1
|
Tarn MD, Shaw KJ, Foster PB, West JS, Johnston ID, McCluskey DK, Peyman SA, Murray BJ. Microfluidics for the biological analysis of atmospheric ice-nucleating particles: Perspectives and challenges. BIOMICROFLUIDICS 2025; 19:011502. [PMID: 40041008 PMCID: PMC11878220 DOI: 10.1063/5.0236911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/14/2024] [Indexed: 03/06/2025]
Abstract
Atmospheric ice-nucleating particles (INPs) make up a vanishingly small proportion of atmospheric aerosol but are key to triggering the freezing of supercooled liquid water droplets, altering the lifetime and radiative properties of clouds and having a substantial impact on weather and climate. However, INPs are notoriously difficult to model due to a lack of information on their global sources, sinks, concentrations, and activity, necessitating the development of new instrumentation for quantifying and characterizing INPs in a rapid and automated manner. Microfluidic technology has been increasingly adopted by ice nucleation research groups in recent years as a means of performing droplet freezing analysis of INPs, enabling the measurement of hundreds or thousands of droplets per experiment at temperatures down to the homogeneous freezing of water. The potential for microfluidics extends far beyond this, with an entire toolbox of bioanalytical separation and detection techniques developed over 30 years for medical applications. Such methods could easily be adapted to biological and biogenic INP analysis to revolutionize the field, for example, in the identification and quantification of ice-nucleating bacteria and fungi. Combined with miniaturized sampling techniques, we can envisage the development and deployment of microfluidic sample-to-answer platforms for automated, user-friendly sampling and analysis of biological INPs in the field that would enable a greater understanding of their global and seasonal activity. Here, we review the various components that such a platform would incorporate to highlight the feasibility, and the challenges, of such an endeavor, from sampling and droplet freezing assays to separations and bioanalysis.
Collapse
Affiliation(s)
- Mark D. Tarn
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Kirsty J. Shaw
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, United Kingdom
| | | | - Jon S. West
- Protecting Crops and Environment Department, Rothamsted Research, Harpenden AL5 2JQ, United Kingdom
| | - Ian D. Johnston
- School of Physics, Engineering and Computer Science, University of Hertfordshire, College Lane, Hatfield AL10 9AB, United Kingdom
| | - Daniel K. McCluskey
- School of Physics, Engineering and Computer Science, University of Hertfordshire, College Lane, Hatfield AL10 9AB, United Kingdom
| | | | - Benjamin J. Murray
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
2
|
Carducci A, Arzilli G, Atomsa NT, Lauretani G, Verani M, Pistelli F, Tavoschi L, Federigi I, Fornili M, Petri D, Lomonaco T, Meschi C, Pagani A, Agostini A, Carrozzi L, Baglietto L, Paolotti D, Cattuto C, Dall’Amico L, Rizzo C. Integrated environmental and clinical surveillance for the prevention of acute respiratory infections (ARIs) in indoor environments and vulnerable communities (Stell-ARI): Protocol. PLoS One 2024; 19:e0309111. [PMID: 39348341 PMCID: PMC11441648 DOI: 10.1371/journal.pone.0309111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/06/2024] [Indexed: 10/02/2024] Open
Abstract
The epidemiological relevance of viral acute respiratory infections (ARIs) has been dramatically highlighted by COVID-19. However, other viruses cannot be neglected, such as influenza virus, respiratory syncytial virus, human adenovirus. These viruses thrive in closed spaces, influenced by human and environmental factors. High-risk closed communities are the most vulnerable settings, where the real extent of viral ARIs is often difficult to evaluate, due to the natural disease progression and case identification complexities. During the COVID-19 pandemic, wastewater-based epidemiology has demonstrated its great potential for monitoring the circulation and evolution of the virus in the environment. The "Prevention of ARIs in indoor environments and vulnerable communities" study (Stell-ARI) addresses the urgent need for integrated surveillance and early detection of ARIs within enclosed and vulnerable communities such as long-term care facilities, prisons and primary schools. The rapid transmission of ARIs in such environments underscores the importance of comprehensive surveillance strategies to minimise the risk of outbreaks and safeguard community health, enabling proactive prevention and control strategies to protect the health of vulnerable populations. This study consists of designing and validating tools for integrated clinical and environmental-based surveillance for each setting, coupled with analytical methods for environmental matrices. The clinical surveillance involves specialized questionnaires and nasopharyngeal swabs for virus identification, while the environmental surveillance includes air and surface microbiological and chemical monitoring, and virological analysis of wastewater. Integrating this information and the collection of behavioural and environmental risk factors into predictive and risk assessment models will provide a useful tool for early warning, risk assessment and informed decision-making. The study aims to integrate clinical, behavioural, and environmental data to establish and validate a predictive model and risk assessment tool for the early warning and risk management of viral ARIs in closed and vulnerable communities prior to the onset of an outbreak.
Collapse
Affiliation(s)
- Annalaura Carducci
- Hygiene and Environmental Virology, Department of Biology, University of Pisa, Pisa, Italy
| | - Guglielmo Arzilli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Nebiyu Tariku Atomsa
- Hygiene and Environmental Virology, Department of Biology, University of Pisa, Pisa, Italy
| | - Giulia Lauretani
- Hygiene and Environmental Virology, Department of Biology, University of Pisa, Pisa, Italy
| | - Marco Verani
- Hygiene and Environmental Virology, Department of Biology, University of Pisa, Pisa, Italy
| | - Francesco Pistelli
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Lara Tavoschi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Ileana Federigi
- Hygiene and Environmental Virology, Department of Biology, University of Pisa, Pisa, Italy
| | - Marco Fornili
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Davide Petri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Claudia Meschi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Alessandra Pagani
- Hygiene and Environmental Virology, Department of Biology, University of Pisa, Pisa, Italy
| | - Antonello Agostini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Laura Carrozzi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Laura Baglietto
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Daniela Paolotti
- Italian Institute for Scientific Interchange, ISI Foundation, Turin, Italy
| | - Ciro Cattuto
- Italian Institute for Scientific Interchange, ISI Foundation, Turin, Italy
| | - Lorenzo Dall’Amico
- Italian Institute for Scientific Interchange, ISI Foundation, Turin, Italy
| | - Caterina Rizzo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Wang F, Chen Y, Zhou S, Li H, Wan C, Yan K, Zhang H, Xu Z. Aerosol sources and transport paths co-control the atmospheric bacterial diversity over the coastal East China Sea. MARINE POLLUTION BULLETIN 2024; 205:116589. [PMID: 38875970 DOI: 10.1016/j.marpolbul.2024.116589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/07/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Airborne bacteria along with chemical composition of aerosols were investigated during five sampling seasons at an offshore island of the East China Sea. Bacterial diversity was the lowest in spring, the highest in winter, and similar between the autumns of 2019 and 2020, suggesting remarkably seasonal variation but little interannual change. Geodermatophilus (Actinobacteria) was the indicator genus of mineral dust (MD) showed higher proportion in spring than in other seasons. Mastigocladopsis_PCC-10914 (Cyanobacteria) as the indicator of sea salt (SS) demonstrated the highest percentages in both autumns, when the air masses mainly passed over the ocean prior to the sampling site. The higher proportions of soil-derived genera Rubellimicrobium and Craurococcus (both Proteobacteria) and extremophile Chroococcidiopsis_SAG_2023 (Cyanobacteria) were found in summer and winter, respectively. Our study explores the linkage between aerosol source and transport path and bacterial composition, which has implication to understanding of land-sea transmission of bacterial taxa.
Collapse
Affiliation(s)
- Fanghui Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Ying Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China; State Environmental Protection Key Laboratory of Land and Sea Ecological Governance and Systematic Regulation, Jinan, Shandong 250101, China; Institute of Eco-Chongming (IEC), National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Shanghai 200062, China.
| | - Shengqian Zhou
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Haowen Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Chunli Wan
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Ke Yan
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Hongliang Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China; State Environmental Protection Key Laboratory of Land and Sea Ecological Governance and Systematic Regulation, Jinan, Shandong 250101, China
| | - Zongjun Xu
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| |
Collapse
|
4
|
Rastmanesh A, Boruah JS, Lee MS, Park S. On-Site Bioaerosol Sampling and Airborne Microorganism Detection Technologies. BIOSENSORS 2024; 14:122. [PMID: 38534229 PMCID: PMC10968652 DOI: 10.3390/bios14030122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024]
Abstract
Bioaerosols are small airborne particles composed of microbiological fragments, including bacteria, viruses, fungi, pollens, and/or by-products of cells, which may be viable or non-viable wherever applicable. Exposure to these agents can cause a variety of health issues, such as allergic and infectious diseases, neurological disorders, and cancer. Therefore, detecting and identifying bioaerosols is crucial, and bioaerosol sampling is a key step in any bioaerosol investigation. This review provides an overview of the current bioaerosol sampling methods, both passive and active, as well as their applications and limitations for rapid on-site monitoring. The challenges and trends for detecting airborne microorganisms using molecular and immunological methods are also discussed, along with a summary and outlook for the development of prompt monitoring technologies.
Collapse
Affiliation(s)
| | | | | | - Seungkyung Park
- Complex Fluids Laboratory, School of Mechanical Engineering, Korea University of Technology and Education, Cheonan 31253, Chungnam, Republic of Korea
| |
Collapse
|
5
|
Rhodes ME, Pace AD, Benjamin MM, Ghent H, Dawson KS. Establishment of a Halophilic Bloom in a Sterile and Isolated Hypersaline Mesocosm. Microorganisms 2023; 11:2886. [PMID: 38138031 PMCID: PMC10745797 DOI: 10.3390/microorganisms11122886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/11/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Extreme environments, including hypersaline pools, often serve as biogeographical islands. Putative colonizers would need to survive transport across potentially vast distances of inhospitable terrain. Hyperhalophiles, in particular, are often highly sensitive to osmotic pressure. Here, we assessed whether hyperhalophiles are capable of rapidly colonizing an isolated and sterile hypersaline pool and the order of succession of the ensuing colonizers. A sterile and isolated 1 m3 hypersaline mesocosm pool was constructed on a rooftop in Charleston, SC. Within months, numerous halophilic lineages successfully navigated the 20 m elevation and the greater than 1 km distance from the ocean shore, and a vibrant halophilic community was established. All told, in a nine-month period, greater than a dozen halophilic genera colonized the pool. The first to arrive were members of the Haloarchaeal genus Haloarcula. Like a weed, the Haloarcula rapidly colonized and dominated the mesocosm community but were later supplanted by other hyperhalophilic genera. As a possible source of long-distance inoculum, both aerosol and water column samples were obtained from the Great Salt Lake and its immediate vicinity. Members of the same genus, Haloarcula, were preferentially enriched in the aerosol sample relative to the water column samples. Therefore, it appears that a diverse array of hyperhalophiles are capable of surviving aeolian long-distance transport and that some lineages, in particular, have possibly adapted to that strategy.
Collapse
Affiliation(s)
- Matthew E. Rhodes
- Department of Biology, College of Charleston, Charleston, SC 29424, USA; (A.D.P.); (H.G.)
| | - Allyson D. Pace
- Department of Biology, College of Charleston, Charleston, SC 29424, USA; (A.D.P.); (H.G.)
| | - Menny M. Benjamin
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Heather Ghent
- Department of Biology, College of Charleston, Charleston, SC 29424, USA; (A.D.P.); (H.G.)
| | - Katherine S. Dawson
- Institute of Earth, Ocean, and Atmospheric Science, Rutgers University, Piscataway, NJ 08854, USA;
| |
Collapse
|
6
|
Amato P, Mathonat F, Nuñez Lopez L, Péguilhan R, Bourhane Z, Rossi F, Vyskocil J, Joly M, Ervens B. The aeromicrobiome: the selective and dynamic outer-layer of the Earth's microbiome. Front Microbiol 2023; 14:1186847. [PMID: 37260685 PMCID: PMC10227452 DOI: 10.3389/fmicb.2023.1186847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/24/2023] [Indexed: 06/02/2023] Open
Abstract
The atmosphere is an integral component of the Earth's microbiome. Abundance, viability, and diversity of microorganisms circulating in the air are determined by various factors including environmental physical variables and intrinsic and biological properties of microbes, all ranging over large scales. The aeromicrobiome is thus poorly understood and difficult to predict due to the high heterogeneity of the airborne microorganisms and their properties, spatially and temporally. The atmosphere acts as a highly selective dispersion means on large scales for microbial cells, exposing them to a multitude of physical and chemical atmospheric processes. We provide here a brief critical review of the current knowledge and propose future research directions aiming at improving our comprehension of the atmosphere as a biome.
Collapse
Affiliation(s)
- Pierre Amato
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont-Ferrand (ICCF), Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hou J, Fujiyoshi S, Perera IU, Nishiuchi Y, Nakajima M, Ogura D, Yarimizu K, Maruyama F. Perspectives on Sampling and New Generation Sequencing Methods for Low-Biomass Bioaerosols in Atmospheric Environments. J Indian Inst Sci 2023; 103:1-11. [PMID: 37362849 PMCID: PMC10176311 DOI: 10.1007/s41745-023-00380-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/13/2023] [Indexed: 06/28/2023]
Abstract
Bioaerosols play essential roles in the atmospheric environment and can affect human health. With a few exceptions (e.g., farm or rainforest environments), bioaerosol samples from wide-ranging environments typically have a low biomass, including bioaerosols from indoor environments (e.g., residential homes, offices, or hospitals), outdoor environments (e.g., urban or rural air). Some specialized environments (e.g., clean rooms, the Earth's upper atmosphere, or the international space station) have an ultra-low-biomass. This review discusses the primary sources of bioaerosols and influencing factors, the recent advances in air sampling techniques and the new generation sequencing (NGS) methods used for the characterization of low-biomass bioaerosol communities, and challenges in terms of the bias introduced by different air samplers when samples are subjected to NGS analysis with a focus on ultra-low biomass. High-volume filter-based or liquid-based air samplers compatible with NGS analysis are required to improve the bioaerosol detection limits for microorganisms. A thorough understanding of the performance and outcomes of bioaerosol sampling using NGS methods and a robust protocol for aerosol sample treatment for NGS analysis are needed. Advances in NGS techniques and bioinformatic tools will contribute toward the precise high-throughput identification of the taxonomic profiles of bioaerosol communities and the determination of their functional and ecological attributes in the atmospheric environment. In particular, long-read amplicon sequencing, viability PCR, and meta-transcriptomics are promising techniques for discriminating and detecting pathogenic microorganisms that may be active and infectious in bioaerosols and, therefore, pose a threat to human health. Supplementary Information The online version contains supplementary material available at 10.1007/s41745-023-00380-x.
Collapse
Affiliation(s)
- Jianjian Hou
- Microbial Genomics and Ecology, Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Hiroshima, 739-0046 Japan
| | - So Fujiyoshi
- Microbial Genomics and Ecology, Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Hiroshima, 739-0046 Japan
- Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Hiroshima, 739-0046 Japan
| | - Ishara Uhanie Perera
- Microbial Genomics and Ecology, Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Hiroshima, 739-0046 Japan
| | - Yukiko Nishiuchi
- Microbial Genomics and Ecology, Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Hiroshima, 739-0046 Japan
| | - Makiko Nakajima
- Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Hiroshima, 739-0046 Japan
- Department of Architectural Engineering, Faculty of Engineering, Hiroshima Institute of Technology, Hiroshima, 731-5193 Japan
| | - Daisuke Ogura
- Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Hiroshima, 739-0046 Japan
- Department of Architecture and Architectural Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8540 Japan
| | - Kyoko Yarimizu
- Microbial Genomics and Ecology, Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Hiroshima, 739-0046 Japan
| | - Fumito Maruyama
- Microbial Genomics and Ecology, Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, Hiroshima, 739-0046 Japan
- Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Hiroshima, 739-0046 Japan
| |
Collapse
|
8
|
Archer SDJ, Lee KC, Caruso T, Alcami A, Araya JG, Cary SC, Cowan DA, Etchebehere C, Gantsetseg B, Gomez-Silva B, Hartery S, Hogg ID, Kansour MK, Lawrence T, Lee CK, Lee PKH, Leopold M, Leung MHY, Maki T, McKay CP, Al Mailem DM, Ramond JB, Rastrojo A, Šantl-Temkiv T, Sun HJ, Tong X, Vandenbrink B, Warren-Rhodes KA, Pointing SB. Contribution of soil bacteria to the atmosphere across biomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162137. [PMID: 36775167 DOI: 10.1016/j.scitotenv.2023.162137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/20/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
The dispersion of microorganisms through the atmosphere is a continual and essential process that underpins biogeography and ecosystem development and function. Despite the ubiquity of atmospheric microorganisms globally, specific knowledge of the determinants of atmospheric microbial diversity at any given location remains unresolved. Here we describe bacterial diversity in the atmospheric boundary layer and underlying soil at twelve globally distributed locations encompassing all major biomes, and characterise the contribution of local and distant soils to the observed atmospheric community. Across biomes the diversity of bacteria in the atmosphere was negatively correlated with mean annual precipitation but positively correlated to mean annual temperature. We identified distinct non-randomly assembled atmosphere and soil communities from each location, and some broad trends persisted across biomes including the enrichment of desiccation and UV tolerant taxa in the atmospheric community. Source tracking revealed that local soils were more influential than distant soil sources in determining observed diversity in the atmosphere, with more emissive semi-arid and arid biomes contributing most to signatures from distant soil. Our findings highlight complexities in the atmospheric microbiota that are relevant to understanding regional and global ecosystem connectivity.
Collapse
Affiliation(s)
- Stephen D J Archer
- School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Kevin C Lee
- School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Tancredi Caruso
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Antonio Alcami
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Jonathan G Araya
- Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - S Craig Cary
- School of Science, University of Waikato, Hamilton, New Zealand
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Claudia Etchebehere
- Biological Research Institute Clemente Estable, Ministry of Education, Montevideo, Uruguay
| | | | - Benito Gomez-Silva
- Departamento Biomédico and CeBiB, Universidad de Antofagasta, Antofagasta, Chile
| | - Sean Hartery
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Ian D Hogg
- School of Science, University of Waikato, Hamilton, New Zealand; Canadian High Arctic Research Station, Cambridge Bay, Nunavut, Canada
| | - Mayada K Kansour
- Department of Biological Sciences, Kuwait University, Kuwait City, Kuwait
| | - Timothy Lawrence
- School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Charles K Lee
- School of Science, University of Waikato, Hamilton, New Zealand
| | - Patrick K H Lee
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Matthias Leopold
- UWA School of Agriculture and Environment, University of Western Australia, Perth, Australia
| | - Marcus H Y Leung
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Teruya Maki
- Department of Life Sciences, Kindai University, Osaka, Japan
| | | | - Dina M Al Mailem
- Department of Biological Sciences, Kuwait University, Kuwait City, Kuwait
| | - Jean-Baptiste Ramond
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa; Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alberto Rastrojo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Henry J Sun
- Desert Research Institute, Las Vegas, NV, USA
| | - Xinzhao Tong
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China; Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Bryan Vandenbrink
- Canadian High Arctic Research Station, Cambridge Bay, Nunavut, Canada
| | | | - Stephen B Pointing
- Yale-NUS College, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore; Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
9
|
Casamayor EO, Cáliz J, Triadó-Margarit X, Pointing SB. Understanding atmospheric intercontinental dispersal of harmful microorganisms. Curr Opin Biotechnol 2023; 81:102945. [PMID: 37087840 DOI: 10.1016/j.copbio.2023.102945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023]
Abstract
The atmosphere is a major route for microbial intercontinental dispersal, including harmful microorganisms, antibiotic resistance genes, and allergens, with strong implications in ecosystem functioning and global health. Long-distance dispersal is facilitated by air movement at higher altitudes in the free troposphere and is affected by anthropogenic forcing, climate change, and by the general atmospheric circulation, mainly in the intertropical convergence zone. The survival of microorganisms during atmospheric transport and their remote invasive potential are fundamental questions, but data are scarce. Extreme atmospheric conditions represent a challenge to survival that requires specific adaptive strategies, and recovery of air samples from the high altitudes relevant to study harmful microorganisms can be challenging. In this paper, we highlight the scope of the problem, identify challenges and knowledge gaps, and offer a roadmap for improved understanding of intercontinental microbial dispersal and their outcomes. Greater understanding of long-distance dispersal requires research focus on local factors that affect emissions, coupled with conditions influencing transport and survival at high altitudes, and eventual deposition at sink locations.
Collapse
Affiliation(s)
- Emilio O Casamayor
- Ecology of the Global Microbiome, Center for Advanced Studies of Blanes-CSIC, E-17300 Blanes, Spain.
| | - Joan Cáliz
- Ecology of the Global Microbiome, Center for Advanced Studies of Blanes-CSIC, E-17300 Blanes, Spain
| | - Xavier Triadó-Margarit
- Ecology of the Global Microbiome, Center for Advanced Studies of Blanes-CSIC, E-17300 Blanes, Spain
| | - Stephen B Pointing
- Yale-NUS College & Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
10
|
Rossi F, Péguilhan R, Turgeon N, Veillette M, Baray JL, Deguillaume L, Amato P, Duchaine C. Quantification of antibiotic resistance genes (ARGs) in clouds at a mountain site (puy de Dôme, central France). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161264. [PMID: 36587700 DOI: 10.1016/j.scitotenv.2022.161264] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/19/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Antibiotic resistance in bacteria is becoming a major sanitary concern worldwide. The extensive use of large quantities of antibiotics to sustain human activity has led to the rapid acquisition and maintenance of antibiotic resistant genes (ARGs) in bacteria and to their spread into the environment. Eventually, these can be disseminated over long distances by atmospheric transport. Here, we assessed the presence of ARGs in clouds as an indicator of long-distance travel potential of antibiotic resistance in the atmosphere. We hypothesized that a variety of ARGs can reach the altitude of clouds mainly located within the free troposphere. Once incorporated in the atmosphere, they are efficiently transported and their respective concentrations should differ depending on the sources and the geographical origin of the air masses. We deployed high-flow rate impingers and collected twelve clouds between September 2019 and October 2021 at the meteorological station of the puy de Dôme summit (1465 m a.s.l., France). Total airborne bacteria concentration was assessed by flow cytometry, and ARGs subtypes of the main families of antibiotic resistance (quinolone, sulfonamide, tetracycline; glycopeptide, aminoglycoside, β-lactamase, macrolide) including one mobile genetic element (transposase) were quantified by qPCR. Our results indicate the presence of 29 different ARGs' subtypes at concentrations ranging from 1.01 × 103 to 1.61 × 104 copies m-3 of air. Clear distinctions could be observed between clouds in air masses transported over marine areas (Atlantic Ocean) and clouds influenced by continental surfaces. Specifically, quinolones (mostly qepA) resistance genes were prevalent in marine clouds (54 % of the total ARGs on average), whereas higher contributions of sulfonamide, tetracycline; glycopeptide, β-lactamase and macrolide were found in continental clouds. This study constitutes the first evidence for the presence of microbial ARGs in clouds at concentrations comparable to other natural environments. This highlights the atmosphere as routes for the dissemination of ARGs at large scale.
Collapse
Affiliation(s)
- Florent Rossi
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada; Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, Quebec, Canada
| | - Raphaëlle Péguilhan
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Nathalie Turgeon
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada; Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, Quebec, Canada
| | - Marc Veillette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada; Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, Quebec, Canada
| | - Jean-Luc Baray
- Université Clermont Auvergne, CNRS, Observatoire de Physique du Globe de Clermont-Ferrand, UAR 833, F-63000 Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique, UMR 6016, F-63000 Clermont-Ferrand, France
| | - Laurent Deguillaume
- Université Clermont Auvergne, CNRS, Observatoire de Physique du Globe de Clermont-Ferrand, UAR 833, F-63000 Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique, UMR 6016, F-63000 Clermont-Ferrand, France
| | - Pierre Amato
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Caroline Duchaine
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada; Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, Quebec, Canada.
| |
Collapse
|
11
|
Comparison of Atmospheric and Lithospheric Culturable Bacterial Communities from Two Dissimilar Active Volcanic Sites, Surtsey Island and Fimmvörðuháls Mountain in Iceland. Microorganisms 2023; 11:microorganisms11030665. [PMID: 36985243 PMCID: PMC10057085 DOI: 10.3390/microorganisms11030665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Surface microbes are aerosolized into the atmosphere by wind and events such as dust storms and volcanic eruptions. Before they reach their deposition site, they experience stressful atmospheric conditions which preclude the successful dispersal of a large fraction of cells. In this study, our objectives were to assess and compare the atmospheric and lithospheric bacterial cultivable diversity of two geographically different Icelandic volcanic sites: the island Surtsey and the Fimmvörðuháls mountain, to predict the origin of the culturable microbes from these sites, and to select airborne candidates for further investigation. Using a combination of MALDI Biotyper analysis and partial 16S rRNA gene sequencing, a total of 1162 strains were identified, belonging to 72 species affiliated to 40 genera with potentially 26 new species. The most prevalent phyla identified were Proteobacteria and Actinobacteria. Statistical analysis showed significant differences between atmospheric and lithospheric microbial communities, with distinct communities in Surtsey’s air. By combining the air mass back trajectories and the analysis of the closest representative species of our isolates, we concluded that 85% of our isolates came from the surrounding environments and only 15% from long distances. The taxonomic proportions of the isolates were reflected by the site’s nature and location.
Collapse
|
12
|
George PBL, Rossi F, St-Germain MW, Amato P, Badard T, Bergeron MG, Boissinot M, Charette SJ, Coleman BL, Corbeil J, Culley AI, Gaucher ML, Girard M, Godbout S, Kirychuk SP, Marette A, McGeer A, O’Shaughnessy PT, Parmley EJ, Simard S, Reid-Smith RJ, Topp E, Trudel L, Yao M, Brassard P, Delort AM, Larios AD, Létourneau V, Paquet VE, Pedneau MH, Pic É, Thompson B, Veillette M, Thaler M, Scapino I, Lebeuf M, Baghdadi M, Castillo Toro A, Cayouette AB, Dubois MJ, Durocher AF, Girard SB, Diaz AKC, Khalloufi A, Leclerc S, Lemieux J, Maldonado MP, Pilon G, Murphy CP, Notling CA, Ofori-Darko D, Provencher J, Richer-Fortin A, Turgeon N, Duchaine C. Antimicrobial Resistance in the Environment: Towards Elucidating the Roles of Bioaerosols in Transmission and Detection of Antibacterial Resistance Genes. Antibiotics (Basel) 2022; 11:974. [PMID: 35884228 PMCID: PMC9312183 DOI: 10.3390/antibiotics11070974] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
Antimicrobial resistance (AMR) is continuing to grow across the world. Though often thought of as a mostly public health issue, AMR is also a major agricultural and environmental problem. As such, many researchers refer to it as the preeminent One Health issue. Aerial transport of antimicrobial-resistant bacteria via bioaerosols is still poorly understood. Recent work has highlighted the presence of antibiotic resistance genes in bioaerosols. Emissions of AMR bacteria and genes have been detected from various sources, including wastewater treatment plants, hospitals, and agricultural practices; however, their impacts on the broader environment are poorly understood. Contextualizing the roles of bioaerosols in the dissemination of AMR necessitates a multidisciplinary approach. Environmental factors, industrial and medical practices, as well as ecological principles influence the aerial dissemination of resistant bacteria. This article introduces an ongoing project assessing the presence and fate of AMR in bioaerosols across Canada. Its various sub-studies include the assessment of the emissions of antibiotic resistance genes from many agricultural practices, their long-distance transport, new integrative methods of assessment, and the creation of dissemination models over short and long distances. Results from sub-studies are beginning to be published. Consequently, this paper explains the background behind the development of the various sub-studies and highlight their shared aspects.
Collapse
Affiliation(s)
- Paul B. L. George
- Département de Médecine Moléculaire, Université Laval, Quebec City, QC G1V 0A6, Canada; (P.B.L.G.); (J.C.); (I.S.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
| | - Florent Rossi
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Institut de Chimie de Clermont-Ferrand, SIGMA Clermont, CNRS, Université Clermont-Auvergne, 63178 Clermont-Ferrand, France; (P.A.); (A.-M.D.)
| | - Magali-Wen St-Germain
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| | - Pierre Amato
- Institut de Chimie de Clermont-Ferrand, SIGMA Clermont, CNRS, Université Clermont-Auvergne, 63178 Clermont-Ferrand, France; (P.A.); (A.-M.D.)
| | - Thierry Badard
- Centre de Recherche en Données et Intelligence Géospatiales (CRDIG), Quebec City, QC G1V 0A6, Canada;
| | - Michel G. Bergeron
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies Infectieuses et Immunitaires, Quebec City, QC G1V 4G2, Canada; (M.G.B.); (M.B.); (É.P.)
| | - Maurice Boissinot
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies Infectieuses et Immunitaires, Quebec City, QC G1V 4G2, Canada; (M.G.B.); (M.B.); (É.P.)
| | - Steve J. Charette
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Brenda L. Coleman
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada; (B.L.C.); (A.M.)
| | - Jacques Corbeil
- Département de Médecine Moléculaire, Université Laval, Quebec City, QC G1V 0A6, Canada; (P.B.L.G.); (J.C.); (I.S.)
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies Infectieuses et Immunitaires, Quebec City, QC G1V 4G2, Canada; (M.G.B.); (M.B.); (É.P.)
| | - Alexander I. Culley
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Marie-Lou Gaucher
- Research Chair in Meat Safety, Département de Pathologie et Microbiologie, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | | | - Stéphane Godbout
- Institut de Recherche et de Développement en Agroenvironnement (IRDA), Quebec City, QC G1P 3W8, Canada; (S.G.); (A.D.L.); (A.K.C.D.)
- Département des Sols et de Génie Agroalimentaire, Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Shelley P. Kirychuk
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada; (S.P.K.); (B.T.); (A.C.T.); (C.A.N.)
| | - André Marette
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
- Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Allison McGeer
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada; (B.L.C.); (A.M.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Patrick T. O’Shaughnessy
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA 52246, USA;
| | - E. Jane Parmley
- Canadian Wildlife Health Cooperative, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Department of Population Medicine, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.J.R.-S.); (M.P.M.)
| | - Serge Simard
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| | - Richard J. Reid-Smith
- Department of Population Medicine, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.J.R.-S.); (M.P.M.)
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1G 3W4, Canada; (C.P.M.); (D.O.-D.)
| | - Edward Topp
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON N5V 4T3, Canada;
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Luc Trudel
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China;
| | - Patrick Brassard
- Département des Sols et de Génie Agroalimentaire, Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Anne-Marie Delort
- Institut de Chimie de Clermont-Ferrand, SIGMA Clermont, CNRS, Université Clermont-Auvergne, 63178 Clermont-Ferrand, France; (P.A.); (A.-M.D.)
| | - Araceli D. Larios
- Institut de Recherche et de Développement en Agroenvironnement (IRDA), Quebec City, QC G1P 3W8, Canada; (S.G.); (A.D.L.); (A.K.C.D.)
- Tecnológico Nacional de México/ITS de Perote, Perote 91270, Mexico
| | - Valérie Létourneau
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| | - Valérie E. Paquet
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Marie-Hélène Pedneau
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| | - Émilie Pic
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies Infectieuses et Immunitaires, Quebec City, QC G1V 4G2, Canada; (M.G.B.); (M.B.); (É.P.)
| | - Brooke Thompson
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada; (S.P.K.); (B.T.); (A.C.T.); (C.A.N.)
| | - Marc Veillette
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| | - Mary Thaler
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Ilaria Scapino
- Département de Médecine Moléculaire, Université Laval, Quebec City, QC G1V 0A6, Canada; (P.B.L.G.); (J.C.); (I.S.)
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| | - Maria Lebeuf
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| | - Mahsa Baghdadi
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| | - Alejandra Castillo Toro
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada; (S.P.K.); (B.T.); (A.C.T.); (C.A.N.)
| | - Amélia Bélanger Cayouette
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| | - Marie-Julie Dubois
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
- Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Alicia F. Durocher
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Sarah B. Girard
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Andrea Katherín Carranza Diaz
- Institut de Recherche et de Développement en Agroenvironnement (IRDA), Quebec City, QC G1P 3W8, Canada; (S.G.); (A.D.L.); (A.K.C.D.)
- Département des Sols et de Génie Agroalimentaire, Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Asmaâ Khalloufi
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Research Chair in Meat Safety, Département de Pathologie et Microbiologie, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Samantha Leclerc
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| | - Joanie Lemieux
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies Infectieuses et Immunitaires, Quebec City, QC G1V 4G2, Canada; (M.G.B.); (M.B.); (É.P.)
| | - Manuel Pérez Maldonado
- Department of Population Medicine, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.J.R.-S.); (M.P.M.)
| | - Geneviève Pilon
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Colleen P. Murphy
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1G 3W4, Canada; (C.P.M.); (D.O.-D.)
| | - Charly A. Notling
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada; (S.P.K.); (B.T.); (A.C.T.); (C.A.N.)
| | - Daniel Ofori-Darko
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1G 3W4, Canada; (C.P.M.); (D.O.-D.)
| | - Juliette Provencher
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Annabelle Richer-Fortin
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| | - Nathalie Turgeon
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| | - Caroline Duchaine
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| |
Collapse
|
13
|
Jensen LZ, Glasius M, Gryning SE, Massling A, Finster K, Šantl-Temkiv T. Seasonal Variation of the Atmospheric Bacterial Community in the Greenlandic High Arctic Is Influenced by Weather Events and Local and Distant Sources. Front Microbiol 2022; 13:909980. [PMID: 35879956 PMCID: PMC9307761 DOI: 10.3389/fmicb.2022.909980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
The Arctic is a hot spot for climate change with potentially large consequences on a global scale. Aerosols, including bioaerosols, are important players in regulating the heat balance through direct interaction with sunlight and indirectly, through inducing cloud formation. Airborne bacteria are the major bioaerosols with some species producing the most potent ice nucleating compounds known, which are implicated in the formation of ice in clouds. Little is known about the numbers and dynamics of airborne bacteria in the Arctic and even less about their seasonal variability. We collected aerosol samples and wet deposition samples in spring 2015 and summer 2016, at the Villum Research Station in Northeast Greenland. We used amplicon sequencing and qPCR targeting the 16S rRNA genes to assess the quantities and composition of the DNA and cDNA-level bacterial community. We found a clear seasonal variation in the atmospheric bacterial community, which is likely due to variable sources and meteorology. In early spring, the atmospheric bacterial community was dominated by taxa originating from temperate and Subarctic regions and arriving at the sampling site through long-range transport. We observed an efficient washout of the aerosolized bacterial cells during a snowstorm, which was followed by very low concentrations of bacteria in the atmosphere during the consecutive 4 weeks. We suggest that this is because in late spring, the long-range transport ceased, and the local sources which comprised only of ice and snow surfaces were weak resulting in low bacterial concentrations. This was supported by observed changes in the chemical composition of aerosols. In summer, the air bacterial community was confined to local sources such as soil, plant material and melting sea-ice. Aerosolized and deposited Cyanobacteria in spring had a high activity potential, implying their activity in the atmosphere or in surface snow. Overall, we show how the composition of bacterial aerosols in the high Arctic varies on a seasonal scale, identify their potential sources, demonstrate how their community sizes varies in time, investigate their diversity and determine their activity potential during and post Arctic haze.
Collapse
Affiliation(s)
- Lasse Z. Jensen
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
- Arctic Research Centre, Aarhus University, Aarhus, Denmark
- iCLIMATE Aarhus University Interdisciplinary Centre for Climate Change, Roskilde, Denmark
| | | | - Sven-Erik Gryning
- DTU Wind and Energy Systems, Technical University of Denmark, Roskilde, Denmark
| | - Andreas Massling
- iCLIMATE Aarhus University Interdisciplinary Centre for Climate Change, Roskilde, Denmark
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Kai Finster
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
- Department of Physics and Astronomy, Stellar Astrophysics Centre, Aarhus University, Aarhus, Denmark
| | - Tina Šantl-Temkiv
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark
- Arctic Research Centre, Aarhus University, Aarhus, Denmark
- iCLIMATE Aarhus University Interdisciplinary Centre for Climate Change, Roskilde, Denmark
- Department of Physics and Astronomy, Stellar Astrophysics Centre, Aarhus University, Aarhus, Denmark
- *Correspondence: Tina Šantl-Temkiv,
| |
Collapse
|
14
|
Analysis of Environmental and Pathogenic Bacteria Attached to Aerosol Particles Size-Separated with a Metal Mesh Device. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095773. [PMID: 35565166 PMCID: PMC9099785 DOI: 10.3390/ijerph19095773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023]
Abstract
Metal mesh devices (MMDs) are novel materials that enable the precise separation of particles by size. Structurally, MMDs consist of a periodic arrangement of square apertures of characteristic shapes and sizes on a thin nickel membrane. The present study describes the separation of aerosol particles using palm-top-size collection devices equipped with three types of MMDs differing in pore size. Aerosols were collected at a farm located in the suburbs of Nairobi, Kenya; aerosol particles were isolated, and pathogenic bacteria were identified in this microflora by next-generation sequencing analysis. The composition of the microflora in aerosol particles was found to depend on particle size. Gene fragments were obtained from the collected aerosols by PCR using primers specific for the genus Mycobacterium. This analysis showed that Mycobacterium obuense, a non-tuberculous species of mycobacteria that causes lung diseases, was present in these aerosols. These findings showed that application of this MMD analytical protocol to aerosol particles can facilitate the investigation of airborne pathogenic bacteria.
Collapse
|
15
|
Lynggaard C, Bertelsen MF, Jensen CV, Johnson MS, Frøslev TG, Olsen MT, Bohmann K. Airborne environmental DNA for terrestrial vertebrate community monitoring. Curr Biol 2022; 32:701-707.e5. [PMID: 34995490 PMCID: PMC8837273 DOI: 10.1016/j.cub.2021.12.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/11/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022]
Abstract
Biodiversity monitoring at the community scale is a critical element of assessing and studying species distributions, ecology, diversity, and movements, and it is key to understanding and tracking environmental and anthropogenic effects on natural ecosystems.1, 2, 3, 4 Vertebrates in terrestrial ecosystems are experiencing extinctions and declines in both population numbers and sizes due to increasing threats from human activities and environmental change.5, 6, 7, 8 Terrestrial vertebrate monitoring using existing methods is generally costly and laborious, and although environmental DNA (eDNA) is becoming the tool of choice to assess biodiversity, few sample types effectively capture terrestrial vertebrate diversity. We hypothesized that eDNA captured from air could allow straightforward collection and characterization of terrestrial vertebrate communities. We filtered air at three localities in the Copenhagen Zoo: a stable, outside between the outdoor enclosures, and in the Rainforest House. Through metabarcoding of airborne eDNA, we detected 49 vertebrate species spanning 26 orders and 37 families: 30 mammal, 13 bird, 4 fish, 1 amphibian, and 1 reptile species. These spanned animals kept at the zoo, species occurring in the zoo surroundings, and species used as feed in the zoo. The detected species comprise a range of taxonomic orders and families, sizes, behaviors, and abundances. We found shorter distance to the air sampling device and higher animal biomass to increase the probability of detection. We hereby show that airborne eDNA can offer a fundamentally new way of studying and monitoring terrestrial communities. 49 vertebrate species detected through metabarcoding of airborne eDNA from the zoo Detections included 30 mammal, 13 bird, 4 fish, 1 amphibian, and 1 reptile species 6 to 21 vertebrate species were detected per air filtering sample Shorter geographical distance and higher biomass increased probability of detection
Collapse
Affiliation(s)
- Christina Lynggaard
- Section for Evolutionary Genomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark.
| | | | - Casper V Jensen
- Department of Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Matthew S Johnson
- Department of Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark; Airlabs Denmark, 2200 Copenhagen, Denmark
| | - Tobias Guldberg Frøslev
- Section for GeoGenetics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Morten Tange Olsen
- Section for Evolutionary Genomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Kristine Bohmann
- Section for Evolutionary Genomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark.
| |
Collapse
|
16
|
Péguilhan R, Besaury L, Rossi F, Enault F, Baray JL, Deguillaume L, Amato P. Rainfalls sprinkle cloud bacterial diversity while scavenging biomass. FEMS Microbiol Ecol 2021; 97:6420242. [PMID: 34734249 DOI: 10.1093/femsec/fiab144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/27/2021] [Indexed: 11/15/2022] Open
Abstract
Bacteria circulate in the atmosphere, through clouds and precipitation to surface ecosystems. Here, we conducted a coordinated study of bacteria assemblages in clouds and precipitation at two sites distant of ∼800 m in elevation in a rural vegetated area around puy de Dôme Mountain, France, and analysed them in regard to meteorological, chemical and air masses' history data. In both clouds and precipitation, bacteria generally associated with vegetation or soil dominated. Elevated ATP-to-cell ratio in clouds compared with precipitation suggested a higher proportion of viable cells and/or specific biological processes. The increase of bacterial cell concentration from clouds to precipitation indicated strong below-cloud scavenging. Using ions as tracers, we derive that 0.2 to 25.5% of the 1.1 × 107 to 6.6 × 108 bacteria cell/m2/h1 deposited with precipitation originated from the source clouds. Yet, the relative species richness decreased with the proportion of inputs from clouds, pointing them as sources of distant microbial diversity. Biodiversity profiles, thus, differed between clouds and precipitation in relation with distant/local influencing sources, and potentially with bacterial phenotypic traits. Notably Undibacterium, Bacillus and Staphylococcus were more represented in clouds, while epiphytic bacteria such as Massilia, Sphingomonas, Rhodococcus and Pseudomonas were enriched in precipitation.
Collapse
Affiliation(s)
- Raphaëlle Péguilhan
- Université Clermont Auvergne, CNRS, SIGMA Clermont , ICCF, F-63000 CLERMONT-FERRAND, France
| | - Ludovic Besaury
- Université Clermont Auvergne, CNRS, SIGMA Clermont , ICCF, F-63000 CLERMONT-FERRAND, France
| | - Florent Rossi
- Université Clermont Auvergne, CNRS, SIGMA Clermont , ICCF, F-63000 CLERMONT-FERRAND, France
| | - François Enault
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, F-63000 CLERMONT-FERRAND, France
| | - Jean-Luc Baray
- Université Clermont Auvergne, CNRS, Observatoire de Physique du Globe de Clermont-Ferrand , UMS 833, F-63000 CLERMONT-FERRAND, France.,Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique , UMR 6016, F-63000 CLERMONT-FERRAND, France
| | - Laurent Deguillaume
- Université Clermont Auvergne, CNRS, Observatoire de Physique du Globe de Clermont-Ferrand , UMS 833, F-63000 CLERMONT-FERRAND, France.,Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique , UMR 6016, F-63000 CLERMONT-FERRAND, France
| | - Pierre Amato
- Université Clermont Auvergne, CNRS, SIGMA Clermont , ICCF, F-63000 CLERMONT-FERRAND, France
| |
Collapse
|
17
|
Li M, Wang L, Qi W, Liu Y, Lin J. Challenges and Perspectives for Biosensing of Bioaerosol Containing Pathogenic Microorganisms. MICROMACHINES 2021; 12:798. [PMID: 34357208 PMCID: PMC8307108 DOI: 10.3390/mi12070798] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 12/20/2022]
Abstract
As an important route for disease transmission, bioaerosols have received increasing attention. In the past decades, many efforts were made to facilitate the development of bioaerosol monitoring; however, there are still some important challenges in bioaerosol collection and detection. Thus, recent advances in bioaerosol collection (such as sedimentation, filtration, centrifugation, impaction, impingement, and microfluidics) and detection methods (such as culture, molecular biological assay, and immunological assay) were summarized in this review. Besides, the important challenges and perspectives for bioaerosol biosensing were also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Jianhan Lin
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China; (M.L.); (L.W.); (W.Q.); (Y.L.)
| |
Collapse
|
18
|
Angen Ø, Nielsen MW, Løfstrøm P, Larsen AR, Hendriksen NB. Airborne Spread of Methicillin Resistant Staphylococcus aureus From a Swine Farm. Front Vet Sci 2021; 8:644729. [PMID: 34150881 PMCID: PMC8211894 DOI: 10.3389/fvets.2021.644729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Spread of livestock-associated methicillin resistant Staphylococcus aureus (LA-MRSA) to farmworkers has been recognized as a risk when working in LA-MRSA positive stables, due to LA-MRSA being present on airborne dust particles. Based on this, airborne spread of LA-MRSA through stable vents is a concern that is addressed in this study. The aim of the investigation was to quantify the airborne spread of LA-MRSA from a MRSA positive swine farm. In order to achieve this, a method for sampling large volumes of air was applied. The results were compared to meteorological data and bacteriological investigation of samples from the air inside the swine barn, soil outside the farm, and nasal samples from the individuals participating in the sampling process. MRSA was detected up to 300 m (the maximal measuring distance) from the swine farm in the air but only at low levels at distances above 50 meters (0.085 CFU/m3 at a distance of 50 m in the wind plume). MRSA was detected in sock samples obtained at the soil surfaces up to 400 m (the maximal measuring distance) from the farm building. The proportion of MRSA positive soil samples decreased from ~80 to 30% with increasing distance from the farm. A total of 25 human nasal samples were sampled after the farm visits after the participants had stayed in the surroundings of the farm for an average of 10.5 h. When leaving the farm, only two of the samples (8%) were LA-MRSA-positive both obtained from one individual who was the one who had sampled the ventilation shafts. In conclusion, airborne spread of MRSA from swine farms does not seem to be an important route for human contamination for individuals staying a whole working day outside a swine farm.
Collapse
Affiliation(s)
- Øystein Angen
- Department of Bacteriology, Parasitology, and Mycology, Statens Serum Institut, Copenhagen, Denmark
| | - Martin Weiss Nielsen
- Department of Microbiology and Production, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Per Løfstrøm
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Anders Rhod Larsen
- Department of Bacteriology, Parasitology, and Mycology, Statens Serum Institut, Copenhagen, Denmark
| | | |
Collapse
|
19
|
Rosa LH, Pinto OHB, Šantl-Temkiv T, Convey P, Carvalho-Silva M, Rosa CA, Câmara PEAS. DNA metabarcoding of fungal diversity in air and snow of Livingston Island, South Shetland Islands, Antarctica. Sci Rep 2020; 10:21793. [PMID: 33311553 PMCID: PMC7733504 DOI: 10.1038/s41598-020-78630-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/19/2020] [Indexed: 01/04/2023] Open
Abstract
We assessed fungal diversity present in air and freshly deposited snow samples obtained from Livingston Island, Antarctica, using DNA metabarcoding through high throughput sequencing (HTS). A total of 740 m3 of air were pumped through a 0.22 µm membrane. Snow obtained shortly after deposition was kept at room temperature and yielded 3.760 L of water, which was filtered using Sterivex membranes of 0.22 µm mesh size. The total DNA present was extracted and sequenced. We detected 171 fungal amplicon sequence variants (ASVs), 70 from the air and 142 from the snow. They were dominated by the phyla Ascomycota, Basidiomycota, Mortierellomycota and Mucoromycota. Pseudogymnoascus, Cladosporium, Mortierella and Penicillium sp. were the most dominant ASVs detected in the air in rank order. In snow, Cladosporium, Pseudogymnoascus, Penicillium, Meyerozyma, Lecidea, Malassezia, Hanseniaspora, Austroplaca, Mortierella, Rhodotorula, Penicillium, Thelebolus, Aspergillus, Poaceicola, Glarea and Lecanora were the dominant ASVs present. In general, the two fungal assemblages displayed high diversity, richness, and dominance indices, with the assemblage found in snow having the highest diversity indices. Of the total fungal ASVs detected, 29 were only present in the air sample and 101 in the snow sample, with only 41 present in both samples; however, when only the dominant taxa from both samples were compared none occurred only in the air and, among the rare portion, 26 taxa occurred in both air and snow. Application of HTS revealed the presence of a more diverse fungal community in the air and snow of Livingston Island in comparison with studies using traditional isolation methods. The assemblages were dominated by cold-adapted and cosmopolitan fungal taxa, including members of the genera Pseudogymnoascus, Malassezia and Rhodotorula, which include some taxa reported as opportunistic. Our results support the hypothesis that the presence of microbiota in the airspora indicates the possibility of dispersal around Antarctica in the air column. However, further aeromycology studies are required to understand the dynamics of fungal dispersal within and beyond Antarctica.
Collapse
Affiliation(s)
- Luiz Henrique Rosa
- Laboratório de Microbiologia Polar e Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P.O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil.
| | | | - Tina Šantl-Temkiv
- Department of Bioscience, Aarhus University, Building 1540 Office 124, 116 Ny Munkegade, 8000, Aarhus C, Denmark
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | | | - Carlos Augusto Rosa
- Laboratório de Microbiologia Polar e Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P.O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil
| | | |
Collapse
|
20
|
Alsved M, Widell A, Dahlin H, Karlson S, Medstrand P, Löndahl J. Aerosolization and recovery of viable murine norovirus in an experimental setup. Sci Rep 2020; 10:15941. [PMID: 32994471 PMCID: PMC7525472 DOI: 10.1038/s41598-020-72932-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 09/09/2020] [Indexed: 01/29/2023] Open
Abstract
Noroviruses are the major cause for viral acute gastroenteritis in the world. Despite the existing infection prevention strategies in hospitals, the disease continues to spread and causes extensive and numerous outbreaks. Hence, there is a need to investigate the possibility of airborne transmission of norovirus. In this study, we developed an experimental setup for studies on the infectivity of aerosolized murine norovirus (MNV), a model for the human norovirus. Two aerosol generation principles were evaluated: bubble bursting, a common natural aerosolization mechanism, and nebulization, a common aerosolization technique in laboratory studies. The aerosolization setup was characterized by physical and viral dilution factors, generated aerosol particle size distributions, and the viral infectivity after aerosolization. We found a lower physical dilution factor when using the nebulization generator than with the bubble bursting generator. The viral dilution factor of the system was higher than the physical dilution; however, when comparing the physical and viral dilution factors, bubble bursting generation was more efficient. The infectivity per virus was similar using either generation principle, suggesting that the generation itself had a minor impact on MNV infectivity and that instead, the effect of drying in air could be a major reason for infectivity losses.
Collapse
Affiliation(s)
- Malin Alsved
- Ergonomics and Aerosol Technology, Design Sciences, Lund University, Lund, Sweden
| | - Anders Widell
- Clinical Virology, Department of Translational Medicine, Lund University, Lund, Sweden
| | - Henrik Dahlin
- Ergonomics and Aerosol Technology, Design Sciences, Lund University, Lund, Sweden
| | - Sara Karlson
- Clinical Virology, Department of Translational Medicine, Lund University, Lund, Sweden
| | - Patrik Medstrand
- Clinical Virology, Department of Translational Medicine, Lund University, Lund, Sweden
| | - Jakob Löndahl
- Ergonomics and Aerosol Technology, Design Sciences, Lund University, Lund, Sweden.
| |
Collapse
|
21
|
Kabir E, Azzouz A, Raza N, Bhardwaj SK, Kim KH, Tabatabaei M, Kukkar D. Recent Advances in Monitoring, Sampling, and Sensing Techniques for Bioaerosols in the Atmosphere. ACS Sens 2020; 5:1254-1267. [PMID: 32227840 DOI: 10.1021/acssensors.9b02585] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bioaerosols in the form of microscopic airborne particles pose pervasive risks to humans and livestock. As either fully active components (e.g., viruses, bacteria, and fungi) or as whole or part of inactive fragments, they are among the least investigated pollutants in nature. Their identification and quantification are essential to addressing related dangers and to establishing proper exposure thresholds. However, difficulties in the development (and selection) of detection techniques and an associated lack of standardized procedures make the sensing of bioaerosols challenging. Through a comprehensive literature search, this review examines the mechanisms of conventional and advanced bioaerosol detection methods. It also provides a roadmap for future research and development in the selection of suitable methodologies for bioaerosol detection. The development of sample collection and sensing technology make it possible for continuous and automated operation. However, intensive efforts should be put to overcome the limitations of current technology as most of the currently available options tend to suffer from lengthy sample acquisition times and/or nonspecificity of probe material.
Collapse
Affiliation(s)
- Ehsanul Kabir
- Department of Farm Power and Machinery, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Abdelmonaim Azzouz
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M’Hannech II, 93002 Tétouan, Morocco
| | - Nadeem Raza
- Government Emerson College, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Sanjeev Kumar Bhardwaj
- Center of Innovative and Applied Bioprocessing, (CIAB) [DBT, Govt. of India], Knowledge
City, Sector 81, Mohali, Punjab 140306, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Korea
| | - Meisam Tabatabaei
- Microbial Biotechnology Department, Agricultural Biotechnology Institute of Iran, Agricultural Research, Education, and Extension Organization (AREEO), 31535-1897 Karaj, Iran
| | - Deepak Kukkar
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Korea
| |
Collapse
|
22
|
Shen F, Niu M, Zhou F, Wu Y, Zhu T. Culturability, metabolic activity and composition of ambient bacterial aerosols in a surrogate lung fluid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:76-84. [PMID: 31284198 DOI: 10.1016/j.scitotenv.2019.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/11/2019] [Accepted: 07/01/2019] [Indexed: 06/09/2023]
Abstract
Interactions of particulate matter (PM) and respiratory tract play a crucial role in PM-related respiratory diseases. The majority of the work focuses on the oxidative stress induced by reactions between PM-borne redox-active components and lung lining fluid (LLF). The effects of PM-borne biological components are largely unknown. Of all PM-borne biologicals, bacteria, as living microorganisms, are closely related with inflammatory immune responses. However, its inhalation risk is usually determined without considering the respiratory physiological conditions. In this study, a surrogate lung fluid (SLF) with four typical antioxidants was applied to characterize the ambient bacteria, including concentrations of total bacteria/viable bacteria/culturable bacteria, metabolic activity, bacteria-derived endotoxin, as well as the community structure. Comparing to those determined by SLF, we find that use of PBS leads to an underestimation of the bacterial culturability and metabolic activity. No effect was seen regarding the number of total bacteria and viable bacteria (with intact membrane). Population structure change was seen for bacteria cultured from SLF-collected samples, when compared to that from PBS. Spore-forming bacteria, e.g., genus Bacillus, were found to be easily recovered with SLF. This implies that use of PBS could underestimate the bacteria inhalation risk, especially those bacterial endospores. Our work highlights the necessity to consider the respiratory airway environment when evaluating microbial inhalation risk.
Collapse
Affiliation(s)
- Fangxia Shen
- School of Space and Environment, Beihang University, Beijing 100083, China.
| | - Mutong Niu
- School of Space and Environment, Beihang University, Beijing 100083, China
| | - Feng Zhou
- School of Space and Environment, Beihang University, Beijing 100083, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao 250100, China
| | - Tianle Zhu
- School of Space and Environment, Beihang University, Beijing 100083, China
| |
Collapse
|
23
|
Mainelis G. Bioaerosol Sampling: Classical Approaches, Advances, and Perspectives. AEROSOL SCIENCE AND TECHNOLOGY : THE JOURNAL OF THE AMERICAN ASSOCIATION FOR AEROSOL RESEARCH 2019; 54:496-519. [PMID: 35923417 PMCID: PMC9344602 DOI: 10.1080/02786826.2019.1671950] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 05/15/2023]
Abstract
Bioaerosol sampling is an essential and integral part of any bioaerosol investigation. Since bioaerosols are very diverse in terms of their sizes, species, biological properties, and requirements for their detection and quantification, bioaerosol sampling is an active, yet challenging research area. This paper was inspired by the discussions during the 2018 International Aerosol Conference (IAC) (St. Louis, MO) regarding the need to summarize the current state of the art in bioaerosol research, including bioaerosol sampling, and the need to develop a more standardized set of guidelines for protocols used in bioaerosol research. The manuscript is a combination of literature review and perspectives: it discusses the main bioaerosol sampling techniques and then overviews the latest technical developments in each area; the overview is followed by the discussion of the emerging trends and developments in the field, including personal sampling, application of passive samplers, and advances toward improving bioaerosol detection limits as well as the emerging challenges such as collection of viruses and collection of unbiased samples for bioaerosol sequencing. The paper also discusses some of the practical aspects of bioaerosol sampling with particular focus on sampling aspects that could lead to bioaerosol determination bias. The manuscript concludes by suggesting several goals for bioaerosol sampling and development community to work towards and describes some of the grand bioaerosol challenges discussed at the IAC 2018.
Collapse
Affiliation(s)
- Gediminas Mainelis
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
24
|
Šantl-Temkiv T, Lange R, Beddows D, Rauter U, Pilgaard S, Dall'Osto M, Gunde-Cimerman N, Massling A, Wex H. Biogenic Sources of Ice Nucleating Particles at the High Arctic Site Villum Research Station. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10580-10590. [PMID: 31094516 DOI: 10.1021/acs.est.9b00991] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The radiative balance in the Arctic region is sensitive to in-cloud processes, which principally depend on atmospheric aerosols, including ice nucleating particles (INPs). High temperature INPs (active at ≥-15 °C) are common in the Arctic. While laboratory and limited in situ studies show that the high-temperature active INPs are associated with bioaerosols and biogenic compounds, there is still little quantitative insight into the Arctic biogenic INPs and bioaerosols. We measured concentrations of bioaerosols, bacteria, and biogenic INPs at the Villum Research Station (VRS, Station Nord) in a large number of snow (15) and air (51) samples. We found that INPs active at high subzero temperatures were present both in spring and summer. Air INP concentrations were higher in summer (18 INP m-3 at ≥-10 °C) than in spring (<4 INP m-3 at ≥-10 °C), when abundant INPs were found in snowfall (1.4 INP mL-1 at ≥-10 °C). Also, in summer, a significantly higher number of microbial and bacterial cells were present compared to the spring. A large proportion (60%-100%) of INPs that were active between -6 °C and -20 °C could be deactivated by heating to 100 °C, which was indicative of their predominantly proteinaceous origin. In addition, there was a significant linear regression between the summer air concentrations of INPs active at ≥-10 °C and air concentrations of bacterial-marker-genes (p < 0.0001, R2 = 0.999, n = 6), pointing at bacterial cells as the source of high-temperature active INPs. In conclusion, the majority of INPs was of proteinaceous, and possibly of bacterial, origin and was found in air during summer and in snowfall during springtime.
Collapse
Affiliation(s)
- Tina Šantl-Temkiv
- Stellar Astrophysics Centre, Department of Physics and Astronomy , Aarhus University , 8000 Aarhus , Denmark
- Department of Bioscience, Microbiology Section , Aarhus University , 116 Ny Munkegad , 8000 Aarhus , Denmark
- Department of Bioscience, Arctic Research Center , Aarhus University , 8000 Aarhus , Denmark
- Department of Environmental Science, iCLIMATE Aarhus University Interdisciplinary Centre for Climate Change , Aarhus University , 4000 Roskilde , Denmark
| | - Robert Lange
- Department of Environmental Science , Aarhus University , 4000 Roskilde , Denmark
| | - David Beddows
- School of Geography, Earth and Environmental Sciences , University of Birmingham , B15 2TT Birmingham , U.K
| | - Urška Rauter
- Department of Biology , University of Ljubljana , 1000 Ljubljana , Slovenia
| | - Stephanie Pilgaard
- Stellar Astrophysics Centre, Department of Physics and Astronomy , Aarhus University , 8000 Aarhus , Denmark
- Department of Bioscience, Microbiology Section , Aarhus University , 116 Ny Munkegad , 8000 Aarhus , Denmark
| | - Manuel Dall'Osto
- Department of Marine Biology and Oceanography , Institute of Marine Sciences , 08003 Barcelona , Spain
| | | | - Andreas Massling
- Department of Environmental Science, iCLIMATE Aarhus University Interdisciplinary Centre for Climate Change , Aarhus University , 4000 Roskilde , Denmark
- Department of Environmental Science , Aarhus University , 4000 Roskilde , Denmark
| | - Heike Wex
- Leibniz Institute for Tropospheric Research , 04318 Leipzig , Germany
| |
Collapse
|
25
|
Uetake J, Tobo Y, Uji Y, Hill TCJ, DeMott PJ, Kreidenweis SM, Misumi R. Seasonal Changes of Airborne Bacterial Communities Over Tokyo and Influence of Local Meteorology. Front Microbiol 2019; 10:1572. [PMID: 31379765 DOI: 10.1101/542001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/24/2019] [Indexed: 05/23/2023] Open
Abstract
In order to study airborne bacterial community dynamics over Tokyo, including fine-scale correlations between airborne microorganisms and meteorological conditions, and the influence of local versus long-range transport of microbes, air samples were collected on filters for periods ranging from 48 to 72 h. The diversity of the microbial community was assessed by next generation sequencing. Predicted source regions of airborne particles, from back trajectory analyses, changed abruptly from the Pacific Ocean to the Eurasian Continent in the beginning of October. However, the microbial community composition and the alpha and beta diversities were not affected by this shift in meteorological regime, suggesting that long-range transport from oceanic or continental sources was not the principal determinant controlling the local airborne microbiome. By contrast, we found a significant correlation between the local meteorology, especially relative humidity and wind speed, and both alpha diversity and beta diversity. Among four potential local source categories (soil, bay seawater, river, and pond), bay seawater and soil were identified as constant and predominant sources. Statistical analyses point toward humidity as the most influential meteorological factor, most likely because it is correlated with soil moisture and hence negatively correlated with the dispersal of particles from the land surface. In this study, we have demonstrated the benefits of fine-scale temporal analyses for understanding the sources and relationships with the meteorology of Tokyo's "aerobiome."
Collapse
Affiliation(s)
- Jun Uetake
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, United States
- National Institute of Polar Research, Tachikawa, Japan
| | - Yutaka Tobo
- National Institute of Polar Research, Tachikawa, Japan
- Department of Polar Science, School of Multidisciplinary Sciences, SOKENDAI (The Graduate University for Advanced Studies), Tachikawa, Japan
| | - Yasushi Uji
- National Research Institute for Earth Science and Disaster Resilience, Storm, Flood and Landslide Research Division, Tsukuba, Japan
| | - Thomas C J Hill
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, United States
| | - Paul J DeMott
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, United States
| | - Sonia M Kreidenweis
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, United States
| | - Ryohei Misumi
- National Research Institute for Earth Science and Disaster Resilience, Storm, Flood and Landslide Research Division, Tsukuba, Japan
| |
Collapse
|
26
|
Uetake J, Tobo Y, Uji Y, Hill TCJ, DeMott PJ, Kreidenweis SM, Misumi R. Seasonal Changes of Airborne Bacterial Communities Over Tokyo and Influence of Local Meteorology. Front Microbiol 2019; 10:1572. [PMID: 31379765 PMCID: PMC6646838 DOI: 10.3389/fmicb.2019.01572] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/24/2019] [Indexed: 11/13/2022] Open
Abstract
In order to study airborne bacterial community dynamics over Tokyo, including fine-scale correlations between airborne microorganisms and meteorological conditions, and the influence of local versus long-range transport of microbes, air samples were collected on filters for periods ranging from 48 to 72 h. The diversity of the microbial community was assessed by next generation sequencing. Predicted source regions of airborne particles, from back trajectory analyses, changed abruptly from the Pacific Ocean to the Eurasian Continent in the beginning of October. However, the microbial community composition and the alpha and beta diversities were not affected by this shift in meteorological regime, suggesting that long-range transport from oceanic or continental sources was not the principal determinant controlling the local airborne microbiome. By contrast, we found a significant correlation between the local meteorology, especially relative humidity and wind speed, and both alpha diversity and beta diversity. Among four potential local source categories (soil, bay seawater, river, and pond), bay seawater and soil were identified as constant and predominant sources. Statistical analyses point toward humidity as the most influential meteorological factor, most likely because it is correlated with soil moisture and hence negatively correlated with the dispersal of particles from the land surface. In this study, we have demonstrated the benefits of fine-scale temporal analyses for understanding the sources and relationships with the meteorology of Tokyo’s “aerobiome.”
Collapse
Affiliation(s)
- Jun Uetake
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, United States.,National Institute of Polar Research, Tachikawa, Japan
| | - Yutaka Tobo
- National Institute of Polar Research, Tachikawa, Japan.,Department of Polar Science, School of Multidisciplinary Sciences, SOKENDAI (The Graduate University for Advanced Studies), Tachikawa, Japan
| | - Yasushi Uji
- National Research Institute for Earth Science and Disaster Resilience, Storm, Flood and Landslide Research Division, Tsukuba, Japan
| | - Thomas C J Hill
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, United States
| | - Paul J DeMott
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, United States
| | - Sonia M Kreidenweis
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, United States
| | - Ryohei Misumi
- National Research Institute for Earth Science and Disaster Resilience, Storm, Flood and Landslide Research Division, Tsukuba, Japan
| |
Collapse
|
27
|
Šantl-Temkiv T, Gosewinkel U, Starnawski P, Lever M, Finster K. Aeolian dispersal of bacteria in southwest Greenland: their sources, abundance, diversity and physiological states. FEMS Microbiol Ecol 2019; 94:4898009. [PMID: 29481623 DOI: 10.1093/femsec/fiy031] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/21/2018] [Indexed: 01/18/2023] Open
Abstract
The Arctic is undergoing dramatic climatic changes that cause profound transformations in its terrestrial ecosystems and consequently in the microbial communities that inhabit them. The assembly of these communities is affected by aeolian deposition. However, the abundance, diversity, sources and activity of airborne microorganisms in the Arctic are poorly understood. We studied bacteria in the atmosphere over southwest Greenland and found that the diversity of bacterial communities correlated positively with air temperature and negatively with relative humidity. The communities consisted of 1.3×103 ± 1.0×103 cells m-3, which were aerosolized from local terrestrial environments or transported from marine, glaciated and terrestrial surfaces over long distances. On average, airborne bacterial cells displayed a high activity potential, reflected in the high 16S rRNA copy number (590 ± 300 rRNA cell-1), that correlated positively with water vapor pressure. We observed that bacterial clades differed in their activity potential. For instance, a high activity potential was seen for Rubrobacteridae and Clostridiales, while a low activity potential was observed for Proteobacteria. Of those bacterial families that harbor ice-nucleation active species, which are known to facilitate freezing and may thus be involved in cloud and rain formation, cells with a high activity potential were rare in air, but were enriched in rain.
Collapse
Affiliation(s)
- Tina Šantl-Temkiv
- Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus, Denmark.,Department of Bioscience, Microbiology Section, Aarhus University, Ny Munkegade 116, 8000 Aarhus, Denmark
| | - Ulrich Gosewinkel
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Piotr Starnawski
- Centre for Geomicrobiology, Aarhus University, 116 Ny Munkegade, 8000 Aarhus, Denmark
| | - Mark Lever
- Centre for Geomicrobiology, Aarhus University, 116 Ny Munkegade, 8000 Aarhus, Denmark.,ETH Zürich, Department of Environmental Systems Science, Universitätsstrasse 16, 8092 Zurich, Switzerland
| | - Kai Finster
- Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus, Denmark.,Department of Bioscience, Microbiology Section, Aarhus University, Ny Munkegade 116, 8000 Aarhus, Denmark
| |
Collapse
|
28
|
Airborne microbial transport limitation to isolated Antarctic soil habitats. Nat Microbiol 2019; 4:925-932. [DOI: 10.1038/s41564-019-0370-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/15/2019] [Indexed: 11/08/2022]
|
29
|
Application of Cytosense flow cytometer for the analysis of airborne bacteria collected by a high volume impingement sampler. J Microbiol Methods 2018; 154:63-72. [PMID: 30342070 DOI: 10.1016/j.mimet.2018.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 01/18/2023]
Abstract
Characterization of airborne bacterial cells requires efficient collection, concentration, and analysis techniques, particularly to overcome the challenge of their dilute nature in outdoor environments. This study aims to establish a rapid and reliable approach for quantification of bacteria in air samples. To do this, a high volume impingement sampler was applied to collect airborne bacteria from a wastewater treatment plant (WWTP). The bacterial cell density was estimated by a Cytosense flow cytometer (Cytobouy) and compared to quantitative PCR (qPCR) data based on 16S rRNA genes. The average bacterial cell density measured by Cytosense ranged from 1.1 to 2.5 × 104 cells m-3 of air and that estimated by qPCR ranged from 0.08 to 3.8 × 104 cells m-3 of air. Regression analysis showed no systematic difference in bacterial cell densities between two methods applied when the cells were analyzed in vivo, and statistical tests confirmed that Cytosense counts of unfixed samples provided realistic values. Bacterial cell densities and the amount of DNA extracted from the sample were significantly correlated with relative humidity on a sampling day. The results showed that the present method was reliable to estimate bacteria densities from the outdoor environment, and the analysis given by Cytosense was faster and more sensitive than qPCR method. In addition, the Cytosense gave valuable information about cell characteristics at different sampling conditions.
Collapse
|
30
|
Atmospheric Processing and Variability of Biological Ice Nucleating Particles in Precipitation at Opme, France. ATMOSPHERE 2017. [DOI: 10.3390/atmos8110229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|