1
|
Ahmad M, Yousaf M. Co-conversion of CO 2 and refractory organics into bioplastics through a stable biocarrier. WATER RESEARCH 2025; 280:123519. [PMID: 40147307 DOI: 10.1016/j.watres.2025.123519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/23/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
An attractive solution to traditional plastics is scaling up the microbial system to produce bioplastics like polyhydroxyalkanoates (PHAs). Herein, we developed a dynamic microbial ecosystem on porous biocarrier for conversion of refractory organics to bioplastics. biocarriers of 25 mm sized were packed in a 5 L bioreactor and operated for 200 days, to achieve stable performance for commercial applications. Reaching to bioreactor stability, microbial ecosystem utilized quinoline (5.2 kg/m3/day) for carbon & nitrogen metabolism, phenol (4.5 kg/m3/day) to trigger synthesis of PHAs, pyridines (4.2 kg/m3/day) to manufacture hydroxy fatty acid polyesters, NH4+(7.2 kg/m3/day) to regulate symbiosis, NO3/NO2 (1.2 kg/m3/day) to serve as mediators and electron acceptors. On 200th day, bioplastic production reached to 76.8 (kg/m3/day) with stable pollutants degradation of 70.3 (kg/m3/day). Purity of the bioplastics remained quite high (average 90 %) after 100 days of bioreactor operation. Interestingly, PHAs synthesis was triggered (31-581 g/day) with increased CO2 fixation from 45 to 594 (mol/h/g protein), due to the growth of CO2 assimilators. The developed biocarriers could be directly poured into the secondary tank of the existing wastewater treatment plants (WWTPs), which will not only produce bioplastics but also boost treatment efficiency and resource recovery potential of WWTPs.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Maryam Yousaf
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
2
|
Yu C, He Y, Zhang Y, Deng Y, Qi Y, Liu Q, Liang Y. Superfast water transport mixed matrix membranes with asymmetrical micro-nanostructures reinforced by metal-organic frameworks. WATER RESEARCH 2025; 282:123767. [PMID: 40349671 DOI: 10.1016/j.watres.2025.123767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 04/25/2025] [Accepted: 05/02/2025] [Indexed: 05/14/2025]
Abstract
Metal-organic framework (MOF) based nanofiltration (NF) membrane have emerged as the promising option in the field of efficient water purification. However, challenges associated with limited water transport ability of MOF-based NF membranes with conventional structures over separation process hinder the widespread application. This work, we proposed a nano-confined interfacial polymerization to prepare ultrahigh-flux supported MOF mixed matrix membranes (ZIF/PA membranes) with asymmetrical micro-nanostructures composed of two-dimensional zeolitic imidazolate framework (ZIF-L) and polyamide (PA) under suction force. In the membrane structure, the microscale asymmetric orientation distribution of ZIF-L nanosheets result in the most utilization of MOFs to forming the more regular and shorter diffusion paths; the nanoscale asymmetric hydrophilic interfacial channels between the PA and ZIF-L interfaces enhance the nanofluid transport of water molecules. Thus, the ZIF/PA membranes not only possess high rejection rate for versatile dye molecules (e.g., 99.99 % for Congo red, 99.84 % for Methyl green, 99.99 % for Methylene blue, 99.95 % for Methyl orange, 98.99 % for Reactive black 5, and 99.97 % for Reactive blue 194), but also the corresponding water permeance exceed the most membrane materials reported so far. And the prepared membrane also shows good performance in the real printing and dyeing wastewater treatment, further manifesting advantages for practical applications. Both experimental observations and molecular dynamics (MD) simulations substantiate that the water is transported through ultra-fast nanofluidic flow as a result of asymmetric and continuous interfacial nanochannels.
Collapse
Affiliation(s)
- Caijiao Yu
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong 226019, China.
| | - Yanjing He
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Yajie Zhang
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Yanlin Deng
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Yiwen Qi
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Qixia Liu
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, School of Textile and Clothing, Nantong University, Nantong 226019, China.
| | - Yueyao Liang
- Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, College of Textiles & Clothing, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; Yuyue Home Textile Co., Ltd, Binzhou 256600, China.
| |
Collapse
|
3
|
Li Y, Xie L, Liu J, Tang S, Lei H, Zhong Y, Zhang YF. Efficient dye removal and antibacterial activity of imidazole-crosslinked chitosan hydrogel for wastewater treatment. Int J Biol Macromol 2025; 309:142904. [PMID: 40203907 DOI: 10.1016/j.ijbiomac.2025.142904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/28/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
In this study, an imidazole cross-linked chitosan hydrogel (I/CS-4) was synthesized through the Debus-Radziszewski reaction, resulting in a multifunctional adsorbent with both dye adsorption and antimicrobial capabilities. I/CS-4 effectively removed orange G (OG) and metanil yellow (MY) dyes under various environmental conditions, including pH, initial concentration, temperature, and contact time. The hydrogel demonstrated high stability and efficiency over a broad pH range (2-10), attributed to its abundant amino and imidazole groups, which facilitate electrostatic, hydrogen bonding, and π-π stacking interactions. The maximum adsorption capacities for OG and MY were 565.00 mg/g and 490.20 mg/g, respectively, following the Langmuir isotherm and pseudo-second-order kinetic models. Additionally, I/CS-4 showed excellent recyclability, maintaining over 80 % removal efficiency after five cycles. It also exhibited potent antibacterial activity against E. coli and S. aureus while being biocompatible. These results highlight I/CS-4's potential as an effective material for treating dye-containing wastewater, combining efficient contaminant removal with microbial inhibition.
Collapse
Affiliation(s)
- Yan Li
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Pharmaceutical Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China.
| | - Lingying Xie
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Pharmaceutical Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Jingyi Liu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Pharmaceutical Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Sisi Tang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Pharmaceutical Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Hang Lei
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Pharmaceutical Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Yuxia Zhong
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Pharmaceutical Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China
| | - Yue-Fei Zhang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Pharmaceutical Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China.
| |
Collapse
|
4
|
Zhang X, Wang Y, Lee S, Liang K, Zhao K, McCarty GW, Alfieri JG, Moglen GE, Hively WD, Myers DT, Oviedo-Vargas D, Nguyen TV, Hinson AL, Du L, Romeiko XX. Synergistic water quality and soil organic carbon sequestration benefits of winter cover crops. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123104. [PMID: 39486296 DOI: 10.1016/j.jenvman.2024.123104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/06/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Winter cover crops (WCCs) are promising best management practices for reducing nitrogen and sediment pollution and increasing soil organic carbon (SOC) sequestration in agricultural fields. Although previous watershed studies assessed water quality benefits of growing WCCs in the Chesapeake Bay watershed, the SOC sequestration impacts remain largely unknown. Here, we designed six WCC scenarios in the Tuckahoe Watershed (TW) to understand potential synergies or tradeoffs between multiple impacts of WCCs. Besides corroborating the nitrate reduction benefits of WCCs that have been reported in previous studies, our results also demonstrated comparable reduction in sediment. We also found that the six WCC scenarios can sequester 0.45-0.92 MgC ha-1 yr-1, with early-planted WCCs having more than 70% SOC sequestration benefits compared with their late-planted counterparts. With a linear extrapolation to all the cropland in Maryland, WCCs hold potential to contribute 2.1-4.4% toward Maryland's 2030 Greenhouse Gases reduction goal. Additionally, we showed that WCCs can noticeably increase evapotranspiration and decrease water yield and streamflow, potentially impacting aquatic ecosystem health and water supply. Overall, this study highlights the synergistic water quality and SOC sequestration benefits of WCCs in the Chesapeake Bay watershed. Meanwhile, sustainable adoption of WCCs into existing crop rotations will also require careful assessment of their impact on water availability.
Collapse
Affiliation(s)
- Xuesong Zhang
- USDA-ARS Hydrology and Remote Sensing Laboratory, Beltsville, MD, 20705-2350, United States.
| | - Yiming Wang
- USDA-ARS Hydrology and Remote Sensing Laboratory, Beltsville, MD, 20705-2350, United States
| | - Sangchul Lee
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Kang Liang
- Earth System Science Interdisciplinary Center, College Park, MD, 20740, United States
| | - Kaiguang Zhao
- School of Environment and Natural Resources, Ohio Agricultural and Research Development Center, The Ohio State University, Wooster, OH, 44691, United States
| | - Gregory W McCarty
- USDA-ARS Hydrology and Remote Sensing Laboratory, Beltsville, MD, 20705-2350, United States
| | - Joseph G Alfieri
- USDA-ARS Hydrology and Remote Sensing Laboratory, Beltsville, MD, 20705-2350, United States
| | - Glenn E Moglen
- Department of Civil and Environmental Engineering, The University of North Carolina at Charlotte, Charlotte, NC, 28223, United States
| | - W Dean Hively
- Lower Mississippi-Gulf Water Science Center, 12201 Sunrise Valley Dr., Reston, VA, 20192, United States
| | - Daniel T Myers
- Stroud Water Research Center, 970 Spencer Road, Avondale, PA, 19311, United States
| | - Diana Oviedo-Vargas
- Stroud Water Research Center, 970 Spencer Road, Avondale, PA, 19311, United States
| | - Tam V Nguyen
- Department Hydrogeologie (HDG), Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Audra L Hinson
- USDA-ARS Hydrology and Remote Sensing Laboratory, Beltsville, MD, 20705-2350, United States
| | - Ling Du
- USDA-ARS Hydrology and Remote Sensing Laboratory, Beltsville, MD, 20705-2350, United States; Department of Environmental Science & Technology, University of Maryland, College Park, MD 20742, USA
| | - Xiaobo Xue Romeiko
- Department of Environmental Health Sciences, University at Albany, State University of New York, United States
| |
Collapse
|
5
|
Ren K, Lu X, Zheng S, Zhang H, Gu J. Fabrication of hollow fiber composite membranes via opposite transmission reaction method for dye/salt separation. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134856. [PMID: 38870854 DOI: 10.1016/j.jhazmat.2024.134856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/05/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
The separation layer prepared by the conventional coating-crosslinking method is typically thick and prone to forming defective macropores, significantly affecting the water permeability and dye/salt separation performance of membranes. This work presented a novel method to prepare hollow fiber composite membranes for dye/salt separation based on the opposite transmission reaction of crosslinker. In this method, the macromolecule in situ reacted with a small-molecule crosslinker at the openings of membrane pore channels, forming a separation layer with discontinuous sheet-like and granular structure. Compared to the conventional forward coating-crosslinking method, the separation layer prepared by the opposite transmission reaction method exhibited an ultra-thin thickness of 29.1 nm. Consequently, the composite membrane exhibited a high water permeability of 72.7 L·m-2·h-1·bar-1, which was 2.3 times higher than that of conventional methods. Moreover, the prepared composite membrane presented a more uniformed pore structure, completely retaining the VBB (100%) with a low Na2SO4 rejection of 4.3%, demonstrating excellent dye/salt separation performance. Additionally, the prepared composite membrane exhibited superior anti-fouling properties compared to that prepared by the conventional method. Therefore, the opposite transmission reaction method proposed in this study held promising applications in the preparation of hollow fiber composite membranes for efficient dye/salt separation.
Collapse
Affiliation(s)
- Kai Ren
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Xiaolong Lu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China; State Key Laboratory of Membranes Materials and Membrane Applications, Tianjin Motimo Membrane Tech. Co., Ltd, No.60.11th Street, TEDA, Tianjin 300457, PR China.
| | - Shuyun Zheng
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| | - Hao Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Jie Gu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, PR China
| |
Collapse
|
6
|
Li S, Chen L, Wang J, Liu T, Li D, Yang Z, Xiao X, Chu C, Chen B. Integrative Active Sites of Cathode for Electron-Oxygen-Proton Coupling To Favor H 2O 2 Production in a Photoelectrochemical System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10072-10083. [PMID: 38810213 DOI: 10.1021/acs.est.4c01601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The oxygen reduction process generating H2O2 in the photoelectrochemical (PEC) system is milder and environmentally friendly compared with the traditional anthraquinone process but still lacks the efficient electron-oxygen-proton coupling interfaces to improve H2O2 production efficiency. Here, we propose an integrated active site strategy, that is, designing a hydrophobic C-B-N interface to refine the dearth of electron, oxygen, and proton balance. Computational calculation results show a lower energy barrier for H2O2 production due to synergistic and coupling effects of boron sites for O2 adsorption, nitrogen sites for H+ binding, and the carbon structure for electron transfer, demonstrating theoretically the feasibility of the strategy. Furthermore, we construct a hydrophobic boron- and nitrogen-doped carbon black gas diffusion cathode (BN-CB-PTFE) with graphite carbon dots decorated on a BiVO4 photoanode (BVO/g-CDs) for H2O2 production. Remarkably, this approach achieves a record H2O2 production rate (9.24 μmol min-1 cm-2) at the PEC cathode. The BN-CB-PTFE cathode exhibits an outstanding Faraday efficiency for H2O2 production of ∼100%. The newly formed h-BN integrative active site can not only adsorb more O2 but also significantly improve the electron and proton transfer. Unexpectedly, coupling BVO/g-CDs with the BN-CB-PTFE gas diffusion cathode also achieves a record H2O2 production rate (6.60 μmol min-1 cm-2) at the PEC photoanode. This study opens new insight into integrative active sites for electron-O2-proton coupling in a PEC H2O2 production system that may be meaningful for environment and energy applications.
Collapse
Affiliation(s)
- Shan Li
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Lei Chen
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jian Wang
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tian Liu
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dawei Li
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhi Yang
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xin Xiao
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Chiheng Chu
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Baoliang Chen
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Hangzhou, Zhejiang 311400, China
| |
Collapse
|
7
|
Kalantari S, Shokuhfar A. On the diverse utility of Cu doped ZnS/Fe 3O 4 nanocomposites. Sci Rep 2024; 14:11669. [PMID: 38778173 PMCID: PMC11636851 DOI: 10.1038/s41598-024-62611-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
The global water crisis is a growing concern, with water pollution from organic dyes being a significant issue. Photocatalysis has emerged as a sustainable and renewable method for removing organic pollutants from wastewater. The study synthesized innovative (2.5, 5 and 10 wt%) Cu doped zinc sulfide/iron oxide nanocomposites using a sonochemical method, which have versatile applications in adsorption and photocatalytic degradation of organic pollutants in wastewater. The nanocomposites underwent comprehensive characterization using powder X-ray diffraction, fourier-transform infrared spectroscopy, photoluminescence spectroscopy, Ultraviolet-Visible spectrophotometer, field emission scanning electron microscopy combined with energy dispersive X-ray spectroscopy and Mott-Schottky analysis. The synthesized samples demonstrate strong adsorption ability to remove RhB and MB dyes. Afterward, we evaluated their capability to degrade Rhodamine B (RhB) dye under UV light exposure. The greatest photocatalytic efficiency was noticed when employing a UV-C lamp in combination with the 10 wt% Cu doped ZnS/Fe3O4 nanocomposite as photocatalyst (98.8% degradation after 60 min irradiation). The Langmuir-Hinshelwood model can be used to describe the pseudo first order kinetics of RhB dye photodegradation. The calculated ban gap values are 4.77, 4.67, and 4.55 eV, for (2.5, 5 and 10 wt%) Cu doped ZnS/Fe3O4, respectively. Furthermore, 10 wt% Cu doped ZnS/Fe3O4 showed good recyclability, with a degradation rate of 89% even after five cycles. Consequently, prepared samples have outstanding photocatalytic activity and can be used as useful adsorbents in water purification.
Collapse
Affiliation(s)
- Shirin Kalantari
- Advanced Materials and Nanotechnology Research Laboratory, Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| | - Ali Shokuhfar
- Advanced Materials and Nanotechnology Research Laboratory, Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
8
|
Guo D, Fu Q, Wang X, Li L, Xu X, An X. Natural tea polyphenol functionalized graphene anode for simultaneous power production and degradation of methyl orange dye in microbial fuel cells. RSC Adv 2024; 14:14847-14856. [PMID: 38716101 PMCID: PMC11075777 DOI: 10.1039/d4ra00613e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/29/2024] [Indexed: 01/06/2025] Open
Abstract
The microbial fuel cell (MFCs) has dual functions, capable of achieving dye decolorization and synchronous power generation. Despite these advantages, the MFCs have faced challenges related to low electron transfer efficiencies and limited dye treatment capacity in wastewater applications. This work introduces an innovative approach by employing reduced graphene oxide-modified carbon cloth (TP-RGO@CC) anodes, utilizing tea polyphenols as the reducing agent. This modification significantly enhances the hydrophilicity and biocompatibility of the anodes. The MFC equipped with the TP-RGO@CC anode demonstrated a remarkable increase in the maximum power density, reaching 773.9 mW m-2, representing a 22% improvement over the plain carbon cloth electrode. The decolorization rate of methyl orange (50 mg L-1, pH 7) reached 99% within 48 h. Biodiversity analysis revealed that the TP-RGO@CC anode selectively enriched electrogens producing and organic matter-degrading bacteria, promoting a dual mechanism of dye decolorization, degradation, and simultaneous electro-production at the anode. This work highlights advanced anode materials that excel in effective pollutant removal, energy conversion, and biomass reuse.
Collapse
Affiliation(s)
- Deliang Guo
- School of Chemistry and Chemical Engineering, Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University Shihezi 832003 China
| | - Qikai Fu
- School of Chemistry and Chemical Engineering, Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University Shihezi 832003 China
| | - Xinru Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University Shihezi 832003 China
| | - Ling Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University Shihezi 832003 China
| | - Xiaolin Xu
- School of Chemistry and Chemical Engineering, Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University Shihezi 832003 China
| | - Xiongfang An
- School of Chemistry and Chemical Engineering, Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University Shihezi 832003 China
| |
Collapse
|
9
|
El-Ghoul Y, Alsamani S. Highly Efficient Biosorption of Cationic Dyes via Biopolymeric Adsorbent-Material-Based Pectin Extract Polysaccharide and Carrageenan Grafted to Cellulosic Nonwoven Textile. Polymers (Basel) 2024; 16:585. [PMID: 38475270 DOI: 10.3390/polym16050585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Water scarcity and contamination have emerged as critical global challenges, requiring the development of effective and sustainable solutions for the treatment of contaminated water. Recently, functionalized polymer biomaterials have garnered significant interest because of their potential for a wide range of water treatment applications. Accordingly, this paper highlights the design of a new adsorbent material based on a cellulosic nonwoven textile grafted with two extracted biopolymers. The layer-by-layer grafting technique was used for the polyelectrolyte multi-layer (PEM) biosorbent production. Firstly, we extracted a Suaeda fruticosa polysaccharide (SFP) and confirmed its pectin-like polysaccharide structure via SEC, NMR spectroscopy, and chemical composition analyses. Afterward, the grafting was designed via an alternating multi-deposition of layers of SFP polymer and carrageenan crosslinked with 1,2,3,4-butanetetracarboxylic acid (BTCA). FT-IR and SEM were used to characterize the chemical and morphological characteristics of the designed material. Chemical grafting via polyesterification reactions of the PEM biosorbent was confirmed through FT-IR analysis. SEM revealed the total filling of material microspaces with layers of grafted biopolymers and a rougher surface morphology. The assessment of the swelling behavior revealed a significant increase in the hydrophilicity of the produced adsorbent system, a required property for efficient sorption potential. The evaluation of the adsorption capabilities using the methylene blue (MB) as cationic dye was conducted in various experimental settings, changing factors such as the pH, time, temperature, and initial concentration of dye. For the untreated and grafted materials, the greatest adsorbed amounts of MB were 130.6 mg/g and 802.6 mg/g, respectively (pH = 4, T = 22 C, duration = 120 min, and dye concentration = 600 mg/L). The high adsorption performance, compared to other reported materials, was due to the presence of a large number of hydroxyl, sulfonate, and carboxylic functional groups in the biosorbent polymeric system. The adsorption process fitted well with the pseudo-first-order kinetic model and Langmuir/Temkin adsorption isotherms. This newly developed multi-layered biosorbent shows promise as an excellent adsorption resultant and cheap-cost/easy preparation alternative for treating industrial wastewater.
Collapse
Affiliation(s)
- Yassine El-Ghoul
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
- Textile Engineering Laboratory, University of Monastir, Monastir 5019, Tunisia
| | - Salman Alsamani
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| |
Collapse
|
10
|
Li X, Tian T, Cui T, Liu B, Jin R, Zhou J. Alkaline-thermal hydrolysate of waste activated sludge as a co-metabolic substrate enhances biodegradation of refractory dye reactive black 5. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 170:40-49. [PMID: 37544233 DOI: 10.1016/j.wasman.2023.07.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Aromatic azo dyes possess inherent resistance and are known to be carcinogenic, posing a significant threat to human and ecosystems. Enhancing the biodegradation of azo dyes usually requires the presence of co-metabolic substrates to optimize the process. In addressing the issue of excessive waste activated sludge (WAS) generation, this study explored the potential of utilizing alkaline-thermal hydrolysate of WAS as a co-metabolic substrate to boost the degradation of reactive black 5 (RB5) dyes. The acclimated microbial consortium, when supplemented with the WAS hydrolysate obtained at a hydrolysis temperature of 30 °C, achieved an impressive RB5 decolorization efficiency of 90.3% (pH = 7, 35 °C) with a corresponding COD removal efficiency of 45.0%. The addition of WAS hydrolysate as a co-substrate conferred the consortium with a remarkable tolerance to high dye concentration (1500 mg/L RB5) and salinity levels (4-5%), surpassing the performance of conventional co-metabolic sugars in RB5 degradation. 3D-EEM analysis revealed that protein-like substances rich in tyrosine and tryptophan, present in the WAS hydrolysate, played a crucial role in promoting RB5 biodegradation. Furthermore, the microbial consortium community exhibited an enrichment of dye-degrading species, including Acidovorax, Bordetella, Kerstersia, and Brevundimonas, which dominated the community. Notably, functional genes associated with dye degradation and intermediates were also enriched during the RB5 decolorization and biodegradation process. These findings present a practical strategy for the simultaneous treatment of dye-containing wastewater and recycling of WAS.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Tian Tian
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Tiantian Cui
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Baocun Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ruofei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
11
|
Garg AK, Singh B, Naskar S, Prajapati RK, Dalal C, Sonkar SK. Melamine-Formaldehyde Polymer-Based Nanocomposite for Sunlight-Driven Photodegradation of Multiple Dyes and Their Mixture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37494146 DOI: 10.1021/acs.langmuir.3c01349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Cadmium sulfide (CdS)-decorated, cross-linked melamine-formaldehyde polymer-based nanocomposite (MFP-CdS) has been synthesized. MFP-CdS is utilized here as a photoactive material for the photodegradation of six model organic dyes and their mixture in an aqueous medium in the presence of sunlight. The half-life values from the kinetic study of multiple dyes strongly support the importance of sunlight on the fast degradation of all six dyes compared to bulb light and control (dark) conditions. A comparative 1H NMR analysis of the dyes and their degraded products has been performed to support the breakdown of the aromatic framework of organic dyes using MFP-CdS in sunlight. The mechanisms involved in the photodegradation of dyes have been investigated based on radical trapping studies that support the significant involvement of superoxide radicals along with holes. Moreover, the dye removal efficiency using MFP-CdS from real industrial wastewater samples is evaluated via the external spiking of organic dyes and their mixture in unknown industrial effluents where they showed similar photodegradation results. Based on the high recyclability of MFP-CdS, these are used for multiple cycles.
Collapse
Affiliation(s)
- Anjali Kumari Garg
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur 302017, Rajasthan, India
| | - Buta Singh
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur 302017, Rajasthan, India
| | - Sourenjit Naskar
- Quality Control Department (M.D.), Indian Oil Corporation Limited, Jaipur 303904, Rajasthan, India
| | - Rajneesh Kumar Prajapati
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Chumki Dalal
- Department of Chemistry, JECRC University, Jaipur 303905, Rajasthan, India
- Department of Applied Sciences, National Institute of Technology, Delhi 110040, New Delhi, India
| | - Sumit Kumar Sonkar
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur 302017, Rajasthan, India
| |
Collapse
|
12
|
Han JC, Ahmad M, Yousaf M, Rahman SU, Sharif HMA, Zhou Y, Yang B, Huang Y. Strategic analysis on development of simultaneous adsorption and catalytic biodegradation over advanced bio-carriers for zero-liquid discharge of industrial wastewater. CHEMOSPHERE 2023; 332:138871. [PMID: 37172628 DOI: 10.1016/j.chemosphere.2023.138871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/15/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
With rapid industrial development, millions of tons of industrial wastewater are produced that contain highly toxic, carcinogenic, mutagenic compounds. These compounds may consist of high concentration of refractory organics with plentiful carbon and nitrogen. To date, a substantial proportion of industrial wastewater is discharged directly to precious water bodies due to the high operational costs associated with selective treatment methods. For example, many existing treatment processes rely on activated sludge-based treatments that only target readily available carbon using conventional microbes, with limited capacity for nitrogen and other nutrient removal. Therefore, an additional set-up is often required in the treatment chain to address residual nitrogen, but even after treatment, refractory organics persist in the effluents due to their low biodegradability. With the advancements in nanotechnology and biotechnology, novel processes such as adsorption and biodegradation have been developed, and one promising approach is integration of adsorption and biodegradation over porous substrates (bio-carriers). Regardless of recent focus in a few applied researches, the process assessment and critical analysis of this approach is still missing, and it highlights the urgency and importance of this review. This review paper discussed the development of the simultaneous adsorption and catalytic biodegradation (SACB) over a bio-carrier for the sustainable treatment of refractory organics. It provides insights into the physico-chemical characteristics of the bio-carrier, the development mechanism of SACB, stabilization techniques, and process optimization strategies. Furthermore, the most efficient treatment chain is proposed, and its technical aspects are critically analysed based on updated research. It is anticipated that this review will contribute to the knowledge of academia and industrialist for sustainable upgradation of existing industrial wastewater treatment plants.
Collapse
Affiliation(s)
- Jing-Cheng Han
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Ahmad
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Maryam Yousaf
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Shafeeq Ur Rahman
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hafiz Muhammad Adeel Sharif
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China; School of Electronic Science and Engineering, State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yang Zhou
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Bo Yang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuefei Huang
- State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, 100084, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China.
| |
Collapse
|
13
|
Ma Y, Yu Z, Jia S, Wu N, Yin K, Wang Y, Giesy JP, Jin X. Multiple anthropogenic stressors influence the taxonomic and functional homogenization of macroinvertebrate communities on the mainstream of an urban-agricultural river in China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118017. [PMID: 37150169 DOI: 10.1016/j.jenvman.2023.118017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023]
Abstract
Biodiversity loss is caused by intensive human activities and threatens human well-being. However, less is known about how the combined effects of multiple stressors on the diversity of internal (alpha diversity) and multidimensional (beta diversity) communities. Here, we conducted a long-term experiment to quantify the contribution of environmental stressors (including water quality, land use, climate factors, and hydrological regimes) to macroinvertebrate communities alpha and beta diversity in the mainstream of the Songhua River, the third largest river in China, from 2012 to 2019. Our results demonstrated that the alpha and beta diversity indices showed a decline during the study period, with the dissimilarity in community composition between sites decreasing significantly, especially in the impacted river sections (upper and midstream). Despite overall improvement in water quality after management intervention, multiple human-caused stressors still have led to biotic homogenization of macroinvertebrate communities in terms of both taxonomic and functional diversities in the past decade. Our study revealed the increased human land use explained an important portion of the variation of diversities, further indirectly promoting biotic homogenization by changing the physical and chemical factors of water quality, ultimately altering assemblage ecological processes. Furthermore, the facets of diversity have distinct response mechanisms to stressors, providing complementary information from the perspective of taxonomy and function to better reflect the ecological changes of communities. Environmental filtering determined taxonomic beta diversity, and functional beta diversity was driven by the joint efforts of stressors and spatial processes. Finally, we proposed that traditional water quality monitoring alone cannot fully reveal the status of river ecological environment protection, and more importantly, we should explore the continuous changes in biodiversity over the long term. Meanwhile, our results also highlight timely control of nutrient input and unreasonable expansion of land use can better curb the ecological degradation of rivers and promote the healthy and sustainable development of floodplain ecosystems.
Collapse
Affiliation(s)
- Yu Ma
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Zongling Yu
- Ecological Environmental Monitoring Central Station of Heilongjiang Province, Harbin, 150056, China
| | - Shiqi Jia
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Naicheng Wu
- Department of Geography and Spatial Information Techniques, NingboUniversity, Ningbo, 315211, China
| | - Kun Yin
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Yeyao Wang
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - John P Giesy
- Department of Integrative Biology, Michigan State University, East Lansing, MI, 48895, USA; Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, 76798-7266, USA
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing, 100012, China.
| |
Collapse
|
14
|
Ahmad M, Yousaf M, Han JC, Huang Y, Zhou Y, Tang Z. Development of biocatalytic microbial ecosystem (FPUS@RODMs@In-PAOREs) for rapid and sustainable degradation of various refractory organics. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131514. [PMID: 37150099 DOI: 10.1016/j.jhazmat.2023.131514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
The removal of diverse refractory organics from complex industrial wastewater continues to be a challenge. Although biological treatments are commonly employed, only partial degradation and increasing emergence of nitrogenous compounds, i.e., nitrate (NO3) and nitrite (NO2) would pose severe toxicity to the intact microbes. Herein, an efficient biocatalytic microbial ecosystem (BCME) was designed over a porous bio-carrier made of a functional polyurethane sponge (FPUS). The BCME comprised a unique set of organisms (RODMs) with novel metabolism, efficiently degrading highly-concentrated aromatics. Strategic enzyme immobilization was utilized to introduce in-situ production and aggregation of the oxidation and reduction enzymes (In-PAOREs) onto the FPUS, thereby ensuing sustained functions of the RODMs community. The developed FPUS@RODMs@In-PAOREs system was found to enhance the refractory organics removal rate to 4 kg/m3/day, and it would be attributed to the enzymatic catalysis of refractory organics (2000 mg/L) accompanied by the removal of COD (1200 mg/L) and nitrogenous compounds (200 mg/L). Besides, the fluctuating concentration of extra polymeric substances (EPS) played a dual role through enhancing adhesion, promoting the development of a functional microbial ecosystem, and creating an EPS gradient within the FPUS bio-carrier. This differential distribution of enzymes was established to significantly boost biocatalysis activity reaching 400 U/g VSS.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Maryam Yousaf
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jing-Cheng Han
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Yuefei Huang
- State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Yang Zhou
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Zhaozhao Tang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
15
|
Mi Y, Zhang S, Zhao Y, Sun G, Cao Z. Pyrrolic N and Persistent Free Radical Synergistically Promote Catalytic Degradation of Dyes via Fe2O3/Activated Biochar Derived from Taihu Blue Algae. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
16
|
Algal-fungal interactions and biomass production in wastewater treatment: Current status and future perspectives. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
17
|
Sharif HMA, Asif MB, Wang Y, Hou YN, Yang B, Xiao X, Li C. Spontaneous intra-electron transfer within rGO@Fe 2O 3-MnO catalyst promotes long-term NO x reduction at ambient conditions. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129951. [PMID: 36115094 DOI: 10.1016/j.jhazmat.2022.129951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Iron (Fe)-based catalysts are widely used for taming nitrogen oxides (NOx) containing flue gas, but the regeneration and long-term reusability remains a concern. The reusability can be acquired by external additives, and resultantly can not only increase the cost but can also add to process complexity as well as secondary pollutants. Herein, a self-sustainable material is designed to regenerate the catalyst for long-term reusability without adding to process complexity. The catalyst is based on reduced graphene-oxide impregnated by Fe2O3-MnO (rGO@Fe2O3-MnO; G-F-M) for spontaneous intra electron (e-)-transfer from Mn to Fe. The developed catalyst; G-M-F exhibited 93.7% NOx reduction, which suggests its high catalytic activity. The morphological and structure characterizations confirmed the Fe/Mn loading, contributing to e--transfer between Mn and Fe due to its conductivity. The synthesized G-F-M showed higher NOx reduction about 2.5 folds, than rGO@Fe2O3 (G-FeO) and rGO@MnOx (G-MnOx). The performance of G-M-F without and with an electrochemical system was also compared, and the difference was only 5%, which is an evidence of the spontaneous e- transfer between the Mn and Fe-NOx complex. The designed catalyst can be used for a long time without external assistance, and its efficiency was not affected significantly (<3.7%) in the presence of high oxygen contents (8%). The as-prepared G-M-F catalyst has great potential for executing a dual role NOx removal and self-regeneration of catalyst (SRC), promoting a sustainable remediation approach for large-scale applications.
Collapse
Affiliation(s)
- Hafiz Muhammad Adeel Sharif
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China; School of Electronic Science and Engineering, State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, PR China
| | - Muhammad Bilal Asif
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Yuwei Wang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Ya-Nan Hou
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, PR China
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Xu Xiao
- School of Electronic Science and Engineering, State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, PR China
| | - Changping Li
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China.
| |
Collapse
|
18
|
Yang T, Liu X, Zeng Z, Wang X, Zhang P, Feng B, Tian K, Qing T. Efficient and recyclable degradation of organic dye pollutants by CeO 2@ZIF-8 nanozyme-based non-photocatalytic system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120643. [PMID: 36372366 DOI: 10.1016/j.envpol.2022.120643] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Advanced oxidation processes-based catalysis system as the most typical pollutant degradation technology always suffer from poor durability and photo-dependent. Inspired by the fact that some nanomaterials exhibit catalytic properties closer to natural enzymes, a high peroxidase-like activity and stability CeO2@ZIF-8 nanozyme was synthesized in this study for non-photodegradation of dyes pollution. Multiple characterization techniques were applied to prove the successful synthesis of the nanozyme. The influence of different parameters on the catalytic degradation of organic dye by nanozyme was investigated. This nanozyme achieved a maximum degradation efficiency of 99.81% for methyl orange and maintained its catalytic performance in repeated experiments. Possible degradation intermediates and pathways for methyl orange were then proposed. In addition, the CeO2@ZIF-8 loaded starch/agarose films were prepared for the portable and recyclable remediation of real dye wastewater, which maintained more than 80% degradation efficiency after 5 successive cycles. These results suggested that nanozyme based non-photocatalytic system is a potential catalyst for dye degradation and it opens a new avenue to develop high-performance and recyclable catalysts for pollutant remediation.
Collapse
Affiliation(s)
- Tianhui Yang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Xiaofeng Liu
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, China
| | - Zihang Zeng
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Xujun Wang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Peng Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Bo Feng
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Ke Tian
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Taiping Qing
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, Hunan, China.
| |
Collapse
|
19
|
Ahmad M, Yousaf M, Cai W, Zhao ZP. Enhanced H2S Removal from Diverse Fuels by a Coupled Absorption and Biological Process Uses CO2 as Carbon Resource for Microbial Ecosystem. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Yousaf M, Akram M, Bhatti IA, Ahmad M, Usman M, Khan MU, Sarwar A, Sultan M, Sohoo I. On-Site Application of Solar-Activated Membrane (Cr-Mn-Doped TiO 2@Graphene Oxide) for the Rapid Degradation of Toxic Textile Effluents. MEMBRANES 2022; 12:membranes12121178. [PMID: 36557085 PMCID: PMC9784706 DOI: 10.3390/membranes12121178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/07/2022] [Accepted: 11/16/2022] [Indexed: 05/27/2023]
Abstract
Solar-activated water treatment has become an emerging research field due to its eco-friendly nature and the economic feasibility of green photocatalysis. Herein, we synthesized promising, cost-effective, and ultralong-semiconductor TiO2 nanowires (NW), with the aim to degrade toxic azo dyes. The band gap of TiO2 NW was tuned through transition metals, i.e., chromium (Cr) and manganese (Mn), and narrowed by conjugation with high surface area graphene oxide (GO) sheets. Cr-Mn-doped TiO2 NWs were chemically grafted onto GO nanosheets and polymerized with sodium alginate to form a mesh network with an excellent band gap (2.6 eV), making it most suitable to act as a solar photocatalytic membrane. Cr-Mn-doped TiO2 NW @GO aerogels possess high purity and crystallinity confirmed by Energy Dispersive X-ray spectroscopy and X-ray diffraction pattern. A Cr-Mn-doped TiO2 NW @GO aerogels membrane was tested for the photodegradation of Acid Black 1 (AB 1) dye. The synthesized photocatalytic membrane in the solar photocatalytic reactor at conditions optimized by response surface methodology (statistical model) and upon exposure to solar radiation (within 180 min) degraded 100% (1.44 kg/m3/day) AB 1dye into simpler hydrocarbons, confirmed by the disappearance of dye color and Fourier transform infrared spectroscopy. An 80% reduction in water quality parameters defines Cr-Mn-doped TiO2 NW @GO aerogels as a potential photocatalytic membrane to degrade highly toxic pollutants.
Collapse
Affiliation(s)
- Maryam Yousaf
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Mariam Akram
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Ijaz Ahmad Bhatti
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Ahmad
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Muhammad Usman
- Institute for Water Resources and Water Supply, School of Civil Engineering, Hamburg University of Technology, Am Schwarzenberg-Campus 1, 21073 Hamburg, Germany
| | - Muhammad Usman Khan
- Department of Energy Systems Engineering, Faculty of Agricultural Engineering and Technology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Abid Sarwar
- Department of Irrigation & Drainage, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Sultan
- Department of Agricultural Engineering, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Ihsanullah Sohoo
- Department of Energy and Environment Engineering, Dawood University of Engineering and Technology, New M.A. Jinnah Road, Karachi 74800, Pakistan
| |
Collapse
|
21
|
Li X, Zhang J, Qin Y, Zhang X, Zou W, Ding L, Zhou M. Enhanced removal of organic contaminants by novel iron-carbon and premagnetization: Performance and enhancement mechanism. CHEMOSPHERE 2022; 303:135060. [PMID: 35644237 DOI: 10.1016/j.chemosphere.2022.135060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Iron-carbon (Fe-C) microelectrolysis has attracted considerable attention in wastewater treatment due to its excellent ability to remove contaminants. Herein, novel Fe-C granules were synthesized by simple calcination method for removing organic contaminations, and a cost-effective and environmentally friendly method, namely pre-magnetization, was used to improve the micro-electrolysis performance of Fe-C. Batch experiments proved that premagnetized iron-carbon (pre-Fe-C) could significantly improve the removal of methyl orange (MO) at different Fe-C mass ratios (1:2-2:1), material dosages (1.0-2.5 g/L), initial pH values (3.0-5.0), and MO concentrations (10.0-50.0 mg/L). Electrochemical analysis showed that premagnetization could increase the current density and reduce the charge transfer resistance of the microelectrolysis system, making Fe-C more susceptible to electrochemical corrosion. Characterizations confirmed that the corrosion products of the materials included FeO, Fe2O3, and Fe3O4, and more corrosion products were formed in the pre-Fe-C system. Radical quenching experiments and electron spin resonance spectroscopy verified that •OH, 1O2, and O2-• were all involved in pollutant removal, and premagnetization could promote the generation of more reactive oxygen species. Overall, the pre-Fe-C process could effectively remove various organic pollutants, exhibit good adaptability to complex water environments, and hold potential for industrial applications.
Collapse
Affiliation(s)
- Xiang Li
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan, 453007, PR China.
| | - Jiajia Zhang
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan, 453007, PR China
| | - Yang Qin
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan, 453007, PR China
| | - Xingli Zhang
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan, 453007, PR China
| | - Wei Zou
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan, 453007, PR China
| | - Linjie Ding
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan, 453007, PR China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
22
|
Zong P, Wang S, Liang G, Shao M, Yan N, Xu X, Xu M, Li W, Yang Y, Chen J, Qiu Z. Eco-friendly approach for effective removal for Congo red dye from wastewater using reusable Zn-Al layered double hydroxide anchored on multiwalled carbon nanotubes supported sodium dodecyl sulfonate composites. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
23
|
Haris M, Khan MW, Paz-Ferreiro J, Mahmood N, Eshtiaghi N. Synthesis of functional hydrochar from olive waste for simultaneous removal of azo and non-azo dyes from water. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2021.100233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
24
|
Liu F, Zhou Q, Li Y, Pang J. Cu-Doped Boron Nitride Nanosheets for Solid-Phase Extraction and Determination of Rhodamine B in Foods Matrix. NANOMATERIALS 2022; 12:nano12030318. [PMID: 35159662 PMCID: PMC8838717 DOI: 10.3390/nano12030318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/26/2021] [Accepted: 01/16/2022] [Indexed: 12/10/2022]
Abstract
Cu-doped boron nitride nanosheets (Cu-BNNS) were first reported as promising adsorbents for the solid-phase extraction and determination of rhodamine B (RhB) dye in a food matrix. Different characterizations, including XRD, FTIR, XPS, SEM, and TEM, were performed to confirm the formation of the adsorbent. Then, the adsorption performance of Cu-BNNS was investigated by adsorption kinetics, isotherms, and thermodynamics. Multiple extraction parameters were optimized by single-factor experiments. Under optimized conditions, the recoveries in the food matrix were in the range of 89.8–95.4%, with the spiked levels of 100 ng/mL and 500 ng/mL, respectively. This novel system was expected to have great potential to detect RhB in a wide variety of real samples.
Collapse
Affiliation(s)
- Fujie Liu
- Zhenjiang Key Laboratory of Functional Chemistry, Institute of Medicine and Chemical Engineering, Zhenjiang College, Zhenjiang 212028, China;
| | - Qihang Zhou
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China; (Q.Z.); (Y.L.)
| | - Yurui Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China; (Q.Z.); (Y.L.)
| | - Jingyu Pang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China; (Q.Z.); (Y.L.)
- Correspondence: ; Tel.: +86-0371-23881589
| |
Collapse
|
25
|
Che L, Xu H, Wei Z, Wei R, Yang B. Activated carbon modified with nano manganese dioxide triggered electron transport pathway changes for boosted anaerobic treatment of dyeing wastewater. ENVIRONMENTAL RESEARCH 2022; 203:111944. [PMID: 34428451 DOI: 10.1016/j.envres.2021.111944] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/27/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Herein, an expanded granular sludge bed (EGSB) reactor with activated carbon (AC)-nano manganese dioxide (MnO2) added was employed for azo dye wastewater treatment to investigate its effectiveness at decolorizing of azo dyes and removing COD. The results showed that the treatment of azo dye wastewater with the AC-MnO2 modified EGSB reactor gave an 83% average decolorization efficiency, which was more efficient than the pure AC modified EGSB reactor. Moreover, the COD removal and changes in the intermediate products were controlled by AC-MnO2. Additionally, there was a sharp increase in the sludge conductivity, while there was a significant decrease in the coenzyme F420 concentration with long-term operation. Moreover, electrochemical analysis showed that the addition of AC-MnO2 can enhance electron transfer in anaerobic system. The AC-MnO2 can act as redox mediator; in the presence of the Mn4+/Mn2+ cycle, accelerating the electron transfer between the microbial cells and dyes, thereby promoting the decolorization of azo dyes. This caused a decrease in the methanogenic activity. Furthermore, high-throughput sequencing showed that the relative abundances of Pseudomonas and Desulfovibrio were significantly high among the acidogenic bacteria community, while Methanobacterium and Methanosaeta had very low abundances from among the methanogenic archaea community.
Collapse
Affiliation(s)
- Linxuan Che
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Hui Xu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Zhipeng Wei
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Ruihong Wei
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Bo Yang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
26
|
Liu Y, Yang AA, Wang Y, Li WZ, Zhang XS, Luan J, Liu HZ, Wang ZG. Synthesis of two polymorphic Cu-based coordination polymers of 1,2,4-benzenetricarboxylic acid along with a carbon-coated composite for the selective degradation of organic dyes. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Zeng Q, Wang Y, Zan F, Khanal SK, Hao T. Biogenic sulfide for azo dye decolorization from textile dyeing wastewater. CHEMOSPHERE 2021; 283:131158. [PMID: 34134045 DOI: 10.1016/j.chemosphere.2021.131158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/12/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
Azo dye is the most versatile class of dyes used in the textile industry. Although the sulfidogenic process shows superiority in the removal of azo dye, the role of biogenic sulfide produced by sulfate-reducing bacteria (SRB) in the decolorization of azo dye is unclear. This study explored the mechanism of biogenic sulfide for removal of a model azo dye (Direct Red 81 (DR 81)) through biotic and abiotic batch tests with analysis of intermediates of the azo dye degradation. The results showed that biogenic sulfide produced from sulfate reduction directly cleaved two groups of azo bond (-NN-), thereby achieving decolorization. Moreover, the decolorization rate was enhanced by nearly 3-fold (up to 42 ± 1 mg/L-hr; removal efficiency > 99%) by adding an external carbon source or elevating the initial azo dye concentration. This study showed that biogenic sulfide plays an essential role in azo dye decolorization and provides a new avenue for the potential application of biogenic sulfide from the sulfidogenic system for the treatment of azo dye-laden wastewater.
Collapse
Affiliation(s)
- Qian Zeng
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yu Wang
- Shenzhen Water (Group) Co., Ltd, Shenzhen, Guangdong, China
| | - Feixiang Zan
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China.
| |
Collapse
|
28
|
Shangguan Y, Zhou Y, Zheng R, Feng X, Ge Q, Wang R, Yang D, Wei W, Wu X, Lin J, Chen H. Bandgap engineering of tetragonal phase CuFeS2 quantum dots via mixed-valence single-atomic Ag decoration for synergistic Cr(VI) reduction and RhB degradation. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Lin J, Chen Q, Huang X, Yan Z, Lin X, Ye W, Arcadio S, Luis P, Bi J, Van der Bruggen B, Zhao S. Integrated loose nanofiltration-electrodialysis process for sustainable resource extraction from high-salinity textile wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126505. [PMID: 34214850 DOI: 10.1016/j.jhazmat.2021.126505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/21/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Effective extraction of useful resources from high-salinity textile wastewater is a critical pathway for sustainable wastewater management. In this study, an integrated loose nanofiltration-electrodialysis process was explored for simultaneous recovery of dyes, NaCl and pure water from high-salinity textile wastewater, thus closing the material loop and minimizing waste emission. Specifically, a loose nanofiltration membrane (molecular weight cutoff of ~800 Da) was proposed to fractionate the dye and NaCl in the high-salinity textile wastewater. Through a nanofiltration-diafiltration unit, including a pre-concentration stage and a constant-volume diafiltration stage, the dye could be recovered from the high-salinity textile wastewater, being enriched at a factor of ~9.0, i.e., from 2.01 to 17.9 g·L-1 with 98.4% purity. Assisted with the subsequent implementation of electrodialysis, the NaCl concentrate and pure water were effectively reclaimed from the salt-containing permeate coming from the loose nanofiltration-diafiltration. Simultaneously, the produced pure water was further recycled to the nanofiltration-diafiltration unit. This study shows the potential of the integration of loose nanofiltation-diafiltration with electrodialysis for sufficient resource extraction from high-salinity textile wastewater.
Collapse
Affiliation(s)
- Jiuyang Lin
- School of Environment and Resources, Fuzhou University, 350116 Fuzhou, China
| | - Qin Chen
- School of Environment and Resources, Fuzhou University, 350116 Fuzhou, China
| | - Xuan Huang
- Jiangsu DDBS Environmental Remediation Co., Ltd., 210012 Nanjing, China
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, 350116 Fuzhou, China
| | - Xiaocheng Lin
- College of Chemical Engineering, Fuzhou University, 350116 Fuzhou, China.
| | - Wenyuan Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, 350002 Fuzhou, China.
| | - Sotto Arcadio
- Department of Science Education, Rey Juan Carlos University, Fuenlabrada, Madrid 28942, Spain
| | - Patricia Luis
- Materials & Process Engineering (iMMC-IMAP), UCLouvain, B-1348 Louvain-la-Neuve, Belgium
| | - Jinhong Bi
- School of Environment and Resources, Fuzhou University, 350116 Fuzhou, China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, Process Engineering for Sustainable Systems (ProcESS), KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Shuaifei Zhao
- Deakin University, Geelong, Institute for Frontier Materials, VIC 3216, Australia
| |
Collapse
|
30
|
Zhao Z, Shehzad MA, Wu B, Wang X, Yasmin A, Zhu Y, Wang X, He Y, Ge L, Li X, Xu T. Spray-deposited thin-film composite MOFs membranes for dyes removal. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119475] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Wang S, Han P, Zhao Y, Sun W, Wang R, Jiang X, Wu C, Sun C, Wei H. Oxygen-vacancy-mediated LaFe 1-xMn xO 3-δ perovskite nanocatalysts for degradation of organic pollutants through enhanced surface ozone adsorption and metal doping effects. NANOSCALE 2021; 13:12874-12884. [PMID: 34477771 DOI: 10.1039/d1nr03055h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Here, a series of LaFe1-xMnxO3-δ perovskite nanocatalysts were synthesized and tested for the catalytic ozonation of m-cresol for the first time. The B-site cation is regulated by metal doping, and the resulting LaFe0.26Mn0.74O3-δ with a rhombohedral structure showed excellent catalytic performance and structural stability owing to the abundant oxygen vacancies and the higher Fe2+/Fe3+ and Mn3+/Mn4+ ratios. Theoretical calculations have revealed that the oxygen vacancy has a strong affinity for ozone adsorption, and thus facilitated ozone decomposition by extending the O-O bond. Combined with low-valence Fe2+ and Mn3+ cations, the electron transfer in the catalytic ozonation reaction has been enhanced, which has promoted the production of reactive oxygen species (ROS). Taken together, the degradation pathway of m-cresol was proposed. Additionally, the LaFe0.26Mn0.74O3-δ catalyst remained stable during a 60 h reaction. This study has not only revealed the adsorption/decomposition pathways of ozone using LaFe0.26Mn0.74O3-δ perovskite nanocatalysts but also provided indepth insight into the electron transfer pathway on the surface of nanocatalysts during the process of catalytic ozonation.
Collapse
Affiliation(s)
- Shengzhe Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Keerthana SP, Yuvakkumar R, Ravi G, Mustafa AEZMA, Al-Ghamdi AA, Soliman Elshikh M, Velauthapillai D. PVP influence on Mn-CdS for efficient photocatalytic activity. CHEMOSPHERE 2021; 277:130346. [PMID: 33780675 DOI: 10.1016/j.chemosphere.2021.130346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/13/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Wastewater treatment is the most serious problem in this upcoming era. A harmful effluent like organic dyes, heavy metals, acids from industries mixed in wastewater is deteriorating the environment. To get rid of these poisonous materials and to recycle wastewater for domestic purposes, there are many steps which included photocatalytic dye degradation. PVP assisted Mn-CdS nanoparticles was prepared by novel hydrothermal technique. The characteristic behavior of pure and PVP (1% and 2%) assisted Mn-CdS samples were studied by further analysis. The structural, optical, vibrational, morphological, chemical composition behavior of synthesized pristine and surfactant induced Mn-CdS nanoparticles were analyzed. UV-Vis spectra revealed the optical behavior of the prepared pure and PVP (1% and 2%) assisted Mn-CdS samples. The bandgap obtained was 2.2, 2.06 and 1.99 eV for pure Mn-CdS, 1% PVP-Mn-CdS and 2% PVP- Mn-CdS. The narrow bandgap is one of the advantage of the material. Mn-CdS, 1% PVP-(Mn-CdS) and 2% PVP- (Mn-CdS) morphology were further investigated by Scanning Electron Microscopic studies (SEM). The surfactant (PVP) was added to enhance the morphology development and decrease agglomeration on the surface and the SEM images revealed a clear evidence for enhancement of morphology in all three samples. 2% PVP-(Mn-CdS) sample showed a good development in morphology when compared with other two samples and the best sample showed formation of nanorods below the surface of nanoparticles. Further, Mn-CdS, 1% PVP-(Mn-CdS) and 2% PVP- (Mn-CdS) was indulged to investigate the cationic degradation. The photocatalytic activities of three samples were carried out with loading different amount of the catalysts and 30 mg catalyst 2% PVP- (Mn-CdS) loaded dye solution showed a considerable degradation of methylene blue dye. The 30 mg catalyst (2% PVP-Mn-CdS) showed 98% efficiency under visible light irradiation for about 2 h. The best candidate, 30 mg catalyst (2% PVP-Mn-CdS) investigated for its reusability. The catalyst showed almost 98% of efficiency up to three cycles which confirmed the level of potential of the sample. 2% PVP-(Mn-CdS) sample would be promising candidate in wastewater treatment. It can be further utilized for removing dyes from wastewater in wastewater remediation process.
Collapse
Affiliation(s)
- S P Keerthana
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - R Yuvakkumar
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| | - G Ravi
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| | - Abd El-Zaher M A Mustafa
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Abdullah Ahmed Al-Ghamdi
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh, 11495, Saudi Arabia.
| | - Dhayalan Velauthapillai
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, 5063, Norway
| |
Collapse
|
33
|
Gamma-ray initiated polymerization from polydopamine-modified MoS2 nanosheets with poly (ionic liquid) and their utilization for adsorptive organic dyes with enhanced efficiency. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
34
|
D’Cruz B, Amin MO, Al-Hetlani E. Polyoxometalate-Based Materials for the Removal of Contaminants from Wastewater: A Review. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Bessy D’Cruz
- Department of Chemistry, Faculty of Science, Kuwait University, 13060 Safat, Kuwait
| | - Mohamed O. Amin
- Department of Chemistry, Faculty of Science, Kuwait University, 13060 Safat, Kuwait
| | - Entesar Al-Hetlani
- Department of Chemistry, Faculty of Science, Kuwait University, 13060 Safat, Kuwait
| |
Collapse
|
35
|
Diversity of Synthetic Dyes from Textile Industries, Discharge Impacts and Treatment Methods. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146255] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natural dyes have been used from ancient times for multiple purposes, most importantly in the field of textile dying. The increasing demand and excessive costs of natural dye extraction engendered the discovery of synthetic dyes from petrochemical compounds. Nowadays, they are dominating the textile market, with nearly 8 × 105 tons produced per year due to their wide range of color pigments and consistent coloration. Textile industries consume huge amounts of water in the dyeing processes, making it hard to treat the enormous quantities of this hazardous wastewater. Thus, they have harmful impacts when discharged in non-treated or partially treated forms in the environment (air, soil, plants and water), causing several human diseases. In the present work we focused on synthetic dyes. We started by studying their classification which depended on the nature of the manufactured fiber (cellulose, protein and synthetic fiber dyes). Then, we mentioned the characteristics of synthetic dyes, however, we focused more on their negative impacts on the ecosystem (soil, plants, water and air) and on humans. Lastly, we discussed the applied physical, chemical and biological strategies solely or in combination for textile dye wastewater treatments. Additionally, we described the newly established nanotechnology which achieves complete discharge decontamination.
Collapse
|
36
|
Xiong Y, Zhang C, Duan M, Chen J, Fang S, Li J, Shi P, Ren J, Wan H. Insight into Organic Pollutant Adsorption Characteristics on a g-C 3N 4 Surface by Attenuated Total Reflection Spectroscopy and Molecular Dynamics Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7655-7667. [PMID: 34129343 DOI: 10.1021/acs.langmuir.1c00360] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein the adsorption characteristics of zwitterionic dye pollutant Rhodamine B (Rh+B-) on a g-C3N4 surface were investigated by both an attenuated total reflection spectroscopy (ATRS) experiment and a molecular dynamics simulation (MDS). For experimental investigation, g-C3N4 was coated on a silica optical fiber (SOF) surface to fabricate an adsorption film. According to the ATRS response, adsorption thermodynamics and thermodynamics results were in situ obtained and evaluated. The isothermal Langmuir model was used to calculate the adsorption equilibrium constants (Kads) and adsorption energies (ΔGads) for Rh+B- as 27.25 × 104 M-1 and -31.01 kJ mol-1, respectively, which indicated the spontaneous adsorption behavior of Rh+B- at the g-C3N4 surface. Using dynamic Elovich modeling, the rate constants of Rh+B- were found to be k1 = 0.0063 min-1 and k2 = 0.0004 min-1, which indicated two-stage adsorption at the g-C3N4 surface. For theoretical simulation, adsorption configurations and adsorption energies were systematically calculated by a molecular dynamics simulation (MDS) . Rh+B- molecules were inclined to orient in a parallel position at the g-C3N4 surface during low concentration but a perpendicular position at the g-C3N4 surface during high concentration. Combined with experimental and calculation results, this work revealed the microscopic adsorption performance and elucidated the intermolecular interaction between localized interfaces of g-C3N4 and hazardous dye pollutant. We propose an adsorption model to explain the process of surface interaction, which is based on molecular orientation and a force-driven mechanism. Electrostatic attraction and π-π interaction dominated the adsorption interaction with an adsorption energy of ΔGlow(ads) = -38.96 kJ mol-1 for low Rh+B- concentration, and electrostatic attraction dominated the adsorption interaction with an adsorption energy of ΔGhigh(ads) = -25.76 kJ mol-1 for high Rh+B- concentration. This work can provide a fundamental basis for a dye-pollutants removal application by g-C3N4 in both adsorption and photocatalyzation.
Collapse
Affiliation(s)
- Yan Xiong
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu 610500, P. R. China
| | - Can Zhang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Ming Duan
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Jie Chen
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Shenwen Fang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Jun Li
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Peng Shi
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Jintian Ren
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Haiqin Wan
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
37
|
Facile Synthesis of Polypyrrole/Reduced Graphene Oxide Composite Hydrogel for Cr(VI) Removal. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02037-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
Yang H, Graham NJD, Wang W, Liu M, Yu W. Evaluating and improving the reliability of the UV-persulfate method for the determination of TOC/DOC in surface waters. WATER RESEARCH 2021; 196:116918. [PMID: 33765497 DOI: 10.1016/j.watres.2021.116918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
The UV-persulfate oxidation method is widely used for determining the total organic carbon concentration of aqueous samples (denoted for convenience as UVP-TOC). However, for some surface water samples, the measurement of TOC by this method can be unreliable, deviating significantly from the true carbon content. In this study, the performance of the UVP-TOC method has been investigated by comparing the results from the analysis of a variety of aqueous samples that included two kinds of surface water samples and related surface water model substances: bovine serum albumin (BSA), sodium alginate (SA), humic acid (HA), tannic acid (TA), benzoic acid (BA) and citric acid (CA), with those from a high-temperature combustion method (elemental analysis); the latter providing the true carbon content value. By comparing the above data, it was found that the UVP-TOC method significantly underestimated the TOC value of the surface water samples, and it was also found that the model components BSA (protein) and HA (humic substances, HS) had a substantial influence on the TOC underestimation, while the SA (polysaccharide), TA (complex organic molecule) and CA/BA (small molecules) had little effect. The results showed that the agglomeration within and between BSA and HA molecules was an important reason for the inaccurate UVP-TOC values of BSA and HA. A further limitation was that for BSA, surfactants (e.g. sodium dodecylbenzene sulfonate, SDBS) and other surfactant-like substances, foam was formed during the CO2 removal purging process by N2 that seriously interfered with the determination of TOC. The study provides new information and insight into the causes of inaccuracies in the UVP-TOC analysis of surface waters and possible approaches to improve the accuracy.
Collapse
Affiliation(s)
- Hankun Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Wenyu Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Separation Membrane and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Mengjie Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
39
|
Wang C, Li Y, Shen R, Liu X. Cerium tetraboride synthesized by a molten salt method and its Congo red adsorption performance. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.04.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
40
|
Iqbal Z, Abbas F, Ibrahim M, Qureshi TI, Gul M, Mahmood A. Assessment of heavy metal pollution in Brassica plants and their impact on animal health in Punjab, Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:22768-22778. [PMID: 33423201 DOI: 10.1007/s11356-021-12370-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Growing Brassica rapa L. (Brassica rapa subsp. campestris (Linn.) Clapham) with wastewater and their use as a fodder for animals is a common practice in suburb of all cities in Punjab, Pakistan, despite the wastewater containing heavy metals is of public health concern. This study assessed the risk of heavy metals on animal health via consumption of B. rapa as fodder grown with wastewater, tube-well and canal water, and its source apportionment, in suburb of Multan City, Pakistan. Samples of B. rapa (n = 30) were collected from six agricultural farms and analyzed for cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), and lead (Pb) by inductively coupled plasma-optical emission spectrometry (ICP-OES). Total target health quotient (TTHQ) values ranged 47.22 to 136.64 in wastewater irrigation farm, 2.32 to 3.71 in canal water, and 4.86 to 7.50 in tube-well water irrigation farms, respectively exhibiting high carcinogenic health risk to animals across the farms. B. rapa grown with industrial effluents exhibited the highest carcinogenic health risk, while the canal water posed the lowest risk. Multivariate statistical analyses indicated that the wastewater samples containing heavy metals and contaminated soils were common sources of B. rapa contamination. Proper treatment of wastewater for removal of toxic elements before application in agricultural fields may safeguard the health of animals, public, and the ecosystem.
Collapse
Affiliation(s)
- Zafar Iqbal
- Environmental Protection Agency Punjab, Ferozepur road, Lahore, Pakistan.
| | - Farhat Abbas
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Muhammad Ibrahim
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
| | - Tahir Imran Qureshi
- Department of Environmental Engineering, NFC- Institute of Engineering & Technology, Multan, Pakistan
| | - Matin Gul
- Department of Educational Planning, Policy Studies and Leadership (EPPSL), Allama Iqbal Open University, Islamabad, Pakistan
| | - Abid Mahmood
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Allama Iqbal Road, Faisalabad, Punjab, 38000, Pakistan
| |
Collapse
|
41
|
Rashid R, Shafiq I, Akhter P, Iqbal MJ, Hussain M. A state-of-the-art review on wastewater treatment techniques: the effectiveness of adsorption method. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9050-9066. [PMID: 33483933 DOI: 10.1007/s11356-021-12395-x] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/05/2021] [Indexed: 05/28/2023]
Abstract
The world's water supplies have been contaminated due to large effluents containing toxic pollutants such as dyes, heavy metals, surfactants, personal care products, pesticides, and pharmaceuticals from agricultural, industrial, and municipal resources into water streams. Water contamination and its treatment have emerged out as an escalating challenge globally. Extraordinary efforts have been made to overcome the challenges of wastewater treatment in recent years. Various techniques such as chemical methods like Fenton oxidation and electrochemical oxidation, physical procedures like adsorption and membrane filtration, and several biological techniques have been recognized for the treatment of wastewater. This review communicates insights into recent research developments in different treatment techniques and their applications to eradicate various water contaminants. Research gaps have also been identified regarding multiple strategies for understanding key aspects that are important to pilot-scale or large-scale systems. Based on this review, it can be determined that adsorption is a simple, sustainable, cost-effective, and environmental-friendly technique for wastewater treatment, among all other existing technologies. However, there is a need for further research and development, optimization, and practical implementation of the integrated process for a wide range of applications.
Collapse
Affiliation(s)
- Ruhma Rashid
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Iqrash Shafiq
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Parveen Akhter
- Department of Chemistry, The University of Lahore, 1-km Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Muhammad Javid Iqbal
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Murid Hussain
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan.
| |
Collapse
|
42
|
Facile synthesis of nanogels modified Fe 3O 4@Ag NPs for the efficient adsorption of bovine & human serum albumin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111390. [PMID: 33254996 DOI: 10.1016/j.msec.2020.111390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/27/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022]
Abstract
This article describes the preparation of Fe3O4 nanoparticles and its decoration with a layer of tiny Ag nanoparticles at room temperature. Later on, the synthesized Fe3O4@Ag heterostructures were protected with Silica and finally modified with Poly(N-isopropyl acrylamide) (PNIPA) nanogels through post-synthesis method to get multifunctional (superparamagnetic, plasmonic and thermosensitive) nanocomposite. The structural characteristics of Fe3O4@Ag@SiO2-PNIPA nanogels composite were investigated by instrumental techniques such as Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD) and Vibrating Sample Magnetometer (VSM). The average particles diameter was calculated from XRD data through Scherer formula and it was found as 14 nm. The Fe3O4@Ag@SiO2-PNIPA polymeric composites were assessed for the adsorption of Bovine Serum Albumin (BSA) and Human Serum Albumin (HSA) proteins from aqueous media. The adsorption data of BSA and HSA were best explained by Langmuir isotherm model with maximum adsorption capacities of 322 and 166 (mg/g) respectively showing mono-layer adsorption. The kinetics data for both the proteins were fairly interpreted by pseudo-second-order model. Thermodynamics studies revealed that the adsorption phenomena of BSA and HSA on the surface of Fe3O4@Ag@SiO2-PNIPA nanogels composite are spontaneous and exothermic.
Collapse
|
43
|
Gao X, Zhang S, Liu J, Xu S, Li Z. Enhanced active oxidative species generation over Fe-doped defective TiO 2 nanosheets for boosted photodegradation. RSC Adv 2020; 10:40619-40624. [PMID: 35519198 PMCID: PMC9057696 DOI: 10.1039/d0ra08116g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/03/2020] [Indexed: 11/21/2022] Open
Abstract
Semiconductor photocatalysis is widely proposed for decomposing multiple pollutants via photo-generated oxidative species. However, the photocatalytic degradation performance in practical settings still remains unsatisfactory due to the limited production of active oxidative species (AOS). In this work, a defect engineering strategy was developed to explore the superiority of oxygen vacancies (Vo) and their structural regulation to enhance AOS production for boosting photodegradation. Taking anatase TiO2 as a model photocatalyst, ultrathin TiO2 nanosheets containing abundant Vo and appropriate Fe doping exhibited an unprecedented 134 times higher activity in the degradation of Rhodamine B (RhB) (rate as high as 0.3073 min−1) than bulk anatase and were superior to most reported photocatalysts. The defect-rich ultrathin TiO2 nanosheets could be further applied in high-efficiency degradation of tetracycline hydrochloride (TC-HCl) with the degradation rate of 0.0423 min−1. The in situ electron paramagnetic resonance, advanced spectroscopic characterization and electrochemical measurement revealed the key role of Vo and Fe doping in facilitating the production of photo-generated holes and superoxide radicals (˙O2−) that were identified to be effective to decompose both RhB and TC-HCl. This research provides insight into defect engineering promoting AOS generation and gives inspiration for the design of efficient photocatalysts for photooxidation applications. Defect-rich ultrathin TiO2 nanosheets with tunable Fe doping realize the efficient generation of active oxidative species for boosted dye/antibiotic photodegradation.![]()
Collapse
Affiliation(s)
- Xintong Gao
- Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Shuai Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Jingchao Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Shiqi Xu
- Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Zenghe Li
- Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
44
|
Usman M, Adnan M, Ali S, Javed S, Akram MA. Preparation and Characterization of PANI@NiO Visible Light Photocatalyst for Wastewater Treatment. ChemistrySelect 2020. [DOI: 10.1002/slct.202003540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Muhammad Usman
- School of Chemical and Materials Engineering National University of Sciences and Technology (NUST) Sector H-12 Islamabad 44000 Pakistan
| | - Muhammad Adnan
- School of Chemical and Materials Engineering National University of Sciences and Technology (NUST) Sector H-12 Islamabad 44000 Pakistan
| | - Saqib Ali
- School of Chemical and Materials Engineering National University of Sciences and Technology (NUST) Sector H-12 Islamabad 44000 Pakistan
| | - Sofia Javed
- School of Chemical and Materials Engineering National University of Sciences and Technology (NUST) Sector H-12 Islamabad 44000 Pakistan
| | - M. Aftab Akram
- School of Chemical and Materials Engineering National University of Sciences and Technology (NUST) Sector H-12 Islamabad 44000 Pakistan
| |
Collapse
|
45
|
Iqbal Z, Abbas F, Ibrahim M, Qureshi TI, Gul M, Mahmood A. Human health risk assessment of heavy metals in raw milk of buffalo feeding at wastewater-irrigated agricultural farms in Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29567-29579. [PMID: 32445147 DOI: 10.1007/s11356-020-09256-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Wastewater irrigation to grow fodder for animals and cattle farming is common practice in Pakistan. Hence, this study was conducted in Multan, Pakistan, to assess heavy metal pollution, human health risk and the total target health quotient (TTHQ) of heavy metals in raw milk of buffalo feeding at different agricultural farms and to identify sources of toxicity in milk. Samples of raw milk (n = 60) were analyzed for Cd, Cr, Cu, Mn, Ni, and Pb by ICP-OES, Perkin Elmer, USA. The TTHQ values of heavy metals ranged from 6.92 to 42.44 in raw milk of buffalo, highest at wastewater-irrigated agricultural farms and lowest at tube well water site, indicating high carcinogenic health risk to exposed population. The multivariate statistical analysis revealed that contaminated fodder like Maize and Brassica plants grown with wastewater and contaminated soil are common sources contributing the heavy metal contamination in raw milk. It invites attention of government to remediate the situation to avoid the potential risks to public health from resulting food chain contamination.
Collapse
Affiliation(s)
- Zafar Iqbal
- Environmental Protection Agency, Ferozepur road, Lahore, Punjab, Pakistan.
| | - Farhat Abbas
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad, Punjab, 38000, Pakistan
| | - Muhammad Ibrahim
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad, Punjab, 38000, Pakistan
| | - Tahir Imran Qureshi
- Department of Environmental Engineering, NFC-Institute of Engineering & Technology, Multan, Pakistan
| | - Matin Gul
- Department of Educational Planning, Policy Studies and Leadership (EPPSL), Allama Iqbal Open University, Islamabad, Pakistan
| | - Abid Mahmood
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad, Punjab, 38000, Pakistan
| |
Collapse
|
46
|
Afridi ZUR, Qammar NW. Technical Challenges and Optimization of Biogas Plants. CHEMBIOENG REVIEWS 2020. [DOI: 10.1002/cben.202000005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zohaib Ur Rehman Afridi
- University of Engineering and Technology U.S.-Pakistan Center for Advanced Studies in Energy, Energy Management and Sustainability 25100 Peshawar Pakistan
| | - Naseha Wafa Qammar
- City University of Science & Information Technology Department of Electrical Engineering 25100 Peshawar Pakistan
| |
Collapse
|
47
|
Qasim S, Zafar A, Saif MS, Ali Z, Nazar M, Waqas M, Haq AU, Tariq T, Hassan SG, Iqbal F, Shu XG, Hasan M. Green synthesis of iron oxide nanorods using Withania coagulans extract improved photocatalytic degradation and antimicrobial activity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 204:111784. [DOI: 10.1016/j.jphotobiol.2020.111784] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/06/2019] [Accepted: 01/09/2020] [Indexed: 10/25/2022]
|
48
|
Wang A, Liu Z, Xu L, Lou N, Li M, Liu L. Controllable click synthesis of poly(ionic liquid)s by surfactant-free ionic liquid microemulsions for selective dyes reduction. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Dai Q, Zhang S, Liu H, Huang J, Li L. Sulfide-mediated azo dye degradation and microbial community analysis in a single-chamber air cathode microbial fuel cell. Bioelectrochemistry 2020; 131:107349. [DOI: 10.1016/j.bioelechem.2019.107349] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/20/2022]
|
50
|
Rapid Removal of Azophloxine via Catalytic Degradation by a Novel Heterogeneous Catalyst under Visible Light. Catalysts 2020. [DOI: 10.3390/catal10010138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Azo dyes are the most widely used synthetic dyes in the printing and dyeing process. However, the discharge of untreated azo dyes poses a potential threat to aqueous ecosystems and human health. Herein, we fabricated a novel heterogeneous catalyst: activated-carbon-fiber-supported ferric alginate (FeAlg-ACF). Together with peroxymonosulfate (PMS) and visible light, this photocatalytic oxidation system was used to remove an azo dye—azophloxine. The results indicated that the proposed catalytic oxidation system can remove 100% of azophloxine within 24 min, while under the same system, the removal rates were only 92% and 84% when ferric alginate was replaced with ferric citrate and ferric oxalate, respectively, which showed the superiority of FeAlg-ACF. The degradation of azophloxine is achieved by the active radicals (SO4•− and •OH) released from PMS and persistent free radicals from activated carbon fiber. Moreover, due to ferric alginate’s highly intrinsic photosensitivity, visible radiation can further enhance the ligand-to-metal charge transfer (LMCT) processes. After 24 min of treatment, the total organic carbon of the azophloxine solution (50 μmol/L) decreased from 1.82 mg/L to 79.3 μg/L and the concentration of nitrate ions increased from 0.3 mg/L to 8.6 mg/L. That is, up to 93.5% of azophloxine molecules were completely degraded into inorganic compounds. Consequently, potential secondary contamination by intermediate organic products during catalytic degradation was prohibited. The azophloxine removal ratio was kept almost constant after seven cycles, indicating the recyclability and longevity of this system. Furthermore, the azophloxine removal was still promising at high concentrations of Cl−, HCO3−, and CO32−. Therefore, our proposed system is potentially effective at removing dye pollutants from seawater. It provides a feasible method for the development of efficient and environmentally friendly PMS activation technology combined with FeAlg-ACF, which has significant academic and application value.
Collapse
|