1
|
Nguyen TD, Nguyen VT, Dinh KV, Wiegand C, Wang Z, Baduel C, Pham TL, Duong TT, Nguyen QH, Do VM, Le TPQ, Huang YC, Dao TS. Multigenerational ecotoxicity of tris(2-butoxyethyl) phosphate to the tropical water flea Ceriodaphnia cornuta and probabilistic ecological risk assessment in freshwater environments. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 283:107363. [PMID: 40250089 DOI: 10.1016/j.aquatox.2025.107363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/30/2025] [Accepted: 04/09/2025] [Indexed: 04/20/2025]
Abstract
The widespread use of the organophosphorus flame retardant tris(2-butoxyethyl) phosphate (TBOEP) and its presence in aquatic environments pose a hazard to wildlife. This study investigates the chronic ecotoxicity of TBOEP at environmentally relevant concentrations (6 ± 0.7 µg L-1) in the tropical water flea Ceriodaphnia cornuta over seven generations. Delayed toxicity emerged from the second generation (F1) to the fourth generation (F3), affecting survival, body length, and fertility. Recovery occurred in F4, followed by complete inhibition in F5 and F6, where no organisms survived beyond day 10. Population dynamics revealed minimal growth in F5, leading to extinction by F6. This is the first study to demonstrate the multigenerational lethal effects of TBOEP at environmentally relevant concentrations, highlighting ecological threats to C. cornuta and other sensitive species. The mechanisms underlying these effects remain unclear and require sub-organismal investigation. The chronic predicted no-effect concentration, estimated at 8.64 µg L-1, exceeds the tested concentration and therefore may not adequately protect vulnerable species. Ecological risk assessments based on TBOEP concentrations detected in surface waters since 2014 suggest potential risks at elevated levels in specific locations across multiple countries. Additional research is essential to validate TBOEP's toxicity across species under chronic and multigenerational exposure. Current ecological risk assessments likely underestimate TBOEP's threat to aquatic ecosystems, emphasizing the need for reassessment to better safeguard biodiversity.
Collapse
Affiliation(s)
- Tan-Duc Nguyen
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China; Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Shantou University, Shantou, 515063, China.
| | - Van-Tai Nguyen
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 LyThuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; CARE, HCMUT, Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Khuong V Dinh
- Department of Fisheries Biology, Nha Trang University, Nha Trang City, Viet Nam; Department of Biosciences, University of Oslo, Oslo, Norway
| | - Claudia Wiegand
- University Rennes, UMR 6553 ECOBIO, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Zhen Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China; Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Shantou University, Shantou, 515063, China
| | - Christine Baduel
- CARE, HCMUT, Vietnam National University, Ho Chi Minh City, Viet Nam; IRD, CNRS, Grenoble INP, Institut Des Ge1osciences Et de L'Environment (IGE), Université Grenoble Alpes, 38050 Grenoble, France
| | - Thanh Luu Pham
- Faculty of Environment and Labour Safety, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City 700000, Viet Nam
| | - Thi Thuy Duong
- Institute of Science and Technology for Energy and Environment, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Quoc-Hung Nguyen
- Center of Analytical Experimentation and Services, 02 Nguyen Van Thu Street, District 1, Ho Chi Minh City, Viet Nam
| | - Van Manh Do
- Institute of Science and Technology for Energy and Environment, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Thi Phuong Quynh Le
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Viet Nam
| | - Yu-Chen Huang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China; Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Shantou University, Shantou, 515063, China
| | - Thanh-Son Dao
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 LyThuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; CARE, HCMUT, Vietnam National University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
2
|
Han G, Bu D, Kong R, Huang K, Liu C. Toxic responses of environmental concentrations of bifenthrin in larval freshwater snail Bellamya aeruginosa. CHEMOSPHERE 2024; 355:141863. [PMID: 38579955 DOI: 10.1016/j.chemosphere.2024.141863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/04/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
Bifenthrin (BF) is ubiquitous in aquatic environments, and studies have indicated that environmental concentrations of BF could cause neurotoxicity and oxidative damage in fish and decrease the abundance of aquatic insects. However, little information is available on the toxicity of BF in freshwater benthic mollusks. Bellamya aeruginosa (B. aeruginosa) is a key benthic fauna species in aquatic ecosystems, and has extremely high economic and ecological values. In this study, larval B. aeruginosa within 24 h of birth were exposed to 0, 30 or 300 ng/L of BF for 30 days, and then the toxic effects from molecular to individual levels were comprehensively evaluated in all the three treatment groups. It was found that BF at 300 ng/L caused the mortality of snails. Furthermore, BF affected snail behaviors, evidenced by reduced crawling distance and crawling speed. The hepatopancreas of snails in the two BF exposure groups showed significant pathological changes, including increase in the number of yellow granules and occurrence of hemocyte infiltration, epithelial cell thinning, and necrosis. The levels of ROS and MDA were significantly increased after exposure to 300 ng/L BF, and the activities of two antioxidant enzymes SOD and CAT were increased significantly. GSH content decreased significantly after BF exposure, indicating the occurrence of oxidative damage in snails. Transcriptomic results showed that differentially expressed genes (DEGs) were significantly enriched in pathways related to metabolism and neurotoxicity (e.g., oxidative phosphorylation and Parkinson disease), and these results were consistent with those in individual and biochemical levels above. The study indicates that environmental concentration of BF results in decreased survival rates, sluggish behavior, histopathological lesions, oxidative damage, and transcriptomic changes in the larvae of B. aeruginosa. Thus, exposure of larval snails to BF in the wild at concentrations similar to those used in this study might have adverse consequences at the population level. These findings provide a theoretical basis for further assessing the ecological risk of BF to aquatic gastropods.
Collapse
Affiliation(s)
- Guixin Han
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dianping Bu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ren Kong
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Kai Huang
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Chunsheng Liu
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
3
|
Steiner K, Bermel W, Soong R, Lysak DH, Jenne A, Downey K, Wolff WW, Costa PM, Ronda K, Moxley-Paquette V, Pellizzari J, Simpson AJ. A simple 1H ( 12C/ 13C) filtered experiment to quantify and trace isotope enrichment in complex environmental and biological samples. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 361:107653. [PMID: 38471414 DOI: 10.1016/j.jmr.2024.107653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
Nuclear magnetic resonance (NMR) based 13C tracing has broad applications across medical and environmental research. As many biological and environmental samples are heterogeneous, they experience considerable spectral overlap and relatively low signal. Here a 1D 1H-12C/13C is introduced that uses "in-phase/opposite-phase" encoding to simultaneously detect and discriminate both protons attached to 12C and 13C at full 1H sensitivity in every scan. Unlike traditional approaches that focus on the 12C/13C satellite ratios in a 1H spectrum, this approach creates separate sub-spectra for the 12C and 13C bound protons. These spectra can be used for both quantitative and qualitative analysis of complex samples with significant spectral overlap. Due to the presence of the 13C dipole, faster relaxation of the 1H-13C pairs results in slight underestimation compared to the 1H-12C pairs. However, this is easily compensated for, by collecting an additional reference spectrum, from which the absolute percentage of 13C can be calculated by difference. When combined with the result, 12C and 13C percent enrichment in both 1H-12C and 1H-13C fractions are obtained. As the approach uses isotope filtered 1H NMR for detection, it retains nearly the same sensitivity as a standard 1H spectrum. Here, a proof-of-concept is performed using simple mixtures of 12C and 13C glucose, followed by suspended algal cells with varying 12C /13C ratios representing a complex mixture. The results consistently return 12C/13C ratios that deviate less than 1 % on average from the expected. Finally, the sequence was used to monitor and quantify 13C% enrichment in Daphnia magna neonates which were fed a 13C diet over 1 week. The approach helped reveal how the organisms utilized the 12C lipids they are born with vs. the 13C lipids they assimilate from their diet during growth. Given the experiments simplicity, versatility, and sensitivity, we anticipate it should find broad application in a wide range of tracer studies, such as fluxomics, with applications spanning various disciplines.
Collapse
Affiliation(s)
- Katrina Steiner
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Wolfgang Bermel
- Bruker Biospin GmbH, Rudolf-Plank-Str. 23, Ettlingen 76275, Germany
| | - Ronald Soong
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Daniel H Lysak
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Amy Jenne
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Katelyn Downey
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - William W Wolff
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Peter M Costa
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Kiera Ronda
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Vincent Moxley-Paquette
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Jacob Pellizzari
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Andre J Simpson
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| |
Collapse
|
4
|
Fu L, Liu Y, Lin S, Xiao J, Li W, Yu Y, Zeng H, Li P, Fang H. Co-occurrence of organophosphate esters and phosphorus fractions in river sediments: Implications for pollution prediction and environment risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133262. [PMID: 38141294 DOI: 10.1016/j.jhazmat.2023.133262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2023]
Abstract
Organophosphate esters (OPEs) and phosphorus (P) are widespread pollutants in aquatic ecosystems, presenting potential ecological risks. However, there is still a lack of comprehensive understanding of their relationships in sediments. In this study, we investigated the co-occurrence and behaviors of the OPEs and P in urban river sediments. The results indicated serious OPE and P pollution in the study area, with substantial spatial variations in the contents and compositions. The OPE congeners and P fractions exhibited different correlations, particularly more significant linear relationships (R = 0.455 - 0.816, p < 0.05) were observed between the aryl-OPEs and P fractions, potentially due to the influence from sources, physicochemical properties, and total organic carbon. About 56 to 71% of variability in predicting the concentrations of aryl-OPE can be explained by the multiple linear regression model using the Fe/Al- and Ca-bound P contents. The study regions exhibited greater aryl-OPEs ecological risks were consistent with the regions with more serious Total P pollution levels. This study represents the first report demonstrating the potential of Fe/Al-P and Ca-P contents in predicting aryl-OPE contents in heavily polluted sediments, providing a useful reference to comprehensively assess the occurrence and environmental behaviors of aryl-OPEs in anthropogenic polluted sediments.
Collapse
Affiliation(s)
- Lingfang Fu
- National Key Laboratory of Water Environmental Simulation and Pollution Control, Guangdong Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yuxin Liu
- National Key Laboratory of Water Environmental Simulation and Pollution Control, Guangdong Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, China
| | - Shu Lin
- National Key Laboratory of Water Environmental Simulation and Pollution Control, Guangdong Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jieer Xiao
- National Key Laboratory of Water Environmental Simulation and Pollution Control, Guangdong Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Weijie Li
- National Key Laboratory of Water Environmental Simulation and Pollution Control, Guangdong Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yang Yu
- National Key Laboratory of Water Environmental Simulation and Pollution Control, Guangdong Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Hailong Zeng
- National Key Laboratory of Water Environmental Simulation and Pollution Control, Guangdong Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Ping Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou 510006, China.
| | - Huaiyang Fang
- National Key Laboratory of Water Environmental Simulation and Pollution Control, Guangdong Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| |
Collapse
|
5
|
Wang C, Lei W, Jiang C, Du L, Huang X, Cui X, Gao D, Wang H. Exposure to tris (1,3-dichloro-2-propyl) phosphate affects the embryonic cardiac development of Oryzias melastigma. Heliyon 2024; 10:e25554. [PMID: 38327441 PMCID: PMC10847999 DOI: 10.1016/j.heliyon.2024.e25554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
Tris (1,3-dichloro-2-propyl) phosphate (TDCPP) is a growing concern and may be a potential risk to marine environmental health due to its widespread usage and distribution. However, the toxic effects of TDCPP on cardiac development in marine fish have not been reported. In this study, Oryzias melastigma embryos were exposed to TDCPP at doses of 0, 0.04, 0.4, 4 and 40 μg/L from early embryogenesis to 10 days postfertilization (dpf). Then, the heart rate and sinus venosus-bulbus arteriosus (SV-BA) distance of the exposed embryos were measured at 5, 6, 8 and 10 dpf. Furthermore, alterations in the mRNA levels of the genes encoding cyclooxygenase-2 (COX-2), bone morphogenetic protein 4 (BMP4), fibroblast growth factor 8 (FGF8), and GATA-binding protein 4 (GATA4) were evaluated at 5, 6, 8 and 10 dpf. We found that the heart rate significantly increased in all TDCPP exposure groups at 10 dpf. The SV-BA distance significantly decreased in all TDCPP exposure groups at all developmental stages (except for the 0.4 μg/L group at 5 dpf and the 4 μg/L group at 10 dpf). The mRNA expression of COX-2 was downregulated at 5 dpf, BMP4 was downregulated at 5 and 6 dpf, FGF8 was downregulated at 5, 6 and 8 dpf, GATA4 was downregulated at 8 dpf, and GATA4 was upregulated at 10 dpf. These results indicate that the changes in heart rate and SV-BA distance might be accompanied by disturbances in the four genes involved in cardiac development. Our findings will help to illustrate the possible cardiac toxic effects of marine fish exposed to TDCPP.
Collapse
Affiliation(s)
- Chenshi Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Wei Lei
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian, China
- Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen, China
| | - Chengchen Jiang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Lichao Du
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xindi Huang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xiaoyu Cui
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Dongxu Gao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Hua Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| |
Collapse
|
6
|
He W, Ding J, Gao N, Zhu L, Zhu L, Feng J. Elucidating the toxicity mechanisms of organophosphate esters by adverse outcome pathway network. Arch Toxicol 2024; 98:233-250. [PMID: 37864630 DOI: 10.1007/s00204-023-03624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/05/2023] [Indexed: 10/23/2023]
Abstract
With the widespread use of organophosphate esters (OPEs), the accumulation and toxicity effect of OPEs in biota are attracting more and more concern. In order to clarify the mechanism of toxicity of OPEs to organisms, this study reviewed the OPEs toxicity and systematically identified the mechanism of OPEs toxicity under the framework of adverse outcome pathway (AOP). OPEs were divided into three groups (alkyl-OPEs, aryl-OPEs, and halogenated-OPEs) and biota was divided into aquatic organism and mammals. The results showed that tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and triphenyl phosphate (TPHP) mainly caused neurotoxicity, reproductive, and hepatotoxicity in different mechanisms. According to the constructed AOP network, the toxicity mechanism of OPEs on aquatic organisms and mammals is different, which is mainly attributed to the different biological metabolic systems of aquatic organisms and mammals. Interestingly, our results indicate that the toxicity effect of the three kinds of OPEs on aquatic organisms is different, while there was no obvious difference in the mechanism of toxicity of OPEs on mammals. This study provides a theoretical basis for OPEs risk assessment in the future.
Collapse
Affiliation(s)
- Wanyu He
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jiaqi Ding
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Ning Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
7
|
Ma Y, Liu Y, Chen W, Li F, Guo R, Ji R, Chen J. Carbon quantum dot-induced developmental toxicity in Daphnia magna involves disturbance of symbiotic microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166825. [PMID: 37673252 DOI: 10.1016/j.scitotenv.2023.166825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
With the increasing synthesis and application of carbon quantum dots (CQDs), their prevalence as pollution in water environments has increased. However, the toxic effects of CQDs on aquatic organisms are unclear, and their environmental safety must be evaluated. Herein, Daphnia magna was used as a model organism to explore the developmental toxicity of CQDs under a full life-cycle exposure. It was found that the feeding rate and offing number of D. magna decreased with increasing CQD concentration, and the body length of D. magna showed a trend of first increasing and then decreasing. These results indicated that long-term exposure to CQDs has evident toxic effects on D. magna development. Symbiosis analysis showed that the composition of the symbiotic microbial community of D. magna was disturbed by CQDs. The abundance of microorganisms involved in the immune response of D. magna such as Rhodobacter, decreased; those involved in the inflammation such as Gemmobacter, increased; and those involved in the nitrogen cycle, such as Hydrogenophaga and Paracoccus, decreased. When D. magna was subjected to environmental pressure, host-microflora interactive immune regulation was induced. The abundance of probiotics in D. magna, such as Rhodococcus, increased in response to environmental pressure. The results of KEGG function prediction showed that the abundance of symbiotic microorganisms involved in energy absorption and metabolism was affected by CQDs. In addition, the correlation analysis showed that there was a correlation between the changes in the symbiotic microbial community and the damage to D. magna after exposure to CQDs. Thus, it is appealed that as a potential environmental pollutant, CQDs have aquatic environmental risks, and their safe application deserves attention.
Collapse
Affiliation(s)
- Yunfeng Ma
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yanhua Liu
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Wenling Chen
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Fei Li
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Ruixin Guo
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jianqiu Chen
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
8
|
Eghan K, Lee S, Kim WK. Cardio- and neuro-toxic effects of four parabens on Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115670. [PMID: 37976924 DOI: 10.1016/j.ecoenv.2023.115670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Parabens can potentially disrupt the hormonal regulation of energy metabolism, leading to issues related to obesity, metabolic health, and the cardiovascular and nervous systems. However, the health effects of parabens have yielded conflicting research results. The impact of these substances on aquatic organisms, specifically their neuro- and cardio-toxic effects, has been insufficiently investigated. Hence, the primary goal of our research was to investigate and comprehensively assess the neuro- and cardio-toxic effects of four distinct parabens using the Daphnia magna model. After 48 h of exposure to various concentrations (0.1, 1, and 10 mg/L) of four parabens (methyl-, ethyl-, propyl-, and butyl-paraben), along with a solvent control, we conducted a series of physiological tests, behavioral observations, and gene transcription analyses, focusing on cardiomyopathy, serotonin, glutamate, dopamine, GABA, acetylcholine receptors, and ion flux. From a physiological perspective, the heart rate and thoracic limb activity of the exposed daphnids showed substantial time- and dose-dependent inhibitions. Notably, among the parabens tested, butylparaben exhibited the most potent inhibition, with significant alterations in cardiomyopathy-related gene transcription. In the context of neurotoxicity, all the parabens had a significant impact on gene expression, with methylparaben having the most pronounced effect. Additionally, significant changes were observed in parameters such as distance moved, the distance between individuals, and the extent of body contact among the daphnids. In summary, our findings indicate that each paraben has the capacity to induce neurobehavioral and cardiotoxic disorders in Daphnia magna. The effects of butylparaben on the cardiovascular and nervous systems were found to be the most pronounced. These discoveries showed the potential ecological implications of paraben exposure in aquatic ecosystems, particularly regarding the predator avoidance abilities of Daphnia magna.
Collapse
Affiliation(s)
- Kojo Eghan
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sangwoo Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Woo-Keun Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
9
|
Hu F, Li W, Wang H, Peng H, He J, Ding J, Zhang W. Environmentally relevant concentrations of tris (2-chloroethyl) phosphate (TCEP) induce hepatotoxicity in zebrafish (Danio rerio): a whole life-cycle assessment. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1421-1433. [PMID: 37950834 DOI: 10.1007/s10695-023-01265-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/05/2023] [Indexed: 11/13/2023]
Abstract
Tris (2-chloroethyl) phosphate (TCEP), a typical organophosphate flame retardant, is of increasingly great concern considering their ubiquitous presence in aquatic environments and potential ecotoxicity. The present work was aimed to investigate the potential growth inhibition and hepatic stress induced by whole life-cycle exposure to TCEP (0.8, 4, 20 and 100 μg/L) in zebrafish. The results revealed that the body length, body mass and hepatic-somatic index (HSI) of zebrafish were significantly declined after exposure to TCEP for 120 days. GPx activity and GSH content were increased in the liver of zebrafish treated with low concentrations (0.8 and 4 μg/L) of TCEP, while exposure to high concentrations (20 and 100 μg/L) of TCEP reduced antioxidative capacity and elevated lipid peroxidation (LPO) levels. Gene transcription analysis demonstrated that the mRNA levels of nrf2 were altered in a similar manner to the transcription of the downstream genes nqo1 and hmox1, suggesting that Nrf2-Keap1 pathway mediated TCEP-induced oxidative stress in zebrafish liver. In addition, TCEP exposure might alleviate inflammatory response through down-regulating transcription of inflammatory cytokines (il-1β, il-6 and inos), and induce apoptosis via activating the p53-Bax pathway. Moreover, whole life-cycle exposure to TCEP caused a series of histopathological anomalies in zebrafish liver. Overall, our results revealed that lifetime exposure to environmentally relevant concentrations of TCEP could result in growth retardation and induce significant hepatotoxicity in zebrafish.
Collapse
Affiliation(s)
- Fengxiao Hu
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Wen Li
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hongkai Wang
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hangke Peng
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiabo He
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jieyu Ding
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weini Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
10
|
Ma Y, Guo R, Zheng Z, Min P, Ji R, Chen J, Liu Y. Developmental toxicity in Daphnia magna induced by environmentally relevant concentrations of carbon black: From the perspective of metabolomics and symbiotic bacteria composition. CHEMOSPHERE 2023; 340:139889. [PMID: 37633611 DOI: 10.1016/j.chemosphere.2023.139889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
The level of carbon black (CB) pollution in the environment is rapidly increasing, owing to the increase in natural and industrial emissions. The water environment has become an important sink for CB. However, studies on CB mainly focused on its impact on air pollution and phytoremediation applications, and the toxicity mechanism of CB in aquatic organisms is relatively limited. Thus, Daphnia magna was used as a model organism to explore the developmental toxicity of environmentally relevant concentrations of CB under a full life-cycle exposure. The toxicity mechanism of CB in aquatic organisms was investigated based on metabolomic and symbiotic microbial analyses. It was found that compared with the control group, the body length of exposed D. magna decreased, while the mortality and intestinal inflammation increased with increasing concentration of CB. The normal reproductive regularity of D. magna was disturbed, and the deformity and body length of the offspring increased and decreased, respectively, after CB exposure. Metabolomic analysis showed that the urea cycle metabolic pathway of exposed D. magna was increased significantly, suggesting a perturbation of N metabolism. In addition, two eicosanoids were increased, suggesting possible inflammation in D. magna. The levels of seven phospholipid metabolites decreased that might be responsible for offspring malformations. Microbiological analysis showed that the composition of the symbiotic microbial community of D. magna was disturbed, including microorganisms involved in carbon cycling, nitrogen cycling, and biodegradation of pollutants, as well as pathogenic microorganisms. Overall, this study found that the inflammatory related metabolites and symbiotic bacterial, as well as reproductive related metabolites, were disrupted after D. magna exposed to different concentrations of CB, which revealed a possible developmental toxicity mechanism of CB in D. magna. These findings provide a scientific basis for analyzing the risks of CB in aquatic environments.
Collapse
Affiliation(s)
- Yunfeng Ma
- Pharmaceutical Environmental Engineering Laboratory, School of Engineering, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| | - Ruixin Guo
- Pharmaceutical Environmental Engineering Laboratory, School of Engineering, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Zixuan Zheng
- Pharmaceutical Environmental Engineering Laboratory, School of Engineering, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Peng Min
- Pharmaceutical Environmental Engineering Laboratory, School of Engineering, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Jianqiu Chen
- Pharmaceutical Environmental Engineering Laboratory, School of Engineering, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| | - Yanhua Liu
- Pharmaceutical Environmental Engineering Laboratory, School of Engineering, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
11
|
Boisseaux P, Hopkinson P, Santillo D, Smith C, Garmulewicz A, Powell Z, Galloway T. Environmental safety of second and third generation bioplastics in the context of the circular economy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114835. [PMID: 37003058 DOI: 10.1016/j.ecoenv.2023.114835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Bioplastics derived from organic materials other than crude oil are often suggested as sustainable solutions for tackling end-of-life plastic waste, but little is known of their ecotoxicity to aquatic species. Here, we investigated the ecotoxicity of second and third generation bioplastics toward the freshwater zooplankton Daphnia magna. In acute toxicity tests (48 h), survival was impacted at high concentrations (g.L-1 range), within the range of salinity-induced toxicity. Macroalgae-derived bioplastic induced hormetic responses under chronic exposure (21 d). Most biological traits were enhanced from 0.06 to 0.25 g.L-1 (reproduction rate, body length, width, apical spine, protein concentration), while most of these traits returned to controls level at 0.5 g.L-1. Phenol-oxidase activity, indicative of immune function, was enhanced only at the lowest concentration (0.06 g.L-1). We hypothesise these suggested health benefits were due to assimilation of carbon derived from the macroalgae-based bioplastic as food. Polymer identity was confirmed by infra-red spectroscopy. Chemical analysis of each bioplastic revealed low metal abundance whilst non target exploration of organic compounds revealed trace amounts of phthalates and flame retardants. The macroalgae-bioplastic disintegrated completely in compost and biodegraded up to 86 % in aqueous medium. All bioplastics acidified the test medium. In conclusion, the tested bioplastics were classified as environmentally safe. Nonetheless, a reasonable end-of-life management of these safer-by-design materials is advised to ensure the absence of harmful effects at high concentrations, depending on the receiving environment.
Collapse
Affiliation(s)
- Paul Boisseaux
- College of Life and Environmental Sciences, University of Exeter, EX4 4QD Exeter, UK.
| | - Peter Hopkinson
- Exeter Business School, Building One, University of Exeter, EX4 4QD Exeter, UK
| | - David Santillo
- Greenpeace laboratory, Innovation Centre, University of Exeter, EX4 4RN Exeter, UK
| | | | - Alysia Garmulewicz
- Materiom C.I.C, E8 4QS London, UK; Faculty of Administration and Economics, Department of Administration, University of Santiago of Chile, 9170022 Santiago, Chile
| | | | - Tamara Galloway
- College of Life and Environmental Sciences, University of Exeter, EX4 4QD Exeter, UK
| |
Collapse
|
12
|
Sanpradit P, Peerakietkhajorn S. Disturbances in growth, oxidative stress, energy reserves and the expressions of related genes in Daphnia magna after exposure to ZnO under thermal stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161682. [PMID: 36682557 DOI: 10.1016/j.scitotenv.2023.161682] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
The toxicological effects of metal contamination are influenced by the ambient temperature. Therefore, global warming affects the toxicity of metal contamination in aquatic ecosystems. ZnO is widely used as a catalyst in many industries, and causes contamination in aquatic ecosystems. Here, we investigated the effects of ZnO concentration under elevated temperature by observing growth, oxidative stress, energy reserves and related gene expression in exposed Daphnia magna. Body length and growth rate increased in neonates exposed to ZnO for 2 days but decreased at 9 and 21 days under elevated temperature. ZnO concentration and elevated temperature induced oxidative stress in mature D. magna by reducing superoxide dismutase (SOD) activity and increasing malondialdehyde (MDA) levels. In contrast, juveniles were unaffected. Carbohydrate, protein and caloric contents were reduced throughout development in D. magna treated with ZnO and elevated temperature in all exposure periods (2, 9 and 21 days). However, lipid content also decreased in mature D. magna treated with ZnO cultured under elevated temperature, while that of juveniles showed an increase in lipid content. Therefore, energy was perhaps allocated to physiological processes for detoxification and homeostasis. Moreover, expression patterns of genes related to physiological processes changed under elevated temperature and ZnO exposure. Taken together, our results highlight that the combination of temperature and ZnO concentration induced toxicity in D. magna. This conclusion was confirmed by the Integrated Biological Response (IBR) index. This study shows that changes in biological levels of organization could be used to monitor environmental change using D. magna as a bioindicator.
Collapse
Affiliation(s)
- Paweena Sanpradit
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Saranya Peerakietkhajorn
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
13
|
Yang W, Braun JM, Vuong AM, Percy Z, Xu Y, Xie C, Deka R, Calafat AM, Ospina M, Burris HH, Yolton K, Cecil KM, Lanphear BP, Chen A. Associations of gestational exposure to organophosphate esters with gestational age and neonatal anthropometric measures: The HOME study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120516. [PMID: 36341822 PMCID: PMC9884151 DOI: 10.1016/j.envpol.2022.120516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Organophosphate esters (OPEs) are developmental toxicants in experimental studies of animals, but limited evidence is available in humans. We included 340 mother-infant pairs in the Health Outcomes and Measures of the Environment (HOME) Study (Cincinnati, Ohio, USA) for the analysis. We evaluated gestational exposure to OPEs with gestation age at birth and newborn anthropometric measures. We quantified four OPE urinary metabolites at 16 weeks and 26 weeks of gestation. We extracted gestational age at birth, newborn weight, length, and head circumference from the chart review. We calculated z-scores for these anthropometric measures and the ponderal index. We used multiple informant models to examine the associations between repeated OPE measurements and the outcomes. We used modified Poisson regression to estimate the association of gestational exposure to OPEs with preterm birth. We also explored effect modification by infant sex and the potential mediation effect by the highest maternal blood pressure and glucose levels. We found that bis(2-chloroethyl) phosphate (BCEP) at 16 weeks and diphenyl phosphate at 26 weeks of pregnancy were positively associated with gestational age and inversely associated with preterm birth. In female newborns, BCEP at 16 weeks was inversely related to birth weight and length z-scores. In male newborns, we observed negative associations of 26-week di-n-butyl phosphate with the ponderal index at birth. No mediation by the highest maternal blood pressure or glucose levels during pregnancy was identified. In this cohort, gestational exposure to some OPEs was associated with gestational age, preterm birth, and neonatal anthropometric measures. Certain associations tended to be window- and infant sex-specific.
Collapse
Affiliation(s)
- Weili Yang
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Ann M Vuong
- Department of Epidemiology and Biostatistics, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Zana Percy
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yingying Xu
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Changchun Xie
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ranjan Deka
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Maria Ospina
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Heather H Burris
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kimberly Yolton
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kim M Cecil
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bruce P Lanphear
- Child and Family Research Institute, BC Children's Hospital, Vancouver, BC, Canada; Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
14
|
Ni FJ, Arhonditsis GB. Examination of the effects of toxicity and nutrition on a two prey-predator system with a metabolomics-inspired model. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Huang J, Gao Z, Hu G, Su G. Non-target screening and risk assessment of organophosphate esters (OPEs) in drinking water resource water, surface water, groundwater, and seawater. ENVIRONMENT INTERNATIONAL 2022; 168:107443. [PMID: 35961270 DOI: 10.1016/j.envint.2022.107443] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/13/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
By use of an integrated target, suspect, and non-target screening strategy, we investigated occurrence and spatial distribution of organophosphate esters (OPEs) in four types of water (drinking water resource water, surface water, groundwater, and seawater) collected from Jiangsu Province (China) in 2021 (n = 111). Eighteen out of 23 target OPEs were detectable at least once in these analyzed samples, and the total concentrations (Σ18OPEs) of OPEs in various water samples exhibited a descending order following as: groundwater (67026 ng/L) > surface water (35803 ng/L) > drinking water resource water (21055 ng/L) > seawater (17820 ng/L). The highest concentration detected in groundwater may be ascribed to pollution from surrounding factories. Among the target OPEs, triethyl phosphate (TEP), tris(chloroethyl) phosphate (TCEP), and tris (1-chloro-2-propyl) phosphate (TCIPP) were the most abundant congeners with the average concentrations of 407 ng/L, 143 ng/L, and 475 ng/L, respectively. Besides of 18 target OPEs, we further identified 17 suspect OPEs (3 of them were fully identified by authentic standards) on the basis of in-house suspect screening OPE database, and 2 non-target organophosphates (OPs) on the basis of feature fragments. One of these 2 non-target OPs was fully identified as bis(2-chloroethyl) 2-chloroethylphosphonate (B2CE2CEPP) by matching the retention time and MS/MS data with authentic standard, and the other one was preliminarily identified as 2,4,8,10-tetra-tert-butyl-6-methoxydibenzo[d,f][1,3,2]dioxaphosphepin-6-one (TTBMDBDOPPO). We also observed that B2CE2CEPP shared a similar structure with TCEP, suggesting that they may have similar toxicological characteristics and commercial sources. The ecological and human health risk assessments indicated that all OPEs posed a low or negligible ecological risk to aquatic organisms (algae, crustacean, and fish), and negligible risk to human health except for trimethyl phosphate (TMP) in drinking water resource water.
Collapse
Affiliation(s)
- Jianan Huang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Zhanqi Gao
- State Environmental Protection Key Laboratory of Monitoring and Analysis for Organic Pollutants in Surface Water, Jiangsu Environmental Monitoring Center, Nanjing 210019, PR China
| | - Guanjiu Hu
- State Environmental Protection Key Laboratory of Monitoring and Analysis for Organic Pollutants in Surface Water, Jiangsu Environmental Monitoring Center, Nanjing 210019, PR China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
16
|
Eghan K, Lee S, Kim WK. Cardiotoxicity and neurobehavioral effects induced by acrylamide in Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113923. [PMID: 35930837 DOI: 10.1016/j.ecoenv.2022.113923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Acrylamide has neurotoxic and/or cardiotoxic effects on humans however available information regarding the neuro- and cardiotoxicity currently is very limited for freshwater organism models. Using three distinct techniques, thus, we investigated the neuro- and cardiotoxic effects of acrylamide in the freshwater invertebrate model, Daphnia magna. We exposed D. magna to acrylamide at concentrations of 0.3, 2.7, and 11.1 mg/L for 48 h alongside a control group. We then conducted physiological (thoracic limb activity and heart rate) and behavioral tests (including distance moved, velocity, turn angle, moving duration, the distance between subjects, and body contact frequency), as well as gene transcription analyses (related to cardiomyopathy, the serotonergic synapse, neuroactive ligand-receptor interactions, the GABAergic synapse, and acetylcholine receptors). After acrylamide exposure, the thoracic limb activity and heart rates of D. magna showed time- and dose dependent inhibition. From low to high exposure concentrations, both heart rates and thoracic limb activity were decreased. Additionally, the distance between subjects and body contact frequencies was significantly reduced. At the gene transcription level, acrylamide significantly altered the transcription of five genes related to cardiomyopathy and eight genes related to the serotonergic synapse, neuroactive ligand-receptor interactions, and the GABAergic synapse. The signs of hindered neural and cardiac functions were shown in D. magna. This suggests that acrylamide exposure leads to cardiotoxicity and neurobehavior defects in D. magna. Because cardiotoxicity and neurobehavioral changes may cause an ecological imbalance via predation of D. magna, acrylamide may also be considered a threat to freshwater ecosystem.
Collapse
Affiliation(s)
- Kojo Eghan
- Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Korea; Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea.
| | - Sangwoo Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea.
| | - Woo-Keun Kim
- Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Korea; Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea.
| |
Collapse
|
17
|
Liu W, Zhang H, Ding J, He W, Zhu L, Feng J. Waterborne and Dietary Bioaccumulation of Organophosphate Esters in Zooplankton Daphnia magna. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159382. [PMID: 35954739 PMCID: PMC9367849 DOI: 10.3390/ijerph19159382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023]
Abstract
Organophosphate esters (OPEs) are widely used as an additive in flame retardants, plasticizers, lubricants, consumer chemicals, and foaming agents. They can accumulate in aquatic organisms from water (waterborne exposure) and food (dietary exposure). However, the bioaccumulation characteristics and relative importance of different exposure routes to the bioaccumulation of OPEs are relatively poorly understood. In this study, Daphnia magna were exposed to fo typical OPEs (tris(2-chloroethyl) phosphate (TCEP), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), tris(2-butoxyethyl) phosphate (TBOEP), and triphenyl phosphate (TPHP)), and their toxicokinetics under waterborne and dietary exposure routes were analyzed. For the waterborne exposure route, the bioconcentration factors (BCFs) increased in the order of TBOEP, TCEP, TDCPP, and TPHP, which were consistent with their uptake rate constants. TPHP might have the most substantial accumulation potential while TBOEP may have the smallest potential. In dietary exposure, the depuration rate constants of four OPEs were different from those in the waterborne experiment, which may indicate other depuration mechanisms in two exposure routes. The biomagnification factors (BMFs) of fur OPEs were all below 1, suggesting trophic dilution in the transfer of four OPEs from Scenedesmus obliquus to D. magna. Except for TBOEP, the contributions of dietary exposure were generally lower than waterborne exposure in D. magna under two exposure concentrations. This study provides information on the bioaccumulation and contribution of OPEs in D. magna via different exposure routes and highlights the importance of considering different exposure routes in assessing the risk of OPEs.
Collapse
Affiliation(s)
| | | | | | | | - Lin Zhu
- Correspondence: (L.Z.); (J.F.)
| | | |
Collapse
|
18
|
Wang C, Li Y, Zeng L, Shi C, Peng Y, Li H, Chen H, Yu J, Zhang J, Cheng B, Pan R, Wang X, Xiang M, Huang Y, Liu Y. Tris(1,3-dichloro-2-propyl) phosphate reduces longevity through a specific microRNA-mediated DAF-16/FoxO in an unconventional insulin/insulin-like growth factor‑1 signaling pathway. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:128043. [PMID: 34906867 DOI: 10.1016/j.jhazmat.2021.128043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) has received concerns due to its frequent detection in environmental media and biological samples. Our previous study has indicated TDCPP reduced the lifespan of Caenorhabditis elegans (C. elegans) by triggering an unconventional insulin/insulin-like growth factor signaling (IIS) pathway. This study continued to investigate the possible deleterious effects of TDCPP relating to longevity regulation signal pathways and biological processes. Specifically, this study uniquely performed small RNA transcriptome sequencing (RNA-seq), focusing on the underlying mechanisms of TDCPP-reduced the longevity of C. elegans in-depth in microRNAs (miRNAs). Based on Small RNA-seq results and transcript levels of mRNA involved in the unconventional IIS pathway, a small interaction network of miRNAs-mRNAs following TDCPP exposure in C. elegans was preliminarily established. Among them, up-regulated miR-48 and miR-84 (let-7 family members) silence the mRNA of daf-16 (the crucial member of the FoxO family and pivotal regulator in longevity) via post-transcription and translation dampening abilities, further inhibit its downstream target metallothionein-1 (mtl-1), and ultimately contributed to the reduction of nematode longevity and locomotion behaviors. Meanwhile, the high binding affinities of TDCPP with miRNAs cel-miR-48-5p and cel-miR-84-5p strongly support their participation in the regulation of nematode mobility and longevity. These findings provide a comprehensive analysis of TDCPP-reduced longevity from the perspective of miRNAs.
Collapse
Affiliation(s)
- Chen Wang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yeyong Li
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Lingjun Zeng
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Chongli Shi
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yi Peng
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Hui Li
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| | - Haibo Chen
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Jun Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jin Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Biao Cheng
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Ruolin Pan
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Xiaoli Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Minghui Xiang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yuan Huang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yongdi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
19
|
Khabib MNH, Sivasanku Y, Lee HB, Kumar S, Kue CS. Alternative animal models in predictive toxicology. Toxicology 2022; 465:153053. [PMID: 34838596 DOI: 10.1016/j.tox.2021.153053] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 11/28/2022]
Abstract
Toxicity testing relies heavily on animals, especially rodents as part of the non-clinical laboratory testing of substances. However, the use of mammalians and the number of animals employed in research has become a concern for institutional ethics committees. Toxicity testing involving rodents and other mammals is laborious and costly. Alternatively, non-rodent models are used as replacement, as they have less ethical considerations and are cost-effective. Of the many alternative models that can be used as replacement models, which ones can be used in predictive toxicology? What is the correlation between these models and rodents? Are there standardized protocols governing the toxicity testing of these commonly used predictive models? This review outlines the common alternative animal models for predictive toxicology to address the importance of these models, the challenges, and their standard testing protocols.
Collapse
Affiliation(s)
- Muhammad Nur Hamizan Khabib
- Faculty of Health and Life Science, Management and Science University, Seksyen 13, 40100, Shah Alam, Selangor, Malaysia
| | - Yogeethaa Sivasanku
- Faculty of Health and Life Science, Management and Science University, Seksyen 13, 40100, Shah Alam, Selangor, Malaysia
| | - Hong Boon Lee
- School of Biosciences, Taylor's University Lakesike Campus, 47500, Subang Jaya, Malaysia
| | - Suresh Kumar
- Faculty of Health and Life Science, Management and Science University, Seksyen 13, 40100, Shah Alam, Selangor, Malaysia
| | - Chin Siang Kue
- Faculty of Health and Life Science, Management and Science University, Seksyen 13, 40100, Shah Alam, Selangor, Malaysia.
| |
Collapse
|
20
|
Nguyen TD, Itayama T, Ramaraj R, Iwami N, Shimizu K, Dao TS, Pham TL, Maseda H. Chronic ecotoxicology and statistical investigation of ciprofloxacin and ofloxacin to Daphnia magna under extendedly long-term exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118095. [PMID: 34537598 DOI: 10.1016/j.envpol.2021.118095] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/09/2021] [Accepted: 08/31/2021] [Indexed: 05/22/2023]
Abstract
Ciprofloxacin (CFX) and ofloxacin (OFX) are two of the most often used fluoroquinolone antibiotics, and their residues are found in large amounts in various aquatic settings. However, the toxicity tests of CFX using eukaryotic organisms such as Daphnia magna are inadequate, and the test result of OFX is currently unknown. Therefore, the chronic toxicity test for D. magna was performed during 42 days under exposure to CFX and OFX concentrations of 50, 500, and 5000 μg L-1. All exposure conditions did not cause mortality for D. magna. CFX exposure at 500 μg L-1 resulted in an earlier oogenesis date and increased brood size in the second birth. The Poisson-based generalized linear mixed-effects model revealed that the reduction of fertility was statistically significant for the CFX and OFX exposures at 5000 μg L-1. On the other hand, the production of dead eggs as offspring degradation was also found significantly as maternal D. magna exposed to antibiotics at 5000 μg L-1. In addition, following long-term exposure to antibiotics, maternal adaptation to antibiotics was established for offspring deterioration and fertility. However, the OFX exposure showed that the fertility-suppressed effects continued for a longer period than the CFX exposure. Although no rational explanation has yet been given for the more substantial effect of OFX on reducing fertility than CFX, molecular cell biology and symbiotic microbial flora derived from previous studies could explain our ecotoxicological results. This study is the first report for the OFX chronic toxicities on D. magna by comparing it to the toxicity of CFX. Our study contributes to guiding the future impact assessment of fluoroquinolone antibiotic pollution on ecosystems, including the need for new statistical methods in ecotoxicological studies.
Collapse
Affiliation(s)
- Tan-Duc Nguyen
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki-shi, Japan
| | - Tomoaki Itayama
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki-shi, Japan.
| | - Rameshprabu Ramaraj
- School of Renewable Energy, Maejo University, Sansai, Chiang Mai, 50290, Thailand
| | - Norio Iwami
- School of Science and Engineering, Meise University, 2-1-1 Hodokubo, Hino-shi, Tokyo, 191-8506, Japan
| | - Kazuya Shimizu
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki, Japan
| | - Thanh-Son Dao
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Thanh-Luu Pham
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi, 100000, Viet Nam; Institute of Tropical Biology, Vietnam Academy of Science and Technology (VAST), 85 Tran Quoc Toan Street, District 3, Ho Chi Minh City, 700000, Viet Nam
| | - Hideaki Maseda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| |
Collapse
|
21
|
Chai L, Zhang H, Song R, Yang H, Yu H, Paneth P, Kepp KP, Akamatsu M, Ji L. Precision Biotransformation of Emerging Pollutants by Human Cytochrome P450 Using Computational-Experimental Synergy: A Case Study of Tris(1,3-dichloro-2-propyl) Phosphate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14037-14050. [PMID: 34663070 DOI: 10.1021/acs.est.1c03036] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Precision biotransformation is an envisioned strategy offering detailed insights into biotransformation pathways in real environmental settings using experimentally guided high-accuracy quantum chemistry. Emerging pollutants, whose metabolites are easily overlooked but may cause idiosyncratic toxicity, are important targets of such a strategy. We demonstrate here that complex metabolic reactions of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) catalyzed by human CYP450 enzymes can be mapped via a three-step synergy strategy: (i) screening the possible metabolites via high-throughout (moderate-accuracy) computations; (ii) analyzing the proposed metabolites in vitro by human liver microsomes and recombinant human CYP450 enzymes; and (iii) rationalizing the experimental data via precise mechanisms using high-level targeted computations. Through the bilateral dialogues from qualitative to semi-quantitative to quantitative levels, we show how TDCIPP metabolism especially by CYP3A4 generates bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) as an O-dealkylation metabolite and bis(1,3-dichloro-2-propyl) 3-chloro-1-hydroxy-2-propyl phosphate (alcoholβ-dehalogen) as a dehalogenation/reduction metabolite via the initial rate-determining H-abstraction from αC- and βC-positions. The relative yield ratio [dehalogenation/reduction]/[O-dealkylation] is derived from the relative barriers of H-abstraction at the βC- and αC-positions by CYP3A4, estimated as 0.002 to 0.23, viz., an in vitro measured ratio of 0.04. Importantly, alcoholβ-dehalogen formation points to a new mechanism involving successive oxidation and reduction functions of CYP450, with its precursor aldehydeβ-dehalogen being a key intermediate detected by trapping assays and rationalized by computations. We conclude that the proposed three-step synergy strategy may meet the increasing challenge of elucidating biotransformation mechanisms of substantial synthesized organic compounds in the future.
Collapse
Affiliation(s)
- Lihong Chai
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Huanni Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Runqian Song
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Haohan Yang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Piotr Paneth
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Kasper P Kepp
- DTU Chemistry, Technical University of Denmark, Building 206, Kgs. Lyngby DK-2800, Denmark
| | - Miki Akamatsu
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Li Ji
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
22
|
Chen MH, Ma WL. A review on the occurrence of organophosphate flame retardants in the aquatic environment in China and implications for risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147064. [PMID: 34088162 DOI: 10.1016/j.scitotenv.2021.147064] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 05/28/2023]
Abstract
Organophosphate flame retardants (OPFRs), used extensively as substitutes for polybrominated diphenyl ethers, are ubiquitous environmental contaminants. OPFR pollution in aquatic environments, the main sink of pollutants, has been studied extensively over the past decade. Here, we review the current knowledge on the consumption and applications of OPFRs, and on their ecotoxicity in aquatic environments worldwide. We also synthesize the available evidence on the occurrence of OPFRs in aquatic environments in China (wastewater treatment plant influent and effluent, surface water, sediment, aquatic biota, and drinking water). Across China, the measured concentrations of OPFRs differ by more than three orders of magnitude. Risk assessments based on these measurements indicate a low level of ecological risk from OPFRs in most aquatic environments in China, and a low risk to human health from drinking water and aquatic products. Finally, we identify gaps in the current knowledge and directions for further research on OPFRs in aquatic environments.
Collapse
Affiliation(s)
- Mei-Hong Chen
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China.
| |
Collapse
|
23
|
Yu W, Fan L, Wang M, Cao B, Hu X. Pterostilbene Improves Insulin Resistance Caused by Advanced Glycation End Products (AGEs) in Hepatocytes and Mice. Mol Nutr Food Res 2021; 65:e2100321. [PMID: 34085383 DOI: 10.1002/mnfr.202100321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/15/2021] [Indexed: 11/07/2022]
Abstract
SCOPE Increased consumption of modern processed foods rich in AGEs is drawing worldwide concerns because they are related with rising diabetes prevalence. This study aimed to investigate if pterostilbene (PTE) regulates glucose metabolism and insulin signaling, as well as its potential mechanism in the context of AGEs exposure. METHODS AND RESULTS In vitro, Lo2 and HepG2 cells are treated with vehicle, AGEs with or without PTE. AGEs exposure directly impair insulin action as evidenced by assays of insulin-stimulated glucose uptake, consumption, and output. However, PTE efficiently rescue the AGE-induced phenotypes in both cell lines, and enhance IRS-1/PI3K/AKT insulin signaling in a dose-dependent manner. In vivo, C57BL6 mice are fed with regular, high AGEs diet and high AGEs plus PTE. PTE administration effectively improves hyperglycemia, glucose tolerance, and impaired hepatic insulin signaling induced by AGEs, consistent with the in vitro experiments. Moreover, PTE reduce AGEs accumulation in liver and serum. RNA-seq data indicate that PTE counteracts several AGEs-induced dysfunctions including diabetes related process, glucose metabolic process, immune response, and so on. CONCLUSION PTE treatment prominently reduced AGEs accumulation and alleviated AGEs-associated diabetes symptoms. PTE could be used as a promising glucose-sensitizing agent for nutritional intervention.
Collapse
Affiliation(s)
- Wenzhe Yu
- School of Medicine, Xiamen University, Xiamen, 361102, P. R. China
| | - Lida Fan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Heath, Xiamen University, Xiamen, 361102, P. R. China
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, P. R. China
| | - Bin Cao
- School of Medicine, Xiamen University, Xiamen, 361102, P. R. China
| | - Xiaoqian Hu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Heath, Xiamen University, Xiamen, 361102, P. R. China
| |
Collapse
|
24
|
Zhang Y, Yi X, Huang K, Sun Q, Kong R, Chen S, Liang C, Li M, Letcher RJ, Liu C. Tris(1,3-dichloro-2-propyl)phosphate Reduces Growth Hormone Expression via Binding to Growth Hormone Releasing Hormone Receptors and Inhibits the Growth of Crucian Carp. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8108-8118. [PMID: 34062063 DOI: 10.1021/acs.est.0c07708] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tris(1,3-dichloro-2-propyl)phosphate (TDCIPP) has commonly been used as an additive flame retardant and frequently detected in the aquatic environment and in biological samples worldwide. Recently, it was found that exposure to TDCIPP inhibited the growth of zebrafish, but the relevant molecular mechanisms remained unclear. In this study, 5 day-old crucian carp (Carassius auratus) larvae were treated with 0.5, 5, or 50 μg/L TDCIPP for 90 days; the effect on growth was evaluated; and related molecular mechanisms were explored. Results demonstrated that 5 or 50 μg/L TDCIPP treatment significantly inhibited the growth of crucian carp and downregulated the expression of growth hormones (ghs), growth hormone receptor (ghr), and insulin-like growth factor 1 (igf1). Molecular docking, dual-luciferase reporter gene assay, and in vitro experiments demonstrated that TDCIPP could bind to the growth hormone releasing hormone receptor protein of crucian carp and disturb the stimulation of growth hormone releasing hormone to the expression of ghs, resulting in the decrease of the mRNA level of gh1 and gh2 in pituitary cells. Our findings provide new perceptions into the molecular mechanisms of developmental toxicity of TDCIPP in fish.
Collapse
Affiliation(s)
- Yongkang Zhang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xun'e Yi
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai Huang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Sun
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ren Kong
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Sheng Chen
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengqian Liang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Li
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Robert J Letcher
- Departments of Chemistry and Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Chunsheng Liu
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
25
|
Yan Z, Jin X, Liu D, Hong Y, Liao W, Feng C, Bai Y. The potential connections of adverse outcome pathways with the hazard identifications of typical organophosphate esters based on toxicity mechanisms. CHEMOSPHERE 2021; 266:128989. [PMID: 33228983 DOI: 10.1016/j.chemosphere.2020.128989] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 05/03/2023]
Abstract
Following the world-wide ban of brominated flame retardants (BFRs), organophosphate esters (OPEs), which could potentially affect human health and ecosystem safety, have been frequently detected in various environmental media. However, the knowledge regarding the underlying toxicity effects of OPEs remains limited. In order to address these issues, this study reviewed the related reports which have been published in recent years. This analysis process included 12 OPEs, 10 model organisms, and 15 cell lines, which were used to systematically examine the mechanisms of endocrine disruption, neurotoxicity, hepatotoxicity, and cardiotoxicity, as well as reproductive and developmental toxicity. Subsequently, an adverse outcome pathway (AOP) framework of the toxicological effects of OPEs was built. The results demonstrated that multiple different pathways may lead to a single same adverse outcome (AO), and there was a certain degree of correlation among the different AOs. It was found that among all the 12 OPEs, tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) may potentially be the most toxic. In addition, rather than the parent chemicals, the metabolites of OPEs may also have different degrees of toxicity effects on aquatic organisms and humans. Overall, the results of the present study also suggested that an AOP framework should be built via fully utilizing the existing toxicity data of OPEs based on in vivo-in vitro-in silico to completely and deeply understand the toxic mechanisms of OPEs. This improved knowledge could then provide a theoretical basis for ecological risk assessments and water quality criteria research in the near future.
Collapse
Affiliation(s)
- Zhenfei Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Daqing Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yajun Hong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wei Liao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Jiangxi Irrigation Experiment Central Station, Nanchang, 330201, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
26
|
Li J, Li H, Lin D, Li M, Wang Q, Xie S, Zhang Y, Liu F. Effects of butyl benzyl phthalate exposure on Daphnia magna growth, reproduction, embryonic development and transcriptomic responses. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124030. [PMID: 33045484 DOI: 10.1016/j.jhazmat.2020.124030] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Butyl benzyl phthalate (BBP) is widely used as a plasticizer to increase the plasticity and flexibility of plastic products. Although the potential health hazards of BBP have recently received extensive attention, its toxicological properties and mechanisms remain largely undefined. In the present work, growth, reproductive and developmental toxicity of BBP to Daphnia magna were evaluated, and the transcriptomic alteration of early embryos upon BBP exposure was analyzed. In a 21-day chronic toxicity test, reduced survival ratio, decreased body length, increased abnormal ratio, advanced time to first brood, and reduced offspring of D. magna were observed. BBP exposure inhibited expression of the vitellogenin gene. In addition, embryotoxicity of BBP was observed, which showed not only in the induction of abnormal neonates, but also in the shortened embryonic development cycle. RNA-Seq of early embryo treated with 0.1 mg/L BBP indicated that the pathways involved in signal transduction, cell communication, and embryonic development were significantly down-regulated, while those of biosynthesis, metabolism, cell homeostasis, redox homeostasis were remarkably up-regulated upon BBP exposure, which was consistent with the above phenotypic results. Taken together, our results highlight the toxic effects of BBP on the embryonic development and larval growth of D. magna.
Collapse
Affiliation(s)
- Jing Li
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; Key Laboratory of zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Haotian Li
- Key Laboratory of zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Dongdong Lin
- Key Laboratory of zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Muyi Li
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; Key Laboratory of zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Quansheng Wang
- Key Laboratory of zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Song Xie
- Key Laboratory of zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yuming Zhang
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; Key Laboratory of zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| | - Fengsong Liu
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; Key Laboratory of zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
27
|
Zhu Y, Wu X, Liu Y, Zhang J, Lin D. Synergistic growth inhibition effect of TiO 2 nanoparticles and tris(1,3-dichloro-2-propyl) phosphate on earthworms in soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111462. [PMID: 33069946 DOI: 10.1016/j.ecoenv.2020.111462] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
The co-existence of organic pollutants and nanoparticles in the environment may lead to combined biological effects. The joint toxicity of pollutants and nanoparticles has been receiving increasing attention from researchers, but few studies have focused on soil biota due to the complexity of soil matrices. This study investigated the effects of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) at 0, 5, and 25 mg/kg and nanoparticulate TiO2 (nTiO2) at 0, 500, and 2500 mg/kg in a 3 × 3 factorial arrangement of treatments for 28 days (d) on Eisenia fetida (earthworm). Compared with the control group (the 0 mg/kg TDCIPP + 0 mg/kg nTiO2 treatment), all other single (TDCIPP or nTiO2) and binary (TDCIPP + nTiO2) treatments except for the single 500 mg/kg nTiO2 treatment significantly reduced the weight gain rate of E. fetida. The binary treatments had significantly greater such effect than their corresponding single treatments, exhibiting a synergistic toxicity between TDCIPP and nTiO2 on the growth of E. fetida. Since TDCIPP and nTiO2 had no significant effect on their concentrations in the soil or in E. fetida during binary exposure, the synergistic toxicity could be a result of the superimposition of the toxicity pathways of TDCIPP and nTiO2. Transcriptomic analysis of E. fetida intestinal region revealed that exposure to 25 mg/kg TDCIPP or 2500 mg/kg nTiO2 affected nutrient-related or cell apoptosis and DNA damage related genes, respectively; their co-exposure greatly inhibited genes related to nutrient digestion and absorption, while causing abnormal transcription of genes related to the development and maintenance of E. fetida's muscles, leading to synergistic toxicity. These findings provide new insights into the environmental risks of organophosphorus flame retardants, nanoparticles, and their co-exposure.
Collapse
Affiliation(s)
- Ya Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Watershed Science and Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Xinyue Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yaoxuan Liu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jianying Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
28
|
Yuan S, Liang C, Li W, Letcher RJ, Liu C. A comprehensive system for detection of behavioral change of D. magna exposed to various chemicals. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123731. [PMID: 33254763 DOI: 10.1016/j.jhazmat.2020.123731] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 06/12/2023]
Abstract
The purpose of the present study was to develop a sensitive and comprehensive method, based on D. magna swimming behavior, for toxicity assessment of environmental chemicals. Firstly, D. magna swimming in several chambers with different diameters were compared to determine the most suitable container, and then baseline behaviors during light/dark periods as well as reactions to light/dark switching and vibration stimulation were determined. Secondly, after exposure to sub-lethal concentrations of the selected 42 typical chemicals, which were classified into heavy metals, pesticides, fungicides and flame retardants, the alterations in the swimming parameters were evaluated. Our results indicated the 48-well plate was the most suitable chamber for behavioral monitoring of D. magna, and specific responsive patterns of D. magna neonates to light/dark switching and vibration stimulation were observed. The results of the behavioral assays of chemicals suggested that D. magna was the most sensitive to methylmercury-chloride and then to abamectin and chlorpyrifos. The three chemicals at several to dozens of ng/L significantly changed swimming behaviors of D. magna. Furthermore, the alteration in the behavioral parameters (average swimming speed, etc.) induced by the selected chemicals could be ascribed to various modes of actions, confirming the reliability and practicability of the monitoring method.
Collapse
Affiliation(s)
- Siliang Yuan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengqian Liang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Wen Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, 1125 Colonel By Drive, Ottawa K1A 0H3, Canada
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Centre of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
29
|
Li D, Wang P, Wang X, Hu B, Li D. Elucidating multilevel toxicity response differences between tris(1,3-dichloro-2-propyl) phosphate and its primary metabolite in Corbicula fluminea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:142049. [PMID: 33370921 DOI: 10.1016/j.scitotenv.2020.142049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 06/12/2023]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and its primary metabolite, bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) are frequently detected in aquatic environments. However, information regarding the biotoxicity of these compounds to bivalves is limited. We explored the multilevel physiological responses of Corbicula fluminea to TDCIPP and BDCIPP. The results indicated that TDCIPP/BDCIPP bioaccumulation in bivalves was positively correlated with their hydrophobicity. Furthermore, the higher body burden of TDCIPP in digestive glands led to significantly higher levels of ethoxyresorufin-O-deethylase (EROD), glutathione S-transferase (GST), and P-glycoprotein (p < 0.05). Owing to different molecular structures of inducers, upregulations of cyp4, gstm1, and abcb1 mRNA exhibited different sensitivities to TDCIPP and BDCIPP. Although Phase-I and Phase-II biotransformation and the multixenobiotic resistance (MXR) system were activated to protect bivalves from TDCIPP or BDCIPP, digestive glands produced large amounts of reactive oxygen species (ROS). Moreover, oxidative stress, the percentage of apoptotic cells in digestive glands, and inhibition of siphoning behaviour in TDCIPP treatments were higher than those in BDCIPP treatments (p < 0.05), indicating that TDCIPP was more toxic to bivalves than BDCIPP. Lower bioaccumulation and rapid metabolism of BDCIPP in vivo may contribute to alleviating its toxicity. This research establishes a foundation for further understanding the differences between the toxic mechanisms of TDCIPP and its metabolites.
Collapse
Affiliation(s)
- Dandan Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Bin Hu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Dingxin Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
30
|
Ji Q, He H, Gao Z, Wang X, Yang S, Sun C, Li S, Wang Y, Zhang L. UV/H 2O 2 oxidation of tri(2-chloroethyl) phosphate: Intermediate products, degradation pathway and toxicity evaluation. J Environ Sci (China) 2020; 98:55-61. [PMID: 33097158 DOI: 10.1016/j.jes.2020.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Tri(2-chloroethyl) phosphate (TCEP) with the initial concentration of 5 mg/L was degraded by UV/H2O2 oxidation process. The removal rate of TCEP in the UV/H2O2 system was 89.1% with the production of Cl- and PO43- of 0.23 and 0.64 mg/L. The removal rate of total organic carbon of the reaction was 48.8% and the pH reached 3.3 after the reaction. The oxidative degradation process of TCEP in the UV/H2O2 system obeyed the first order kinetic reaction with the apparent rate constant of 0.0025 min-1 (R2=0.9788). The intermediate products were isolated and identified by gas chromatography-mass spectrometer. The addition reaction of HO• and H2O and the oxidation reaction with H2O2 were found during the degradation pathway of 5 mg/L TCEP in the UV/H2O2 system. For the first time, environment risk was estimated via the "ecological structure activity relationships" program and acute and chronic toxicity changes of intermediate products were pointed out. The luminescence inhibition rate of photobacterium was used to evaluate the acute toxicity of intermediate products. The results showed that the toxicity of the intermediate products increased with the increase of reaction time, which may be due to the production of chlorine compounds. Some measures should be introduced to the UV/H2O2 system to remove the highly toxic Cl-containing compounds, such as a nanofiltration or reverse osmosis unit.
Collapse
Affiliation(s)
- Qiuyi Ji
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Zhanqi Gao
- State Environmental Protection Key Laboratory of Monitoring and Analysis for Organic Pollutants in Surface Water, Environment Monitoring Center of Jiangsu, Nanjing 210036, China
| | - Xiaohan Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Nanjing 210023, China.
| | - Cheng Sun
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yong Wang
- School of Environment, Northeast Normal University, Changchun 130024, China
| | - Limin Zhang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
31
|
Liu D, Yan Z, Liao W, Bai Y, Feng C. The toxicity effects and mechanisms of tris(1,3-dichloro-2-propyl) phosphate (TDCPP) and its ecological risk assessment for the protection of freshwater organisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114788. [PMID: 32559856 DOI: 10.1016/j.envpol.2020.114788] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Tris (1,3-dichloro-2-propyl) phosphate (TDCPP) is a type halogenated organophosphate flame retardants (OPFRs), which has been identified as contaminants of emerging concern (CECs). The use and production of OPFRs began to increase gradually when brominated flame retardants (BFRs) were banned. Halogenated OPFRs, especially TDCPP have been considered to lead to mutagenicity and carcinogenesis and major concerns have been raised regarding their toxicity. In this study, the toxicity effects and mechanisms of TDCPP were summarized and ecological risk assessment was made regarding its potential impact on freshwater organisms. TDCPP has been widely detected in ecosystems throughout the world, with observed toxicity effects on both humans and freshwater organisms. Inhalation of the dust was found to be the main exposure for humans. TDCPP could be metabolized in the human body, and medium stability was achieved in human body with the main metabolite BDCPP. Aside from mutagenicity and carcinogenesis, TDCPP was also found to have the potential for endocrine disruption and impairing the human reproductive system. Furthermore, this study reviewed the results of previous toxicity experiments, including acute toxicity, growth and development toxicity, neurotoxicity, and hepatotoxicity in freshwater organisms. Risk assessment was made using the safety threshold method by comparing the toxicity data with the exposure data in freshwater. HC5 (hazardous concentration for 5% of organisms) derived based on traditional endpoints of acute toxicity LC50 (median lethal concentration) or EC50 (concentration for 50% of maximal effect) was 877 μg/L. This value was much higher than the exposure concentration levels in the surface water with EXD90 (exposure data with cumulative probability 90%) of 65.22 ng/L. However, based on the growth and development toxicity data, the derived HC5 was 33.33 ng/L and the calculated MOS (margin of safety) was below 1. Therefore, the results validated the fact that the ecological risk of TDCPP could not be neglected for its growth and development toxicity.
Collapse
Affiliation(s)
- Daqing Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Zhenfei Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wei Liao
- School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang, 330000, China
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
32
|
Hao H, Dang Y, Chen S, Sun Q, Kong R, Cheng S, Liu C. Effects of triphenyl phosphate on ciliate protozoa Tetrahymena thermophila following acute exposure and sub-chronic exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110757. [PMID: 32454264 DOI: 10.1016/j.ecoenv.2020.110757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/05/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Triphenyl phosphate (TPHP) is one of the most widely used organophosphate flame retardants (OPFRs) and is frequently detected in a variety of environmental media. Previous studies reported that TPHP had toxic effects on vertebrates, but little toxic information was available in lower trophic aquatic organisms which were more sensitive to the exposure of many toxic substances. In this study, protozoa Tetrahymena thermophila (T. thermophila) were exposed to 0, 0.01, 0.17 or 2.35 mg/L TPHP for 5 days to study the effects of sub-chronic exposure on theoretical population, cell viability, cell size and number of cilia. Additionally, the effects of TPHP on gene transcription were assessed by transcriptome sequencing technique (RNA-Seq). Cell viability and number of cilia were significantly reduced in all TPHP exposure groups compared with the control. In addition, exposure to 0.17 or 2.35 mg/L TPHP significantly reduced the theoretical population, circumference and body width, and there was a significant decrease in body length in the 2.35 mg/L exposure group. Comparative transcriptome sequencing identified a total of 4105 up- and 4487 down-regulated genes after exposure to 2.35 mg/L TPHP for 5 days compared with the control. KEGG analysis showed that dysfunction of pathways associated with ribosome, spliceosome, phagosome, proteasome and protein processing in endoplasmic reticulum in this study might be responsible for the toxicity of T. thermophila caused by TPHP. In general, the results indicated that TPHP had an adverse effect on the protozoa T. thermophila.
Collapse
Affiliation(s)
- Hui Hao
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Sheng Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qian Sun
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ren Kong
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shiyang Cheng
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
33
|
Wang C, Chen H, Li H, Zhang Y, Ren L, Chen C, Wang X, Yu J, Li Z, Liu Y. Tris(1,3-dichloro-2-propyl)phosphate Reduces the Lifespan via Activation of an Unconventional Insulin/Insulin-Like Growth Factor-1 Signaling Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10783-10796. [PMID: 32786597 DOI: 10.1021/acs.est.0c03630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tris(1,3-dichloro-2-propyl)phosphate (TDCPP) is an environmental contaminant that has attracted increasing concern due to its presence in environmental media and biological samples. Our previous study demonstrated that exposure to TDCPP reduced the lifespan of Caenorhabditis elegans, but the mechanisms, including the relevant signaling pathways, are unclear. The current study found that TDCPP exposure triggers an unconventional insulin/insulin-like growth factor signaling (IIS) pathway, not by disrupting the insulin-like growth factor-1 receptor DAF-2/IGF1R but by inhibiting the downstream tumor-suppressor factor DAF-18/PTEN. This inhibition reduces PI(3,4,5)P3 (PIP3) dephosphorylation, causing buildup that increases the activation of the Akt/Protein Kinase B (PKB) family of serine/threonine kinases. This activation induces DAF-16/FoxO phosphorylation and promotes the sequestration of DAF-16/FoxO in the cytoplasm, reducing the lifespan of nematodes. Our results have important diagnostic and therapeutic implications for controlling TDCPP-related diseases, especially those originating with IIS pathway components.
Collapse
Affiliation(s)
- Chen Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Haibo Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, P. R. China
| | - Hui Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Yunchao Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Luyao Ren
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiaoli Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jun Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zongrui Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, P. R. China
| | - Yongdi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
34
|
Li W, Yuan S, Sun Q, Liu C. Toxicity of tris(2-chloroethyl) phosphate in Daphnia magna after lifetime exposure: Changes in growth, reproduction, survival and gene transcription. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110769. [PMID: 32460054 DOI: 10.1016/j.ecoenv.2020.110769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
In recent years, with the elimination of brominated flame retardants (BFRs), the product volume of tris(2-chloroethyl) phosphate (TCEP), as a main substitute of BFRs, was increasing and frequently detected in natural waters. However, the current toxicological studies on TCEP were mainly focused on the partial life stage assessment of model animals, and thus it might underestimate the impact of TCEP on environmental risks. Therefore, the whole-life-stage effects of TCEP on growth, reproduction, survival and gene transcription in Daphnia magna (D. magna) were studied in this study after exposure to environmentally relevant or greater concentrations (500 or 5000 ng/L). It was found that chronic exposure to TCEP at environmental relevant or greater concentrations promoted growth of D. magna and the expressions of genes involved in the pathways associated with growth were significantly up-regulated. TCEP did not affect reproduction of D. magna, but the expressions of some genes screened in reproduction stage were significantly changed. Furthermore, the expressions of genes involved in two heart disease-related pathways were down-regulated at the death stage of D. magna after TCEP exposure for 62 days, suggesting that TCEP delayed the death of D. magna by retarding their heart senility.
Collapse
Affiliation(s)
- Wen Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Siliang Yuan
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qian Sun
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
35
|
Wang X, Zhu Q, Yan X, Wang Y, Liao C, Jiang G. A review of organophosphate flame retardants and plasticizers in the environment: Analysis, occurrence and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139071. [PMID: 32438088 DOI: 10.1016/j.scitotenv.2020.139071] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
Organophosphate esters (OPEs) are used as additives in flame retardants and plasticizers. Due to phase out of several congeners of polybrominated diphenyl ethers (PBDEs), the application of organophosphorus flame retardants (OPFRs) is continuously increasing over the years. As a consequence, large amounts of OPEs enter the environment. Sewage and solid waste (especially e-waste) treatment plants are the important sources of OPEs released to the environment. Other sources include emissions of OPE-containing materials and vehicle fuel into the atmosphere. OPEs are widely detected in air, dust, water, soil, sediment and sludge. To know the pollution situation of OPEs, a variety of methods on their pretreatment and determination have been developed. We discussed and compared the analytical methods of OPEs, including extraction, purification as well as GC- and LC-based determination techniques. Much attention has been paid to OPEs because some of them are recognized highly toxic to biota, and the toxicological investigations of the most concerned OPEs were summarized. Risk assessments showed that the aquatic and benthic environments in some regions are under considerable ecological risks of OPEs. Finally, we pointed out problems in the current studies on OPEs and provided some suggestions for future research.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueting Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
| |
Collapse
|
36
|
Liu Q, Liu M, Wu S, Xiao B, Wang X, Sun B, Zhu L. Metabolomics Reveals Antioxidant Stress Responses of Wheat ( Triticum aestivum L.) Exposed to Chlorinated Organophosphate Esters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6520-6529. [PMID: 32433877 DOI: 10.1021/acs.jafc.0c01397] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, wheat (Triticum aestivum L.) was exposed to three of the most typical chlorinated organophosphate esters (OPEs), which are widely present in farmland soil, at environmental concentrations to assess their accumulation, disruption on metabolism, and oxidative stress in wheat. The three OPEs accumulated distinctly in the root and then translocated to the shoot. After exposure for 7 days, the content of chlorophyll b decreased, while the levels of carotenoid and activities of antioxidases, malonaldehyde, and reactive oxygen species increased significantly in both the root and shoot, indicating that the target OPEs caused significant oxidative stresses and affected photosynthesis in wheat. Untargeted metabolomics revealed concentration- and species-dependent metabolic responses of the three OPEs. Saccharides were downregulated, which might be due to the reduced photosynthesis activities. On the other hand, the chlorinated OPEs induced increases in respiration and antioxidative metabolites, revealing that the antioxidant system of wheat was active in scavenging ROS. The disturbance of tris(1,3-dichloro-2-propyl)phosphate on the metabolisms in wheat tissues was the strongest. These results contribute to the food safety and crop quality assessment of chlorinated OPEs and clarify the underlying mechanisms of their phytotoxicities.
Collapse
Affiliation(s)
- Qing Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Menglin Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Sihan Wu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Bowen Xiao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Xiaolei Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Binbin Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| |
Collapse
|
37
|
Hao H, Yuan S, Cheng S, Sun Q, Giesy JP, Liu C. Effects of tris (2-chloroethyl) phosphate (TCEP) on growth, reproduction and gene transcription in the protozoan Tetrahymena thermophila. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 222:105477. [PMID: 32276178 DOI: 10.1016/j.aquatox.2020.105477] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
As a typical organophosphorus flame retardant, tris (2-chloroethyl) phosphate (TCEP) has been widely detected in various environmental media. Toxicity of TCEP to vertebrates have been investigated, but potential effects on lower trophic level species were unknown to date. In this study, toxic effects and molecular mechanisms of toxic actions of TCEP on the aquatic protozoan Tetrahymena thermophila were evaluated by use of phenotypic observations, transcriptome sequencing analysis and real-time quantitative PCR detection. Exposure to 0.044, 0.411 or 4.26 mg/L TCEP for 5 days decreased the theoretical population, cell viability, number of cilia and cell size of Tetrahymena thermophila in a time- and dose-dependent manner. Meanwhile, RNA-Seq analysis indicated that exposure to 4.26 mg/L TCEP significantly changed expression of 2932 genes (up-regulation: 1228; down-regulation: 1704). Of these, expressions of 9, 10 and 17 genes that were enriched in soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) interaction in vesicular transport, proteasome and endocytosis pathway respectively were down-regulated. Data collected during this study suggested that exposure to high concentrations of TCEP might affect growth and reproduction of Tetrahymena thermophila through down-regulating transcriptional levels of genes encoding proteins associated with vesicle trafficking, proteasome and endocytosis.
Collapse
Affiliation(s)
- Hui Hao
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Siliang Yuan
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shiyang Cheng
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qian Sun
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N5B3, Canada; Department of Environmental Science, Baylor University, Waco, TX, United States
| | - Chunsheng Liu
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
38
|
Chen S, Gong Z, Letcher RJ, Liu C. Promotion effect of liver tumor progression in male kras transgenic zebrafish induced by tris (1, 3-dichloro-2-propyl) phosphate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110220. [PMID: 31991394 DOI: 10.1016/j.ecoenv.2020.110220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
A previous study reported that exposure to tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) could promote the progression of hepatocellular carcinoma (HCC) in female HCC model zebrafish. Due to the existence of gender disparity in the development of HCC between females and males, whether the promotion effect of TDCIPP still exists in male HCC model zebrafish remains unclear. In this study, Tg(fabp10:rtTA2s-M2; TRE2:EGFP-krasG12V), referred as kras transgenic zebrafish which was shown to be an inducible liver tumor model, was applied as experimental model to assess the promotion potential of TDCIPP for HCC in males. In brief, kras males were exposed to 20 mg/L doxycycline (DOX), 0.3 mg/L TDCIPP and a binary mixture of 20 mg/L DOX with 0.3 mg/L TDCIPP, and after exposure liver size, histopathology and transcriptional profiles of liver from these treatments were examined. With the involvement of TDCIPP, the liver size was significantly increased and the lesion of hepatocyte became more aggressive. Furthermore, expressions of genes involved in DNA replication and inflammatory response were simultaneously up-regulated in the treatment of TDCIPP compared with the solvent control and in the treatment of the binary mixture of the two chemicals compared to the single DOX treatment. Overall, our results suggested that TDCIPP had promotion effect on the progression of liver tumor in kras males.
Collapse
Affiliation(s)
- Sheng Chen
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, K1A 0H3, Canada
| | - Chunsheng Liu
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
39
|
Chen S, Dang Y, Gong Z, Letcher RJ, Liu C. Progression of liver tumor was promoted by tris(1,3-dichloro-2-propyl) phosphate through the induction of inflammatory responses in kras V12 transgenic zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113315. [PMID: 31606661 DOI: 10.1016/j.envpol.2019.113315] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/19/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) has been detected in various environmental media and has been implicated as a weak mutagen or carcinogen, but whether TDCIPP can promote the progression of liver tumor remains unclear. In this study, krasV12 genetically modified zebrafish, Tg(fabp10:rtTA2s-M2; TRE2:EGFP-krasG12V), a model system in which liver tumors can be induced by doxycycline (DOX), was used to evaluate the liver tumor promotion potential of TDCIPP. Briefly, krasV12 transgenic females were exposed to 0.3 mg/L TDCIPP, 20 mg/L DOX or a binary mixture of 0.3 mg/L TDCIPP with 20 mg/L DOX, and liver size, histopathology, and transcriptional profiles of liver were determined. Treatment with TDCIPP resulted in increased liver size and caused more aggressive hepatocellular carcinoma (HCC). Compared with the exposure to DOX, TDCIPP in the presence of DOX up-regulated the expression of genes relevant with salmonella infection and the toll-like receptor signaling pathway. These results implied an occurrence of inflammatory reaction, which was sustained by the increase in the amount of infiltrated neutrophils in the liver of Tg(lyz:DsRed2) transgenic zebrafish larvae whose neutrophils were labelled by red fluorescent protein under the lysozyme C promoter. Furthermore, compared with the binary exposure of DOX and TDCIPP, treatment with a ternary mixture of TDCIPP, DOX and inflammatory response inhibitor (ketoprofen) significantly decrease the liver size and the amounts of neutrophils in the livers of kras and lyz double transgenic zebrafish larvae. Collectively, our results suggested that TDCIPP could promote the liver tumor progression by induction of hepatic inflammatory responses.
Collapse
Affiliation(s)
- Sheng Chen
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yao Dang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, K1A 0H3, Canada
| | - Chunsheng Liu
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
40
|
Zhang Y, Su H, Ya M, Li J, Ho SH, Zhao L, Jian K, Letcher RJ, Su G. Distribution of flame retardants in smartphones and identification of current-use organic chemicals including three novel aryl organophosphate esters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133654. [PMID: 31635002 DOI: 10.1016/j.scitotenv.2019.133654] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/03/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
Smartphones have become an integral tool of society; in the year 2017, approximately 30% of the global population used smartphones. After their life cycle of use, most smartphones are not recycled and are instead discarded as e-waste, which increases the probability that chemicals they contain will eventually be released into the natural environment. In this study, the concentration and distribution of 52 major flame retardant (FR) chemicals were measured in eight components of seven models of largely produced smartphones. The results demonstrated that organophosphate esters (OPEs) were the principal FRs in these smartphone devices, while a suite of halogenated flame retardants (HFRs), including 25 polybrominated diphenyl ethers (PBDEs), were not detected. Triphenyl phosphate (TPHP) was the primary FR in the smartphones, followed by tris(2-butoxyethyl) phosphate (TBOEP), 2-ethylhexyl diphenyl phosphate (EHDPP), triethyl phosphate (TEP), tris(2-chloroethyl) phosphate (TCEP), and tris(2-chloroisopropyl) phosphate (TCIPP), respectively. The average smartphone contained 3.37 × 107 ng TPHP/unit, which was concentrated in the phone screen. We estimated the annual amount of ΣOPEs and TPHP in smartphones used globally to be 53.5 and 51.8 tons, respectively. Extracts of phone screens were further analyzed by use of an untargeted screening strategy, and other 10 organic chemicals were identified. Interestingly, 3 out of them shared similar backbone structure of TPHP, and these 3 chemicals were tri(2,4-di-t-butylphenyl) phosphate (TDTBPP; CAS No. 95906-11-9), 2-biphenylol diphenyl phosphate (BPDPP; 132-29-6), and tris (2-biphenyl) phosphate (TBPHP; 132-28-5). Collectively, this study provided the first information on distribution of major FRs in different components of smartphones, and also identified other 10 current-use organic chemicals including three novel aryl OPEs which should be considered in further environmental studies including in toxicological and monitoring programs.
Collapse
Affiliation(s)
- Yayun Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Huijun Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Miaolei Ya
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Jianhua Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Luming Zhao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Kang Jian
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Center, Carleton University, Ottawa, ON, Canada
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
41
|
Chen R, Hou R, Hong X, Yan S, Zha J. Organophosphate flame retardants (OPFRs) induce genotoxicity in vivo: A survey on apoptosis, DNA methylation, DNA oxidative damage, liver metabolites, and transcriptomics. ENVIRONMENT INTERNATIONAL 2019; 130:104914. [PMID: 31226563 DOI: 10.1016/j.envint.2019.104914] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/07/2019] [Accepted: 06/09/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND As potential substitutes for polybrominated diphenyl ethers (PBDEs), organophosphate flame retardants (OPFRs) have been frequently detected in the environment. However, the genotoxicity induced by these OPFRs has rarely been described, and the results reported in previous studies are conflicting and inconsistent. OBJECTIVES The present study aimed to determine how OPFRs induced genetic toxicity in vivo. METHODS Using Chinese rare minnow as a model, the toxicity of three OPFRs was screened with RNA-seq. To verify the OPFR-induced genotoxicity, alkaline comet assay, cell apoptosis analysis, HPLC-based DNA methylation assay, 8-OHdG assay, bioconcentration and biotransformation investigation were performed. RESULTS According to transcriptomic data, TDCIPP exposure substantially altered the pathways related to DNA damage, including the cell cycle, DNA replication, Fanconi anemia pathway, p53 signaling pathway, and various DNA repair pathways. Although TBOEP and TPHP did not affect DNA damage, TDCIPP induced DNA damage in a dose-dependent manner. TDCIPP also induced apoptosis, altered the activities of caspase-3 and -9, and increased the 8-OHdG levels, while a significant difference in the levels of DNA methylation induced by OPFRs was not observed. CONCLUSIONS Based on these results, TDCIPP induced DNA oxidative damage, eventually leading to genotoxicity in vivo.
Collapse
Affiliation(s)
- Rui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Rui Hou
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
42
|
Wang C, An J, Bai Y, Li H, Chen H, Ou D, Liu Y. Tris(1,3-dichloro-2-propyl) phosphate accelerated the aging process induced by the 4-hydroxynon-2-enal response to reactive oxidative species in Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:904-913. [PMID: 31159140 DOI: 10.1016/j.envpol.2018.12.082] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/14/2018] [Accepted: 12/26/2018] [Indexed: 05/20/2023]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) has been frequently detected in environmental media and biological samples. However, knowledge of its adverse health consequences is limited. In the current study, Caenorhabditis elegans (C. elegans, L1 larvae) were exposed to TDCPP at environmentally relevant concentrations (control, 0.1, 1, 100 and 1000 μg L-1) for 72 h to explore any association between TDCPP and the aging process. Some of the degenerative age-related indicators were observed, including locomotion behaviors and lifespan. As crucial biomarkers of aging, the accumulation of lipofuscin, and lipid peroxidation (LPO) products exemplified by 4-hydroxynon-2-enal (4-HNE) were detected. This product forms as a result of oxidative stress, as confirmed by an N-acetyl-L-cysteine (NAC) pharmacological assay. Moreover, a significant increase in reactive oxide species (ROS) production in a dose-dependent manner using a fluorescent probe was observed. For the underlying molecular mechanism of the above aging phenotypes, significantly upregulated transcription of genes related to antioxidant systems, especially a subset of glutathione S-transferase (gst-5, gst-6, gst-9, gst-10, gst-19, gst-24, gst-26, gst-29, gst-33, and gst-38), was found by RNA-Seq and further confirmed by RT-qPCR. The elevated glutathione S-transferase (GST) was attributed to the significant increase in 4-HNE because mutations in gst-5 and gst-24 inhibited the conjugation of GSTs with 4-HNE. Therefore, GST play an indispensable role in the detoxification process of TDCPP exposure and further confirmed LPO accumulation at the molecular mechanism level. In conclusion, TDCPP accelerated the aging process induced by the LPO products, 4-HNE, response to reactive oxidative species in C. elegans.
Collapse
Affiliation(s)
- Chen Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Jing An
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 10012, PR China
| | - Hui Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| | - Haibo Chen
- Center for Environmental Health Research, South China Institute of Environmental Sciences, MEP, Guangzhou, 510535, PR China
| | - Dong Ou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yongdi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
43
|
Zhang Y, Su G, Li M, Li S, Wang Q, Zhu G, Letcher RJ, Liu C. Chemical and biological transfer: Which one is responsible for the maternal transfer toxicity of tris(1,3-dichloro-2-propyl) phosphate in zebrafish? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1376-1382. [PMID: 30273864 DOI: 10.1016/j.envpol.2018.09.114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/30/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
Maternal transfer toxicity of chemicals has mainly focused in fish on the chemical transfer from maternal generation to offspring, and limited information is available for the evaluation of effects of chemicals from a biological transfer perspective. In this study, first-generation (F0) zebrafish larvae (D. rerio) were exposed to 0, 50, 500 or 5000 ng/L TDCIPP from 14 days post fertilization (dpf) to 120 dpf. F0-generation zebrafish were paired, and F1-generation embryos were collected and continuously exposed to the same concentrations of TDCIPP until 150 dpf. F1-generation females were then paired with unexposed adult males, and maternal transfer effects on survival rate and body length were evaluated. Results demonstrated that maternal exposure to TDCIPP for two generations significantly decreased body length of F2-generation larvae, suggesting the occurrence of maternal transfer toxicity. The transfer of TDCIPP from maternal generation to offspring was evident, but microinjection of equal amounts of TDCIPP did not affect survival and body length of zebrafish larvae. Furthermore, maternal exposure to TDCIPP changed the concentrations of partial mRNAs and proteins in their eggs, and those changes were linked to maternal transfer toxicity (e.g., growth inhibition). These results suggested that in zebrafish changes in biological transfer may explain, at least in part, the observed maternal transfer toxicity of TDCIPP.
Collapse
Affiliation(s)
- Yongkang Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Meng Li
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| | - Shuying Li
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| | - Qiangwei Wang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| | - Robert J Letcher
- Departments of Chemistry and Biology, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Collaborative Innovation Centre for Efficient and Health Production of Fisheries in Hunan Province, Changde, 415000, China.
| |
Collapse
|
44
|
Yang Y, Xiao Y, Chang Y, Cui Y, Klobučar G, Li M. Intestinal damage, neurotoxicity and biochemical responses caused by tris (2-chloroethyl) phosphate and tricresyl phosphate on earthworm. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 158:78-86. [PMID: 29660616 DOI: 10.1016/j.ecoenv.2018.04.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
Organophosphate esters (OPEs) draw growing concern about characterizing the potential risk on environmental health due to its wide usage and distribution. Two typical types of organophosphate esters (OPEs): tris (2-chloroethyl) phosphate (TCEP) and tricresyl phosphate (TCP) were selected to evaluate toxicity of OPEs to the soil organism like earthworm (Eisenia fetida). Histopathological examination (H&E), oxidative stress, DNA damage and RT-qPCR was used to identify the effects and potential mechanism of their toxicity. Hameatoxylin and eosin (H&E) demonstrated that intestinal cells suffered serious damage, and the observed up-regulation of chitinase and cathepsin L in mRNA levels confirmed it. Both TCEP and TCP significantly increased the DNA damage when the concentrations exceeded 1 mg/kg (p < 0.01), and a dose-response relationship was observed. In addition, TCEP and TCP also changed the acetylcholinesterase (AChE) activity and expression of genes associated with neurotoxic effects in earthworms even under exposure to low OPEs concentration (0.1 mg/kg). Moreover, genes associated with nicotinic acetylcholine receptors (nAChR) and carrier protein further demonstrated that highest concentration of TCEP (10 mg/kg) may have an overloading impact on the cholinergic system of E. fetida. Integrated Biological Response index (IBRv2) showed that TCEP exerted stronger toxicity than TCP under the same concentrations. We deduced that the observed intestinal damage, oxidative stress and neurotoxic effect might be the primary mechanisms of TCEP and TCP toxicity. This study provides insight into the toxicological effects of OPEs on earthworm model, and may be useful for risk assessment of OPEs on soil ecosystems.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yao Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yeqian Chang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yibin Cui
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, PR China
| | - Göran Klobučar
- Faculty of Science, University of Zagreb, Department of Biology, Division of Zoology, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
45
|
Kovacevic V, Simpson AJ, Simpson MJ. Investigation of Daphnia magna Sub-Lethal Exposure to Organophosphate Esters in the Presence of Dissolved Organic Matter Using ¹H NMR-Based Metabolomics. Metabolites 2018; 8:metabo8020034. [PMID: 29783758 PMCID: PMC6027453 DOI: 10.3390/metabo8020034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/08/2018] [Accepted: 05/17/2018] [Indexed: 11/17/2022] Open
Abstract
Organophosphate esters (OPEs) are frequently detected in aquatic environments. Hydrophobic OPEs with high octanol-water partition coefficients (Log KOW) will likely sorb to dissolved organic matter (DOM) and consequently alter OPE bioavailability and sub-lethal toxicity. 1H nuclear magnetic resonance (NMR)-based metabolomics was used to evaluate how DOM (5 mg organic carbon/L) alters the metabolic response of Daphnia magna exposed to sub-lethal concentrations of three individual OPEs with varying hydrophobicity. D. magna exposed to the hydrophilic contaminant (Log KOW = 1.43) tris(2-chloroethyl) phosphate (TCEP) did not have substantial metabolic changes and DOM did not alter the metabolic response. There were significant increases in amino acids and a decrease in glucose from exposure to the hydrophobic contaminant (Log KOW = 3.65) tris(2-butoxyethyl) phosphate (TBOEP) which DOM did not mitigate, likely due to the high sub-lethal toxicity of TBOEP. Exposure to DOM and the hydrophobic contaminant (Log KOW = 4.76) triphenyl phosphate (TPhP) resulted in a unique metabolic response which was unlike TPhP only exposure, perhaps because DOM may be an additional stressor with TPhP exposure. Therefore, Log KOW values may not always predict how sub-lethal contaminant toxicity will change with DOM and there should be more consideration to incorporate DOM in sub-lethal ecotoxicology testing.
Collapse
Affiliation(s)
- Vera Kovacevic
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada.
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| | - André J Simpson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada.
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| | - Myrna J Simpson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada.
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| |
Collapse
|