1
|
Chen X, Zheng J, Wang C, Teng M, Jiang J, Wu F. Exposure of Parental Zebrafish to Difenoconazole throughout Their Life Cycle May Lead to Developmental Toxicity in the F1 Generation through Epigenetic Changes in Gametes, Impaired Nutrient Supply from the Ovum, and Maternal Transfer of Difenoconazole. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6477-6487. [PMID: 40153714 DOI: 10.1021/acs.est.4c13073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
Abstract
Difenoconazole is a widely used agricultural fungicide that has been frequently detected in aquatic environments. Given its stable presence in aquatic environments, long-term exposure of wild fish may pose a risk to offspring embryonic development. This study demonstrated that exposure of zebrafish to environmental concentrations of difenoconazole throughout their life cycle resulted in abnormal development of offspring embryos/larvae, including decreased heart rate, delayed hatching, increased malformation rate, shortened body length, and increased mortality. These changes were significantly correlated with the affected apoptosis, autophagy, energy metabolism and MAPK signaling pathways in F1 generation. This transgenerational toxic effect results from epigenetic alterations in gametes, impaired nutrient supply from the ovum, and maternal transfer of difenoconazole. After exposure to difenoconazole, the development of female fish offspring was affected more than that of male fish offspring, which was mainly caused by the impaired nutrient supply from the ovum and the maternal transfer of difenoconazole. Because this transgenerational developmental toxicity was observed at environmental levels, difenoconazole may pose a threat to the survival of wild larvae and therefore a risk to wild fish populations.
Collapse
Affiliation(s)
- Xiangguang Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Junyue Zheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jiazhen Jiang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
2
|
Im H, Lee J, Oh JE, Song J, Jeong S. Epigenetic and Gene Expression Responses of Daphnia magna to Polyethylene and Polystyrene Microplastics. Molecules 2025; 30:1608. [PMID: 40286217 PMCID: PMC11990502 DOI: 10.3390/molecules30071608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Microplastics (MPs), ubiquitous environmental pollutants, pose substantial threats to aquatic ecosystems and organisms, including the model species Daphnia magna. This study examined the effects of polyethylene (PE) and polystyrene (PS) MPs on D. magna, focusing on their ingestion, epigenetic alterations, and transcriptional responses. Exposure experiments revealed a concentration-dependent accumulation of MPs, with PS particles showing higher ingestion rates due to their higher density and propensity for aggregation. Epigenetic analyses demonstrated that exposure to PE MPs significantly reduced the global DNA methylation (5-mC) of Daphnia magna, suggesting hypomethylation as a potential stress response. Conversely, the DNA hydroxymethylation (5-hmC) of Daphnia magna displayed variability under PS exposure. Transcriptional analysis identified a marked downregulation of Vitellogenin 1 (v1) and upregulation of Ecdysone Receptor B (ecr-b), highlighting the occurrence of stress-related and adaptive molecular responses. These findings enhance our understanding of the molecular and epigenetic effects of MPs on aquatic organisms, offering critical insights for the development of effective environmental management and conservation strategies in the face of escalating MP pollution.
Collapse
Affiliation(s)
- Hyungjoon Im
- Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea; (H.I.); (J.L.); (J.-E.O.)
| | - Jieun Lee
- Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea; (H.I.); (J.L.); (J.-E.O.)
| | - Jeong-Eun Oh
- Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea; (H.I.); (J.L.); (J.-E.O.)
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jinyoung Song
- Center for Ecotoxicology and Environmental Future Research, Korea Institute of Toxicology, Jinju 52834, Republic of Korea;
| | - Sanghyun Jeong
- Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea; (H.I.); (J.L.); (J.-E.O.)
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
3
|
Zhang W, Liu D, Yang H, Yang T, Zhang Z, Ma Y. Transcriptional memories mediate the plasticity of sulfide stress responses to enable acclimation in Urechis unicinctus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118020. [PMID: 40068552 DOI: 10.1016/j.ecoenv.2025.118020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/16/2025] [Accepted: 03/05/2025] [Indexed: 03/23/2025]
Abstract
To cope with environmental stresses, organisms often adopt a memory response upon primary stress exposure to facilitate a quicker and/or stronger reaction to recurring stresses. Somatic stress memory is essential in dealing with contemporary stress. The earliest sign of somatic stress memory is a change in gene transcription levels, which alters physiology and phenotype to better cope with stress. Sulfide is a common environmental pollutant; however, some organisms have successfully colonized sulfur-rich environments. Whether stress memory plays important role in sulfide stress adaptation remains unclear. In this study, to determine whether Urechis unicinctus, a sulfur-tolerant organism, retains the memory of previous sulfide stress, we simulated a repetitive sulfide stress/recovery system. The results showed that the tolerance of U. unicinctus to sulfide stress was significantly increased after priming with 50 µM sulfide. Further, transcriptional memory genes (TMGs) involved in regulating sulfide stress memory were identified, classified according to their expression patterns, and functionally analyzed. TMGs involved in sulfide metabolism, sugar metabolism, and protein homeostasis pathway showed an enhanced response, whereas those related to DNA repair pathway demonstrated a modified response pattern. Our study indicated that U. unicinctus retains memory of sulfide stress priming, which mediates plasticity to accelerate sulfide stress adaptation.
Collapse
Affiliation(s)
- Wenqing Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Danwen Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - Heran Yang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Tianya Yang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhifeng Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China; Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
4
|
De la Fuente IM, Cortes JM, Malaina I, Pérez-Yarza G, Martinez L, López JI, Fedetz M, Carrasco-Pujante J. The main sources of molecular organization in the cell. Atlas of self-organized and self-regulated dynamic biostructures. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:167-191. [PMID: 39805422 DOI: 10.1016/j.pbiomolbio.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
One of the most important goals of contemporary biology is to understand the principles of the molecular order underlying the complex dynamic architecture of cells. Here, we present an overview of the main driving forces involved in the cellular molecular complexity and in the emergent functional dynamic structures, spanning from the most basic molecular organization levels to the complex emergent integrative systemic behaviors. First, we address the molecular information processing which is essential in many complex fundamental mechanisms such as the epigenetic memory, alternative splicing, regulation of transcriptional system, and the adequate self-regulatory adaptation to the extracellular environment. Next, we approach the biochemical self-organization, which is central to understand the emergency of metabolic rhythms, circadian oscillations, and spatial traveling waves. Such a complex behavior is also fundamental to understand the temporal compartmentalization of the cellular metabolism and the dynamic regulation of many physiological activities. Numerous examples of biochemical self-organization are considered here, which show that practically all the main physiological processes in the cell exhibit this type of dynamic molecular organization. Finally, we focus on the biochemical self-assembly which, at a primary level of organization, is a basic but important mechanism for the order in the cell allowing biomolecules in a disorganized state to form complex aggregates necessary for a plethora of essential structures and physiological functions. In total, more than 500 references have been compiled in this review. Due to these main sources of order, systemic functional structures emerge in the cell, driving the metabolic functionality towards the biological complexity.
Collapse
Affiliation(s)
- Ildefonso M De la Fuente
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain.
| | - Jesus M Cortes
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain; Biobizkaia Health Research Institute, Barakaldo, 48903, Spain; IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain
| | - Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Gorka Pérez-Yarza
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Luis Martinez
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - José I López
- Biobizkaia Health Research Institute, Barakaldo, 48903, Spain
| | - Maria Fedetz
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, 18016, Spain
| | - Jose Carrasco-Pujante
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| |
Collapse
|
5
|
Agrelius TC, Dudycha JL. Maternal effects in the model system Daphnia: the ecological past meets the epigenetic future. Heredity (Edinb) 2025; 134:142-154. [PMID: 39779907 PMCID: PMC11799227 DOI: 10.1038/s41437-024-00742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/11/2025] Open
Abstract
Maternal effects have been shown to play influential roles in many evolutionary and ecological processes. However, understanding how environmental stimuli induce within-generation responses that transverse across generations remains elusive, particularly when attempting to segregate confounding effects from offspring genotypes. This review synthesizes literature regarding resource- and predation-driven maternal effects in the model system Daphnia, detailing how the maternal generation responds to the environmental stimuli and the maternal effects seen in the offspring generation(s). Our goal is to demonstrate the value of Daphnia as a model system by showing how general principles of maternal effects emerge from studies on this system. By integrating the results across different types of biotic drivers of maternal effects, we identified broadly applicable shared characteristics: 1. Many, but not all, maternal effects involve offspring size, influencing resistance to starvation, infection, predation, and toxins. 2. Maternal effects manifest more strongly when the offspring's environment is poor. 3. Strong within-generation responses are typically associated with strong across-generation responses. 4. The timing of the maternal stress matters and can raise or lower the magnitude of the effect on the offspring's phenotype. 5. Embryonic exposure effects could be mistaken for maternal effects. We outline questions to prioritize for future research and discuss the possibilities for integration of ecologically relevant studies of maternal effects in natural populations with the molecular mechanisms that make them possible, specifically by addressing genetic variation and incorporating information on epigenetics. These small crustaceans can unravel how and why non-genetic information gets passed to future generations.
Collapse
Affiliation(s)
- Trenton C Agrelius
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| | - Jeffry L Dudycha
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
6
|
Chai Y, Wang H, Lv M, Yang J. Carryover effects of tire wear particle leachate threaten the reproduction of a model zooplankton across multiple generations. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:52-60. [PMID: 39387968 DOI: 10.1007/s10646-024-02809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
The toxic additives that leach from tire wear particles (TWPs) cause mass die-offs in fish and impact zooplankton as secondary consumers in the aquatic food web. In addition to the direct impacts of TWP leachate on a single generation, there may be potential delayed carryover effects across multiple generations from parental exposure, which may amplify the adverse effects of the leachate on individual reproduction and, consequently, on the entire population. In this study, the single, multiple, and transgenerational effects of TWP leachate at various concentrations on the reproduction and lifespan of the rotifer Brachionus calyciflorus were investigated. The results indicated that the lifespan and reproductive output of rotifers exposed to TWP leachate (0-1500 mg/L) decreased as the concentration increased above 250 mg/L. There was a clear multigenerational effect of TWP leachate on rotifer reproduction. The inhibition rates were consistently greater at 500 mg/L than at 250 mg/L leachate. Although the reproduction of rotifers exposed to 250 mg/L TWP leachate increased in the first two generations (P and F1), it was inhibited in subsequent generations. The inhibitory effect of 500 mg/L TWP leachate persisted across all generations, leading to population extinction by the F4 generation. A significant transgenerational effect of TWP leachate was found on reproduction. The adverse impact of exposure to 250 mg/L leachate for fewer than three generations could be reversed when offspring were transferred to clean media. However, this recovery was not observed after continuous exposure for more than four generations. Exposure to high-dose TWP leachate also caused irreversible damage to reproduction. Therefore, TWP leachate can result in cascading toxicity on zooplankton populations through carryover and cumulative effects on reproduction.
Collapse
Affiliation(s)
- Yanchao Chai
- Marine Science and Engineering College, Nanjing Normal University, Nanjing, China
| | - Haiqing Wang
- School of Marine Biology and Fisheries, Hainan University, Haikou, China
| | - Mengru Lv
- Marine Science and Engineering College, Nanjing Normal University, Nanjing, China
| | - Jiaxin Yang
- Marine Science and Engineering College, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
7
|
Lai W, Song Y, Tollefsen KE, Hvidsten TR. SOLA: dissecting dose-response patterns in multi-omics data using a semi-supervised workflow. Front Genet 2024; 15:1508521. [PMID: 39687738 PMCID: PMC11647027 DOI: 10.3389/fgene.2024.1508521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
An increasing number of ecotoxicological studies have used omics-data to understand the dose-response patterns of environmental stressors. However, very few have investigated complex non-monotonic dose-response patterns with multi-omics data. In the present study, we developed a novel semi-supervised network analysis workflow as an alternative to benchmark dose (BMD) modelling. We utilised a previously published multi-omics dataset generated from Daphnia magna after chronic gamma radiation exposure to obtain novel knowledge on the dose-dependent effects of radiation. Our approach combines 1) unsupervised co-expression network analysis to group genes with similar dose responses into modules; 2) supervised classification of these modules by relevant response patterns; 3) reconstruction of regulatory networks based on transcription factor binding motifs to reveal the mechanistic underpinning of the modules; 4) differential co-expression network analysis to compare the discovered modules across two datasets with different exposure periods; and 5) pathway enrichment analysis to integrate transcriptomics and metabolomics data. Our method unveiled both known and novel effects of gamma radiation, provide insight into shifts in responses from low to high dose rates, and can be used as an alternative approach for multi-omics dose-response analysis in future. The workflow SOLA (Semi-supervised Omics Landscape Analysis) is available at https://gitlab.com/wanxin.lai/SOLA.git.
Collapse
Affiliation(s)
- Wanxin Lai
- Bioinformatics and Applied Statistics (BIAS), Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Akershus, Norway
| | - You Song
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
- Norwegian University of Life Sciences (NMBU), Akershus, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
- Norwegian University of Life Sciences (NMBU), Akershus, Norway
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Akershus, Norway
| | - Torgeir R. Hvidsten
- Bioinformatics and Applied Statistics (BIAS), Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Akershus, Norway
| |
Collapse
|
8
|
Jeremias G, Muñiz-González AB, Mendes Gonçalves FJ, Martínez-Guitarte JL, Asselman J, Luísa Pereira J. History of exposure to copper influences transgenerational gene expression responses in Daphnia magna. Epigenetics 2024; 19:2296275. [PMID: 38154067 PMCID: PMC10761054 DOI: 10.1080/15592294.2023.2296275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023] Open
Abstract
The establishment of transgenerational effects following chemical exposure is a powerful phenomenon, capable of modulating ecosystem health beyond exposure periods. This study assessed the transgenerational effects occurring due to copper exposure in the invertebrate D. magna at the transcriptional level, while evaluating the role of exposure history on such responses. Thus, daphnids acclimated for several generations in a copper vs. clean medium were then exposed for one generation (F0) to this metal, and monitored for the following non-exposed generations (F1, F2 and F3). Organisms differing in exposure histories showed remarkably different transcriptional profiles at the F0, with naïve organisms being more profoundly affected. These trends were confirmed for F3 treatments, which presented different transcriptional patterns for genes involved in detoxification, oxidative stress, DNA damage repair, circadian clock functioning and epigenetic regulation. Furthermore, regardless of exposure history, a great number of histone modifier genes were always found transcriptionally altered, thus suggesting the involvement of histone modifications in the response of Daphnia to metal exposure. Lastly, remarkably distinct transgenerational transcriptional responses were found between naïve and non-naïve organisms, thereby highlighting the influence of exposure history on gene expression and confirming the capacity of metals to determine transgenerational transcriptional effects across non-exposed generations.
Collapse
Affiliation(s)
- Guilherme Jeremias
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Ana-Belén Muñiz-González
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
- Biology & Toxicology Group, Department of Mathematics, Physics, and Fluids, National Distance Education University (UNED), Madrid, Spain
| | | | - José-Luis Martínez-Guitarte
- Biology & Toxicology Group, Department of Mathematics, Physics, and Fluids, National Distance Education University (UNED), Madrid, Spain
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Ostend, Belgium
| | - Joana Luísa Pereira
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
9
|
Pinto A, Macário IPE, Marques SM, Lourenço J, Domingues I, Botelho MJ, Asselman J, Pereira P, Pereira JL. A short-term exposure to saxitoxin triggers a multitude of deleterious effects in Daphnia magna at levels deemed safe for human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175431. [PMID: 39128511 DOI: 10.1016/j.scitotenv.2024.175431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Harmful algal blooms and the toxins produced during these events are a human and environmental health concern worldwide. Saxitoxin and its derivatives are potent natural aquatic neurotoxins produced by certain freshwater cyanobacteria and marine algae species during these bloom events. Saxitoxins effects on human health are well studied, however its effects on aquatic biota are still largely unexplored. This work aims at evaluating the effects of a pulse acute exposure (24 h) of the model cladoceran Daphnia magna to 30 μg saxitoxin L-1, which corresponds to the safety guideline established by the World Health Organization (WHO) for these toxins in recreational freshwaters. Saxitoxin effects were assessed through a comprehensive array of biochemical (antioxidant enzymes activity and lipid peroxidation), genotoxicity (alkaline comet assay), neurotoxicity (total cholinesterases activity), behavioral (swimming patterns), physiological (feeding rate and heart rate), and epigenetic (total 5-mC DNA methylation) biomarkers. Exposure resulted in decreased feeding rate, heart rate, total cholinesterases activity and catalase activity. Contrarily, other antioxidant enzymes, namely glutathione-S-transferases and selenium-dependent Glutathione peroxidase had their activity increased, together with lipid peroxidation levels. The enhancement of the antioxidant enzymes was not sufficient to prevent oxidative damage, as underpinned by lipid peroxidation enhancement. Accordingly, average DNA damage level was significantly increased in STX-exposed daphnids. Total DNA 5-mC level was significantly decreased in exposed organisms. Results showed that even a short-term exposure to saxitoxin causes significant effects on critical molecular and cellular pathways and modulates swimming patterns in D. magna individuals. This study highlights sub-lethal effects caused by saxitoxin in D. magna, suggesting that these toxins may represent a marked challenge to their thriving even at a concentration deemed safe for humans by the WHO.
Collapse
Affiliation(s)
- Albano Pinto
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal.
| | - Inês P E Macário
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Sérgio M Marques
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Joana Lourenço
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Inês Domingues
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Maria João Botelho
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, 8400 Ostend, Belgium
| | - Patrícia Pereira
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Joana L Pereira
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
10
|
Huber ED, Hintz LL, Wilmoth B, McKenna JR, Hintz WD. Coping with stress: Salt type, concentration, and exposure history limit life history tradeoffs in response to road salt salinization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174998. [PMID: 39053528 DOI: 10.1016/j.scitotenv.2024.174998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/22/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Substantial increases in the salinity of freshwater ecosystems has occurred around the globe from causes such as climate change, industrial operations, and the application of road deicing salts. We know very little about how plastic responses in life history traits or rapid evolution of new traits among freshwater organisms could promote stability in ecological communities affected by salinization. We performed a cohort life history analysis from birth to death with 180 individuals of a ubiquitous freshwater zooplankter to understand how life history traits are affected by exposure to two common salt types causing salinization-sodium chloride (NaCl) and calcium chloride (CaCl2)-across two environmentally relevant concentrations. We also tested if a multi-generational exposure history to high salinity altered life-history responses. We tracked and measured lifespan, time to maturation, brood size, brood interval, and body size. We found smaller brood sizes but slightly longer lifespans occurred at a low concentration of NaCl (230 mg Cl-/L). The longer lifespans led to more, albeit smaller broods, which generated a similar lifetime reproductive output compared to the no-salt control populations. At higher concentrations of NaCl and CaCl2, we found lifetime reproductive output was reduced by 23 % to 83 % relative to control populations because no tradeoff among life history traits occurred. In CaCl2, we observed shorter life spans, longer time intervals between smaller broods, and smaller body sizes leading to reduced lifetime reproductive output. We also found that a multi-generational exposure to the salt types did not convey any advantages for lifetime reproductive output. In some cases, the exposure history worsened the life history trait responses suggesting maladaptation. Our findings suggest that life history tradeoffs for freshwater species can occur in response to salinization, but these tradeoffs will largely depend on salt type and concentration, which will have implications for biodiversity and ecological stability.
Collapse
Affiliation(s)
- Eric D Huber
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Rd., Oregon, OH, USA
| | - Leslie L Hintz
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Rd., Oregon, OH, USA
| | - Bayley Wilmoth
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Rd., Oregon, OH, USA
| | - Jorden R McKenna
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Rd., Oregon, OH, USA
| | - William D Hintz
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Rd., Oregon, OH, USA.
| |
Collapse
|
11
|
Kim MS, Kim DH, Lee JS. A review of environmental epigenetics in aquatic invertebrates. MARINE POLLUTION BULLETIN 2024; 208:117011. [PMID: 39326327 DOI: 10.1016/j.marpolbul.2024.117011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/30/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024]
Abstract
Aquatic ecosystems face significant challenges due to increasing human-induced environmental stressors. Recent studies emphasize the role of epigenetic mechanisms in the stress responses and adaptations of organisms to those stressors. Epigenetics influences gene expression, enabling phenotypic plasticity and transgenerational effects. Therefore, understanding the epigenetic responses of aquatic invertebrates to environmental stressors is imperative for aquatic ecosystem research. In this study, we organize the mechanisms of epigenetics in aquatic invertebrates and explore their roles in the responses of aquatic invertebrates to environmental stressors. Furthermore, we discuss the inheritance of epigenetic changes and their influence across generations in aquatic invertebrates. A comprehensive understanding of epigenetic responses is crucial for long-term ecosystem management and conservation strategies in the face of irreversible climate change in aquatic environments. In this review, we synthesize existing knowledge about environmental epigenetics in aquatic invertebrates to provide insights and suggest directions for future research.
Collapse
Affiliation(s)
- Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
12
|
Zetzsche J, Fallet M. To live or let die? Epigenetic adaptations to climate change-a review. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae009. [PMID: 39139701 PMCID: PMC11321362 DOI: 10.1093/eep/dvae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024]
Abstract
Anthropogenic activities are responsible for a wide array of environmental disturbances that threaten biodiversity. Climate change, encompassing temperature increases, ocean acidification, increased salinity, droughts, and floods caused by frequent extreme weather events, represents one of the most significant environmental alterations. These drastic challenges pose ecological constraints, with over a million species expected to disappear in the coming years. Therefore, organisms must adapt or face potential extinctions. Adaptations can occur not only through genetic changes but also through non-genetic mechanisms, which often confer faster acclimatization and wider variability ranges than their genetic counterparts. Among these non-genetic mechanisms are epigenetics defined as the study of molecules and mechanisms that can perpetuate alternative gene activity states in the context of the same DNA sequence. Epigenetics has received increased attention in the past decades, as epigenetic mechanisms are sensitive to a wide array of environmental cues, and epimutations spread faster through populations than genetic mutations. Epimutations can be neutral, deleterious, or adaptative and can be transmitted to subsequent generations, making them crucial factors in both long- and short-term responses to environmental fluctuations, such as climate change. In this review, we compile existing evidence of epigenetic involvement in acclimatization and adaptation to climate change and discuss derived perspectives and remaining challenges in the field of environmental epigenetics. Graphical Abstract.
Collapse
Affiliation(s)
- Jonas Zetzsche
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manon Fallet
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Örebro 70182, Sweden
| |
Collapse
|
13
|
Ishimota M, Kodama M, Tomiyama N, Ohyama K. Chemical tolerance related to the ABC transporter gene and DNA methylation in cladocera (Daphnia magna). ENVIRONMENTAL TOXICOLOGY 2024; 39:1978-1988. [PMID: 38073494 DOI: 10.1002/tox.24077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 10/10/2023] [Accepted: 11/28/2023] [Indexed: 03/09/2024]
Abstract
We performed multigenerational tests to clarify the chemical tolerance mechanisms of a nontarget aquatic organism, Daphnia magna. We continuously exposed D. magna to a carbamate insecticide (pirimicarb) at lethal or sublethal concentrations (0, 3.8, 7.5, and 15 μg/L) for 15 generations (F0-F14). We then determined the 48 h-EC50 values and mRNA expression levels of acetylcholinesterase, glutathione S-transferase, and ATP (Adenosine triphosphate)-binding cassette transporter (ABCt) in neonates (<24 h old) from F0, F4, F9, and F14. To ascertain the effects of DNA methylation on pirimicarb sensitivity, we measured 5-methylcytosine levels (DNA methylation levels) in neonates of parents in the last generation (F14). In addition, we cultured groups exposed to 0 and 7.5 μg/L (the latter of which acquired chemical tolerance to pirimicarb) with or without 5-azacytidine (de-methylating agent) and determined methylation levels and 48 h-EC50 values in neonates (<24 h old) from the treated parents. The EC50 values (30.3-31.6 μg/L) in F14 of the 7.5 and 15 μg/L groups were approximately two times higher than that in the control (16.0 μg/L). A linear mixed model analysis showed that EC50 and ABCt mRNA levels were significantly increased with generational alterations; further analysis showed that the ABCt mRNA level was positively related to the EC50 . Therefore, ABCt may be associated with altered pirimicarb sensitivity. In addition, the EC50 value and DNA methylation levels in pirimicarb-tolerant clones decreased after exposure to 5-azacytidine, suggesting that DNA methylation contributes to chemical tolerance. These findings improved our knowledge regarding the acquisition of chemical tolerance in aquatic organisms.
Collapse
Affiliation(s)
- Makoto Ishimota
- The Institute of Environmental Toxicology, Laboratory of Residue Analysis II, Chemistry Division, Joso-shi, Ibaraki, Japan
| | - Mebuki Kodama
- The Institute of Environmental Toxicology, Laboratory of Residue Analysis II, Chemistry Division, Joso-shi, Ibaraki, Japan
| | - Naruto Tomiyama
- The Institute of Environmental Toxicology, Laboratory of Residue Analysis II, Chemistry Division, Joso-shi, Ibaraki, Japan
| | - Kazutoshi Ohyama
- The Institute of Environmental Toxicology, Laboratory of Residue Analysis II, Chemistry Division, Joso-shi, Ibaraki, Japan
| |
Collapse
|
14
|
Liu S, Zhang J, Li R, Zhang C, Wang L, Liang H, Feng G, Xiong D. Triazophos exposure on maternal Daphnia magna at environmental-related concentrations revealed toxic effects to its offspring. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105607. [PMID: 37945248 DOI: 10.1016/j.pestbp.2023.105607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 11/12/2023]
Abstract
Due to chemical and photochemical stability, triazophos has been frequently detected in rivers and oceans over the years with extensive use for pest control in agriculture, and it has become a worldwide ecological concern to the aquatic environment. Until now, fewer data are available regarding the potential long-term adverse effects of triazophos on aquatic invertebrates, which plays an essential role in aquatic food webs, as a key group for water ecosystems. In this experiment, the F1- and F2 progenies of Daphnia magna were recovered when daphnias (F0) exposure to triazophos at environmental-related concentrations (0.1 and 1.0 μg/L) for 21 d; and the indexes related to phenotypic traits, reproduction and gene expression were measured in tested animals. The results showed that heart rate and total number of neonates in exposed F0-daphnias were significantly lower than those of control group, and the detoxification genes (HR96 and P-gp) were up-regulated while genes related reproduction (Vtg) and molting (Nvd and Shd) were significantly down-regulated. The heart rate and individual size of F1-daphnias (<24 h) were significantly reduced in the treatment group. After 21-d recovery, the heart rate and expression of HR96, P-gp, Vtg, Nvd and Shd were declined in F1-daphnias. There was no obvious difference of morphological traits and heart rate between treatment and control in F2-daphnias (<24 h). In summary, daphnias (F0) exposure to triazophos with environmental dose could raise toxic effects on its offspring (F1), which is mainly manifested by reduced heart rate, the accumulated number and individual size of offspring and decreased expression of genes related to molting and reproduction.
Collapse
Affiliation(s)
- Shaoquan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianlu Zhang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an 710032, China
| | - Ruijiao Li
- Fisheries Research & Technology Extension Center of Shaanxi, Yellow River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Xi'an 710086, China
| | - Chunyun Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lixin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guangpeng Feng
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China.
| | - Dongmei Xiong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
15
|
Pinto A, Botelho MJ, Churro C, Asselman J, Pereira P, Pereira JL. A review on aquatic toxins - Do we really know it all regarding the environmental risk posed by phytoplankton neurotoxins? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118769. [PMID: 37597370 DOI: 10.1016/j.jenvman.2023.118769] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Aquatic toxins are potent natural toxins produced by certain cyanobacteria and marine algae species during harmful cyanobacterial and algal blooms (CyanoHABs and HABs, respectively). These harmful bloom events and the toxins produced during these events are a human and environmental health concern worldwide, with occurrence, frequency and severity of CyanoHABs and HABs being predicted to keep increasing due to ongoing climate change scenarios. These contexts, as well as human health consequences of some toxins produced during bloom events have been thoroughly reviewed before. Conversely, the wider picture that includes the non-human biota in the assessment of noxious effects of toxins is much less covered in the literature and barely covered by review works. Despite direct human exposure to aquatic toxins and related deleterious effects being responsible for the majority of the public attention to the blooms' problematic, it constitutes a very limited fraction of the real environmental risk posed by these toxins. The disruption of ecological and trophic interactions caused by these toxins in the aquatic biota building on deleterious effects they may induce in different species is paramount as a modulator of the overall magnitude of the environmental risk potentially involved, thus necessarily constraining the quality and efficiency of the management strategies that should be placed. In this way, this review aims at updating and consolidating current knowledge regarding the adverse effects of aquatic toxins, attempting to going beyond their main toxicity pathways in human and related models' health, i.e., also focusing on ecologically relevant model organisms. For conciseness and considering the severity in terms of documented human health risks as a reference, we restricted the detailed revision work to neurotoxic cyanotoxins and marine toxins. This comprehensive revision of the systemic effects of aquatic neurotoxins provides a broad overview of the exposure and the hazard that these compounds pose to human and environmental health. Regulatory approaches they are given worldwide, as well as (eco)toxicity data available were hence thoroughly reviewed. Critical research gaps were identified particularly regarding (i) the toxic effects other than those typical of the recognized disease/disorder each toxin causes following acute exposure in humans and also in other biota; and (ii) alternative detection tools capable of being early-warning signals for aquatic toxins occurrence and therefore provide better human and environmental safety insurance. Future directions on aquatic toxins research are discussed in face of the existent knowledge, with particular emphasis on the much-needed development and implementation of effective alternative (eco)toxicological biomarkers for these toxins. The wide-spanning approach followed herein will hopefully stimulate future research more broadly addressing the environmental hazardous potential of aquatic toxins.
Collapse
Affiliation(s)
- Albano Pinto
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal.
| | - Maria João Botelho
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Catarina Churro
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, 8400, Ostend, Belgium
| | - Patrícia Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| | - Joana Luísa Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| |
Collapse
|
16
|
Huang J, Jin J, Sun Y, Zhang L, Huang Y, Yang Z. Can long-term salinity acclimation eliminate the inhibitory effect of salinization on anti-predation defense of Daphnia? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:115805-115819. [PMID: 37889416 DOI: 10.1007/s11356-023-30609-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
Freshwater salinization, due to road salt and other increased anthropogenic activities, has become a significant threat to freshwater organisms. However, whether freshwater salinization affects the response of aquatic organisms to their predators, especially prey that have been acclimated to salinity environments for a long time, remains unclear. In the present study, we investigated the changes in anti-predator defense of Daphnia magna with and without salinity acclimation at five different salinities (0, 0.6, 0.8, 0.10, and 0.12 M). Results showed that freshwater salinization weakened the induced defense response of D. magna, regardless of whether it had undergone long-term salinity acclimation. Specifically, induced defense traits such as smaller body size, higher relative spine length, more relative reproductive output, and smaller body size neonates disappeared at ≥ 0.08 M salinities. In addition, there were no significant differences in most traits of induced defense strength between D. magna with and without salinity acclimation at the same salinity. Importantly, the integrated induced defense response index decreased with increasing salinity. Our study showed that salinity-tolerant organisms do not recover their induced defense at high salinities, underlining the importance of incorporating interspecific interactions when estimating the effects of freshwater salinization on organisms.
Collapse
Affiliation(s)
- Jing Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Jin Jin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yuan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
17
|
Blondeau-Bidet E, Banousse G, L'Honoré T, Farcy E, Cosseau C, Lorin-Nebel C. The role of salinity on genome-wide DNA methylation dynamics in European sea bass gills. Mol Ecol 2023; 32:5089-5109. [PMID: 37526137 DOI: 10.1111/mec.17089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023]
Abstract
Epigenetic modifications, like DNA methylation, generate phenotypic diversity in fish and ultimately lead to adaptive evolutionary processes. Euryhaline marine species that migrate between salinity-contrasted habitats have received little attention regarding the role of salinity on whole-genome DNA methylation. Investigation of salinity-induced DNA methylation in fish will help to better understand the potential role of this process in salinity acclimation. Using whole-genome bisulfite sequencing, we compared DNA methylation patterns in European sea bass (Dicentrarchus labrax) juveniles in seawater and after freshwater transfer. We targeted the gill as a crucial organ involved in plastic responses to environmental changes. To investigate the function of DNA methylation in gills, we performed RNAseq and assessed DNA methylome-transcriptome correlations. We showed a negative correlation between gene expression levels and DNA methylation levels in promoters, first introns and first exons. A significant effect of salinity on DNA methylation dynamics with an overall DNA hypomethylation in freshwater-transferred fish compared to seawater controls was demonstrated. This suggests a role of DNA methylation changes in salinity acclimation. Genes involved in key functions as metabolism, ion transport and transepithelial permeability (junctional complexes) were differentially methylated and expressed between salinity conditions. Expression of genes involved in mitochondrial metabolism (tricarboxylic acid cycle) was increased, whereas the expression of DNA methyltransferases 3a was repressed. This study reveals novel links between DNA methylation, mainly in promoters and first exons/introns, and gene expression patterns following salinity change.
Collapse
Affiliation(s)
| | | | - Thibaut L'Honoré
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Emilie Farcy
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Céline Cosseau
- IHPE, Université Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, Perpignan, France
| | | |
Collapse
|
18
|
Pietropoli E, Pauletto M, Tolosi R, Iori S, Lopparelli RM, Montanucci L, Giantin M, Dacasto M, De Liguoro M. An In Vivo Whole-Transcriptomic Approach to Assess Developmental and Reproductive Impairments Caused by Flumequine in Daphnia magna. Int J Mol Sci 2023; 24:9396. [PMID: 37298348 PMCID: PMC10253896 DOI: 10.3390/ijms24119396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Among veterinary antibiotics, flumequine (FLU) is still widely used in aquaculture due to its efficacy and cost-effectiveness. Although it was synthesized more than 50 years ago, a complete toxicological framework of possible side effects on non-target species is still far from being achieved. The aim of this research was to investigate the FLU molecular mechanisms in Daphnia magna, a planktonic crustacean recognized as a model species for ecotoxicological studies. Two different FLU concentrations (2.0 mg L-1 and 0.2 mg L-1) were assayed in general accordance with OECD Guideline 211, with some proper adaptations. Exposure to FLU (2.0 mg L-1) caused alteration of phenotypic traits, with a significant reduction in survival rate, body growth, and reproduction. The lower concentration (0.2 mg L-1) did not affect phenotypic traits but modulated gene expression, an effect which was even more evident under the higher exposure level. Indeed, in daphnids exposed to 2.0 mg L-1 FLU, several genes related with growth, development, structural components, and antioxidant response were significantly modulated. To the best of our knowledge, this is the first work showing the impact of FLU on the transcriptome of D. magna.
Collapse
Affiliation(s)
- Edoardo Pietropoli
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| | - Marianna Pauletto
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| | - Roberta Tolosi
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| | - Silvia Iori
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| | - Rosa Maria Lopparelli
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| | - Ludovica Montanucci
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Mery Giantin
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| | - Mauro Dacasto
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| | - Marco De Liguoro
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| |
Collapse
|
19
|
Oliveira AF, Marques SC, Pereira JL, Azeiteiro UM. A review of the order mysida in marine ecosystems: What we know what is yet to be known. MARINE ENVIRONMENTAL RESEARCH 2023; 188:106019. [PMID: 37207567 DOI: 10.1016/j.marenvres.2023.106019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023]
Abstract
Mysids have a high ecological importance, particularly by their role in marine food chains as a link between the benthic and pelagic realms. Here we describe the relevant taxonomy, ecological aspects such as distribution and production, and their potential as ideal test organisms for environmental research. We also highlight their importance in estuarine communities, trophic webs, and their life history, while demonstrating their potential in addressing emergent problems. This review emphasizes the importance of mysids in understanding the impacts of climate change and their role in the ecology of estuarine communities. Although there is a dearth of research in genomic studies, this review emphasizes the relevance of mysids and their potential as a model organism in environmental assessment studies of prospective or retrospective nature and highlights the need for further research to enhance our understanding of this group's ecological significance.
Collapse
Affiliation(s)
- Ana Filipa Oliveira
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Portugal.
| | - Sónia Cotrim Marques
- MARE / ARNET, School of Tourism and Maritime Technology, Polytechnic of Leiria, Portugal
| | - Joana Luísa Pereira
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Portugal
| | - Ulisses Miranda Azeiteiro
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Portugal
| |
Collapse
|
20
|
Huber ED, Wilmoth B, Hintz LL, Horvath AD, McKenna JR, Hintz WD. Freshwater salinization reduces vertical movement rate and abundance of Daphnia: Interactions with predatory stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121767. [PMID: 37146869 DOI: 10.1016/j.envpol.2023.121767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Contaminants in human-dominated landscapes are changing ecological interactions. The global increase in freshwater salinity is likely to change predator-prey interactions due to the potential interactive effects between predatory stress and salt stress. We conducted two experiments to assess the interactions between the non-consumptive effects of predation and elevated salinity on the abundance and vertical movement rate of a common lake zooplankton species (Daphnia mendotae). Our results revealed an antagonism rather than a synergism between predatory stress and salinity on zooplankton abundance. Elevated salinity and predator cues triggered a >50% reduction in abundance at salt concentrations of 230 and 860 mg Cl-/L, two thresholds designed to protect freshwater organisms from chronic and acute effects due to salt pollution. We found a masking effect between salinity and predation on vertical movement rate of zooplankton. Elevated salinity reduced zooplankton vertical movement rate by 22-47%. A longer exposure history only magnified the reduction in vertical movement rate when compared to naïve individuals (no prior salinity exposure). Downward movement rate under the influence of predatory stress in elevated salinity was similar to the control, which may enhance the energetic costs of predator avoidance in salinized ecosystems. Our results suggest antagonistic and masking effects between elevated salinity and predatory stress will have consequences for fish-zooplankton interactions in salinized lakes. Elevated salinity could impose additional energetic constraints on zooplankton predator avoidance behaviors and vertical migration, which may reduce zooplankton population size and community interactions supporting the functioning of lake ecosystems.
Collapse
Affiliation(s)
- Eric D Huber
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Rd., Oregon, Ohio, USA
| | - Bayley Wilmoth
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Rd., Oregon, Ohio, USA
| | - Leslie L Hintz
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Rd., Oregon, Ohio, USA
| | - Alexander D Horvath
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Rd., Oregon, Ohio, USA
| | - Jorden R McKenna
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Rd., Oregon, Ohio, USA
| | - William D Hintz
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, 6200 Bay Shore Rd., Oregon, Ohio, USA.
| |
Collapse
|
21
|
Wang X, Cong R, Li A, Wang W, Zhang G, Li L. Transgenerational effects of intertidal environment on physiological phenotypes and DNA methylation in Pacific oysters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162112. [PMID: 36764539 DOI: 10.1016/j.scitotenv.2023.162112] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/16/2022] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Climate change and intensifying human activity are posing serious threats to marine organisms. The fluctuating intertidal zone forms a miniature ecosystem of a rapidly changing environment for studying biological adaptation. Transgenerational plasticity (TGP), an evolutionary phenomenon in which parental experience influences offspring phenotypes, provides an avenue for adaptation, but the molecular mechanism was poorly understood in marine molluscs. In this study, wild Pacific oysters (Crassostrea gigas), which were collected from intertidal zones, were used to conduct two-generation breeding in a subtidal area combined with a heat shock experiment in the laboratory to investigate the intertidal environment-induced TGP under temperate subtidal condition and thermally exposed condition, respectively. We showed that TGP could influence the physiological phenotypes related to the status of oxidation and energy in non-stress-exposed subtidal offspring for at least two generations. Genomic DNA methylation exhibited heritable divergence between intertidal and subtidal oysters, and 1655 (or 42.83 %) differentially methylated genes (DMGs) in F0 were continuously reserved to F2, which may mediate physiological TGP by participating in biological processes including macromolecule metabolism, cellular responses to stress, and the positive regulation of molecular function, especially fatty acid metabolism. The intertidal experience also influenced the thermal plasticity of physiological phenotypes within and across generations. Totally, 320 (or 14.74 %) specific thermal response DMGs in the intertidal F0 generation were identified in F1 and F2, participating in pathways including carbohydrate, lipid, and energy metabolism, signal transduction, and the organismal immune system, which suggested transgenerational intertidal effect mediated by these genes could positively contribute to stress adaptation and had potential applications for aquaculture. This study demonstrates an epigenetic mechanism for TGP in stress adaptation in marine molluscs, and provides new avenues to improve the stress adaptation for marine resource conservation and aquaculture.
Collapse
Affiliation(s)
- Xinxing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Rihao Cong
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Ao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Wei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China.
| |
Collapse
|
22
|
Pham K, Ho L, D'Incal CP, De Cock A, Berghe WV, Goethals P. Epigenetic analytical approaches in ecotoxicological aquatic research. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121737. [PMID: 37121302 DOI: 10.1016/j.envpol.2023.121737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/15/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Environmental epigenetics has become a key research focus in global climate change studies and environmental pollutant investigations impacting aquatic ecosystems. Specifically, triggered by environmental stress conditions, intergenerational DNA methylation changes contribute to biological adaptive responses and survival of organisms to increase their tolerance towards these conditions. To critically review epigenetic analytical approaches in ecotoxicological aquatic research, we evaluated 78 publications reported over the past five years (2016-2021) that applied these methods to investigate the responses of aquatic organisms to environmental changes and pollution. The results show that DNA methylation appears to be the most robust epigenetic regulatory mark studied in aquatic animals. As such, multiple DNA methylation analysis methods have been developed in aquatic organisms, including enzyme restriction digestion-based and methyl-specific immunoprecipitation methods, and bisulfite (in)dependent sequencing strategies. In contrast, only a handful of aquatic studies, i.e. about 15%, have been focusing on histone variants and post-translational modifications due to the lack of species-specific affinity based immunological reagents, such as specific antibodies for chromatin immunoprecipitation applications. Similarly, ncRNA regulation remains as the least popular method used in the field of environmental epigenetics. Insights into the opportunities and challenges of the DNA methylation and histone variant analysis methods as well as decreasing costs of next generation sequencing approaches suggest that large-scale epigenetic environmental studies in model and non-model organisms will soon become available in the near future. Moreover, antibody-dependent and independent methods, such as mass spectrometry-based methods, can be used as an alternative epigenetic approach to characterize global changes of chromatin histone modifications in future aquatic research. Finally, a systematic guide for DNA methylation and histone variant methods is offered for ecotoxicological aquatic researchers to select the most relevant epigenetic analytical approach in their research.
Collapse
Affiliation(s)
- Kim Pham
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium.
| | - Long Ho
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Claudio Peter D'Incal
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Andrée De Cock
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Peter Goethals
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| |
Collapse
|
23
|
Kachhawaha AS, Mishra S, Tiwari AK. Epigenetic control of heredity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:25-60. [PMID: 37225323 DOI: 10.1016/bs.pmbts.2023.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Epigenetics is the field of science that deals with the study of changes in gene function that do not involve changes in DNA sequence and are heritable while epigenetics inheritance is the process of transmission of epigenetic modifications to the next generation. It can be transient, intergenerational, or transgenerational. There are various epigenetic modifications involving mechanisms such as DNA methylation, histone modification, and noncoding RNA expression, all of which are inheritable. In this chapter, we summarize the information on epigenetic inheritance, its mechanism, inheritance studies on various organisms, factors affecting epigenetic modifications and their inheritance, and the role of epigenetic inheritance in the heritability of diseases.
Collapse
Affiliation(s)
- Akanksha Singh Kachhawaha
- Laboratory of Forensic Chemistry & Toxicology, School of Forensic Sciences, National Forensic Sciences University (NFSU), Gandhinagar, Gujarat, India
| | - Sarita Mishra
- Laboratory of Forensic Chemistry & Toxicology, School of Forensic Sciences, National Forensic Sciences University (NFSU), Gandhinagar, Gujarat, India
| | - Anand Krishna Tiwari
- Genetics & Developmental Biology Laboratory, Department of Biotechnology & Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, India.
| |
Collapse
|
24
|
Im H, Kang J, Jacob MF, Bae H, Oh JE. Transgenerational effects of benzotriazole on the gene expression, growth, and reproduction of Daphnia magna. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121211. [PMID: 36740167 DOI: 10.1016/j.envpol.2023.121211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/27/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Due to its widespread and intensive use as a corrosion inhibitor, benzotriazole is ubiquitously detected from a few parts per billion to several hundred parts per million in aquatic environments. The long-term toxicity of benzotriazole is unclear despite its low acute toxicity. Therefore, we investigated the transgenerational effects of benzotriazole at the genomic and individual levels using the freshwater zooplankton Daphnia magna. Maternal exposure to sublethal concentrations (15 and 30 mg/L) of benzotriazole exerted transgenerational effects on D. magna at the genomic and individual levels even in descendants that have never been exposed to benzotriazole. Significant alterations in the expression of Cyp, GST, Vtg1, and Hb and in neonate size were observed in the unexposed F3 generation, confirming the transgenerational effect of benzotriazole. Interestingly, detoxification related genes Cyp and GST were unaffected or downregulated in the exposed generation but upregulated in the following unexposed generations. Furthermore, continuous multigenerational exposure to an environmental concentration (4.3 μg/L) of benzotriazole also upregulated detoxification genes in decent generations but exerted no individual-level effects in subsequent generations.
Collapse
Affiliation(s)
- Hyungjoon Im
- Institute for Environment and Energy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jiyeon Kang
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Macha Fulgence Jacob
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyokwan Bae
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Republic of Korea; Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology, Republic of Korea
| | - Jeong-Eun Oh
- Institute for Environment and Energy, Pusan National University, Busan, 46241, Republic of Korea; Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
25
|
Gouin N, Notte AM, Kolok AS, Bertin A. Pesticide exposure affects DNA methylation patterns in natural populations of a mayfly. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161096. [PMID: 36572299 DOI: 10.1016/j.scitotenv.2022.161096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Chemical pollutants derived from agricultural activities represent a major threat to freshwater biota. Despite growing evidence involving epigenetic processes, such as DNA methylation, in response to pesticide contamination in agroecosystems, research on wild populations of non-model species remains scarce, particularly for endemic freshwater arthropods. Using the MethylRAD method, this study investigates whether exposure to pesticide contamination in natural populations of the endemic mayfly A. torrens produces genome wide changes in levels of DNA methylation. From a total of 1,377,147 MethylRAD markers produced from 285 specimens collected at 30 different study sites along the Limarí watershed of north-central Chile, six showed significant differential methylation between populations exposed and unexposed to pesticides. In all cases the effect of pesticides was positive, independent and stronger than the effects detected for other spatial and environmental factors. Only one candidate marker appeared correlated significantly with additional variables, nitrate and calcium levels, which also reflects the impact of agrichemicals and could additionally suggest, to a lower extent, antagonistic effects of mineral salts concentration for this specific marker. These results suggest that the effect of pesticide exposure on methylation levels is apparent at these six MethylRAD markers in A. torrens populations. Such data is challenging to obtain in natural populations and is, for the most part, lacking in ecotoxicological studies. Our study shows that DNA methylation processes are involved in the response to pesticide contamination in populations of the mayfly A. torrens in their natural habitat, and provides new evidence regarding the impact of pesticide contamination and agricultural activities on the endemic fauna of lotic ecosystems.
Collapse
Affiliation(s)
- Nicolas Gouin
- Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de La Serena, Raúl Bitrán 1305, La Serena, Chile; Departamento de Biología, Universidad de La Serena, Raúl Bitrán 1305, La Serena, Chile; Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Raúl Bitrán 1305, La Serena, Chile.
| | - Ana-Maria Notte
- Programa de doctorado en Biología y Ecología Aplicada, Departamento de Biología, Universidad de La Serena, Raúl Bitrán 1305, La Serena, Chile
| | - Alan S Kolok
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID 83844-3002, United States
| | - Angéline Bertin
- Departamento de Biología, Universidad de La Serena, Raúl Bitrán 1305, La Serena, Chile
| |
Collapse
|
26
|
Boyd A, Choi J, Ren G, How ZT, El-Din MG, Tierney KB, Blewett TA. Can short-term data accurately model long-term environmental exposures? Investigating the multigenerational adaptation potential of Daphnia magna to environmental concentrations of organic ultraviolet filters. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130598. [PMID: 37056014 DOI: 10.1016/j.jhazmat.2022.130598] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/29/2022] [Accepted: 12/10/2022] [Indexed: 06/19/2023]
Abstract
Organic ultraviolet filters (UVFs) are contaminants of concern, ubiquitously found in many aquatic environments due to their use in personal care products to protect against ultraviolet radiation. Research regarding the toxicity of UVFs such as avobenzone, octocrylene and oxybenzone indicate that these chemicals may pose a threat to invertebrate species; however, minimal long-term studies have been conducted to determine how these UVFs may affect continuously exposed populations. The present study modeled the effects of a 5-generation exposure of Daphnia magna to these UVFs at environmental concentrations. Avobenzone and octocrylene resulted in minor, transient decreases in reproduction and wet mass. Oxybenzone exposure resulted in > 40% mortality, 46% decreased reproduction, and 4-fold greater reproductive failure over the F0 and F1 generations; however, normal function was largely regained by the F2 generation. These results indicate that Daphnia are able to acclimate over long-term exposures to concentrations of 6.59 μg/L avobenzone, ∼0.6 μg/L octocrylene or 16.5 μg/L oxybenzone. This suggests that short-term studies indicating high toxicity may not accurately represent long-term outcomes in wild populations, adding additional complexity to risk assessment practices at a time when many regions are considering or implementing UVF bans in order to protect these most sensitive invertebrate species.
Collapse
Affiliation(s)
- Aaron Boyd
- University of Alberta, Department of Biological Sciences, Edmonton T6G 2E9, Canada.
| | - Jessica Choi
- University of Alberta, Department of Biological Sciences, Edmonton T6G 2E9, Canada
| | - Grace Ren
- University of Alberta, Department of Biological Sciences, Edmonton T6G 2E9, Canada
| | - Zuo Tong How
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, AB T6G 1H9, Canada
| | - Mohamed Gamal El-Din
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, AB T6G 1H9, Canada
| | - Keith B Tierney
- University of Alberta, Department of Biological Sciences, Edmonton T6G 2E9, Canada; University of Alberta, School of Public Health, Edmonton, AB T6G 1C9, Canada
| | - Tamzin A Blewett
- University of Alberta, Department of Biological Sciences, Edmonton T6G 2E9, Canada
| |
Collapse
|
27
|
Agrelius TC, Altman J, Dudycha JL. The maternal effects of dietary restriction on Dnmt expression and reproduction in two clones of Daphnia pulex. Heredity (Edinb) 2023; 130:73-81. [PMID: 36477021 PMCID: PMC9905607 DOI: 10.1038/s41437-022-00581-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
The inheritance of epigenetic marks induced by environmental variation in a previous generation is broadly accepted as a mediator of phenotypic plasticity. Transgenerational effects linking maternal experiences to changes in morphology, gene expression, and life history of successive generations are known across many taxa. While the number of studies linking epigenetic variation to ecological maternal effects is increasing rapidly, few if any attempts have been made to investigate molecular mechanisms governing epigenetic functions in the context of ecologically relevant maternal effects. Daphnia make an ideal model for investigating molecular epigenetic mechanisms and ecological maternal effects because they will reproduce asexually in the lab. Daphnia are also known to have strong maternal effects, involving a variety of traits and environmental variables. Using two clones of Daphnia pulex, we investigated the plasticity of life history and DNA methyltransferase (Dnmt) gene expression with respect to food limitation within and across generations. We found strong evidence of genotypic variation of responses of life history and Dnmt expression to low food diets, both within and across generations. In general, effects of offspring diet were larger than either the direct maternal effect or offspring-maternal environment interactions, but the direction of the maternal effect was usually in the opposite direction of the within-generation effect. For both life history and Dnmt expression, we also found that when offspring had low food, effects of the maternal environment were stronger than when offspring had high food.
Collapse
Affiliation(s)
- Trenton C Agrelius
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA.
- Department of Biological Sciences, University of Notre Dame, Notre Dame, USA.
| | - Julia Altman
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
- Department of Biology, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Jeffry L Dudycha
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| |
Collapse
|
28
|
Jeremias G, Veloso T, Gonçalves FJM, Van Nieuwerburgh F, Pereira JL, Asselman J. Multigenerational DNA methylation responses to copper exposure in Daphnia: Potential targets for epigenetic biomarkers? CHEMOSPHERE 2022; 308:136231. [PMID: 36055596 DOI: 10.1016/j.chemosphere.2022.136231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Epigenetic mechanisms are moving to the forefront of environmental sciences, as environmentally induced epigenetic changes shape biological responses to chemical contamination. This work focused on Daphnia as a representative of potentially threatened freshwater biota, aiming to gain an insight into the involvement of epigenetic mechanisms in their response and eventual adaptation to metal contamination. Copper-induced DNA methylation changes, their potential transgenerational inheritance, and life-history traits were assessed. Organisms with different histories of past exposure to copper were exposed to toxic levels of the element for one generation (F0) and then monitored for three subsequent unexposed generations (F1, F2, and F3). Overall, methylation changes targeted important genes for counteracting the effects of metals and oxidative stress, including dynein light chain, ribosomal kinase and nuclear fragile X mental retardation-interacting protein. Also, contrasting overall and gene-specific methylation responses were observed in organisms differing in their history of exposure to copper, with different transgenerational methylation responses being also identified among the two groups, without apparent life-history costs. Taken together, these results demonstrate the capacity of copper to promote epigenetic transgenerational inheritance in a manner related explicitly to history of exposure, thereby supporting the development and incorporation of epigenetic biomarkers in risk assessment frameworks.
Collapse
Affiliation(s)
- Guilherme Jeremias
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal
| | - Telma Veloso
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal; CICECO - Aveiro Institute of Materials & Department of Chemistry, University of Aveiro, Portugal
| | - Fernando J M Gonçalves
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal
| | | | - Joana Luísa Pereira
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal.
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, 8400, Ostend, Belgium
| |
Collapse
|
29
|
Liu Z, Zhou T, Gao D. Genetic and epigenetic regulation of growth, reproduction, disease resistance and stress responses in aquaculture. Front Genet 2022; 13:994471. [PMID: 36406125 PMCID: PMC9666392 DOI: 10.3389/fgene.2022.994471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
Major progress has been made with genomic and genetic studies in aquaculture in the last decade. However, research on epigenetic regulation of aquaculture traits is still at an early stage. It is apparent that most, if not all, aquaculture traits are regulated at both genetic and epigenetic levels. This paper reviews recent progress in understanding of genetic and epigenetic regulation of important aquaculture traits such as growth, reproduction, disease resistance, and stress responses. Although it is challenging to make generalized statements, DNA methylation is mostly correlated with down-regulation of gene expression, especially when at promoters and enhancers. As such, methylation of growth factors and their receptors is negatively correlated with growth; hypomethylation of genes important for stress tolerance is correlated with increased stress tolerance; hypomethylation of genes important for male or female sex differentiation leads to sex differentiation into males or females, respectively. It is apparent that environmental regulation of aquaculture traits is mediated at the level of epigenetic regulation, and such environment-induced epigenetic changes appeared to be intergenerationally inherited, but evidences for transgenerational inheritance are still limited.
Collapse
Affiliation(s)
- Zhanjiang Liu
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, United States,*Correspondence: Zhanjiang Liu,
| | - Tao Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Dongya Gao
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
30
|
Song J, Kim C, Na J, Sivri N, Samanta P, Jung J. Transgenerational effects of polyethylene microplastic fragments containing benzophenone-3 additive in Daphnia magna. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129225. [PMID: 35739745 DOI: 10.1016/j.jhazmat.2022.129225] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/11/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Maternal exposure to microplastics (MPs) plays an important role in the fitness of unexposed progeny. In this study, the transgenerational effects of polyethylene MP fragments (17.35 ± 5.50 µm) containing benzophenone-3 (BP-3; 2.85 ± 0.16% w/w) on chronic toxicity (21 d) in Daphnia magna were investigated across four generations. Only D. magna in the F0 generation was exposed to MP fragments, MP/BP-3 fragments, and BP-3 leachate to identify the transgenerational effect in the F3 generation. The mortality of D. magna induced by MP and MP/BP-3 fragments was recovered in the F3 generation, but somatic growth and reproduction significantly decreased compared to the control. Additionally, reproduction of D. magna exposed to BP-3 leachate significantly decreased in the F3 generation. These findings confirmed the transgenerational effects of MP fragment and BP-3 additive on D. magna. Particularly, the adverse effect on D. magna reproduction seemed to be cumulative across four generations for MP/BP-3 fragments, while it was an acclimation trend for BP-3 leachate. However, there was no significant difference in global DNA methylation in D. magna across four generations, thus requiring a gene-specific DNA methylation study to identify different epigenetic transgenerational inheritance.
Collapse
Affiliation(s)
- Jinyoung Song
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Changhae Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Joorim Na
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Nüket Sivri
- Department of Environmental Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey
| | - Palas Samanta
- Department of Environmental Science, Sukanta Mahavidyalaya, University of North Bengal, West Bengal, India
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
31
|
Abreu SN, Jesus F, Domingues I, Baptista F, Pereira JL, Serpa D, Soares AMVM, Martins RE, Oliveira E Silva M. Automated Counting of Daphnid Neonates, Artemia Nauplii, and Zebrafish Eggs: A Proof of Concept. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1451-1458. [PMID: 35234307 DOI: 10.1002/etc.5323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/18/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
In aquatic invertebrate (e.g., daphnids and Artemia sp.) and zebrafish cultures, in ecotoxicological bioassays, or when addressing complex population-level experimental designs, the counting of an organism's progeny is often required. This counting process is laborious, repetitive, and time-consuming, potentially posing health hazards to the operators, and necessarily entailing a higher likelihood of human error. We present an experimental evaluation of a computer-based device for counting neonates (Daphnia magna, Daphnia longispina, and Ceriodaphnia sp.), nauplii (Artemia salina and Artemia franciscana), and zebrafish (Danio rerio) eggs. Manual counts by an experienced technician were compared with the corresponding automated counts achieved by the computer-based counting device. A minimum of 55 counts/species was performed, with the number of counted organisms being up to a maximum of 150 neonates of Ceriodaphnia dubia, 200 neonates of D. magna and D. longispina, 200 nauplii of A. franciscana and A. salina, and 500 zebrafish eggs. Manual and automated counts were both performed in culture medium solutions of 50 ml of volume. Automated counts showed a mean relative acccuracy of 98.9% (97.9%-99.4%) and a relative standard deviation of 1.72%. The results demonstrate that the computer-based device can be used for accurately counting these aquatic organisms. This computer-based counting might be extended to other organisms of similar size, thus facilitating reproduction and life-cycle ecotoxicity tests. Environ Toxicol Chem 2022;41:1451-1458. © 2022 SETAC.
Collapse
Affiliation(s)
- Sizenando N Abreu
- Department of Biology, Center for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Fátima Jesus
- Department of Environment and Planning, Center for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Inês Domingues
- Department of Biology, Center for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Filipa Baptista
- Department of Biology, Center for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Joana L Pereira
- Department of Biology, Center for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Dalila Serpa
- Department of Environment and Planning, Center for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology, Center for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Rui E Martins
- Department of Electronics, Telecommunications, and Informatics, Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, Aveiro, Portugal
| | - Miguel Oliveira E Silva
- Department of Electronics, Telecommunications, and Informatics, Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
32
|
Feiner N, Radersma R, Vasquez L, Ringnér M, Nystedt B, Raine A, Tobi EW, Heijmans BT, Uller T. Environmentally induced DNA methylation is inherited across generations in an aquatic keystone species. iScience 2022; 25:104303. [PMID: 35573201 PMCID: PMC9097707 DOI: 10.1016/j.isci.2022.104303] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/02/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
Transgenerational inheritance of environmentally induced epigenetic marks can have significant impacts on eco-evolutionary dynamics, but the phenomenon remains controversial in ecological model systems. We used whole-genome bisulfite sequencing of individual water fleas (Daphnia magna) to assess whether environmentally induced DNA methylation is transgenerationally inherited. Genetically identical females were exposed to one of three natural stressors, or a de-methylating drug, and their offspring were propagated clonally for four generations under control conditions. We identified between 70 and 225 differentially methylated CpG positions (DMPs) in F1 individuals whose mothers were exposed to a natural stressor. Roughly half of these environmentally induced DMPs persisted until generation F4. In contrast, treatment with the drug demonstrated that pervasive hypomethylation upon exposure is reset almost completely after one generation. These results suggest that environmentally induced DNA methylation is non-random and stably inherited across generations in Daphnia, making epigenetic inheritance a putative factor in the eco-evolutionary dynamics of freshwater communities.
Collapse
Affiliation(s)
| | - Reinder Radersma
- Department of Biology, Lund University, Lund, Sweden
- Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
| | - Louella Vasquez
- Department of Laboratory Medicine, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Markus Ringnér
- Department of Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Björn Nystedt
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Amanda Raine
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Elmar W. Tobi
- Periconceptional Epidemiology, Department of Obstetrics and Gynaecology, Division of Obstetrics and Prenatal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Science, Wageningen University & Research, Wageningen, The Netherlands
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Bastiaan T. Heijmans
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Tobias Uller
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
33
|
Yadav NS, Titov V, Ayemere I, Byeon B, Ilnytskyy Y, Kovalchuk I. Multigenerational Exposure to Heat Stress Induces Phenotypic Resilience, and Genetic and Epigenetic Variations in Arabidopsis thaliana Offspring. FRONTIERS IN PLANT SCIENCE 2022; 13:728167. [PMID: 35419019 PMCID: PMC8996174 DOI: 10.3389/fpls.2022.728167] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Plants are sedentary organisms that constantly sense changes in their environment and react to various environmental cues. On a short-time scale, plants respond through alterations in their physiology, and on a long-time scale, plants alter their development and pass on the memory of stress to the progeny. The latter is controlled genetically and epigenetically and allows the progeny to be primed for future stress encounters, thus increasing the likelihood of survival. The current study intended to explore the effects of multigenerational heat stress in Arabidopsis thaliana. Twenty-five generations of Arabidopsis thaliana were propagated in the presence of heat stress. The multigenerational stressed lineage F25H exhibited a higher tolerance to heat stress and elevated frequency of homologous recombination, as compared to the parallel control progeny F25C. A comparison of genomic sequences revealed that the F25H lineage had a three-fold higher number of mutations [single nucleotide polymorphisms (SNPs) and insertions and deletions (INDELs)] as compared control lineages, suggesting that heat stress induced genetic variations in the heat-stressed progeny. The F25H stressed progeny showed a 7-fold higher number of non-synonymous mutations than the F25C line. Methylome analysis revealed that the F25H stressed progeny showed a lower global methylation level in the CHH context than the control progeny. The F25H and F25C lineages were different from the parental control lineage F2C by 66,491 and 80,464 differentially methylated positions (DMPs), respectively. F25H stressed progeny displayed higher frequency of methylation changes in the gene body and lower in the body of transposable elements (TEs). Gene Ontology analysis revealed that CG-DMRs were enriched in processes such as response to abiotic and biotic stimulus, cell organizations and biogenesis, and DNA or RNA metabolism. Hierarchical clustering of these epimutations separated the heat stressed and control parental progenies into distinct groups which revealed the non-random nature of epimutations. We observed an overall higher number of epigenetic variations than genetic variations in all comparison groups, indicating that epigenetic variations are more prevalent than genetic variations. The largest difference in epigenetic and genetic variations was observed between control plants comparison (F25C vs. F2C), which clearly indicated that the spontaneous nature of epigenetic variations and heat-inducible nature of genetic variations. Overall, our study showed that progenies derived from multigenerational heat stress displayed a notable adaption in context of phenotypic, genotypic and epigenotypic resilience.
Collapse
|
34
|
Aigner GP, Pittl V, Fiechtner B, Egger B, Šrut M, Höckner M. Common mechanisms cannot explain time- and dose-dependent DNA methylation changes in earthworms exposed to cadmium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:151468. [PMID: 34742794 DOI: 10.1016/j.scitotenv.2021.151468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/28/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
DNA hypermethylation caused by environmental pollutants like cadmium (Cd) has already been demonstrated in many invertebrates, including earthworms. However, the exact epigenetic mechanisms that drive this hypermethylation are largely unknown and even basic DNA methylation and demethylation processes are hardly characterized. Therefore, we used an important bioindicator, the earthworm Lumbricus terrestris, as a model organism to determine time- and dose-dependent effects of Cd on global and gene-specific DNA methylation and its underlying mechanisms. We revealed Cd-induced adenine and cytosine hypermethylation using specific antibodies in dot blots and found that the methylation level of adenine compared to cytosine changed even to a bigger extent. However, the levels of hydroxymethylated cytosine did not differ between treatment groups. General methylation and demethylation components like methyltransferases (DNMT1 and 3), and ten-eleven translocation (TET) genes were confirmed in L. terrestris by quantitative RealTime PCR. However, neither gene expression, nor DNMT and TET enzyme activity showed significant differences in the Cd exposure groups. Using bisulfite conversion and sequencing, gene body methylation (gbm) of metallothionein 2 (MT2), one of the most important detoxification proteins, was characterized. Cd-dependent changes in MT2 gbm could, however, not be correlated to MT2 gene activity evaluated by quantitative RealTime PCR. Future directions as well as missing links are discussed in the present study hinting towards the importance of studying epigenetic marks and mechanistic insights in a broad variety of species to deepen our knowledge on the effects of changing environmental conditions.
Collapse
Affiliation(s)
- Gerhard P Aigner
- University of Innsbruck, Institute of Zoology, Center for Molecular Biosciences Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Verena Pittl
- University of Innsbruck, Institute of Zoology, Center for Molecular Biosciences Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Birgit Fiechtner
- University of Innsbruck, Institute of Zoology, Center for Molecular Biosciences Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Bernhard Egger
- University of Innsbruck, Institute of Zoology, Center for Molecular Biosciences Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Maja Šrut
- University of Innsbruck, Institute of Zoology, Center for Molecular Biosciences Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Martina Höckner
- University of Innsbruck, Institute of Zoology, Center for Molecular Biosciences Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| |
Collapse
|
35
|
Abstract
Organisms mount the cellular stress response whenever environmental parameters exceed the range that is conducive to maintaining homeostasis. This response is critical for survival in emergency situations because it protects macromolecular integrity and, therefore, cell/organismal function. From an evolutionary perspective, the cellular stress response counteracts severe stress by accelerating adaptation via a process called stress-induced evolution. In this Review, we summarize five key physiological mechanisms of stress-induced evolution. Namely, these are stress-induced changes in: (1) mutation rates, (2) histone post-translational modifications, (3) DNA methylation, (4) chromoanagenesis and (5) transposable element activity. Through each of these mechanisms, organisms rapidly generate heritable phenotypes that may be adaptive, maladaptive or neutral in specific contexts. Regardless of their consequences to individual fitness, these mechanisms produce phenotypic variation at the population level. Because variation fuels natural selection, the physiological mechanisms of stress-induced evolution increase the likelihood that populations can avoid extirpation and instead adapt under the stress of new environmental conditions.
Collapse
Affiliation(s)
- Elizabeth A Mojica
- Department of Animal Science, University of California, Davis, One Shields Avenue, Meyer Hall, Davis, CA 95616, USA
| | - Dietmar Kültz
- Department of Animal Science, University of California, Davis, One Shields Avenue, Meyer Hall, Davis, CA 95616, USA
| |
Collapse
|
36
|
Current water quality guidelines across North America and Europe do not protect lakes from salinization. Proc Natl Acad Sci U S A 2022; 119:2115033119. [PMID: 35193976 PMCID: PMC8892338 DOI: 10.1073/pnas.2115033119] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 11/23/2022] Open
Abstract
The salinity of freshwater ecosystems is increasing worldwide. Given that most freshwater organisms have no recent evolutionary history with high salinity, we expect them to have a low tolerance to elevated salinity caused by road deicing salts, agricultural practices, mining operations, and climate change. Leveraging the results from a network of experiments conducted across North America and Europe, we showed that salt pollution triggers a massive loss of important zooplankton taxa, which led to increased phytoplankton biomass at many study sites. We conclude that current water quality guidelines established by governments in North America and Europe do not adequately protect lake food webs, indicating an immediate need to establish guidelines where they do not exist and to reassess existing guidelines. Human-induced salinization caused by the use of road deicing salts, agricultural practices, mining operations, and climate change is a major threat to the biodiversity and functioning of freshwater ecosystems. Yet, it is unclear if freshwater ecosystems are protected from salinization by current water quality guidelines. Leveraging an experimental network of land-based and in-lake mesocosms across North America and Europe, we tested how salinization—indicated as elevated chloride (Cl−) concentration—will affect lake food webs and if two of the lowest Cl− thresholds found globally are sufficient to protect these food webs. Our results indicated that salinization will cause substantial zooplankton mortality at the lowest Cl− thresholds established in Canada (120 mg Cl−/L) and the United States (230 mg Cl−/L) and throughout Europe where Cl− thresholds are generally higher. For instance, at 73% of our study sites, Cl− concentrations that caused a ≥50% reduction in cladoceran abundance were at or below Cl− thresholds in Canada, in the United States, and throughout Europe. Similar trends occurred for copepod and rotifer zooplankton. The loss of zooplankton triggered a cascading effect causing an increase in phytoplankton biomass at 47% of study sites. Such changes in lake food webs could alter nutrient cycling and water clarity and trigger declines in fish production. Current Cl− thresholds across North America and Europe clearly do not adequately protect lake food webs. Water quality guidelines should be developed where they do not exist, and there is an urgent need to reassess existing guidelines to protect lake ecosystems from human-induced salinization.
Collapse
|
37
|
Huang J, Li Y, Sun Y, Zhang L, Lyu K, Yang Z. Size-specific sensitivity of cladocerans to freshwater salinization: Evidences from the changes in life history and population dynamics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 296:118770. [PMID: 34974088 DOI: 10.1016/j.envpol.2021.118770] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The salinization of the global freshwater system caused by various human activities and climate change has become a common problem threatening freshwater biodiversity and resources, which may affect a variety of species of cladocerans at individual and population levels. In order to comprehensively evaluate the impact of salinization on different-sized cladocerans at individual and population levels, we exposed two species of cladocerans with obvious body size difference, Daphnia magna and Moina macrocopa, to seven salinities (0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12 M), recorded individual life history traits and population growth dynamics, and used multiple mechanistic models to fit the data. At the individual level, the median effect concentration of survival time, total offspring per female, and number of broods of D. magna were significantly higher than those of M. macrocopa. At the population level, the decrease in carrying capacity of D. magna with increasing salinity was significantly less than that of M. macrocopa. At the same salinity treatment, the integrated biomarker response indexes value of M. macrocopa is higher than that of D. magna. Therefore, it was further inferred that the sensitivity of small-sized species M. macrocopa to salinity stress is significantly higher than that of big-sized species D. magna. Thus, freshwater salinization may result in the replacement of smaller salt-intolerant cladocerans with larger salt-tolerant cladocerans, which may have dramatic effects on freshwater communities and ecosystems. Additionally, the increase of salinity had a greater impact on the population level of D. magna and M. macrocopa than on the individual level, indicating that population level of cladocerans was more susceptible to salinity stress. Experiments only based on individuals may underestimate the ecologically related changes in populations and communities, thus understanding the impact of salinization on freshwater systems needs to consider multiple ecological levels.
Collapse
Affiliation(s)
- Jing Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yurou Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Kai Lyu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
38
|
Aigner GP, Nenning P, Fiechtner B, Šrut M, Höckner M. DNA Methylation and Detoxification in the Earthworm Lumbricus terrestris Exposed to Cadmium and the DNA Demethylation Agent 5-aza-2'-deoxycytidine. TOXICS 2022; 10:100. [PMID: 35202286 PMCID: PMC8879108 DOI: 10.3390/toxics10020100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 01/27/2023]
Abstract
Earthworms are well-established model organisms for testing the effects of heavy metal pollution. How DNA methylation affects cadmium (Cd) detoxification processes such as the expression of metallothionein 2 (MT2), however, is largely unknown. We therefore exposed Lumbricus terrestris to 200 mg concentrations of Cd and 5-aza-2'-deoxycytidine (Aza), a demethylating agent, and sampled tissue and coelomocytes, cells of the innate immune system, for 48 h. MT2 transcription significantly increased in the Cd- and Cd-Aza-treated groups. In tissue samples, a significant decrease in MT2 in the Aza-treated group was detected, showing that Aza treatment inhibits basal MT2 gene activity but has no effect on Cd-induced MT2 levels. Although Cd repressed the gene expression of DNA-(cytosine-5)-methyltransferase-1 (DNMT1), which is responsible for maintaining DNA methylation, DNMT activity was unchanged, meaning that methylation maintenance was not affected in coelomocytes. The treatment did not influence DNMT3, which mediates de novo methylation, TET gene expression, which orchestrates demethylation, and global levels of hydroxymethylcytosine (5hmC), a product of the demethylation process. Taken together, this study indicates that Aza inhibits basal gene activity, in contrast to Cd-induced MT2 gene expression, but does not affect global DNA methylation. We therefore conclude that Cd detoxification based on the induction of MT2 does not relate to DNA methylation changes.
Collapse
Affiliation(s)
| | | | | | | | - Martina Höckner
- Department of Zoology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria; (G.P.A.); (P.N.); (B.F.); (M.Š.)
| |
Collapse
|
39
|
Harney E, Paterson S, Collin H, Chan BH, Bennett D, Plaistow SJ. Pollution induces epigenetic effects that are stably transmitted across multiple generations. Evol Lett 2022; 6:118-135. [PMID: 35386832 PMCID: PMC8966472 DOI: 10.1002/evl3.273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
It has been hypothesized that the effects of pollutants on phenotypes can be passed to subsequent generations through epigenetic inheritance, affecting populations long after the removal of a pollutant. But there is still little evidence that pollutants can induce persistent epigenetic effects in animals. Here, we show that low doses of commonly used pollutants induce genome‐wide differences in cytosine methylation in the freshwater crustacean Daphnia pulex. Uniclonal populations were either continually exposed to pollutants or switched to clean water, and methylation was compared to control populations that did not experience pollutant exposure. Although some direct changes to methylation were only present in the continually exposed populations, others were present in both the continually exposed and switched to clean water treatments, suggesting that these modifications had persisted for 7 months (>15 generations). We also identified modifications that were only present in the populations that had switched to clean water, indicating a long‐term legacy of pollutant exposure distinct from the persistent effects. Pollutant‐induced differential methylation tended to occur at sites that were highly methylated in controls. Modifications that were observed in both continually and switched treatments were highly methylated in controls and showed reduced methylation in the treatments. On the other hand, modifications found just in the switched treatment tended to have lower levels of methylation in the controls and showed increase methylation in the switched treatment. In a second experiment, we confirmed that sublethal doses of the same pollutants generate effects on life histories for at least three generations following the removal of the pollutant. Our results demonstrate that even low doses of pollutants can induce transgenerational epigenetic effects that are stably transmitted over many generations. Persistent effects are likely to influence phenotypic development, which could contribute to the rapid adaptation, or extinction, of populations confronted by anthropogenic stressors.
Collapse
Affiliation(s)
- Ewan Harney
- Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences University of Liverpool Liverpool L69 7ZB United Kingdom
- Current address: Institute of Evolutionary Biology (CSIC‐UPF) CMIMA Building Barcelona 08003 Spain
| | - Steve Paterson
- Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences University of Liverpool Liverpool L69 7ZB United Kingdom
| | - Hélène Collin
- Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences University of Liverpool Liverpool L69 7ZB United Kingdom
| | - Brian H.K. Chan
- Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences University of Liverpool Liverpool L69 7ZB United Kingdom
- Current address: Faculty of Biology, Medicine and Health The University of Manchester Manchester M13 9PT United Kingdom
| | - Daimark Bennett
- Molecular and Physiology Cell Signalling, Institute of Systems, Molecular and Integrative Biology University of Liverpool Liverpool L69 7ZB United Kingdom
| | - Stewart J. Plaistow
- Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences University of Liverpool Liverpool L69 7ZB United Kingdom
| |
Collapse
|
40
|
Jia J, Dong C, Han M, Ma S, Chen W, Dou J, Feng C, Liu X. Multi-omics perspective on studying reproductive biology in Daphnia sinensis. Genomics 2022; 114:110309. [DOI: 10.1016/j.ygeno.2022.110309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/28/2021] [Accepted: 02/01/2022] [Indexed: 11/30/2022]
|
41
|
Freshwater salinisation: a research agenda for a saltier world. Trends Ecol Evol 2022; 37:440-453. [DOI: 10.1016/j.tree.2021.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022]
|
42
|
Aluru N, Fields DM, Shema S, Skiftesvik AB, Browman HI. Gene expression and epigenetic responses of the marine Cladoceran, Evadne nordmanni, and the copepod, Acartia clausi, to elevated CO 2. Ecol Evol 2021; 11:16776-16785. [PMID: 34938472 PMCID: PMC8668794 DOI: 10.1002/ece3.8309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 11/10/2022] Open
Abstract
Characterizing the capacity of marine organisms to adapt to climate change related drivers (e.g., pCO2 and temperature), and the possible rate of this adaptation, is required to assess their resilience (or lack thereof) to these drivers. Several studies have hypothesized that epigenetic markers such as DNA methylation, histone modifications and noncoding RNAs, act as drivers of adaptation in marine organisms, especially corals. However, this hypothesis has not been tested in zooplankton, a keystone organism in marine food webs. The objective of this study is to test the hypothesis that acute ocean acidification (OA) exposure alters DNA methylation in two zooplanktonic species-copepods (Acartia clausii) and cladocerans (Evadne nordmanii). We exposed these two species to near-future OA conditions (400 and 900 ppm pCO2) for 24 h and assessed transcriptional and DNA methylation patterns using RNA sequencing and Reduced Representation Bisulfite Sequencing (RRBS). OA exposure caused differential expression of genes associated with energy metabolism, cytoskeletal and extracellular matrix functions, hypoxia and one-carbon metabolism. Similarly, OA exposure also caused altered DNA methylation patterns in both species but the effect of these changes on gene expression and physiological effects remains to be determined. The results from this study form the basis for studies investigating the potential role of epigenetic mechanisms in OA induced phenotypic plasticity and/or adaptive responses in zooplanktonic organisms.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | | | - Steven Shema
- Institute of Marine ResearchAustevoll Research Station, Ecosystem Acoustics GroupStorebøNorway
| | - Anne Berit Skiftesvik
- Institute of Marine ResearchAustevoll Research Station, Ecosystem Acoustics GroupStorebøNorway
| | - Howard I. Browman
- Institute of Marine ResearchAustevoll Research Station, Ecosystem Acoustics GroupStorebøNorway
| |
Collapse
|
43
|
Šrut M. Ecotoxicological epigenetics in invertebrates: Emerging tool for the evaluation of present and past pollution burden. CHEMOSPHERE 2021; 282:131026. [PMID: 34111635 DOI: 10.1016/j.chemosphere.2021.131026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
The effect of environmental pollution on epigenetic changes and their heredity in affected organisms is of major concern as such changes can play a significant role in adaptation to changing environmental conditions. Changes of epigenetic marks including DNA methylation, histone modifications, and non-coding RNA's can induce changes in gene transcription leading to physiological long-term changes or even transgenerational inheritance. Such mechanisms have until recently been scarcely studied in invertebrate organisms, mainly focusing on model species including Caenorhabditis elegans and Daphnia magna. However, more data are becoming available, particularly focused on DNA methylation changes caused by anthropogenic pollutants in a wide range of invertebrates. This review examines the literature from field and laboratory studies utilising invertebrate species exposed to environmental pollutants and their effect on DNA methylation. Possible mechanisms of epigenetic modifications and their role on physiology and adaptation as well as the incidence of intergenerational and transgenerational inheritance are discussed. Furthermore, critical research challenges are defined and the way forward is proposed. Future studies should focus on the use of next generation sequencing tools to define invertebrate methylomes under environmental stress in higher resolution, those data should further be linked to gene expression patterns and phenotypes and detailed studies focusing on transgenerational effects are encouraged. Moreover, studies of other epigenetic mechanisms in various invertebrate species, apart from DNA methylation would provide better understanding of interconnected cross-talk between epigenetic marks. Taken together incorporating epigenetic studies in ecotoxicology context presents a promising tool for development of sensitive biomarkers for environmental stress assessment.
Collapse
Affiliation(s)
- Maja Šrut
- University of Innsbruck, Institute of Zoology, Technikerstraße 25, 6020, Innsbruck, Austria.
| |
Collapse
|
44
|
Gowri V, Monteiro A. Inheritance of Acquired Traits in Insects and Other Animals and the Epigenetic Mechanisms That Break the Weismann Barrier. J Dev Biol 2021; 9:41. [PMID: 34698204 PMCID: PMC8544363 DOI: 10.3390/jdb9040041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/21/2021] [Accepted: 10/01/2021] [Indexed: 01/29/2023] Open
Abstract
The credibility of the Weismann barrier has come into question. Several studies in various animal systems, from mice to worms, have shown that novel environmental stimuli can generate an altered developmental or behavioral trait that can be transmitted to offspring of the following generation. Recently, insects have become ideal models to study the inheritance of acquired traits. This is because insects can be reared in high numbers at low cost, they have short generation times and produce abundant offspring. Numerous studies have shown that an insect can modify its phenotype in response to a novel stimulus to aid its survival, and also that this modified phenotypic trait can be inherited by its offspring. Epigenetic mechanisms are likely at play but, most studies do not address the mechanisms that underlie the inheritance of acquired traits in insects. Here we first review general epigenetic mechanisms such as DNA methylation, histone acetylation and small noncoding RNAs that have been implicated in the transmission of acquired traits in animals, then we focus on the few insect studies in which these mechanisms have been investigated.
Collapse
Affiliation(s)
- V. Gowri
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore;
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore;
- Science Division, Yale-NUS College, Singapore 138609, Singapore
| |
Collapse
|
45
|
The information continuum model of evolution. Biosystems 2021; 209:104510. [PMID: 34416317 DOI: 10.1016/j.biosystems.2021.104510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022]
Abstract
Most biologists agree that evolution is contingent on inherited information shaped by natural selection. This apparent consensus could be taken to indicate agreement on the forces shaping evolution, but vivid discussions reveal divergences on how evolution is perceived. The predominant Modern Synthesis (MS) paradigm holds the position that evolution occurs through random changes acting on genomic inheritance. However, studies from recent decades have revealed that evolutionary inheritance also includes DNA-methylation, RNA, symbionts, and culture, among other factors. This has fueled a demand of a broader evolutionary perspective, for example from the proponents of the Extended Evolutionary Synthesis (EES). Despite fundamental disagreements the different views agree that natural selection happens through dissimilar perpetuation of inheritable information. Yet, neither the MS, nor the ESS dwell extensively on the nature of hereditary information. We do - and conclude that information in and of itself is immaterial. We then argue that the quality upon which natural selection acts henceforth is also immaterial. Based on these notions, we arrive at the information-centric Information Continuum Model (ICM) of evolution. The ICM asserts that hereditary information is embedded in diverse physical forms (DNA, RNA, symbionts etc.) representing a continuum of evolutionary qualities, and that information may migrate between these physical forms. The ICM leaves theoretical exploration of evolution unrestricted by the limitations imposed by the individual physical forms wherein the hereditary information is embedded (e.g. genomes). ICM bestows us with a simple heuristic model that adds explanatory dimensions to be considered in the evolution of biological systems.
Collapse
|
46
|
Poulsen R, De Fine Licht HH, Hansen M, Cedergreen N. Grandmother's pesticide exposure revealed bi-generational effects in Daphnia magna. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 236:105861. [PMID: 34049113 DOI: 10.1016/j.aquatox.2021.105861] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Man-made chemicals are a significant contributor to the ongoing deterioration of numerous ecosystems. Currently, risk assessment of these chemicals is based on observations in a single generation of animals, despite potential adverse intergenerational effects. Here, we investigate the effect of the fungicide prochloraz across three generations of Daphnia magna. We studied both the effects of continuous exposure over all generations and the effects of first-generation (F0) exposure on two subsequent generations. Effects at different levels of biological organization from genome-wide gene expression, whole organism metabolite levels, CYP enzyme activity and key phenotypic effects, such as reproduction, were monitored. Acclimation to prochloraz was found after continuous exposure. Following F0-exposure, embryonically exposed F1-offspring showed no significant effects. However, in the potentially germline exposed F2 animals, several parameters differed significantly from controls. A direct association between these F2 effects and the toxic mode of action of prochloraz was found, showing that chemicals can be harmful not only to the directly exposed generation, but also to prenatally exposed generations and in that way effects may even appear to skip a generation. This implies that current risk assessment practices are neglecting an important aspect of toxicity, such as delayed effects across generations due to a time gap between chemical exposure and emergence of effects.
Collapse
Affiliation(s)
- Rikke Poulsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark; Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| | - Henrik H De Fine Licht
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Martin Hansen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Nina Cedergreen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| |
Collapse
|
47
|
Jeremias G, Jesus F, Ventura SPM, Gonçalves FJM, Asselman J, Pereira JL. New insights on the effects of ionic liquid structural changes at the gene expression level: Molecular mechanisms of toxicity in Daphnia magna. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124517. [PMID: 33199138 DOI: 10.1016/j.jhazmat.2020.124517] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/18/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
Knowledge on the molecular basis of ionic liquids' (ILs) ecotoxicity is critical for the development of these designer solvents as their structure can be engineered to simultaneously meet functionality performance and environmental safety. The molecular effects of ILs were investigated by using RNA-sequencing following Daphnia magna exposure to imidazolium- and cholinium-based ILs: 1-ethyl-3-methylimidazolium chloride ([C2mim]Cl), 1-dodecyl-3-methylimidazolium chloride ([C12mim]Cl) and cholinium chloride ([Chol]Cl)-; the selection allowing to compare different families and cation alkyl chains. ILs shared mechanisms of toxicity focusing e.g. cellular membrane and cytoskeleton, oxidative stress, energy production, protein biosynthesis, DNA damage, disease initiation. [C2mim]Cl and [C12mim]Cl were the least and the most toxic ILs at the transcriptional level, denoting the role of the alkyl chain as a driver of ILs toxicity. Also, it was reinforced that [Chol]Cl is not devoid of environmental hazardous potential regardless of its argued biological compatibility. Unique gene expression signatures could also be identified for each IL, enlightening specific mechanisms of toxicity.
Collapse
Affiliation(s)
- Guilherme Jeremias
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal
| | - Fátima Jesus
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal
| | - Sónia P M Ventura
- Department of Chemistry & CICECO - Aveiro Institute of Materials, University of Aveiro, Portugal
| | - Fernando J M Gonçalves
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, 8400 Ostend, Belgium
| | - Joana L Pereira
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Portugal.
| |
Collapse
|
48
|
Song Y, Kamstra JH, Cao Y, Asselman J, Anglès d'Auriac M, Friberg N. High-throughput analyses and Bayesian network modeling highlight novel epigenetic Adverse Outcome Pathway networks of DNA methyltransferase inhibitor mediated transgenerational effects. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124490. [PMID: 33199140 DOI: 10.1016/j.jhazmat.2020.124490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
A number of epigenetic modulating chemicals are known to affect multiple generations of a population from a single ancestral exposure, thus posing transgenerational hazards. The present study aimed to establish a high-throughput (HT) analytical workflow for cost-efficient concentration-response analysis of epigenetic and phenotypic effects, and to support the development of novel Adverse Outcome Pathway (AOP) networks for DNA methyltransferase (DNMT) inhibitor-mediated transgenerational effects on aquatic organisms. The model DNMT inhibitor 5-azacytidine (5AC) and the model freshwater crustacean Daphnia magna were used to generate new experimental data and served as prototypes to construct AOPs for aquatic organisms. Targeted HT bioassays (DNMT ELISA, MS-HRM and qPCR) in combination with multigenerational ecotoxicity tests revealed concentration-dependent transgenerational (F0-F3) effects of 5AC on total DNMT activity, DNA promoter methylation, gene body methylation, gene transcription and reproduction. Top sensitive toxicity pathways related to 5AC exposure, such as apoptosis and DNA damage responses were identified in both F0 and F3 using Gaussian Bayesian network modeling. Two novel epigenetic AOP networks on DNMT inhibitor mediated one-generational and transgenerational effects were developed for aquatic organisms and assessed for the weight of evidence. The new HT analytical workflow and AOPs can facilitate future ecological hazard assessment of epigenetic modulating chemicals.
Collapse
Affiliation(s)
- You Song
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway.
| | - Jorke H Kamstra
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, PO Box 80177, NL-3508 TD Utrecht, The Netherlands
| | - Yang Cao
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge building, Ostend Science Park 1, 8400 Ostend, Belgium
| | - Marc Anglès d'Auriac
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway
| | - Nikolai Friberg
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway; University of Copenhagen, Freshwater Biological Section, Universitetsparken 4, 3rd floor, 2100 Copenhagen, Denmark; University of Leeds, water@leeds, School of Geography, Leeds LS2 9JT UK
| |
Collapse
|
49
|
Li J, Li H, Lin D, Li M, Wang Q, Xie S, Zhang Y, Liu F. Effects of butyl benzyl phthalate exposure on Daphnia magna growth, reproduction, embryonic development and transcriptomic responses. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124030. [PMID: 33045484 DOI: 10.1016/j.jhazmat.2020.124030] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Butyl benzyl phthalate (BBP) is widely used as a plasticizer to increase the plasticity and flexibility of plastic products. Although the potential health hazards of BBP have recently received extensive attention, its toxicological properties and mechanisms remain largely undefined. In the present work, growth, reproductive and developmental toxicity of BBP to Daphnia magna were evaluated, and the transcriptomic alteration of early embryos upon BBP exposure was analyzed. In a 21-day chronic toxicity test, reduced survival ratio, decreased body length, increased abnormal ratio, advanced time to first brood, and reduced offspring of D. magna were observed. BBP exposure inhibited expression of the vitellogenin gene. In addition, embryotoxicity of BBP was observed, which showed not only in the induction of abnormal neonates, but also in the shortened embryonic development cycle. RNA-Seq of early embryo treated with 0.1 mg/L BBP indicated that the pathways involved in signal transduction, cell communication, and embryonic development were significantly down-regulated, while those of biosynthesis, metabolism, cell homeostasis, redox homeostasis were remarkably up-regulated upon BBP exposure, which was consistent with the above phenotypic results. Taken together, our results highlight the toxic effects of BBP on the embryonic development and larval growth of D. magna.
Collapse
Affiliation(s)
- Jing Li
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; Key Laboratory of zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Haotian Li
- Key Laboratory of zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Dongdong Lin
- Key Laboratory of zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Muyi Li
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; Key Laboratory of zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Quansheng Wang
- Key Laboratory of zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Song Xie
- Key Laboratory of zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yuming Zhang
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; Key Laboratory of zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| | - Fengsong Liu
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding 071002, China; Key Laboratory of zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
50
|
Le TDH, Schreiner VC, Kattwinkel M, Schäfer RB. Invertebrate turnover along gradients of anthropogenic salinisation in rivers of two German regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141986. [PMID: 32911168 DOI: 10.1016/j.scitotenv.2020.141986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Rising salinity in freshwater ecosystems can affect community composition. Previous studies mainly focused on changes in freshwater communities along gradients of absolute levels of electrical conductivity (EC). However, both geogenic and anthropogenic drivers contribute to the EC level and taxa may regionally be adapted to geogenic EC levels. Therefore, we examined the turnover in freshwater invertebrates along gradients of anthropogenic EC change in two regions of Germany. The anthropogenic change of EC was estimated as the difference between the measured EC and the modeled background EC driven by geochemical and climate variables. Turnover in freshwater invertebrates (β-diversity) was estimated using the Jaccard index (JI). We found that invertebrate turnover between EC gradient categories is generally greater than 47%, with a maximum of approximately 70% in sites with a more than 0.4 mS cm-1 change compared to the baseline (i.e. no difference between predicted and measured EC). The invertebrates Amphinemura sp., Anomalopterygella chauviniana and Leuctra sp. were reliable indicators of low EC change, whereas Potamopyrgus antipodarum indicated sites with the highest EC change. Variability within categories of EC change was slightly lower than within categories of absolute EC. Elevated nutrient concentrations that are often linked to land use may have contributed to the observed change of the invertebrate richness and can exacerbate effects of EC on communities in water. Overall, our study suggests that the change in EC, quantified as the difference between measured EC and modeled background EC, can be used to examine the response of invertebrate communities to increasing anthropogenic salinity concentrations in rivers. However, due to the strong correlation between EC change and observed EC in our study regions, the response to these two variables was very similar. Further studies in areas where EC change and observed EC are less correlated are required. In addition, such studies should consider the change in specific ions.
Collapse
Affiliation(s)
- Trong Dieu Hien Le
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany; Faculty of Resources & Environment, University of Thu Dau Mot, 06 Tran Van On street, Thu Dau Mot City, Binh Duong, Viet Nam.
| | - Verena C Schreiner
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| | - Mira Kattwinkel
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| | - Ralf B Schäfer
- iES Landau, Institute for Environmental Sciences, University Koblenz-Landau, Fortstraße 7, 76829 Landau in der Pfalz, Germany
| |
Collapse
|