1
|
Xiong B, Wang H, Song YX, Lan WY, Li J, Wang F. Natural saponins and macrophage polarization: Mechanistic insights and therapeutic perspectives in disease management. Front Pharmacol 2025; 16:1584035. [PMID: 40417220 PMCID: PMC12098594 DOI: 10.3389/fphar.2025.1584035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 03/24/2025] [Indexed: 05/27/2025] Open
Abstract
Macrophage polarization plays a pivotal role in immune homeostasis and disease progression across inflammatory, neoplastic, and metabolic disorders. Saponins, which are natural compounds with steroidal/triterpenoid structures, demonstrate therapeutic potential through immunomodulatory, anti-inflammatory, and anti-tumor activities. This study aims to highlight the potential of key saponins-such as ginsenosides, astragaloside IV, dioscin, platycodin D, pulsatilla saponins, and panax notoginseng saponins-in modulating macrophage polarization and enhancing conventional therapies, particularly in oncology. We conducted structured searches in PubMed, Google Scholar, and SciFinder (2013-2024) using controlled vocabulary, including "saponins," "macrophage polarization," and "therapeutic effects." Our findings demonstrate that saponins significantly modulate immune responses and improve treatment efficacy. However, clinical translation is hindered by challenges such as poor bioavailability and safety concerns, which limit systemic exposure and therapeutic utility. To overcome these barriers, innovative delivery strategies, including nanoemulsions and engineered exosomes, are essential for enhancing pharmacokinetics and therapeutic index. Future research should prioritize elucidating the molecular mechanisms underlying saponin-mediated macrophage polarization, identifying novel therapeutic targets, and optimizing drug formulations. Addressing these challenges will enable the restoration of immune balance and more effective management of diverse diseases.
Collapse
Affiliation(s)
- Beibei Xiong
- Department of Oncology, The First People’s Hospital of Shuangliu District, Chengdu, China
| | - Huan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi-Xuan Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen-Ying Lan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | | | - Fang Wang
- Chengdu First People’s Hospital, Chengdu, China
| |
Collapse
|
2
|
Wang Y, Liu L, Li J, You Y, Xiao S, Feng J, Yin X, Liao F, You Y. Involvement of Piezo 1 in inhibition of shear-induced platelet activation and arterial thrombosis by ginsenoside Rb1. Br J Pharmacol 2025; 182:1957-1974. [PMID: 39894463 DOI: 10.1111/bph.17434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND AND PURPOSE Shear-induced platelet activation and aggregation (SIPA) play crucial roles in arterial thrombosis. Piezo1 is a mechanosensitive calcium channel that promotes platelet hyperactivation under pathological high-shear conditions. This study explores the function of platelet Piezo1 in SIPA and arterial thrombosis, and the inhibitory effects and mechanisms of ginsenoside Rb1 on these processes. EXPERIMENTAL APPROACH Transgenic mice with platelet-specific Piezo1 deficiency (Piezo1ΔPlt) were used to elucidate the role of platelet Piezo1 in SIPA and arterial thrombosis. A microfluidic channel system was employed to assess platelet aggregation, calcium influx, calpain activity, talin cleavage, integrin αIIbβ3 activation and P-selectin expression under shear flow. Cellular thermal shift assay was used to determine binding between Rb1 and Piezo1. Folts-like model in mice was used to evaluate antithrombotic effects of Rb1. KEY RESULTS Piezo1 deficiency in platelets reduced platelet activation and aggregation induced by a high shear rate of 4000 s-1 and attenuated arterial thrombosis induced by Folts-like mouse model. Rb1 inhibited SIPA with an IC50 of 10.8 μM. Rb1 inhibited shear-induced Ca2+-dependent platelet activation and aggregation, as well as thrombus formation in Folts-like model in Piezo1fl/fl mice. Rb1 significantly improved thermal stability of Piezo1 in platelets by binding to Piezo1. Treatment of Piezo1ΔPlt mice with Rb1 did not exhibit further inhibitory effects on SIPA and thrombosis. CONCLUSION AND IMPLICATIONS Platelet Piezo1 is essential for SIPA and arterial thrombosis induced by high shear. Rb1 exerted anti-platelet and anti-thrombotic effects at high shear rates via Piezo1 channels, providing a potential candidate as antiplatelet therapeutic agent.
Collapse
Affiliation(s)
- Yilin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Henan, China
| | - Jia Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue You
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shunli Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiantao Feng
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaojie Yin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fulong Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yun You
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Chen X, Ding W, Liu Y, Liu H, Zhang C, Huang L. Innovative approaches in atherosclerosis treatment: Harnessing traditional Chinese medicine to target long non-coding RNAs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156488. [PMID: 39938175 DOI: 10.1016/j.phymed.2025.156488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/31/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND Atherosclerosis (AS) is a major contributor to cardiovascular diseases, characterized by high morbidity and mortality rates. Long non-coding RNAs (LncRNAs), as members of non-protein coding RNAs, play a crucial role in various biological processes that maintain homeostasis and influence disease progression. Research indicates that lncRNAs are involved in the pathogenesis of AS. PURPOSE In this study, we aim to explore the role of lncRNAs in the pathogenesis of AS and the latest progress in the prevention and treatment of AS by targeted regulation of lncRNAs by traditional Chinese medicine (TCM), in order to provide more new beneficial targets for the treatment of AS and expand the application of TCM in the treatment of cardiovascular diseases. METHOD The literature was retrieved, analyzed, and collected using PubMed, Web of Science, Sci-Hub, CNKI, Elsevier, ScienceDirect, SpringerLink, and Google Scholar. Search terms include "atherosclerosis", "traditional Chinese medicine", "natural products", "active ingredient", "lncRNAs", "herbal medicine", "cardiovascular diseases", "pharmacology", "toxicology", "clinical trials", etc., and several combinations of these keywords. RESULTS This study examines the primary mechanisms through which lncRNAs induce AS, such as dysfunction in endothelial cells, abnormal proliferation of vascular smooth muscle cells, cholesterol buildup in macrophages, formation of foam cells, inflammatory responses, and imbalances in lipid metabolism. Additionally, it summarizes 16 herbal monomers and 6 Chinese herbal compounds, along with an analysis of the toxicological aspects of TCM. CONCLUSION The study explores the existing approaches for modulating lncRNAs and emphasizes the significance and potential of herbal monomers, extracts, and formulations in this context.
Collapse
Affiliation(s)
- Xiaofang Chen
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Wenyan Ding
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Yifan Liu
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Hao Liu
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Liang Huang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
4
|
Wang X, Zhao H, Lin W, Fan W, Zhuang T, Wang X, Li Q, Wei X, Wang Z, Chen K, Yang L, Ding L. Panax notoginseng saponins ameliorate LPS-induced acute lung injury by promoting STAT6-mediated M2-like macrophage polarization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156513. [PMID: 40010033 DOI: 10.1016/j.phymed.2025.156513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 02/05/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND Acute lung injury (ALI) is a severe inflammatory condition characterized by dysregulated immune responses and high mortality rates, with limited effective therapeutic options currently available. Panax notoginseng saponins (PNS), bioactive compounds derived from Panax notoginseng, have shown promise in mitigating lipopolysaccharide (LPS)-induced ALI. However, the molecular mechanisms underlying their therapeutic effects remain poorly understood. Given the critical role of M2-like macrophage polarization in resolving inflammation and promoting tissue repair, we investigated whether PNS exerts its protective effects in ALI by modulating this process. Furthermore, we explored the specific involvement of the signal transducer and activator of transcription 6 (STAT6) pathway in mediating these effects. METHODS Chemical profiling of PNS was performed using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS), followed by quantitative analysis of its major bioactive components via high-performance liquid chromatography (HPLC). To evaluate the therapeutic efficacy of PNS and its principal constituents, we established an ALI mouse model through intratracheal administration of LPS. Comprehensive assessments included lung field shadowing, oxygen saturation levels, pulmonary function, and systematic histopathological examination. The regulatory effects of PNS on macrophage polarization were examined in THP-1 cells and bone marrow-derived macrophages (BMDMs), with cellular phenotypes analyzed by flow cytometry. To elucidate the mechanistic role of STAT6 in PNS-mediated protection, experiments were conducted using Stat6-deficient BMDMs and Stat6 knockout mice. RESULTS UPLC-Q-TOF-MS and HPLC identified and quantified the principal components of PNS: Notoginsenoside R1, Ginsenoside Rg1, Ginsenoside Re, and Ginsenoside Rb1. PNS treatment dose-dependently reduced inflammatory responses in LPS-induced ALI mice, as evidenced by decreased cytokine levels. Each of the four major PNS components independently alleviated ALI symptoms in mice. Pathway analysis revealed 56 potential ALI-related targets, with Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment suggesting that PNS exerts its protective effects by modulating inflammatory signaling pathways. In vitro studies demonstrated that PNS promoted STAT6 phosphorylation and nuclear translocation, enhancing M2-like macrophage polarization and interleukin-10 (IL-10) secretion in a STAT6-dependent manner. Genetic ablation of Stat6 partially reversed the protective effects of PNS on ALI, macrophage polarization, and IL-10 production, confirming the pivotal role of STAT6 in mediating PNS activity. CONCLUSION This study demonstrates that PNS alleviates LPS-induced ALI by promoting STAT6-dependent M2-like macrophage polarization, highlighting its potential as a therapeutic agent for ALI. These findings provide mechanistic insights into the anti-inflammatory actions of PNS and underscore the importance of STAT6 signaling in its protective effects.
Collapse
Affiliation(s)
- Xunjiang Wang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China
| | - Hanyang Zhao
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Wenyuan Lin
- Endocrinology Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, PR China
| | - Wenxiang Fan
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China
| | - Tongxi Zhuang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China
| | - Xu Wang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China
| | - Qi Li
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China
| | - Xiaohui Wei
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China
| | - Kaixian Chen
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China.
| | - Li Yang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China.
| | - Lili Ding
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, PR China.
| |
Collapse
|
5
|
Fan S, Chen J, Zhang Z, Gong G, Mu Y, Bai D, Zheng D, Huang X, Li L. Characterization and anti-inflammatory investigation of sesquiterpene lactones from Ixeris chinensis. PHYTOCHEMISTRY 2025; 231:114339. [PMID: 39603579 DOI: 10.1016/j.phytochem.2024.114339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/14/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Ixeris chinensis is an edible and medicinal plant possessing anti-inflammatory activity. However, knowledge about the bioactive components of I. chinensis remains limited. Herein, comprehensive phytochemical study led to isolation and identification of 31 sesquiterpene lactones (SLs) from I. chinensis ethanol extract. Among them, 7 were previously undescribed guaianolides (1-4, 12-13, 24) and 16 were reported from this plant for the first time. Ixerisoside A (6) was proved to be the most predominant SL present in I. chinensis, and its content was determined as 0.34 ± 0.02% by HPLC-DAD method. Eleven SLs showed inhibition against NO production in LPS-induced RAW264.7 cells (IC50 value ranging from 12.13 to 31.10 μM). Compounds 6 and 13 could suppress IL-6 and IL-1β release, and down-regulate gene expression levels of IL-6, IL-1β, and iNOS. Network pharmacology study identified MAPK among those of the core targets of SLs against inflammation, which was validated by molecular docking. Cellular study proved that SLs could suppress phosphorylation of ERK and p38. Our work highlights therapeutic potential of SLs against inflammatory diseases, and offers valuable insights for developing I. chinensis as functional food in the nutraceutical industry.
Collapse
Affiliation(s)
- Shaoqiang Fan
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Jia Chen
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Zhuo Zhang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Guohua Gong
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028007, PR China
| | - Yu Mu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Dongsong Bai
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Dan Zheng
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Liya Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China; Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China.
| |
Collapse
|
6
|
Mo Y, He X, Cui H, Cheng Y, Zhou M, Cui X, Zhang T. Gut microbiota: A new key of understanding for Panax notoginseng against multiple disorders and biotransformation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119306. [PMID: 39761836 DOI: 10.1016/j.jep.2024.119306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/14/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax notoginseng (Burkill) F.H.Chen(P. notoginseng) has been widely used as an herbal medicine for reducing swelling, relieving pain, promoting blood circulation and stopping bleeding, with notable therapeutic effects on obesity, liver diseases, colitis, Alzheimer's disease, chronic kidney disease and other diseases. AIM OF THE STUDY This review highlighted the close link and bidirectional effects between P. notoginseng and gut microbiota, with the ultimate aim of providing new insights into the potential mechanisms of pharmacological effects of P. notoginseng in the treatment of different diseases and PNS transformation. MATERIALS AND METHODS By means of some reputable databases (PubMed, China National Knowledge Infrastructure (CNKI), Google Scholar, etc.), we screened the published articles related to P. notoginseng from 1998 to 2024, including original research, clinical trials and review on raw materials and chemical constituents of P. notoginseng. Then, we employed the keywords "gut microbiota", "intestinal microbiota", "gut biotransformation" and "intestinal" to exclude the articles that do not in line with our topic. Plant information was obtained from www.worldfloraonline.org using "Panax notoginseng (Burkill) F.H.Chen" as the keyword. RESULTS P. notoginseng elevated certain probiotics including Lactobacillus, Bifidobacterium and Akkermansia, while simultaneously reducing pathogenic bacteria such as Prevotellaceae, Enterococcus, Enterobacter and Helicobacter, to fight various diseases. Meanwhile, considering to the low oral bioavailability and degradable properties of Panax notoginseng saponin (PNS), gut microbiota converted it into protopanaxatriol(PPT) and protopanaxadiol(PPD) mainly through deglycosylation reactions to enhance the bioactivity. CONCLUSION Increasing evidences suggest that gut microbiota may play a vital role for P. notoginseng exerting on beneficial effects on the prevention and treatment of metabolic disorders, liver diseases, neurological diseases, chronic kidney diseases, vascular diseases, colitis, and other diseases, as well as for biotransformation of P. notoginseng.
Collapse
Affiliation(s)
- Yueting Mo
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiyuan He
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hao Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, State Administration of Traditional Chinese Medicine, Kunming, 650500, China
| | - Yifan Cheng
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, State Administration of Traditional Chinese Medicine, Kunming, 650500, China
| | - Mingmei Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiuming Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, State Administration of Traditional Chinese Medicine, Kunming, 650500, China.
| | - Ting Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
7
|
Long Y, Lei F, Hu J, Zheng Z, Gui S, He N. Design and Evaluation of Ophthalmic Thermosensitive In Situ Gel of Compound Salvia. AAPS PharmSciTech 2024; 25:191. [PMID: 39164556 DOI: 10.1208/s12249-024-02913-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024] Open
Abstract
The compound Salvia Recipe has been shown to have a relatively significant curative effect in management of cardiovascular and cerebrovascular diseases. This work aimed to prepare a thermosensitive in situ gel (ISG) delivery system that utilizes Poloxamer 407, Poloxamer 188, and hydroxypropyl methylcellulose for ocular administration of the compound Salvia recipe to treat cardiovascular and cerebrovascular diseases. The central composite design-response surface method was utilized to improve the prescription of the gel. The formulated gel was characterized and assessed in terms of stability, retention time, in vitro release, rheology, ocular irritation, pharmacokinetics studies, and tissue distribution. The gel was a liquid solution at room temperature and became semisolid at physiological temperature, prolonging its stay time in the eye. Pharmacokinetics and tissue distribution experiments indicated that thermosensitive ISG had enhanced targeting of heart and brain tissues. Additionally, it could lower drug toxicity and side effects in the lungs and kidneys. The compound Salvia ophthalmic thermosensitive ISG is a promising drug delivery system for the management of cardiovascular and cerebrovascular illnesses.
Collapse
Affiliation(s)
- Yanqiu Long
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei, AnHui, People's Republic of China
| | - Fang Lei
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei, AnHui, People's Republic of China
| | - Jie Hu
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei, AnHui, People's Republic of China
| | - Zhiyun Zheng
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei, AnHui, People's Republic of China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medical Sciences, Hefei, 230012, People's Republic of China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medical Sciences, Hefei, 230012, China
| | - Shuangying Gui
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei, AnHui, People's Republic of China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medical Sciences, Hefei, 230012, People's Republic of China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medical Sciences, Hefei, 230012, China
| | - Ning He
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei, AnHui, People's Republic of China.
- Institute of Pharmaceutics, Anhui Academy of Chinese Medical Sciences, Hefei, 230012, People's Republic of China.
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, China.
- Institute of Pharmaceutics, Anhui Academy of Chinese Medical Sciences, Hefei, 230012, China.
| |
Collapse
|
8
|
Dong W, Peng Y, Xu W, Zhou W, Yan Y, Mi J, Lu L, Cao Y, Zeng X. In vivo absorption and excretion in rats and in vitro digestion and fermentation by the human intestinal microbiota of 2- O-β-D-glucopyranosyl-L-ascorbic acid from the fruits of Lycium barbarum L. Food Funct 2024; 15:8477-8487. [PMID: 39054889 DOI: 10.1039/d4fo01894j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
2-O-β-D-Glucopyranosyl-L-ascorbic acid (AA-2βG) from Lycium barbarum fruits has diverse bioactivities, yet its absorption and digestion are poorly understood. Therefore, the in vivo absorption of AA-2βG in rats was investigated in the present study. After oral administration to SD rats, AA-2βG was absorbed intact, reaching a peak plasma concentration of 472.32 ± 296.64 nM at 90 min, with fecal excretion peaking at 4-8 h and decreasing rapidly by 12-24 h, indicating a prolonged intestinal presence. Furthermore, the digestibility under simulated gastrointestinal conditions and the impact on the gut flora through in vitro fermentation of AA-2βG were investigated. The results reveal that AA-2βG resisted in in vitro simulated digestion, indicating potential interactions with the gut microbiota. The results of in vitro fermentation showed that AA-2βG regulated the composition of the gut microbiota by promoting Oscillospiraceae, Faecalibacterium, Limosilactobacillus, and Fusicatenibacter, while inhibiting Enterococcus, Phocaeicola, Bacteroides, and Streptococcus. Furthermore, at the species level, AA-2βG promoted the growth of Limosilactobacillus mucosae and Faecalibacterium prausnitzii, and inhibited the growth of Enterococcus. F. prausnitzii is a major producer of n-butyric acid, and the results of short-chain fatty acids also demonstrated a significant promotion of n-butyric acid. Therefore, the study on the absorption, excretion, and regulatory effects of AA-2βG on the gut microbiota supported its potential development as a functional food additive to enhance intestinal health and prevent diseases.
Collapse
Affiliation(s)
- Wei Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Yujia Peng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Weiqi Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Wangting Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Yamei Yan
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, Ningxia, China
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Jia Mi
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, Ningxia, China
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Lu Lu
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, Ningxia, China
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Youlong Cao
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, Ningxia, China
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
9
|
Hu Y, Li Y, Zhu H, Wang D, Zhou J, Ni Y, Guo R, Fan B, Li B. In vitro suppression of porcine epidemic diarrhea virus by Panax notoginseng saponins: assessing antiviral potential. Arch Virol 2024; 169:89. [PMID: 38565720 DOI: 10.1007/s00705-024-06020-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/12/2024] [Indexed: 04/04/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV) causes severe diarrhea and high mortality in neonatal suckling piglets, leading to significant economic losses to the swine industry. Panax notoginseng saponins (PNS) are bioactive extracts derived from the P. notoginseng plant. In this study, we investigated the anti-PEDV effect of PNS by employing various methodologies to assess their impact on PEDV in Vero cells. Using a CCK-8 (Cell Counting Kit-8) assay, we found that PNS had no significant cytotoxicity below the concentration of 128 µg/mL in Vero cells. Using immunofluorescence assays (IFAs), an enzyme-linked immunosorbent assay (ELISA), and plaque formation assays, we observed a dose-dependent inhibition of PEDV infection by PNS within 24-48 hours postinfection. PNS exerts its anti-PEDV activity specifically at the genome replication stage, and mRNA-seq analysis demonstrated that treatment with PNS resulted in increased expression of various genes, including IFIT1 (interferon-induced protein with tetratricopeptide repeats 1), IFIT3 (interferon-induced protein with tetratricopeptide repeats 3), CFH (complement factor H), IGSF10 (immunoglobulin superfamily member 10), ID2 (inhibitor of DNA binding 2), SPP1 (secreted phosphoprotein 1), PLCB4 (phospholipase C beta 4), and FABP4 (fatty acid binding protein 4), but it resulted in decreased expression of IL1A (interleukin 1 alpha), TNFRSF19 (TNF receptor superfamily member 19), CDH8 (cadherin 8), DDIT3 (DNA damage inducible transcript 3), GADD45A (growth arrest and DNA damage inducible alpha), PTPRG (protein tyrosine phosphatase receptor type G), PCK2 (phosphoenolpyruvate carboxykinase 2), and ADGRA2 (adhesion G protein-coupled receptor A2). This study provides insights into the potential mechanisms underlying the antiviral effects of PNS. Taken together, the results suggest that the PNS might effectively regulate the defense response to the virus and have potential to be used in antiviral therapies.
Collapse
Affiliation(s)
- Yiyi Hu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, 225009, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, 225300, Taizhou, China
| | - Yunchuan Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, 225009, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, 225300, Taizhou, China
| | - Haodan Zhu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, 225009, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, 225300, Taizhou, China
| | - Dandan Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, 225009, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, 225300, Taizhou, China
| | - Junming Zhou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, 225009, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, 225300, Taizhou, China
| | - Yanxiu Ni
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, 225009, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, 225300, Taizhou, China
| | - Rongli Guo
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, 225009, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, 225300, Taizhou, China
| | - Baochao Fan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, 225009, Yangzhou, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, 225300, Taizhou, China
| | - Bin Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Zhongling Street 50, 210014, Nanjing, China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, 225009, Yangzhou, China.
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, 225300, Taizhou, China.
| |
Collapse
|
10
|
Liang H, Ma Z, Zhong W, Liu J, Sugimoto K, Chen H. Regulation of mitophagy and mitochondrial function: Natural compounds as potential therapeutic strategies for Parkinson's disease. Phytother Res 2024; 38:1838-1862. [PMID: 38356178 DOI: 10.1002/ptr.8156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Mitochondrial damage is associated with the development of Parkinson's disease (PD), indicating that mitochondrial-targeted treatments could hold promise as disease-modifying approaches for PD. Notably, natural compounds have demonstrated the ability to modulate mitochondrial-related processes. In this review article, we discussed the possible neuroprotective mechanisms of natural compounds against PD in modulating mitophagy and mitochondrial function. A comprehensive literature search on natural compounds related to the treatment of PD by regulating mitophagy and mitochondrial function was conducted from PubMed, Web of Science and Chinese National Knowledge Infrastructure databases from their inception until April 2023. We summarize recent advancements in mitophagy's molecular mechanisms, including upstream and downstream processes, and its relationship with PD-related genes or proteins. Importantly, we highlight how natural compounds can therapeutically regulate various mitochondrial processes through multiple targets and pathways to alleviate oxidative stress, neuroinflammation, Lewy's body aggregation and apoptosis, which are key contributors to PD pathogenesis. Unlike the single-target strategy of modern medicine, natural compounds provide neuroprotection against PD by modulating various mitochondrial-related processes, including ameliorating mitophagy by targeting the PINK1/parkin pathway, the NIX/BNIP3 pathway, and autophagosome formation (i.e., LC3 and p62). Given the prevalence of mitochondrial damage in various neurodegenerative diseases, exploring the exact mechanism of natural compounds on mitophagy and mitochondrial dysfunction could shed light on the development of highly effective disease-modifying or adjuvant therapies targeting PD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Hao Liang
- Department of Acupuncture, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Zhenwang Ma
- Department of Acupuncture, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Wei Zhong
- Department of Rheumatology and Immunology, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, China
| | - Jia Liu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Kazuo Sugimoto
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Hong Chen
- Department of Acupuncture, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
- Department of TCM Geriatric, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Yu Y, Wang LY, Liu YC, Cui H, Yuan C, Wang CX. Acetylcholine Analog-Modified Albumin Nanoparticles for the Enhanced and Synchronous Brain Delivery of Saponin Components of Panax Notoginseng. Pharm Res 2024; 41:513-529. [PMID: 38383935 DOI: 10.1007/s11095-024-03670-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/28/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Panax notoginseng saponins (PNS) are commonly used first-line drugs for treating cerebral thrombosis and stroke in China. However, the synchronized and targeted delivery of active ingredients in traditional Chinese medicine (TCM) poses a significant challenge for modern TCM formulations. METHODS Bovine serum albumin (BSA) was modified using 2-methacryloyloxyethyl phosphorylcholine (MPC), an analog of acetylcholine, and subsequently adsorbed the major PNS onto the modified albumin to produce MPC-BSA@PNS nanoparticles (NPs). This novel delivery system facilitated efficient and synchronized transport of PNS across the blood-brain barrier (BBB) through active transport mediated by nicotinic acetylcholine receptors. RESULTS In vitro experiments demonstrated that the transport rates of R1, Rg1, Rb1, and Rd across the BBB were relatively synchronous in MPC-BSA@PNS NPs compared to those in the PNS solution. Additionally, animal experiments revealed that the brain-targeting efficiencies of R1 + Rg1 + Rb1 in MPC-BSA@PNS NPs were 2.02 and 7.73 times higher than those in BSA@PNS NPs and the free PNS group, respectively. CONCLUSIONS This study presents a simple and feasible approach for achieving the targeted delivery of complex active ingredient clusters in TCM.
Collapse
Affiliation(s)
- Ying Yu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming, 650500, China
| | - Li Yun Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming, 650500, China
| | - Yan Chi Liu
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming, 650500, China
| | - Hao Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming, 650500, China
| | - Cheng Yuan
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Cheng Xiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan, Province, Kunming, 650500, China.
| |
Collapse
|
12
|
Yang Y, Xu S, Yang K, Sun Y, Yang R, Hu Y, Chen G, Cai H. Characterization and In Vitro Antioxidant and Anti-Inflammatory Activities of Ginsenosides Extracted from Forest-Grown Wild Panax quinquefolius L. Foods 2023; 12:4316. [PMID: 38231785 DOI: 10.3390/foods12234316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024] Open
Abstract
American ginseng (Panax quinquefolius L.) is known for its health benefits, which are attributed to various terpenoids. However, the specific composition and activities of these terpenoids in forest-grown wild American ginseng remain understudied. This study aimed to characterize the terpenoid composition, particularly triterpene saponins, in forest-grown wild American ginseng. The analysis revealed that triterpene saponins, notably American ginseng ginsenosides (AGGs), are the predominant active components, as identified through LC-MS/MS and HPLC. A subsequent in vitro evaluation of AGGs showcased their potent antioxidant capabilities, displaying the dose-dependent scavenging of free radicals and reducing agents. Moreover, AGGs demonstrated efficacy in reducing oxidative injury and intracellular ROS levels in RAW 264.7 macrophages treated with H2O2. In addition to their antioxidant properties, AGGs exhibited anti-inflammatory effects, significantly inhibiting NO and inflammatory substance production in lipopolysaccharide-treated RAW 264.7 macrophages. These findings highlight the potential of AGG-rich forest-grown wild American ginseng as a functional food with promising implications for improving human health.
Collapse
Affiliation(s)
- Yang Yang
- School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Shan Xu
- School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Kemeng Yang
- School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yuning Sun
- School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Ruirui Yang
- School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yanan Hu
- School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Guijie Chen
- School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Huimei Cai
- School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
13
|
Zhou JC, Li HL, Zhou Y, Li XT, Yang ZY, Tohda C, Komatsu K, Piao XH, Ge YW. The roles of natural triterpenoid saponins against Alzheimer's disease. Phytother Res 2023; 37:5017-5040. [PMID: 37491018 DOI: 10.1002/ptr.7967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023]
Abstract
The aging of the world population and increasing stress levels in life are the major cause of the increased incidence of neurological disorders. Alzheimer's disease (AD) creates a huge burden on the lives and health of individuals and has become a big concern for society. Triterpenoid saponins (TS), representative natural product components, have a wide range of pharmacological bioactivities such as anti-inflammation, antioxidation, antiapoptosis, hormone-like, and gut microbiota regulation. Notably, some natural TS exhibited promising neuroprotective activity that can intervene in AD progress, especially in the early stage. Recently, studies have indicated that TS play a pronounced positive role in the prevention and treatment of AD. This review discusses the recent research on the neuroprotection of TS and proceeds to detail the action mechanisms of TS against AD, hoping to provide a reference for drug development for anti-AD.
Collapse
Affiliation(s)
- Jie-Chun Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative team of research on effective substances of traditional Chinese medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hui-Lin Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative team of research on effective substances of traditional Chinese medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative team of research on effective substances of traditional Chinese medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xi-Tao Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative team of research on effective substances of traditional Chinese medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhi-You Yang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Institute of Nutrition and Marine Drugs, Guangdong Ocean University, Zhanjiang, China
| | - Chihiro Tohda
- Division of Neuromedical Science, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Katsuko Komatsu
- Division of Neuromedical Science, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Xiu-Hong Piao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yue-Wei Ge
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative team of research on effective substances of traditional Chinese medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
14
|
Li JM, Huang AX, Yang L, Li P, Gao W. A sensitive LC-MS/MS method-based pharmacokinetic study of fifteen active ingredients of Yindan Xinnaotong soft capsule in rats and its potential mechanism in the treatment of cardiovascular diseases. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1220:123663. [PMID: 36906956 DOI: 10.1016/j.jchromb.2023.123663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/11/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Yindan Xinnaotong soft capsule (YDXNT) is a commonly used Chinese herbal preparation for the clinical treatment of coronary disease. However, there is a lack of pharmacokinetic studies on YDXNT, and its active ingredients and their mechanism in the treatment of cardiovascular diseases (CVD) are still unclear. In this study, 15 absorbed ingredients in rat plasma after oral administration of YDXNT were quickly identified based on liquid chromatography tandem quadrupole time-of-flight mass spectrometry (LC-QTOF MS), and then a sensitive and accurate quantitative method based on ultra-high performance liquid chromatography tandem triple quadrupole mass spectrometry (UHPLC-QQQ MS) was established and validated for simultaneous determination of the 15 ingredients of YDXNT in rat plasma, which was then applied to the pharmacokinetic study. Different types of compounds showed various pharmacokinetic characteristics, for instance, ginkgolides with higher maximum plasma concentration (Cmax), flavonoids presenting concentration-time curve with double peaks, phenolic acids with shorter time to reach maximum plasma concentration (Tmax), saponins with long elimination half-life (t1/2) and tanshinones showing fluctuant plasma concentration. Then the measured analytes were regarded as effective compounds and their potential targets and mechanism of action were predicted by constructing and analyzing the compound-target network of YDXNT and CVD. Those potential active compounds of YDXNT interacted with targets such as MAPK1 and MAPK8, and molecular docking showed that the binding free energies of 12 ingredients with MAPK1 were less than -5.0 kcal/mol, indicating that YDXNT intervened in the MAPK signaling pathway to display its therapeutic effect on CVD.
Collapse
Affiliation(s)
- Jun-Ming Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - An-Xian Huang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Liu Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Wen Gao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.
| |
Collapse
|