1
|
Müller IE, Lin AYW, Otani Y, Zhang X, Wu ZY, Kisailus D, Mouncey NJ, Guest JS, Rad B, Ercius P, Yoshikuni Y. Cost-effective urine recycling enabled by a synthetic osteoyeast platform for production of hydroxyapatite. Nat Commun 2025; 16:4216. [PMID: 40328834 PMCID: PMC12056147 DOI: 10.1038/s41467-025-59416-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/22/2025] [Indexed: 05/08/2025] Open
Abstract
Recycling human urine offers a sustainable solution to environmental challenges posed by conventional wastewater treatment. While it is possible to recover nutrients like nitrogen and phosphorus from urine, the low economic value of these products limits large-scale adoption. Here, we show that engineered yeast can convert urine into hydroxyapatite (HAp), a high-value biomaterial widely used in bone and dental applications. Inspired by the biological mechanisms of bone-forming cells, we develop a synthetic yeast platform osteoyeast, which uses enzymes to break down urea and increase the pH of the surrounding environment. This triggers the yeast vacuoles to accumulate calcium and phosphate as amorphous calcium phosphate, which is then secreted in vesicles and crystallized into HAp. We achieve HAp production at titers exceeding 1 g/L directly from urine. Techno-economic analysis demonstrates that this process offers clear economic and environmental advantages, making it a compelling strategy for high-value resource recovery from human waste.
Collapse
Affiliation(s)
- Isaak E Müller
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Alex Y W Lin
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yusuke Otani
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Xinyi Zhang
- The Grainger College of Engineering, Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Zong-Yen Wu
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David Kisailus
- Department of Materials Science and Engineering, University of California at, Irvine, CA, USA
| | - Nigel J Mouncey
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jeremy S Guest
- The Grainger College of Engineering, Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), University of Illinois Urbana-Champaign, Urbana, IL, USA.
| | - Behzad Rad
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Peter Ercius
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Yasuo Yoshikuni
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- US Department of Energy Center for Bioenergy and Bioproducts Innovation (CABBI), Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Global Institution for Collaborative Research and Education, Hokkaido University, Hokkaido, Japan.
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| |
Collapse
|
2
|
van den Broek S, Nybom I, Hartmann M, Doetterl S, Garland G. Opportunities and challenges of using human excreta-derived fertilizers in agriculture: A review of suitability, environmental impact and societal acceptance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177306. [PMID: 39515389 DOI: 10.1016/j.scitotenv.2024.177306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Human excreta-derived fertilizers (HEDFs) are organic fertilizers made from human excreta sources such as urine and feces. HEDFs can contribute to a sustainable and circular agriculture by reuse of valuable nutrients that would otherwise be discarded. However, HEDFs may contain contaminants such as pharmaceuticals, persistent organic compounds, heavy metals and pathogens which can negatively affect plant, water and soil quality. Moreover, consumer prejudice, farmer hesitance and strict regulations can discourage utilization of HEDFs. Here, we conducted a thorough review of published literature to explore the opportunities and challenges of using HEDFs in agricultural systems by evaluating the suitability of human excreta as a nutrient source, their typical contaminant composition, how they affect the quality of crops, soils and water and their societal impact and acceptance. We found that HEDFs are suitable nutrient-rich fertilizers, but may contain contaminants. Processing treatments increase the fertilizer quality by reducing these contaminants, but they do not remove all contaminants completely. Regarding the environmental impacts of these fertilizers, we found overall positive effects on crop yield, soil nutrients, plant-soil-microbe interactions and plant pathogen suppression. The use of HEDFs reduces water contamination from sewage waste dumping, but nutrient leaching dependent on soil type may still affect water quality. We found no increased risks with human pathogens compared to inorganic fertilizers but identified processing treatment as well as crop and soil type significantly affect these risks. Lastly, we found that public acceptance is possible with clear regulations and outreach to inform consumers and farmers of their multi-faceted benefits and safe usage after processing treatments. In summary, this review emphasizes the great potential of HEDFs and its positive impacts on society, especially in regions where conventional fertilizers are scarce, while also stressing the need for adaptation to specific soils and crops.
Collapse
Affiliation(s)
- Sarah van den Broek
- Soil Resources, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland; Sustainable Agroecosystems, Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zürich, Universitätsstrasse 2, 8092 Zürich, Switzerland.
| | - Inna Nybom
- Soil Resources, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland; Environmental Analytics, Agroscope Reckenholz, Reckenholzstrasse 191, 8046 Zürich, Switzerland
| | - Martin Hartmann
- Sustainable Agroecosystems, Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zürich, Universitätsstrasse 2, 8092 Zürich, Switzerland
| | - Sebastian Doetterl
- Soil Resources, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Gina Garland
- Soil Resources, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland; Soil Quality and Soil Use, Agroscope Reckenholz, Reckenholzstrasse 191, 8046 Zürich, Switzerland
| |
Collapse
|
3
|
Aliahmad A, Lima PDM, Kjerstadius H, Simha P, Vinnerås B, McConville J. Consequential life cycle assessment of urban source-separating sanitation systems complementing centralized wastewater treatment in Lund, Sweden. WATER RESEARCH 2024; 268:122741. [PMID: 39527905 DOI: 10.1016/j.watres.2024.122741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
This study examined various source-separating sanitation systems to evaluate their environmental performance, providing decision-makers with insights for selecting an appropriate system for a newly developed neighborhood in Sweden. A full consequential LCA was conducted to account for resource recovery and substitution. The local wastewater treatment plant WWTP was modeled as a reference. Secondly, a urine recycling system was introduced to treat 75 % of the collected urine, with the remainder piped to the WWTP. Thirdly, a black and greywater (BW&GW) treatment system handling all generated wastewater was examined. Finally, a hybrid source-separating system combining urine, black, and greywater was investigated. The results indicated that the four scenarios exhibited global warming potentials (GWP) of 78, 62, 32, and 24 kg CO2-eq per PE/ y. Recycling urine as fertilizer led to a 20 % reduction in the GWP of the reference. It also reduced other impact categories, with a 55 %, 65 %, and 45 % reduction in eutrophication, ozone depletion, and acidification, respectively. The BW&GW system achieved a 60 % reduction over the reference GWP, mainly due to fertilizer, biogas, and cleanwater recovery. Integrating urine, black, and greywater recycling in the final scenario achieved a 25 % reduction compared to the BW&GW scenario, primarily due to lowering of the ammonia stripping GWP and the additional fertilizer recovery. Based on sensitivity analyses, switching citric acid for sulfuric acid reduced the GWP of the urine stabilization unit process by 101 %, from 15.47 to -0.14 kg CO2-eq per PE/ y. Ultimately, the findings suggest that the fully decentralized source-separating sanitation system incorporating urine, blackwater, and greywater recycling, particularly when combined with 70 % energy recovery at the urine concentrator, is most favorable.
Collapse
Affiliation(s)
- Abdulhamid Aliahmad
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | - Hamse Kjerstadius
- Nordvästra Skånes Vatten och Avlopp AB, Box 2022, 250 02 Helsingborg, Sweden
| | - Prithvi Simha
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Björn Vinnerås
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jennifer McConville
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
4
|
Carter LJ, Dennis S, Allen K, McKenna P, Chen X, Daniell TJ, Evans B, Guest JS, Guo H, Kirk S, Zhu YG, Anik AR, Zuhra N, Banwart SA. Mitigating Contaminant-Driven Risks for the Safe Expansion of the Agricultural-Sanitation Circular Economy in an Urbanizing World. ACS ES&T WATER 2024; 4:1166-1176. [PMID: 38633372 PMCID: PMC11019536 DOI: 10.1021/acsestwater.3c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 04/19/2024]
Abstract
The widespread adoption of an agricultural circular economy requires the recovery of resources such as water, organic matter, and nutrients from livestock manure and sanitation. While this approach offers many benefits, we argue this is not without potential risks to human and environmental health that largely stem from the presence of contaminants in the recycled resources (e.g., pharmaceuticals, pathogens). We discuss context specific challenges and solutions across the three themes: (1) contaminant monitoring; (2) collection transport and treatment; and (3) regulation and policy. We advocate for the redesign of sanitary and agricultural management practices to enable safe resource reuse in a proportionate and effective way. In populous urban regions with access to sanitation provision, processes can be optimized using emergent technologies to maximize removal of contaminant from excreta prior to reuse. Comparatively, in regions with limited existing capacity for conveyance of excreta to centralized treatment facilities, we suggest efforts should focus on creation of collection facilities (e.g., pit latrines) and decentralized treatment options such as composting systems. Overall, circular economy approaches to sanitation and resource management offer a potential solution to a pressing challenge; however, to ensure this is done in a safe manner, contaminant risks must be mitigated.
Collapse
Affiliation(s)
- Laura J. Carter
- School of
Geography, University of Leeds, Leeds, LS2 9JT, U.K.
- Global Food
and Environment Institute, University of
Leeds, Leeds LS2 9JT, U.K.
| | - Sarah Dennis
- Global Food
and Environment Institute, University of
Leeds, Leeds LS2 9JT, U.K.
- School of
Earth and Environment, University of Leeds, Leeds LS2 9JT, U.K.
| | - Katie Allen
- Global Food
and Environment Institute, University of
Leeds, Leeds LS2 9JT, U.K.
- School of
Civil Engineering, University of Leeds, Leeds LS2 9JT, U.K.
| | - Patrick McKenna
- Global Food
and Environment Institute, University of
Leeds, Leeds LS2 9JT, U.K.
- School of
Earth and Environment, University of Leeds, Leeds LS2 9JT, U.K.
| | - Xiaohui Chen
- School of
Civil Engineering, University of Leeds, Leeds LS2 9JT, U.K.
| | - Tim J. Daniell
- Molecular
Microbiology: Biochemistry to Disease, School of Biosciences, The University of Sheffield, Sheffield S10 2TN, U.K.
| | - Barbara Evans
- School of
Civil Engineering, University of Leeds, Leeds LS2 9JT, U.K.
| | - Jeremy S. Guest
- Department
of Civil & Environmental Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Hongyan Guo
- State
Key
Laboratory of Pollution Control and Resource Reuse, School of the
Environment, Nanjing University, Nanjing 210023, China
| | - Stuart Kirk
- The Schumacher
Institute, The Create Centre, Bristol BS1 6XN, U.K.
| | - Yong-Guan Zhu
- Research
Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Asif Reza Anik
- Department
of Agricultural Economics, Bangabandhu Sheikh
Mujibur Rahman Agricultural University, Salna, Gazipur 1706, Bangladesh
| | - Naqshe Zuhra
- Institute
of Soil and Environmental Sciences, University
of Agriculture, Faisalabad 38000, Pakistan
| | - Steven A. Banwart
- Global Food
and Environment Institute, University of
Leeds, Leeds LS2 9JT, U.K.
- School of
Earth and Environment, University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
5
|
Zhang X, Huang T, Wu D. Enhanced anaerobic digestion of human feces by ferrous hydroxyl complex (FHC): Stress factors alleviation and microbial resistance improvement. CHEMOSPHERE 2024; 350:141041. [PMID: 38151064 DOI: 10.1016/j.chemosphere.2023.141041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/27/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
Anaerobic digestion (AD) offers a reliable strategy for resource recovery from source-separated human feces (HF), but is limited by a disproportionate carbon/nitrogen (C/N) ratio. Ferrous hydroxyl complex (FHC) was first introduced into the HF-AD system to mediate methanogenesis. Mono-digestion of undiluted HF was inhibited by high levels of volatile fatty acids (VFAs), ammonia, and hydrogen sulfide (H2S). FHC addition at optimum dosage (500-1000 mg/L) increased the cumulative methane (CH4) yield by 22.7%, enhanced the peak value of daily CH4 production by 60.5%, and shortened the lag phase by 24.7%. H2S concentration in biogas was also greatly decreased by FHC via precipitation. FHC mainly facilitated the hydrolysis, acidification, and methanogenesis processes. The production and transformation of VFAs were optimized in the presence of FHC, thus relieving acid stress. FHC elevated the activities of alkaline protease, cellulase, and acetate kinase by 32.3%, 18.2%, and 30.3%, respectively. Microbial analysis revealed that hydrogenotrophic methanogens prevailed in mono-digestion at high HF loading but were weakened after FHC addition. FHC also enriched Methanosarcina, thereby expanding the methanogenesis pathway and improving the resistance to ammonia stress. This work would contribute to improving the methanogenic performance and resource utilization for HF anaerobic digestion.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Shanghai, 200092, PR China
| | - Tao Huang
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Shanghai, 200092, PR China
| | - Deli Wu
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
6
|
Ddiba D, Andersson K, Dickin S, Ekener E, Finnveden G. A review of how decision support tools address resource recovery in sanitation systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118365. [PMID: 37320927 DOI: 10.1016/j.jenvman.2023.118365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/02/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Globally, there is increasing interest in recovering resources from sanitation systems. However, the process of planning and implementing circular sanitation is complex and can necessitate software-based tools to support decision-making. In this paper, we review 24 decision support software tools used for sanitation planning, to generate insights into how they address resource recovery across the sanitation chain. The findings reveal that the tools can address many planning issues around resource recovery in sanitation including analysis of material flows, integrating resource recovery technologies and products in the design of sanitation systems, and assessing the sustainability implications of resource recovery. The results and recommendations presented here can guide users in the choice of different tools depending on, for example, what kind of tool features and functions the user is interested in as well as the elements of the planning process and the sanitation service chain that are in focus. However, some issues are not adequately covered and need improvements in the available tools including quantifying the demand for and value of resource recovery products, addressing retrofitting of existing sanitation infrastructure for resource recovery and assessing social impacts of resource recovery from a life cycle perspective. While there is scope to develop new tools or to modify existing ones to cover these gaps, communication efforts are needed to create awareness about existing tools, their functions and how they address resource recovery. It is also important to further integrate the available tools into infrastructure planning and programming processes by e.g. customizing to relevant planning regimes and procedures, to move them beyond research and pilots into practice, and hopefully contribute towards more circular sanitation systems.
Collapse
Affiliation(s)
- Daniel Ddiba
- KTH Royal Institute of Technology, Department of Sustainable Development, Environmental Sciences and Engineering, Teknikringen 10B, SE-100 44, Stockholm, Sweden; Stockholm Environment Institute, Linnégatan 87D, Box 24218, Stockholm, 104 51, Sweden.
| | - Kim Andersson
- Stockholm Environment Institute, Linnégatan 87D, Box 24218, Stockholm, 104 51, Sweden.
| | - Sarah Dickin
- Stockholm Environment Institute, Linnégatan 87D, Box 24218, Stockholm, 104 51, Sweden.
| | - Elisabeth Ekener
- KTH Royal Institute of Technology, Department of Sustainable Development, Environmental Sciences and Engineering, Teknikringen 10B, SE-100 44, Stockholm, Sweden.
| | - Göran Finnveden
- KTH Royal Institute of Technology, Department of Sustainable Development, Environmental Sciences and Engineering, Teknikringen 10B, SE-100 44, Stockholm, Sweden; Luxembourg Institute of Science and Technology, Environmental Sustainability Assessment and Circularity, Belvaux, Luxembourg.
| |
Collapse
|
7
|
Miller DM, Abels K, Guo J, Williams KS, Liu MJ, Tarpeh WA. Electrochemical Wastewater Refining: A Vision for Circular Chemical Manufacturing. J Am Chem Soc 2023; 145:19422-19439. [PMID: 37642501 DOI: 10.1021/jacs.3c01142] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Wastewater is an underleveraged resource; it contains pollutants that can be transformed into valuable high-purity products. Innovations in chemistry and chemical engineering will play critical roles in valorizing wastewater to remediate environmental pollution, provide equitable access to chemical resources and services, and secure critical materials from diminishing feedstock availability. This perspective envisions electrochemical wastewater refining─the use of electrochemical processes to tune and recover specific products from wastewaters─as the necessary framework to accelerate wastewater-based electrochemistry to widespread practice. We define and prescribe a use-informed approach that simultaneously serves specific wastewater-pollutant-product triads and uncovers a mechanistic understanding generalizable to broad use cases. We use this approach to evaluate research needs in specific case studies of electrocatalysis, stoichiometric electrochemical conversions, and electrochemical separations. Finally, we provide rationale and guidance for intentionally expanding the electrochemical wastewater refining product portfolio. Wastewater refining will require a coordinated effort from multiple expertise areas to meet the urgent need of extracting maximal value from complex, variable, diverse, and abundant wastewater resources.
Collapse
Affiliation(s)
- Dean M Miller
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Kristen Abels
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jinyu Guo
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Kindle S Williams
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Matthew J Liu
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - William A Tarpeh
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
8
|
Koulouri ME, Templeton MR, Fowler GD. Source separation of human excreta: Effect on resource recovery via pyrolysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117782. [PMID: 37015142 DOI: 10.1016/j.jenvman.2023.117782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
More people globally are now using on-site sanitation technologies than sewered connections. The management of faecal sludge generated by on-site facilities is still challenging and requires an understanding of all sanitation service chain components and their interactions; from source conditions to treatment and resource recovery. This study aimed to improve the current lack of knowledge regarding these interactions, by establishing a quantifiable relationship between human excreta source separation and resource recovery via pyrolysis. The effects of source separation of faeces and urine on biochar quality were investigated for different pyrolysis temperatures (450 °C, 550 °C, 650 °C) and this information was used to assess energy and nutrient recovery. Results quantify the benefits of urine diversion for nitrogen recovery (70% of total N losses during thermal treatment avoided) and show an increase in the liming potential of the produced faecal-based biochars. The quality of produced solid fuels is also improved when source-separated faeces (SSF) are used as a feedstock for pyrolysis, including a 50% increase in char calorific value. On the other hand, biochars from mixed urine and faeces (MUF) are more rich in phosphorus and potassium, and surface morphology investigation indicates higher porosity compared to SSF biochars. The high salinity of MUF biochars should be considered before agricultural applications. For both biochar types (SSF, MUF), the presence of phosphate compounds of high fertiliser value was confirmed by X-ray diffraction analysis, and temperatures around 500 °C are recommended to optimise nutrient and carbon behaviour when pyrolysing human excreta. These findings can be used for the design of circular faecal sludge management systems, linking resource recovery objectives to source conditions, and vice-versa. Ultimately, achieving consistent resource recovery from human excreta can act as an incentive for universal access to safe and sustainable sanitation.
Collapse
Affiliation(s)
- Maria E Koulouri
- Department of Civil and Environmental Engineering, Imperial College London, SW7 2AZ, UK.
| | - Michael R Templeton
- Department of Civil and Environmental Engineering, Imperial College London, SW7 2AZ, UK.
| | - Geoffrey D Fowler
- Department of Civil and Environmental Engineering, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
9
|
Mihelcic JR, Barra RO, Brooks BW, Diamond ML, Eckelman MJ, Gibson JM, Guidotti S, Ikeda-Araki A, Kumar M, Maiga Y, McConville J, Miller SL, Pizarro V, Rosario-Ortiz F, Wang S, Zimmerman JB. Environmental Research Addressing Sustainable Development Goals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3457-3460. [PMID: 36812397 DOI: 10.1021/acs.est.3c01070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Affiliation(s)
- James R Mihelcic
- Department of Civil & Environmental Engineering, University of South Florida, 4202 E Fowler Ave, Tampa 33620, Florida, United States
| | - Ricardo O Barra
- Faculty of Environmental Sciences and EULA Chile Centre, University of Concepcion, Barrio Universitario s/n, Concepción 4070386, Chile
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco 76798-7266, Texas, United States
| | - Miriam L Diamond
- Department of Earth Sciences and School of the Environment, University of Toronto, Toronto M5S 1A1, ON, Canada
| | - Matthew J Eckelman
- College of Engineering, Northeastern University, Boston 02115, Massachusetts, United States
| | - Jacqueline MacDonald Gibson
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Fitts-Woolard Hall, Room 3253, 915 Partners Way, Raleigh 27695-7908, North Carolina, United States
| | - Sunny Guidotti
- UNICEF Latin America and Caribbean Regional Office, Building 102, Alberto Tejada St., City of Knowledge 0843, Panama, Republic of Panama
| | - Atsuko Ikeda-Araki
- Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun Uttarakhand, 248007, India
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo León, México
| | - Ynoussa Maiga
- Laboratory of Microbiology and Microbial Biotechnology, UFR SVT, University Joseph KI-ZERBO, Ouagadougou CFX2+7R6, Burkina Faso
| | - Jennifer McConville
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, Uppsala SE-750 07, Sweden
| | - Shelly L Miller
- Department of Mechanical Engineering, University of Colorado at Boulder, 112 ECES Engineering Center, Boulder 80309, Colorado, United States
| | - Valeria Pizarro
- Perry Institute for Marine Science Windsor School (Albany Campus), Frank Watson Boulevard, Adelaide 00000, The Bahamas
| | - Fernando Rosario-Ortiz
- Department of Civil, Environmental and Architectural Engineering, Environmental Engineering Program, University of Colorado, Boulder 80309, Colorado, United States
| | - Shuxiao Wang
- State Key Joint Laboratory of Environment, Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing100084, China
| | - Julie B Zimmerman
- School of Forestry and Environmental Studies, Department of Chemical and Environmental Engineering, Yale University, New Haven 06511, Connecticut, United States
| |
Collapse
|
10
|
Yadav A, Rene ER, Sharma M, Jatain I, Mandal MK, Dubey KK. Valorization of wastewater to recover value-added products: A comprehensive insight and perspective on different technologies. ENVIRONMENTAL RESEARCH 2022; 214:113957. [PMID: 35932829 DOI: 10.1016/j.envres.2022.113957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/23/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
In recent years, due to rapid globalization and urbanization, the demand for fuels, energy, water and nutrients has been continuously increasing. To meet the future need of the society, wastewater is a prominent and emerging source for resource recovery. It provides an opportunity to recover valuable resources in the form of energy, fertilizers, electricity, nutrients and other products. The aim of this review is to elaborate the scientific literature on the valorization of wastewater using wide range of treatment technologies and reduce the existing knowledge gap in the field of resource recovery and water reuse. Several versatile, resilient environmental techniques/technologies such as ion exchange, bioelectrochemical, adsorption, electrodialysis, solvent extraction, etc. are employed for the extraction of value-added products from waste matrices. Since the last two decades, valuable resources such as polyhydroxyalkanoate (PHA), matrix or polymers, cellulosic fibers, syngas, biodiesel, electricity, nitrogen, phosphorus, sulfur, enzymes and a wide range of platform chemicals have been recovered from wastewater. In this review, the aspects related to the persisting global water issues, the technologies used for the recovery of different products and/or by-products, economic sustainability of the technologies and the challenges encountered during the valorization of wastewater are discussed comprehensively.
Collapse
Affiliation(s)
- Ankush Yadav
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | - Manisha Sharma
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Indu Jatain
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Mrinal Kanti Mandal
- Department of Chemical Engineering, National Institute of Technology, Durgapur, 713209, West Bengal, India
| | - Kashyap Kumar Dubey
- Bioprocess Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
11
|
Sun H, Tian Y, Li L, Meng Y, Huang X, Zhan W, Zhou X, Cai G. Anthropogenic pollution discharges, hotspot pollutants and targeted strategies for urban and rural areas in the context of population migration: Numerical modeling of the Minjiang River basin. ENVIRONMENT INTERNATIONAL 2022; 169:107508. [PMID: 36108502 DOI: 10.1016/j.envint.2022.107508] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Unprecedented urbanization-induced population migration in China severely affects the scale and geographic distribution of anthropogenic pollutant discharge. Understanding how pollutant discharge patterns respond to population migration can help guide future efforts to maintain water sustainability. Here, based on a new calculation framework with 18 dynamic parameters designed for anthropogenic discharges, we finely tracked and visualized the effects of population migration on the spatial and temporal changes in anthropogenic discharge from 1980 to 2019 in the Minjiang River basin. The results indicate that the increasing effect of population migration on anthropogenic discharges peaked in 2002 and started to contribute to pollutant reduction from 2010 onward. The direct impact of population migration only contributes to the shift of anthropogenic discharges from rural to urban areas, while the migration bonus is the key factor leading to the reduction in anthropogenic discharges. Population migration is highly beneficial for chemical oxygen demand (COD) reduction, which has contributed to a shift from COD to NH4+-N and total phosphorus (TP) as hotspot pollutants in the whole basin (NH4+-N in urban areas and TP in rural areas). Moreover, pollution reduction resulting from the demographic bonus phenomenon has remained limited only to urban areas. Since approximately 2010, the per capita amount and total amount of anthropogenic pollutant discharges in rural areas have exceeded those in urban areas; in particular, the per capita COD and TP discharges in rural areas reached four times those in urban areas. This suggests that future pollution control strategies should give more attention to rural areas and focus on the differentiation and targeting of urban and rural areas.
Collapse
Affiliation(s)
- Huihang Sun
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Tian
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Lipin Li
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yiming Meng
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaohong Huang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Zhan
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xue Zhou
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guiyuan Cai
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
12
|
Rowles LS, Morgan VL, Li Y, Zhang X, Watabe S, Stephen T, Lohman HAC, DeSouza D, Hallowell J, Cusick RD, Guest JS. Financial Viability and Environmental Sustainability of Fecal Sludge Treatment with Pyrolysis Omni Processors. ACS ENVIRONMENTAL AU 2022; 2:455-466. [PMID: 36164351 PMCID: PMC9502014 DOI: 10.1021/acsenvironau.2c00022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
![]()
Omni Processors (OPs) are community-scale systems for
non-sewered
fecal sludge treatment. These systems have demonstrated their capacity
to treat excreta from tens of thousands of people using thermal treatment
processes (e.g., pyrolysis), but their relative sustainability is
unclear. In this study, QSDsan (an open-source Python package) was
used to characterize the financial viability and environmental implications
of fecal sludge treatment via pyrolysis-based OP technology treating
mixed and source-separated human excreta and to elucidate the key
drivers of system sustainability. Overall, the daily per capita cost
for the treatment of mixed excreta (pit latrines) via the OP was estimated
to be 0.05 [0.03–0.08] USD·cap–1·d–1, while the treatment of source-separated excreta
(from urine-diverting dry toilets) was estimated to have a per capita
cost of 0.09 [0.08–0.14] USD·cap–1·d–1. Operation and maintenance of the OP is a critical
driver of total per capita cost, whereas the contribution from capital
cost of the OP is much lower because it is distributed over a relatively
large number of users (i.e., 12,000 people) for the system lifetime
(i.e., 20 yr). The total emissions from the source-separated scenario
were estimated to be 11 [8.3–23] kg CO2 eq·cap–1·yr–1, compared to 49 [28–77]
kg CO2 eq·cap–1·yr–1 for mixed excreta. Both scenarios fall below the estimates of greenhouse
gas (GHG) emissions for anaerobic treatment of fecal sludge collected
from pit latrines. Source-separation also creates opportunities for
resource recovery to offset costs through nutrient recovery and carbon
sequestration with biochar production. For example, when carbon is
valued at 150 USD·Mg–1 of CO2, the
per capita cost of sanitation can be further reduced by 44 and 40%
for the source-separated and mixed excreta scenarios, respectively.
Overall, our results demonstrate that pyrolysis-based OP technology
can provide low-cost, low-GHG fecal sludge treatment while reducing
global sanitation gaps.
Collapse
Affiliation(s)
- Lewis Stetson Rowles
- Institute for Sustainability, Energy, and Environment, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Victoria L. Morgan
- Institute for Sustainability, Energy, and Environment, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Yalin Li
- Institute for Sustainability, Energy, and Environment, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Xinyi Zhang
- Department of Civil & Environmental Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Shion Watabe
- Department of Civil & Environmental Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Tyler Stephen
- Department of Civil & Environmental Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Hannah A. C. Lohman
- Department of Civil & Environmental Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Derek DeSouza
- Biomass Controls PBC, Woodstock, Connecticut 06281, United States
| | - Jeff Hallowell
- Biomass Controls PBC, Woodstock, Connecticut 06281, United States
| | - Roland D. Cusick
- Department of Civil & Environmental Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jeremy S. Guest
- Institute for Sustainability, Energy, and Environment, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Civil & Environmental Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
13
|
Ruffatto K, Emaminejad SA, Juneja A, Kurambhatti C, Margenot A, Singh V, Cusick RD. Mapping the National Phosphorus Recovery Potential from Centralized Wastewater and Corn Ethanol Infrastructure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8691-8701. [PMID: 35617125 DOI: 10.1021/acs.est.1c07881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anthropogenic discharge of excess phosphorus (P) to water bodies and increasingly stringent discharge limits have fostered interest in quantifying opportunities for P recovery and reuse. To date, geospatial estimates of P recovery potential in the United States (US) have used human and livestock population data, which do not capture the engineering constraints of P removal from centralized water resource recovery facilities (WRRFs) and corn ethanol biorefineries where P is concentrated in coproduct animal feeds. Here, renewable P (rP) estimates from plant-wide process models were used to create a geospatial inventory of recovery potential for centralized WRRFs and biorefineries, revealing that individual corn ethanol biorefineries can generate on average 3 orders of magnitude more rP than WRRFs per site, and all corn ethanol biorefineries can generate nearly double the total rP of WRRFs across the US. The Midwestern states that make up the Corn Belt have the largest potential for P recovery and reuse from both corn biorefineries and WRRFs with a high degree of co-location with agricultural P consumption, indicating the untapped potential for a circular P economy in this globally significant grain-producing region.
Collapse
Affiliation(s)
- Kenneth Ruffatto
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Seyed Aryan Emaminejad
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Ankita Juneja
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W. Pennsylvania Avenue, Urbana, Illinois 61801, United States
| | - Chinmay Kurambhatti
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W. Pennsylvania Avenue, Urbana, Illinois 61801, United States
| | - Andrew Margenot
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1102 S. Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Vijay Singh
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W. Pennsylvania Avenue, Urbana, Illinois 61801, United States
| | - Roland D Cusick
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
14
|
Orner KD, Smith SJ, Breunig HM, Scown CD, Nelson KL. Fertilizer demand and potential supply through nutrient recovery from organic waste digestate in California. WATER RESEARCH 2021; 206:117717. [PMID: 34634641 DOI: 10.1016/j.watres.2021.117717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/07/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Diversion of organic waste from landfills offers an opportunity to recover valuable nutrients such as nitrogen and phosphorus that are typically discarded. Although prior research has explored the potential for buildout of anaerobic digestion (AD) infrastructure to treat organic waste and generate energy, a better understanding is needed of the nutrient recovery potential from the solid and liquid byproducts (digestate) resulting from AD of these waste streams. We quantified the system-wide mass of nutrients that can potentially be recovered in California by integrating current and potential future AD facilities with existing nutrient recovery technologies. Based on a profitable build-out scenario for AD, the potential for nitrogen and phosphorus recovery by mass was greatest from municipal sewage sludge. The nutrient recovery (% total mass) was determined for three different end products for the combined organic waste streams: liquid fertilizer [38% of the total recovered nitrogen (TN)], struvite [50% TN, 66% total phosphorous (TP)], and compost (12% TN, 34% TP). Based on the profitable build-out scenario of AD facilities in California, the recovered nutrients would offset an estimated 11% of TN and 29% of TP of in-state synthetic fertilizer demand, whereas a scenario in which all technically recoverable biomass is collected and treated could offset 44% of TN and 97% of TP demand.
Collapse
Affiliation(s)
- Kevin D Orner
- Department of Civil & Environmental Engineering, University of California, Berkeley, CA 94720, United States; National Science Foundation Engineering Research Center for Re-inventing the Nation's Urban Water Infrastructure, Berkeley, CA 94720, United States.
| | - Sarah J Smith
- Energy Analysis & Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Hanna M Breunig
- Energy Analysis & Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Corinne D Scown
- Energy Analysis & Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Berkeley, CA 94720, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Energy & Biosciences Institute, University of California, Berkeley, CA 94720, United States
| | - Kara L Nelson
- Department of Civil & Environmental Engineering, University of California, Berkeley, CA 94720, United States; National Science Foundation Engineering Research Center for Re-inventing the Nation's Urban Water Infrastructure, Berkeley, CA 94720, United States.
| |
Collapse
|
15
|
Nartey EG, Cofie O, Gebrezgabher S, Nikiema J. Crops and farmers' response to application of fecal sludge derived - Fortifer™ in different agro-ecological zones in Ghana. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112970. [PMID: 34091139 DOI: 10.1016/j.jenvman.2021.112970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 05/22/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
Fecal sludge (FS)-derived fertilizer material, Fortifer™ was used in farmers' field to cultivate different crops under varying soil and agro-climatic conditions in Ghana. The aim was to (1) create awareness among smallholder farmers for widespread use of Fortifer™ (2) observe the response of crops to Fortifer™ application by farmers in different agro-ecological zones (3) obtain farmers feedback on the FS-derived product to enhance further dissemination across the country. In total 95 farmers in six locations participated in the farmer-led pilots. Fortifer™ containing up to 3.0% nitrogen, 3.6% phosphorus, 1.3% potassium and 44.3% organic matter was applied to tomato, rice, maize and pepper in comparison to inorganic fertilizers at recommended rates. Subsequently, farmers' perception of, and willingness to use the product were studied. Crop yield was significantly higher (p ≤ 0.05) in the Fortifer™ plots compared to the inorganic fertilizer plots for all the selected crops. Yield was 12% higher for tomato, 27% for rice and maize and 30% for pepper under the Fortifer™ plots. Farmers indicated that, nutrient content was the most important factor they consider when making fertilizer purchasing decision.
Collapse
|
16
|
Echevarria D, Trimmer JT, Cusick RD, Guest JS. Defining Nutrient Colocation Typologies for Human-Derived Supply and Crop Demand To Advance Resource Recovery. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10704-10713. [PMID: 34260214 DOI: 10.1021/acs.est.1c01389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Resource recovery from human excreta can advance circular economies while improving access to sanitation and renewable agricultural inputs. While national projections of nutrient recovery potential provide motivation for resource recovery sanitation, elucidating generalizable strategies for sustainable implementation requires a deeper understanding of country-specific overlap between supply and demand. For 107 countries, we analyze the colocation of human-derived nutrients (in urine) and crop demands for nitrogen, phosphorus, and potassium. To characterize colocation patterns, we fit data for each country to a generalized logistic function. Using fitted logistic curve parameters, three typologies were identified: (i) dislocated nutrient supply and demand resulting from high density agriculture (with low population density) and nutrient islands (e.g., dense cities) motivating nutrient concentration and transport; (ii) colocated nutrient supply and demand enabling local reuse; and (iii) diverse nutrient supply-demand proximities, with countries spanning the continuum between (i) and (ii). Finally, we explored connections between these typologies and country-specific contextual characteristics via principal component analysis and found that the Human Development Index was clustered by typology. By providing a generalizable, quantitative framework for characterizing the colocation of human-derived nutrient supply and agricultural nutrient demand, these typologies can advance resource recovery by informing resource management strategies, policy, and investment.
Collapse
Affiliation(s)
- Desarae Echevarria
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Ave., Urbana, Illinois 61801, United States
| | - John T Trimmer
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Ave., Urbana, Illinois 61801, United States
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, 1101 W. Peabody Dr., Urbana, Illinois 61801, United States
| | - Roland D Cusick
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Ave., Urbana, Illinois 61801, United States
| | - Jeremy S Guest
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Ave., Urbana, Illinois 61801, United States
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, 1101 W. Peabody Dr., Urbana, Illinois 61801, United States
| |
Collapse
|
17
|
Krause A, Häfner F, Augustin F, Udert KM. Qualitative Risk Analysis for Contents of Dry Toilets Used to Produce Novel Recycling Fertilizers. CIRCULAR ECONOMY AND SUSTAINABILITY 2021; 1:1107-1146. [PMID: 34888571 PMCID: PMC8280996 DOI: 10.1007/s43615-021-00068-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
Human excreta are a sustainable, economical source of nutrients, and can be used to produce recycling fertilizer for horticulture by collecting and processing the contents of dry toilets. Herein, we discuss the key categories of risk associated with the main groups of materials commonly found in dry toilets. The study was part of the development of a German product standard for marketable and quality-assured recycling fertilizers from human excreta for use in horticulture. Particular attention is paid to ensuring that the fertilizer is epidemiologically and environmentally harmless and that the quality of the recycling fertilizer is adequate in terms of low pollution and nutrient availability. In sum, the risk of transmissible human pathogens lies within the human excreta, particularly feces; plant materials added during composting are of particular phytosanitary relevance; pharmaceutical residues in excrements and chemical additives are potential sources of pollutants; non-biodegradable contaminants can cause pollution and injury; and the horticultural risks involve mainly the ammonia emission potential and in some cases the salinity effects of urine. These risks can be reduced significantly (i) with education of users around proper operation of dry toilets and the consequences of adding inappropriate waste, (ii) with facilitation of proper use with general waste bins and clear instructions, and importantly (iii) by using modern sanitization and cleaning processes and testing for harmful substances under the guidance of local laws and regulations, ensuring safe and high-quality fertilizers. In conclusion, the benefits of using dry toilet contents to produce fertilizers for use in horticulture are unquestionable. Our analysis highlights the need to support recycling optimization and awareness for the purpose of a sustainable circular economy and to minimize the risk of harm to humans and the environment overall.
Collapse
Affiliation(s)
- Ariane Krause
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., program area ‘Next-Generation Horticultural Systems’ (HORTSYS), Großbeeren, Germany
| | - Franziska Häfner
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., program area ‘Next-Generation Horticultural Systems’ (HORTSYS), Großbeeren, Germany
| | | | - Kai M. Udert
- ETH Zürich, Institute of Environmental Engineering, Zürich, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| |
Collapse
|
18
|
Sun S, Ji G, Lv Y, Liu H, Hu T, Chen Z, Xu S. Simultaneous recovery of ammonium and total phosphorus from toilet tail water by modified palygorskite-bentonite clay. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1077-1086. [PMID: 33305376 DOI: 10.1002/wer.1495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Suitable treatment of toilet sewage is a worldwide challenge. The anaerobic baffled reactor (ABR)-microbial fuel cell (MFC)-microbial electrolysis cell (MEC) (AMM) coupling treatment system has been constructed achieving effective removal of carbon, nitrogen, and phosphorus from toilet sewage and resource recovery; however, ammonium (NH4 + -N) and total phosphorus (TP) accumulation in tail water is a found problem of the system. In this study, acid-modified and alkali-heat modified palygorskite-bentonite (Pal-Ben) were used to recover NH4 + -N and TP from the AMM toilet tail water simultaneously. The higher adsorption capacity of the modified clay is attributed to the changes of surface structure of the material. The modified clay Pal-Ben (mass ratio 1:3) activated with alkali performed the highest NH4 + -N and TP recovery rates of 83.6% and 85.5%, respectively. The adsorption of NH4 + -N was more in line with the pseudo-second-order kinetic model and confirmed to be a chemical adsorption process, while the adsorption of TP was more in line with the pseudo-first-order kinetics and a physical adsorption process; the adsorption capacity of NH4 + -N accelerated with decrease of TP removal when pH increased. This study developed a low cost and high capacity of alkaline thermally modified clay removing/recovering NH4 + -N and TP from toilet tail water simultaneously. PRACTITIONER POINTS: A cheap composite clay was developed to recover nitrogen and phosphorus from toilet tail water simultaneously. The low costs and high capacity of alkaline thermally modified clay make it stand out in NH4 + -N and TP removal of toilet tail water. The process mechanism of simultaneous nitrogen and phosphorus recovery was clarified with characterization and kinetic model fitting. The used clay loaded with nutrients could be applied as a slow-release compound fertilizer for soil improvement.
Collapse
Affiliation(s)
- Shengguang Sun
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Guixia Ji
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Yicheng Lv
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Hongbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Tao Hu
- Shanghai National Engineering Research Center of Urban Water Resources Co., Ltd., Shanghai, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Suyun Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
19
|
Libby JA, Wells EC, Mihelcic JR. Moving up the Sanitation Ladder while Considering Function: An Assessment of Indigenous Communities, Pit Latrine Users, and Their Perceptions of Resource Recovery Sanitation Technology in Panama. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15405-15413. [PMID: 33185434 DOI: 10.1021/acs.est.0c04120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As households move up the sanitation ladder, health risks presumably decline but the corresponding technologies may require increasing operation and maintenance costs. One critique of the ladder is that it prioritizes technology and could be improved if it included a functional approach to monitoring, such as including aspects of environmental sustainability that consider resource recovery. Using analyses of data obtained from semi-structured interviews, surveys, and field observations, this study examines the functional transition toward improved sanitation technology as a household moves up the sanitation ladder with the added function of resource recovery (from pit latrines to composting latrines). The study took place in six indigenous Ngäbe communities in Panama. The results reveal that of 103 pit latrines studied, 88% were completed and in use, but only 35% were operated appropriately. Approximately 60% of pit latrine owners reported that they would use composting latrines, with compost as the primary perceived benefit. Barriers to adoption include lack of prior experience, user disgust of working with excrement, and the perceived amount of work required for operation. Overall, these findings indicate the importance of establishing demonstration projects and culturally aligned training for more complex sanitation technologies that enable resource recovery. The results have broad implications for understanding sanitation technology transitions in rural and indigenous settlements in other world regions.
Collapse
Affiliation(s)
- James A Libby
- Department of Civil and Environmental Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - E Christian Wells
- Department of Anthropology, University of South Florida, Tampa, Florida 33620, United States
| | - James R Mihelcic
- Department of Civil and Environmental Engineering, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
20
|
Trimmer JT, Lohman HAC, Byrne DM, Houser SA, Jjuuko F, Katende D, Banadda N, Zerai A, Miller DC, Guest JS. Navigating Multidimensional Social-Ecological System Trade-Offs across Sanitation Alternatives in an Urban Informal Settlement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12641-12653. [PMID: 32822180 DOI: 10.1021/acs.est.0c03296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Urban growth in low- and middle-income countries has intensified the need to expand sanitation infrastructure, especially in informal settlements. Sanitation approaches for these settings remain understudied, particularly regarding multidimensional social-ecological outcomes. Guided by a conceptual framework (developed in parallel with this study) re-envisioning sanitation as a human-derived resource system, here we characterize existing and alternative sanitation scenarios in an informal settlement in Kampala, Uganda. Combining two core research approaches (household survey analysis, process modeling), we elucidate factors associated with user satisfaction and evaluate each scenario's resource recovery potential, economic implications, and environmental impacts. We find that existing user satisfaction is associated with factors including cleaning frequency, sharing, and type of toilets, and we demonstrate that alternative sanitation systems may offer multidimensional improvements over existing latrines, drying beds, and lagoons. Transitioning to anaerobic treatment could recover energy while reducing overall net costs by 26-65% and greenhouse gas emissions by 38-59%. Alternatively, replacing pit latrines with container-based facilities greatly improves recovery potential in most cases (e.g., a 2- to 4-fold increase for nitrogen) and reduces emissions by 46-79%, although costs increase. Overall, this work illustrates how our conceptual framework can guide empirical research, offering insight into sanitation for informal settlements and more sustainable resource systems.
Collapse
Affiliation(s)
- John T Trimmer
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hannah A C Lohman
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Diana M Byrne
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Stephanie A Houser
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Fulgensio Jjuuko
- Community Integrated Development Initiatives, P.O. Box 692, Kampala, Uganda
| | - David Katende
- Community Integrated Development Initiatives, P.O. Box 692, Kampala, Uganda
| | - Noble Banadda
- Department of Agricultural & Biosystems Engineering, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Assata Zerai
- Department of Sociology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Daniel C Miller
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, 1102 South Goodwin Avenue, Urbana, Illinois 61801, United States
| | - Jeremy S Guest
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
21
|
Simha P, Lalander C, Nordin A, Vinnerås B. Alkaline dehydration of source-separated fresh human urine: Preliminary insights into using different dehydration temperature and media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139313. [PMID: 32446074 DOI: 10.1016/j.scitotenv.2020.139313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
For sanitation systems aiming at recycling nutrients, separately collecting urine at source is desirable as urine contains most of the nutrients in wastewater. However, reducing the volume of the collected urine and recovering majority of its nutrients is necessary, as this improves the transportability and the end-application of urine-based fertilisers. In this study, we present an innovative method, alkaline dehydration, for treating fresh human urine into a nutrient-rich dry solid. Our aim was to investigate whether fresh urine (pH < 7) added to five different alkaline media (pH > 11) could be dehydrated at elevated temperatures (50 and 60 °C) with minimal loss of urea, urine's principal nitrogen compound. We found that it was possible to concentrate urine 48 times, yielding dry end-products with high fertiliser value: approximately, 10% N, 1% P, and 4% K. We monitored the physicochemical properties and the composition of various dehydration media to provide useful insights into their suitability for dehydrating urine. We demonstrated that it is possible to recover >90% nitrogen when treating fresh urine by alkaline dehydration by inhibiting the enzymatic hydrolysis of urea at elevated pH and minimising the chemical hydrolysis of urea with high urine dehydration rates.
Collapse
Affiliation(s)
- Prithvi Simha
- Swedish University of Agricultural Sciences, Department of Energy and Technology, Box 7032, SE-750 07 Uppsala, Sweden.
| | - Cecilia Lalander
- Swedish University of Agricultural Sciences, Department of Energy and Technology, Box 7032, SE-750 07 Uppsala, Sweden
| | - Annika Nordin
- Swedish University of Agricultural Sciences, Department of Energy and Technology, Box 7032, SE-750 07 Uppsala, Sweden
| | - Björn Vinnerås
- Swedish University of Agricultural Sciences, Department of Energy and Technology, Box 7032, SE-750 07 Uppsala, Sweden
| |
Collapse
|
22
|
Trimmer JT, Miller DC, Byrne DM, Lohman HAC, Banadda N, Baylis K, Cook SM, Cusick RD, Jjuuko F, Margenot AJ, Zerai A, Guest JS. Re-Envisioning Sanitation As a Human-Derived Resource System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10446-10459. [PMID: 32867485 DOI: 10.1021/acs.est.0c03318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Sanitation remains a global challenge, both in terms of access to toilet facilities and resource intensity (e.g., energy consumption) of waste treatment. Overcoming barriers to universal sanitation coverage and sustainable resource management requires approaches that manage bodily excreta within coupled human and natural systems. In recent years, numerous analytical methods have been developed to understand cross-disciplinary constraints, opportunities, and trade-offs around sanitation and resource recovery. However, without a shared language or conceptual framework, efforts from individual disciplines or geographic contexts may remain isolated, preventing the accumulation of generalized knowledge. Here, we develop a version of the social-ecological systems framework modified for the specific characteristics of bodily excreta. This framework offers a shared vision for sanitation as a human-derived resource system, where people are part of the resource cycle. Through sanitation technologies and management strategies, resources including water, organics, and nutrients accumulate, transform, and impact human experiences and natural environments. Within the framework, we establish a multitiered lexicon of variables, characterized by breadth and depth, to support harmonized understanding and development of models and analytical approaches. This framework's refinement and use will guide interdisciplinary study around sanitation to identify guiding principles for sanitation that advance sustainable development at the nature-society interface.
Collapse
Affiliation(s)
- John T Trimmer
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Ave., Urbana, Illinois 61801, United States
| | - Daniel C Miller
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, 1102 S. Goodwin Ave., Urbana, Illinois 61801, United States
| | - Diana M Byrne
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Ave., Urbana, Illinois 61801, United States
| | - Hannah A C Lohman
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Ave., Urbana, Illinois 61801, United States
| | - Noble Banadda
- Department of Agricultural & Biosystems Engineering, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Katherine Baylis
- Department of Agricultural & Consumer Economics, University of Illinois at Urbana-Champaign, 1301 W. Gregory Dr., Urbana, Illinois 61801, United States
| | - Sherri M Cook
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, UCB 428, Boulder, Colorado 80309, United States
| | - Roland D Cusick
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Ave., Urbana, Illinois 61801, United States
| | - Fulgensio Jjuuko
- Community Integrated Development Initiatives, P.O. Box 692, Kampala, Uganda
| | - Andrew J Margenot
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 S. Dorner Dr., Urbana, Illinois 61801, United States
| | - Assata Zerai
- Department of Sociology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Jeremy S Guest
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Ave., Urbana, Illinois 61801, United States
| |
Collapse
|
23
|
Cruz H, Laycock B, Strounina E, Seviour T, Oehmen A, Pikaar I. Modified Poly(acrylic acid)-Based Hydrogels for Enhanced Mainstream Removal of Ammonium from Domestic Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9573-9583. [PMID: 32551594 DOI: 10.1021/acs.est.9b07032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rapid and continuous ammonium adsorption from mainstream coupled with side-stream ammonium recovery and adsorbent regeneration could enable ammonium recovery from domestic wastewater. This study describes the use of tailored poly(acrylic acid)-based (NaPAA) hydrogels as effective sorbents for ammonium removal from domestic wastewater. Modified NaPAA hydrogels having 60% ionization and 4.8 mol % N',N'-methylenebisacrylamide as the cross-linker reduced the overall swelling by 92% from 407 to 31 g/g because of higher cross-linking density. At hydrogel loadings of 2.5-7.5 g/L, the NaPAA hydrogels achieved ammonium concentrations of 8.3 ± 0.6 to 10.1 ± 0.1 mg/L NH4-N, which corresponds to removal efficiencies of 53-77% after 10 min of contact time in real domestic wastewater. At the same hydrogel loadings, the ammonium removal efficiency of NaPAA hydrogels in synthetic wastewater was found to be comparable to that in real sewage (71% vs 69%, respectively), suggesting that the sorption performance is only marginally affected by organic constituents found in domestic wastewater. In addition, the NaPAA hydrogels removed 25-51% ammonium in 10 min from synthetic streams having 200-400% higher ionic strengths than those commonly observed in sewage. Furthermore, simulation studies showed that a discharge concentration of ∼1.9 mg/L NH4-N, well below the commonly applied discharge limits in most regions, can be achieved using mainstream ammonium removal by NaPAA hydrogels followed by biological assimilation from the growth of ordinary heterotrophic organisms.
Collapse
Affiliation(s)
- Heidy Cruz
- School of Civil Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bronwyn Laycock
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ekaterina Strounina
- Center for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Thomas Seviour
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Adrian Oehmen
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ilje Pikaar
- School of Civil Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
24
|
Lohman HAC, Trimmer JT, Katende D, Mubasira M, Nagirinya M, Nsereko F, Banadda N, Cusick RD, Guest JS. Advancing Sustainable Sanitation and Agriculture through Investments in Human-Derived Nutrient Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9217-9227. [PMID: 32589417 DOI: 10.1021/acs.est.0c03764] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The sixth Sustainable Development Goal seeks to achieve universal sanitation, but a lack of progress due to inhibiting factors (e.g., limitations in financial resources, sociocultural conditions, household decision-making) demands innovative approaches to meet this ambitious goal. Resource recovery may generate income to offset sanitation costs while also enhancing agriculture through increased access to agricultural nutrients. The objective of this work was to determine if resource recovery sanitation can be a profitable business model in a specific context (Kampala, Uganda) and to explore the potential for this approach to translate to other Sub-Saharan African contexts. A techno-economic analysis was performed to evaluate the financial viability of two nutrient recovery systems and business models in urban communities in Kampala under two financing scenarios: (1) Startup relying on partial sanitation aid, and (2) Self-sustaining without philanthropic financing. Results show profitability can be achieved at a nutrient selling price at or below fertilizer market value in Uganda. Recoverable nutrients from the total population without at least basic sanitation services, in 10 Sub-Saharan African countries, are the same magnitude as nutrients distributed in subsidy programs (30-450% of distributed nutrients), indicating a potential to offset inorganic fertilizer consumption or increase nutrient availability. This research makes a case to support innovative sanitation strategies and the development and financial support of human-derived fertilizer markets in areas with poor fertilizer and sanitation access.
Collapse
Affiliation(s)
- Hannah A C Lohman
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - John T Trimmer
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - David Katende
- Community Integrated Development Initiatives, Zzimewe Road, Kampala, Uganda
| | - Muwonge Mubasira
- Community Integrated Development Initiatives, Zzimewe Road, Kampala, Uganda
| | - Maria Nagirinya
- Community Integrated Development Initiatives, Zzimewe Road, Kampala, Uganda
| | - Fred Nsereko
- Community Integrated Development Initiatives, Zzimewe Road, Kampala, Uganda
| | - Noble Banadda
- Department of Agricultural and Bio-Systems Engineering, Makerere University, University Road, Kampala, Uganda
| | - Roland D Cusick
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jeremy S Guest
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
25
|
Venkata Mohan S, Amulya K, Annie Modestra J. Urban biocycles - Closing metabolic loops for resilient and regenerative ecosystem: A perspective. BIORESOURCE TECHNOLOGY 2020; 306:123098. [PMID: 32217001 DOI: 10.1016/j.biortech.2020.123098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/22/2020] [Accepted: 02/28/2020] [Indexed: 05/03/2023]
Abstract
Cities are at crossroads, confronting challenges posed by increasing population growth, climate change and faltering livability. These problems are prompting urban areas to chart novel path towards adopting sustainable production/consumption strategies. The alluring concept of circular economy (CE) that focuses on reuse and recycling of materials in technical and biological cycles to reduce waste generation is a critical intervention. Present article aims on precisely highlighting the importance of biogenic materials which have an immense potential to be transformed into a source of value in an urban ecosystem. It also sets out to explore the scope of implementing 'urban biocycles' that strategically directs the flow of resources, their use, extracting value in the form of nutrients, energy and materials post consumption within an urban metabolic regime. The concepts discussed contribute to biocycle economy by outlining emerging requirements, identification of common strategies, policies and emerging areas of research in line with sustainable development goals.
Collapse
Affiliation(s)
- S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad 500 007, India.
| | - K Amulya
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad 500 007, India
| | - J Annie Modestra
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad 500 007, India
| |
Collapse
|
26
|
Harder R, Wielemaker R, Molander S, Öberg G. Reframing human excreta management as part of food and farming systems. WATER RESEARCH 2020; 175:115601. [PMID: 32203816 DOI: 10.1016/j.watres.2020.115601] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/15/2020] [Accepted: 02/08/2020] [Indexed: 05/25/2023]
Abstract
Recognition of human excreta as a resource, rather than as waste, has led to the emergence of a range of new and innovative nutrient recovery solutions. Nevertheless, the management of human excreta remains largely rooted in current sanitation and wastewater management approaches, which often makes nutrient recovery an add-on to existing infrastructures. In this paper, we argue that framing human excreta management as a resource recovery challenge within waste management obscures important trade-offs. We explore the factors that would be brought to the fore by reframing human excreta management as part of food and farming systems. We find that such a reframing would accentuate (at least) six aspects of critical importance that are currently largely overlooked. Recognizing that the proposed framing may also have its limitations, we argue that it has the potential to better guide human excreta management towards long-term global food, soil, and nutrient security while reducing the risk of compromising other priorities related to human and environmental health.
Collapse
Affiliation(s)
- Robin Harder
- Institute for Resources, Environment and Sustainability (IRES), The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Rosanne Wielemaker
- Sub-department of Environmental Technology, Wageningen University & Research, 6700, AA Wageningen, the Netherlands.
| | - Sverker Molander
- Environmental Systems Analysis, Department of Technology Management and Economics, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Gunilla Öberg
- Institute for Resources, Environment and Sustainability (IRES), The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
27
|
Occupational Exposure to Endotoxin along a Municipal Scale Fecal Sludge Collection and Resource Recovery Process in Kigali, Rwanda. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16234740. [PMID: 31783533 PMCID: PMC6926866 DOI: 10.3390/ijerph16234740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 11/29/2022]
Abstract
Background: Little is known about occupational exposures that occur along fecal sludge collection and resource recovery processes. This study characterizes inhaled endotoxin exposure to workers of a municipal scale fecal sludge-to-fuel processes in Kigali, Rwanda. Methods: Forty-two task-based air samples were collected from workers in five tasks along the fecal sludge collection and resource recovery process. Samples were processed for endotoxin using the limulus amebocyte lysate (LAL) test. To account for exposure variability and compare measured concentrations to established exposure limits, we used Monte Carlo modeling methods to construct distributions representing full eight-hour (8-h) exposures to endotoxin across eight exposure scenarios. Results: Geometric mean (GM) endotoxin concentrations in task-based samples ranged from 11–3700 EU/m3 with exposure concentrations increasing as the dryness of the fecal sludge increased through processing. The thermal dryer task had the highest endotoxin concentrations (GM = 3700 EU/m3) and the inlet task had the lowest (GM = 11 EU/m3). The geometric means (GM) of modeled 8-h exposure concentrations were between 6.7–960 EU/m3 and highest for scenarios which included the thermal dryer task in the exposure scenario. Conclusions: Our data suggest the importance of including worker exposure considerations in the design of nascent fecal sludge management processes. The methods used in this study combine workplace sampling with stochastic modeling and are useful for exposure assessment in resource constrained contexts.
Collapse
|
28
|
Chrispim MC, Scholz M, Nolasco MA. Phosphorus recovery from municipal wastewater treatment: Critical review of challenges and opportunities for developing countries. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 248:109268. [PMID: 31325790 DOI: 10.1016/j.jenvman.2019.109268] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
The aim of this paper is to provide guidance in selecting phosphorus recovery options within the municipal wastewater treatment sector regarding developing countries. This critical review includes a brief contextualization of the resource-oriented sanitation paradigm, the discussion of processes for phosphorus recovery based on methods at full-scale, pilot-scale and laboratory-scale, and a concise discussion of the environmental impacts and benefits associated with phosphorus recovery strategies. Finally, the main challenges related to the implementation of resource recovery strategies, especially for phosphorous, were identified and discussed. According to the results, some of the main drivers for phosphorus recovery are the limited availability of phosphorus, increasing cost of phosphate fertilizers and reduction of maintenance costs. Currently, most of the operational processes are based on crystallization or precipitation from the digester supernatant. Struvite is the most common recovered product. The recovery rate of phosphorus from the liquid phase is lower (10-60% from wastewater treatment plant influent), than from sludge (35-70%) and from sludge ashes (70-98%). Phosphorus recovery remains challenging, and some barriers identified were the integration between stakeholders and institutions, public policies and regulations as well as public acceptance and economic feasibility. In developing countries, the implementation of nutrient recovery systems is challenging, because the main concern is on the expansion of sanitation coverage. Resource recovery approaches can provide benefits beyond the wastewater treatment sector, not only improving the sustainability of wastewater treatment operations, but generating revenue for the utility provider.
Collapse
Affiliation(s)
- Mariana Cardoso Chrispim
- Division of Water Resources Engineering, Faculty of Engineering, Lund University, P.O. Box 118, 22100, Lund, Sweden; Sustainability Graduate Program, School of Arts, Sciences and Humanities of University of Sao Paulo, Sao Paulo, Brazil.
| | - Miklas Scholz
- Division of Water Resources Engineering, Faculty of Engineering, Lund University, P.O. Box 118, 22100, Lund, Sweden; Department of Civil Engineering Science, School of Civil Engineering and the Built Environment, University of Johannesburg, Kingsway Campus, PO Box 524, Aukland Park, 2006, Johannesburg, South Africa; Civil Engineering Research Group, School of Science, Engineering and Environment, The University of Salford, Newton Building, Peel Park Campus, Salford, M5 4WT, UK.
| | - Marcelo Antunes Nolasco
- Sustainability Graduate Program, School of Arts, Sciences and Humanities of University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
29
|
Cruz H, Law YY, Guest JS, Rabaey K, Batstone D, Laycock B, Verstraete W, Pikaar I. Mainstream Ammonium Recovery to Advance Sustainable Urban Wastewater Management. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11066-11079. [PMID: 31483625 DOI: 10.1021/acs.est.9b00603] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Throughout the 20th century, the prevailing approach toward nitrogen management in municipal wastewater treatment was to remove ammonium by transforming it into dinitrogen (N2) using biological processes such as conventional activated sludge. While this has been a very successful strategy for safeguarding human health and protecting aquatic ecosystems, the conversion of ammonium into its elemental form is incompatible with the developing circular economy of the 21st century. Equally important, the activated sludge process and other emerging ammonium removal pathways have several environmental and technological limitations. Here, we assess that the theoretical energy embedded in ammonium in domestic wastewater represents roughly 38-48% of the embedded chemical energy available in the whole of the discharged bodily waste. The current routes for ammonium removal not only neglect the energy embedded in ammonium, but they can also produce N2O, a very strong greenhouse gas, with such emissions comprising the equivalent of 14-26% of the overall carbon footprint of wastewater treatment plants. N2O emissions often exceed the carbon emissions related to the electricity consumption for the process requirements of WWTPs. Considering these limitations, there is a need to develop alternative ammonium management approaches that center around recovery of ammonium from domestic wastewater rather than deal with its "destruction" into elemental dinitrogen. Current ammonium recovery techniques are applicable only at orders of magnitude above domestic wastewater strength, and so new techniques based on physicochemical adsorption are of particular interest. A new pathway is proposed that allows for mainstream ammonium recovery from wastewater based on physicochemical adsorption through development of polymer-based adsorbents. Provided adequate adsorbents corresponding to characteristics outlined in this paper are designed and brought to industrial production, this adsorption-based approach opens perspectives for mainstream continuous adsorption coupled with side-stream recovery of ammonium with minimal chemical requirements. This proposed pathway can bring forward an effective resource-oriented approach to upgrade the fate of ammonium in urban water management without generating hidden externalized environmental costs.
Collapse
Affiliation(s)
- Heidy Cruz
- School of Civil Engineering , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Ying Yu Law
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , 637551 , Singapore
| | - Jeremy S Guest
- Department of Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , Illinois 61801 , United States
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology (CMET) , Ghent University , Coupure Links 653 , 9000 Gent , Belgium
| | - Damien Batstone
- Advanced Water Management Centre , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Bronwyn Laycock
- School of Chemical Engineering , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Willy Verstraete
- Center for Microbial Ecology and Technology (CMET) , Ghent University , Coupure Links 653 , 9000 Gent , Belgium
| | - Ilje Pikaar
- School of Civil Engineering , The University of Queensland , Brisbane , Queensland 4072 , Australia
| |
Collapse
|
30
|
Hyun C, Burt Z, Crider Y, Nelson KL, Sharada Prasad CS, Rayasam SDG, Tarpeh W, Ray I. Sanitation for Low-Income Regions: A Cross-Disciplinary Review. ANNUAL REVIEW OF ENVIRONMENT AND RESOURCES 2019; 44:287-318. [PMID: 32587484 PMCID: PMC7316187 DOI: 10.1146/annurev-environ-101718-033327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Sanitation research focuses primarily on containing human waste and preventing disease; thus, it has traditionally been dominated by the fields of environmental engineering and public health. Over the past 20 years, however, the field has grown broader in scope and deeper in complexity, spanning diverse disciplinary perspectives. In this article, we review the current literature in the range of disciplines engaged with sanitation research in low- and middle-income countries (LMICs). We find that perspectives on what sanitation is, and what sanitation policy should prioritize, vary widely. We show how these diverse perspectives augment the conventional sanitation service chain, a framework describing the flow of waste from capture to disposal. We review how these perspectives can inform progress toward equitable sanitation for all [i.e., Sustainable Development Goal (SDG) 6]. Our key message is that both material and nonmaterial flows-and both technological and social functions-make up a sanitation "system." The components of the sanitation service chain are embedded within the flows of finance, decision making, and labor that make material flows of waste possible. The functions of capture, storage, transport, treatment, reuse, and disposal are interlinked with those of ensuring equity and affordability. We find that a multilayered understanding of sanitation, with contributions from multiple disciplines, is necessary to facilitate inclusive and robust research toward the goal of sanitation for all.
Collapse
Affiliation(s)
- Christopher Hyun
- Energy and Resources Group, University of California, Berkeley, California 94720, USA
| | - Zachary Burt
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Yoshika Crider
- Energy and Resources Group, University of California, Berkeley, California 94720, USA
| | - Kara L Nelson
- Department of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, California 94720, USA
| | - C S Sharada Prasad
- School of Development, Azim Premji University, Bengaluru, Karnataka 560100, India
| | | | - William Tarpeh
- Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | - Isha Ray
- Energy and Resources Group, University of California, Berkeley, California 94720, USA
| |
Collapse
|
31
|
Margenot AJ, Kitt D, Gramig BM, Berkshire TB, Chatterjee N, Hertzberger AJ, Aguiar S, Furneaux A, Sharma N, Cusick RD. Toward a Regional Phosphorus (Re)cycle in the US Midwest. JOURNAL OF ENVIRONMENTAL QUALITY 2019; 48:1397-1413. [PMID: 31589729 DOI: 10.2134/jeq2019.02.0068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Redirecting anthropogenic waste phosphorus (P) flows from receiving water bodies to high P demand agricultural fields requires a resource management approach that integrates biogeochemistry, agronomy, engineering, and economics. In the US Midwest, agricultural reuse of P recovered from spatially colocated waste streams stands to reduce point-source P discharges, meet agricultural P needs, and-depending on the speciation of recovered P-mitigate P losses from agriculture. However, the speciation of P recovered from waste streams via its chemical transformation-referred to here as recovered P (rP) differs markedly based on waste stream composition and recovery method, which can further interact with soil and crop characteristics of agricultural sinks. The solubility of rP presents key tensions between engineered P recovery and agronomic reuse because it defines both the ability to remove organic and inorganic P from aqueous streams and the crop availability of rP. The potential of rP generation and composition differs greatly among animal, municipal, and grain milling waste streams due to the aqueous speciation of P and presence of coprecipitants. Two example rP forms, phytin and struvite, engage in distinct biogeochemical processes on addition to soils that ultimately influence crop uptake and potential losses of rP. These processes also influence the fate of nitrogen (N) embodied in rP. The economics of rP generation and reuse will determine if and which rP are produced. Matching rP species to appropriate agricultural systems is critical to develop sustainable and financially viable regional exchanges of rP from wastewater treatment to agricultural end users.
Collapse
|
32
|
Akram U, Quttineh NH, Wennergren U, Tonderski K, Metson GS. Optimizing Nutrient Recycling From Excreta in Sweden and Pakistan: Higher Spatial Resolution Makes Transportation More Attractive. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
Wang X, Daigger G, de Vries W, Kroeze C, Yang M, Ren NQ, Liu J, Butler D. Impact hotspots of reduced nutrient discharge shift across the globe with population and dietary changes. Nat Commun 2019; 10:2627. [PMID: 31201305 PMCID: PMC6570658 DOI: 10.1038/s41467-019-10445-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/09/2019] [Indexed: 12/02/2022] Open
Abstract
Reducing nutrient discharge from wastewater is essential to mitigating aquatic eutrophication; however, energy- and chemicals-intensive nutrient removal processes, accompanied with the emissions of airborne contaminants, can create other, unexpected, environmental consequences. Implementing mitigation strategies requires a complete understanding of the effects of nutrient control practices, given spatial and temporal variations. Here we simulate the environmental impacts of reducing nutrient discharge from domestic wastewater in 173 countries during 1990-2050. We find that improvements in wastewater infrastructure achieve a large-scale decline in nutrient input to surface waters, but this is causing detrimental effects on the atmosphere and the broader environment. Population size and dietary protein intake have the most significant effects over all the impacts arising from reduction of wastewater nutrients. Wastewater-related impact hotspots are also shifting from Asia to Africa, suggesting a need for interventions in such countries, mostly with growing populations, rising dietary intake, rapid urbanisation, and inadequate sanitation.
Collapse
Affiliation(s)
- Xu Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.
- Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, United Kingdom.
| | - Glen Daigger
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Wim de Vries
- Wageningen Environmental Research, Wageningen University & Research, 6700 AA, Wageningen, Netherlands
- Environmental Systems Analysis Group, Wageningen University & Research, 6700 AA, Wageningen, Netherlands
| | - Carolien Kroeze
- Water Systems and Global Change Group, Wageningen University & Research, 6700 AA, Wageningen, Netherlands
| | - Min Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 150090, Harbin, China
| | - Junxin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - David Butler
- Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, United Kingdom
| |
Collapse
|
34
|
Trimmer JT, Margenot AJ, Cusick RD, Guest JS. Aligning Product Chemistry and Soil Context for Agronomic Reuse of Human-Derived Resources. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6501-6510. [PMID: 31017776 DOI: 10.1021/acs.est.9b00504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Recovering human-derived nutrients from sanitation systems can offset inorganic fertilizer use and improve access to agricultural nutrients in resource-limited settings, but the agronomic value of recovered products depends upon product chemistry and soil context. Products may exacerbate already-compromised soil conditions, offer benefits beyond nutrients, or have reduced efficacy depending on soil characteristics. Using global spatial modeling, we evaluate the soil suitability of seven products (wastewater, sludge, compost, urine, ammonium sulfate, ammonium struvite, potassium struvite) and integrate this information with local recovery potential of each product from sanitation systems that will need to be installed to achieve universal coverage (referred to here as "newly-installed sanitation"). If product recovery and reuse are colocated, the quantity and suitability of nutrient reuse was variable across countries. For example, alkaline products (e.g., struvite) may be particularly beneficial when applied to acidic soils in Uganda but potentially detrimental in the southwestern United States. Further, we illustrate discrepancies across soil data sets and highlight the need for locally accurate data, knowledge, and interpretation. Overall, this study demonstrates soil context is critical to comprehensively characterize the value proposition of nutrient recovery, and it provides a foundation for incorporating soil suitability into local and global sanitation decision-making.
Collapse
Affiliation(s)
- John T Trimmer
- Department of Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , 205 N. Mathews Ave. , Urbana , Illinois 61801 , United States
| | - Andrew J Margenot
- Department of Crop Sciences , University of Illinois at Urbana-Champaign , 1201 S. Dorner Dr. , Urbana , Illinois 61801 , United States
| | - Roland D Cusick
- Department of Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , 205 N. Mathews Ave. , Urbana , Illinois 61801 , United States
| | - Jeremy S Guest
- Department of Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , 205 N. Mathews Ave. , Urbana , Illinois 61801 , United States
| |
Collapse
|
35
|
Davis A, Javernick-Will A, Cook SM. Priority Addressment Protocol: Understanding the Ability and Potential of Sanitation Systems to Address Priorities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:401-411. [PMID: 30489074 DOI: 10.1021/acs.est.8b04761] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sanitation acceptance is unlikely if user priorities are not addressed. However, sanitation systems are commonly implemented, especially in resource-limited communities, without incorporating local context. Understanding sanitation systems' abilities to address different priorities will further inform technology selection processes. Therefore, a protocol was created to identify priorities and measure how well sanitation systems address them, based upon their importance to a community. This protocol was applied to 20 community-based sanitation systems in India. Overall, 52 sanitation and 40 community priorities were identified; most, along with their relative importance, were case-specific and not yet identified in literature. Existing sanitation systems poorly addressed priorities. Nonfunctional systems addressed the fewest, but, if use and maintenance were improved, they had the potential to address priorities almost as well as functional systems. Resource recovery systems addressed the most priorities, but there was usually minimal benefit to adding all three resources to an existing system; biogas and water had greater potential to address more priorities than compost. This priority addressment protocol can help identify the most appropriate technologies and strategies to improve technology development and success.
Collapse
Affiliation(s)
- Allie Davis
- Department of Civil, Environmental, and Architectural Engineering , University of Colorado Boulder , Boulder , Colorado 80309 , United States
| | - Amy Javernick-Will
- Department of Civil, Environmental, and Architectural Engineering , University of Colorado Boulder , Boulder , Colorado 80309 , United States
| | - Sherri M Cook
- Department of Civil, Environmental, and Architectural Engineering , University of Colorado Boulder , Boulder , Colorado 80309 , United States
| |
Collapse
|
36
|
Shi Y, Zhou L, Xu Y, Zhou H, Shi L. Life cycle cost and environmental assessment for resource-oriented toilet systems. JOURNAL OF CLEANER PRODUCTION 2018; 196:1188-1197. [PMID: 30245554 PMCID: PMC6106690 DOI: 10.1016/j.jclepro.2018.06.129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/11/2018] [Accepted: 06/11/2018] [Indexed: 05/24/2023]
Abstract
The rich content of nutrients in human waste provides an outlook for turning it from pollutants to potential resources. The pilot-scale resource-oriented toilet with forward osmosis technology was demonstrated to have advantages to recover clean water, nitrogen, phosphorus, potassium, biogas, and heat from urine and feces. For the possibility of further full-scale implementation in different scenarios, six resource-oriented toilet systems and one conventional toilet system were designed in this study. The methodology of cost-benefit analysis and life cycle assessment were applied to analyze the life cycle economic feasibility and environmental sustainability of these systems. As results indicated, resource-oriented toilets with forward osmosis technology concentrating urine proved to have both economic and environmental benefit. The economic net present value results of new resource-oriented toilets were much better than conventional toilet. The energy consumption in resource-oriented toilets contributes a lot to the environmental impacts while resource recovery such as the fertilizer production and fresh water harvest in resource-oriented toilet systems offsets a lot. Taking both life cycle economic feasibility and environmental sustainability into consideration, the partial resource-oriented toilet (only recovering nutrients from urine) is the best choice, and the totally independent resource-oriented toilet could be applied to replace conventional toilets in areas without any external facilities such as sewer and water supply system etc.
Collapse
Key Words
- ADP elements, Abiotic Depletion Elements
- ADP fossil, Abiotic Depletion Fossil
- AP, Acidification Potential
- CNY, China Yuan
- CODCr, dichromate oxidizability
- Cost-benefit analysis
- DCB, 4,4′-diaminobiphenyl
- ED, electrodialysis
- ENPV, net economic present value
- EP, Eutrophication Potential
- FAETP, Freshwater Aquatic Ecotoxicity
- FO, forward osmosis
- Forward osmosis
- GWP, Global Warming Potential
- HTP, Human Toxicity Potential
- K, potassium
- LCA, life cycle assessment
- Life cycle assessment
- MAETP, Marine Aquatic Ecotoxity
- N, nitrogen
- NH3-N, ammonia nitrogen
- ODP, Ozone Layer Depletion Potential
- P, phosphorus
- POCP, Photochem. Ozone Creation Potential
- R11, trichlorofluoromethane
- RO, reverse osmosis
- Resource recovery
- SA, Scenario A
- SB1, Scenario B1
- SB2, Scenario B2
- SC1, Scenario C1
- SC2, Scenario C2
- SC3, Scenario C3
- SC4, Scenario C4
- STPs, sewage treatment plants
- Sb, antimony
- TDS, total dissolved solids
- TETP, Terrestric Ecotoxicity Potential (TETP)
- TN, total nitrogen
- TOrCs, trace organic compounds
- TP, total phosphorus
- Toilet
- USD, United States dollar
Collapse
|