1
|
Zhang Y, Lu J, Xu S, Ma D, Li Q, Wang Z, Gao B, Wang Y. Spatially-confined removal of intracellular antibiotic resistance genes via electrochemical membranes: Influence of pore size on electrical stimulation and exogenous reactive oxygen species oxidation. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138237. [PMID: 40220394 DOI: 10.1016/j.jhazmat.2025.138237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/30/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
Electrochemical membranes (EMs), as one of the most promising novel materials, offer the potential to eliminate antibiotic resistance genes (ARGs). However, there remain significant knowledge gaps regarding the removal pathways of ARGs within the spatially-confined pores of EMs, particularly for intracellular ARGs (iARGs). In this study, EMs with different pore sizes were utilized to treat synthetic water samples containing Escherichia coli genetically engineered with ARGs. It was thereby revealed that the removal efficiencies and pathways of iARGs are closely associated with the spatially-confined pores of EMs. Specifically, EMs with smaller pore sizes (e.g., 10 µm) are capable of removing more iARGs, mainly due to the synergistic effects of physical collision, direct electrical stimulation and exogenous reactive oxygen species (ROS) oxidation, with the latter two mechanisms being the predominant drivers. In contrast, EMs with larger pore sizes (e.g., 40 µm), show lower iARGs removal efficiencies. This is because the degradation of iARGs in these EMs relied more on exogenous ROS oxidation. In the case of large pores, cells can pass through the EMs without colliding with the pore walls, resulting in reduced exposure to physical collision and electrical stimulation. Additionally, the study found that 1O2 generated by EMs can penetrate into cells and opportunistically oxidize iARGs prior to their release into the extracellular environment. These findings provide valuable insights into the mechanisms and potential optimization strategies for EMs in curbing the horizontal transfer of ARGs.
Collapse
Affiliation(s)
- Yunxin Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Jiajun Lu
- School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Shiping Xu
- School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Defang Ma
- School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Qian Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Zhining Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Baoyu Gao
- School of Environmental Science and Engineering, Shandong University, Qingdao, PR China
| | - Yan Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, PR China.
| |
Collapse
|
2
|
Liu Y, Xu M, Zhao L, He S, Feng L, Wei L. Combat against antibiotic resistance genes during photo-treatment of magnetic Zr-MOFs@Layered double hydroxide heterojunction: Conjugative transfer risk mitigating and bacterial inactivation. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138160. [PMID: 40188541 DOI: 10.1016/j.jhazmat.2025.138160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/06/2025] [Accepted: 04/01/2025] [Indexed: 04/08/2025]
Abstract
The dissemination of antimicrobial resistance (AMR) in wastewater treatment poses a severe threat to the global ecological environment. This study explored the effectiveness of photocatalysis in inactivating antibiotic resistant bacteria (ARB) and quantitatively clarified the inhibiting rate of the transfer of antibiotics resistance genes (ARGs). Herein, the magnetic heterojunction as UiO-66-NH2@CuFe LDH-Fe3O4 (UN-66@LDH-Fe) effectively facilitated the electron-hole separation and accelerated the photogenerated charge transfer, thereby guaranteeing the stable practical application in aeration tanks. Notably, the internal electric field of heterogeneous photocatalyst resulted in significant increase of ARGs inactivation, achieving 5.63 log of ARB, 3.66 log of tetA and 3.57 log of Ampr genes were photodegraded under optimal reaction conditions within 6 h. Based on the complex microbial and molecular mechanism of multiple-ARB communities inactivation in photo-treatment, the photogenerated reactive oxygen species (ROSs, ·OH and ·O2-) effectively destroyed bacterial membrane protein, thereby the intracellular ROSs and redox cycles further induced oxidative stress, attributing to the abundance reduction of ARGs and their host bacteria. Moreover, long-term (7 days) continuous operation preliminarily verified the practical potential in reducing AMR spread and developing wastewater treatment efficacy. Overall, this study presented an advantageous synergistic strategy for mitigating the AMR-associated environmental risk in wastewater treatment.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mingyang Xu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lingxin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shufei He
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Likui Feng
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
3
|
Duan R, Ma S, Ma Y, Xu S, Li G, Fu H, Wu X, Du J, Zhao P. Efficient inactivation of antibiotic resistant bacteria by iron-modified biochar and persulfate system: Potential for controlling antimicrobial resistance spread and mechanism insights. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138182. [PMID: 40203758 DOI: 10.1016/j.jhazmat.2025.138182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Antimicrobial resistance (AMR) is a critical global health threat, further intensified by the widespread dissemination of plasmid-encoded antibiotic resistance genes (ARGs), which poses a significant challenge to the "One Health" concept. Persulfate-based advanced oxidation processes (PS-AOPs) have emerged as effective disinfection methods, capable of degrading antibiotics, inactivating bacteria, and eliminating ARGs, whereas their efficacy towards blocking ARGs horizontal transfer remains elusive. This work constructed a series of Fe-modified soybean straw biochar (FeSSB) as persulfate (PS) activators through Fe-modification and temperature regulation. Among the tested systems, FeSSB800/PS achieved complete inactivation of antibiotic resistant bacteria (ARB) with a 7.04-log reduction within 60 min, outperforming others. FeSSB800, featuring the highest exposed-Fe(II) sites, most CO groups, and lowest charge transfer resistance, obtaining optimal PS activation and reactive species generation, which caused irreversible damage to ARB cells and significantly inhibited the transformation and conjugation efficiency of plasmid RP4. The inhibition mechanism is driven by the aggressive action of free radicals, which injure cell envelopes, induce oxidative stress, disrupt ATP synthesis, and alter intercellular adhesion. These findings underscore the potential of PS-AOPs as a promising strategy to mitigate AMR by simultaneously inactivating ARB and impeding ARGs dissemination.
Collapse
Affiliation(s)
- Ran Duan
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Laboratory of Quality & Safety and Processing for Agro-Products, Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Shuanglong Ma
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China.
| | - Yanbing Ma
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Guangxin Li
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Haichao Fu
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Xujin Wu
- Henan Key Laboratory of Quality & Safety and Processing for Agro-Products, Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Jinge Du
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Peng Zhao
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
4
|
Zhai K, Yin K, Lin Y, Chen S, Bi Y, Xing R, Ren C, Chen Z, Yu Z, Chen Z, Zhou S. Free Radicals on Aging Microplastics Regulated the Prevalence of Antibiotic Resistance Genes in the Aquatic Environment: New Insight into the Effect of Microplastics on the Spreading of Biofilm Resistomes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40359213 DOI: 10.1021/acs.est.4c12699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
The spread of antibiotic resistance genes (ARGs) by microplastics has received a great concern in coexisting "hotspots". Despite most microplastics suffering from natural aging, little is known about the effect of aging microplastics (A-MPs) on ARGs dissemination. Here, we demonstrated significant suppression of A-MPs on ARGs dissemination in natural rivers. Although ARGs and mobile genetic elements (MGEs) were effectively enriched on A-MPs, the relative abundance of ARGs and MGEs on A-MPs as well as in receiving water decreased by approximately 21.4% to 42.3% during a period of 30 days of dissemination. Further investigation revealed that •OH was consistently generated on A-MPs with a maximum value of 0.2 μmol/g. Importantly, scavenging of •OH significantly increased the relative abundance of ARGs and MGEs both on A-MPs and in receiving water 1.4-29.1 times, indicating the vital role of •OH in suppressing ARGs dissemination. Microbial analysis revealed that •OH inhibited the potential antibiotic-resistant bacteria in surface biofilms, such as Pseudomonas and Acinetobacter (with a decrease of 68.8% and 89.3%). These results demonstrated that •OH was extensively produced on A-MPs, which greatly reduced both the vertical and horizontal gene transfer of ARGs. This study provided new insights into the dissemination of ARGs through microplastics in natural systems.
Collapse
Affiliation(s)
- Kaipeng Zhai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Keke Yin
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Lin
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shu Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuzhang Bi
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruizhi Xing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chenjia Ren
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ziyu Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhen Yu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Zhi Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
5
|
Adamou P, Entwistle J, Graham DW, Neumann A. Mineral-Based Advanced Oxidation Processes for Enhancing the Removal of Antibiotic Resistance Genes from Domestic Wastewater. ACS ES&T WATER 2025; 5:2310-2321. [PMID: 40371372 PMCID: PMC12070418 DOI: 10.1021/acsestwater.4c01213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 05/16/2025]
Abstract
Wastewater treatment plants (WWTPs) release antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) into the environment. Advanced oxidation processes (AOPs) can remove ARB and ARGs, but they often require impractically high chemical or energy use. Here, we explore a low-energy AOP that uses Fe-bearing clay mineral (NAu-1) either combined with H2O2 (H2O2/NAu-1) or as prereduced structural Fe (rNAu-1) to degrade selected ARGs (i.e., tetM, tetQ, and bla OXA-10), int1 (a mobile genetic element), and the 16S rRNA gene in postsecondary WWTP effluents. Addition of H2O2/NAu-1 significantly increased tetM and int1 removals relative to UV irradiation and H2O2/UV (p ≤ 0.02). Removals increased with greater H2O2 doses and contact times, reaching maximum values of 1.2 and 2.3 log units at H2O2 doses of 0.26 and 10 mM and contact times of 4 and 8 h, respectively. Bacterial regrowth after 24 h of contact was probably due to H2O2 depletion. However, the addition of rNAu-1 achieved the highest removals, up to 2.9 log units after 0.5 h, and suppressed bacterial regrowth over 24 h. Similar removals were observed with rNAu-1 under oxic and anoxic conditions. Results show that mineral-based AOPs offer the potential for elevated ARG removal and lower chemical and energy demands in tertiary wastewater treatment.
Collapse
Affiliation(s)
- Panagiota Adamou
- School
of Engineering, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K.
| | - James Entwistle
- School
of Engineering, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K.
| | - David W. Graham
- School
of Engineering, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K.
| | - Anke Neumann
- School
of Engineering, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K.
- PSI
Center for Nuclear Engineering and Sciences, 5232 Villigen PSI, Switzerland
| |
Collapse
|
6
|
An L, Liu H, Zhang L, Sun Y, Wang X, Gu J. Simultaneous and separate removal of antibiotics, antibiotic resistant bacteria, and genes by dual-doping metallic biochar activated peroxymonosulfate system: Differences in performance and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125390. [PMID: 40250175 DOI: 10.1016/j.jenvman.2025.125390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/06/2025] [Accepted: 04/13/2025] [Indexed: 04/20/2025]
Abstract
In this study, a bimetallic (Co and Fe) co-doping biochar activated peroxymonosulfate (PMS) system with excellent catalytic activity and synergistic effect was selected to investigate the simultaneous and separate removal mechanisms against ampicillin (AMP), antibiotic resistant bacteria, and genes (ARB/ARGs). Results showed that the presence of AMP exerted a negative effect on ARB inactivation with extended bactericidal time from 1.5 to 20 min, and similar results were obtained for AMP degradation (40-60 min). It was noteworthy that the removal mechanisms of AMP and ARB in the co-contamination condition were significantly changed compared with the separate removal. In the single contaminant elimination system, the eliminations of AMP and ARB/ARGs were both dominated by SO4•-. However, in the co-contamination system, the degradation mechanism of AMP was mainly realized by SO4•- and electron transfer, while the reduction of ARB/ARGs mainly depended on the destruction of phospholipids and cytosine in ARB by free 1O2. Density functional theory calculations implied that the synergistic interaction between iron and cobalt atoms reduced the energy barrier of O-O bond breakage in CoFe/PBC-PMS∗, facilitating the production of ROSs. The reduction efficiencies of AMP and ARB in this system were further verified in different environmental water matrices (tap water, river water, sewage, and farm wastewater). This study provides a new idea for the simultaneous removal of antibiotics, ARB, and ARGs in co-contaminated water by CoFe/PBC/PMS system.
Collapse
Affiliation(s)
- Lu An
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hengrui Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Li Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yifan Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
7
|
Zhang T, Fan L, Zhang YN. Antibiotic resistance genes in aquatic systems: Sources, transmission, and risks. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 284:107392. [PMID: 40318462 DOI: 10.1016/j.aquatox.2025.107392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
The widespread use of antibiotics has significantly contributed to the spread of antibiotic resistance genes (ARGs), which have become a major challenge to global ecological and public health. Antibiotic resistance not only proliferates in clinical settings but also persists in aquatic systems, where its residues and cross-domain spread pose a dual threat to both ecosystems and human health. ARGs spread rapidly within microbial communities through horizontal gene transfer (HGT) and vertical gene transfer (VGT). Aquatic systems are the key transmission medium. This review summarizes recent studies on the Source-Transport-Sink dynamics of ARGs in aquatic environments, along with their environmental and health risk assessments, with a particular focus on the potential ecotoxicity of ARGs transmission. It also examines the distribution characteristics of ARGs across different regions and the ecological risk assessment methods employed, highlighting the limitations of existing models when addressing the complex behaviors of ARGs. By analyzing the potential hazards of ARGs to aquatic ecosystems and public health, this article aims to provide a scientific foundation for future research and the development of public policies.
Collapse
Affiliation(s)
- Tingting Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Linyi Fan
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Ya-Nan Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
8
|
Feng X, Dong W, Chen C, Liu Y, Pan Z, Gao Y, Hu X, Chen D, Lin D, Zhu L, Xu J. Impregnating Lattice Sulfur into Iron Crystal Allows Anaerobic Degradation of Extracellular Antibiotic Resistance Genes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500203. [PMID: 40079106 DOI: 10.1002/smll.202500203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/20/2025] [Indexed: 03/14/2025]
Abstract
Lattice sulfur-impregnated nanoscale zerovalent iron (S-nFe0) has been recognized as a promising groundwater remediation agent. However, little information is available on its reactivity with ubiquitous extracellular antibiotic resistance genes (eARGs) in anaerobic groundwater, and how S content and speciation affect their interactions. Here, the efficient anaerobic degradation of eARGs by S-nFe0 (6 log within 5 min), resulting in completely inhibited transformation is showed. The removal rate of eARGs by S-nFe0 (0.26 mg m-2 min-1) is correlated well with the S-induced hydrophobicity and electron transfer ability of materials, and this reactivity improvement (up to 22-fold) compared to nFe0 largely depended on the S content and speciation. Multiple measurements are applied to verify the degradation of eARGs and their interactions with materials, where Fe-O-P coordination, hydrophobic interaction, and electron transfer play critical roles. The application potential of S-nFe0 is strongly supported by their long-term reactivity and stability in real groundwater and universal reactivity with multiple eARGs. These findings elucidate the mechanistic role of lattice S in the degradation of eARGs by S-nFe0, unveil binding sites and interactions between eARGs and S-nFe0, and will advance understanding toward better design of S-nFe° for eARGs-contaminated groundwater remediation.
Collapse
Affiliation(s)
- Xia Feng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenhua Dong
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chaohuang Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhiyu Pan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yiman Gao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaohong Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Du Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Daohui Lin
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
9
|
Pan Z, Jiang X, Feng X, Liu Y, Dong W, Chen Y, Li C, Yang B, Hou J, Zhang J, Zhu L, Lin D, Xu J. Controllable Supply-Demand Effect during Superior Fe Single-Atom Catalyst Synthesis for Targeted Guanine Oxidation of Antibiotic Resistance Genes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5382-5393. [PMID: 40045910 DOI: 10.1021/acs.est.4c13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Nonradical Fenton-like catalysis offers an opportunity to degrade extracellular antibiotic resistance genes (eARGs). However, high-loading single-atom catalysts (SACs) with controllable configurations are urgently required to selectively generate high-yield nonradicals. Herein, we constructed high-loading Fe SACs (5.4-34.2 wt %) with uniform Fe-N4 sites via an optimized coordination balance of supermolecular assembly for peroxymonosulfate activation. The selectivity of singlet oxygen (1O2) generation and its contribution to eARGs degradation were both >98%. This targeting strategy of oxidizing guanines with low ionization potentials by 1O2 allowed 7 log eARGs degradation within 10 min and eliminated their transformation within 2 min, outperforming most reported advanced oxidation processes. Relevant interactions between 1O2 and guanines were revealed at a single-molecule resolution. The high-loading Fe SACs exhibited excellent universality and stability for different eARGs and water matrices. These findings provide a promising route for constructing high-loading SACs for efficient and selective Fenton-like water treatment.
Collapse
Affiliation(s)
- Zhiyu Pan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xunheng Jiang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Xia Feng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenhua Dong
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yue Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Can Li
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bijun Yang
- National Demonstration Center for Experimental Environment and Resources Education, Zhejiang University, Hangzhou 310058, China
| | - Jie Hou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Jianying Zhang
- National Demonstration Center for Experimental Environment and Resources Education, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
- National Demonstration Center for Experimental Environment and Resources Education, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Wang C, Guo R, Guo C, Yin H, Xu J. Photodegradation of typical psychotropic drugs in the aquatic environment: a critical review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:320-354. [PMID: 39886903 DOI: 10.1039/d4em00669k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Continuous consumption combined with incomplete removal during wastewater treatment means residues of psychotropic drugs (PDs), including antidepressants, antipsychotics, antiepileptics and illicit drugs, are continuously entering the aquatic environment, where they have the potential to affect non-target organisms. Photochemical transformation is an important aspect to consider when evaluating the environmental persistence of PDs, particularly for those present in sunlit surface waters. This review summarizes the latest research on the photodegradation of typical PDs under environmentally relevant conditions. According to the analysis results, four classes of PDs discussed in this paper are influenced by direct and indirect photolysis. Indirect photodegradation has been more extensively studied for antidepressants and antiepileptics compared to antipsychotics and illicit drugs. Particularly, the photosensitization process of dissolved organic materials (DOM) in natural waters has received significant research attention due to its ubiquity and specificity. The direct photolysis pathway plays a less significant role, but it is still relevant for most PDs discussed in this paper. The photodegradation rates and pathways of PDs are influenced by various water constituents and parameters such as DOM, nitrate and pH value. The contradictory results reported in some studies can be attributed to differences in experimental conditions. Based on this analysis of the existing literature, the review also identifies several key aspects that warrant further research on PD photodegradation. These results and recommendations contribute to a better understanding of the environmental role of water matrixes and provide important new insights into the photochemical fate of PDs in aquatic environments.
Collapse
Affiliation(s)
- Chuanguang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ruonan Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Hailong Yin
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
11
|
Guo Z, Cao J, Xu R, Zhang H, He L, Gao H, Zhu L, Jia M, Yang Z, Xiong W. Novel Photoelectron-Assisted Microbial Reduction of Arsenate Driven by Photosensitive Dissolved Organic Matter in Mine Stream Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22170-22182. [PMID: 39526867 DOI: 10.1021/acs.est.4c09647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The microbial reduction of arsenate (As(V)) significantly contributes to arsenic migration in mine stream sediment, primarily driven by heterotrophic microorganisms using dissolved organic matter (DOM) as a carbon source. This study reveals a novel reduction pathway in sediments that photosensitive DOM generates photoelectrons to stimulate diverse nonphototrophic microorganisms to reduce As(V). This microbial photoelectrophic As(V) reduction (PEAsR) was investigated using microcosm incubation, which showed the transfer of photoelectrons from DOM to indigenous sediment microorganisms, thereby leading to a 50% higher microbial reduction rate of As(V). The abundance of two marker genes for As(V) reduction, arrA and arsC, increased substantially, confirming the microbial nature of PEAsR rather than a photoelectrochemical process. Photoelectron ion is unlikely to stimulate photolithoautotrophic growth. Instead, diverse nonphototrophic genera, e.g., Cupriavidus, Sphingopyxis, Mycobacterium, and Bradyrhizobium, spanning 13 orders became enriched by 10-50 folds. Metagenomic binning revealed their genetic potential to mediate the photoelectron-assisted reduction of As(V). These microorganisms contain essential genes involved in respiratory As(V) reduction, detoxification As(V) reduction, dimethyl sulfoxide reductase family, c-type cytochromes, and multiple heavy-metal resistance but lack a complete photosynthesis system. The novel microbial PEAsR pathway offers new insights into the interaction between photoelectron utilization and nonphototrophic As(V)-reducing microorganisms, which may have profound implications for arsenic pollution transportation in mine stream sediment.
Collapse
Affiliation(s)
- Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Jie Cao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Rui Xu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Honglin Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410012, P. R. China
| | - Lele He
- College of Environmental Science and Engineering, Hunan University, Changsha 410012, P. R. China
| | - Hanbing Gao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Linao Zhu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Meiying Jia
- Yuelushan Laboratory, College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410012, P. R. China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410012, P. R. China
| |
Collapse
|
12
|
Ballmer E, McNeill K, Deiner K. Potential Role of Photochemistry in Environmental DNA Degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:1284-1295. [PMID: 39678710 PMCID: PMC11636254 DOI: 10.1021/acs.estlett.4c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
Given the severe loss of species richness across diverse ecosystems, there is an urgent need to assess and monitor biodiversity on a global scale. The analysis of environmental DNA (eDNA), referring to any DNA extracted from environmental samples and subsequently sequenced, is a promising method for performing such biodiversity related studies. However, a comprehensive understanding of the factors that drive distinct eDNA degradation rates under different environmental conditions is currently missing, which limits the spatiotemporal interpretations that are possible from the eDNA-based detection of species. Here, we explore what role photochemistry may play in the fate of eDNA in aquatic ecosystems. Since few eDNA photodegradation studies have been performed, we extrapolate measured photochemical degradation dynamics from dissolved organic matter (DOM) and cellular DNA to what is expected for eDNA. Our findings show that photochemistry may dominate eDNA degradation under certain environmental conditions (e.g., DOM-rich waters with no light-limitation) and that photochemical alteration of eDNA may impact microbial respiration rates and the quantitative polymerase chain reaction (qPCR)-based detection of eDNA. We therefore encourage future studies to analyze the impact of photochemistry on eDNA degradation and provide suggested research directions that could help improve the accuracy of spatiotemporal inferences from eDNA analyses.
Collapse
Affiliation(s)
- Eliane Ballmer
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - Kristopher McNeill
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - Kristy Deiner
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
13
|
Liu L, Han X, Hu J, Chen H, Zhai Y. Jointly considering multi-medium and full-cycle to better reveal distribution and removal of antibiotic resistance genes in long-term constructed wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177276. [PMID: 39477107 DOI: 10.1016/j.scitotenv.2024.177276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/17/2024] [Accepted: 10/26/2024] [Indexed: 11/03/2024]
Abstract
Constructed wetlands (CWs) have been proven to effectively remove antibiotic resistance genes (ARGs) at different experimental scales; however, there is still a lack of researches on the removal and monitoring of ARGs during the actual operation of full-scale CWs. To fill this gap, this study selected the Annan constructed wetland in Beijing as a case study and utilized quantitative sequencing, metagenomic analysis, and other technical methods to determine characteristics of ARGs in CWs during different operating periods. Furthermore, we analysed the overall removal characteristics of ARGs in the CW during different operating periods and differences of ARG distribution in three media. The dominant ARGs in the CW were quinolone, β-lactam and tetracycline, with subtypes of tufA and fusA. ARG distributions are significantly influenced by anthropic activities and seasonal changes. Three periods of the CW had good removal effects on special ARGs, but there were differences in the removal characteristics of different types and subtypes of ARGs. The CW had removal effects on four types of ARGs (such as multidrugs), 16 types of fusidic acid, and nine types of ARGs (such as bleomycin) during the dormancy, start-up, and operation periods, respectively. Among ARG subtypes, the CW had removal effects on 37, 53, and 51 subtypes during the dormancy, start-up, and operation periods, respectively. The subtypes that were removed mainly included those containing tetracycline, efflux pump, and β-lactam, mcr-1, and mcr-5 (colistin ARGs). For individual parts of CWs, the removal effects on the total abundance of ARGs were as follows: forebay > surface flow wetland > subsurface flow wetland. These findings provide insights for optimizing the purification efficiency of CWs for ARGs.
Collapse
Affiliation(s)
- Linmei Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xu Han
- Department of Ecology and Environment of Heilongjiang Province, Harbin 150090, China
| | - Jingdan Hu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Haiyang Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yuanzheng Zhai
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
14
|
Hou H, Zou D, Shi W, Wang Y, Ma D, Wang Y, Li Q, Gao Y, Gao B. Localized heating coupling with radical oxidation eliminating antibiotic resistance genes (ARGs) in interfacial photothermal Fenton-like disinfection process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176779. [PMID: 39395498 DOI: 10.1016/j.scitotenv.2024.176779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
Conventional oxidative disinfection processes are inefficient in eliminating intracellular antibiotic resistance genes (iARGs) due to the barrier of the cell membrane and the competitive reaction of cellular constituents within antibiotic-resistant bacteria (ARB), resulting in the widespread prevalence of ARGs in recycled water. This study presented the first application of localized heating coupling with advanced oxidation to destroy the resistant Escherichia coli cells and improved subsequent iARGs (blaTEM-1) degradation in a novel photothermal Fenton-like disinfection process. The Fe-Mn@CNT microfiltration membrane, comprising carbon nanotubes wrapped with Fe and Mn nanoparticles (Fe-Mn@CNT), was employed as a nanomaterial for photothermal conversion and H2O2 activation. The highly efficient absorption of full-spectrum photons by CNTs enabled the Fe-Mn@CNT membrane to concentrate light to generate localized intense heat, resulting in the destruction of ARB nearby, and the subsequent release of iARGs. Interfacial heat favored Fe-Mn-induced H2O2 activation, leading to the production of more ·OH, which in turn promoted the oxidation for ARG degradation and ARB cell damage. The results of the acetylcysteine quenching experiments indicated that interfacial heating and radical oxidation-induced accumulation of intracellular reactive oxygen species contributed to the elimination of about 1-log iARGs through direct attack. The integrity of the cell membrane, the morphology of ARB and the variation of i/e ARG copy numbers were observed to reveal that the introduction of interfacial heating aggravated the cell lysis and accelerated the iARGs release, resulting in the inactivation of 7.27-log ARB and the elimination of 4.64-log iARGs and 2.23-log eARGs. Localized heating coupling with ·OH oxidation achieved a 143 % increase in iARGs removal compared to the conventional Fenton-like oxidation. The interfacial photothermal Fenton-like disinfection process exhibited remarkable material stability, robust disinfection performance, and effective suppression of horizontal gene transfer, underscoring its immense potential to mitigate the risk of ARG dissemination in reclaimed water systems.
Collapse
Affiliation(s)
- Haozheng Hou
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Dingli Zou
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Weiye Shi
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; No.1 Institute of Geology and Mineral Resources of Shandong Province, Jinan 250014, China
| | - Yingying Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Defang Ma
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Yan Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
15
|
Zhao Z, Liu Z, Wang Y, Liang J, Song Y, Zhang D, Guan Y, Shi H. Increasing phosphorus ratios between overlying and surface water inhibits intracellular antibiotic resistance gene transformation in a large shallow lake. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135847. [PMID: 39288521 DOI: 10.1016/j.jhazmat.2024.135847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/20/2024] [Accepted: 09/14/2024] [Indexed: 09/19/2024]
Abstract
The rising prevalence of antibiotic resistance genes (ARGs) in the surface waters of lakes poses a significant threat to human health. The overlying water in these lakes serves as a critical hotspot for the accumulation of ARGs in surface water. However, the mobility of extracellular (adsorbed ARGs (a-eARGs) and free ARGs (f-eARGs)), and intracellular ARGs (i-ARGs) from overlying water to surface water remains unknown. This study examined the mobility of ARGs between water layers, as well as the underlying mechanisms involved. Significant variations in ARG abundance were observed between overlying and surface water according to PCoA analysis (p < 0.05), with significant reductions in i-ARGs (p < 0.05) in surface water and no significant difference in a-eARGs and f-eARGs. Aminoglycoside and tetracycline i-ARGs had the highest and lowest mobility from overlying water to surface water, respectively. Additionally, the transformation of i-ARGs from overlying water to surface water was significantly correlated with total phosphorus ratio. According to the direct analysis of partial least squares-path modeling, the key drivers of a- and f-eARGs movement from overlying water to surface water were free-living and particle-attached bacteria, respectively, whereas heavy metals gradually became the driving force for i-ARGs by regulating mobile genetic elements. This study illustrated the transmission mechanisms of ARGs from overlying water to surface water in lakes, which will be useful for ARG treatment strategies, especially in eutrophic water.
Collapse
Affiliation(s)
- Zhao Zhao
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China.
| | - Zikuo Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Yu Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Jingxuan Liang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Yuzi Song
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Di Zhang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Yueqiang Guan
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China.
| | - Huijuan Shi
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China; Museum, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China.
| |
Collapse
|
16
|
Zeng X, Qin Y, Yang X, Zhou J, Pan J, Luo S, Cheng K. Molecular level decontamination of trace quinolones and Serratia marcescens in wastewater via in situ Cu(III) complexes mediated Fenton-like oxidation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136266. [PMID: 39476689 DOI: 10.1016/j.jhazmat.2024.136266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 12/01/2024]
Abstract
Co-pollution caused by antibiotics and antibiotic-resistant bacteria (ARB) in wastewater has led to widespread concerns. Hence, their targeted and synergistic decontamination is urgently required. A homogeneous Fenton-like oxidation system comprising cupric complexes-activated peroxymonosulfate (PMS) was demonstrated to synergistically decontaminate trace quinolones (QNs) and QNs-resistant Serratia marcescens (QRSM) in wastewater. More than 99 % of QNs were degraded within 60 min under alkaline condition, and the degradation efficiency was only slightly influenced by humic acid (up to 1 %) and various anions (up to 20 %), furthermore, the degraded pathway was proposed and the environmental risk after QNs degradation were also reduced. The activation of PMS via cupric complexes coupling in situ Cu(III) complexes generation promoted intramolecular electron transfer (IET) featuring the targeted oxidation of QNs. The produced Cu(III) and •OH played primary and secondary roles in the synergistic inactivation of QRSM by destroying the cell membranes and walls, DNA bases (T, A, C, and G), antibiotic resistance genes (ARGs, including intracellular ARGs and extracellular ARGs), and total DNA (including intracellular DNA and extracellular DNA). This study demonstrates a successful strategy and provides an innovative perspective for the molecular level decontamination of trace antibiotics and ARB using a homogeneous cupric complexes-activated Fenton-like oxidation system from metal ions inherent in breeding wastewater under alkaline condition.
Collapse
Affiliation(s)
- Xiangchu Zeng
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, Guangxi Zhuang Autonomous Region, China; Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, Zhejiang Province, China; School of Pharmaceutical Sciences, Fuchun Campus, Zhejiang Chinese Medical University, Hangzhou 311402, Zhejiang Province, China.
| | - Yue Qin
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, Guangxi Zhuang Autonomous Region, China
| | - Xiaobing Yang
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, Zhejiang Province, China
| | - Junmei Zhou
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, Zhejiang Province, China
| | - Junjie Pan
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, Zhejiang Province, China
| | - Songmei Luo
- Department of Pharmacy, Lishui Central Hospital, The Fifth Hospital Affiliated to Wenzhou Medical University, Lishui 323000, Zhejiang Province, China.
| | - Kejun Cheng
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, Zhejiang Province, China; School of Pharmaceutical Sciences, Fuchun Campus, Zhejiang Chinese Medical University, Hangzhou 311402, Zhejiang Province, China.
| |
Collapse
|
17
|
Ding Y, Feng H, Han J, Jiang W, Dong S, Cheng H, Wang M, Wang A. Effect of UV pretreatment on the source control of floR during subsequent biotreatment of florfenicol wastewater. Appl Microbiol Biotechnol 2024; 108:120. [PMID: 38212963 DOI: 10.1007/s00253-023-12826-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/29/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024]
Abstract
UV photolysis has been recommended as an alternative pretreatment method for the elimination of antibacterial activity of antibiotics against the indicator strain, but the pretreated antibiotic intermediates might not lose their potential to induce antibiotic resistance genes (ARGs) proliferation during subsequent biotreatment processes. The presence of florfenicol (FLO) in wastewater seriously inhibits the metabolic performance of anaerobic sludge microorganisms, especially the positive correlation between UV irradiation doses and ATP content, while it did not significantly affect the organics utilization ability and protein biosynthetic process of aerobic microorganisms. After sufficient UV pretreatment, the relative abundances of floR from genomic or plasmid DNA in subsequent aerobic and anaerobic biotreatment processes both decreased by two orders of magnitude, maintained at the level of the groups without FLO selective pressure. Meanwhile, the abundances of floR under anaerobic condition were always lower than that under aerobic condition, suggesting that anaerobic biotreatment systems might be more suitable for the effective control of target ARGs. The higher abundance of floR in plasmid DNA than in genome also indicated that the potential transmission risk of mobile ARGs should not be ignored. In addition, the relative abundance of intI1 was positively correlated with floR in its corresponding genomic or plasmid DNA (p < 0.05), which also increased the potential horizontal transfer risk of target ARGs. This study provides new insights into the effect of preferential UV photolysis as a pretreatment method for the enhancement of metabolic performance and source control of target ARGs in subsequent biotreatment processes. KEY POINTS: • Sufficient UV photolytic pretreatment efficiently controlled the abundance of floR • A synchronous decrease in abundance of intI1 reduced the risk of horizontal transfer • An appreciable abundance of floR in plasmid DNA was a potential source of total ARGs.
Collapse
Affiliation(s)
- Yangcheng Ding
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
- School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
| | - Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
| | - Jinglong Han
- School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, People's Republic of China.
| | - Wenli Jiang
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720, USA
| | - Shuangjing Dong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
| | - Haoyi Cheng
- School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, People's Republic of China
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
- School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
| | - Aijie Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, People's Republic of China
| |
Collapse
|
18
|
Zhang M, Liu J, Zhang W, Feng M, Yu X, Ye C. Neglected contributors to the transmission of bacterial antibiotic resistance in drinking water: Extracellular antibiotic resistance genes and the natural transformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175970. [PMID: 39241883 DOI: 10.1016/j.scitotenv.2024.175970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Antibiotic resistance genes (ARGs) have increasingly gained recognition as an "emerging contaminant" that poses a threat to the biosafety of drinking water. However, previous researches have primarily focused on the intracellular state of ARGs and rarely investigated the ecological characteristics (e.g., distribution and origin), environmental behavior (spread), and risks of extracellular form (eARGs) within drinking water systems. Therefore, this review evaluated isolation strategies and extraction methods for recovering eARGs from drinking water, elucidated the distribution characteristics of eARGs, and examined their impact on the antibiotic resistome from source water to tap water. We emphasized that chlorination and biological treatments significantly contribute to the prevalence and persistence of eARGs in drinking water. Moreover, we highlighted the role of biological reactors (e.g., biofilter, biological activated carbon) and drinking water distribution systems in facilitating the natural transformation of eARGs while significantly contributing to bacterial antibiotic resistance (BAR) propagation. Finally, we summarized the current risk assessment systems for ARGs and critically address remaining challenging questions necessary for better forecasting health risks associated with eARGs in drinking water environments. Collectively, this review enhances the understanding of ecological characteristics and environmental behavior of eARGs in drinking water while providing important implications for controlling and reducing BAR contamination not only in drinking water but also in other aquatic environments.
Collapse
Affiliation(s)
- Menglu Zhang
- Postdoctoral Research Station of Ecology, Fujian Normal University, Fuzhou 350117, China; College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University), Fuzhou 350117, China.
| | - Jinchi Liu
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University), Fuzhou 350117, China
| | - Weifang Zhang
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Pollution Control & Resource Reuse (Fujian Normal University), Fuzhou 350117, China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen 361102, China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen 361102, China
| | - Chengsong Ye
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
19
|
Liu QH, Yuan L, Li ZH, Leung KMY, Sheng GP. Natural Organic Matter Enhances Natural Transformation of Extracellular Antibiotic Resistance Genes in Sunlit Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17990-17998. [PMID: 39324609 DOI: 10.1021/acs.est.4c08211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Antibiotic resistance genes (ARGs) as emerging environmental contaminants exacerbate the risk of spreading antibiotic resistance. Natural organic matter (NOM) is ubiquitous in aquatic environments and plays a crucial role in biogeochemical cycles. However, its impact on the dissemination of extracellular antibiotic resistance genes (eARGs) under sunlight exposure remains elusive. This study reveals that environmentally relevant levels of NOM (0.1-20 mg/L) can significantly enhance the natural transformation frequency of the model bacterium Acinetobacter baylyi ADP1 by up to 7.6-fold under simulated sunlight. Similarly, this enhancement was consistently observed in natural water and wastewater systems. Further mechanism analysis revealed that reactive oxygen species (ROS) generated by NOM under sunlight irradiation, primarily singlet oxygen and hydroxyl radicals, play a crucial role in this process. These ROS induce intracellular oxidative stress and elevated cellular membrane permeability, thereby indirectly boosting ATP production and enhancing cell competence of extracellular DNA uptake and integration. Our findings highlight a previously underestimated role of natural factors in the dissemination of eARGs within aquatic ecosystems and deepen our understanding of the complex interplay between NOM, sunlight, and microbes in environmental water bodies. This underscores the importance of developing comprehensive strategies to mitigate the spread of antibiotic resistance in aquatic environments.
Collapse
Affiliation(s)
- Qian-He Liu
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou 215123, China
| | - Li Yuan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zheng-Hao Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
20
|
Chen MM, Zhang YQ, Cheng LC, Zhao FJ, Wang P. Photoaged nanoplastics with multienzyme-like activities significantly shape the horizontal transfer of antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134884. [PMID: 38878434 DOI: 10.1016/j.jhazmat.2024.134884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/17/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Nanoplastics (NPs), identified as emerging pollutants, pose a great risk to environment and global public health, exerting profound influences on the prevalence and dissemination of antibiotic resistance genes (ARGs). Despite evidence suggesting that nano-sized plastic particles can facilitate the horizontal gene transfer (HGT) of ARGs, it is imperative to explore strategies for inhibiting the transfer of ARGs. Currently, limited information exists regarding the characteristics of environmentally aged NPs and their impact on ARGs propagation. Herein, we investigated the impact of photo-aged NPs on the transfer of ARG-carrying plasmids into Escherichia coli (E. coli) cells. Following simulated sunlight irradiation, photo-aged nano-sized polystyrene plastics (PS NPs) exhibited multiple enzyme-like activities, including peroxidase (POD) and oxidase (OXD), leading to a burst of reactive oxygen species (ROS). At relatively low concentrations (0.1, 1 μg/mL), both pristine and aged PS NPs facilitated the transfer of pUC19 and pHSG396 plasmids within E. coli due to moderate ROS production and enhanced cell membrane permeability. Intriguingly, at relatively high concentrations (5, 10 μg/mL), aged PS NPs significantly suppressed plasmids transformation. The non-unidirectional impact of aged PS NPs involved the overproduction of ROS (•OH and •O2-) via nanozyme activity, directly degrading ARGs and damaging plasmid structure. Additionally, oxidative damage to bacteria resulted from the presence of much toxic free radicals, causing physical damage to cell membranes, reduction of the SOS response and restriction of adenosine-triphosphate (ATP) supply, ultimately leading to inactivation of recipient cells. This study unveils the intrinsic multienzyme-like activity of environmentally aged NPs, highlighting their potential to impede the transfer and dissemination of ARGs.
Collapse
Affiliation(s)
- Ming-Ming Chen
- Centre for Agriculture and Health, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan-Qing Zhang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu-Chen Cheng
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wang
- Centre for Agriculture and Health, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
21
|
Peng J, Pan Y, Zhou Y, Lei X, Guo Y, Lei Y, Kong Q, Cheng S, Yang X. Mechanistic Aspects of Photodegradation of Deoxynucleosides Induced by Triplet State of Effluent Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4751-4760. [PMID: 38324714 DOI: 10.1021/acs.est.3c08782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Excited triplet states of wastewater effluent organic matter (3EfOM*) are known as important photo-oxidants in the degradation of extracellular antibiotic resistance genes (eArGs) in sunlit waters. In this work, we further found that 3EfOM* showed highly selective reactivity toward 2'-deoxyguanosine (dG) sites within eArGs in irradiated EfOM solutions at pH 7.0, while it showed no photosensitizing capacity toward 2'-deoxyadenosine, 2'-deoxythymidine, and 2'-deoxycytidine (the basic structures of eArGs). The 3EfOM* contributed to the photooxidation of dG primarily via one-electron transfer mechanism, with second-order reaction rate constants of (1.58-1.74) × 108 M-1 s-1, forming the oxidation intermediates of dG (dG(-H)•). The formed dG(-H)• could play a significant role in hole hopping and damage throughout eArGs. Using the four deoxynucleosides as probes, the upper limit for the reduction potential of 3EfOM* is estimated to be between 1.47 and 1.94 VNHE. Compared to EfOM, the role of the triplet state of terrestrially natural organic matter (3NOM*) in dG photooxidation was minor (∼15%) mainly due to the rapid reverse reactions of dG(-H)• by the antioxidant moieties of NOM. This study advances our understanding of the difference in the photosensitizing capacity and electron donating capacity between NOM and EfOM and the photodegradation mechanism of eArGs induced by 3EfOM*.
Collapse
Affiliation(s)
- Jianglin Peng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yangjian Zhou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xin Lei
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, P. R. China
| | - Yifan Guo
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yu Lei
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| | - Qingqing Kong
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Shuangshuang Cheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
22
|
Wang YZ, An XL, Fan XT, Pu Q, Li H, Liu WZ, Chen Z, Su JQ. Visible light-activated photosensitizer inhibits the plasmid-mediated horizontal gene transfer of antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132564. [PMID: 37734313 DOI: 10.1016/j.jhazmat.2023.132564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
Inhibition of plasmid transfer, including transformation and conjugation, is essential to prevent the spread of plasmid-encoded antimicrobial resistance. Photosensitizers have been successfully used in the treatment of serious infectious diseases, however, the effects of photosensitizers on the plasmid transfer are still elusive. In this study, we determined the transformation and conjugation efficiency of plasmid pUC19 and pRP4, respectively, when exposed to a photosensitizer (Visible Light-activated Rose Bengal, VLRB). The results showed that the activation of VLRB resulted in up to a 580-fold decrease in the transformation frequency of pUC19 and a 10-fold decrease in the conjugation frequency of pRP4 compared with the non-VLRB control. The inhibition of pUC19 transformation by VLRB exhibited a dose-dependent manner and was attributed to the changes in the plasmid conformation. The inhibition of pRP4 conjugation was associated with the generation of extracellular free radicals, induced oxidative stress, suppression of the mating pair formation gene (trbBp) and DNA transfer and replication gene (trfAp), and enhanced expression of the global regulatory genes (korA, korB, and trbA). These findings highlight the potential of visible light-activated photosensitizer for mitigating the dissemination of plasmid-encoded antibiotic resistance genes.
Collapse
Affiliation(s)
- Yan-Zi Wang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xin-Li An
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiao-Ting Fan
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Qiang Pu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Wen-Zhen Liu
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Zhuo Chen
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
23
|
Ye C, Chen C, Zhang K, Feng M, Yu X. Solar/periodate inhibits ARGs transformation by degradation of DNA without damaging cell membrane. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122766. [PMID: 37865329 DOI: 10.1016/j.envpol.2023.122766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 10/23/2023]
Abstract
Antibiotic-resistant bacterial infections are a growing global threat to public health. Chlorine-based water disinfection and some advanced oxidation processes significantly increase the risk of ARGs release and transmission in the aquatic environment. Therefore, it is critical to develop or optimize disinfection methods to reduce the conversion and transmission of ARGs in natural water. This study investigated whether the solar/periodate (PI) system inhibited the natural transmission of ARGs and its mechanism. The results showed that solar/PI systems could effectively inhibit the propagation of ARGs in two simulated natural transformation systems, up to more than 100 times. By characterizing the cellular process of bacteria treated by the solar/PI system, we found that the solar/PI system could directly cause damage to DNA bases and its dual effect with almost no damage to the bacterial cell membrane, which was the main reason why this technology could inhibit natural transformation processes. Specifically, the inhibition effect of solar/PI on bacteria did not result in enhanced membrane permeability under appropriate PI dosage (<200 μM), which greatly reduced the risk of secondary contamination of eARGs released by traditional disinfection. Our findings could help improve existing disinfection strategies to ensure that antibiotic resistance is not spread in the natural water environment.
Collapse
Affiliation(s)
- Chengsong Ye
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Chenlan Chen
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Kaiting Zhang
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Mingbao Feng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Xin Yu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
24
|
Wang L, Zhou JC, Li ZH, Zhang X, Leung KMY, Yuan L, Sheng GP. Facet-Specific Photocatalytic Degradation of Extracellular Antibiotic Resistance Genes by Hematite Nanoparticles in Aquatic Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21835-21845. [PMID: 38085064 DOI: 10.1021/acs.est.3c06571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The persistence of extracellular antibiotic resistance genes (ARGs) in aquatic environments has attracted increasing attention due to their potential threat to public health and the environment. However, the fate of extracellular ARGs in receiving water remains largely unknown. This study investigated the influence of hematite nanoparticles, a widespread natural mineral, on the photodegradation of extracellular ARGs in river water. Results showed that under exposure to visible light, hematite nanoparticles, at environmental concentrations, resulted in a 3-5 orders of magnitude reduction in extracellular ARGs. This photodegradation of extracellular ARGs is shown to be facet-dependent; the (001) facet of hematite demonstrates a higher removal rate than that of the (100) facet, which is ascribed to its enhanced adsorption capability and higher hydroxyl radical (•OH) production. Density functional theory (DFT) calculations corroborate this finding, indicating elevated iron density, larger adsorption energy, and lower energy barrier of •OH formation on the (001) facet, providing more active sites and •OH generation for extracellular ARG interaction. Gel electrophoresis and atomic force microscopy analyses further confirm that the (001) facet causes more substantial damage to extracellular ARGs than the (100) facet. These findings pave the way for predicting the photodegradation efficiency of hematite nanoparticles with varied facets, thereby shedding light on the inherent self-purification capacity for extracellular ARGs in both natural and engineered aquatic environments.
Collapse
Affiliation(s)
- Li Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- USTC-CityU Joint Advanced Research Center, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Jing-Chen Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zheng-Hao Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xin Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Li Yuan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
25
|
Ma R, Wang J, Liu Y, Wang G, Yang Y, Liu Y, Kong Y, Lin J, Li Q, Li G, Yuan J. Dynamics of antibiotic resistance genes and bacterial community during pig manure, kitchen waste, and sewage sludge composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118651. [PMID: 37499413 DOI: 10.1016/j.jenvman.2023.118651] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/04/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
Organic solid wastes (OSWs) are important reservoirs for antibiotic resistance genes (ARGs). Aerobic composting transforms OSWs into fertilizers. In this study, we investigated ARGs dynamics and their driving mechanisms in three OSW composts: pig manure (PM), kitchen waste (KC), and sewage sludge (SG). The dominant ARGs were different in each OSW, namely tetracycline, aminoglycoside, and macrolide resistance (PM); tetracyclines and aminoglycosides (KC); and sulfonamides (SG). ARGs abundance decreased in PM (71%) but increased in KC (5.9-fold) and SG (1.3-fold). Interestingly, the ARGs abundance was generally similar in all final composts, which was contributed to the similar bacterial community in final composts. In particular, sulfonamide and β-lactam resistant genes removed (100%) in PM, while sulfonamide in KC (38-fold) and tetracycline in SG (5-fold) increased the most. Additionally, ARGs abundance rebounded during the maturation period in all treatments. Firmicutes, Proteobacteria, and Actinobacteria were the main ARGs hosts. Several persistent and high-risk genes included tetW, aadA, aadE, tetX, strB, tetA, mefA, intl1, and intl2. The structural equation models showed ARGs removal was mainly affected by physicochemical parameters and bacterial communities in PM, the ARGs enrichment in KC composting correlated with increased mobile genetic elements (MGEs). In general, thermophilic aerobic composting can inhibit the vertical gene transfer (VGT) of pig manure and horizontal gene transfer (HGT) of sludge, but it increases the HGT of kitchen waste, resulting in a dramatic increase of ARGs in KC compost. More attention should be paid to the ARGs risk of kitchen waste composting.
Collapse
Affiliation(s)
- Ruonan Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing, 100193, China
| | - Jiani Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing, 100193, China
| | - Yan Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing, 100193, China
| | - Guoying Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing, 100193, China
| | - Yan Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing, 100193, China
| | - Ying Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing, 100193, China
| | - Yilin Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing, 100193, China
| | - Jiacong Lin
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Qinfen Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing, 100193, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing, 100193, China.
| |
Collapse
|
26
|
Ye C, Chen C, Zhang K, Wu X, Cai WF, Feng M, Yu X. Solar/periodate-triggered rapid inactivation of Microcystis aeruginosa by interrupting the Calvin-Benson cycle. ENVIRONMENT INTERNATIONAL 2023; 180:108204. [PMID: 37776621 DOI: 10.1016/j.envint.2023.108204] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023]
Abstract
Frequent outbreak of cyanobacteria is a serious problem for drinking water treatment. The microcystins released from Microcystis aeruginosa (M. aeruginosa) could cause irreversible damage to human health. Catalyst-free solar/periodate (PI) system has recently presented great potential for bacterial inactivation, whereas the application potential and underlying mechanisms of the effective M. aeruginosa control remain unclear. Our work delineated the key role of ROS that inactivating/harmless disposing M. aeruginosa in the simulated sunlight (SSL)/PI system. Singlet oxygen may specifically cause DNA damage but maintain membrane integrity, preventing the risk of microcystins leakage. The SSL/PI 300 μM system could also effectively inhibit M. aeruginosa recovery for >7 days and completely degrade microcystin-LR (50.0 μg/L) within 30 min. Non-targeted metabolomic analysis suggested that the SSL/PI system inactivated M. aeruginosa mainly by interrupting the Calvin-Benson cycle, which damaged the metabolic flux of glycolysis and its downstream pathways such as the oxidative PPP pathway and glutathione metabolism. Furthermore, the activated PI system exhibited an even better algal inhibition under natural sunlight irradiation, evidenced by the seriously damaged cell membrane of M. aeruginosa. Overall, this study reported the comprehensive mechanisms of algal control and application potentials of solar/PI systems. The findings facilitated the development of emerging algicidal technology and its application in controlling environmental harmful algae.
Collapse
Affiliation(s)
- Chengsong Ye
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Chenlan Chen
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Kaiting Zhang
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Xu Wu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Wei-Feng Cai
- Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Fujian 361103. China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
27
|
Dunn FB, Silverman AI. Sunlight photolysis of SARS-CoV-2 N1 gene target in the water environment: considerations for the environmental surveillance of wastewater-impacted surface waters. JOURNAL OF WATER AND HEALTH 2023; 21:1228-1241. [PMID: 37756191 PMCID: wh_2023_091 DOI: 10.2166/wh.2023.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Wastewater surveillance of SARS-CoV-2 has been used around the world to supplement clinical testing data for situational awareness of COVID-19 disease trends. Many regions of the world lack centralized wastewater collection and treatment infrastructure, which presents additional considerations for wastewater surveillance of SARS-CoV-2, including environmental decay of the RT-qPCR gene targets used for quantification of SARS-CoV-2 virions. Given the role of sunlight in the environmental decay of RNA, we evaluated sunlight photolysis kinetics of the N1 gene target in heat-inactivated SARS-CoV-2 with a solar simulator under laboratory conditions. Insignificant photolysis of the N1 target was observed in a photosensitizer-free matrix. Conversely, significant decay of the N1 target was observed in wastewater at a shallow depth (<1 cm). Given that sunlight irradiance is affected by several environmental factors, first-order decay rate models were used to evaluate the effect of water column depth, time of the year, and latitude on decay kinetics. Decay rate constants were found to decrease significantly with greater depth of the well-mixed water column, at high latitudes, and in the winter. Therefore, sunlight-mediated decay of the N1 gene target is likely to be minimal, and is unlikely to confound results from wastewater-based epidemiology programs utilizing wastewater-impacted surface waters.
Collapse
Affiliation(s)
- Fiona B Dunn
- Department of Civil and Urban Engineering, Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA E-mail:
| | - Andrea I Silverman
- Department of Civil and Urban Engineering, Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA
| |
Collapse
|
28
|
Yin W, Yang L, Zhou X, Liu T, Zhang L, Xu Y, Li N, Chen J, Zhang Y. Peracetic acid disinfection induces antibiotic-resistant E. coli into VBNC state but ineffectively eliminates the transmission potential of ARGs. WATER RESEARCH 2023; 242:120260. [PMID: 37392507 DOI: 10.1016/j.watres.2023.120260] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/26/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
The occurrence of a viable but nonculturable (VBNC) state in antibiotic-resistant E. coli (AR E. coli) and inefficient degradation of their antibiotic resistance genes (ARGs) may cause potential health risks during disinfection. Peracetic acid (PAA) is an alternative disinfectant for replacing chlorine-based oxidants in wastewater treatment, and the potential of PAA to induce a VBNC state in AR E. coli and to remove the transformation functionality of ARGs were investigated for the first time. Results show that PAA exhibits excellent performance in inactivating AR E. coli (over 7.0-logs) and persistently inhibiting its regeneration. After PAA disinfection, insignificant changes in the ratio of living to dead cells (∼4%) and the level of cell metabolism, indicating that AR E. coli were induced into VBNC states. Unexpectedly, PAA was found to induce AR E. coli into VBNC state by destroying the proteins containing reactive amino acids at thiol, thioether and imidazole groups, rather than the result of membrane damage, oxidative stress, lipid destruction and DNA disruption in the conventional disinfection processes. Moreover, the result of poor reactivity between PAA and plasmid strands and bases confirmed that PAA hardly reduced the abundance of ARGs and damaged the plasmid's integrity. Transformation assays and real environment validation indicated that PAA-treated AR E. coli could release large abundance of naked ARGs with high-efficiency transformation functionality (∼5.4 × 10-4 - ∼8.3 × 10-6) into the environment. This study has significant environmental implications for assessing the transmission of antimicrobial resistance during PAA disinfection.
Collapse
Affiliation(s)
- Wenjun Yin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Libin Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Tongcai Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Longlong Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yao Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Nan Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| |
Collapse
|
29
|
Dong W, Liu Y, Hou J, Zhang J, Xu J, Yang K, Zhu L, Lin D. Nematodes Degrade Extracellular Antibiotic Resistance Genes by Secreting DNase II Encoded by the nuc-1 Gene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12042-12052. [PMID: 37523858 DOI: 10.1021/acs.est.3c03829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
This study investigated the degradation performance and mechanism of extracellular antibiotic resistance genes (eARGs) by nematodes using batch degradation experiments, mutant strain validation, and phylogenetic tree construction. Caenorhabditis elegans, a representative nematode, effectively degraded approximately 99.999% of eARGs (tetM and kan) in 84 h and completely deactivated them within a few hours. Deoxyribonuclease (DNase) II encoded by nuc-1 in the excretory and secretory products of nematodes was the primary mechanism. A neighbor-joining phylogenetic tree indicated the widespread presence of homologs of the NUC-1 protein in other nematodes, such as Caenorhabditis remanei and Caenorhabditis brenneri, whose capabilities of degrading eARGs were then experimentally confirmed. C. elegans remained effective in degrading eARGs under the effects of natural organic matter (5, 10, and 20 mg/L, 5.26-6.22 log degradation), cation (2.0 mM Mg2+ and 2.5 mM Ca2+, 5.02-5.04 log degradation), temperature conditions (1, 20, and 30 °C, 1.21-5.26 log degradation), and in surface water and wastewater samples (4.78 and 3.23 log degradation, respectively). These findings highlight the pervasive but neglected role of nematodes in the natural decay of eARGs and provide novel approaches for antimicrobial resistance mitigation biotechnology by introducing nematodes to wastewater, sludge, and biosolids.
Collapse
Affiliation(s)
- Wenhua Dong
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yi Liu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jie Hou
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianying Zhang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiang Xu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Kun Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lizhong Zhu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Ecological Civilization Academy, Anji 313300, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Ecological Civilization Academy, Anji 313300, China
| |
Collapse
|
30
|
Liu Y, Dong W, Jiang X, Xu J, Yang K, Zhu L, Lin D. Efficient Degradation of Intracellular Antibiotic Resistance Genes by Photosensitized Erythrosine-Produced 1O 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12105-12116. [PMID: 37531556 DOI: 10.1021/acs.est.3c03103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Intracellular antibiotic resistance genes (iARGs) constitute the important part of wastewater ARGs and need to be efficiently removed. However, due to the dual protection of intracellular DNA by bacterial membranes and the cytoplasm, present disinfection technologies are largely inefficient in iARG degradation. Herein, we for the first time found that erythrosine (ERY, an edible dye) could efficiently degrade iARGs by producing abundant 1O2 under visible light. Seven log antibiotic-resistant bacteria were inactivated within only 1.5 min, and 6 log iARGs were completely degraded within 40 min by photosensitized ERY (5.0 mg/L). A linear relationship was established between ARG degradation rate constants and 1O2 concentrations in the ERY photosensitizing system. Surprisingly, a 3.2-fold faster degradation of iARGs than extracellular ARGs was observed, which was attributed to the unique indirect oxidation of iARGs induced by 1O2. Furthermore, ERY photosensitizing was effective for iARG degradation in real wastewater and other photosensitizers (including Rose Bengal and Phloxine B) of high 1O2 yields could also achieve efficient iARG degradation. The findings increase our knowledge of the iARG degradation preference by 1O2 and provide a new strategy of developing technologies with high 1O2 yield, like ERY photosensitizing, for efficient iARG removal.
Collapse
Affiliation(s)
- Yi Liu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wenhua Dong
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xunheng Jiang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiang Xu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Kun Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lizhong Zhu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Ecological Civilization Academy, Anji 313300, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Ecological Civilization Academy, Anji 313300, China
| |
Collapse
|
31
|
Yao MC, Zhang X, Huang Q, Huang J, Sheng GP. Chlorine oxide radical (ClO) enables the enhanced degradation of antibiotic resistance genes during UV/chlorine treatment by selectively inducing base damage. ENVIRONMENT INTERNATIONAL 2023; 178:108121. [PMID: 37544266 DOI: 10.1016/j.envint.2023.108121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
Compared to individual UV or chlorine disinfection, the combined UV and chlorine (i.e., UV/chlorine) can substantially promote the degradation of antibiotic resistance genes (ARGs) in the effluent by generating radicals. However, the mechanisms of ARG degradation induced by radicals during UV/chlorine treatment remain largely unknown, limiting further enhancement of ARG degradation by process optimization. Herein, we aimed to uncover the role of different radicals in ARG degradation and the molecular mechanisms of ARG degradation by radicals in UV/chlorine process. The ClO was proven to be responsible for the enhanced ARG degradation during UV/chlorine treatment, while the other radicals (OH, Cl, and Cl2-) played a minor role. This is because ClO possessed both high steady-state concentration and high reactivity toward ARGs (rate constant: 4.29 × 1010 M-1 s-1). The ClO might collaborate with free chlorine to degrade ARG. The ClO degraded ARGs by selectively attacking guanine and thymine but failed to induce strand breakage, while chlorine could break the strand of ARGs. Ultimately, ClO cooperated with chlorine to degrade ARGs quickly by hydroxylation and chlorination of bases and produce many chlorine- and nitrogen-containing products as revealed by high-resolution mass spectrometry. The uncovered degradation mechanisms of ARGs by UV/chlorine provide useful guidelines for process optimization to achieve deep removal of effluent ARGs.
Collapse
Affiliation(s)
- Mu-Cen Yao
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xin Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Qi Huang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jie Huang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
32
|
Xiang W, Xu F, Wan D, Wang X, Luo F, Chen Y. Mechanistic investigation of direct photodegradation of chloroquine phosphate under simulated sunlight. CHEMOSPHERE 2023; 335:139093. [PMID: 37268224 DOI: 10.1016/j.chemosphere.2023.139093] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Chloroquine phosphate (CQ) is an antiviral drug for Coronavirus Disease 2019 and an old drug for treatment of malaria, which has been detected in natural waters. Despite its prevalence, the environmental fate of CQ remains unclear. In this study, the direct photodegradation of CQ under simulated sunlight was investigated. The effect of various parameters such as pH, initial concentration and environmental matrix were examined. The photodegradation quantum yield of CQ (4.5 × 10-5-0.025) increased with the increasing pH value in the range of 6.0-10.0. The electron spin resonance (ESR) spectrometry and quenching experiments verified that the direct photodegradation of CQ was primarily associated with excited triplet states of CQ (3CQ*). The common ions had negligible effect and humic substances exhibited a negative effect on CQ photodegradation. The photoproducts were identified using high-resolution mass spectrometry and the photodegradation pathway of CQ was proposed. The direct photodegradation of CQ involved the cleavage of the C-Cl bond and substitution of the hydroxyl group, followed by further oxidation to yield carboxylic products. The photodegradation processes were further confirmed by the density functional theory (DFT) computation for the energy barrier of CQ dichlorination. The findings contribute to the assessment of the ecological risk associated with the overuse of Coronavirus drugs during global public health emergencies.
Collapse
Affiliation(s)
- Weiming Xiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Fahao Xu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Dong Wan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Xing Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Fan Luo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| | - Yong Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| |
Collapse
|
33
|
Peng J, Pan Y, Zhou Y, Kong Q, Lei Y, Lei X, Cheng S, Zhang X, Yang X. Triplet Photochemistry of Effluent Organic Matter in Degradation of Extracellular Antibiotic Resistance Genes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7230-7239. [PMID: 37114949 DOI: 10.1021/acs.est.2c08036] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Wastewater effluent is a major source of extracellular antibiotic resistance genes (eArGs) in the aquatic environment, a threat to human health and biosecurity. However, little is known about the extent to which organic matter in the wastewater effluent (EfOM) might contribute to photosensitized oxidation of eArGs. Triplet states of EfOM were found to dominate the degradation of eArGs (accounting for up to 85%). Photo-oxidation proceeded mainly via proton-coupled electron transfer reactions. They broke plasmid strands and damaged bases. O2•- was also involved, and it coupled with the reactions' intermediate radicals of eArGs. The second-order reaction rates of blaTEM-1 and tet-A segments (209-216 bps) with the triplet state of 4-carboxybenzophenone were calculated to be (2.61-2.75) × 108 M-1 s-1. Besides as photosensitizers, the antioxidant moieties in EfOM also acted as quenchers to revert intermediate radicals back to their original forms, reducing the rate of photodegradation. However, the terrestrial origin natural organic matter was unable to photosensitize because it formed less triplets, especially high-energy triplets, so its inhibitory effects predominated. This study advances our understanding of the role of EfOM in the photo-oxidation of eArGs and the difference between EfOM and terrestrial-origin natural organic matter.
Collapse
Affiliation(s)
- Jianglin Peng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yangjian Zhou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Qingqing Kong
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuangshuang Cheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xinran Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
34
|
Zhang T, Cheng F, Chen X, Zhang YN, Qu J, Chen J, Peijnenburg WJGM. Dark repair of sunlight-inactivated tetracycline-resistant bacteria: Mechanisms and important role of bacteria in viable but non-culturable state. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131560. [PMID: 37148796 DOI: 10.1016/j.jhazmat.2023.131560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/19/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
The spread of antibiotic resistant bacteria (ARB) in the environment poses a potential threat to human health, and the reactivation of inactivated ARB accelerated the spread of ARB. However, little is known about the reactivation of sunlight-inactivated ARB in natural waters. In this study, the reactivation of sunlight-inactivated ARB in dark conditions was investigated with tetracycline-resistant E. coli (Tc-AR E. coli) as a representative. Results showed that sunlight-inactivated Tc-AR E. coli underwent dark repair to regain tetracycline resistance with dark repair ratios increasing from (0.124 ± 0.012)‱ within 24 h dark treatment to (0.891 ± 0.033)‱ within 48 h. The presence of Suwannee River fulvic acid (SRFA) promoted the reactivation of sunlight-inactivated Tc-AR E. coli and tetracycline inhibited their reactivation. The reactivation of sunlight-inactivated Tc-AR E. coli is mainly attributed to the repair of the tetracycline-specific efflux pump in the cell membrane. Tc-AR E. coli in a viable but non-culturable (VBNC) state was observed and dominated the reactivation as the inactivated ARB remain present in the dark for more than 20 h. These results explained the reason for distribution difference of Tc-ARB at different depths in natural waters, which are of great significance for understanding the environmental behavior of ARB.
Collapse
Affiliation(s)
- Tingting Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Fangyuan Cheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Xiaobing Chen
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Ya-Nan Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Jiao Qu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, the Netherlands
| |
Collapse
|
35
|
Chen Z, Shen J, Xu X, Feng H, Wang M. Adsorption of antibiotic, heavy metal and antibiotic plasmid by a wet-state silicon-rich biochar/ferrihydrite composite to inhibit antibiotic resistance gene proliferation/transformation. CHEMOSPHERE 2023; 324:138356. [PMID: 36898437 DOI: 10.1016/j.chemosphere.2023.138356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Decreasing bioaccessible antibiotics, heavy metals, and antibiotic resistance genes (ARGs) in soil by adsorption is an attractive, but unrealized, approach for ARG risk reduction. This approach has the potential to reduce the (co)selection pressure from antibiotics and heavy metals on bacteria and ARG horizontal gene transformation to pathogens. Here, a wet-state silicon-rich biochar/ferrihydrite composite (SiC-Fe(W)) synthesized by loading ferrihydrite onto rice straw-derived biochar was examined for i) adsorption of oxytetracycline and Cu2+ to reduce (co)selection pressure and ii) adsorption of extracellular antibiotic resistance plasmid pBR322 (containing tetA and blaTEM-1) to inhibit ARG transformation. SiC-Fe(W) gained the adsorption priority of biochar (for Cu2+) and wet-state ferrihydrite (for oxytetracycline and pBR322) and showed adsorptive enhancement (for Cu2+ and oxytetracycline) from a more wrinkled and exposed surface from biochar silica-dispersed ferrihydrite and a more negatively charged biochar, and the adsorption capacity for SiC-Fe(W) was 17-135 times that of soil. Correspondingly, 10 g/kg SiC-Fe(W) amendment increased the soil adsorption coefficient Kd by 31%-1417% and reduced the selection pressure from dissolved oxytetracycline, co-selection pressure from dissolved Cu2+, and transformation frequency of pBR322 (assessed with Escherichia coli). The development of Fe-O-Si bonds on silicon-rich biochar in alkaline enhanced ferrihydrite stability and adsorption capacity (for oxytetracycline), presenting a new potential strategy of biochar/ferrihydrite composite synthesis for adsorptive inhibition of ARG proliferation and transformation in ARG pollution control.
Collapse
Affiliation(s)
- Zaiming Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, China
| | - Jiahao Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, China
| | - Xiaoqin Xu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, China
| | - Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, China
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, 310012, China.
| |
Collapse
|
36
|
Nie C, Hou Y, Liu F, Dong Q, Li Z, Han P, Tong M. Efficient peroxymonosulfate activation by magnetic MoS 2@Fe 3O 4 for rapid degradation of free DNA bases and antibiotic resistance genes. WATER RESEARCH 2023; 239:120026. [PMID: 37182307 DOI: 10.1016/j.watres.2023.120026] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/16/2023]
Abstract
Antibiotic resistance genes (ARGs) have become as emerging contaminant with great concerns worldwide due to their threats to human health. It is thus urgent to develop techniques to degrade ARGs in water. In this study, MoS2@Fe3O4 (MF) particles were fabricated and used to activate peroxymonosulfate (PMS) for the degradation of four types of free DNA bases (T, A, C, and G, major components of ARGs) and ARGs. We found that MF/PMS system could effectively degrade all four DNA bases (T within 10 min, A within 30 min, C within 5 min, and G within 5 min) in very short time. During the reaction process, MF could activate PMS to form the reactive radicals such as ·OH, SO4·-, O2·-, and 1O2, contributing to the degradation of DNA bases. Due to the low adsorption energy, high charge transfer, and great capability for PMS cleavage, MF exhibited excellent PMS adsorption and activation performances. MoS2 in MF could enhance the cycle of Fe(III)/Fe(II), improving the catalytic performance. Excellent catalytic performances of MF/PMS system were achieved in complex water matrix (including different solution pH, coexisting of anions and natural organic matter) as well as in real water samples (including tap water, river water, sea water, and sewage) especially under high salinity conditions due to the generation of Cl· radicals and HClO species. MF/PMS system could also efficiently degrade ARGs (chromosomal kanR and plasmid gmrA) and DNA extracted from antibiotic resistant bacteria (ARB) in super-short time. Moreover, complete disinfection of two types of model ARB (E. coli K-12 MG 1655 and E. coli S17-1) could also be achieved in MF/PMS system. The high degradation performances of MF/PMS system achieved in the reused experiments and the 14-day continuous flow reactor experiments indicated the stability of MF particles. Due to the magnetic property, it would be convenient to separate MF particles from water after use via using magnet, facilitating their reuse of MF and avoiding potential water contamination by catalysts. Overall, this study not only provided a deep insight on Fe/Mo-triggered PMS activation process, but also provided an effective and reliable approach for the treatment of DNA bases, ARGs, DNA, and ARB in water.
Collapse
Affiliation(s)
- Chenyi Nie
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Yanghui Hou
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Fuyang Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Qiqi Dong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Zhengmao Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Peng Han
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
37
|
Ding Y, Zhang M, Zhou S, Xie L, Li A, Wang P. Degradation of dimethyl phthalate through Fe(II)/peroxymonosulphate heightened by fulvic acid: efficiency and possible mechanism. ENVIRONMENTAL TECHNOLOGY 2023; 44:1850-1862. [PMID: 34873993 DOI: 10.1080/09593330.2021.2014576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
Ferrous iron (Fe(II)) reacts with peroxymonosulphate (PMS) to form active oxidants that can degrade refractory organic pollutants. However, the conversion rate of Fe(III) to Fe(II) is slow, which limits its actual application. In the study, the effect of fulvic acid (FA) on the degradation of dimethyl phthalate (DMP) by Fe(II)/PMS was investigated. Moreover, the degradation process of DMP was predicted by the preliminary identification of active free radicals and intermediates. As expected, FA gave rise to a higher concentration of Fe(II) than that in Fe(II)/PMS to enhance the removal of DMP in Fe(II)/PMS system. The precipitate, involved in FA and iron, was an important composite to promote the degradation of DMP in the system. Also, the response surface methodology (RSM) was applied to model and optimize the degradation conditions of DMP. The highest removal efficiency (85.70%) was obtained at pH = 3.86, [PMS] = 0.96 mM, [FA] = 11.44 mg/L and [DMP] = 5 µM. The results of free radical quenching experiments and EPR showed that •OH and SO4•- were the main active radicals in this system. The degradation intermediates of DMP were monomethyl phthalate (MMP), phthalic acid and benzoic acid. Discoveries of this study had raised the current understanding of the application of FA keeping the cycles of Fe(II)/Fe(III) for peroxymonosulphate activation, which could afford valuable information for the degradation of organic pollutants by FA/Fe(II)/PMS.
Collapse
Affiliation(s)
- Yi Ding
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Min Zhang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Sijie Zhou
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Linbei Xie
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Ao Li
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Ping Wang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
38
|
Ke Y, Jiang J, Mao X, Qu B, Li X, Zhao H, Wang J, Li Z. Photochemical reaction of glucocorticoids in aqueous solution: Influencing factors and photolysis products. CHEMOSPHERE 2023; 331:138799. [PMID: 37119927 DOI: 10.1016/j.chemosphere.2023.138799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/09/2023]
Abstract
Glucocorticoids (GCs), as endocrine disruptors, have attracted widespread attention due to their impacts on organisms' growth, development, and reproduction. In the current study, the photodegradation of budesonide (BD) and clobetasol propionate (CP), as targeted GCs, was investigated including the effects of initial concentrations and typical environmental factors (Cl-, NO2-, Fe3+, and fulvic acid (FA)). The results showed that the degradation rate constants (k) were 0.0060 and 0.0039 min-1 for BD and CP at concentration of 50 μg·L-1, and increased with the initial concentrations. Under the addition of Cl-, NO2-, and Fe3+ to the GCs/water system, the photodegradation rate was decreased with increasing Cl-, NO2-, and Fe3+ concentrations, which were in contrast to the addition of FA. Electron resonance spectroscopy (EPR) analysis and the radical quenching experiments verified that GCs could transition to the triplet excited states of GCs (3GCs*) for direct photolysis under irradiation to undergo, while NO2-, Fe3+, and FA could generate ·OH to induce indirect photolysis. According to HPLC-Q-TOF MS analysis, the structures of the three photodegradation products of BD and CP were elucidated, respectively, and the phototransformation pathways were inferred based on the product structures. These findings help to grasp the fate of synthetic GCs in the environment and contribute to the understanding of their ecological risks.
Collapse
Affiliation(s)
- Yifan Ke
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jingqiu Jiang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, No.12 South Zhongguancun Ave., Haidian District, Beijing, 100081, China
| | - Xiqin Mao
- Dalian Institute for Drug Control, Dalian Food and Drug Administration, Dalian, 116024, China
| | - Baocheng Qu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116024, China
| | - Xintong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Jingyao Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Zhansheng Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
39
|
Ye C, Zhang K, Wu X, Wan K, Cai WF, Feng M, Yu X. Uncovering novel disinfection mechanisms of solar light/periodate system: The dominance of singlet oxygen and metabolomic insights. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130177. [PMID: 36308932 DOI: 10.1016/j.jhazmat.2022.130177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Disinfection plays an essential role in waterborne pathogen control and disease prevention, especially during the COVID-19 pandemic. Catalyst-free solar light/periodate (PI) system has recently presented great potential in water disinfection, whereas the in-depth chemical and microbiological mechanisms for efficient bacterial inactivation remain unclear. Our work delineated firstly the critical role of singlet oxygen, instead of reported hydroxyl radicals and superoxide radicals, in dominating bacterial inactivation by the PI/simulated sunlight (SSL) system. Multi-evidence demonstrated the prominent disinfection performance of this system for Staphylococcus aureus in terms of culturability (> 6 logs CFU), cellular integrity, and metabolic activity. Particularly, the excellent intracellular DNA removal (> 95%) indicated that PI/SSL system may function as a selective disinfection strategy to diminish bacterial culturability without damaging the cell membrane. The PI/SSL system could also effectively inhibit bacterial regrowth for > 5 days and horizontal gene transfer between E. coli genera. Nontargeted metabolomic analysis suggested that PI/SSL system inactivated bacteria by triggering the accumulation of intracellular reactive oxygen species and the depletion of reduced glutathione. Additionally, the PI/SSL system could accomplish simultaneous micropollutant removal and bacterial inactivation, suggesting its versatility in water decontamination. Overall, this study deciphers more comprehensive antibacterial mechanisms of this environmentally friendly disinfection system, facilitating the technical development and application of the selective disinfection strategy in environmental pathogen control.
Collapse
Affiliation(s)
- Chengsong Ye
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Kaiting Zhang
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Xu Wu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Kun Wan
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Wei-Feng Cai
- Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen 361009, China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
40
|
Zhang X, Yao MC, Chen L, Sheng GP. Lewis Acid-Base Interaction Triggering Electron Delocalization to Enhance the Photodegradation of Extracellular Antibiotic Resistance Genes Adsorbed on Clay Minerals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17684-17693. [PMID: 36455257 DOI: 10.1021/acs.est.2c05785] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The transformation of extracellular antibiotic resistance genes (eARGs) is largely influenced by their inevitable photodegradation in environments where they tend to be adsorbed by ubiquitous clay minerals instead of being in a free form. However, the photodegradation behaviors and mechanisms of the adsorbed eARGs may be quite different from those of the free form and still remain unclear. Herein, we found that kaolinite, a common 1:1-type clay, markedly enhanced eARG photodegradation and made eARGs undergo direct photodegradation under UVA. The decrease in the transformation efficiency of eARGs caused by photodegradation was also promoted. Spectroscopy methods combined with density functional theory calculations revealed that the Lewis acid-base interaction between P-O in eARGs and Al-OH on kaolinite delocalized electrons of eARGs, thus resulting in increased photon absorption ability of eARGs. This ultimately led to enhanced photodegradation of kaolinite-adsorbed eARGs. Additionally, divalent Ca2+ could reduce the Lewis acid-base interaction-mediated adsorption of eARGs by kaolinite, thereby weakening the enhanced photodegradation of eARGs caused by electron delocalization. In contrast, the 2:1-type clay montmorillonite without strong Lewis acid sites was unable to delocalize the electrons to enhance the photodegradation of eARGs. This work allowed us to better evaluate eARGs' fate and risk in real aqueous environments.
Collapse
Affiliation(s)
- Xin Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Mu-Cen Yao
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230026, China
| | - Lin Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| |
Collapse
|
41
|
Wang X, Chen Y. ZnIn2S4/CoFe2O4 p-n junction-decorated biochar as magnetic recyclable nanocomposite for efficient photocatalytic degradation of ciprofloxacin under simulated sunlight. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
42
|
Dhiman P, Sharma G, Alodhayb AN, Kumar A, Rana G, Sithole T, ALOthman ZA. Constructing a Visible-Active CoFe 2O 4@Bi 2O 3/NiO Nanoheterojunction as Magnetically Recoverable Photocatalyst with Boosted Ofloxacin Degradation Efficiency. Molecules 2022; 27:8234. [PMID: 36500330 PMCID: PMC9741353 DOI: 10.3390/molecules27238234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022] Open
Abstract
Constructing visible-light-active Z-scheme heterojunctions has proven fruitful in enhancing the photocatalytic activity of photocatalysts for superior water clean-up. Herein, we report the fabrication of a CoFe2O4@Bi2O3/NiO (CBN) Z-scheme nanoheterojunction. The obtained CBN heterojunction was used for visible-light-assisted degradation of ofloxacin (OFL) in water. The OFL degradation efficiency achieved by the CBN heterojunction was 95.2% in 90 min with a rate constant of kapp = 0.03316 min-1, which was about eight times that of NiO and thirty times that of CoFe2O4. The photocatalytic activity of a Bi2O3/NiO Z-scheme heterojunction was greatly enhanced by the visible activity and redox mediator effect of the cobalt ferrite co-catalyst. Higher charge-carrier separation, more visible-light capture, and the Z-scheme mechanism in the Z-scheme system were the important reasons for the high performance of CBN. The scavenging experiments suggested ●O2- as an active species for superior OFL degradation. The possible OFL degradation pathway was predicted based on LC-MS findings of degradation intermediate products. The magnetic nature of the CBN helped in the recovery of the catalyst after reuse for six cycles. This work provides new insights into designing oxide-based heterojunctions with high visible-light activity, magnetic character, and high redox capabilities for potential practical applications in environmental treatment.
Collapse
Affiliation(s)
- Pooja Dhiman
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173229, India
| | - Gaurav Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173229, India
- Department of Chemistry, College of Science, King Saud University, Bldg. #5, Riyadh 11451, Saudi Arabia
- Department of Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein 2088, South Africa
| | - Abdullah N. Alodhayb
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Amit Kumar
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173229, India
| | - Garima Rana
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173229, India
| | - Thandiwe Sithole
- Department of Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein 2088, South Africa
| | - Zeid A. ALOthman
- Department of Chemistry, College of Science, King Saud University, Bldg. #5, Riyadh 11451, Saudi Arabia
| |
Collapse
|
43
|
Kulikova NA, Solovyova AA, Perminova IV. Interaction of Antibiotics and Humic Substances: Environmental Consequences and Remediation Prospects. Molecules 2022; 27:molecules27227754. [PMID: 36431855 PMCID: PMC9699543 DOI: 10.3390/molecules27227754] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
The occurrence and distribution of antibiotics in the environment has received increasing attention due to their potential adverse effects on human health and ecosystems. Humic substances (HS) influence the mobility, reactivity, and bioavailability of antibiotics in the environment significantly due to their interaction. As a result, HS can affect the dissemination of antibiotic-resistance genes, which is one of the main problems arising from contamination with antibiotics. The review provides quantitative data on the binding of HS with fluoroquinolones, macrolides, sulfonamides, and tetracyclines and reports the proposed mechanisms of their interaction. The main issues of the quantification of antibiotic-HS interaction are discussed, which are a development of standard approaches and the accumulation of a dataset using a standard methodology. This would allow the implementation of a meta-analysis of data to reveal the patterns of the binding of antibiotics to HS. Examples of successful development of humic-based sorbents for fluoroquinolone and tetracycline removal from environmental water systems or polluted wastewaters were given. Data on the various effects of HS on the dissemination of antibiotic-resistance genes (ARGs) were summarized. The detailed characterization of HS properties as a key point of assessing the environmental consequences of the formation of antibiotic-HS complexes, such as the dissemination of antibiotic resistance, was proposed.
Collapse
Affiliation(s)
- Natalia A. Kulikova
- Department of Soil Science, Lomonosov Moscow State University, Leninskiye Gory 1-12, 119991 Moscow, Russia
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, pr. Leninskiy 33, 119071 Moscow, Russia
- Correspondence: (N.A.K.); (I.V.P.); Tel.: +7-495-939-55-46 (N.A.K. & I.V.P.)
| | - Alexandra A. Solovyova
- Department of Soil Science, Lomonosov Moscow State University, Leninskiye Gory 1-12, 119991 Moscow, Russia
| | - Irina V. Perminova
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russia
- Correspondence: (N.A.K.); (I.V.P.); Tel.: +7-495-939-55-46 (N.A.K. & I.V.P.)
| |
Collapse
|
44
|
Zhang H, Zheng Y, Wang XC, Zhang Q, Dzakpasu M. Photochemical behavior of constructed wetlands-derived dissolved organic matter and its effects on Bisphenol A photodegradation in secondary treated wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157300. [PMID: 35842169 DOI: 10.1016/j.scitotenv.2022.157300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Free water surface flow (FWS) constructed wetlands (CWs) have been broadly applied for polishing secondary treated effluents. Dissolved organic matter derived from FWS CWs (WDOM) plays key roles in contaminants transformations. Conversely, photodegradation could shape the quantity and quality of WDOM, thereby affecting its roles in the photolysis of organic micropollutants (OMPs). Nevertheless, whether and how solar irradiation-induced photodegradation modify the properties of WDOM, and the effects of WDOM on the photodegradation of OMPs remain unclear. This study elucidates the photochemical behavior of two WDOM isolated from field-scale FWS CWs for effluent polishing under simulated sunlight irradiation using spectroscopic tools and high-resolution mass spectra. Furthermore, the roles of WDOM in the photodegradation of Bisphenol A (BPA), as a representative endocrine-disrupting compound (EDC), were comprehensively investigated. Solar irradiation was demonstrated to lower the molecular weight and aromaticity of WDOM, as well as weaken its light absorption. Ultrahigh-resolution mass spectra further confirmed that aromatic and unsaturated structures were susceptible to solar irradiation-induced photodegradation reactions. Subsequently, less aromatic and more saturated structures eventually formed under sunlight irradiation, consistent with the result from spectroscopic characterization. The reactive species produced from WDOM significantly enhanced the photodegradation of BPA with the kobs noticeably increasing 4-fold compared with the kobs for direct photolysis. Additionally, 3WDOM* was identified as the dominant reactive species leading to the photolysis of BPA in the presence of WDOM. These findings improve understanding of the phototransformation behavior of WDOM under sunlight irradiation and the roles that WDOM plays in the photochemical fate of coexisting OMPs in CWs treatment systems.
Collapse
Affiliation(s)
- Hengfeng Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Yucong Zheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Xiaochang C Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Qionghua Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Mawuli Dzakpasu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China.
| |
Collapse
|
45
|
Fang J, Li W, Tian Y, Chen Z, Yu Y, Shan S, Rajput VD, Srivastava S, Lin D. Pyrolysis temperature affects the inhibitory mechanism of biochars on the mobility of extracellular antibiotic resistance genes in saturated porous media. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129668. [PMID: 35907284 DOI: 10.1016/j.jhazmat.2022.129668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The migration of extracellular antibiotic resistance genes (eARGs) in porous media is an important pathway for ARGs to spread to the subsoil and aquifer. Biochar (BC) has been widely used to reduce the mobility of soil contaminants, however, its effect on the mobility of eARGs in porous media and the mechanisms are largely unknown. Herein, the effects of BCs synthesized from wheat straw and corn straw at two pyrolysis temperatures (300 °C and 700 °C) on the transport of plasmids-carried eARGs in sand column were investigated. The BC amendments all significantly decreased the mobility of eARGs in the porous medium, but the mechanism varied with pyrolysis temperature. The higher temperature BCs had a stronger irreversible adsorption of plasmids and greatly enhanced the attachment and straining effects on plasmids during transport, thus more effectively inhibited the mobility of eARGs. The lower temperature BCs had weaker adsorption, attachment, and straining effects on plasmids, but induced generation of hydroxyl radicals in the porous medium and thereby fragmented the plasmids and hindered the amplification of eARGs. These findings are of fundamental significance for the potential application of BC in controlling the vertical spread of eARGs in soil and vadose zones.
Collapse
Affiliation(s)
- Jing Fang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Wenchao Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yiyang Tian
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Zhiwen Chen
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yijun Yu
- Arable Soil Quality and Fertilizer Administration Station of Zhejiang Province, Hangzhou 310020, China
| | - Shengdao Shan
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | | | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
46
|
Zhang T, Cheng F, Yang H, Zhu B, Li C, Zhang YN, Qu J, Peijnenburg WJGM. Photochemical degradation pathways of cell-free antibiotic resistance genes in water under simulated sunlight irradiation: Experimental and quantum chemical studies. CHEMOSPHERE 2022; 302:134879. [PMID: 35551936 DOI: 10.1016/j.chemosphere.2022.134879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
The presence of antibiotic resistance genes (ARGs) in the environment poses a threat to human health and therefore their environmental behavior needs to be studied urgently. A systematic study was conducted on the photodegradation pathways of the cell-free tetracycline resistance gene (Tc-ARG) under simulated sunlight irradiation. The results showed that Tc-ARG can undergo direct photodegradation, which significantly reduces its horizontal transfer efficiency. Suwannee River fulvic acid (SRFA) promoted the photodegradation of Tc-ARG and further inhibited its horizontal transfer by generating reactive intermediates. The photodegradation of Tc-ARG was attributed to degradation of the four bases (G, C, A, T) and the deoxyribose group. Quantum chemical calculations showed that the four bases could be oxidized by the hydroxyl radical (HO) through addition and H-abstraction reactions. The main oxidative product 8-oxo-dG was detected. This product was generated through the addition reaction of G-C with HO, subsequent to dissolved oxygen initiated H-abstraction and H2O catalyzed H-transfer reactions. The predicted maximum photodegradation rates of Tc-ARG in the Yellow River estuary were 0.524, 0.937, and 0.336 h-1 in fresh water, estuary water, and seawater, respectively. This study furthermore revealed the microscopic photodegradation pathways and obtained essential degradation parameters of Tc-ARG in sunlit surface water.
Collapse
Affiliation(s)
- Tingting Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Fangyuan Cheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Hao Yang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Boyi Zhu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Chao Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Ya-Nan Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China.
| | - Jiao Qu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, China.
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, the Netherlands
| |
Collapse
|
47
|
Fang H, Liu Y, Qiu P, Song HL, Liu T, Guo J, Zhang S. Simultaneous removal of antibiotic resistant bacteria and antibiotic resistance genes by molybdenum carbide assisted electrochemical disinfection. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128733. [PMID: 35334270 DOI: 10.1016/j.jhazmat.2022.128733] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Considering conventional disinfection methods are not effective in simultaneously removing ARB and ARGs, a novel electrochemical disinfection (ED) process assisted by molybdenum carbide (Mo2C) electrodes was developed in this study. The established ED process was proved to effectively inactivate multi-resistant ARB (i.e. Escherichia coli K-12 LE392 with resistance to kanamycin, ampicillin, and tetracycline) and to degrade ARGs (including tetA and blaTEM in the form of both intracellular (iARGs) and extracellular ARGs (eARGs)). Specifically, within 15 min treatment by the Mo2C-assisted ED under 2.0 V, a 5-log ARB removal was realized, without any ARB regrowth observed, indicating a permanent inactivation of ARB by the process. Moreover, degradation of the iARGs (0.4-log reduction of the blaTEM and 3.1-log reduction of the tetA) and the eARGs (4.2-log reduction of the blaTEM and 1.1-log reduction of the tetA) were achieved within 60 min, further underpinning the viability of the Mo2C-based ED. While e-, H2O2, and •O2- played leading roles in the entire process of ED, H+ and •OH contributed to bacterial inactivation in the early and late stages of ED, respectively. The reactive species induced by electrolysis posed pressure to the ARB strains, which enhanced oxidative stress response, triggered higher reactive oxygen species generation, induced membrane damage and changed cellular structure. Collectively, the Mo2C-assisted ED demonstrated in the present study represents an attractive alternative to the traditional disinfection methods in combating the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Hao Fang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yinghan Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Pengxiang Qiu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing 210023, China.
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Shuai Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
48
|
Tian Y, Yao S, Zhou L, Hu Y, Lei J, Wang L, Zhang J, Liu Y, Cui C. Efficient removal of antibiotic-resistant bacteria and intracellular antibiotic resistance genes by heterogeneous activation of peroxymonosulfate on hierarchical macro-mesoporous Co 3O 4-SiO 2 with enhanced photogenerated charges. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:127414. [PMID: 35149504 DOI: 10.1016/j.jhazmat.2021.127414] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 06/14/2023]
Abstract
Antibiotic resistance genes (ARGs) and their host antibiotic-resistant bacteria (ARB) are widely detected in the environment and pose a threat to human health. Traditional disinfection in water treatment plants cannot effectively remove ARGs and ARB. This study explored the potential of a heterogeneous photo-Fenton-like process utilizing a hierarchical macro-mesoporous Co3O4-SiO2 (MM CS) catalyst for activation of peroxymonosulfate (PMS) to inactivate ARB and degrade the intracellular ARGs. A typical gram-negative antibiotic-resistant bacteria called Pseudomonas sp. HLS-6 was used as a model ARB. A completed inactivation of ARB at ∼107 CFU/mL was achieved in 30 s, and an efficient removal rate of more than 4.0 log for specific ARGs (sul1 and intI1) was achieved within 60 min by the MM CS-based heterogeneous photo-Fenton-like process under visible light and neutral pH conditions. Mechanism investigation revealed that •O2- and 1O2 were the vital reactive species for ARB inactivation and ARG degradation. The formation and transformation of the active species were proposed. Furthermore, the hierarchical macro-mesoporous structure of MM CS provided excellent optical and photoelectrochemical properties that promoted the cycle of Co3+/Co2+ and the effective utilization of PMS. This process was validated to be effective in various water matrices, including deionized water, underground water, source water, and secondary effluent wastewater. Collectively, this work demonstrated that the MM CS-based heterogeneous photo-Fenton-like process is a promising technology for controlling the spread of antibiotic resistance in aquatic environments.
Collapse
Affiliation(s)
- Yunhao Tian
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Shijie Yao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Liang Zhou
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China; Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Yaru Hu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Juying Lei
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Lingzhi Wang
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Jinlong Zhang
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Yongdi Liu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
49
|
Zhao M, Bai X, Zhang Y, Yuan Y, Sun J. Enhanced photodegradation of antibiotics based on anoxygenic photosynthetic bacteria and bacterial metabolites: A sustainably green strategy for the removal of high-risk organics from secondary effluent. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128350. [PMID: 35149498 DOI: 10.1016/j.jhazmat.2022.128350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/13/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Antibiotic residues in effluents discharged from wastewater treatment plants (WWTPs) have been considered high-risk organics due to biorefractory property and potential toxicity. Secondary pollution and unsustainability existed in advanced treatment of secondary effluent are currently in urgent need of improvement. In this study, a sustainably green strategy based on Rhodopseudomonas palustris (R.palustris) by regulating the structure of extracellular polymeric substances (EPS) was proposed for the first time to achieve efficiently removal of sulfadiazine (SDZ). Results showed that 0.2 V was the optimal external potential for R.palustris to efficiently remove SDZ, where the biodegradation rate constant obtained at this potential was 4.87-folds higher than that in open-circuit mode and a complete removal was achieved within 58 h in the presence of EPS extracted at this potential. Three-dimensional excitation-emission matrix (3D-EEM) spectra analysis suggested that tryptophan protein-like, tyrosine protein-like, humic acid-like and fulvic acid-like substances present in EPS were the main effective components which was responsible for the indirect photodegradation of SDZ. The quenching experiments showed that 3EPS* was the dominant reactive species which accounted for 90% of SDZ removal. This study provides new implications for the advanced treatment of secondary effluent organic matters by developing eco-friendly bioaugmentation technology and biomaterials.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoyan Bai
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaping Zhang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yong Yuan
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jian Sun
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
50
|
Niu L, Li J, Wang S, Manoli K, Zhang L, Yu X, Feng M. Tuning the reactivity of permanganate by naturally occurring DNA bases: Enhanced efficiency of micropollutant abatement. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|