1
|
Wang J, Hu Y, An L, Wang J, Wu F, Gu J, Wang X, Tiedje JM. An efficient strategy for BDD electrode drive electro-catalysis triggering active species on lincomycin and antibiotic resistance genes removal: Electron transfer based on calculation modeling. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137915. [PMID: 40090302 DOI: 10.1016/j.jhazmat.2025.137915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/05/2025] [Accepted: 03/09/2025] [Indexed: 03/18/2025]
Abstract
Identifying the degradation pathway and the final by-products is essential, as their ecological risks are pertinent to the advancement of this technology and its potential application in practical environmental pollution treatment. Elucidating the reaction mechanisms of the degradation system represents the most effective strategy for controlling this process. This study thoroughly revealed that indirect oxidation predominates throughout the electrochemical system, while direct oxidation serves a significant auxiliary role under the synergistic influence. It elucidates the critical importance of electron transfer behavior at the electrode surface for pollutant degradation and unveil potential mechanisms underlying primary degradation reactions via integrating charge density differences and Bader atomic charge analysis. In situ electrochemical infrared spectroscopy (In situ EC-FTIR) and density functional calculation (DFT) were used to analyze the final by-product generation path. It further elucidated the correlation between antibiotic resistance gene (ARGs) and binding strength among base pairs. The oxidative stress process of antibiotic resistance bacteria (ARB) was explained in detail. To comprehensively assess the impact of electrochemical treatment on environmental microbial communities, combined horizontal gene transfer (HGT) experiments were conducted to confirm that electrolytically treated wastewater does not induce ecological stress effects on microorganisms. Finally, a small cyclic electrochemical system was employed to evaluate both ecological impacts and economic benefits associated with wastewater treatment, thereby providing a novel theoretical framework for this domain.
Collapse
Affiliation(s)
- Jia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yihang Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu An
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - James M Tiedje
- Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China; Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Yannick Ngaba MJ, Rennenberg H, Hu B. Insights Into the Efficiency and Health Impacts of Emerging Microplastic Bioremediation Approaches. GLOBAL CHANGE BIOLOGY 2025; 31:e70226. [PMID: 40365679 DOI: 10.1111/gcb.70226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/16/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025]
Abstract
The pollution caused by microplastics (MPs) is a global environmental and health concern. These plastic particles disrupt food chains and pose health risks to organisms, including humans. From a total of 827 studies, synthetic textiles (35%) and tires (28%) are the primary sources of MPs, with fibers being the most common shape (60%). MPs were detected in feces (44% of studies), lungs (35%), and blood (17%), indicating widespread contamination and potential health impacts. Bioremediation is a promising and sustainable method for mitigating MP pollution, as it uses microorganisms and plants to break down or convert MPs into less hazardous substances. However, it is important to understand and address the potential unintended consequences of bioremediation methods on the environment and human health. This scoping literature review examines the efficiency of currently emerging approaches for microplastic bioremediation, their strengths and weaknesses, and their potential impacts on the environment and human health. Highly effective methods such as mycoremediation, soil microbes for enhanced biodegradation, and phytoextraction were identified, but they pose high toxicity risks. Moderately effective methods include plant-assisted remediation, rhizosphere degradation, phytodegradation, and biodegradation, with effectiveness rates between 50% and 65% and moderate toxicity risks.
Collapse
Affiliation(s)
- Mbezele Junior Yannick Ngaba
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, People's Republic of China
- Higher Technical Teacher' Training College of Ebolowa, University of Ebolowa (HTTTC), Ebolowa, Cameroon
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, People's Republic of China
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, People's Republic of China
| |
Collapse
|
3
|
Chen H, Wu H, Dai Y, Qiu F, Zhang T. A heterogeneous polyurethane hybrid foam with enhanced demulsification and dynamic oil cleaning for continuous emulsion separation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136336. [PMID: 39487077 DOI: 10.1016/j.jhazmat.2024.136336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/04/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Here, a top-down strategy was presented to fabricate a heterogeneous polyurethane hybrid foam with independent oil-absorbing frameworks and uninterrupted water transport channels for continuous emulsion separation. A commercial polyurethane foam (PUF) was hydrophobically modified to develop oil-absorbing frameworks (HPUF). Superhydrophilic carbon nanotubes/cellulose nanofibers (CNTs/CNFs) aerogels were assembled in the voids of the HPUF to establish independent water transport channels, forming a heterogeneous polyurethane hybrid foam (CHPUF). This design endowed the CHPUF with a heterogeneous wetting structure formed by the hydrophobic HPUF and the hydrophilic CNTs/CNFs aerogels, which allowed it to exhibit super hydrophilicity and underwater oil-absorbing properties. The underwater oil-absorbing properties can promote the dynamic cleaning of oil contamination at the separation interface to improve the continuity of emulsion separation. Meanwhile, the heterogeneous wetting structure of the CHPUF and photothermal-induced effect of CNTs synergistically enhanced their demulsification capability. Leveraging these structural and functional attributes, the CHPUF have demonstrated exceptional potential in continuous emulsion separation, demonstrating a robust separation capacity with a single separation volume surpassing 3000 mL and remarkable recyclability, evidenced by over five stable separation cycles each maintaining the separation efficiency of 98 %. The CHPUF have exhibited promising separation suitability for multiple surfactant-stabilized oil-in-water emulsions, achieving over 800 L·m-2·h-1and 99 % of separation flux and efficiency, respectively. Consequently, the CHPUF with dynamic oil cleaning and enhanced demulsification display great potential for treating oily wastewater, while inspiring the development of novel 3D superwetting materials, propelling their application in environmental remediation.
Collapse
Affiliation(s)
- Hao Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haonan Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuting Dai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
4
|
Shi K, Xu JM, Cui HL, Cheng HY, Liang B, Wang AJ. Microbiome regulation for sustainable wastewater treatment. Biotechnol Adv 2024; 77:108458. [PMID: 39343082 DOI: 10.1016/j.biotechadv.2024.108458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Sustainable wastewater treatment is essential for attaining clean water and sanitation, aligning with UN Sustainable Development Goals. Wastewater treatment plants (WWTPs) have utilized environmental microbiomes in biological treatment processes in this effort for over a century. However, the inherent complexity and redundancy of microbial communities, and emerging chemical and biological contaminants, challenge the biotechnology applications. Over the past decades, understanding and utilization of microbial energy metabolism and interaction relationships have revolutionized the biological system. In this review, we discuss how microbiome regulation strategies are being used to generate actionable performance for low-carbon pollutant removal and resource recovery in WWTPs. The engineering application cases also highlight the real feasibility and promising prospects of the microbiome regulation approaches. In conclusion, we recommend identifying environmental risks associated with chemical and biological contaminants transformation as a prerequisite. We propose the integration of gene editing and enzyme design to precisely regulate microbiomes for the synergistic control of both chemical and biological risks. Additionally, the development of integrated technologies and engineering equipment is crucial in addressing the ongoing water crisis. This review advocates for the innovation of conventional wastewater treatment biotechnology to ensure sustainable wastewater treatment.
Collapse
Affiliation(s)
- Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jia-Min Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Han-Lin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Hao-Yi Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
5
|
Zhang C, Yuan R, Chen H, Zhou B, Cui Z, Zhu B. Advancements in Inorganic Membrane Filtration Coupled with Advanced Oxidation Processes for Wastewater Treatment. Molecules 2024; 29:4267. [PMID: 39275114 PMCID: PMC11397059 DOI: 10.3390/molecules29174267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
Membrane filtration is an effective water recycling and purification technology to remove various pollutants in water. Inorganic membrane filtration (IMF) technology has received widespread attention because of its unique high temperature and corrosion resistance. Commonly used inorganic membranes include ceramic membranes and carbon-based membranes. As novel catalytic inorganic membrane processes, IMF coupled with advanced oxidation processes (AOPs), can realize the separation and in situ degradation of pollutants, thus mitigating membrane contamination. In this paper, the types and performance of IMF are discussed. The influencing factors of inorganic membranes in practical wastewater treatment are summarized. The applications, advantages, and disadvantages of the coupled process of IMF and AOPs are summarized and outlined. Finally, the challenges and prospects of IMF and IMF coupled with AOPs are presented, respectively. This contributes to the design and development of coupled systems of membrane filtration with inorganic materials and IMF coupled with AOPs for practical wastewater treatment.
Collapse
Affiliation(s)
- Chaoying Zhang
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huilun Chen
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zexin Cui
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Boyun Zhu
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
6
|
Lu N, Liu F. Tempospatially Confined Catalytic Membranes for Advanced Water Remediation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311419. [PMID: 38345861 DOI: 10.1002/adma.202311419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/03/2024] [Indexed: 02/28/2024]
Abstract
The application of homogeneous catalysts in water remediation is limited by their excessive chemical and energy input, weak regenerability, and potential leaching. Heterogeneous catalytic membranes (CMs) offer a new approach to facilitate efficient, selective, and continuous pollutant degradation. Thus, integrating membranes and continuous filtration with heterogeneous advanced oxidation processes (AOPs) can promote thermodynamic and kinetic mass transfers in spatially confined intrapores and facilitate diffusion-reaction processes. Despite the remarkable advantages of heterogeneous CMs, their engineering application is practically restricted due to the fuzzy design criteria for specific applications. Herein, the recent advances in CMs for advanced water remediation are critically reviewed and the design flow for tempospatially confined CMs is proposed. Further, state-of-the-art CM materials and their catalytic mechanisms are reviewed, after which the tempospatial confinement mechanisms comprising the nanoconfinement effect, interface effect, and kinetic mass transfer are emphasized, thus clarifying their roles in the construction and performance optimization of CMs. Additionally, the fabrication methods for CMs based on their catalysts and pore sizes are summarized and an overview of their application and performance evaluations is presented. Finally, future directions for CMs in materials research and water treatment, are presented.
Collapse
Affiliation(s)
- Na Lu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Fu Liu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
7
|
Duan Y, Sedlak DL. Electrochemical Hydrogen Peroxide Generation and Activation Using a Dual-Cathode Flow-Through Treatment System: Enhanced Selectivity for Contaminant Removal by Electrostatic Repulsion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14042-14051. [PMID: 39042582 PMCID: PMC11308524 DOI: 10.1021/acs.est.4c05481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
To oxidize trace concentrations of organic contaminants under conditions relevant to surface- and groundwater, air-diffusion cathodes were coupled to stainless-steel cathodes that convert atmospheric O2 into hydrogen peroxide (H2O2), which then was activated to produce hydroxyl radicals (·OH). By separating H2O2 generation from its activation and employing a flow-through electrode consisting of stainless-steel fibers, the two processes could be operated efficiently in a manner that overcame mass-transfer limitations for O2, H2O2, and trace organic contaminants. The flexibility resulting from separate control of the two processes made it possible to avoid both the accumulation of excess H2O2 and the energy losses that take place after H2O2 has been depleted. The decrease in treatment efficacy occurring in the presence of natural organic matter was substantially lower than that typically observed in homogeneous advanced oxidation processes. Experiments conducted with ionized and neutral compounds indicated that electrostatic repulsion prevented negatively charged ·OH scavengers from interfering with the oxidation of neutral contaminants. Energy consumption by the dual-cathode system was lower than values reported for other technologies intended for small-scale drinking water treatment systems. The coordinated operation of these two cathodes has the potential to provide a practical, inexpensive way for point-of-use drinking water treatment.
Collapse
Affiliation(s)
- Yanghua Duan
- Department of Civil &
Environmental Engineering, University of
California, Berkeley, Berkeley, California 94720, United States
| | - David L. Sedlak
- Department of Civil &
Environmental Engineering, University of
California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
8
|
Ni L, Wang P, Westerhoff P, Luo J, Wang K, Wang Y. Mechanisms and Strategies of Advanced Oxidation Processes for Membrane Fouling Control in MBRs: Membrane-Foulant Removal versus Mixed-Liquor Improvement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11213-11235. [PMID: 38885125 DOI: 10.1021/acs.est.4c02659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Membrane bioreactors (MBRs) are well-established and widely utilized technologies with substantial large-scale plants around the world for municipal and industrial wastewater treatment. Despite their widespread adoption, membrane fouling presents a significant impediment to the broader application of MBRs, necessitating ongoing research and development of effective antifouling strategies. As highly promising, efficient, and environmentally friendly chemical methods for water and wastewater treatment, advanced oxidation processes (AOPs) have demonstrated exceptional competence in the degradation of pollutants and inactivation of bacteria in aqueous environments, exhibiting considerable potential in controlling membrane fouling in MBRs through direct membrane foulant removal (MFR) and indirect mixed-liquor improvement (MLI). Recent proliferation of research on AOPs-based antifouling technologies has catalyzed revolutionary advancements in traditional antifouling methods in MBRs, shedding new light on antifouling mechanisms. To keep pace with the rapid evolution of MBRs, there is an urgent need for a comprehensive summary and discussion of the antifouling advances of AOPs in MBRs, particularly with a focus on understanding the realizing pathways of MFR and MLI. In this critical review, we emphasize the superiority and feasibility of implementing AOPs-based antifouling technologies in MBRs. Moreover, we systematically overview antifouling mechanisms and strategies, such as membrane modification and cleaning for MFR, as well as pretreatment and in-situ treatment for MLI, based on specific AOPs including electrochemical oxidation, photocatalysis, Fenton, and ozonation. Furthermore, we provide recommendations for selecting antifouling strategies (MFR or MLI) in MBRs, along with proposed regulatory measures for specific AOPs-based technologies according to the operational conditions and energy consumption of MBRs. Finally, we highlight future research prospects rooted in the existing application challenges of AOPs in MBRs, including low antifouling efficiency, elevated additional costs, production of metal sludge, and potential damage to polymeric membranes. The fundamental insights presented in this review aim to elevate research interest and ignite innovative thinking regarding the design, improvement, and deployment of AOPs-based antifouling approaches in MBRs, thereby advancing the extensive utilization of membrane-separation technology in the field of wastewater treatment.
Collapse
Affiliation(s)
- Lingfeng Ni
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
| | - Kaichong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|
9
|
Qi Y, Li D, Zhang S, Li F, Hua T. Electrochemical filtration for drinking water purification: A review on membrane materials, mechanisms and roles. J Environ Sci (China) 2024; 141:102-128. [PMID: 38408813 DOI: 10.1016/j.jes.2023.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 02/28/2024]
Abstract
Electrochemical filtration can not only enrich low concentrations of pollutants but also produce reactive oxygen species to interact with toxic pollutants with the assistance of a power supply, making it an effective strategy for drinking water purification. In addition, the application of electrochemical filtration facilitates the reduction of pretreatment procedures and the use of chemicals, which has outstanding potential for maximizing process simplicity and reducing operating costs, enabling the production of safe drinking water in smaller installations. In recent years, the research on electrochemical filtration has gradually increased, but there has been a lack of attention on its application in the removal of low concentrations of pollutants from low conductivity water. In this review, membrane substrates and electrocatalysts used to improve the performance of electrochemical membranes are briefly summarized. Meanwhile, the application prospects of emerging single-atom catalysts in electrochemical filtration are also presented. Thereafter, several electrochemical advanced oxidation processes coupled with membrane filtration are described, and the related working mechanisms and their advantages and shortcomings used in drinking water purification are illustrated. Finally, the roles of electrochemical filtration in drinking water purification are presented, and the main problems and future perspectives of electrochemical filtration in the removal of low concentration pollutants are discussed.
Collapse
Affiliation(s)
- Yuying Qi
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Donghao Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Shixuan Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Fengxiang Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Tao Hua
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| |
Collapse
|
10
|
Barbhuiya N, Nair AM, Dixit N, Singh SP. Iron Nanoparticle-Incorporated Laser-Induced Graphene Filters for Environmental Remediation via an In Situ Electro-Fenton Process. ACS OMEGA 2024; 9:22819-22830. [PMID: 38826522 PMCID: PMC11137694 DOI: 10.1021/acsomega.4c00959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 06/04/2024]
Abstract
Laser-induced graphene (LIG) has garnered much attention due to its facile and chemically free fabrication technique. Metal nanoparticle incorporation into the LIG matrix can improve its electrical and catalytical properties for environmental application. Here, we demonstrate the fabrication of nanoscale zerovalent iron (nZVI) nanoparticle-incorporated LIG (Fe-LIG) and sulfidized-nanoscale zerovalent iron (S-nZVI) nanoparticle-incorporated LIG (SFe-LIG) surfaces. The sheets were first fabricated to investigate nanoparticle loading, successful incorporation in the LIG matrix, and electrochemical performance as electrodes. Fe-LIG and SFe-LIG sheets showed ∼3-3.5 times more charge density as compared with the control LIG sheet. The XPS and its deconvolution confirmed the presence of nZVI and S-nZVI in the Fe-LIG and SFe-LIG surfaces, which can generate in situ hydroxyl radical (•OH) via iron activation of electrogenerated hydrogen peroxide (H2O2) in short in situ electro-Fenton process. After confirmation of the successful incorporation of iron-based nanoparticles in the LIG matrix, filters were fabricated to demonstrate the application in the flow-through filtration. The Fe-LIG and SFe-LIG filters showed ∼10-30% enhanced methylene blue removal under the application of 2.5 V at ∼1000 LMH flux. The Fe-LIG and SFe-LIG filters also showed complete 6-log bacteria and virus removal at 2.5 and 5 V, respectively, while the LIG filters showed only ∼4-log removal. Such enhanced removal by the Fe-LIG and SFe-LIG filters as compared to LIG filters is attributed to the improved charge density, electrochemical activity, and in situ electro-Fenton process. The study shows the potential to develop catalytic LIG-based surfaces for various applications, including contaminant removal and microbial inactivation.
Collapse
Affiliation(s)
- Najmul
Haque Barbhuiya
- Environmental
Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Akhila M. Nair
- Centre
for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Nandini Dixit
- Environmental
Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Swatantra P. Singh
- Environmental
Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
- Centre
for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai 400076, India
- Interdisciplinary
Program in Climate Studies, Indian Institute
of Technology Bombay, Mumbai 400076, India
- Centre
of Excellence on Membrane Technologies for Desalination, Brine Management,
and Water Recycling (DeSaltM), Indian Institute
of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
11
|
Tan L, Yuan Z, Chen W, Lin Z, Tang Y, Li L, Wang J. Boosted elimination of florfenicol by BiOCl xBr 1-x solid solutions via photocatalytic ozonation under visible light. J Colloid Interface Sci 2024; 658:487-496. [PMID: 38128192 DOI: 10.1016/j.jcis.2023.12.086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
In this work, a series of BiOClxBr1-x (BCB) solid solutions are facilely designed for visible-light-driven photocatalytic ozonation (PCO) degradation of florfenicol (FF) in water environments, which could add to the library of efficient, cost-effective and robust nanocatalysts for water purification. BCB solid solutions in the structure of 2D nanosheets are achieved involving the etching of BiOBr "micro-flowers" with HCl at different concentrations, allowing a removal ratio of FF up to 97.3 % within 1 h, superior to bare BiOBr and bare BiOCl. A strengthened synergistic effect between photocatalysis and ozonation is substantiated, where the separation of photo-induced charge transfer is accelerated, the band gap is tuned and the utilization efficiency of ozone is enhanced. This facilitates the production of reactive oxygen species identified as •OH, •O2-, and 1O2 that will attack the FF molecule for degradation based on three pathways.
Collapse
Affiliation(s)
- Lu Tan
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhenxi Yuan
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Weirui Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ziyi Lin
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yiming Tang
- School of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou 510006, China
| | - Laisheng Li
- School of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou 510006, China
| | - Jing Wang
- School of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou 510006, China.
| |
Collapse
|
12
|
Zhao DL, Zhou W, Shen L, Li B, Sun H, Zeng Q, Tang CY, Lin H, Chung TS. New directions on membranes for removal and degradation of emerging pollutants in aqueous systems. WATER RESEARCH 2024; 251:121111. [PMID: 38211412 DOI: 10.1016/j.watres.2024.121111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/06/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Emerging pollutants (EPs) refer to a group of non-regulated chemical or biological substances that have been recently introduced or detected in the environment. These pollutants tend to exhibit resistance to conventional treatment methods and can persist in the environment for prolonged periods, posing potential adverse effects on ecosystems and human health. As we enter a new era of managing these pollutants, membrane-based technologies hold significant promise in mitigating impact of EPs on the environment and safeguarding human health due to their high selectivity, efficiency, cost-effectiveness and capability for simultaneous separation and degradation. Moreover, these technologies continue to evolve rapidly with the development of new membrane materials and functionalities, advanced treatment strategies, and analyses for effectively treating EPs of more recent concerns. The objective of this review is to present the latest directions and advancements in membrane-based technologies for addressing EPs. By highlighting the progress in this field, we aim to share valuable perspectives with researchers and contribute to the development of future directions in sustainable treatments for EPs.
Collapse
Affiliation(s)
- Die Ling Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Wangyi Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Bowen Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hongyu Sun
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Qianqian Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Chuyang Y Tang
- Department of Civil Engineering, University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Tai-Shung Chung
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 10607, Taiwan; Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore.
| |
Collapse
|
13
|
Chen Z, Chen J, Tan S, Yang Z, Zhang Y. Dechlorination Helps Defluorination: Insights into the Defluorination Mechanism of Florfenicol by S-nZVI and DFT Calculations on the Reaction Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2542-2553. [PMID: 38262936 DOI: 10.1021/acs.est.3c07435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Defluorination is essential to eliminate the antibiotic resistance and detrimental effects of florfenicol (C12H14Cl2FNO4S, FF), which is achievable by sulfidated nanoscale zerovalent iron (S-nZVI), yet a comprehensive understanding of the mechanism is lacking. Herein, we used experimental data and density functional theory calculations to demonstrate four dechlorination-promoted defluorination pathways of FF, depending on S-nZVI or not. FF was defluorinated in a rapid and then slow but continuous manner, accompanying a consecutive dechlorination to deschloro (dFF) and dideschloro FF (ddFF). Unexpectedly, the predominant defluorination occurs by spontaneous hydrolysis of ddFF to form the hydrolyzed byproduct (HO-ddFF), i.e., independent of S-nZVI, which is initiated by intramolecular attack from carbonyl O to alkyl F and is thus limited for FF and dFF owing to the diminished nucleophilicity by electron-withdrawing Cl. The removal of Cl also makes the reductive defluorination of ddFF by S-nZVI amenable. The other two minor but more rapid defluorination pathways occur in synergy with the dechlorination of FF and dFF, which are mediated by the reactive carbanion intermediates and generate HO-dFF and HO-ddFF, respectively. The reliability of these dechlorination-facilitated defluorination pathways was verified by the consistency of theoretical calculations with experimental data, providing valuable insights into the degradation of fluorinated contaminants.
Collapse
Affiliation(s)
- Zhenhuan Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, China
| | - Jingdan Chen
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Shendong Tan
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, China
| | - Zilin Yang
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, China
| | - Yanyan Zhang
- Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310030, China
| |
Collapse
|
14
|
Kavian N, Asadollahfardi G, Hasanbeigi A, Delnavaz M, Samadi A. Degradation of phenol in wastewater through an integrated dielectric barrier discharge and Fenton/photo-Fenton process. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115937. [PMID: 38211511 DOI: 10.1016/j.ecoenv.2024.115937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
In this study, a non-thermal dielectric barrier discharge-Fenton/photo-Fenton process was investigated to remove phenol from synthetic wastewater. The changes and optimal values of influencing parameters, including treatment time, iron concentration, phenol initial concentration, and pH, were investigated based on the central composite design (CCD) method. The presence of 0.4 mmol/L of iron in the phenol solution with a concentration of 100 mg/L increased the removal efficiency and pseudo-first-order kinetic constant compared to dielectric barrier discharge cold plasma (DBDP) alone from 0.0824 min-1 and 56.8% to 0.2078 min-1 and 86.83%, respectively. The phenol removal efficiency was reduced to 52.9%, 45.6% and 31.8% by adding tert-butyl alcohol (TBA) with concentrations of 50, 100, and 200 mg/l, respectively. After 12 min of DBDP irradiation, the pH of the sample decreased from 5.95 to 3.42, and the temperature of the sample increased from 19.3 to 37.2 degrees Celsius. The chemical oxygen demand (COD) of the sample containing 100 mg/L phenol under plasma-Fenton/photo-Fenton irradiation decreased from 241 mg/L to 161 mg/L. Phenol removal efficiency after 10 min of treatment in the presence of 0.4 mmol/L of iron with the reactor volume of 50 mL was 87%, but the efficiency decreased to 76%, 47%, and 9% by increasing the volume to 100, 200, and 400 mL, respectively. Reducing the power led to a decrease in the removal efficiency from 56.8% for 100 W power to 10.8% for 40 W. The energy efficiency for 50% removal by DBDP and plasma-Fenton/photo-Fenton systems was 5.86×10-3 kWh/mg and 1.27×10-3 kWh/mg, respectively.
Collapse
Affiliation(s)
- Niusha Kavian
- Faculty of Engineering, Civil Engineering Department, Kharazmi University, Tehran 15719-14911, Iran
| | - Gholamreza Asadollahfardi
- Faculty of Engineering, Civil Engineering Department, Kharazmi University, Tehran 15719-14911, Iran.
| | - Ali Hasanbeigi
- Faculty of Physics, Department of Physics and Institute for Plasma Research, Kharazmi University, Tehran 15719-14911, Iran
| | - Mohammad Delnavaz
- Faculty of Engineering, Civil Engineering Department, Kharazmi University, Tehran 15719-14911, Iran
| | - Amirmohsen Samadi
- Faculty of Engineering, Civil Engineering Department, Kharazmi University, Tehran 15719-14911, Iran
| |
Collapse
|
15
|
Jiang W, Haider MR, Duan Y, Han J, Ding Y, Mi B, Wang A. Metal-free electrified membranes for contaminants oxidation: Synergy effect between membrane rejection and nanoconfinement. WATER RESEARCH 2024; 248:120862. [PMID: 37976953 DOI: 10.1016/j.watres.2023.120862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/04/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Electro-Fenton processes are frequently impeded by depletion of metal catalysts, unbalance between H2O2 generation and activation, and low concentration of reactive species (e.g., •OH) in the bulk solution. A metal-free electro-Fenton membrane was fabricated with nitrogen-doped carbon nanotube (N-CNT) and reduced graphene oxide (RGO). N-CNT acted as a catalyst for both H2O2 generation and activation, while the incorporated RGO served as the second catalyst for H2O2 generation and improved the performance of membrane rejection. The electrified membrane was optimized in terms of nitrogen precursors selection and composition of N-CNT and RGO to achieve optimal coupling between H2O2 generation and activation. The membrane fabricated with 67% mass of N-CNT with urea as the precursor achieved over 95% removal of the target contaminants in a single pass through the membrane with a water flux of 63 L m-2 h-1. This membrane also exhibited efficient transformation of various concentrations of contaminants (i.e., 1-10 mg L-1) over a broad range of pH (i.e., 3-9). Due to its good durability and low energy consumption, the metal-free electro-Fenton membrane holds promise for practical water treatment application. The concentration-catalytic oxidation model elucidated that the elevated contaminant concentration near the membrane surface enhanced the transformation rate by 40%. The nanoconfinement enhanced the transformation rate constant inside the membrane by a factor of 105 because of elevated •OH concentration inside the nanopores. Based on the prediction of this model, the configuration of the membrane reactor has been optimized.
Collapse
Affiliation(s)
- Wenli Jiang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China; Department of Civil & Environmental Engineering, University of California, Berkeley, CA 94720, United States; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Muhammad Rizwan Haider
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Yanghua Duan
- Department of Civil & Environmental Engineering, University of California, Berkeley, CA 94720, United States
| | - Jinglong Han
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China.
| | - Yangcheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Baoxia Mi
- Department of Civil & Environmental Engineering, University of California, Berkeley, CA 94720, United States.
| | - Aijie Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| |
Collapse
|
16
|
Song Y, Meng C, Lyu Y, Liu Y, Li Y, Jiang Z, Jiang K, Hu C. Self-cleaning foulant attachment on near-infrared responsive photocatalytic membrane for continuous dynamic removing antibiotics in sewage effluent environment. WATER RESEARCH 2024; 248:120867. [PMID: 37980863 DOI: 10.1016/j.watres.2023.120867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/08/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
Bifunctional photocatalytic nanofiltration (PNF) membrane has become a reliable frontier technique for removing refractory organic micropollutants. However, the active mitigated fouling mechanism from the microscopic perspective during its long-term operation of purifying real micro-polluted water is rarely studied. Herein, with an integrated use of QSense Explorer and confocal laser scanning microscope techniques, self-cleaning foulant attachment on an activated and customized near-infrared responsive polymeric PNF (termed as nPNF) membrane with good service performance for continuous dynamic removing antibiotics in sewage effluent environment was firstly elucidated. Time-dependent changes in dissipation oscillation frequency, sensed mass and the visualized foulant spatial distribution all indicated that there were only sporadic foulant attachment, an extremely low fouling layer thickness and irreversible fouling rate on/of the activated nPNF membrane top surface, thereby endowing it with excellent self-cleaning characteristic. This is probably because the reactive oxygen species (mainly •O2- and •OH) concurrently destroys the integrity of fouling layer and its internal adhesion structure, transforming part of the irreversible fouling on nPNF membrane surface into reversible one that is easy to wash off. These new horizons provided useful insight on the fate of selected antibiotics in the to-be-removed stage and self-cleaning foulant attachment of PNF membrane.
Collapse
Affiliation(s)
- Yuefei Song
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China.
| | - Chunchun Meng
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Yinghua Lyu
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Yu Liu
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Yuange Li
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Zuqiong Jiang
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Kai Jiang
- Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Chun Hu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
17
|
Zhang D, Tang Y, Liu H, Wang Z, Liu X, Tang H, Zhang H, Wang D, Long Y, Liu C. Electrocatalytic Deep Dehalogenation and Mineralization of Florfenicol: Synergy of Atomic Hydrogen Reduction and Hydroxyl Radical Oxidation over Bifunctional Cathode Catalyst. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20315-20325. [PMID: 37978928 DOI: 10.1021/acs.est.3c08073] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
It is difficult to achieve deep dehalogenation or mineralization for halogenated antibiotics using traditional reduction or oxidation processes, posing the risk of microbial activity inhibition and bacterial resistance. Herein, an efficient electrocatalytic process coupling atomic hydrogen (H*) reduction with hydroxyl radical (•OH) oxidation on a bifunctional cathode catalyst is developed for the deep dehalogenation and mineralization of florfenicol (FLO). Atomically dispersed NiFe bimetallic catalyst on nitrogen-doped carbon as a bifunctional cathode catalyst can simultaneously generate H* and •OH through H2O/H+ reduction and O2 reduction, respectively. The H* performs nucleophilic hydro-dehalogenation, and the •OH performs electrophilic oxidization of the carbon skeleton. The experimental results and theoretical calculations indicate that reductive dehalogenation and oxidative mineralization processes can promote each other mutually, showing an effect of 1 + 1 > 2. 100% removal, 100% dechlorination, 70.8% defluorination, and 65.1% total organic carbon removal for FLO are achieved within 20 min (C0 = 20 mg·L-1, -0.5 V vs SCE, pH 7). The relative abundance of the FLO resistance gene can be significantly reduced in the subsequent biodegradation system. This study demonstrates that the synergy of reduction dehalogenation and oxidation degradation can achieve the deep removal of refractory halogenated organic contaminants.
Collapse
Affiliation(s)
- Danyu Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Yanhong Tang
- Research Institute of HNU in Chongqing, College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Huiling Liu
- School of Science, Hunan University of Technology and Business, Changsha 410205, P. R. China
| | - Zhimin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Xiangxiong Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Haifang Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Hao Zhang
- Institute of Functional Nano & Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, P. R. China
| | - Dayong Wang
- Hunan Zhengda Environmental Protection Technology Co., LTD., Hunan University National Science Park, Changsha 410082, P. R. China
| | - Yi Long
- Hunan Zhengda Environmental Protection Technology Co., LTD., Hunan University National Science Park, Changsha 410082, P. R. China
| | - Chengbin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
18
|
Haider MR, Jiang WL, Han JL, Mahmood A, Djellabi R, Liu H, Asif MB, Wang AJ. Boosting Hydroxyl Radical Yield via Synergistic Activation of Electrogenerated HOCl/H 2O 2 in Electro-Fenton-like Degradation of Contaminants under Chloride Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18668-18679. [PMID: 36730709 DOI: 10.1021/acs.est.2c07752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hydroxyl radical production via catalytic activation of HOCl is a new type of Fenton-like process. However, metal-chlorocomplex formation under high chloride conditions could deactivate the catalyst and reduce the process efficiency. Herein, in situ electrogenerated HOCl was activated to •OH via a metal-free, B/N-codoped carbon nanofiber cathode for the first time to degrade contaminant under high chloride condition. The results show 98% degradation of rhodamine B (RhB) within 120 min (k = 0.036 min-1) under sulfate conditions, while complete degradation (k = 0.188 min-1) was obtained in only 30 min under chloride conditions. An enhanced degradation mechanism consists of an Adsorb & Shuttle process, wherein adsorption concentrates the pollutants at the cathode surface and they are subsequently oxidized by the large amount of •OH produced via activation of HOCl and H2O2 at the cathode. Density functional theory calculations verify the pyridinic N as the active site for the activation of HOCl and H2O2. The process efficiency was also evaluated by treating tetracycline and bisphenol A as well as high chloride-containing real secondary effluents from a pesticide manufacturing plant. High yields of •OH and HOCl allow continuous regeneration of the cathode for several cycles, limiting its fast deactivation, which is promising for real application.
Collapse
Affiliation(s)
- Muhammad Rizwan Haider
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen518055, P.R. China
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, P.R. China
| | - Wen-Li Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen518055, P.R. China
- Department of Civil and Environmental Engineering, University of California, Berkeley, California94720, United States
| | - Jing-Long Han
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen518055, P.R. China
| | - Ayyaz Mahmood
- College of Physics and Optical Engineering, Shenzhen University, Shenzhen518060, P.R. China
| | - Ridha Djellabi
- Department d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007Tarragona, Spain
| | - Huiling Liu
- School of Science, Hunan University of Technology and Business, Changsha410205, Hunan, China
| | - Muhammad Bilal Asif
- Advanced Membrane and Porous Materials Center (AMPMC), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal23955, Saudi Arabia
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen518055, P.R. China
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, P.R. China
| |
Collapse
|
19
|
Tang Z, Kong Y, Qin Y, Chen X, Liu M, Shen L, Kang Y, Gao P. Performance and degradation pathway of florfenicol antibiotic by nitrogen-doped biochar supported zero-valent iron and zero-valent copper: A combined experimental and DFT study. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132172. [PMID: 37523963 DOI: 10.1016/j.jhazmat.2023.132172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/10/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
Fluorinated compounds are a class of organic substances resistant to degradation. Although zero-valent iron (Fe0) has a promising reducing capability, it still fails to degrade fluorine-containing antibiotics (i.e., florfenicol) efficiently. In this study, we applied a simple one-pot pyrolytic approach to synthesize nitrogen-doped biochar supported Fe0 and zero-valent copper (Cu0) composite (Fe/Cu@NBC) and investigated its performance on florfenicol removal. The results clearly showed that approximately 91.4% of florfenicol in the deionized water was removed by Fe/Cu@NBC within 8 h. As the reaction time was extended to 15 d, the total degradation rate of florfenicol reached 96.6%, in which the defluorination and dechlorination rates were 73.2% and 82.1%, respectively. Both experimental results and density functional theory calculation suggested that ∙OH and ·O2- triggered β-fluorine elimination, resulting in defluorination prior to dechlorination. This new finding was distinct from previous viewpoints that defluorination was more difficult to occur than dechlorination. Fe/Cu@NBC also had a favorable performance for removal of florfenicol in surface water. This study provides a new insight into the degradation mechanism and pathway of florfenicol removal in the Fe/Cu@NBC system, which can be a promising alternative for remediation of fluorinated organic compounds in the environment.
Collapse
Affiliation(s)
- Zheng Tang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yifan Kong
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yan Qin
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoqian Chen
- Bioassay and Safety Assessment Laboratory, Shanghai Academy of Public Measurement, 201203 Shanghai, China
| | - Min Liu
- Bioassay and Safety Assessment Laboratory, Shanghai Academy of Public Measurement, 201203 Shanghai, China
| | - Lu Shen
- Bioassay and Safety Assessment Laboratory, Shanghai Academy of Public Measurement, 201203 Shanghai, China
| | - Yanming Kang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Pin Gao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agroenvironmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
20
|
Song G, Wu H, Jing J, Zhang X, Wang X, Li S, Zhou M. Insights into Electrochemical Dehalogenation by Non-Noble Metal Single-Atom Cobalt with High Efficiency and Low Energy Consumption. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14482-14492. [PMID: 37699122 DOI: 10.1021/acs.est.3c06021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
It is critical to discover a non-noble metal catalyst with high catalytic activity capable of replacing palladium in electrochemical reduction. In this work, a highly efficient single-atom Co-N/C catalyst was synthesized with metal-organic frameworks (MOFs) as a precursor for electrochemical dehalogenation. X-ray absorption spectroscopy (XAS) revealed that Co-N/C exhibited a Co-N4 configuration, which had more active sites and a faster charge-transfer rate and thus enabled the efficient removal of florfenicol (FLO) at a wide pH, achieving a rate constant 3.5 and 2.1 times that of N/C and commercial Pd/C, respectively. The defluorination and dechlorination efficiencies were 67.6 and 95.6%, respectively, with extremely low Co leaching (6 μg L-1), low energy consumption (22.7 kWh kg-1), and high turnover frequency (TOF) (0.0350 min-1), demonstrating excellent dehalogenation performance. Spiking experiments and density functional theory (DFT) verified that Co-N4 was the active site and had the lowest energy barrier for forming atomic hydrogen (H*) (ΔGH*). Capture experiments, electron paramagnetic resonance (EPR), electrochemical tests, and in situ Fourier transform infrared (FTIR) proved that H* and direct electron transfer were responsible for dehalogenation. Toxicity assessment indicated that FLO toxicity decreased significantly after dehalogenation. This work develops a non-noble metal catalyst with broad application prospects in electrocatalytic dehalogenation.
Collapse
Affiliation(s)
- Ge Song
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Huizhong Wu
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiana Jing
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuyang Zhang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuechun Wang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shuaishuai Li
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
21
|
Feng C, Zhang H, Ren Y, Luo M, Yu S, Xiong Z, Liu Y, Zhou P, Lai B. Enhancing zerovalent iron-based Fenton-like chemistry by copper sulfide: Insight into the active sites for sustainable Fe(II) supply. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131355. [PMID: 37027922 DOI: 10.1016/j.jhazmat.2023.131355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Zerovalent iron (ZVI)-based Fenton-like processes have been widely applied in degrading organic contaminants. However, the surface oxyhydroxide passivation layer produced during the preparation and oxidation of ZVI hinders its dissolution and Fe(III)/Fe(II) cycling, and restricts the generation of reactive oxygen species (ROS). In this study, copper sulfide (CuS) was found to effectively enhance the degradation of diverse organic pollutants in the ZVI/H2O2 system. Moreover, the degradation performance for the actual industrial wastewater (i.e., dinitrodiazophenol wastewater) in the ZVI/H2O2 system was impressively improved by 41% with CuS addition, and the COD removal efficiency could reach 97% after 2 h of treatment. Mechanism investigation revealed that the introduction of CuS accelerated the sustainable supply of Fe(II) in the ZVI/H2O2 system. Specifically, Cu(I) and reductive sulfur species (i.e., S2-, S22-, Sn2- and H2S (aq)) from CuS directly induced efficient Fe(III)/Fe(II) cycling. The iron-copper synergistic effect between Cu(II) from CuS and ZVI expedited Fe(II) generation from ZVI dissolution and Fe(III) reduction by formed Cu(I). This study not only elucidates the promotion effects of CuS on ZVI dissolution and Fe(III)/Fe(II) cycling in ZVI-based Fenton-like processes, but also provides a sustainable and high-efficiency iron-based oxidation system for removal of organic contaminants.
Collapse
Affiliation(s)
- Can Feng
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| | - Yi Ren
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Mengfan Luo
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Siying Yu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
22
|
Huang Y, Guan Z, Li Q, Li Q, Xia D. Preparation, performance and mechanism of metal oxide modified catalytic ceramic membranes for wastewater treatment. RSC Adv 2023; 13:17436-17448. [PMID: 37313519 PMCID: PMC10258605 DOI: 10.1039/d3ra01291c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023] Open
Abstract
Catalytic ceramic membranes (CMs) integrated with different metal oxides were designed and fabricated by an impregnation-sintering method. The characterization results indicated that the metal oxides (Co3O4, MnO2, Fe2O3 and CuO) were uniformly anchored around the Al2O3 particles of the membrane basal materials, which could provide a large number of active sites throughout the membrane for the activation of peroxymonosulfate (PMS). The performance of the CMs/PMS system was evaluated by filtrating a phenol solution under different operating conditions. All the four catalytic CMs showed desirable phenol removal efficiency and the performance was in order of CoCM, MnCM, FeCM and CuCM. Moreover, the low metal ion leaching and high catalytic activity even after the 6th run revealed the good stability and reusability of the catalytic CMs. Quenching experiments and electron paramagnetic resonance (EPR) measurements were conducted to discuss the mechanism of PMS activation in the CMs/PMS system. The reactive oxygen species (ROS) were supposed to be SO4˙- and 1O2 in the CoCM/PMS system, 1O2 and O2˙- in the MnCM/PMS system, SO4˙- and ·OH in the FeCM/PMS system, and SO4˙- in the CuCM/PMS system, respectively. The comparative study on the performance and mechanism of the four CMs provides a better understanding of the integrated PMS-CMs behaviors.
Collapse
Affiliation(s)
- Yangbo Huang
- School of Environmental Engineering, Wuhan Textile University Wuhan Hubei 430073 China
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University Wuhan Hubei 430073 China
| | - Zeyu Guan
- School of Environmental Engineering, Wuhan Textile University Wuhan Hubei 430073 China
| | - Qiang Li
- School of Environmental Engineering, Wuhan Textile University Wuhan Hubei 430073 China
| | - Qian Li
- China Three Gorges Corporation Wuhan 430014 China
| | - Dongsheng Xia
- School of Environmental Engineering, Wuhan Textile University Wuhan Hubei 430073 China
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University Wuhan Hubei 430073 China
| |
Collapse
|
23
|
Dong S, Ding Y, Feng H, Xu J, Han J, Jiang W, Xia Y, Wang A. Source preventing mechanism of florfenicol resistance risk in water by VUV/UV/sulfite advanced reduction pretreatment. WATER RESEARCH 2023; 235:119876. [PMID: 36931185 DOI: 10.1016/j.watres.2023.119876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/13/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
To avoid the inhibition of microbial activity and the emergence of bacterial resistance, effective abiotic pretreatment methods to eliminate the antibacterial activity of target antibiotics before the biotreatment system for antibiotic-containing wastewater are necessary. In this study, the VUV/UV/sulfite system was developed as a pretreatment technique for the source elimination of florfenicol (FLO) resistance risk. Compared with the VUV/UV/persulfate and sole VUV photolysis, the VUV/UV/sulfite system had the highest decomposition rate (0.33 min‒1) and the highest defluorination (83.0%), resulting in the efficient elimination of FLO antibacterial activity with less than 2.0% mineralization, which would effectively retain the carbon sources for the sludge microorganisms in the subsequent biotreatment process. Furthermore, H• was confirmed to play a more important role in the elimination of FLO antibacterial activity by controlling the environmental conditions for the formation and transformation of reactive species and adding their scavengers. Based on the theoretical calculation and proposed photolytic intermediates, the elimination of FLO antibacterial activity was achieved by dechlorination, defluorination and removal of sulfomethyl groups. When the pretreated FLO-containing wastewater entered the biological treatment unit, the abundance of associated antibiotic resistance genes (ARGs) and the relative abundance of integrons were efficiently prevented by approximately 55.4% and 22.9%, respectively. These results demonstrated that the VUV/UV/sulfite system could be adopted as a promising pretreatment option for the source elimination of FLO resistance risk by target decomposition of its responsible structures before the subsequent biotreatment process.
Collapse
Affiliation(s)
- Shuangjing Dong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, P. R. China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310018, P. R. China
| | - Yangcheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, P. R. China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310018, P. R. China; School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, P. R. China.
| | - Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, P. R. China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310018, P. R. China
| | - Jixiao Xu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, P. R. China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310018, P. R. China
| | - Jinglong Han
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, P. R. China
| | - Wenli Jiang
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Yijing Xia
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, P. R. China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310018, P. R. China
| | - Aijie Wang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, P. R. China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| |
Collapse
|
24
|
Yao J, Li DS, Li H, Yang Y, Yang HY. Mechanisms of interfacial catalysis and mass transfer in a flow-through electro-peroxone process. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131604. [PMID: 37343407 DOI: 10.1016/j.jhazmat.2023.131604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023]
Abstract
To investigate the catalytic mechanism and mass transfer efficiency in the removal of amitriptyline using an electro-peroxide process, a CuFe2O4-modified carbon cloth cathode was prepared and utilized in a reaction unit. The results demonstrated a remarkable efficacy of the system, achieving 91.0% amitriptyline removal, 68.3% mineralization, 41.2% mineralization current efficiency, and 0.24 kWh/m3 energy consumption within just five minutes of treatment. The study revealed that the exposed Fe atoms of the ferrite nanoparticles, with a size of 22.7 nm and 89.7% crystallinity, functioned as mediators to bind the adsorbed O atoms. The 3dxy, 3dxz, and 3d2z orbitals of Fe atoms interacted with the 2pz orbital of O atoms of H2O2 and O3 to form σ and π bonds, facilitating the adsorption-activation of H2O2 and O3 into hydroxyl radicals. These hydroxyl radicals (∼ 1.15 × 1013 mol/L) were distributed at the cathode-solution interface and rapidly consumed along the direction of liquid flow. The flow-through cathode design improved the mass transfer of aqueous O3 and in-situ generated H2O2, leading to an increased yield of hydroxyl radicals, as well as the contact time and space between hydroxyl radicals and amitriptyline. Ultimately, this resulted in a higher degradation efficiency of the system.
Collapse
Affiliation(s)
- Jingjing Yao
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China; Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, PR China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| | - Ying Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore.
| |
Collapse
|
25
|
Mo Y, Li Y, Wang L, Zhang L, Li J. Electroactive membrane with the electroactive layer beneath the separation layer to eliminate the interference of humic acid in the oxidation of antibiotics. WATER RESEARCH 2023; 239:120064. [PMID: 37201374 DOI: 10.1016/j.watres.2023.120064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Removing harmful antibiotics is essential to reclaiming water from municipal secondary effluent. Electroactive membranes are effective in the removal of antibiotics but challenged by the abundant coexisting macromolecular organic pollutants in municipal secondary effluent. To eliminate the interference of macromolecular organic pollutants in the removal of antibiotics, we propose a novel electroactive membrane with a top polyacrylonitrile (PAN) ultrafiltration layer and a bottom electroactive layer composed of carbon nanotubes (CNTs) and polyaniline (PANi). When filtering the mixture of tetracycline (TC, a typical antibiotic) and humic acid (HA, a typical macromolecular organic pollutant), the PAN-CNT/PANi membrane performed sequential removal. It retained HA at the PAN layer (by ∼96%) and allowed TC to reach the electroactive layer where it was electrochemically oxidized (e.g., by ∼92% at 1.5 V). The TC removal of the PAN-CNT/PANi membrane was marginally affected by HA, unlike that of the control membrane with the electroactive layer on the top that showed decreased TC removal after the addition of HA (e.g., decreased by 13.2% at 1 V). The decreased TC removal of the control membrane was attributed to the attachment (but not competitive oxidation) of HA on the electroactive layer that impaired the electrochemical reactivity. The HA removal prior to TC degradation realized by the PAN-CNT/PANi membrane avoided the attachment of HA and guaranteed TC removal on the electroactive layer. Long-term filtration for 9 h revealed the stability of the PAN-CNT/PANi membrane, and its advantageous structural design was conformed in the context of real secondary effluents.
Collapse
Affiliation(s)
- Yinghui Mo
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Yu Li
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Liang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Lu Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jianxin Li
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, China; School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
26
|
An YC, Gao XX, Jiang WL, Han JL, Ye Y, Chen TM, Ren RY, Zhang JH, Liang B, Li ZL, Wang AJ, Ren NQ. A critical review on graphene oxide membrane for industrial wastewater treatment. ENVIRONMENTAL RESEARCH 2023; 223:115409. [PMID: 36746203 DOI: 10.1016/j.envres.2023.115409] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
An important way to promote the environmental industry's goal of carbon reduction is to promote the recycling of resources. Membrane separation technology has unique advantages in resource recovery and advanced treatment of industrial wastewater. However, the great promise of traditional organic membrane is hampered by challenges associated with organic solvent tolerance, lack of oxidation resistance, and serious membrane fouling control. Moreover, the high concentrations of organic matter and inorganic salts in the membrane filtration concentrate also hinder the wider application of the membrane separation technology. The emerging cost-effective graphene oxide (GO)-based membrane with excellent resistance to organic solvents and oxidants, more hydrophilicity, lower membrane fouling, better separation performance has been expected to contribute more in industrial wastewater treatment. Herein, we provide comprehensive insights into the preparation and characteristic of GO membranes, as well as current research status and problems related to its future application in industrial wastewater treatment. Finally, concluding remarks and future perspectives have been deduced and recommended for the GO membrane separation technology application for industrial wastewater treatment, which leads to realizing sustainable wastewater recycling and a nearly "zero discharge" water treatment process.
Collapse
Affiliation(s)
- Ye-Chen An
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xiao-Xu Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Wen-Li Jiang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Jing-Long Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China.
| | - Yuan Ye
- Key Laboratory for Advanced Technology in Environment Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Tian-Ming Chen
- Key Laboratory for Advanced Technology in Environment Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Rui-Yun Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jia-Hui Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| |
Collapse
|
27
|
Wu D, Chu M, Xu Y, Liu X, Duan X, Fan X, Li Y, Zhang G, Zhang F, Peng W. Facilely achieved enhancement of Fenton-like reactions by constructing electric microfields. J Colloid Interface Sci 2023; 633:967-978. [PMID: 36509039 DOI: 10.1016/j.jcis.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/22/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
In this work, we found that the presence of non-active ZnO crystals greatly accelerated the degradation of Bisphenol A (BPA) by 3.7 folds in the peroxymonosulfate (PMS, HSO5-)/Co3O4 system. Our mechanistic study revealed that the ZnO particles would create negative electric microfields around them, which are closely related with the zeta potentials (ζ) of ZnO and affected by solution pH. According to COMSOL simulation, the electrostatic repulsion between ZnO and PMS would drive HSO5- toward active Co3O4 surface, leading to the concentration increasing of HSO5- around active Co3O4 particles, which will then improve the degradation performance. The particle size of ZnO will also affect the promoting effect greatly by COMSOL simulation. Therefore, this study for the first time reveals synergy of electric microfields for enhanced heterogeneous Fenton-like reactions, providing a low-cost and effective strategy for enhanced persulfate catalysis.
Collapse
Affiliation(s)
- Di Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Menghan Chu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yongsheng Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiaomei Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Guoliang Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Fengbao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
28
|
Kleinberg MN, Thamaraiselvan C, Powell CD, Arnusch CJ. Preserved subsurface morphology in NIPS and VIPS laser-induced graphene membranes affects electrically-dependent microbial decontamination. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
29
|
Yuan Q, Qu S, Li R, Huo ZY, Gao Y, Luo Y. Degradation of antibiotics by electrochemical advanced oxidation processes (EAOPs): Performance, mechanisms, and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159092. [PMID: 36174705 DOI: 10.1016/j.scitotenv.2022.159092] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Global consumption and discharge of antibiotics have led to the rapid development and spread of bacterial antibiotic resistance. Among treatment strategies, electrochemical advanced oxidation processes (EAOPs) are gaining popularity for treating water/wastewater containing antibiotics due to their high efficiency and easiness of operation. In this review, we summarize various forms of EAOPs that contribute to antibiotic degradation, including common electrochemical oxidation (EO), electrolyte enhanced EO, electro-Fenton (EF) processes, EF-like process, and EAOPs coupling with other processes. Then we assess the performance of various EAOPs in antibiotic degradation and discuss the influence of key factors, including electrode, initial concentration and type of antibiotic, operation conditions, electrolyte, and water quality. We also review mechanisms and degradation pathways of various antibiotics degradation by EAOPs, and address the species and toxicity of intermediates produced during antibiotics treatment. Finally, we highlight challenges and critical research needs to facilitate the application of EAOPs in antibiotic treatment.
Collapse
Affiliation(s)
- Qingbin Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; School of the Environment, Nanjing Tech University, Nanjing 211816, PR China.
| | - Siyao Qu
- School of the Environment, Nanjing Tech University, Nanjing 211816, PR China
| | - Rong Li
- School of the Environment, Nanjing Tech University, Nanjing 211816, PR China
| | - Zheng-Yang Huo
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, PR China.
| | - Yan Gao
- School of the Environment, Nanjing Tech University, Nanjing 211816, PR China.
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
30
|
Li J, Qiu X, Ren S, Liu H, Zhao S, Tong Z, Wang Y. High performance electroactive ultrafiltration membrane for antibiotic resistance removal from wastewater effluent. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
31
|
Critical analysis of the role of various iron-based heterogeneous catalysts for advanced oxidation processes: A state of the art review. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
32
|
A facile synthesis of a novel Ti4O7 anode rich in oxygen defects and its electrochemical oxidation of florfenicol: Performance and mechanism. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
33
|
Jiang L, Rastgar M, Wang C, Ke S, He L, Chen X, Song Y, He C, Wang J, Sadrzadeh M. Robust PANI-entangled CNTs Electro-responsive membranes for enhanced In-situ generation of H2O2 and effective separation of charged contaminants. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
FeOx nanoclusters decorated TiO2 for boosting white LED driven photocatalytic Fenton-like norfloxacin degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Zhang J, Wang D, Zhao F, Feng J, Feng H, Luo J, Tang W. Ferrate modified carbon felt as excellent heterogeneous electro-Fenton cathode for chloramphenicol degradation. WATER RESEARCH 2022; 227:119324. [PMID: 36368084 DOI: 10.1016/j.watres.2022.119324] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/23/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
In this study, a novel and efficient heterogeneous electro-Fenton (EF) process with a potassium ferrate (K2FeO4) modified carbon felt (Fe-CF) cathode was developed for chloramphenicol (CAP) removal. The catalytic activity was assessed by the comparison of different systems and the effects of multiple operating parameters (K2FeO4 dosage, initial solution pH, applied current) and co-existing constituents. Results indicated that the Fe-CF cathode exhibited excellent performance for CAP degradation (almost 100% removal efficiency within 60 min) over a wide range of pH (pH 3-9) during heterogeneous EF ascribed to the synergistic effect of embedded iron species and porous graphitic carbon structure and effective utilization of the in-situ generated H2O2. Moreover, the Fe-CF cathode possessed good recyclability with low metal leaching (98.2% CAP removal efficiency after reused for 5 times) and outstanding real water application performance. The ∙OH and O2∙- were responsible for CAP degradation, while ∙OH played a main role. Moreover, the toxicity evaluation by E. coli growth experiments demonstrated an efficient toxicity reduction in this system. Overall, a novel heterogeneous EF functional cathode with superior performance was fabricated via a green, low-cost one-step method, which shows promising application potential for actual wastewater treatment.
Collapse
Affiliation(s)
- Jingjing Zhang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Feiping Zhao
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Jing Feng
- PowerChina Zhongnan Engineering Corporation Limited, Changsha 410014, PR China
| | - Haopeng Feng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Jun Luo
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Wangwang Tang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
36
|
Dong C, Fang W, Yi Q, Zhang J. A comprehensive review on reactive oxygen species (ROS) in advanced oxidation processes (AOPs). CHEMOSPHERE 2022; 308:136205. [PMID: 36049639 DOI: 10.1016/j.chemosphere.2022.136205] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/03/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
In this account, the reactive oxygen species (ROS) were comprehensively reviewed, which were based on electro-Fenton and photo-Fenton processes and correlative membrane filtration technology. Specifically, this review focuses on the fundamental principles and applications of advanced oxidation processes (AOPs) based on a series of nanomaterials, and we compare the pros and cons of each method and point out the perspective. Further, the emerging reviews regarding AOPs rarely emphasize the involved ROS and consider the convenience of radical classification and transformation mechanism, such a review is of paramount importance to be needed. Owing to the strong oxidation ability of radical (e.g., •OH, O2•-, and SO4•-) and non-radical (e.g., 1O2 and H2O2), these ROS would attack the organic contaminants of emerging concern, thus achieving the goal of environmental remediation. Hopefully, this review can offer detailed theoretical guidance for the researchers, and we believe it able to offer the frontier knowledge of AOPs for wastewater treatment plants (WWTPs).
Collapse
Affiliation(s)
- Chencheng Dong
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China; Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Wenzhang Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, PR China
| | - Qiuying Yi
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, PR China.
| |
Collapse
|
37
|
Li Y, Cao H, Liu W, Liu P. Effective degradation of tetracycline via recyclable cellulose nanofibrils/polyvinyl alcohol/Fe 3O 4 hybrid hydrogel as a photo-Fenton catalyst. CHEMOSPHERE 2022; 307:135665. [PMID: 35835244 DOI: 10.1016/j.chemosphere.2022.135665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/16/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
In this work, the method of in-situ co-precipitation was used to prepare PVA/CNF/Fe3O4 hybrid hydrogel, and the relationship between its structure and performance was explored. The Fe3O4NPs prepared by this method were dispersed on the carrier PVA/CNF hydrogel and were easy to recover. The catalytic degradation of tetracycline was investigated using PVA/CNF/Fe3O4 hybrid hydrogel as photo-Fenton catalysts. The results showed that light and hydrogel carriers were pivotal factors in promoting Fe2+ and Fe3+ cycling and that the PVA/CNF/Fe3O4 hybrid hydrogel as catalysts were able to activate H2O2 to generate a large amount of oxygen radical •OH, resulting in efficient removal of tetracycline. The tetracycline degradation followed a proposed first-order kinetic model and achieved a removal rate of about 98% in 120 min at an optimum pH of 3, H2O2 100 mM, catalyst 0.3 g/L, and a temperature of 25 °C.
Collapse
Affiliation(s)
- Yuhang Li
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Hui Cao
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Wenli Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Pengtao Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
38
|
Li J, Ren S, Qiu X, Zhao S, Wang R, Wang Y. Electroactive Ultrafiltration Membrane for Simultaneous Removal of Antibiotic, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes from Wastewater Effluent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15120-15129. [PMID: 35613365 DOI: 10.1021/acs.est.2c00268] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
To combat the spread of antibiotic resistance into the environment, we should adequately manage wastewater effluent treatment to achieve simultaneous removal of antibiotics, antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs). Herein, we fabricate a multifunctional electroactive poly(vinylidene fluoride) ultrafiltration membrane (C/PVDF) by phase inversion on conductive carbon cloth. The membrane possesses not only excellent retention toward ARB and ARGs but also exhibits high oxidation capacity as an electrode. Notably, sulfamethoxazole degradation involving hydroxylation and hydrolysis by the anode membrane is predominant, and the degradation efficiency is up to 81.5% at +4 V. Both electro-filtration processes exhibit significant ARB inactivation, anode filtration is superior to cathode filtration. Moreover, the degradation of intracellular ARGs (iARGs) located in the genome is more efficient than those located in the plasmid, and these degradation efficiencies at -2 V are higher than +2 V. The degradation efficiencies of extracellular ARGs (eARGs) are opposite and are lower than iARGs. Compared with regular filtration, the normalized flux of electroactive ultrafiltration membrane is improved by 18.0% at -2 V, 15.9% at +2 V, and 30.4% at +4 V during treating wastewater effluent, confirming its antifouling properties and feasibility for practical application.
Collapse
Affiliation(s)
- Jiahuan Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Shaojie Ren
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiao Qiu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Rui Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Yunkun Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| |
Collapse
|
39
|
Zhao Y, Sun M, Zhao Y, Wang L, Lu D, Ma J. Electrified ceramic membrane actuates non-radical mediated peroxymonosulfate activation for highly efficient water decontamination. WATER RESEARCH 2022; 225:119140. [PMID: 36167000 DOI: 10.1016/j.watres.2022.119140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/11/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Electrified ceramic membranes (ECMs) achieve high water decontamination efficiency mainly through implementing in situ radical-mediated oxidation in membrane filtration, whereas ECMs leveraging non-radical pathways are rarely explored. Herein, we demonstrated a Janus ECM realizing ultra-efficient micropollutant (MP) removal via electro-activating peroxymonosulfate (PMS) in a fast, flow-through single-pass electro-filtration. The Janus ECM features two separate palladium (Pd) functionalized electrocatalytic reaction zones engineered on its two sides. We confirmed that the PMS/electro-filtration system induced non-radical pathways for MP degradation, including singlet oxygenation and mediating direct electron transfer (DET) from MP to PMS. Under the design of the ECM featuring dual electrocatalytic reaction zones in the ceramic membrane intrapores, the Janus ECM showed over one-fold increase in micropollutant removal rate as 94.5% and lower electric energy consumption as 1.78 Wh g-1 MP in the PMS electro-activation process, as compared with the conventional ECM assembly implementing only half-cell reaction. This finding manifested the Janus ECM configuration advantage for maximizing the PMS electro-activation efficiency via singlet oxygenation intensification and direct usage of cathode for DET mediation. The Janus ECM boosted the PMS electro-activation and water decontamination efficiency by enhancing the convective mass transfer and the spatial confinement effect. Our work demonstrated a high-efficiency PMS electro-activation method based on electro-filtration and maximized the non-radical mediated PMS oxidation for MP removal, expanding the ECM filtration strategies for water decontamination.
Collapse
Affiliation(s)
- Yumeng Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Meng Sun
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yanxin Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Li Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA
| | - Dongwei Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
40
|
Song X, Jo C, Zhou M. Enhanced tetracycline removal using membrane-like air-cathode with high flux and anti-fouling performance in flow-through electro-filtration system. WATER RESEARCH 2022; 224:119057. [PMID: 36096029 DOI: 10.1016/j.watres.2022.119057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/18/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
The membrane-like air-cathodes modified with different polyaniline were prepared using phase inversion method, which possessed dual functions of interception and electrochemical degradation, and showed good conductivity (15.9 ± 0.4 to 25.7 ± 0.5 mS cm-1) and porosity (77.0 ± 0.1 to 87.8 ± 0.1%) compared to the unmodified control one (13.2 ± 0.5 mS cm-1, and 63.1 ± 0.7%). At tetracycline 50 mg L-1, the cathode with 25 wt% polyaniline exhibited the highest rejection rate and final removal (71.1% and 92.9%, 35.9% and 31.4% higher than the control), the highest water flux recovery (97.9%), and the lowest attenuation of porosity and conductivity. The modified cathode also showed an autocatalytic effect on H2O2, an obvious ·OH peak appeared on the electron paramagnetic resonance curves. It also had good anti-fouling performance because it exhibited a high durability (the final removal was decreased by 4.0% after 15 cycles) with a long service life of 124 periods (372 h, 15.5 d). The tetracycline (0.5 mg L-1) removal in the river background was near 100%, and the chemical oxygen demand removal was 91.9%, supporting that it was suitable for treating antibiotics in natural water without adding agents but only for electricity consumption.
Collapse
Affiliation(s)
- Xiangru Song
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - ChungHyok Jo
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Institute of Nano Science and Physical Engineering, Kim Chaek University of Technology, Pyongyang, Democratic People's Republic of Korea
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
41
|
Wu Y, Chen M, Lee HJ, A. Ganzoury M, Zhang N, de Lannoy CF. Nanocomposite Polymeric Membranes for Organic Micropollutant Removal: A Critical Review. ACS ES&T ENGINEERING 2022; 2:1574-1598. [PMID: 36120114 PMCID: PMC9469769 DOI: 10.1021/acsestengg.2c00201] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The prevalence of organic micropollutants (OMPs) and their persistence in water supplies have raised serious concerns for drinking water safety and public health. Conventional water treatment technologies, including adsorption and biological treatment, are known to be insufficient in treating OMPs and have demonstrated poor selectivity toward a wide range of OMPs. Pressure-driven membrane filtration has the potential to remove many OMPs detected in water with high selectivity as a membrane's molecular weight cutoff (MWCO), surface charge, and hydrophilicity can be easily tailored to a targeted OMP's size, charge and octanol-water partition coefficient (Kow). Over the past 10 years, polymeric (nano)composite microfiltration (MF), ultrafiltration (UF), and nanofiltration (NF) membranes have been extensively synthesized and studied for their ability to remove OMPs. This review discusses the fate and transport of emerging OMPs in water, an assessment of conventional membrane-based technologies (NF, reverse osmosis (RO), forward osmosis (FO), membrane distillation (MD) and UF membrane-based hybrid processes) for their removal, and a comparison to the state-of-the-art nanoenabled membranes with enhanced selectivity toward specific OMPs in water. Nanoenabled membranes for OMP treatment are further discussed with respect to their permeabilities, enhanced properties, limitations, and future improvements.
Collapse
Affiliation(s)
- Yichen Wu
- Department
of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Ming Chen
- School
of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Hye-Jin Lee
- Department
of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
- Department
of Chemical and Biological Engineering, and Institute of Chemical
Process (ICP), Seoul National University, Seoul 08826, Republic of Korea
| | - Mohamed A. Ganzoury
- Department
of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Nan Zhang
- Department
of Chemical Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
| | | |
Collapse
|
42
|
Lou M, Zhu X, Fang X, Liu Y, Li F. Interception of volatile organic compounds through CNT electrochemistry of electrified membrane surface during membrane distillation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Li Y, Cao W, Zuo X. O- and F-doped porous carbon bifunctional catalyst derived from polyvinylidene fluoride for sulfamerazine removal in the metal-free electro-Fenton process. ENVIRONMENTAL RESEARCH 2022; 212:113508. [PMID: 35613635 DOI: 10.1016/j.envres.2022.113508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Heteroatom-doped carbon materials can effectively activate H2O2 into •OH during the metal-free electro-Fenton (EF) process. However, information on bifunctional catalysts for the simultaneous generation and activation of H2O2 is scarce. In this study, O- and F-doped porous carbon cathode materials (PPCs) were prepared by the direct carbonization of polyvinylidene fluoride (PVDF) for sulfamerazine (SMR) removal in a metal-free EF process. The porous structure and chemical composition of the PPCs were regulated by the carbonization temperature. PPC-6 (carbonized at 600 °C) exhibited optimal electrocatalytic performance in terms of electrochemical H2O2 generation and activation owing to its high specific surface area, mesoporous structure, and optimum fractions of doped O and F. Excellent performance of the 2e- oxygen reduction reaction was found with an H2O2 selectivity of 93.5% and an average electron transfer number of 2.13. An H2O2 accumulative concentration of 103.9 mg/L and an SMR removal efficiency of 90.1% were achieved during the metal-free EF process. PPC-6 was able to stably remove SMR over five consecutive cycles, retaining 92.6% of its original performance. Quantitative structure-activity relationship analysis revealed that doped oxygen functional groups contributed substantially to H2O2 generation, and semi-ionic C-F bonds with high electronegativity were the cause of the activation of H2O2 to •OH. These findings suggest that the PVDF-derived carbonaceous catalysts are feasible and desirable for metal-free EF processes.
Collapse
Affiliation(s)
- Yang Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - WenXing Cao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - XiaoJun Zuo
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China.
| |
Collapse
|
44
|
Mo Y, Zhang L, Zhao X, Li J, Wang L. A critical review on classifications, characteristics, and applications of electrically conductive membranes for toxic pollutant removal from water: Comparison between composite and inorganic electrically conductive membranes. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129162. [PMID: 35643008 DOI: 10.1016/j.jhazmat.2022.129162] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/23/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Research efforts have recently been directed at developing electrically conductive membranes (EMs) for pressure-driven membrane separation processes to remove effectively the highly toxic pollutants from water. EMs serve as both the filter and the electrode during filtration. With the assistance of a power supply, EMs can considerably improve the toxic pollutant removal efficiency and even realize chemical degradation to reduce their toxicity. Organic-inorganic composite EMs and inorganic EMs show remarkable differences in characteristics, removal mechanisms, and application situations. Understanding their differences is highly important to guide the future design of EMs for specific pollutant removal from water. However, reviews concerning the differences between composite and inorganic EMs are still lacking. In this review, we summarize the classifications, fabrication techniques, and characteristics of composite and inorganic EMs. We also elaborate on the removal mechanisms and performances of EMs toward recalcitrant organic pollutants and toxic inorganic ions in water. The comparison between composite and inorganic EMs is emphasized particularly in terms of the membrane characteristics (pore size, permeability, and electrical conductivity), application situations, and underlying removal mechanisms. Finally, the energy consumption and durability of EMs are evaluated, and future perspectives are presented.
Collapse
Affiliation(s)
- Yinghui Mo
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, PR China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Lu Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, PR China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Xin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Jianxin Li
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, PR China; School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Liang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, PR China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, PR China
| |
Collapse
|
45
|
Gao Y, Han Y, Liu B, Gou J, Feng D, Cheng X. CoFe2O4 nanoparticles anchored on waste eggshell for catalytic oxidation of florfenicol via activating peroxymonosulfate. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Matsuo BT, Oliveira PHR, Pissinati EF, Vega KB, de Jesus IS, Correia JTM, Paixao M. Photoinduced carbamoylation reactions: unlocking new reactivities towards amide synthesis. Chem Commun (Camb) 2022; 58:8322-8339. [PMID: 35843219 DOI: 10.1039/d2cc02585j] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation of amide-containing compounds is among the most interesting and challenging topics for the synthetic community. Such relevance is given by their reactive aspects explored in the context of organic synthesis and by the direct application of these compounds as pharmaceuticals and useful materials, and their key roles in biological structures. A simple and straightforward strategy for the amide moiety installation is the use of carbamoyl radicals - this nucleophilic one-electron intermediate is prone to undergo a series of transformations, providing a range of structurally relevant derivatives. In this review, we summarize the latest advances in the field from the perspective of photoinduced protocols. To this end, their synthetic applications are organized accordingly to the nature of the radical precursor (formamides through HAT, 4-substituted-1,4-dihydropyridines, oxamic acids, and N-hydroxyphthalimido esters), the mechanistic aspects also being highlighted. The discussion also includes a recent approach proceeding via photolytic C-S cleavage of dithiocarbamate-carbamoyl intermediates. By exploring fundamental concepts, this material aims to offer an understanding of the topic, which will encourage and facilitate the design of new synthetic strategies applying the carbamoyl radical.
Collapse
Affiliation(s)
- Bianca T Matsuo
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, 13565-905, Brazil. .,Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, USA
| | - Pedro H R Oliveira
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, 13565-905, Brazil.
| | - Emanuele F Pissinati
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, 13565-905, Brazil.
| | - Kimberly B Vega
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, 13565-905, Brazil.
| | - Iva S de Jesus
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, 13565-905, Brazil.
| | - Jose Tiago M Correia
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, 13565-905, Brazil.
| | - Márcio Paixao
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, 13565-905, Brazil.
| |
Collapse
|
47
|
Huang M, Han Y, Xiang W, Wang C, Mao J, Zhou T, Wu X, Yu HQ. Catalytic Oxygen Activation over the Defective CuO Nanoparticles for Ultrafast Dehalogenation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29964-29973. [PMID: 35758015 DOI: 10.1021/acsami.2c08189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The nucleophilic superoxide radical (O2•-)-based dehalogenation reaction shows great potential to degrade the toxic halogenated organic compounds (HOCs). But such an O2•--mediated reductive reaction often suffers from the competition of the secondary oxidative species (e.g., •OH), leading to inferior electron efficiency and possible disinfection byproduct formation. Here, an O2•--dominant ultrafast dehalogenation system is developed via molecular O2 activation by the oxygen vacancy (OV)-rich CuO nanoparticles (nCuO). The nCuO delivers a remarkable dechlorination rate constant of 3.92 × 10-2 L min-1 m-2 for 2,4-dichlorophenol, much higher than that of the conventional zerovalent (bi)metals. The absorbed O2 on the nCuO surface is exclusively responsible for O2•- generation, and its reactivity increases with the elevated OV content because of the enhanced orbital hybridization between the O p- and Cu d-orbitals. More importantly, the ubiquitous carbonate species firmly bound to the surface OVs block the formation of the secondary oxidative species via H2O2 activation, assuring the dominant role of the in situ generated O2•- for the selective HOC dehalogenation. The carbonate-deactivated OVs of the nCuO can be feasibly recovered via air annealing for sustainable dehalogenation. This work provides a new opportunity for selective O2•- generation via interfacial defect engineering for dehalogenation and other environmental applications.
Collapse
Affiliation(s)
- Mingjie Huang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yi Han
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Xiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Chen Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Juan Mao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Tao Zhou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Wuhan 430074, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
48
|
Recent advances in H2O2-based advanced oxidation processes for removal of antibiotics from wastewater. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Xu J, Liu Y, Li D, Li L, Zhang Y, Chen S, Wu Q, Wang P, Zhang C, Sun J. Insights into the electrooxidation of florfenicol by a highly active La-doped Ti4O7 anode. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
50
|
Mkhondwane ST, Pullabhotla VSR. Cyclohexane oxidation using advanced oxidation processes with metals and metal oxides as catalysts: a review. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Selective oxidation of cyclohexane has gained substantial interest in the field of research due to the prominence of its products in industrial processes. Particularly, advanced oxidation processes (AOPs) constitute a positive technology for the oxidation of cyclohexane owing to their high oxidation potentials and environmental benign properties. This review entails to address the progress made in advanced oxidation of cyclohexane over nanostructured metals and metal oxides catalysts. The main focus is directed toward the photocatalysis, Fenton oxidation and ozonation as advanced oxidation processes. Mainly, the fundamental principles, prime factors of the AOPs in conjunction with metal and metal oxide catalysts and the mechanistic insight toward the oxidation of cyclohexane are highlighted. The affirmative effects of the metals and metal oxide catalysts mainly focusing on particle size, structure and elemental composition is stressed. Lastly, the advantages and disadvantages of the AOPs and the strategic approaches to counter the disadvantages are also clearly elucidated.
Collapse
|