1
|
Wang Y, Zhu W, Zhang T, Liu Q, Zou M, Xie Y, Wang M, Wang TS, Pang Y, Jing T, Zhang R. Associations between serum trace elements and biological age acceleration in the Chinese elderly: A community-based study investigating the mediating role of inflammatory markers and the moderating effect of physical activity. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138273. [PMID: 40250274 DOI: 10.1016/j.jhazmat.2025.138273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/25/2025] [Accepted: 04/11/2025] [Indexed: 04/20/2025]
Abstract
Growing evidence suggests that environmental factors play a significant role in the aging process. We established the Klemera and Doubal Method biological age acceleration (KDM-BAA) by using the KDM as a biological age predictor to assess the trace elements (ELEs) role. Generalized Linear Model (GLM) was used to assess the associations between single ELE (trace element) and KDM-BAA. Restricted cubic splines (RCS) were used to assess the nonlinear relationship between elemental levels and KDM-BAA. Quantile G-Computation (QGC) regression was employed to explore the direction and weight. Weighted Quantile Sum (WQS) Regression was used to study the weights of different groups of ELEs. Bayesian Kernel Machine Regression (BKMR) was utilized to analyze the overall effect of mixed elemental exposure. Mediation analysis was conducted to investigate the role of intermediate biomarkers and the moderating effects of physical activity (PA) was used on the pathway. The results showed serum Copper (Cu) levels positively correlated with KDM-BAA, while Zinc (Zn) and Iron (Fe) negatively correlated with it, respectively. The mixture of Zn, Cobalt (Co), Selenium (Se), and Fe exhibited a significant overall negative effect. Additionally, PA could ease the association between Cu and KDM-BAA through impacting the inflammation level. This study provides novel insights into how inflammation mediates the association between ELEs exposure and KDM-BAA, while PA acts as a potential protective factor.
Collapse
Affiliation(s)
- Yan Wang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Wenyuan Zhu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Tao Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Qingping Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Mengqi Zou
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yujia Xie
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Mengruo Wang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Tian Shuai Wang
- Shijiazhuang Great Wall Hospital of Integrated Traditional Chinese and Western Medicine, PR China
| | - Yaxian Pang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China.
| | - Tao Jing
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China.
| |
Collapse
|
2
|
Xu P, Xu D, Wang X, Chen Z, Dong F, Xiang J, Cheng P, Xu D, Chen Y, Lou X, Dai J, Pan Y. Associations of Serum Per- and Polyfluoroalkyl Substances with Genotoxic Biomarkers: New Insights from Cross-Sectional and In Vivo Evidence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9955-9967. [PMID: 40279506 PMCID: PMC12120986 DOI: 10.1021/acs.est.5c02054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/27/2025]
Abstract
The effects of perfluoroalkyl and polyfluoroalkyl substances (PFAS) on genomic stability remain unclear. Here, a cross-sectional study was conducted to establish the associations of PFAS with genotoxic biomarkers. We recruited a cohort of 453 residents in 2021 in Zhejiang, China. Thirty PFAS in serum were quantified, alongside seven indicators of genomic stability [five rDNA copy numbers (rDNA-CN), mitochondrial DNA copy numbers (mtDNA-CN), and relative telomere length (RTL)] in whole blood. Results showed that PFUnDA, perfluorohexanesulfonic acid (PFHxS), perfluorooctanesulfonic acid (PFOS), 6:2 Cl-PFESA, and PFO5DoDA were positively correlated with rDNA-CN, while PFHpA, PFOA, and PFMOAA showed inverse associations. PFO4DA and PFO5DoDA were positively correlated with mtDNA-CN. PFOA, HFPO-TA, and PFMOAA were negatively associated with the RTL, while perfluorononanoic acid, PFHxS, PFOS, and 6:2 Cl-PFESA showed positive associations. Nonlinear exposure-response relationships were also observed between PFAS and genotoxic biomarkers using restricted cubic spline models. Furthermore, PFAS mixtures were positively associated with mtDNA-CN, with PFO5DoDA showing the highest contribution by the quantile-based g-computation model. In vivo studies further confirmed that PFO5DoDA increased mtDNA-CN in male mice in a dose-dependent manner. This study provides novel evidence that PFAS disrupt genomic stability, with effects varying by functional groups and fluoroalkyl(ether) chain lengths.
Collapse
Affiliation(s)
- Peiwei Xu
- Zhejiang
Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou310051, China
| | - Dihui Xu
- The
Key Laboratory of Environmental Health Impact Assessment for Emerging
Contaminants, Ministry of Ecology and Environment of the People’s
Republic of China, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, PR China
| | - Xiaofeng Wang
- Zhejiang
Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou310051, China
| | - Zhijian Chen
- Zhejiang
Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou310051, China
| | - Fengfeng Dong
- The
Key Laboratory of Environmental Health Impact Assessment for Emerging
Contaminants, Ministry of Ecology and Environment of the People’s
Republic of China, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, PR China
| | - Jie Xiang
- Zhejiang
Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou310051, China
| | - Ping Cheng
- Zhejiang
Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou310051, China
| | - Dandan Xu
- Zhejiang
Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou310051, China
| | - Yuan Chen
- Zhejiang
Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou310051, China
| | - Xiaoming Lou
- Zhejiang
Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou310051, China
| | - Jiayin Dai
- The
Key Laboratory of Environmental Health Impact Assessment for Emerging
Contaminants, Ministry of Ecology and Environment of the People’s
Republic of China, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, PR China
| | - Yitao Pan
- The
Key Laboratory of Environmental Health Impact Assessment for Emerging
Contaminants, Ministry of Ecology and Environment of the People’s
Republic of China, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, PR China
| |
Collapse
|
3
|
Geng N, Chen S, Bian Y, Shi C, Huang C, Cheng L, Luo Y, Yu Y, Gao Y, Wang L, Zhang H, Gong Y, Chen J. Uncovering Mitochondrial Defects Induced by Chemicals: A Case Study of Low-Dose Medium-Chain Chlorinated Paraffin Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8972-8983. [PMID: 40293924 DOI: 10.1021/acs.est.4c09460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Given the susceptibility of mitochondria to environmental pollutants, mitochondrial defects are critical end points for chemical safety evaluation. In this study, we present a comprehensive strategy for assessing mitochondrial toxicity, exemplified through a case study on medium-chain chlorinated paraffins (MCCPs, CxH2x+2-yCly with 14-17 carbon atoms), one of the most abundant organic pollutants in the human body. Our results demonstrate that MCCP exposure at levels commonly found in humans significantly reduces cellular ATP content by impairing mitochondrial respiration rather than glycolysis. Using an optimized mitochondrial metabolomics approach combined with dose-resolved proteomics, we elucidated the molecular mechanisms underlying MCCP-induced mitochondrial defects, including inhibition of the electron transport chain, mitochondrial membrane damage, accumulation of reactive oxygen species, and disruptions in nucleotide metabolism. Notably, over 80% of the MCCP-regulated mitochondrial proteins exhibited EC50 values below the human internal levels of MCCPs, highlighting a significant threat to human health. This proposed strategy for mitochondrial toxicity assessment is expected to facilitate future research in mitochondrial toxicology.
Collapse
Affiliation(s)
- Ningbo Geng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shuangshuang Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yangyang Bian
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Chengcheng Shi
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Chenhao Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Lin Cheng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yun Luo
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ying Yu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yuan Gao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Li Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haijun Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yufeng Gong
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jiping Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
4
|
Zhang Z, Sheng N, Qu Y, Xue Z, Zhao F, Wu B, Lv C, Dong F, Wang J, Song H, Sun Q, Zhang M, Long F, Li Y, Ji S, Li Z, Zhang X, Fu H, Li K, Cai J, Zhu Y, Cao Z, Tong S, Lv Y, Dai J, Pan Y, Shi X. Dietary Diversity Modified the Association of Per- and Polyfluoroalkyl Substances with Accelerated Biological Aging: Evidence from the China National Human Biomonitoring Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7877-7889. [PMID: 40238466 DOI: 10.1021/acs.est.4c13048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Per- and polyfluoroalkyl substances (PFASs) can impact various systems in the human body. However, their influence on biological aging remains unclear. This study aims to investigate the association between PFASs exposure and biological aging based on data from 9756 participants in the China National Human Biomonitoring Program and assesses the potential moderating effect of Dietary Diversity Score (DDS). Biological age indexes were calculated using the Klemera-Doubal method (KDM) and Mahalanobis distance (MD). The DDS was calculated based on the consumption frequency of 13 food groups over the past 12 months. Most PFASs showed positive associations with KDM-age acceleration (KDM-AA), while no statistically significant associations were observed with MD. The dose-response relationships of PFASs with KDM-AA and MD were steeper at low concentrations of PFASs, and then the slope appeared flat at higher concentrations. The weighted quantile sum revealed positive mixture effects of PFASs on biological aging. PFHpS and PFNA were both major contributors to KDM-AA and MD. DDS appeared to potentially modify the association between PFASs and biological aging. Our findings demonstrate that PFASs were significantly associated with accelerated biological aging, whereas higher DDS mitigates these adverse effects, highlighting the importance of this preventive measure.
Collapse
Affiliation(s)
- Zheng Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Nan Sheng
- The Key Laboratory of Environmental Health Impact Assessment for Emerging Pollutants, Ministry of Ecology and Environment of the People's Republic of China, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingli Qu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Zhanhong Xue
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Feng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Bing Wu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chunxian Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Fengfeng Dong
- The Key Laboratory of Environmental Health Impact Assessment for Emerging Pollutants, Ministry of Ecology and Environment of the People's Republic of China, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinghua Wang
- The Key Laboratory of Environmental Health Impact Assessment for Emerging Pollutants, Ministry of Ecology and Environment of the People's Republic of China, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haocan Song
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Qi Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Miao Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Fanye Long
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yawei Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Saisai Ji
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Zheng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xu Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hui Fu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Kexin Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jiayi Cai
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ying Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Zhaojin Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Shilu Tong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- School of Public Health and Social Work, Queensland University of Technology, Brisbane 4001, Australia
| | - Yuebin Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jiayin Dai
- The Key Laboratory of Environmental Health Impact Assessment for Emerging Pollutants, Ministry of Ecology and Environment of the People's Republic of China, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yitao Pan
- The Key Laboratory of Environmental Health Impact Assessment for Emerging Pollutants, Ministry of Ecology and Environment of the People's Republic of China, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
5
|
Duan Z, Zhang Q, Dai Y, Ding J, Cao C, Hou Q, Yang Z, Sun P, Zhang J, Zhou Z. Associations between urinary multiple metal concentrations and mitochondrial DNA copy number among occupational workers. Int Arch Occup Environ Health 2025; 98:223-232. [PMID: 39960502 DOI: 10.1007/s00420-025-02124-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/21/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND Mitochondrial DNA copy number (mtDNAcn) is an effective biomarker to evaluate the effects of cationic metals on mtDNA integrity and function. In this study, we explored the relationships between individual and combined urinary metal concentrations and mtDNAcn among workers. METHODS Blood mtDNAcn and urinary metal concentrations were quantified in a cohort of 328 participants. Restricted cubic spline (RCS) models were applied to explore potential non-linear association, while generalized linear models (GLMs) were utilized to assess the associations between urinary metal levels and blood mtDNAcn. We further explored the combined effects of multiple metals on mtDNAcn through quantile g-computation (GQC) and Bayesian kernel machine regression (BKMR). RESULTS The dose-response relationship between nickel (Ni) and mtDNAcn exhibited an inverted U-shaped pattern. Notably, GLMs revealed significant reductions in mtDNAcn associated with Ni and silver (Ag) in the second quartile. An overall inverse association between urinary metal mixture and mtDNAcn was observed in the BKMR model when urine dilutions were SG-adjusted. Cre-adjusted lead (Pb) was identified as the primary contributor to decreased mtDNAcn, while SG-adjusted lithium (Li) was indicated as the most substantial contribution to mtDNAcn. CONCLUSIONS Urinary metal concentrations were associated with decreased mtDNAcn following SG adjustment. Future research should investigate these associations in a larger population with improved calibration techniques.
Collapse
Affiliation(s)
- Zhiping Duan
- School of Public Health/ Key Laboratory of Public Health Safety of Ministry of Education/ Key Lab of Health Technology Assessment, National Health Commission of the People'S Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
- Shanghai Institute of Occupational Disease for Chemical Industry, No. 369 Chengdu North Road, Jing 'an District, Shanghai, 200041, China
| | - Qinyu Zhang
- School of Public Health/ Key Laboratory of Public Health Safety of Ministry of Education/ Key Lab of Health Technology Assessment, National Health Commission of the People'S Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Yiming Dai
- School of Public Health/ Key Laboratory of Public Health Safety of Ministry of Education/ Key Lab of Health Technology Assessment, National Health Commission of the People'S Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jiayun Ding
- School of Public Health/ Key Laboratory of Public Health Safety of Ministry of Education/ Key Lab of Health Technology Assessment, National Health Commission of the People'S Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Changhao Cao
- School of Public Health/ Key Laboratory of Public Health Safety of Ministry of Education/ Key Lab of Health Technology Assessment, National Health Commission of the People'S Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Qiang Hou
- Shanghai Institute of Occupational Disease for Chemical Industry, No. 369 Chengdu North Road, Jing 'an District, Shanghai, 200041, China
| | - Ziqian Yang
- School of Public Health/ Key Laboratory of Public Health Safety of Ministry of Education/ Key Lab of Health Technology Assessment, National Health Commission of the People'S Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Pin Sun
- School of Public Health, Fudanuniversity, Shanghai, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jiming Zhang
- School of Public Health/ Key Laboratory of Public Health Safety of Ministry of Education/ Key Lab of Health Technology Assessment, National Health Commission of the People'S Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Zhijun Zhou
- School of Public Health/ Key Laboratory of Public Health Safety of Ministry of Education/ Key Lab of Health Technology Assessment, National Health Commission of the People'S Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
6
|
Xu P, Nian M, Xiang J, Zhang X, Cheng P, Xu D, Chen Y, Wang X, Chen Z, Lou X, Fang M. Emerging PFAS Exposure Is More Potent in Altering Childhood Lipid Levels Mediated by Mitochondrial DNA Copy Number. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2484-2493. [PMID: 39895349 DOI: 10.1021/acs.est.4c13095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) pose potential health risks to lipid metabolism, but the effects of emerging PFAS alternatives, particularly in children, remain unclear. This cross-sectional study investigated the association between emerging PFAS exposure and lipid levels in 294 Chinese children aged 7-10 years, analyzing blood samples for 14 PFAS and lipid profiles, including triglycerides (TG), total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), apolipoprotein A1 (ApoA1), and apolipoprotein B (ApoB). Exposure to 6:2 Cl-PFESA, PFO4DA, and PFO5DoDA was associated with higher TC, TG, and LDL levels, with PFO4DA increasing the TC by 1.7% and PFO5DoDA increasing the TG by 10.7%. Weighted quantile sum (WQS) regression showed mixed PFAS exposure positively associated with TG (0.08, 95% CI: 0.007, 0.153). PFO4DA had the highest weight for TC (0.468), TG (0.327), LDL (0.57), ApoA1 (0.243), and ApoB (0.466), while PFMOAA had the highest weight for HDL (0.332). Bayesian Kernel Machine Regression (BKMR) analysis confirmed positive associations between the PFAS mixture and TC, TG, LDL, and ApoA1. Mediation analysis revealed that mtDNAcn significantly mediated PFAS exposure's effect on TG levels, explaining 27.2-74.2% of the total effect. These findings highlight the need for regulatory action to address the emerging PFAS risks.
Collapse
Affiliation(s)
- Peiwei Xu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Min Nian
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Jie Xiang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Xinhan Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Ping Cheng
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Dandan Xu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Yuan Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Xiaofeng Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Zhijian Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Xiaoming Lou
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Institute of Eco-Chongming, Shanghai 200241, China
| |
Collapse
|
7
|
Zhang B, Wang J, Zhang Y, Liu M, Zhang X. Individual and joint associations of exposure to per- and polyfluoroalkyl substances with children's mitochondrial DNA copy number, and modified by estimated glomerular filtration rate. ENVIRONMENTAL RESEARCH 2025; 266:120598. [PMID: 39667485 DOI: 10.1016/j.envres.2024.120598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/13/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND The association between per- and polyfluoroalkyl substances (PFAS) and mitochondrial DNA copy number (mtDNAcn) in children, and the potential impact of estimated glomerular filtration rate (eGFR) on this association, remains unclear. METHODS We conducted a panel study with up to 3 surveys over 3 seasons in Weinan and Guangzhou, China. A total of 284 children aged 4-12 years were available, with 742 measurements of 11 PFAS and mtDNAcn. Linear mixed-effect (LME), quantile g-computation (qgcomp), weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) models were used to investigate the associations of individuals and a mixture of PFAS with mtDNAcn, and the modifying effect of eGFR on these associations. RESULTS Legacy PFAS, including perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), perfluorooctane sulfonate (PFOS) and emerging PFAS, 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA), were significantly associated with decreased mtDNAcn in a linear dose-response manner (FDR <0.05). The multiple PFAS model showed each doubling increase in PFOA related to a 6.36% (95%CI: -10.22%, -2.34%) decrement in mtDNAcn. Meanwhile, the PFAS mixture was dose-responsive related to decreased mtDNAcn, with PFOA being the largest contributor, followed by PFUnDA and PFNA. Notably, eGFR modified the inverse association between PFOA and mtDNAcn (P-int = 0.039), with a more pronounced decrement in children with an eGFR below the 20th value (101.71 mL/min/1.73m2). In addition, age significantly modified the relationship between PFOA and decreased mtDNAcn (P-int = 0.028), with a stronger association in those aged 7 years or older. CONCLUSION Both individual and the mixture of legacy and emerging PFAS exposure were associated with decreased mtDNAcn in children, with PFOA as the main contributor and modification of eGFR.
Collapse
Affiliation(s)
- Biao Zhang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Wang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanyuan Zhang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Miao Liu
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China.
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Stajnko A, Pineda D, Klus JK, Love TM, Thurston SW, Mulhern MS, Strain JJ, McSorley EM, Myers GJ, Watson GE, Shroff E, Shamlaye CF, Yeates AJ, van Wijngaarden E, Broberg K. Associations of Prenatal Mercury Exposure and PUFA with Telomere Length and mtDNA Copy Number in 7-Year-Old Children in the Seychelles Child Development Nutrition Cohort 2. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:27002. [PMID: 39903555 PMCID: PMC11793161 DOI: 10.1289/ehp14776] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Telomere length (TL) and mitochondrial DNA copy number (mtDNAcn) variations are linked to age-related diseases and are associated with environmental exposure and nutritional status. Limited data, however, exist on the associations with mercury exposure, particularly early in life. OBJECTIVE We examined the association between prenatal mercury (Hg) exposure and TL and mtDNAcn in 1,145 Seychelles children, characterized by a fish-rich diet. METHODS Total mercury (THg) was determined in maternal hair at delivery and cord blood. TL and mtDNAcn were determined relative to a single-copy hemoglobin beta gene in the saliva of 7-y-old children. Linear regression models assessed associations between THg and relative TL (rTL) and relative mtDNAcn (rmtDNAcn) while controlling for maternal and cord serum polyunsaturated fatty acid (PUFA) status and sociodemographic factors. Interactions between THg and child sex, PUFA, and telomerase genotypes were evaluated for rTL and rmtDNAcn. RESULTS Higher THg concentrations in maternal hair and cord blood were associated with longer rTL [β = 0.009 ; 95% confidence interval (CI): 0.002, 0.016 and β = 0.002 ; 95% CI: 0.001, 0.003, respectively], irrespective of sex, PUFA, or telomerase genotypes. Maternal serum n-6 PUFA and n-6/n-3 ratio were associated with shorter [β = - 0.24 ; 95% CI: - 0.33 , - 0.15 and β = - 0.032 ; 95% CI: - 0.048 , - 0.016 , respectively] and n - 3 PUFA with longer (β = 0.34 ; 95% CI: 0.032, 0.65) rTL. Cord blood n-6 PUFA was associated with longer (β = 0.15 ; 95% CI: 0.050, 0.26) rTL. Further analyses revealed linoleic acid in maternal blood and arachidonic acid in cord blood as the main drivers of the n-6 PUFA associations. No associations were observed for THg and PUFA with rmtDNAcn. DISCUSSION Our results indicate that prenatal THg exposure and PUFA status are associated with rTL later in childhood, although not consistently aligned with our initial hypothesis. Subsequent research is needed to confirm this finding, further evaluate the potential confounding of fish intake, and investigate the underlying molecular mechanisms to verify the use of rTL as a true biomarker of THg exposure. https://doi.org/10.1289/EHP14776.
Collapse
Affiliation(s)
- Anja Stajnko
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Daniela Pineda
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Jonathan K. Klus
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Tanzy M. Love
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Sally W. Thurston
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Maria S. Mulhern
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - J. J. Strain
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - Emeir M. McSorley
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - Gary J. Myers
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Gene E. Watson
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Emelyn Shroff
- The Ministry of Health, Mahé, Republic of Seychelles
| | | | - Alison J. Yeates
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - Edwin van Wijngaarden
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Karin Broberg
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Liu Q, Fan G, Bi J, Fang Q, Luo F, Huang X, Li H, Liu B, Yan L, Guo W, Hu L, Mei S, Wang Y, Song L. Exposure to multiple metals and leukocyte telomere length in children and adolescents: The mediating effect of thyroid hormones. ENVIRONMENTAL RESEARCH 2025; 265:120483. [PMID: 39613012 DOI: 10.1016/j.envres.2024.120483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/17/2024] [Accepted: 11/27/2024] [Indexed: 12/01/2024]
Abstract
Exposure to metals has been related to alterations in leukocyte telomere length (LTL), an aging marker. However, the evidence regarding this relationship in children and adolescents, as well as the underlying mechanisms, remains unclear. Therefore, we aimed to explore the individual and mixture effects of metals on LTL in children and adolescents and to assess the mediating role of thyroid hormones and the modifying effect of a healthy lifestyle. In a cross-sectional study performed in Liuzhou, China, we assessed 5 serum thyroid hormones, 18 urinary metals, and LTL among 1050 children and adolescents aged 6-18 years. We employed multivariate linear regression and weighted quantile sum (WQS) regression to assess the associations of urinary metals with LTL in children and adolescents. Mediation analyses were conducted to explore the effects of thyroid hormones on these relationships. Urinary cobalt (Co), nickel (Ni), strontium (Sr), mercury (Hg), cadmium (Cd), and thallium (Tl) were related to a shorter LTL in children and adolescents. The WQS regression showed a 6.31% (95% CI: -8.76%, -3.79%) decrease in LTL per quartile increase in the WQS index, and identified Ni (23.3%), Sr (21.7%), and Tl (18.0%) as the major contributors. Mediation analyses showed that triiodothyronine (T3) mediated 14.8% and 8.1% of the associations of urinary Sr and Hg with LTL, respectively, and suppressed 9.3% of the association with urinary Co. Furthermore, the inverse associations of Sr, Cd, and Tl with LTL were attenuated among participants who adopted a healthy lifestyle. Our findings suggested that exposure to Co, Ni, Sr, Cd, Hg, Tl, and their mixture were related to a shorter LTL in children and adolescents, potentially mediated by thyroid hormones. Additionally, adopting a healthy lifestyle may alleviate these adverse effects.
Collapse
Affiliation(s)
- Qing Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gaojie Fan
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianing Bi
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Fang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fei Luo
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaofeng Huang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Heng Li
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Binghai Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lianyan Yan
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenwen Guo
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liqin Hu
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Surong Mei
- Key Laboratory of Environment and Health, Ministry of Education, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
10
|
Farzan SF, Niu Z, Guo F, Shahriar M, Kibriya MG, Jasmine F, Sarwar G, Jackson BP, Ahsan H, Argos M. Exposure to metal mixtures and telomere length in Bangladeshi children. Am J Epidemiol 2025; 194:35-43. [PMID: 38973734 PMCID: PMC12034834 DOI: 10.1093/aje/kwae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 05/23/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024] Open
Abstract
Telomere length is associated with chronic diseases and, in younger populations, may represent a biomarker of disease susceptibility. As growing evidence suggests that environmental factors, including metals, may impact telomere length. We investigated the association between 17 metals measured in toenail samples and leukocyte relative telomere length (RTL), among 472 5- to 7-year-old children enrolled in the Bangladesh Environmental Research in Children's Health (BiRCH) cohortIn single-exposure linear regression models, a doubling of arsenic (As) and mercury (Hg) (μg/g) were associated with a -0.21 (95% CI, -0.032 to -0.010; P = .0005) and -0.017 (95% CI, -0.029 to -0.004; P = .006) difference in RTL, respectively. In Bayesian Kernel Machine Regression (BKMR) mixture models, the overall metal mixture was inversely associated with RTL (P-for-trend < 0.001). Negative associations with RTL were observed with both log2-As and log2-Hg, while an inverted U-shaped association was observed for log2-zinc (Zn) with RTL. We found little evidence of interaction among metals. Sex-stratification identified stronger associations of the overall mixture and log2-As with RTL among females compared to males. Our study suggests that As and Hg may independently influence RTL in mid-childhood. Further studies are needed to investigate potential long-term impacts of metal-associated telomere shortening in childhood on health outcomes in adult life.
Collapse
Affiliation(s)
- Shohreh F Farzan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Zhongzheng Niu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Fangqi Guo
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Mohammad Shahriar
- UChicago Research Bangladesh, Dhaka-1230, Bangladesh
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, United States
| | - Muhammad G Kibriya
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, United States
| | - Farzana Jasmine
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, United States
| | - Golam Sarwar
- UChicago Research Bangladesh, Dhaka-1230, Bangladesh
| | - Brian P Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH 03755, United States
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, United States
| | - Maria Argos
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL 60612, United States
| |
Collapse
|
11
|
Mao K, Jin H, Mao W, Guo R, Che X. Presence of 1, 3-diphenylguanidine and its derivatives in human urine and their human exposure. ENVIRONMENTAL RESEARCH 2024; 263:120252. [PMID: 39481787 DOI: 10.1016/j.envres.2024.120252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/03/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
Recent studies have demonstrated the widespread presence of 1,3-diphenylguanidine (DPG) and its derivatives in environmental matrices. While, the amount of human exposure to these rubber additives remains unclear. In this study, we collected human urine samples from healthy general adults (n = 221) living in Quzhou, China, and analyzed these samples for DPG and its five derivatives. DPG, 1,6-bis(cyano-guanidino)hexane (HCG), 1,3-di-o-tolylguanidine (DTG) and exhibited detection frequencies exceeding 50% in collected human urine. Presence of HCG, 1-(o-tolyl)biguanide (detection frequency 17%), and 1-(4-cyanophenyl)guanidine (6.0%) in human urine was also demonstrated for the first time. The highest mean human urinary concentration was found for DPG (0.89 ng/mL, < LOD-4.7 ng/mL), followed by DTG (0.57 ng/mL, < LOD-3.1 ng/mL) and HCG (0.34 ng/mL, < LOD-1.8 ng/mL). Male participants had consistently higher average human urinary levels of DPG, DTG, and HCG than female subjects, but none of these differences were significant (p > 0.10). DPG and DTQ consistently showed a decline in the human urinary concentrations as age of the participant increased. DPG (mean 170 ng/kg bw/day, median 137 ng/kg bw/day) had the highest human daily exposure amount, followed by DTG (106 ng/kg bw/day, 91 ng/kg bw/day) and HCG (58 ng/kg bw/day, 38 ng/kg bw/day). The study enhances our understanding of human exposure to these rubber additives, which is crucial for assessing their potential health risks.
Collapse
Affiliation(s)
- Kaili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China; Innovation Research Center of Advanced Environmental Technology, Eco-Industrial Innovation Institute ZJUT, Quzhou, Zhejiang 324400, PR China
| | - Weili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, PR China
| | - Ruyue Guo
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, PR China
| | - Xiaoling Che
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, PR China.
| |
Collapse
|
12
|
Jian X, Baeyens W, De Waele E, Guo W, Jia YW, Leemans L, Leermakers M, Van Larebeke N, Gao Y. Intake rates of methylmercury in the Belgian population: Evolution over 40 years. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176695. [PMID: 39366585 DOI: 10.1016/j.scitotenv.2024.176695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Methylmercury (MeHg) is one of the most toxic compounds, it bioaccumulates and biomagnifies along the food chain and finally damages human's nervous system. Knowing that the main intake route for MeHg in humans is through fish consumption, intake rates were studied in various countries, but not in Belgium. Based on Hg and MeHg measurements in various fishes, mainly from North Sea catches, in combination with the national food consumption surveys, we could calculate daily Hg and MeHg intake rates for the Belgian population in 1975, 1997 and 2014-2021. These values are then compared with daily intake values reported by other countries and with the acceptable daily intake (ADI) values recommended by international organizations. Daily Hg and MeHg intake rates decreased strongly between 1975 and the 2 later periods: while average intake rates are all below the ADI norms, this is not the case for the 95th percentile rates because they exceed or are very close to the ADI values. Since daily MeHg intake rates correlate well with hair and blood concentrations, these were used as a good proxy of MeHg intoxication and were related to health effects observed in children, adolescents, adults and elderly persons living in Belgium via biomonitoring.
Collapse
Affiliation(s)
- Xiao Jian
- Department of Clinical Nutrition, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, 116023 Dalian, Liaoning Province, China; Archaeology, Environmental Changes and Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Willy Baeyens
- Archaeology, Environmental Changes and Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Elisabeth De Waele
- Vitality Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium.; Metabolism and Nutrition, Department of Clinical Nutrition, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Wei Guo
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology (BJUT), Pingle Park 100, Chaoyang District, 100124 Beijing, PR China
| | - Yu-Wei Jia
- Archaeology, Environmental Changes and Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Lynn Leemans
- Vitality Research Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Martine Leermakers
- Archaeology, Environmental Changes and Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Nik Van Larebeke
- Archaeology, Environmental Changes and Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Yue Gao
- Archaeology, Environmental Changes and Geo-Chemistry (AMGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
13
|
Herzog CMS, Goeminne LJE, Poganik JR, Barzilai N, Belsky DW, Betts-LaCroix J, Chen BH, Chen M, Cohen AA, Cummings SR, Fedichev PO, Ferrucci L, Fleming A, Fortney K, Furman D, Gorbunova V, Higgins-Chen A, Hood L, Horvath S, Justice JN, Kiel DP, Kuchel GA, Lasky-Su J, LeBrasseur NK, Maier AB, Schilling B, Sebastiano V, Slagboom PE, Snyder MP, Verdin E, Widschwendter M, Zhavoronkov A, Moqri M, Gladyshev VN. Challenges and recommendations for the translation of biomarkers of aging. NATURE AGING 2024; 4:1372-1383. [PMID: 39285015 DOI: 10.1038/s43587-024-00683-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/12/2024] [Indexed: 10/01/2024]
Abstract
Biomarkers of aging (BOA) are quantitative parameters that predict biological age and ideally its changes in response to interventions. In recent years, many promising molecular and omic BOA have emerged with an enormous potential for translational geroscience and improving healthspan. However, clinical translation remains limited, in part due to the gap between preclinical research and the application of BOA in clinical research and other translational settings. We surveyed experts in these areas to better understand current challenges for the translation of aging biomarkers. We identified six key barriers to clinical translation and developed guidance for the field to overcome them. Core recommendations include linking BOA to clinically actionable insights, improving affordability and availability to broad populations and validation of biomarkers that are robust and responsive at the level of individuals. Our work provides key insights and practical recommendations to overcome barriers impeding clinical translation of BOA.
Collapse
Affiliation(s)
- Chiara M S Herzog
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria
| | - Ludger J E Goeminne
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jesse R Poganik
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nir Barzilai
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daniel W Belsky
- Department of Epidemiology, Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, USA
| | | | - Brian H Chen
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | | | - Alan A Cohen
- Department of Environmental Health Sciences, Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Steven R Cummings
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | | | | | | | | | - David Furman
- Buck Institute for Research on Aging, Novato, CA, USA
- Stanford 1000 Immunomes Project, Stanford School of Medicine, Stanford, CA, USA
- The National Scientific and Research Council, Austral University, Buenos Aires, Argentina
| | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | | | - Lee Hood
- Buck Institute for Research on Aging, Novato, CA, USA
- Phenome Health, Seattle, WA, USA
| | | | - Jamie N Justice
- XPRIZE Foundation, Culver City, CA, USA
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Douglas P Kiel
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Roslindale, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - George A Kuchel
- University of Connecticut School of Medicine, @UConnAging, Farmington, CT, USA
| | - Jessica Lasky-Su
- Department of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nathan K LeBrasseur
- Department of Physical Medicine and Rehabilitation, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Andrea B Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore, Singapore
- Department of Human Movement Sciences, @AgeAmsterdam, Amsterdam Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | - Vittorio Sebastiano
- Department of Obstetrics and Gynecology, School of Medicine, Stanford University, Stanford, CA, USA
| | - P Eline Slagboom
- Section of Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Michael P Snyder
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Martin Widschwendter
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria
- Department of Women's Cancer, EGA Institute for Women's Health, University College London, London, UK
- Department of Women's and Children's Health, Division of Obstetrics and Gynaecology, Karolinska Institutet, Stockholm, Sweden
| | | | - Mahdi Moqri
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA.
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Chen X, Ren Q, Wu F, Zhu K, Tao J, Zhang A. Exposure to four typical heavy metals induced telomere shortening of peripheral blood mononuclear cells in relevant with declined urinary aMT6s in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116791. [PMID: 39068742 DOI: 10.1016/j.ecoenv.2024.116791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Environmental heavy metals pollution have seriously threatened the health of human beings. An increasing number of researches have demonstrated that environmental heavy metals can influence the telomere length of Peripheral Blood Mononuclear Cells (PBMCs), which implicate biological aging as well as predicts diseases. Our previous study has shown that methylmercury (MeHg)-induced telomere shortening in rat brain tissue was associated with urinary melatonin metabolite 6-sulfatoxymelatonin (aMT6s) levels. Here, we aimed to further elucidate the impact of 4 typical heavy metals (As, Hg, Cd and Pb) on telomere length of PBMCs and their association with urinary aMT6s in rats. In this study, eighty-eight male Sprague-Dawley rats were randomized grouped into eleven groups. Among them, forty 3-month-old (young) and forty 12-month-old (middle-aged) rats were divided into young or middle-aged control groups as well as typical heavy metals exposed groups, respectively. Eight 24-month-old rats (old) was divided into aging control group. The results showed that MeHg exposure in young rats while sodium arsenite (iAs), MeHg, cadmium chloride (CdCl2), lead acetate (PbAc) exposure in middle-aged rats for 3 months significantly reduced the levels of and urinary aMT6s, as well as telomere length of PBMCs. In addition, they also induced abnormalities in serum oxidative stress (SOD, MDA and GPx) and inflammatory (IL-1β, IL-6 and TNF-α) indicators. Notably, there was a significant positive correlation between declined level of urinary aMT6s and the shortening of telomere length in PBMCs in rats exposed to 4 typical heavy metals. These results suggested that 4 typical heavy metals exposure could accelerate the reduction of telomere length of PBMCs partially by inducing oxidative stress and inflammatory in rats, while ageing may be an important synergistic factor. Urinary aMT6s detection may be a alternative method to reflect telomere toxic effects induced by heavy metal exposure.
Collapse
Affiliation(s)
- Xiong Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Department of Toxicology, Guizhou Medical University, Guian New Area, Guizhou 561113, China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guian New Area, Guizhou 561113, China.
| | - Qian Ren
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Department of Toxicology, Guizhou Medical University, Guian New Area, Guizhou 561113, China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guian New Area, Guizhou 561113, China
| | - Fan Wu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Department of Toxicology, Guizhou Medical University, Guian New Area, Guizhou 561113, China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guian New Area, Guizhou 561113, China
| | - Kai Zhu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Department of Toxicology, Guizhou Medical University, Guian New Area, Guizhou 561113, China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guian New Area, Guizhou 561113, China
| | - Junyan Tao
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Department of Toxicology, Guizhou Medical University, Guian New Area, Guizhou 561113, China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guian New Area, Guizhou 561113, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Department of Toxicology, Guizhou Medical University, Guian New Area, Guizhou 561113, China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guian New Area, Guizhou 561113, China.
| |
Collapse
|
15
|
Feng Y, You Y, Li M, Guan X, Fu M, Wang C, Xiao Y, He M, Guo H. Mitochondrial DNA copy number mediated the associations between perfluoroalkyl substances and breast cancer incidence: A prospective case-cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173767. [PMID: 38844220 DOI: 10.1016/j.scitotenv.2024.173767] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/18/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Epidemiologic studies have reported the relationships between perfluoroalkyl substances (PFASs) and breast cancer incidence, yet the underlying mechanisms are not well understood. This study aimed to elucidate the mediation role of mitochondrial DNA copy number (mtDNAcn) in the relationships between PFASs exposure and breast cancer risk. We conducted a case-cohort study within the Dongfeng-Tongji cohort, involving 226 incident breast cancer cases and a random sub-cohort (n = 990). Their plasma concentrations of six PFASs [including perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroheptanoic acid (PFHpA), perfluorooctane sulfonic acid (PFOS) and perfluorohexane sulfonic acid (PFHxS)], and peripheral blood levels of mtDNAcn, were detected at baseline by using ultraperformance liquid chromatography-tandem mass spectrometry and quantitative real-time PCR, respectively. Linear regression and Barlow-weighted Cox models were employed separately to assess the relationships of mtDNAcn with PFASs and breast cancer risk. Mediation analysis was further conducted to quantify the mediating effects of mtDNAcn on PFAS-breast cancer relationships. We observed increased blood mtDNAcn levels among participants with the highest PFNA and PFHpA exposure [Q4 vs. Q1, β(95%CI) = 0.092(0.022, 0.162) and 0.091(0.022, 0.160), respectively], while no significant associations were observed of PFOA, PFDA, PFOS, or PFHxS with mtDNAcn. Compared to participants within the lowest quartile subgroup of mtDNAcn, those with the highest mtDNAcn levels exhibited a significantly increased risk of breast cancer and postmenopausal breast cancer [Q4 vs. Q1, HR(95%CI) = 3.34(1.80, 6.20) and 3.71(1.89, 7.31)]. Furthermore, mtDNAcn could mediate 14.6 % of the PFHpA-breast cancer relationship [Indirect effect, HR(95%CI) = 1.02(1.00, 1.05)]. Our study unveiled the relationships of PFNA and the short-chain PFHpA with mtDNAcn and the mediation role of mtDNAcn in the PFHpA-breast cancer association. These findings provided insights into the potential biological mechanisms linking PFASs to breast cancer risk.
Collapse
Affiliation(s)
- Yue Feng
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Yingqian You
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Mengying Li
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Xin Guan
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Ming Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Chenming Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Yang Xiao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, China.
| |
Collapse
|
16
|
Jakubek P, Parchem K, Wieckowski MR, Bartoszek A. The Interplay between Endogenous and Foodborne Pro-Oxidants and Antioxidants in Shaping Redox Homeostasis. Int J Mol Sci 2024; 25:7827. [PMID: 39063068 PMCID: PMC11276820 DOI: 10.3390/ijms25147827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Oxidative stress has been known about in biological sciences for several decades; however, the understanding of this concept has evolved greatly since its foundation. Over the past years, reactive oxygen species, once viewed as solely deleterious, have become recognized as intrinsic components of life. In contrast, antioxidants, initially believed to be cure-all remedies, have failed to prove their efficacy in clinical trials. Fortunately, research on the health-promoting properties of antioxidants has been ongoing. Subsequent years showed that the former assumption that all antioxidants acted similarly was greatly oversimplified. Redox-active compounds differ in their chemical structures, electrochemical properties, mechanisms of action, and bioavailability; therefore, their efficacy in protecting against oxidative stress also varies. In this review, we discuss the changing perception of oxidative stress and its sources, emphasizing everyday-life exposures, particularly those of dietary origin. Finally, we posit that a better understanding of the physicochemical properties and biological outcomes of antioxidants is crucial to fully utilize their beneficial impact on health.
Collapse
Affiliation(s)
- Patrycja Jakubek
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland;
| | - Karol Parchem
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland;
| | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
| |
Collapse
|
17
|
Lozano M, McEachan RRC, Wright J, Yang TC, Dow C, Kadawathagedara M, Lepeule J, Bustamante M, Maitre L, Vrijheid M, Brantsæter AL, Meltzer HM, Bempi V, Roumeliotaki T, Thomsen C, Nawrot T, Broberg K, Llop S. Early life exposure to mercury and relationships with telomere length and mitochondrial DNA content in European children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173014. [PMID: 38729362 DOI: 10.1016/j.scitotenv.2024.173014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Telomere length (TL) and mitochondrial function expressed as mitochondrial DNA copy number (mtDNAcn) are biomarkers of aging and oxidative stress and inflammation, respectively. Methylmercury (MeHg), a common pollutant in fish, induces oxidative stress. We hypothesized that elevated oxidative stress from exposure to MeHg decreases mtDNAcn and shortens TL. METHODS Study participants are 6-11-year-old children from the HELIX multi-center birth cohort study, comprising six European countries. Prenatal and postnatal total mercury (THg) concentrations were measured in blood samples, TL and mtDNAcn were determined in child DNA. Covariates and confounders were obtained by questionnaires. Robust regression models were run, considering sociodemographic and lifestyle covariates, as well as fish consumption. Sex, ethnicity, and fish consumption interaction models were also run. RESULTS We found longer TL with higher pre- and postnatal THg blood concentrations, even at low-level THg exposure according to the RfD proposed by the US EPA. The prenatal association showed a significant linear relationship with a 3.46 % increase in TL for each unit increased THg. The postnatal association followed an inverted U-shaped marginal non-linear relationship with 1.38 % an increase in TL for each unit increased THg until reaching a cut-point at 0.96 μg/L blood THg, from which TL attrition was observed. Higher pre- and postnatal blood THg concentrations were consistently related to longer TL among cohorts and no modification effect of fish consumption nor children's sex was observed. No association between THg exposure and mtDNAcn was found. DISCUSSION We found evidence that THg is associated with TL but the associations seem to be time- and concentration-dependent. Further studies are needed to clarify the mechanism behind the telomere changes of THg and related health effects.
Collapse
Affiliation(s)
- Manuel Lozano
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, Valencia, Spain.
| | - Rosemary R C McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | - Tiffany C Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | - Courtney Dow
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, INRAE, CRESS, Paris, France
| | - Manik Kadawathagedara
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, INRAE, CRESS, Paris, France
| | - Johanna Lepeule
- Université Grenoble Alpes, INSERM, CNRS, Institute for Advanced Biosciences (IAB), Grenoble, France
| | - Mariona Bustamante
- ISGlobal, Universitat Pompeu Fabra (UPF); Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Lea Maitre
- ISGlobal, Universitat Pompeu Fabra (UPF); Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Universitat Pompeu Fabra (UPF); Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Anne Lise Brantsæter
- Division of Climate and Environmental Health and Centre for Sustainable Diets, Norwegian Institute of Public Health, Oslo, Norway
| | - Helle Margrete Meltzer
- Division of Climate and Environmental Health and Centre for Sustainable Diets, Norwegian Institute of Public Health, Oslo, Norway
| | - Vasiliki Bempi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Theano Roumeliotaki
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Cathrine Thomsen
- Department of Food Safety, Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - Tim Nawrot
- Research Unit Environment and Health, KU Leuven Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sabrina Llop
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
18
|
Fu Z, Zhang X, Zhong C, Gao Z, Yan Q. Association between single and mixed exposure to polycyclic aromatic hydrocarbons and biological aging. Front Public Health 2024; 12:1379252. [PMID: 38903587 PMCID: PMC11188445 DOI: 10.3389/fpubh.2024.1379252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
Background Aging is one of the most important public health issues. Previous studies on the factors affecting aging focused on genetics and lifestyle, but the association between polycyclic aromatic hydrocarbons (PAHs) and aging is still unclear. Methods This study utilized data from the National Health and Nutrition Examination Survey (NHANES) 2003-2010. A total of 8,100 participants was used to construct the biological age predictors by using recent advanced algorithms Klemera-Doubal method (KDM) and Mahalanobis distance. Two biological aging indexes, recorded as KDM-BA acceleration and PhenoAge acceleration, were used to investigate the relationship between single PAHs and biological age using a multiple linear regression analysis, and a weighted quantile sum (WQS) model was constructed to explore the mixed effects of PAHs on biological age. Finally, we constructed the restricted cubic spline (RCS) model to assess the non-linear relationship between PAHs and biological age. Results Exposure to PAHs was associated with PhenoAge acceleration. Each unit increase in the log10-transformed level of 1-naphthol, 2-naphthol, and 2-fluorene was associated with a 0.173 (95% CI: 0.085, 0.261), 0.310 (95% CI: 0.182, 0.438), and 0.454 (95% CI: 0.309, 0.598) -year increase in PhenoAge acceleration, respectively (all corrected P < 0.05). The urinary PAH mixture was relevant to KDM-BA acceleration (β = 0.13, 95% CI: 0, 0.26, P = 0.048) and PhenoAge acceleration (β = 0.59, 95% CI: 0.47, 0.70, P < 0.001), and 2-naphthol had the highest weight in the weighted quantile sum (WQS) regression. The RCS analyses showed a non-linear association between 2-naphthol and 2-fluorene with KDM-BA acceleration (all P < 0.05) in addition to a non-linear association between 1-naphthol, 2-naphthol, 3-fluorene, 2-fluorene, and 1-pyrene with PhenoAge acceleration (all P < 0.05). Conclusion Exposure to mixed PAHs is associated with increased aging, with 2-naphthol being a key component of PAHs associated with aging. This study has identified risk factors in terms of PAH components for aging.
Collapse
Affiliation(s)
- Zuqiang Fu
- School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Xianli Zhang
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunyu Zhong
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhe Gao
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qing Yan
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
19
|
Cui F, Tang L, Li D, Ma Y, Wang J, Xie J, Su B, Tian Y, Zheng X. Early-life exposure to tobacco, genetic susceptibility, and accelerated biological aging in adulthood. SCIENCE ADVANCES 2024; 10:eadl3747. [PMID: 38701212 PMCID: PMC11068008 DOI: 10.1126/sciadv.adl3747] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
Early-life tobacco exposure serves as a non-negligible risk factor for aging-related diseases. To understand the underlying mechanisms, we explored the associations of early-life tobacco exposure with accelerated biological aging and further assessed the joint effects of tobacco exposure and genetic susceptibility. Compared with those without in utero exposure, participants with in utero tobacco exposure had an increase in Klemera-Doubal biological age (KDM-BA) and PhenoAge acceleration of 0.26 and 0.49 years, respectively, but a decrease in telomere length of 5.34% among 276,259 participants. We also found significant dose-response associations between the age of smoking initiation and accelerated biological aging. Furthermore, the joint effects revealed that high-polygenic risk score participants with in utero exposure and smoking initiation in childhood had the highest accelerated biological aging. There were interactions between early-life tobacco exposure and age, sex, deprivation, and diet on KDM-BA and PhenoAge acceleration. These findings highlight the importance of reducing early-life tobacco exposure to improve healthy aging.
Collapse
Affiliation(s)
- Feipeng Cui
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Linxi Tang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Dankang Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Yudiyang Ma
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Jianing Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Junqing Xie
- Center for Statistics in Medicine, NDORMS, University of Oxford, The Botnar Research Centre, Oxford, UK
| | - Binbin Su
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, No. 31, Beijige-3, Dongcheng District, Beijing 100730, PR China
| | - Yaohua Tian
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | - Xiaoying Zheng
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, No. 31, Beijige-3, Dongcheng District, Beijing 100730, PR China
| |
Collapse
|
20
|
Wang C, Zhong G, Liu C, Hong S, Guan X, Xiao Y, Fu M, Zhou Y, You Y, Wu T, Zhao H, Wang Y, Chen S, Zhang Y, Wang C, Guo H. DNA methylation aging signatures of multiple metals exposure and their mediation effects in metal-associated mortality: Evidence from the Dongfeng-Tongji cohort study. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133200. [PMID: 38113735 DOI: 10.1016/j.jhazmat.2023.133200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Humans were exposed to multiple metals, but the impact of metals on DNA methylation-age (DNAm-age), a well-recognized aging measure, remains inconclusive. This study included 2942 participants from the Dongfeng-Tongji cohort. We detected their plasma concentrations of 23 metals and determined their genome-wide DNA methylation using the Illumina Human-MethylationEPIC BeadChip. Five DNAm-age acceleration indexes (DAIs), including HannumAge-Accel, HorvathAge-Accel, PhenoAge-Accel, GrimAge-Accel (residual from regressing corresponding DNAm-age on chronological age) and DNAm-mortality score (DNAm-MS), were separately calculated. We found that each 1-unit increase in ln-transformed copper (Cu) was associated with a separate 1.02-, 0.83- and 0.07-unit increase in PhenoAge-Accel, GrimAge-Accel, and DNAm-MS (all FDR<0.05). Each 1-unit increase in ln-transformed nickel (Ni) was associated with a 0.34-year increase in PhenoAge-Accel, while each 1-unit increase in ln-transformed strontium (Sr) was associated with a 0.05-unit increase in DNAm-MS. The Cu, Ni and Sr showed joint positive effects on above three DAIs. PhenoAge-Accel, GrimAge-Accel, and DNAm-MS mediated a separate 6.5%, 12.3%, 6.0% of the positive association between Cu and all-cause mortality; GrimAge-Accel mediated 14.3% of the inverse association of selenium with all-cause mortality. Our findings revealed the effects of Cu, Ni, Sr and their co-exposure on accelerated aging and highlighted mediation roles of DNAm-age on metal-associated mortality.
Collapse
Affiliation(s)
- Chenming Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Guorong Zhong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chenliang Liu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shiru Hong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xin Guan
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yang Xiao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ming Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuhan Zhou
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yingqian You
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Tianhao Wu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hui Zhao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuxi Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shengli Chen
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yichi Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chaolong Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
21
|
Li K, Wu J, Zhou Q, Zhao J, Li Y, Yang M, Yang Y, Hu Y, Xu J, Zhao M, Xu Q. The mediating role of accelerated biological aging in the association between blood metals and cognitive function. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132779. [PMID: 37879277 DOI: 10.1016/j.jhazmat.2023.132779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
Aging is a key risk factor in cognitive diseases. Recently, metal exposures were found associated with both biological aging and cognitive function. Here, we aim to evaluate the associations of blood metals with cognitive function and the mediated effect of biological aging. Fourteen metals were detected and biological age was calculated through Klemera and Doubal method among 514 adults in Beijing, China. The generalized linear models indicated that the copper (Cu), molybdenum (Mo), and strontium (Sr) were positively associated with biological aging [βCu (95% CI): 12.76 (9.26, 16.27); βMo (95% CI): 1.50 (0.15, 2.85)], and βSr (95% CI): 1.86 (0.68, 3.03)], while vanadium (V) was inversely related to biological aging [βV (95% CI): -0.76 (-1.48, -0.05)]. Subsequently, Cu, lead (Pb), selenium (Se), and biological aging were associated with cognitive function and further mediation analyses confirmed that biological aging partially mediated (33.98%, P = 0.019) the association of Cu and cognitive function. Additionally, we constructed a lifestyle index that implied the modifiable healthy lifestyle could slow aging to attenuate the detrimental effect of metals on cognition. Our findings provide insights into the potential pathways linking multiple metals exposure to aging and cognition and underscore the importance of adopting healthy lifestyles.
Collapse
Affiliation(s)
- Kai Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| | - Jingtao Wu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Yanbing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Ming Yang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Yisen Yang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Yaoyu Hu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
22
|
EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
23
|
Mishra B, Tiwari A, Mishra S. Metabolic Changes and Immunity Suppression Parameters as Biomarkers of Environmental Pollutants. BIOMONITORING OF POLLUTANTS IN THE GLOBAL SOUTH 2024:693-719. [DOI: 10.1007/978-981-97-1658-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Lv S, Lai X, Guo W, Liu M, Li M, Yang H, Yang L, Zhang X. Short-term exposure to multiple metals mixture and mitochondrial DNA copy number among children: A panel study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165151. [PMID: 37385501 DOI: 10.1016/j.scitotenv.2023.165151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Little is known regarding the individual and overall associations of short-term co-exposure to metals mixture with mitochondrial DNA copy number (mtDNAcn) among healthy children. METHODS We conducted a panel study across three seasons among 144 children aged 4 to 12 years in Guangzhou. For each season, we collected the first-morning urine for four consecutive days and fasting blood on the 4th day to detect 23 urinary metals and blood leukocyte mtDNAcn, respectively. Linear mixed-effect (LME) models and multiple informant models were used to examine the relations of individual metals with mtDNAcn over different lag days, and the least absolute shrinkage and selection operator (LASSO) regression was applied to determine the most important metal. We further employed weighted quantile sum (WQS) regression to investigate the overall association of metals mixture with mtDNAcn. RESULTS Nickel (Ni), manganese (Mn) and antimony (Sb) were independently associated with mtDNAcn in a linear dose-response manner. Each 1-fold increase in Ni at lag 0 day, Mn and Sb at lag 2 day was associated with respective decrements of 8.74 %, 6.93 % and 3.98 % in mtDNAcn in multi-metal LME models. LASSO regression also selected Ni, Mn and Sb as the most significant metals at the corresponding lag day. WQS regression showed overall inverse associations between metals mixture and mtDNAcn both at lag 0 and lag 2 day, with mtDNAcn decreased by 2.75 % and 3.14 % in response to a quartile increase in the WQS index. Additionally, the associations of Ni and Mn with decreased mtDNAcn were stronger among children younger than 7 years, girls and those having less vegetables and fruit intake. CONCLUSION We found an overall association between metals mixture and decreased mtDNAcn among healthy children, in which Ni, Mn and Sb were the major contributors. Younger children, girls and those with less vegetables and fruit intake were more susceptible.
Collapse
Affiliation(s)
- Shirong Lv
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuefeng Lai
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenting Guo
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Miao Liu
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Li
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huihua Yang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liangle Yang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
25
|
Cevallos‐Solorzano G, Bailon‐Moscoso N, Ordóñez‐Delgado L, Jara P, Tomás G, Espinosa CI. Chronic Degradation of Seasonally Dry Tropical Forests Increases the Incidence of Genotoxicity in Birds. GEOHEALTH 2023; 7:e2022GH000774. [PMID: 37790599 PMCID: PMC10545417 DOI: 10.1029/2022gh000774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/03/2023] [Accepted: 09/01/2023] [Indexed: 10/05/2023]
Abstract
Multiple studies have shown that exposure to pollutants can increase genotoxic damage in different taxa. However, to our knowledge, the effects of environmental stress have been explored little. In certain stressful ecosystems, such as seasonally dry tropical forests, the combined effects of anthropogenic activities and ongoing global changes can cause an increase in environmental stresses, in turn, may trigger physiological and genetic effects on biodiversity. The present aims to assess changes in the prevalence of genotoxic damage in birds within three states of forest degradation in the Tumbesian Region of Western Ecuador. We used blood samples from 50 bird species to determine the frequency of micronucleus and nuclear abnormalities in erythrocytes. Our results revealed a significant impact of forest degradation on the occurrence probability of micronucleus and nuclear abnormalities at the community level. Localities with higher levels of degradation exhibited higher levels of abnormalities. However, when analyzing the dominant species, we found contrasting responses. While Lepidocolaptes souleyetii showed a reduction in the proportion of nuclear abnormalities from the natural to shrub-dominated localities Troglodytes aedon and Polioptila plumbea showed an increase for semi-natural and shrub-dominated respectively. We concluded that the degradation process of these tropical forests increases the stress of bird community generating genotoxic damage. Bird responses seem to be species-specific, which could explain the differences in changes in bird composition reported in other studies.
Collapse
Affiliation(s)
| | - N. Bailon‐Moscoso
- Facultad de Ciencias de la SaludUniversidad Técnica Particular de LojaLojaEcuador
| | - L. Ordóñez‐Delgado
- Laboratorio de Ecología Tropical y Servicios Ecosistémicos (EcoSs‐Lab)Departamento de Ciencias Biológicas y AgropecuariasUniversidad Técnica Particular de LojaLojaEcuador
- Museo de ZoologíaUniversidad Técnica Particular de LojaLojaEcuador
- Programa de Doctorado en Conservación de Recursos NaturalesUniversidad Rey Juan CarlosMadridEspaña
| | - P. Jara
- Facultad de Ciencias de la SaludUniversidad Técnica Particular de LojaLojaEcuador
- Carrera de BiologíaUniversidad Técnica Particular de LojaLojaEcuador
| | - G. Tomás
- Laboratorio de Ecología Tropical y Servicios Ecosistémicos (EcoSs‐Lab)Departamento de Ciencias Biológicas y AgropecuariasUniversidad Técnica Particular de LojaLojaEcuador
- Departamento de Ecología Funcional y EvolutivaEstación Experimental de Zonas Áridas (EEZA‐CSIC)AlmeríaEspaña
| | - C. I. Espinosa
- Laboratorio de Ecología Tropical y Servicios Ecosistémicos (EcoSs‐Lab)Departamento de Ciencias Biológicas y AgropecuariasUniversidad Técnica Particular de LojaLojaEcuador
| |
Collapse
|
26
|
Chaney C, Wiley KS. The variable associations between PFASs and biological aging by sex and reproductive stage in NHANES 1999-2018. ENVIRONMENTAL RESEARCH 2023; 227:115714. [PMID: 36965790 DOI: 10.1016/j.envres.2023.115714] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/31/2023] [Accepted: 03/16/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFASs) are endocrine disrupting chemicals that have myriad effects on human physiology. Estrogenic PFASs may influence biological aging by mimicking the activity of endogenous estrogens, which can decrease inflammation and oxidative stress and enhance telomerase activity. We hypothesized that PFAS exposure would be differentially associated with measures of biological aging based on biological sex and reproductive stage. METHODS We analyzed associations between serum PFAS levels and measures of biological aging for pre- and postmenopausal women and men (n = 3193) using data from the 2003 to 2018 waves of the National Health and Nutrition Examination Survey. Examining PFASs both individually and in mixture models, we investigated four measures of clinical aging (Homeostatic Dysregulation, the Klemera-Doubal Method, Phenotypic Age Acceleration, and Allostatic Load), oxidative stress, and telomere length. RESULTS PFOA and PFOS were negatively associated with Phenotypic Age Acceleration (e.g. decelerated aging) for men B = -0.22, 95% CI: -0.32, -0.12; B = -0.04, 95% CI: -0.06, -0.03) , premenopausal women (B = -0.58, 95% CI: -0.83, -0.32; B = -0.15, 95% CI: -0.20, -0.09), and postmenopausal women (B= -0.22, 95% CI: -0.43, -0.01; B = -0.05, 95% CI: -0.08, -0.02). In mixture models, we found net negative effects for Phenotypic Age Acceleration and Allostatic Load for men, premenopausal women, and postmenopausal women. We also found significant mixture effects for the antioxidants bilirubin and albumin among the three sample groups. We found no evidence to support effects on telomere length. DISCUSSION Our findings suggest that PFAS exposure may be inversely associated with some measures of biological aging at the relatively low levels of exposure in this sample, regardless of reproductive stage and sex, which does not support our hypothesis. This research provides insights into how PFAS exposure may variably influence aging measures depending on the physiological process investigated.
Collapse
Affiliation(s)
- C Chaney
- Department of Anthropology, Yale University, New Haven, CT, USA.
| | - K S Wiley
- Department of Anthropology, University of California, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
27
|
Zhang M, Bi X, Liu S, Liu Y, Wang Q. The novel polyfluoroalkyl benzenesulfonate OBS exposure induces cell cycle arrest and senescence of rat pituitary cell GH3 via the p53/p21/RB pathway. Toxicology 2023; 490:153511. [PMID: 37059347 DOI: 10.1016/j.tox.2023.153511] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Sodium p-perfluorous nonenoxybenzene sulfonate (OBS), an economical alternative to perfluorooctane sulfonate (PFOS) in multiple industrial fields, is widely detected in the environment. The toxicity of OBS has received increasing attention. Pituitary cells are components of the endocrine system and act as vital regulators of homeostatic endocrine balance. However, the effects of OBS on pituitary cells remain unknown. The present study explores the effects of OBS (0.5, 5, and 50 μM) on GH3 rat pituitary cells after treatment for 24, 48, and 72 h. We found that OBS significantly inhibited cell proliferation in GH3 cells with remarkable senescent phenotypes, including enhanced SA-β-gal activity and expression of senescence-associated secretory phenotype (SASP)-related genes, cell cycle arrest, and upregulation of the senescence-related proteins γ-H2A.X and Bcl-2. OBS caused significant cell cycle arrest of GH3 cells at the G1-phase and concomitantly downregulated the expression of some key proteins for the G1/S transition, including cyclin D1 and cyclin E1. Consistently, the phosphorylation of retinoblastoma (RB), which plays a central role in regulating the cell cycle, was prominently reduced after OBS exposure. Furthermore, OBS notably activated the p53-p21 signalling pathway in GH3 cells, as evidenced by increased p53 and p21 expressions, enhanced p53 phosphorylation, and augmented p53 nuclear import. To our knowledge, this study is the first to reveal that OBS triggers senescence in pituitary cells via the p53-p21-RB signalling pathway. Our study demonstrates a novel toxic effect of OBS in vitro, and provides new perspectives for understanding the potential toxicity of OBS.
Collapse
Affiliation(s)
- Miao Zhang
- Research Institute of Poyang Lake, Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Xiaowen Bi
- Department of Medical Genetics and Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China.
| | - Shuai Liu
- Research Institute of Poyang Lake, Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Yu Liu
- Research Institute of Poyang Lake, Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Qiyu Wang
- Research Institute of Poyang Lake, Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, China.
| |
Collapse
|
28
|
Wang C, Hong S, Guan X, Xiao Y, Fu M, Meng H, Feng Y, Zhou Y, Cao Q, Yuan F, Liu C, Zhong G, You Y, Wu T, Yang H, Zhang X, He M, Wu T, Guo H. Associations between multiple metals exposure and biological aging: Evidence from the Dongfeng-Tongji cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160596. [PMID: 36464054 DOI: 10.1016/j.scitotenv.2022.160596] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Aging is related to a progressive decline in physiological functions and is affected by environmental factors. Metal exposures are linked with many health effects, but have poorly understood associations with aging. In this study, a total of 33,916 participants from the Dongfeng-Tongji cohort were included to establish biological age (BA) predictors by using recent advanced algorithms, Klemera and Doubal method (KDM) and Mahalanobis distance. Two biological aging indexes (BAIs), recorded as KDM-accel [the residual from regressing KDM-BA on chronological age] and physiological dysregulation (PD), were separately defined and tested on their associations with mortality by using Cox proportional hazard models. Among 3320 subjects with laboratory determinations of 23 metals in plasma, the individual and overall associations between these metals and BAIs were evaluated by using multiple-linear regression and weighted quantile sum (WQS) models. Both BAIs were prospectively associated with all-cause mortality among the whole participants [KDM-accel: HR(95%CI) = 1.23(1.18, 1.29); PD: HR(95%CI) = 1.37(1.31, 1.42)]. Each 1-unit increment in ln-transformed strontium and molybdenum were cross-sectionally associated with a separate 0.71- and 0.34-year increase in KDM-accel, and each 1 % increment in copper, rubidium, strontium, cobalt was cross-sectionally associated with a separate 0.10 %, 0.10 %, 0.09 %, 0.02 % increase in PD (all FDR < 0.05). The WQS models observed mixture effects of multi-metals on aging, with a 0.20-year increase in KDM-accel and a 0.04 % increase in PD for each quartile increase in ln-transformed concentrations of all metals [KDM-accel: β(95%CI) = 0.20(0.08, 0.32); PD: β(95%CI) = 0.04(0.02, 0.06)]. Our findings revealed that plasma strontium, molybdenum, copper, rubidium and cobalt were associated with accelerated aging. Multi-metals exposure showed mixture effects on the aging process, which highlights potential preventative interventions.
Collapse
Affiliation(s)
- Chenming Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shiru Hong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Guan
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yang Xiao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hua Meng
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Feng
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuhan Zhou
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiang Cao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fangfang Yuan
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chenliang Liu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guorong Zhong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yingqian You
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tianhao Wu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Handong Yang
- Department of Cardiovascular Diseases, Dongfeng Central Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meian He
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
29
|
Zhang T, Zhao S, Dong F, Jia Y, Chen X, Sun Y, Zhu L. Novel Insight into the Mechanisms of Neurotoxicity Induced by 6:6 PFPiA through Disturbing the Gut-Brain Axis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1028-1038. [PMID: 36594808 DOI: 10.1021/acs.est.2c04765] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As alternatives to traditional per- and polyfluoroalkyl substances, perfluoroalkyl phosphonic acids (PFPiAs) are frequently detected in aquatic environments, but the neurotoxic effects and underlying mechanisms remain unclear. In this study, male zebrafish were exposed to 6:6 PFPiA (1 and 10 nM) for 28 days, which exhibited anxiety-like symptoms. Gut microbiome results indicated that 6:6 PFPiA significantly increased the abundance of Gram-negative bacteria, leading to enhanced levels of lipopolysaccharide (LPS) and inflammation in the gut. The LPS was delivered to the brain through the gut-brain axis (GBA), damaged the blood-brain barrier (BBB), stimulated neuroinflammation, and caused apoptosis as well as neural injury in the brain. This mechanism was verified by the fact that antibiotics reduced the LPS levels in the gut and brain, accompanied by reduced inflammatory responses and anxiety-like behavior. The BBB damage also resulted in the enhanced accumulation of 6:6 PFPiA in the brain, where it might bind strongly with and activate aryl hydrocarbon receptor (AhR) to induce brain inflammation directly. Additionally, as the fish received treatment with an inhibitor of AhR, the inflammation response and anxiety-like behavior decreased distinctly. This study sheds light on the new mechanisms of neurotoxicity-induced 6:6 PFPiA due to the interruption on GBA.
Collapse
Affiliation(s)
- Tianxu Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Sujuan Zhao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
- School of Public Health, Anhui Medical University, Hefei 230032, P.R. China
| | - Fengfeng Dong
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Yibo Jia
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Xin Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Yumeng Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| |
Collapse
|
30
|
Zheng B, Fu J. Telomere dysfunction in some pediatric congenital and growth-related diseases. Front Pediatr 2023; 11:1133102. [PMID: 37077333 PMCID: PMC10106694 DOI: 10.3389/fped.2023.1133102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/20/2023] [Indexed: 04/21/2023] Open
Abstract
Telomere wear and dysfunction may lead to aging-related diseases. Moreover, increasing evidence show that the occurrence, development, and prognosis of some pediatric diseases are also related to telomere dysfunction. In this review, we systematically analyzed the relationship between telomere biology and some pediatric congenital and growth-related diseases and proposed new theoretical basis and therapeutic targets for the treatment of these diseases.
Collapse
|
31
|
Salmón P, Burraco P. Telomeres and anthropogenic disturbances in wildlife: A systematic review and meta-analysis. Mol Ecol 2022; 31:6018-6039. [PMID: 35080073 PMCID: PMC9790527 DOI: 10.1111/mec.16370] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 12/10/2021] [Accepted: 01/13/2022] [Indexed: 01/31/2023]
Abstract
Human-driven environmental changes are affecting wildlife across the globe. These challenges do not influence species or populations to the same extent and therefore a comprehensive evaluation of organismal health is needed to determine their ultimate impact. Evidence suggests that telomeres (the terminal chromosomal regions) are sensitive to environmental conditions and have been posited as a surrogate for animal health and fitness. Evaluation of their use in an applied ecological context is still scarce. Here, using information from molecular and occupational biomedical studies, we aim to provide ecologists and evolutionary biologists with an accessible synthesis of the links between human disturbances and telomere length. In addition, we perform a systematic review and meta-analysis on studies measuring telomere length in wild/wild-derived animals facing anthropogenic disturbances. Despite the relatively small number of studies to date, our meta-analysis revealed a significant small negative association between disturbances and telomere length (-0.092 [-0.153, -0.031]; n = 28; k = 159). Yet, our systematic review suggests that the use of telomeres as a biomarker to understand the anthropogenic impact on wildlife is limited. We propose some research avenues that will help to broadly evaluate their suitability: (i) further causal studies on the link between human disturbances and telomeres; (ii) investigating the organismal implications, in terms of fitness and performance, of a given telomere length in anthropogenically disturbed scenarios; and (iii) better understanding of the underlying mechanisms of telomere dynamics. Future studies in these facets will help to ultimately determine their role as markers of health and fitness in wildlife facing anthropogenic disturbances.
Collapse
Affiliation(s)
- Pablo Salmón
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK,Department of Plant Biology and EcologyFaculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Pablo Burraco
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| |
Collapse
|
32
|
Bae J, Bertucci EM, Bock SL, Hale MD, Moore J, Wilkinson PM, Rainwater TR, Bowden JA, Koal T, PhamTuan H, Parrott BB. Intrinsic and extrinsic factors interact during development to influence telomere length in a long-lived reptile. Mol Ecol 2022; 31:6114-6127. [PMID: 34101921 DOI: 10.1111/mec.16017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 01/31/2023]
Abstract
The mechanisms connecting environmental conditions to plasticity in biological aging trajectories are fundamental to understanding individual variation in functional traits and life history. Recent findings suggest that telomere biology is especially dynamic during early life stages and has long-term consequences for subsequent reproduction and survival. However, our current understanding is mostly derived from studies investigating ecological and anthropogenic factors separately, leaving the effects of complex environmental interactions unresolved. American alligators (Alligator mississippiensis) are long-lived apex predators that rely on incubation temperature during a discrete period during development and endocrine cues to determine sex, making them especially vulnerable to current climatic variability and exposure to anthropogenic contaminants interfering with hormone function. Here, we combine field studies with a factorial design to understand how the developmental environment, along with intrinsic biological variation contribute to persistent telomere variation. We found that exposure to a common endocrine disrupting contaminant, DDE, affects telomere length, but that the directionality is highly dependent upon incubation temperature. Variation in hatchling growth, underlies a strong clutch effect. We also assess concentrations of a panel of glucocorticoid hormones and find that contaminant exposure elicits an increase in circulating glucocorticoids. Consistent with emerging evidence linking stress and aging trajectories, GC levels also appear to trend with shorter telomere length. Thus, we add support for a mechanistic link between contaminants and glucocorticoid signalling, which interacts with ecological aspects of the developmental environment to alter telomere dynamics.
Collapse
Affiliation(s)
- Junsoo Bae
- Savannah River Ecology Laboratory, Aiken, SC, USA.,Augusta University, Augusta, GA, USA
| | - Emily M Bertucci
- Savannah River Ecology Laboratory, Aiken, SC, USA.,Eugene P. Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - Samantha L Bock
- Savannah River Ecology Laboratory, Aiken, SC, USA.,Eugene P. Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - Matthew D Hale
- Savannah River Ecology Laboratory, Aiken, SC, USA.,Eugene P. Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - Jameel Moore
- Savannah River Ecology Laboratory, Aiken, SC, USA.,Benedict College, Columbia, SC, USA
| | | | - Thomas R Rainwater
- Tom Yawkey Wildlife Center, Georgetown, SC, USA.,Belle W. Baruch Institute of Coastal Ecology & Forest Science, Clemson University, Georgetown, SC, USA
| | - John A Bowden
- Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | | | | | - Benjamin B Parrott
- Savannah River Ecology Laboratory, Aiken, SC, USA.,Eugene P. Odum School of Ecology, University of Georgia, Athens, GA, USA
| |
Collapse
|
33
|
Lai X, Yuan Y, Liu M, Xiao Y, Ma L, Guo W, Fang Q, Yang H, Hou J, Yang L, Yang H, He MA, Guo H, Zhang X. Individual and joint associations of co-exposure to multiple plasma metals with telomere length among middle-aged and older Chinese in the Dongfeng-Tongji cohort. ENVIRONMENTAL RESEARCH 2022; 214:114031. [PMID: 35934145 DOI: 10.1016/j.envres.2022.114031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Studies on associations of metals with leucocyte telomere length (LTL) were mainly limited to several most common toxic metals and single-metal effect, but the impact of other common metals and especially the overall joint associations and interactions of metal mixture with LTL are largely unknown. We included 15 plasma metals and LTL among 4906 participants from Dongfeng-Tongji cohort. Multivariable linear regression was used to estimate associations of individual metals with LTL. We also applied Bayesian kernel machine regression (BKMR) and quantile g-computation regression (Q-g) to evaluate the overall association and interactions, and identified the major contributors as well as the potential modifications by major characteristics. Multivariable linear regression found vanadium, copper, arsenic, aluminum and nickel were negatively associated with LTL, and a 2-fold change was related to 1.9%-5.1% shorter LTL; while manganese and zinc showed 3.7% and 4.0% longer LTL (all P < 0.05) in multiple-metal models. BKMR confirmed above metals and revealed a linearly inverse joint association between 15 metals and LTL. Q-g regression further indicated each quantile increase in mixture was associated with 5.2% shorter LTL (95% CI: -8.1%, -2.3%). Furthermore, manganese counteracted against aluminum and vanadium respectively (Pint<0.05). In addition, associations of vanadium, aluminum and metal mixture with LTL were more prominent in overweight participants. Our results are among the first to provide a new comprehensive view of metal mixture exposure on LTL attrition in the general population, including identifying the major components, metals interactions and the overall effects.
Collapse
Affiliation(s)
- Xuefeng Lai
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Yu Yuan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Miao Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yang Xiao
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Lin Ma
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Wenting Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Qin Fang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Huihua Yang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Liangle Yang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Handong Yang
- Department of Cardiovascular Diseases, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Mei-An He
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Huan Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
34
|
Chaulin AM, Sergeev AK. The Role of Fine Particles (PM 2.5) in the Genesis of Atherosclerosis and Myocardial Damage: Emphasis on Clinical and Epidemiological Data, and Pathophysiological Mechanisms. Cardiol Res 2022; 13:268-282. [PMID: 36405225 PMCID: PMC9635774 DOI: 10.14740/cr1366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/05/2022] [Indexed: 09/26/2023] Open
Abstract
Due to the fact that atherosclerotic cardiovascular diseases (CVDs) dominate in the structure of morbidity, disability and mortality of the population, the study of the risk factors for the development of atherosclerotic CVDs, as well as the study of the underlying pathogenetic mechanisms thereof, is the most important area of scientific research in modern medicine. Understanding these aspects will allow to improve the set of treatment and preventive measures and activities. One of the important risk factors for the development of atherosclerosis, which has been actively studied recently, is air pollution with fine particulate matter (PM 2.5). According to clinical and epidemiological data, the level of air pollution with PM 2.5 exceeds the normative indicators in most regions of the world and is associated with subclinical markers of atherosclerosis and mortality from atherosclerotic CVDs. The aim of this article is to systematize and discuss in detail the role of PM 2.5 in the development of atherosclerosis and myocardial damage.
Collapse
Affiliation(s)
- Aleksey Michailovich Chaulin
- Department of Cardiology and Cardiovascular Surgery, Samara State Medical University, Samara 443099, Russia
- Department of Histology and Embryology, Samara State Medical University, Samara 443099, Russia
| | | |
Collapse
|
35
|
Reimann B, Martens DS, Wang C, Ghantous A, Herceg Z, Plusquin M, Nawrot TS. Interrelationships and determinants of aging biomarkers in cord blood. J Transl Med 2022; 20:353. [PMID: 35945616 PMCID: PMC9361565 DOI: 10.1186/s12967-022-03541-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increasing evidence supports the concept of prenatal programming as an early factor in the aging process. DNA methylation age (DNAm age), global genome-wide DNA methylation (global methylation), telomere length (TL), and mitochondrial DNA content (mtDNA content) have independently been shown to be markers of aging, but their interrelationship and determinants at birth remain uncertain. METHODS We assessed the inter-correlation between the aging biomarkers DNAm age, global methylation, TL and mtDNA content using Pearson's correlation in 190 cord blood samples of the ENVIRONAGE birth cohort. TL and mtDNA content was measured via qPCR, while the DNA methylome was determined using the human 450K methylation Illumina microarray. Subsequently, DNAm age was calculated according to Horvath's epigenetic clock, and mean global, promoter, gene-body, and intergenic DNA methylation were determined. Path analysis, a form of structural equation modeling, was performed to disentangle the complex causal relationships among the aging biomarkers and their potential determinants. RESULTS DNAm age was inversely correlated with global methylation (r = -0.64, p < 0.001) and mtDNA content (r = - 0.16, p = 0.027). Cord blood TL was correlated with mtDNA content (r = 0.26, p < 0.001) but not with global methylation or DNAm age. Path analysis showed the strongest effect for global methylation on DNAm age with a decrease of 0.64 standard deviations (SD) in DNAm age for each SD (0.01%) increase in global methylation (p < 0.001). Among the applied covariates, newborn sex and season of delivery were the strongest determinants of aging biomarkers. CONCLUSIONS We provide insight into molecular aging signatures at the start of life, including their interrelations and determinants, showing that cord blood DNAm age is inversely associated with global methylation and mtDNA content but not with newborn telomere length. Our findings demonstrate that cord blood TL and DNAm age relate to different pathways/mechanisms of biological aging and can be influenced by environmental factors already at the start of life. These findings are relevant for understanding fetal programming and for the early prevention of noncommunicable diseases.
Collapse
Affiliation(s)
- Brigitte Reimann
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Congrong Wang
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Akram Ghantous
- Epigenomics and Mechanisms Branch, International Agency for Research On Cancer (IARC), Lyon, France
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research On Cancer (IARC), Lyon, France
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium.
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- School of Public Health, Occupational and Environmental Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
36
|
Pesnya DS, Kurbatova SA, Sharov AN, Chernova EN, Yershov IY, Shurganova GV, Vodeneeva EL. Genotoxicity of Natural Water during the Mass Development of Cyanobacteria Evaluated by the Allium Test Method: A Model Experiment with Microcosms. Toxins (Basel) 2022; 14:toxins14050359. [PMID: 35622605 PMCID: PMC9145725 DOI: 10.3390/toxins14050359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/03/2022] Open
Abstract
Cyanobacteria, which develop abundantly in aquatic ecosystems, can be harmful to humans and animals not only by releasing toxins that cause poisoning but also by provoking cytogenetic effects. The influence of the mass development of cyanobacteria on the genotoxic properties of natural water has been studied in model ecosystems (microcosms) with different compositions of biotic components (zooplankton, amphipods and fish). The validated plant test system “Allium test” was used in this study. Genotoxic effects were detected at microcystin concentrations below those established by the World Health Organization (WHO) for drinking water. In all experimental treatments, cells with disorders such as polyploidy and mitotic abnormalities associated with damage to the mitotic spindle, including c-mitosis, as well as lagging chromosomes were found. Genotoxic effects were associated with the abundance of cyanobacteria, which, in turn, depended on the composition of aquatic organisms in the experimental ecosystem. Fish, to a greater extent than other aquatic animals, maintain an abundance of cyanobacteria. After one month, in microcosms with fish, mitotic abnormalities and polyploidy continued to be detected, whereas in other treatments, there were no statistically significant genotoxic effects. In microcosms with amphipods, the number and biomass of cyanobacteria decreased to the greatest extent, and only one parameter of genotoxic activity (frequency of polyploidy) significantly differed from the control.
Collapse
Affiliation(s)
- Dmitry S. Pesnya
- Laboratory of Water Ecosystems, Department of Ecology, Institute of Biology and Biomedicine, Lobachevsky State University, 603022 Nizhny Novgorod, Russia; (S.A.K.); (I.Y.Y.); (G.V.S.); (E.L.V.)
- Laboratory of Experimental Ecology, Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia
- Correspondence:
| | - Svetlana A. Kurbatova
- Laboratory of Water Ecosystems, Department of Ecology, Institute of Biology and Biomedicine, Lobachevsky State University, 603022 Nizhny Novgorod, Russia; (S.A.K.); (I.Y.Y.); (G.V.S.); (E.L.V.)
- Laboratory of Experimental Ecology, Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia
| | - Andrey N. Sharov
- Laboratory of Algology, Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia;
- Laboratory of Bio-Electronic Methods of Geo-Ecological Monitoring, St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, 197110 St. Petersburg, Russia
| | - Ekaterina N. Chernova
- Laboratory of Eco-Chemical Studies, St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, 197110 St. Petersburg, Russia;
| | - Igor Y. Yershov
- Laboratory of Water Ecosystems, Department of Ecology, Institute of Biology and Biomedicine, Lobachevsky State University, 603022 Nizhny Novgorod, Russia; (S.A.K.); (I.Y.Y.); (G.V.S.); (E.L.V.)
- Laboratory of Experimental Ecology, Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia
| | - Galina V. Shurganova
- Laboratory of Water Ecosystems, Department of Ecology, Institute of Biology and Biomedicine, Lobachevsky State University, 603022 Nizhny Novgorod, Russia; (S.A.K.); (I.Y.Y.); (G.V.S.); (E.L.V.)
| | - Ekaterina L. Vodeneeva
- Laboratory of Water Ecosystems, Department of Ecology, Institute of Biology and Biomedicine, Lobachevsky State University, 603022 Nizhny Novgorod, Russia; (S.A.K.); (I.Y.Y.); (G.V.S.); (E.L.V.)
| |
Collapse
|
37
|
Lai Z, He M, Lin C, Ouyang W, Liu X. Interactions of antimony with biomolecules and its effects on human health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113317. [PMID: 35182796 DOI: 10.1016/j.ecoenv.2022.113317] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Antimony (Sb) pollution has increased health risks to humans as a result of extensive application in diverse fields. Exposure to different levels of Sb and its compounds will directly or indirectly affect the normal function of the human body, whereas limited human health data and simulation studies delay the understanding of this element. In this review, we summarize current research on the effects of Sb on human health from different perspectives. First, the exposure pathways, concentration and excretion of Sb in humans are briefly introduced, and several studies have revealed that human exposure to high levels of Sb will cause higher concentrations in body tissues. Second, interactions between Sb and biomolecules or other nonbiomolecules affected biochemical processes such as gene expression and hormone secretion, which are vital for causing and understanding health effects and mechanisms. Finally, we discuss the different health effects of Sb at the biological level from small molecules to individual. In conclusion, exposure to high levels of Sb compounds will increase the risk of disease by affecting different cell signaling pathways. In addition, the appropriate form and dose of Sb contribute to inhibit the development of specific diseases. Key challenges and gaps in toxicity or benefit effects and mechanisms that still hinder risk assessment of human health are also identified in this review. Systematic studies on the relationships between the biochemical process of Sb and human health are needed.
Collapse
Affiliation(s)
- Ziyang Lai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China.
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| |
Collapse
|
38
|
Liang L, Pan Y, Bin L, Liu Y, Huang W, Li R, Lai KP. Immunotoxicity mechanisms of perfluorinated compounds PFOA and PFOS. CHEMOSPHERE 2022; 291:132892. [PMID: 34780734 DOI: 10.1016/j.chemosphere.2021.132892] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 05/14/2023]
Abstract
Perfluorinated and polyfluorinated compounds (PFASs) are a class of synthetic chemical substances that are widely used in human production and life, such as fire-fighting foams, textiles and clothing, surfactants, and surface protective agents. Perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are the most abundant and common perfluorinated compounds in biota and humans. Currently, PFOA and PFOS have been listed in the Stockholm Convention on Persistent Organic Pollutants, and their production has been halted in many countries. However, because the high-energy carbon-fluorine bond can make it resistant to hydrolysis, photolysis, microbial degradation, and vertebrate metabolism, PFOA and PFOS show environmental persistence and bioaccumulation and hence, are of great concern to humans and wildlife. PFOA and PFOS have toxic effects on the immune system of the body. This article reviewed the effects of PFOA and PFOS on immune organs such as the spleen, bone marrow, and thymus of mice and zebrafish, and the effects on non-specific immune functions such as the skin barrier, intestinal mucosal barrier, and humoral immunity. We also reviewed the influence of specific immune functions based on cellular immunity, and further summarized the possible immune toxicity mechanisms such as AIM2 inflammasome activation, gene dysregulation, and signal pathway disorders caused by PFOA and PFOS. The aim of this review was to provide a reference for further understanding of the immunotoxicity and the responsible mechanism of PFOA and PFOS.
Collapse
Affiliation(s)
- Luyun Liang
- School of Lingui Clinical Medicine, Guilin Medical University, Guilin, PR China; Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China
| | - Yongling Pan
- School of Lingui Clinical Medicine, Guilin Medical University, Guilin, PR China; Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China
| | - Lihua Bin
- School of Lingui Clinical Medicine, Guilin Medical University, Guilin, PR China; Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China
| | - Yu Liu
- School of Lingui Clinical Medicine, Guilin Medical University, Guilin, PR China; Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China
| | - Wenjun Huang
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China
| | - Rong Li
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China.
| | - Keng Po Lai
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China.
| |
Collapse
|
39
|
Cosemans C, Van Larebeke N, Janssen BG, Martens DS, Baeyens W, Bruckers L, Den Hond E, Coertjens D, Nelen V, Schoeters G, Hoppe HW, Wolfs E, Smeets K, Nawrot TS, Plusquin M. Glyphosate and AMPA exposure in relation to markers of biological aging in an adult population-based study. Int J Hyg Environ Health 2022; 240:113895. [PMID: 34883335 DOI: 10.1016/j.ijheh.2021.113895] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND/AIM Glyphosate, a broad-spectrum herbicide, and its main metabolite aminomethylphosphonic acid (AMPA) are persistent in the environment. Studies showed associations between glyphosate or AMPA exposure and several adverse cellular processes, including metabolic alterations and oxidative stress. OBJECTIVE To determine the association between glyphosate and AMPA exposure and biomarkers of biological aging. METHODS We examined glyphosate and AMPA exposure, mtDNA content and leukocyte telomere length in 181 adults, included in the third cycle of the Flemish Environment and Health Study (FLEHSIII). DNA was isolated from leukocytes and the relative mtDNA content and telomere length were determined using qPCR. Urinary glyphosate and AMPA concentrations were measured by Gas Chromatography-Tandem Mass Spectrometry (GC-MS-MS). We used multiple linear regression models to associate mtDNA content and leukocyte telomere length with glyphosate or AMPA exposure while adjusting for confounding variables. RESULTS A doubling in urinary AMPA concentration was associated with 5.19% (95% CI: 0.49 to 10.11; p = 0.03) longer leukocyte telomere length, while no association was observed with urinary glyphosate concentration. No association between mtDNA content and urinary glyphosate nor AMPA levels was observed. CONCLUSIONS This study showed that AMPA exposure may be associated with telomere biology in adults.
Collapse
Affiliation(s)
- Charlotte Cosemans
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Nicolas Van Larebeke
- Department of Radiotherapy and Experimental Cancerology, Ghent University, Ghent, Belgium; Department of Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bram G Janssen
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Willy Baeyens
- Department of Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Liesbeth Bruckers
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Hasselt, Belgium
| | | | - Dries Coertjens
- Faculty of Social Sciences and IMDO, University of Antwerp, Antwerp, Belgium
| | - Vera Nelen
- Faculty of Social Sciences and IMDO, University of Antwerp, Antwerp, Belgium
| | - Greet Schoeters
- Environmental Risk and Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | - Esther Wolfs
- Biomedical Research Institute, Faculty of Medicine, Hasselt University, Belgium
| | - Karen Smeets
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium; School of Public Health, Occupational & Environmental Medicine, Leuven University, Leuven, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
40
|
Pan D, Shao Y, Song Y, Huang D, Liu S, Zeng X, Liang J, Juan Jennifer Tan H, Qiu X. Association between maternal per- and polyfluoroalkyl substance exposure and newborn telomere length: Effect modification by birth seasons. ENVIRONMENT INTERNATIONAL 2022; 161:107125. [PMID: 35183942 DOI: 10.1016/j.envint.2022.107125] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Telomere length (TL) is an important biomarker of biological aging and disease that may be affected by prenatal exposure to environmental pollutants. Birth seasons have been linked to reproductive and immune-related diseases. Prenatal exposure to per- and polyfluoroalkyl substance (PFAS) has been associated with adverse birth outcomes, but the effects of PFAS and birth seasons on newborn TL are poorly understood. OBJECTIVES To explore the individual and combined effects of maternal PFAS exposure on newborn TL, with exploration of the interaction between PFAS and birth seasons on newborn TL. METHODS Between June 2015 and May 2018, a total of 499 mother-newborn pairs were recruited for a birth cohort study in Guangxi, China. Maternal blood samples were collected during pregnancy. Nine PFASs were measured by ultraperformance liquid chromatography-mass spectrometry. Newborn TL was assessed using quantitative real-time polymerase chain reaction. Modeling newborn TL as the outcome, multivariable linear regressions were performed for individual PFAS exposures, and Bayesian Kernel Machine Regressions were performed for PFAS mixtures. Furthermore, interaction analyses were conducted to evaluate the effect modification by birth seasons in these relationships. RESULTS For both single and multipollutant models, PFASs exposure were inversely associated with newborn TL, although none of the relationships were significant. The mixture of PFASs showed a potential positive trend of combined effect on newborn TL but non-statistically significant. Each ln-transformed unit concentration increase in PFOA was related to a 20.41% (95% CI: -30.44%, -8.93%) shorter TL in spring-born infants but not in those born in other birth seasons. Mothers in the middle and highest tertiles of PFOA exposure had 11.69% and 10.71% shorter TLs in spring-born infants, respectively. CONCLUSION Maternal PFAS exposure showed little association with newborn TL. The results suggested potential effect modification by birth season on the association between PFOA exposure and newborn TL.
Collapse
Affiliation(s)
- Dongxiang Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Yantao Shao
- The Third Affiliated Hospital of Guangxi Medical University, Nanning 530031, Guangxi, China
| | - Yanye Song
- The Third Affiliated Hospital of Guangxi Medical University, Nanning 530031, Guangxi, China
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Shun Liu
- Department of Child and Adolescent Health & Maternal and Child Health, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Hui Juan Jennifer Tan
- Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|
41
|
Malecki KMC, Andersen JK, Geller AM, Harry GJ, Jackson CL, James KA, Miller GW, Ottinger MA. Integrating Environment and Aging Research: Opportunities for Synergy and Acceleration. Front Aging Neurosci 2022; 14:824921. [PMID: 35264945 PMCID: PMC8901047 DOI: 10.3389/fnagi.2022.824921] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/12/2022] [Indexed: 12/25/2022] Open
Abstract
Despite significant overlaps in mission, the fields of environmental health sciences and aging biology are just beginning to intersect. It is increasingly clear that genetics alone does not predict an individual’s neurological aging and sensitivity to disease. Accordingly, aging neuroscience is a growing area of mutual interest within environmental health sciences. The impetus for this review came from a workshop hosted by the National Academies of Sciences, Engineering, and Medicine in June of 2020, which focused on integrating the science of aging and environmental health research. It is critical to bridge disciplines with multidisciplinary collaborations across toxicology, comparative biology, epidemiology to understand the impacts of environmental toxicant exposures and age-related outcomes. This scoping review aims to highlight overlaps and gaps in existing knowledge and identify essential research initiatives. It begins with an overview of aging biology and biomarkers, followed by examples of synergy with environmental health sciences. New areas for synergistic research and policy development are also discussed. Technological advances including next-generation sequencing and other-omics tools now offer new opportunities, including exposomic research, to integrate aging biomarkers into environmental health assessments and bridge disciplinary gaps. This is necessary to advance a more complete mechanistic understanding of how life-time exposures to toxicants and other physical and social stressors alter biological aging. New cumulative risk frameworks in environmental health sciences acknowledge that exposures and other external stressors can accumulate across the life course and the advancement of new biomarkers of exposure and response grounded in aging biology can support increased understanding of population vulnerability. Identifying the role of environmental stressors, broadly defined, on aging biology and neuroscience can similarly advance opportunities for intervention and translational research. Several areas of growing research interest include expanding exposomics and use of multi-omics, the microbiome as a mediator of environmental stressors, toxicant mixtures and neurobiology, and the role of structural and historical marginalization and racism in shaping persistent disparities in population aging and outcomes. Integrated foundational and translational aging biology research in environmental health sciences is needed to improve policy, reduce disparities, and enhance the quality of life for older individuals.
Collapse
Affiliation(s)
- Kristen M. C. Malecki
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Kristen M. C. Malecki,
| | | | - Andrew M. Geller
- United States Environmental Protection Agency, Office of Research and Development, Durham, NC, United States
| | - G. Jean Harry
- Division of National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Chandra L. Jackson
- Division of Intramural Research, Department of Health and Human Services, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
- Department of Health and Human Services, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, United States
| | - Katherine A. James
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Denver, Denver, CO, United States
| | - Gary W. Miller
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Mary Ann Ottinger
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| |
Collapse
|
42
|
Tang S, Li T, Fang J, Chen R, Cha Y, Wang Y, Zhu M, Zhang Y, Chen Y, Du Y, Yu T, Thompson DC, Godri Pollitt KJ, Vasiliou V, Ji JS, Kan H, Zhang JJ, Shi X. The exposome in practice: an exploratory panel study of biomarkers of air pollutant exposure in Chinese people aged 60-69 years (China BAPE Study). ENVIRONMENT INTERNATIONAL 2021; 157:106866. [PMID: 34525388 DOI: 10.1016/j.envint.2021.106866] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/11/2021] [Accepted: 09/05/2021] [Indexed: 05/05/2023]
Abstract
The exposome overhauls conventional environmental health impact research paradigms and provides a novel methodological framework that comprehensively addresses the complex, highly dynamic interplays of exogenous exposures, endogenous exposures, and modifiable factors in humans. Holistic assessments of the adverse health effects and systematic elucidation of the mechanisms underlying environmental exposures are major scientific challenges with widespread societal implications. However, to date, few studies have comprehensively and simultaneously measured airborne pollutant exposures and explored the associated biomarkers in susceptible healthy elderly subjects, potentially resulting in the suboptimal assessment and management of health risks. To demonstrate the exposome paradigm, we describe the rationale and design of a comprehensive biomarker and biomonitoring panel study to systematically explore the association between individual airborne exposure and adverse health outcomes. We used a combination of personal monitoring for airborne pollutants, extensive human biomonitoring, advanced omics analysis, confounding information, and statistical methods. We established an exploratory panel study of Biomarkers of Air Pollutant Exposure in Chinese people aged 60-69 years (China BAPE), which included 76 healthy residents from a representative community in Jinan City, Shandong Province. During the period between September 2018 and January 2019, we conducted prospective longitudinal monitoring with a 3-day assessment every month. This project: (1) leveraged advanced tools for personal airborne exposure monitoring (external exposures); (2) comprehensively characterized biological samples for exogenous and endogenous compounds (e.g., targeted and untargeted monitoring) and multi-omics scale measurements to explore potential biomarkers and putative toxicity pathways; and (3) systematically evaluated the relationships between personal exposure to air pollutants, and novel biomarkers of exposures and effects using exposome-wide association study approaches. These findings will contribute to our understanding of the mechanisms underlying the adverse health impacts of air pollution exposures and identify potential adverse clinical outcomes that can facilitate the development of effective prevention and targeted intervention techniques.
Collapse
Affiliation(s)
- Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jianlong Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yu'e Cha
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yanwen Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Mu Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yi Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yuanyuan Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yanjun Du
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Tianwei Yu
- Institute for Data and Decision Analytics, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - David C Thompson
- Department of Clinical Pharmacy, School of Pharmacy, University of Colorado, Aurora, CO 80045, USA
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA
| | - John S Ji
- Environmental Research Center, Duke Kunshan University, Kunshan, Jiangsu 215316, China; Global Health Institute & Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Junfeng Jim Zhang
- Environmental Research Center, Duke Kunshan University, Kunshan, Jiangsu 215316, China; Global Health Institute & Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
43
|
Kahl VFS, da Silva J. Inorganic elements in occupational settings: A review on the effects on telomere length and biology. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 872:503418. [PMID: 34798938 DOI: 10.1016/j.mrgentox.2021.503418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/31/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
The past decades have shown that telomere crisis is highly affected by external factors. Effects of human exposure to xenobiotics on telomere length (TL), particularly in their workplace, have been largely studied. TL has been shown to be an efficient biomarker in occupational risk assessment. This is the first review focusing on studies about the effects on TL from occupational exposures to metals (lead [Pb] and mixtures), and particulate matter (PM) related to inorganic elements. Data from 15 studies were evaluated regarding occupational exposure to metals and PM-associated inorganic elements and impact on TL. Potential complementary analyses and subjects' background (age, length of employment and gender) were also assessed. There was limited information on the correlations between work length and TL dynamics, and that was also true for the correlation between age and TL. Results indicated that TL is affected differently across the types of occupational exposure investigated in this review, and even within the same exposure, a variety of effects can be observed. Fifty-three percent of the studies observed decreased TL in occupational exposure among welding fumes, open-cast coal mine, Pb and PM industries workers. Two studies focused particularly on the levels of metals and association with TL, and both linear and non-linear associations were found. Interestingly, TL modifications were accompanied by increase in DNA damage in 7 out of 8 studies that investigated it, measured either by Cytokinesis-block Micronucleus Assay or Comet assay. Five studies also investigated oxidative stress parameters, and 4 of them found increased levels of oxidative damage along with TL impairment. Oxidative stress is one of the main mechanisms by which telomeres are affected due to their high guanine content. Our review highlights the need of further studies accessing TL in simultaneous occupational exposure to mixtures of xenobiotics.
Collapse
Affiliation(s)
- Vivian F Silva Kahl
- The University of Queensland Diamantina Institute, The University of Queensland, Faculty of Medicine, 37 Kent Street, Woolloongabba, Queensland 4102, Australia; Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland 4102, Australia.
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, Post Graduate Program in Cellular and Molecular Biology Applied to Health, Lutheran University of Brazil, Av Farroupilha 8001, Canoas, Rio Grande do Sul, 92425-900, Brazil; LaSalle University (UniLaSalle), Av Victor Barreto 2288, Canoas, Rio Grande do Sul, 92010-000, Brazil.
| |
Collapse
|
44
|
Leuthner TC, Meyer JN. Mitochondrial DNA Mutagenesis: Feature of and Biomarker for Environmental Exposures and Aging. Curr Environ Health Rep 2021; 8:294-308. [PMID: 34761353 PMCID: PMC8826492 DOI: 10.1007/s40572-021-00329-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2021] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW Mitochondrial dysfunction is a hallmark of aging. Mitochondrial genome (mtDNA) instability contributes to mitochondrial dysfunction, and mtDNA mutagenesis may contribute to aging. However, the origin of mtDNA mutations remains somewhat controversial. The goals of this review are to introduce and review recent literature on mtDNA mutagenesis and aging, address recent animal and epidemiological evidence for the effects of chemicals on mtDNA damage and mutagenesis, propose hypotheses regarding the contribution of environmental toxicant exposure to mtDNA mutagenesis in the context of aging, and suggest future directions and approaches for environmental health researchers. RECENT FINDINGS Stressors such as pollutants, pharmaceuticals, and ultraviolet radiation can damage the mitochondrial genome or disrupt mtDNA replication, repair, and organelle homeostatic processes, potentially influencing the rate of accumulation of mtDNA mutations. Accelerated mtDNA mutagenesis could contribute to aging, diseases of aging, and sensitize individuals with pathogenic mtDNA variants to stressors. We propose three potential mechanisms of toxicant-induced effects on mtDNA mutagenesis over lifespan: (1) increased de novo mtDNA mutations, (2) altered frequencies of mtDNA mutations, or (3) both. There are remarkably few studies that have investigated the impact of environmental chemical exposures on mtDNA instability and mutagenesis, and even fewer in the context of aging. More studies are warranted because people are exposed to tens of thousands of chemicals, and are living longer. Finally, we suggest that toxicant-induced mtDNA damage and mutational signatures may be a sensitive biomarker for some exposures.
Collapse
Affiliation(s)
- Tess C Leuthner
- Nicholas School of the Environment, 9 Circuit Dr, Box 90328, Duke University, NC, 27708, USA
| | - Joel N Meyer
- Nicholas School of the Environment, 9 Circuit Dr, Box 90328, Duke University, NC, 27708, USA.
| |
Collapse
|
45
|
Roque CR, Sampaio LR, Ito MN, Pinto DV, Caminha JSR, Nunes PIG, Raposo RS, Santos FA, Windmöller CC, Crespo-Lopez ME, Alvarez-Leite JI, Oriá RB, Pinheiro RF. Methylmercury chronic exposure affects the expression of DNA single-strand break repair genes, induces oxidative stress, and chromosomal abnormalities in young dyslipidemic APOE knockout mice. Toxicology 2021; 464:152992. [PMID: 34670124 DOI: 10.1016/j.tox.2021.152992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 12/31/2022]
Abstract
Mercury (Hg) is one of the most toxic environmental pollutants, especially when methylated, forming methylmercury (MeHg). MeHg affects DNA repair, increases oxidative stress, and predisposes to cancer. MeHg neurotoxicity is well-known, but recently MeHg-associated cardiovascular effects were recognized. This study evaluated circulating lipids, oxidative stress, and genotoxicity after MeHg-chronic exposure (20 mg/L in drinking water) in C57BL/6J wild-type and APOE knockout (ko) mice, the latter, being spontaneously dyslipidemic. Experimental mice were assigned to four groups: non-intoxicated and MeHg-intoxicated wild-type mice and non-intoxicated and MeHg-intoxicated APOE ko mice. Plasma levels of triglycerides, total cholesterol (TC), HDL, and LDL were analyzed. Liver lipid peroxidation and splenic gene expression of xeroderma pigmentosum complementation groups A, C, D, and G (XPA, XPC, XPD, and XPG), X-ray repair cross-complementing protein 1 (XRCC1), and telomerase reverse transcriptase (TERT) were measured. Fur Hg levels confirmed chronic MeHg intoxication. MeHg exposure raises TC levels both in wild-type and APOE ko mice. HDL and LDL-cholesterol levels were increased only in the MeHg-challenged APOE ko mice. MeHg increased liver lipid peroxidation, regardless of the genetic background. Unintoxicated APOE ko mice showed higher expression of TERT than all other groups. APOE deficiency increases XPA expression, regardless of MeHg intoxication. Furthermore, MeHg-intoxicated mice had more cytogenetic abnormalities, effect which was independent of APOE deficiency. More studies are needed to dissect the interactions between circulating lipids, MeHg intoxication, and DNA-repair pathways even at young age, interactions that likely play critical roles in cell senescence and the risk for chronic disorders later in life.
Collapse
Affiliation(s)
- Cássia R Roque
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Letícia R Sampaio
- Cancer Cytogenomics Laboratory, Drug Research, and Development Center, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Mayumi N Ito
- Cancer Cytogenomics Laboratory, Drug Research, and Development Center, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Daniel V Pinto
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Juan S R Caminha
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Paulo I G Nunes
- Natural Products Laboratory, Biomedicine Center, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Ramon S Raposo
- Experimental Biology core, Health Sciences, University of Fortaleza, Fortaleza, CE, Brazil
| | - Flávia A Santos
- Natural Products Laboratory, Biomedicine Center, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Cláudia C Windmöller
- Laboratory of Atherosclerosis and Nutritional Biochemistry, Department of Biochemistry and Immunology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Jacqueline I Alvarez-Leite
- Laboratory of Atherosclerosis and Nutritional Biochemistry, Department of Biochemistry and Immunology, ICB, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Reinaldo B Oriá
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil.
| | - Ronald F Pinheiro
- Cancer Cytogenomics Laboratory, Drug Research, and Development Center, Federal University of Ceara, Fortaleza, CE, Brazil
| |
Collapse
|
46
|
Clarity C, Trowbridge J, Gerona R, Ona K, McMaster M, Bessonneau V, Rudel R, Buren H, Morello-Frosch R. Associations between polyfluoroalkyl substance and organophosphate flame retardant exposures and telomere length in a cohort of women firefighters and office workers in San Francisco. Environ Health 2021; 20:97. [PMID: 34454526 PMCID: PMC8403436 DOI: 10.1186/s12940-021-00778-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/29/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Environmental chemical exposures can affect telomere length, which in turn has been associated with adverse health outcomes including cancer. Firefighters are occupationally exposed to many hazardous chemicals and have higher rates of certain cancers. As a potential biomarker of effect, we assessed associations between chemical exposures and telomere length in women firefighters and office workers from San Francisco, CA. METHODS We measured serum concentrations of polyfluoroalkyl substances (PFAS), urinary metabolites of flame retardants, including organophosphate flame retardants (OPFRs), and telomere length in peripheral blood leukocytes in women firefighters (N = 84) and office workers (N = 79) who participated in the 2014-15 Women Workers Biomonitoring Collaborative. Multiple linear regression models were used to assess associations between chemical exposures and telomere length. RESULTS Regression results revealed significant positive associations between perfluorooctanoic acid (PFOA) and telomere length and perfluorooctanesulfonic acid (PFOS) and telomere length among the whole cohort. Models stratified by occupation showed stronger and more significant associations among firefighters as compared to office workers. Among firefighters in models adjusted for age, we found positive associations between telomere length and log-transformed PFOA (β (95%CI) = 0.57(0.12, 1.02)), PFOS (0.44 (0.05, 0.83)), and perfluorodecanoic acid (PFDA) (0.43 (0.02, 0.84)). Modeling PFAS as categories of exposure showed significant associations between perfluorononanoic acid (PFNA) and telomere length among firefighters. Significant associations between OPFR metabolites and telomere length were seen for bis (1,3-dichloro-2-propyl) phosphate (BDCPP) and telomere length among office workers (0.21(0.03, 0.40)) and bis (2-chloroethyl) phosphate (BCEP) and telomere length among firefighters (- 0.14(- 0.28, - 0.01)). For OPFRs, the difference in the direction of effect by occupational group may be due to the disparate detection frequencies and concentrations of exposure between the two groups and/or potential unmeasured confounding. CONCLUSION Our findings suggest positive associations between PFAS and telomere length in women workers, with larger effects seen among firefighters as compared to office workers. The OPFR metabolites BDCPP and BCEP are also associated with telomere length in firefighters and office workers. Associations between chemical exposures and telomere length reported here and by others suggest mechanisms by which these chemicals may affect carcinogenesis and other adverse health outcomes.
Collapse
Affiliation(s)
- Cassidy Clarity
- Department of Environmental Science, Policy and Management University of California, 130 Mulford Hall, 94720, Berkeley, CA, USA
| | - Jessica Trowbridge
- Department of Environmental Science, Policy and Management University of California, 130 Mulford Hall, 94720, Berkeley, CA, USA
- School of Public Health, University of California, Berkeley, CA, USA
| | - Roy Gerona
- Department of Obstetrics, Clinical Toxicology and Environmental Biomonitoring Lab, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Katherine Ona
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
- Department of Obstetrics, Center for Reproductive Sciences, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Michael McMaster
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
- Department of Obstetrics, Center for Reproductive Sciences, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Vincent Bessonneau
- Silent Spring Institute, Newton, MA, USA
- Univ. Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | | | | | - Rachel Morello-Frosch
- Department of Environmental Science, Policy and Management University of California, 130 Mulford Hall, 94720, Berkeley, CA, USA.
- School of Public Health, University of California, Berkeley, CA, USA.
| |
Collapse
|
47
|
Eick SM, Goin DE, Cushing L, DeMicco E, Park JS, Wang Y, Smith S, Padula AM, Woodruff TJ, Morello-Frosch R. Mixture effects of prenatal exposure to per- and polyfluoroalkyl substances and polybrominated diphenyl ethers on maternal and newborn telomere length. Environ Health 2021; 20:76. [PMID: 34193151 PMCID: PMC8247076 DOI: 10.1186/s12940-021-00765-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/24/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) and polybrominated diphenyl ethers (PBDEs) are endocrine disrupting chemicals with widespread exposures across the U.S. given their abundance in consumer products. PFAS and PBDEs are associated with reproductive toxicity and adverse health outcomes, including certain cancers. PFAS and PBDEs may affect health through alternations in telomere length. In this study, we examined joint associations between prenatal exposure to PFAS, PBDEs, and maternal and newborn telomere length using mixture analyses, to characterize effects of cumulative environmental chemical exposures. METHODS Study participants were enrolled in the Chemicals in Our Bodies (CIOB) study, a demographically diverse cohort of pregnant people and children in San Francisco, CA. Seven PFAS (ng/mL) and four PBDEs (ng/g lipid) were measured in second trimester maternal serum samples. Telomere length (T/S ratio) was measured in delivery cord blood of 292 newborns and 110 second trimester maternal whole blood samples. Quantile g-computation was used to assess the joint associations between groups of PFAS and PBDEs and newborn and maternal telomere length. Groups considered were: (1) all PFAS and PBDEs combined, (2) PFAS, and (3) PBDEs. Maternal and newborn telomere length were modeled as separate outcomes. RESULTS T/S ratios in newborn cord and maternal whole blood were moderately correlated (Spearman ρ = 0.31). In mixtures analyses, a simultaneous one quartile increase in all PFAS and PBDEs was associated with a small increase in newborn (mean change per quartile increase = 0.03, 95% confidence interval [CI] = -0.03, 0.08) and maternal telomere length (mean change per quartile increase = 0.03 (95% CI = -0.03, 0.09). When restricted to maternal-fetal paired samples (N = 76), increasing all PFAS and PBDEs combined was associated with a strong, positive increase in newborn telomere length (mean change per quartile increase = 0.16, 95% CI = 0.03, 0.28). These associations were primarily driven by PFAS (mean change per quartile increase = 0.11 [95% CI = 0.01, 0.22]). No associations were observed with maternal telomere length among paired samples. CONCLUSIONS Our findings suggest that PFAS and PBDEs may be positively associated with newborn telomere length.
Collapse
Affiliation(s)
- Stephanie M. Eick
- Program On Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, USA
| | - Dana E. Goin
- Program On Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, USA
| | - Lara Cushing
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, USA
| | - Erin DeMicco
- Program On Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, USA
| | - June-Soo Park
- Program On Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, USA
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, USA
| | - Yunzhu Wang
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, USA
| | - Sabrina Smith
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, California Environmental Protection Agency, Berkeley, USA
| | - Amy M. Padula
- Program On Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, USA
| | - Tracey J. Woodruff
- Program On Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, USA
| | - Rachel Morello-Frosch
- Program On Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, USA
- Department of Environmental Science, Policy and Management and School of Public Health, University of California, Berkeley, USA
| |
Collapse
|
48
|
Rackova L, Mach M, Brnoliakova Z. An update in toxicology of ageing. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 84:103611. [PMID: 33581363 DOI: 10.1016/j.etap.2021.103611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/17/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
The field of ageing research has been rapidly advancing in recent decades and it had provided insight into the complexity of ageing phenomenon. However, as the organism-environment interaction appears to significantly affect the organismal pace of ageing, the systematic approach for gerontogenic risk assessment of environmental factors has yet to be established. This puts demand on development of effective biomarker of ageing, as a relevant tool to quantify effects of gerontogenic exposures, contingent on multidisciplinary research approach. Here we review the current knowledge regarding the main endogenous gerontogenic pathways involved in acceleration of ageing through environmental exposures. These include inflammatory and oxidative stress-triggered processes, dysregulation of maintenance of cellular anabolism and catabolism and loss of protein homeostasis. The most effective biomarkers showing specificity and relevancy to ageing phenotypes are summarized, as well. The crucial part of this review was dedicated to the comprehensive overview of environmental gerontogens including various types of radiation, certain types of pesticides, heavy metals, drugs and addictive substances, unhealthy dietary patterns, and sedentary life as well as psychosocial stress. The reported effects in vitro and in vivo of both recognized and potential gerontogens are described with respect to the up-to-date knowledge in geroscience. Finally, hormetic and ageing decelerating effects of environmental factors are briefly discussed, as well.
Collapse
Affiliation(s)
- Lucia Rackova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia.
| | - Mojmir Mach
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia
| | - Zuzana Brnoliakova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia
| |
Collapse
|
49
|
Katoto PDMC, Kayembe-Kitenge T, Pollitt KJG, Martens DS, Ghosh M, Nachega JB, Nemery B, Nawrot TS. Telomere length and outcome of treatment for pulmonary tuberculosis in a gold mining community. Sci Rep 2021; 11:4031. [PMID: 33597559 PMCID: PMC7889934 DOI: 10.1038/s41598-021-83281-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
Telomere length (TL) is a marker of ageing and mitochondrial DNA (mtDNA) is an early marker of inflammation caused by oxidative stress. We determined TL and mtDNA content among active pulmonary tuberculosis (PTB) patients to assess if these cellular biomarkers differed between artisanal miners and non-miners, and to assess if they were predictive of treatment outcome. We conducted a prospective cohort study from August 2018 to May 2019 involving newly diagnosed PTB patients at three outpatient TB clinics in a rural Democratic Republic of Congo. We measured relative TL and mtDNA content in peripheral blood leukocytes (at inclusion) via qPCR and assessed their association with PTB treatment outcome. We included 129 patients (85 miners and 44 non-miners) with PTB (median age 40 years; range 5-71 years, 22% HIV-coinfected). For each increase in year and HIV-coinfection, TL shortened by - 0.85% (- 0.19 to - 0.52) (p ≤ 0.0001) and - 14% (- 28.22 to - 1.79) (p = 0.02) respectively. Independent of these covariates, patients with longer TL were more likely to have successful TB treatment [adjusted hazard ratio; 95% CI 1.27 for a doubling of leucocyte telomere length at baseline; 1.05-1.44] than patients with a shorter TL. Blood mtDNA content was not predictive for PTB outcome. For a given chronological age, PTB patients with longer telomeres at time of diagnosis were more likely to have successful PTB treatment outcome.
Collapse
Affiliation(s)
- Patrick D M C Katoto
- Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven, Leuven, Belgium.
- Department of Internal Medicine, Division of Respiratory Medicine, CEGEMI and Prof. Lurhuma Biomedical Research Laboratory, Mycobacterium Unit, Catholic University of Bukavu, Bukavu, Democratic Republic of Congo.
- Department of Medicine and Center for Infectious Diseases, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Tony Kayembe-Kitenge
- Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven, Leuven, Belgium
- Department of Public Health, Unit of Toxicology, University of Lubumbashi, Lubumbashi, Democratic Republic of Congo
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, USA
| | - Dries S Martens
- Centre of Environmental Health, University of Hasselt, Agoralaan gebouw D, 3590, Diepenbeek, Belgium
| | - Manosij Ghosh
- Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven, Leuven, Belgium
| | - Jean B Nachega
- Department of Medicine and Center for Infectious Diseases, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Departments of Epidemiology and International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Departments of Epidemiology, Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Benoit Nemery
- Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven, Leuven, Belgium
| | - Tim S Nawrot
- Department of Public Health and Primary Care, Centre for Environment and Health, KU Leuven, Leuven, Belgium.
- Centre of Environmental Health, University of Hasselt, Agoralaan gebouw D, 3590, Diepenbeek, Belgium.
| |
Collapse
|
50
|
Johnson CL, Jazan E, Kong SW, Pennell KD. A two-step gas chromatography-tandem mass spectrometry method for measurement of multiple environmental pollutants in human plasma. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3266-3279. [PMID: 32914305 PMCID: PMC7790997 DOI: 10.1007/s11356-020-10702-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Individuals are exposed to a wide variety of chemicals over their lifetime, yet current understanding of mixture toxicology is still limited. We present a two-step analytical method using a gas chromatograph-triple quadrupole mass spectrometer that requires less than 1 mL of sample. The method is applied to 183 plasma samples from a study population of children with autism spectrum disorder, their parents, and unrelated neurotypical children. We selected 156 environmental chemical compounds and ruled out chemicals with detection rates less than 20% of our study cohort (n = 61), as well as ones not amenable to the selected extraction and analytical methods (n = 34). The targeted method then focused on remaining chemicals (n = 61) plus 8 additional polychlorinated biphenyls (PCBs). Persistent pollutants, such as p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) and PCB congeners 118 and 180, were detected at high frequencies and several previously unreported chemicals, including 2,4,6-trichlorophenol, isosafrole, and hexachlorobutadiene, were frequently detected in our study cohort. This work highlights the benefits of employing a multi-step analytical method in exposure studies and demonstrates the efficacy of such methods for reporting novel information on previously unstudied pollutant exposures.
Collapse
Affiliation(s)
- Caitlin L Johnson
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, 02155, USA
| | - Elisa Jazan
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, 02155, USA
| | - Sek Won Kong
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| | - Kurt D Pennell
- School of Engineering, Brown University, Box D, 184 Hope Street, Providence, RI, 02912, USA.
| |
Collapse
|