nationen 1, 53113 Bonn, North-Rhine Westphalia, Germany; Institute of Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich-Heine-University of Düsseldorf, Gurlittstr 55/II, 40223 Düsseldorf, North-Rhine Westphalia, Germany.
| | - Pierpaolo Mudu
- Department of Public Health, Environmental and Social Determinants of Health, World Health Organization, Avenue Appia 20, 1211 Geneva, Switzerland; European Centre for Environment and Health, Regional Office for Europe, World Health Organization, Platz der Vereinten Nationen 1, 53113 Bonn, North-Rhine Westphalia, Germany
| |
Collapse
|
27
|
Sorrentino MC, Wuyts K, Joosen S, Mubiana VK, Giordano S, Samson R, Capozzi F, Spagnuolo V. Multi-elemental profile and enviromagnetic analysis of moss transplants exposed indoors and outdoors in Italy and Belgium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117871. [PMID: 34352633 DOI: 10.1016/j.envpol.2021.117871] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 05/25/2023]
Abstract
Air pollution represents one of the major concerns worldwide, fueled by the increasing urbanization and related PM production worsening air quality in open air as well as in confined environments. In the present work, exposure to atmospheric metal pollution was investigated in 20 paired indoor (I)-outdoor (O) sites located in two urban areas of Italy and Belgium, by chemical (ICP-MS) and magnetic (saturation isothermal remanent magnetization, SIRM) analyses of Hypnum cupressiforme moss exposed in bags. After 12 weeks, the elemental profiles of the moss material exposed in the two countries largely overlapped, except for some elements which specifically accumulated in Belgium (Ag, As, Cd, Mo, Pb and Sb) and in Italy (Ca, Mg, Co, Cr, Sr, Ti and U). Element concentrations were higher in moss exposed outdoors, with the Italian sites mostly showing a terrigenous footprint, and the Belgian sites mostly affected by elements of environmental concern (e.g., As, Pb, Sb). The Indoor/Outdoor ratios (mostly lower than 0.75) indicated indoor pollution as strongly affected by outdoor pollution, although specific elements could be of indoor origin or magnified in indoor environments (e.g., Al, Ag, Cd and Co). In line with the chemical analysis, the SIRM signal was significantly higher in outdoor than indoor moss material. A positive, significant correlation was observed between SIRM and several accumulated elements indicating SIRM analysis as a powerful tool to predict the level of metal pollution. Moss bags were confirmed as a useful and versatile tool to highlight metal contamination even in confined environments, an essential prerogative in the perspective of the evaluation of the total exposure risk for humans to these pollutants.
Collapse
Affiliation(s)
- Maria Cristina Sorrentino
- Department of Biology, University of Naplesi Federico II, Campus Monte S. Angelo, Via Cinthia 4, 80126, Napoli, Italy
| | - Karen Wuyts
- Department of Bioscience Engineering, University of Antwerp, Campus Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Steven Joosen
- Department of Biology, University of Antwerp, Campus Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Valentine K Mubiana
- Department of Biology, University of Antwerp, Campus Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Simonetta Giordano
- Department of Biology, University of Naplesi Federico II, Campus Monte S. Angelo, Via Cinthia 4, 80126, Napoli, Italy
| | - Roeland Samson
- Department of Bioscience Engineering, University of Antwerp, Campus Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Fiore Capozzi
- Department of Biology, University of Naplesi Federico II, Campus Monte S. Angelo, Via Cinthia 4, 80126, Napoli, Italy.
| | - Valeria Spagnuolo
- Department of Biology, University of Naplesi Federico II, Campus Monte S. Angelo, Via Cinthia 4, 80126, Napoli, Italy
| |
Collapse
|
28
|
Sorrentino MC, Capozzi F, Wuyts K, Joosen S, Mubiana VK, Giordano S, Samson R, Spagnuolo V. Mobile Biomonitoring of Atmospheric Pollution: A New Perspective for the Moss-Bag Approach. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112384. [PMID: 34834748 PMCID: PMC8621684 DOI: 10.3390/plants10112384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 05/25/2023]
Abstract
In this work the potential of moving moss-bags, fixed to bicycles, to intercept particulate matter (PM) and linked metal(loid)s was tested for the first time. Seven volunteers carried three moss-bags for fifty days while commuting by bicycle in the urban area of Antwerp, Belgium. Moreover, one bike, equipped with mobile PM samplers, travelled along four routes: urban, industrial, green route and the total path, carrying three moss-bags at each route. The saturation isothermal remanent magnetization (SIRM) signal and chemical composition (assessed by HR-ICP-MS) of the moss samples indicated that the industrial route was the most polluted. Element fluxes (i.e., the ratio between element daily uptake and the specific leaf area) could discriminate among land uses; particularly, they were significantly higher in the industrial route for Ag, As, Cd and Pb; significantly lowest in the green route for As and Pb; and comparable for all accumulated elements along most urban routes. A comparison with a previous experiment carried out in the same study area using similar moss-bags at static exposure points, showed that the element fluxes were significantly higher in the mobile system. Finally, PM2.5 and PM10 masses measured along the four routes were consistent with element fluxes.
Collapse
Affiliation(s)
- Maria Cristina Sorrentino
- Department of Biology, Campus Monte S. Angelo, University of Naples Federico II, Via Cinthia 4, 80126 Napoli, Italy; (M.C.S.); (F.C.); (S.G.)
| | - Fiore Capozzi
- Department of Biology, Campus Monte S. Angelo, University of Naples Federico II, Via Cinthia 4, 80126 Napoli, Italy; (M.C.S.); (F.C.); (S.G.)
| | - Karen Wuyts
- Department of Bioscience Engineering, Campus Groenenborgerlaan 171, University of Antwerp, 2020 Antwerp, Belgium; (K.W.); (R.S.)
| | - Steven Joosen
- Department of Biology, Campus Groenenborgerlaan 171, University of Antwerp, 2020 Antwerp, Belgium; (S.J.); (V.K.M.)
| | - Valentine K. Mubiana
- Department of Biology, Campus Groenenborgerlaan 171, University of Antwerp, 2020 Antwerp, Belgium; (S.J.); (V.K.M.)
| | - Simonetta Giordano
- Department of Biology, Campus Monte S. Angelo, University of Naples Federico II, Via Cinthia 4, 80126 Napoli, Italy; (M.C.S.); (F.C.); (S.G.)
| | - Roeland Samson
- Department of Bioscience Engineering, Campus Groenenborgerlaan 171, University of Antwerp, 2020 Antwerp, Belgium; (K.W.); (R.S.)
| | - Valeria Spagnuolo
- Department of Biology, Campus Monte S. Angelo, University of Naples Federico II, Via Cinthia 4, 80126 Napoli, Italy; (M.C.S.); (F.C.); (S.G.)
| |
Collapse
|
29
|
Gonet T, Maher BA, Nyirő-Kósa I, Pósfai M, Vaculík M, Kukutschová J. Size-resolved, quantitative evaluation of the magnetic mineralogy of airborne brake-wear particulate emissions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117808. [PMID: 34329055 DOI: 10.1016/j.envpol.2021.117808] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 05/24/2023]
Abstract
Exposure to particulate air pollution has been associated with a variety of respiratory, cardiovascular and neurological problems, resulting in increased morbidity and mortality worldwide. Brake-wear emissions are one of the major sources of metal-rich airborne particulate pollution in roadside environments. Of potentially bioreactive metals, Fe (especially in its ferrous form, Fe2+) might play a specific role in both neurological and cardiovascular impairments. Here, we collected brake-wear particulate emissions using a full-scale brake dynamometer, and used a combination of magnetic measurements and electron microscopy to make quantitative evaluation of the magnetic composition and particle size of airborne emissions originating from passenger car brake systems. Our results show that the concentrations of Fe-rich magnetic grains in airborne brake-wear emissions are very high (i.e., ~100-10,000 × higher), compared to other types of particulate pollutants produced in most urban environments. From magnetic component analysis, the average magnetite mass concentration in total PM10 of brake emissions is ~20.2 wt% and metallic Fe ~1.6 wt%. Most brake-wear airborne particles (>99 % of particle number concentration) are smaller than 200 nm. Using low-temperature magnetic measurements, we observed a strong superparamagnetic signal (indicative of ultrafine magnetic particles, < ~30 nm) for all of the analysed size fractions of airborne brake-wear particles. Transmission electron microscopy independently shows that even the larger size fractions of airborne brake-wear emissions dominantly comprise agglomerates of ultrafine (<100 nm) particles (UFPs). Such UFPs likely pose a threat to neuronal and cardiovascular health after inhalation and/or ingestion. The observed abundance of ultrafine magnetite particles (estimated to constitute ~7.6 wt% of PM0.2) might be especially hazardous to the brain, contributing both to microglial inflammatory action and excess generation of reactive oxygen species.
Collapse
Affiliation(s)
- Tomasz Gonet
- Centre for Environmental Magnetism & Palaeomagnetism, Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom.
| | - Barbara A Maher
- Centre for Environmental Magnetism & Palaeomagnetism, Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Ilona Nyirő-Kósa
- MTA-PE Air Chemistry Research Group, 10 Egyetem Street, H-8200, Veszprém, Hungary
| | - Mihály Pósfai
- Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém, H8200, Hungary
| | - Miroslav Vaculík
- Nanotechnology Centre, VSB-Technical University of Ostrava, 708 00, Ostrava-Poruba, Czech Republic; Centre for Advanced Innovative Technologies, VSB-Technical University of Ostrava, 708 00, Ostrava-Poruba, Czech Republic
| | - Jana Kukutschová
- Centre for Advanced Innovative Technologies, VSB-Technical University of Ostrava, 708 00, Ostrava-Poruba, Czech Republic; Faculty of Materials Science and Technology, VSB-Technical University of Ostrava, 708 00, Ostrava, Czech Republic
| |
Collapse
|
30
|
Jordanova N, Jordanova D, Tcherkezova E, Georgieva B, Ishlyamski D. Advanced mineral magnetic and geochemical investigations of road dusts for assessment of pollution in urban areas near the largest copper smelter in SE Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148402. [PMID: 34465059 DOI: 10.1016/j.scitotenv.2021.148402] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 05/16/2023]
Abstract
This study aims to evaluate the urban pollution by combined magnetometric and geochemical analyses on road dusts from three towns in the vicinity of Cu-smelter and ore mining. A collection of 117 road dust samples was investigated for their magnetic characteristics (magnetic susceptibility (χ), frequency dependent susceptibility, anhysteretic and isothermal (IRM) remanences), IRM step-wise acquisition and thermal demagnetization. Coarse grained magnetite and hematite were identified as major iron oxides in the emissions from ore spills and smelter, while traffic-related magnetic minerals were finer magnetite grains. Degree of pollution is assessed by geo-accumulation index, enrichment factor and Pollution Load Index (PLI) for a set of potentially toxic elements (PTEs). Using the geochemical data, we evaluate the carcinogenic and non-carcinogenic health risks for the population. Our results show that dust emissions from the industrial facilities likely pose significant health hazard for adults and children caused largely by Arsenic pollution in "hot spots". Based on the strong correlation between χ and most of the PTEs, detailed variations in pollution degree inside the urban areas are inferred. Strong linear regression between χ and PLI allows designating limit susceptibility values, corresponding to the PLI categories. This approach can be successfully applied for monitoring and mapping purposes at high spatial and temporal resolution.
Collapse
Affiliation(s)
- Neli Jordanova
- National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences, Acad. G. Bochev str., block 3, 1113 Sofia, Bulgaria.
| | - Diana Jordanova
- National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences, Acad. G. Bochev str., block 3, 1113 Sofia, Bulgaria
| | - Emilia Tcherkezova
- National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences, Acad. G. Bochev str., block 3, 1113 Sofia, Bulgaria
| | - Bozhurka Georgieva
- National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences, Acad. G. Bochev str., block 3, 1113 Sofia, Bulgaria
| | - Daniel Ishlyamski
- National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences, Acad. G. Bochev str., block 3, 1113 Sofia, Bulgaria
| |
Collapse
|
31
|
Vanicela BD, Nebel M, Stephan M, Riethmüller C, Gresser GT. Quantitative analysis of fine dust particles on moss surfaces under laboratory conditions using the example of Brachythecium rutabulum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51763-51771. [PMID: 33991303 PMCID: PMC8458176 DOI: 10.1007/s11356-021-14218-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
The identification of a model organism for investigations of fine dust deposits on moss leaflets was presented. An optical method with SEM enabled the quantitative detection of fine dust particles in two orders of magnitude. Selection criteria were developed with which further moss species can be identified in order to quantify the number of fine dust particles on moss surfaces using the presented method. Among the five moss species examined, B. rutabulum had proven to be the most suitable model organism for the method presented here. The number of fine dust particles on the moss surface of B. rutabulum was documented during 4 weeks of cultivation in the laboratory using SEM images and a counting method. The fine dust particles were recorded in the order of 10 μm-0.3 μm, divided into two size classes and counted. Under laboratory conditions, the number of particles of the fine fraction 2.4 μm-0.3 μm decreased significantly.
Collapse
Affiliation(s)
- Bilitis Désirée Vanicela
- German Institutes of Textile and Fiber Research, Körschtalstraße 26, 73770, Denkendorf, Germany.
| | - Martin Nebel
- University of Bonn, Regina-Pacis-Weg 3, D-53113, Bonn, Germany
| | - Marielle Stephan
- German Institutes of Textile and Fiber Research, Körschtalstraße 26, 73770, Denkendorf, Germany
| | - Christoph Riethmüller
- German Institutes of Textile and Fiber Research, Körschtalstraße 26, 73770, Denkendorf, Germany
| | - Götz Theo Gresser
- German Institutes of Textile and Fiber Research, Körschtalstraße 26, 73770, Denkendorf, Germany
| |
Collapse
|
32
|
Tracking Airborne Pollution with Environmental Magnetism in A Medium-Sized African City. ATMOSPHERE 2021. [DOI: 10.3390/atmos12101281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
As in other parts of the world, air pollution over West and Central Africa has major health and meteorological impacts. Air quality assessment and its possible sanitary impact have become essential even in medium-sized towns, therefore amplifying the need for easy-to-implement monitoring methods with low environmental impact. We present here the potential of magnetic methods to monitor air quality at street level in the medium-sized city of Maroua (northern Cameroon) affected by dust-laden desert winds. More than five hundred (544) samples of bark and leaves taken from Neem trees in Maroua were analyzed. Magnetic susceptibility, saturation remanence, and S-ratio were found to determine the concentration and nature of magnetic particles. They are dominated by magnetite-like particle signals as a part of particulate emissions due to urban activities, including both traffic, composed of a substantial proportion of motorcycles, and wood burning for food preparation. We show that both bark and leaves from Neem trees are adequate passive bio-recorders. The use of both enables different times and heights to be sampled, allowing for the high-resolution monitoring, in terms of spatialization, of various urban environments. Particle emissions require assessment and screening that could be carried out rapidly and efficiently by magnetic methods on bio-recorders, even in cities impacted by dust-laden wind.
Collapse
|
33
|
Castanheiro A, Wuyts K, Hofman J, Nuyts G, De Wael K, Samson R. Morphological and elemental characterization of leaf-deposited particulate matter from different source types: a microscopic investigation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25716-25732. [PMID: 33471309 DOI: 10.1007/s11356-021-12369-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Particulate matter (PM) deposition on urban green enables the collection of particulate pollution from a diversity of contexts, and insight into the physico-chemical profiles of PM is key for identifying main polluting sources. This study reports on the morphological and elemental characterization of PM2-10 deposited on ivy leaves from five different environments (forest, rural, roadside, train, industry) in the region of Antwerp, Belgium. Ca. 40,000 leaf-deposited particles were thoroughly investigated by particle-based analysis using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM/EDX) and their physico-chemical characteristics were explored for PM source apportionment purposes. The size distribution of all deposited particles was biased towards small-sized PM, with 32% of the particles smaller than 2.5 μm (PM2.5) and median diameters of 2.80-3.09 μm. The source type influenced both the particles' size and morphology (aspect ratio and shape), with roadside particles being overall the smallest in size and the most spherical. While forest and rural elemental profiles were associated with natural PM, the industry particles revealed the highest anthropogenic metal input. PM2-10 profiles for roadside and train sites were rather comparable and only distinguishable when evaluating the fine (2-2.5 μm) and coarse (2.5-10 μm) PM fractions separately, which enabled the identification of a larger contribution of combustion-derived particles (small, circular, Fe-enriched) at the roadside compared to the train. Random forest prediction model classified the source type correctly for 61-85% of the leaf-deposited PM. The still modest classification accuracy denotes the influence of regional background PM and demands for additional fingerprinting techniques to facilitate source apportionment. Nonetheless, the obtained results demonstrate the utility of leaf particle-based analysis to fingerprint and pinpoint source-specific PM, particularly when considering both the composition and size of leaf-deposited particles.
Collapse
Affiliation(s)
- Ana Castanheiro
- Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Karen Wuyts
- Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Jelle Hofman
- Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- Solutions4IoT Lab, Imec, High Tech Campus 31, 5656 AE, Eindhoven, The Netherlands
| | - Gert Nuyts
- Antwerp X-ray Analysis, Electrochemistry & Speciation (AXES), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Karolien De Wael
- Antwerp X-ray Analysis, Electrochemistry & Speciation (AXES), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Roeland Samson
- Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| |
Collapse
|
34
|
PM2.5 Magnetic Properties in Relation to Urban Combustion Sources in Southern West Africa. ATMOSPHERE 2021. [DOI: 10.3390/atmos12040496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The physico-chemical characteristics of particulate matter (PM) in African cities remain poorly known due to scarcity of observation networks. Magnetic parameters of PM are robust proxies for the emissions of Fe-bearing particles. This study reports the first magnetic investigation of PM2.5 (PM with aerodynamic size below 2.5 μm) in Africa performed on weekly PM2.5 filters collected in Abidjan (Ivory Coast) and Cotonou (Benin) between 2015 and 2017. The magnetic mineralogy is dominated by magnetite-like low coercivity minerals. Mass normalized SIRM are 1.65 × 10−2 A m2 kg−1 and 2.28 × 10−2 A m2 kg−1 for Abidjan and Cotonou respectively. Hard coercivity material (S-ratio = 0.96 and MDF = 33 mT) is observed during the dry dusty season. Wood burning emits less iron oxides by PM2.5 mass when compared to traffic sources. PM2.5 magnetic granulometry has a narrow range regardless of the site or season. The excellent correlation between the site-averaged element carbon concentrations and SIRM suggests that PM2.5 magnetic parameters are linked to primary particulate emission from combustion sources.
Collapse
|
35
|
Orel VB, Syvak LA, Orel VE. Remote control of magnetic nanocomplexes for delivery and destruction of cancer cells. J Biomater Appl 2021; 36:872-881. [PMID: 33840254 DOI: 10.1177/08853282211005098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although nanotechnology advances have been exploited for a myriad of purposes, including cancer diagnostics and treatment, still there is little discussion about the mechanisms of remote control. Our main aim here is to explain the possibility of a magnetic field control over magnetic nanocomplexes to improve their delivery, controlled release and antitumor activity. In doing so we considered the nonlinear dynamics of magnetomechanical and magnetochemical effects based on free radical mechanisms in cancer development for future pre-clinical studies.
Collapse
|
36
|
Kermenidou M, Balcells L, Martinez-Boubeta C, Chatziavramidis A, Konstantinidis I, Samaras T, Sarigiannis D, Simeonidis K. Magnetic nanoparticles: An indicator of health risks related to anthropogenic airborne particulate matter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116309. [PMID: 33387781 DOI: 10.1016/j.envpol.2020.116309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/01/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Due to their small dimensions, airborne particles are able to penetrate through inhalation into many human organs, from the lungs to the cardiovascular system and the brain, which can threaten our health. This work establishes a novel approach of collecting quantitative data regarding the fraction, the composition and the size distribution of combustion-emitted particulate matter through the magnetic characterization and analysis of samples received by common air pollution monitoring. To this end, SQUID magnetometry measurements were carried out for samples from urban and suburban areas in Thessaloniki, the second largest city of Greece, taking into consideration the seasonal and weekly variation of airborne particles levels as determined by occurring traffic and meteorological conditions. The level of estimated magnetically-responding atmospheric particulate matter was at least 0.5 % wt. of the collected samples, mostly being present in the form of ultrafine particles with nuclei sizes of approximately 14 nm and their aggregates. The estimated quantities of magnetic particulate matter show maximum values during autumn months (0.8 % wt.) when increased commuting takes place, appearing higher in the city center by up to 50% than those in suburban areas. In combination with high-resolution transmission electron imaging and elemental analysis, it was found that Fe3O4 and similar ferrites, some of them attached to heavy metals (Co, Cr), are the dominant magnetic contributors arising from anthropogenic high-temperature processes, e.g. due to traffic emissions. Importantly, nasal cytologic samples collected from residents of both central and suburban areas showed same pattern in what concerns magnetic behavior, thus verifying the critical role of nanosized magnetic particles in the assessment of air pollution threats. Despite the inherent statistical limitations of our study, such findings also indicate the potential transmission of infectious pathogens by means of pollution-derived nanoparticles into the respiratory system of the human body.
Collapse
Affiliation(s)
- M Kermenidou
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ll Balcells
- Institut de Ciència de Materials de Barcelona, CSIC, 08193 Bellaterra, Spain
| | - C Martinez-Boubeta
- Ecoresources P.C., Giannitson-Santaroza Str. 15-17, 54627 Thessaloniki, Greece
| | - A Chatziavramidis
- 2nd Academic Otorhinolaryngology Department, General Hospital Papageorgiou, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece
| | - I Konstantinidis
- 2nd Academic Otorhinolaryngology Department, General Hospital Papageorgiou, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece
| | - T Samaras
- Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - D Sarigiannis
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - K Simeonidis
- Ecoresources P.C., Giannitson-Santaroza Str. 15-17, 54627 Thessaloniki, Greece; Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
37
|
Pattammattel A, Leppert VJ, Aronstein P, Robinson M, Mousavi A, Sioutas C, Forman HJ, O’Day PA. Iron Speciation in Particulate Matter (PM 2.5) from Urban Los Angeles Using Spectro-microscopy Methods. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2021; 245:117988. [PMID: 33223923 PMCID: PMC7673293 DOI: 10.1016/j.atmosenv.2020.117988] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The speciation, oxidation states, and relative abundance of iron (Fe) phases in PM2.5 samples from two locations in urban Los Angeles were investigated using a combination of bulk and spatially resolved, element-specific spectroscopy and microscopy methods. Synchrotron X-ray absorption spectroscopy (XAS) of bulk samples in situ (i.e., without extraction or digestion) was used to quantify the relative fractions of major Fe phases, which were corroborated by spatially resolved spectro-microscopy measurements. Ferrihydrite (amorphous Fe(III)-hydroxide) comprised the largest Fe fraction (34-52%), with hematite (α-Fe2O3; 13-23%) and magnetite (Fe3O4; 10-24%) identified as major crystalline oxide components. An Fe-bearing phyllosilicate fraction (16-23%) was fit best with a reference spectrum of a natural illite/smectite mineral, and metallic Fe(0) was a relatively small (2-6%) but easily identified component. Sizes, morphologies, oxidation state, and trace element compositions of Fe-bearing PM from electron microscopy, electron energy loss spectroscopy (EELS), and scanning transmission X-ray microscopy (STXM) revealed variable and heterogeneous mixtures of Fe species and phases, often associated with carbonaceous material with evidence of surface oxidation. Ferrihydrite (or related Fe(III) hydroxide phases) was ubiquitous in PM samples. It forms as an oxidation or surface alteration product of crystalline Fe phases, and also occurs as coatings or nanoparticles dispersed with other phases as a result of environmental dissolution and re-precipitation reactions. The prevalence of ferrihydrite (and adsorbed Fe(III) has likely been underestimated in studies of ambient PM because it is non-crystalline, non-magnetic, more soluble than crystalline phases, and found in complex mixtures. Review of potential sources of different particle types suggests that the majority of Fe-bearing PM from these urban sites originates from anthropogenic activities, primarily abrasion products from vehicle braking systems and engine emissions from combustion and/or wear. These variable mixtures have a high probability for electron transfer reactions between Fe, redox-active metals such as copper, and reactive carbon species such as quinones. Our findings suggest the need to assess biological responses of specific Fe-bearing phases both individually and in combination to unravel mechanisms of adverse health effects of particulate Fe.
Collapse
Affiliation(s)
- Ajith Pattammattel
- Sierra Nevada Research Institute and School of Natural Sciences, University of California, Merced, 95343, USA
| | | | - Paul Aronstein
- Environmental Systems Program, University of California, Merced, 95343, USA
| | - Matthew Robinson
- School of Engineering, University of California, Merced, 95343, USA
| | - Amirhosein Mousavi
- Viterbi School of Engineering, University of Southern California, Los Angeles, USA
| | - Constantinos Sioutas
- Viterbi School of Engineering, University of Southern California, Los Angeles, USA
| | - Henry Jay Forman
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, USA
| | - Peggy A. O’Day
- Sierra Nevada Research Institute and School of Natural Sciences, University of California, Merced, 95343, USA
- Environmental Systems Program, University of California, Merced, 95343, USA
| |
Collapse
|
38
|
Monitoring of Selected CBRN Threats in the Air in Industrial Areas with the Use of Unmanned Aerial Vehicles. ATMOSPHERE 2020. [DOI: 10.3390/atmos11121373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Unmanned aerial vehicles (UAVs) play an increasingly important role in various areas of life, including in terms of protection and security. As a result of fires, volcanic eruptions, or other emergencies, huge amounts of toxic gases, dust, and other substances are emitted into the environment, which, together with high temperature, often leads to serious environmental contamination. Based on the available literature and patent databases, an analysis of the available UAVs models was carried out in terms of their applicability in air contaminated conditions in industrial areas, in the event of emergencies, such as fire, chemical contamination. The possibilities of using the devices were analyzed in terms of weather conditions, construction, and used materials in CBRN (chemical, biological, radiological, nuclear) threat situations. It was found that, thanks to the use of appropriate sensors, cameras, and software of UAVs integrated with a given system, it is possible to obtain information on air quality at a given moment, which is very important for the safety of people and the environment. However, several elements, including the possibility of use in acidification conditions, requires refinement to changing crisis conditions.
Collapse
|
39
|
Magnetic Susceptibility of Spider Webs and Dust: Preliminary Study in Wrocław, Poland. MINERALS 2020. [DOI: 10.3390/min10111018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Previous studies have proven that spider webs can be a reliable tool for magnetic biomonitoring. This study aims to present the magnetic susceptibility values of urban road dust (URD) settled indoors and outdoors, and compare these values with spider webs exposed to indoor and outdoor pollutants, and therefore to discuss their potential environmental implications. The webs of Eratigena atrica, Tegenaria ferruginea, and Agelena labyrinthica (Agelenidae) spiders from outdoor and indoor study sites were investigated, along with dust deposited on filters (indoors) and dust collected from the surrounding neighborhood (outdoors). Magnetic measurements revealed elevated levels of magnetic pollutants at all investigated sites in the city of Wrocław. The indoor/outdoor ratios of mass-specific magnetic susceptibility for the studied samples suggested a prevalence of indoor pollution sources at two of the sites (prosthetic laboratory and environmental science laboratory), whereas the third site (tenement house neighborhood) was dominated by material that presumably originated from predominantly outdoor sources. The indoor/outdoor ratios of magnetic susceptibility for the investigated matrices at the examined sites were highly comparable, which is promising for the utilization of spider webs in magnetic monitoring.
Collapse
|
40
|
Declercq Y, Samson R, Van De Vijver E, De Grave J, Tack FMG, De Smedt P. A multi-proxy magnetic approach for monitoring large-scale airborne pollution impact. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140718. [PMID: 32758833 DOI: 10.1016/j.scitotenv.2020.140718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
The interpretive utility of environmental magnetic proxies for investigating airborne particulate matter (PM) pollution impact is restricted by differences in soil composition, land cover and land use. For soil magnetic applications, land use strongly influences magnetic particle distribution down the soil profile, even in homogeneous soil environments. Here, an adaptive approach is engineered to provide accurate magnetic proxy information for pollution monitoring across different land use types. In an 81-km2 area between two industrial harbours, the irregular distribution of forests, arable lands, pasture and residential areas prevented robustly relating topsoil magnetic susceptibility data to known pollution impacts. Although normalized topsoil susceptibility values showed improved potential for deriving airborne pollution impacts, optimal results were obtained by depth-integrating magnetic susceptibility logs, revealing long-term impacts of both active and decommissioned industrial facilities. Complementing soil magnetic observations, active and passive (bio)magnetic monitoring allowed discriminating short-term pollution patterns and evaluating changes in PM impact across the study area. Hereby, active PM receptors (strawberry leaves and plastic coated cardboards (PCCs)) provided promising results, yet passive receptors allowed estimating pollution impacts more efficiently. For the latter, species-independent grass leaf sampling reflected airborne PM depositional patterns most accurately, whereas wiped anthropogenic surfaces proved too sensitive to wash-off.
Collapse
Affiliation(s)
- Ynse Declercq
- Research Group Soil Spatial Inventory Techniques, Department of Environment, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Roeland Samson
- Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Ellen Van De Vijver
- Research Group Soil Spatial Inventory Techniques, Department of Environment, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Johan De Grave
- Mineralogy and Petrology Research Unit, Department of Geology, Ghent University, Krijgslaan 281/S8, 9000 Ghent, Belgium
| | - Filip M G Tack
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Philippe De Smedt
- Research Group Soil Spatial Inventory Techniques, Department of Environment, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
41
|
Rea-Downing G, Quirk BJ, Wagner CL, Lippert PC. Evergreen Needle Magnetization as a Proxy for Particulate Matter Pollution in Urban Environments. GEOHEALTH 2020; 4:e2020GH000286. [PMID: 32995687 PMCID: PMC7507380 DOI: 10.1029/2020gh000286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 05/30/2023]
Abstract
We test the use of magnetic measurements of evergreen needles as a proxy for particulate matter pollution in Salt Lake City, Utah. Measurements of saturation isothermal remanent magnetization indicate needle magnetization increases with increased air pollution. Needle magnetization shows a high degree of spatial variability with the largest increases in magnetization near roadways. Results from our magnetic measurements are corroborated by scanning electron microscopy of needle surfaces and by inductively coupled plasma mass spectrometry of metal concentrations in residues collected from sampled needles. Low-temperature magnetic analysis suggests the presence of small (<20 nm) partially oxidized magnetite particles on needles collected adjacent to a major roadway. Magnetization may be a low-cost proxy for certain metal concentrations (including lead) during periods of increased particulate pollution. The spatial resolution of our method appears capable of resolving changes in ambient particulate matter pollution on the scale of tens to hundreds of meters. Questions remain regarding the timescales over which evergreen needles retain particulate matter accumulated during atmospheric inversion events in Salt Lake City. Results presented here corroborate previous studies that found needle magnetization is a fast, cost-effective measure of particulate matter pollution. This method has the potential to provide high spatial resolution maps of biomagnetically monitored particulate matter in polluted urban environments year-round.
Collapse
Affiliation(s)
- Grant Rea-Downing
- Department of Geology and Geophysics University of Utah Salt Lake City UT USA
| | - Brendon J Quirk
- Department of Geology and Geophysics University of Utah Salt Lake City UT USA
- Now at the Department of Geosciences University of Massachusetts Amherst MA USA
| | - Courtney L Wagner
- Department of Geology and Geophysics University of Utah Salt Lake City UT USA
| | - Peter C Lippert
- Department of Geology and Geophysics University of Utah Salt Lake City UT USA
- Global Change and Sustainability Center University of Utah Salt Lake City UT USA
| |
Collapse
|
42
|
Locosselli GM, Moreira TCL, Chacón-Madrid K, Arruda MAZ, Camargo EPD, Kamigauti LY, da Trindade RIF, Andrade MDF, André CDSD, André PAD, Singer JM, Saiki M, Zaccarelli-Marino MA, Saldiva PHN, Buckeridge MS. Spatial-temporal variability of metal pollution across an industrial district, evidencing the environmental inequality in São Paulo. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114583. [PMID: 33618488 DOI: 10.1016/j.envpol.2020.114583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 06/12/2023]
Abstract
Although air pollution decreased in some cities that shifted from an industrial to a service-based economy, and vehicular emission regulation became more restrictive, it is still a major risk factor for mortality worldwide. In central São Paulo, Brazil, air quality monitoring stations and tree-ring analyses revealed a decreasing trend in the concentrations of particulate matter and metals. Such trends, however, may not be observed in industrial districts located in the urban periphery, where the usual mobile sources may be combined with local stationary sources. To evaluate environmental pollution in an industrial district in southeastern São Paulo, we assessed its spatial variability, by measuring magnetic properties and concentrations of Al, Ba, Ca, Cl, Cu, Fe, K, Mg, Mn, P, S, Sr, Zn in the bark of 62 trees, and its temporal trends, by measuring Cd, Cu, Ni, Pb, V, Zn in tree rings of three trees. Source apportionment analysis based on tree barks revealed two clusters with high concentrations of metals, one related to vehicular and industrial emissions (Al, Ba, Cu, Fe, Zn) in the east side of the industrial cluster, and the other related to soil resuspension (Cu, Zn, Mn) in its west side. These patterns are also supported by the magnetic properties of bark associated with iron oxides and titanium-iron alloy concentrations. Dendrochemical analyses revealed that only the concentrations of Pb consistently decreased over the last four decades. The concentrations of Cd, Cu, Ni, V, and Zn did not significantly decrease over time, in contrast with their negative trends previously reported in central São Paulo. This combined biomonitoring approach revealed spatial clusters of metal concentration in the vicinity of this industrial cluster and showed that the local population has not benefited from the decreasing polluting metal concentrations in the last decades.
Collapse
Affiliation(s)
- Giuliano Maselli Locosselli
- Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil; Instituto de Estudos Avançados, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | - Julio M Singer
- Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Mitiko Saiki
- Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, SP, Brazil
| | | | - Paulo Hilário Nascimento Saldiva
- Instituto de Estudos Avançados, Universidade de São Paulo, São Paulo, Brazil; Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Marcos Silveira Buckeridge
- Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil; Instituto de Estudos Avançados, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
43
|
Dai Q, Zhou M, Li H, Qian X, Yang M, Li F. Biomagnetic monitoring combined with support vector machine: a new opportunity for predicting particle-bound-heavy metals. Sci Rep 2020; 10:8605. [PMID: 32451422 PMCID: PMC7248096 DOI: 10.1038/s41598-020-65677-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/05/2020] [Indexed: 11/09/2022] Open
Abstract
Biomagnetic monitoring includes fast and simple methods to estimate airborne heavy metals. Leaves of Osmanthus fragrans Lour and Ligustrum lucidum Ait were collected simultaneously with PM10 from a mega-city of China during one year. Magnetic properties of leaves and metal concentrations in PM10 were analyzed. Metal concentrations were estimated using leaf magnetic properties and meteorological factors as input variables in support vector machine (SVM) models. The mean concentrations of many metals were highest in winter and lowest in summer. Hazard index for potentially toxic metals was 5.77, a level considered unsafe. The combined carcinogenic risk was higher than precautionary value (10-4). Ferrimagnetic minerals were dominant magnetic minerals in leaves. Principal component analysis indicated iron & steel industry and soil dust were the common sources for many metals and magnetic minerals on leaves. However, the poor simulation results obtained with multiple linear regression confirmed strong nonlinear relationships between metal concentrations and leaf magnetic properties. SVM models including leaf magnetic variables as inputs yielded better simulation results for all elements. Simulations were promising for Ti, Cd and Zn, whereas relatively poor for Ni. Our study demonstrates the feasibility of prediction of airborne heavy metals based on biomagnetic monitoring of tree leaves.
Collapse
Affiliation(s)
- Qian'ying Dai
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Mengfan Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Huiming Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Xin Qian
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China. .,Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Meng Yang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China.,Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Fengying Li
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China.,Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
44
|
Zhu Z, Li Z, Wang S, Bi X. Magnetic mineral constraint on lead isotope variations of coal fly ash and its implications for source discrimination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136320. [PMID: 31958719 DOI: 10.1016/j.scitotenv.2019.136320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/22/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Coal fly ash in the atmosphere affects air quality and potentially influences the global climate by promoting oceanic productivity. Although accurately tracing the sources of fly ashes is vital for emission control, it remains a challenging task. Stable lead (Pb) isotope analysis is a useful tool for tracing atmospheric pollution but it fails to accurately address coal combustion emissions due to the broad range of Pb isotopic composition of coal. Environmental magnetic parameters can be used as a rapid and economical proxy for tracing atmospheric pollutants (including coal fly ashes) and have the potential for discriminating emission sources. In this study, we combined magnetic parameters with Pb isotopic signatures in order to better discriminate the sources of coal fly ash. Both magnetic particles and Pb are highly concentrated in the fly ashes compared with the feed coals. Most of the fly ashes exhibit higher 206Pb/207Pb and lower 208Pb/206Pb ratios than those of the feed coals. Furthermore, the Pb isotopic compositions of the fly ashes are highly correlated (p < 0.01) with the concentrations of magnetic particles (especially hematite), suggesting that the variation of Pb isotopes in the fly ashes is controlled by the adsorption of Pb on magnetic minerals. Based on the established relationship between magnetic minerals and Pb isotopes within coal fly ashes, we re-analyzed previously reported magnetic and Pb isotopic data from atmospheric dust and demonstrated the effectiveness of the combined method in discriminating coal fly ash in the atmosphere.
Collapse
Affiliation(s)
- Zongmin Zhu
- State Key Laboratory of Biogeology and Environmental Geology, Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China.
| | - Zhonggen Li
- College of Resources and Environment, Zunyi Normal University, Zunyi 563006, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiangyang Bi
- State Key Laboratory of Biogeology and Environmental Geology, Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
45
|
Hofman J, Castanheiro A, Nuyts G, Joosen S, Spassov S, Blust R, De Wael K, Lenaerts S, Samson R. Impact of urban street canyon architecture on local atmospheric pollutant levels and magneto-chemical PM 10 composition: An experimental study in Antwerp, Belgium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:135534. [PMID: 31791747 DOI: 10.1016/j.scitotenv.2019.135534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/31/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
As real-life experimental data on natural ventilation of atmospheric pollution levels in urban street canyons is still scarce and has proven to be complex, this study, experimentally evaluated the impact of an urban street canyon opening on local atmospheric pollution levels, during a 2-week field campaign in a typical urban street canyon in Antwerp, Belgium. Besides following up on atmospheric particulate matter (PM), ultrafine particles (UFPs) and black carbon (BC) levels, the magneto-chemical PM10 composition was quantified to identify contributions of specific elements in enclosed versus open street canyon sections. Results indicated no higher overall PM, UFP and BC concentrations at the enclosed site compared to the open site, but significant day-to-day variability between both monitoring locations, depending on the experienced wind conditions. On days with oblique wind regimes (4 out of 14), natural ventilation was observed at the open location while higher element contributions of Ca, Fe, Co, Ni, Cu, Zn and Sr were exhibited at the enclosed location. Magnetic properties correlated with the PM10 filter loading, and elemental content of Fe, Cr, Mn and Ti. Magnetic bivariate ratios identified finel-grained magnetite carriers with grain sizes below 0.1 μm, indicating similar magnetic source contributions at both monitoring locations. Our holistic approach, combining atmospheric monitoring with magneto-chemical PM characterization has shown the complex impact of real-life wind flow regimes, different source contributions and local traffic dynamics on the resulting pollutant concentrations and contribute to a better understanding on the urban ventilation processes of atmospheric pollution.
Collapse
Affiliation(s)
- Jelle Hofman
- Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; Solutions4IoT Lab, Imec, High Tech Campus 31, 5656 AE Eindhoven, the Netherlands.
| | - Ana Castanheiro
- Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Gert Nuyts
- Antwerp X-ray Analysis, Electrochemistry & Speciation (AXES), Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Steven Joosen
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Simo Spassov
- Division Environmental Magnetism, Department of Geophysics, Royal Meteorological Institute, Dourbes, Belgium
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Karolien De Wael
- Antwerp X-ray Analysis, Electrochemistry & Speciation (AXES), Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Silvia Lenaerts
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Roeland Samson
- Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
46
|
Magnetic Emissions from Brake Wear are the Major Source of Airborne Particulate Matter Bioaccumulated by Lichens Exposed in Milan (Italy). APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10062073] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The concentration of selected trace elements and the magnetic properties of samples of the lichen Evernia prunastri exposed for 3 months in Milan (Italy) were investigated to test if magnetic properties can be used as a proxy for the bioaccumulation of chemical elements in airborne particulate matter. Magnetic analysis showed intense properties driven by magnetite-like minerals, leading to significant correlations between magnetic susceptibility and the concentration of Fe, Cr, Cu, and Sb. Selected magnetic particles were characterized by Scanning Electron Microscope and Energy Dispersion System microanalyses, and their composition, morphology and grain size supported their anthropogenic, non-exhaust origin. The overall combination of chemical, morphoscopic and magnetic analyses strongly suggested that brake abrasion from vehicles is the main source of the airborne particles accumulated by lichens. It is concluded that magnetic susceptibility is an excellent parameter for a simple, rapid and cost-effective characterization of atmospheric trace metal pollution using lichens.
Collapse
|
47
|
Winkler A, Caricchi C, Guidotti M, Owczarek M, Macrì P, Nazzari M, Amoroso A, Di Giosa A, Listrani S. Combined magnetic, chemical and morphoscopic analyses on lichens from a complex anthropic context in Rome, Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:1355-1368. [PMID: 31470497 DOI: 10.1016/j.scitotenv.2019.06.526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/28/2019] [Accepted: 06/30/2019] [Indexed: 06/10/2023]
Abstract
Native and transplanted lichens were analyzed as bioaccumulators of airborne particulate matter (PM) in an eastern district of Rome, Italy, where frequent fraudulent fires are set to recover metals, mostly copper, from waste electrical and electronic equipment (WEEE). The presence of native lichens was scarce, due to the drought of spring-summer 2017, thus, sampling was extended to a neighboring area for toughening the dataset to a similar context. The magnetic analyses revealed intense properties connected to the anthropic complexity of the zone, where industrial, traffic and arson-related dusts are emitted and bio-accumulated. Magnetic and chemical analyses were compared, leading to significant linear correlations between the concentration dependent magnetic parameters (susceptibility, saturation magnetization and saturation remanence) and the concentration of heavy metals, among which copper, chrome, lead and zinc. Moreover, selected magnetic particles were chemically and morphologically characterized by Scanning Electron Microscope and Energy Dispersion System microanalyses. Magnetic particles resulted incorporated into the lichens' tissues and their composition, morphology and grain size strongly supported their anthropogenic, mostly combustion-related, origin. Even if, given the complexity of the area, it was not feasible to fully discriminate the multiple anthropogenic sources, magnetic biomonitoring of lichens, especially when combined with microtextural and compositional analyses, confirmed to be an excellent methodology for a rapid characterization of environmental pollution.
Collapse
Affiliation(s)
- Aldo Winkler
- Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Rome, Italy.
| | - Chiara Caricchi
- Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Rome, Italy.
| | - Maurizio Guidotti
- ARPA Lazio, Regional Environmental Protection Agency, Rome and Rieti, Italy.
| | - Malgorzata Owczarek
- ARPA Lazio, Regional Environmental Protection Agency, Rome and Rieti, Italy.
| | - Patrizia Macrì
- Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Rome, Italy.
| | - Manuela Nazzari
- Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Rome, Italy.
| | - Antonio Amoroso
- ARPA Lazio, Regional Environmental Protection Agency, Rome and Rieti, Italy.
| | - Alessandro Di Giosa
- ARPA Lazio, Regional Environmental Protection Agency, Rome and Rieti, Italy.
| | - Stefano Listrani
- ARPA Lazio, Regional Environmental Protection Agency, Rome and Rieti, Italy.
| |
Collapse
|
48
|
Gillooly SE, Michanowicz DR, Jackson M, Cambal LK, Shmool JLC, Tunno BJ, Tripathy S, Bain DJ, Clougherty JE. Evaluating deciduous tree leaves as biomonitors for ambient particulate matter pollution in Pittsburgh, PA, USA. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:711. [PMID: 31676989 DOI: 10.1007/s10661-019-7857-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
Fine particulate matter (PM2.5) air pollution varies spatially and temporally in concentration and composition and has been shown to cause or exacerbate adverse effects on human and ecological health. Biomonitoring using airborne tree leaf deposition as a proxy for particulate matter (PM) pollution has been explored using a variety of study designs, tree species, sampling strategies, and analytical methods. In the USA, relatively few have applied these methods using co-located fine particulate measurements for comparison and relying on one tree species with extensive spatial coverage, to capture spatial variation in ambient air pollution across an urban area. Here, we evaluate the utility of this approach, using a spatial saturation design and pairing tree leaf samples with filter-based PM2.5 across Pittsburgh, Pennsylvania, with the goal of distinguishing mobile and stationary sources using PM2.5 composition. Co-located filter and leaf-based measurements revealed some significant associations with traffic and roadway proximity indicators. We compared filter and leaf samples with differing protection from the elements (e.g., meteorology) and PM collection time, which may account for some variance in PM source and/or particle size capture between samples. To our knowledge, this study is among the first to use deciduous tree leaves from a single tree species as biomonitors for urban PM2.5 pollution in the northeastern USA.
Collapse
Affiliation(s)
- Sara E Gillooly
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA.
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 401 Park Drive, Room 429-A, Landmark Center, Boston, MA, 02215, USA.
| | - Drew R Michanowicz
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Mike Jackson
- University of Minnesota Institute for Rock Magnetism, Minneapolis, MN, USA
| | - Leah K Cambal
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Jessie L C Shmool
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Brett J Tunno
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Sheila Tripathy
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Daniel J Bain
- Department of Geology and Geology and Environmental Science, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jane E Clougherty
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| |
Collapse
|
49
|
Declercq Y, Samson R, Castanheiro A, Spassov S, Tack FMG, Van De Vijver E, De Smedt P. Evaluating the potential of topsoil magnetic pollution mapping across different land use classes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:345-356. [PMID: 31176221 DOI: 10.1016/j.scitotenv.2019.05.379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 05/05/2023]
Abstract
Soil magnetic measurements are used increasingly to estimate the impact of airborne, combustion-related particulate matter (PM) pollution in dense measurement grids. Although many studies have proven the potential of topsoil magnetic measurements in environmental monitoring, their application is not straightforward when factors such as parent material or land use have to be accounted for. Often, the influence of land use on the soil magnetic signal is circumvented by targeting forest soils, where deposited magnetic particles are best preserved in the topsoil. However, when large forests are absent, e.g. in densely populated areas or environments with more heterogeneous land use, this approach often impedes reliable and comprehensive spatial sampling. We evaluated if topsoil magnetic pollution mapping across different land use classes, against a homogeneous geological environment of sandy soils, could help increase the spatial reliability of results in regional scale surveys. Although detailed magnetic property analysis and evaluation of trace metal concentrations in soils on arable land, forest and pasture showed the impact of atmospheric pollution, topsoil susceptibility measurements did not allow delineating the magnetic footprint of PM pollution. Land use strongly influenced the distribution of magnetic particles through soil, and the evaluation of anomalous magnetic topsoil enhancement required the integration of downhole susceptibility soundings. We conclude that topsoil susceptibility mapping remains a useful tool to evaluate PM pollution impact, yet its application potential across land use classes is limited.
Collapse
Affiliation(s)
- Ynse Declercq
- Research Group Soil Spatial Inventory Techniques, Department of Environment, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Roeland Samson
- Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Ana Castanheiro
- Laboratory of Environmental and Urban Ecology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Simo Spassov
- Laboratory for Environmental Magnetism, Geophysical Centre of the Royal Meteorological Institute, Rue du Centre de Physique 1, 5670 Dourbes, Belgium
| | - Filip M G Tack
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Ellen Van De Vijver
- Research Group Soil Spatial Inventory Techniques, Department of Environment, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Philippe De Smedt
- Research Group Soil Spatial Inventory Techniques, Department of Environment, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
50
|
Gonet T, Maher BA. Airborne, Vehicle-Derived Fe-Bearing Nanoparticles in the Urban Environment: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9970-9991. [PMID: 31381310 DOI: 10.1021/acs.est.9b01505] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Airborne particulate matter poses a serious threat to human health. Exposure to nanosized (<0.1 μm), vehicle-derived particulates may be hazardous due to their bioreactivity, their ability to penetrate every organ, including the brain, and their abundance in the urban atmosphere. Fe-bearing nanoparticles (<0.1 μm) in urban environments may be especially important because of their pathogenicity and possible association with neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. This review examines current knowledge regarding the sources of vehicle-derived Fe-bearing nanoparticles, their chemical and mineralogical compositions, grain size distribution and potential hazard to human health. We focus on data reported for the following sources of Fe-bearing nanoparticles: exhaust emissions (both diesel and gasoline), brake wear, tire and road surface wear, resuspension of roadside dust, underground, train and tram emissions, and aircraft and shipping emissions. We identify limitations and gaps in existing knowledge as well as future challenges and perspectives for studies of airborne Fe-bearing nanoparticles.
Collapse
Affiliation(s)
- Tomasz Gonet
- Centre for Environmental Magnetism & Palaeomagnetism, Lancaster Environment Centre, Lancaster University , Lancaster LA1 4YQ , United Kingdom
| | - Barbara A Maher
- Centre for Environmental Magnetism & Palaeomagnetism, Lancaster Environment Centre, Lancaster University , Lancaster LA1 4YQ , United Kingdom
| |
Collapse
|