1
|
Han T, Wang L, Jiang Y, Fei S, Liu Y, Liu Z, Wang T, Guan B, Yang Y, Shi G. Hyperoside alleviates zearalenone-induced liver injury by regulating mitochondrial calcium overload mediated excessive autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156880. [PMID: 40440910 DOI: 10.1016/j.phymed.2025.156880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/07/2025] [Accepted: 05/18/2025] [Indexed: 06/16/2025]
Abstract
BACKGROUND Zearalenone (ZEA), one of the most common mycotoxins in moldy plants, can cause ferroptosis in the liver. Hyperoside (Hyp) is mainly derived from Hypericum perforatum and exerts hepatoprotective, neuroprotective, and cardioprotective effects. It is not known whether Hyp alleviates ZEA-induced ferroptosis-related damage AIM: The protective effect of Hyp on ZEA-induced liver injury was studied and its underlying mechanisms were elucidated. METHODS The protective effect of Hyp on ZEA-induced liver injury was determined based on ALT and AST levels and by using H&E staining and transmission electron microscopy. The protective effect of Hyp in attenuating ferroptosis was determined by measuring mitophagy- and ferroptosis-related indices. CETSA and siRNA transfection were used to determine the targeting of Hyp to MCU protein. RESULTS Hyp attenuated ZEA-induced ferroptosis and excessive mitophagy in hepatocytes, and use of Hyp or FUNDC1 knockdown by siRNA decreased ferroptosis in AML12 cells. Furthermore, Hyp attenuated ZEA exposure-induced Gpx4 interaction with FUNDC1 and reversed the recruitment and degradation of glutathione peroxidase 4 to mitochondria. Hyp was found to target MCU protein to attenuate mitochondrial Ca2+ overload and mitophagy induced by upregulated ZEA exposure. MCU knockdown reversed ZEA-induced mitophagy. Hyp also reversed ZEA-induced excessive mitochondrial fission and impairment in mitochondrial function. CONCLUSION Our study demonstrated that Hyp could alleviate ZEA induced ferroptosis by targeting MCU to inhibit mitochondrial Ca2+overloaded mitophagy.Our findings provide evidence for Hyp as an effective treatment in alleviating ferroptosis-related liver injury.
Collapse
Affiliation(s)
- Tianyu Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, PR China; Institute of Chinese Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Lulu Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, PR China; Institute of Chinese Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Yan Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, PR China
| | - Shanshan Fei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, PR China; Institute of Chinese Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Yiding Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, PR China; Institute of Chinese Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Zhijun Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, PR China; Institute of Chinese Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Tong Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, PR China; Institute of Chinese Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Baiwen Guan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, PR China; Institute of Chinese Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Yu Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, PR China; Institute of Chinese Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Guangliang Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, PR China; Institute of Chinese Veterinary Medicine, Northeast Agricultural University, Harbin, PR China.
| |
Collapse
|
2
|
Quasmi MN, Kumar D, Jangra A. Effects of dietary acrylamide on kidney and liver health: Molecular mechanisms and pharmacological implications. Toxicol Rep 2025; 14:101859. [PMID: 39758802 PMCID: PMC11699442 DOI: 10.1016/j.toxrep.2024.101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
Acrylamide (AA) has raised concerns throughout the world in recent years because of its potential negative effects on human health. Numerous researches on humans and animals have connected a high dietary exposure to AA to a possible risk of cancer. Additionally, higher consumption of acrylamide has also been associated with dysfunctioning of various organ systems from nervous system to the reproductive system. Acrylamide is primarily metabolised into the glycidamide inside the body which gets accumulated in different tissues including kidney and liver, and chronic exposure to this can lead to the nephrotoxicity and hepatotoxicity through different molecular mechanisms. This review summarizes the various sources, formation and metabolism of the dietary acrylamide along with the different molecular mechanisms such as oxidative stress, inflammation, DNA damage, autophagy, mitochondrial dysfunction and morphological changes in nephron and hepatocytes through which acrylamide exerts its deleterious effect on kidney and liver causing nephrotoxicity and hepatotoxicity. This review summarizes various animal and cellular studies that demonstrate AA-induced nephrotoxicity and hepatotoxicity. Lastly, the article emphasizes on underlying protective molecular mechanisms of various pharmacological interventions against acrylamide induced hepatotoxicity and nephrotoxicity.
Collapse
Affiliation(s)
- Mohammed Nazish Quasmi
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh, India
| | - Dinesh Kumar
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh, India
| | - Ashok Jangra
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendragarh, India
| |
Collapse
|
3
|
Yang HY, Luo HN, Wang ZM, Jin DD, Yang ZM. Effects of Acrylamide on Mouse Implantation and Decidualization. Int J Mol Sci 2025; 26:4129. [PMID: 40362368 PMCID: PMC12071623 DOI: 10.3390/ijms26094129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/24/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Acrylamide is a class 2A carcinogen with neurotoxicity and genotoxicity. In addition to industrial production, it is ubiquitous in high-temperature heated high-carbohydrate foods. Numerous studies have confirmed the toxicity of ACR on reproduction. Implantation and decidualization are crucial processes during the establishment of pregnancy in rodents and humans. However, its effect on uterine implantation and decidualization remains poorly understood. The objective of this study is to elucidate the mechanism by which ACR affects implantation and decidualization in mice. ACR is exposed in the daily drinking water of female mice, and the dose is calculated according to the body weight of the mice. After 3 months of administration at concentrations of 0, 20, and 30 mg ACR/kg/d, female mice are mated with male mice to induce pregnancy. Compared to the control group, ACR treatment significantly reduces the number of embryo implantations and litter size. ACR treatment leads to abnormal expression of endometrial receptivity-related molecules in the luminal epithelium on day 4 of pregnancy, including a decrease in p-STAT3 level and an increase in MUC1 and MSX1 levels. The level of decidualization-related molecules is obviously downregulated by ACR. Furthermore, ACR treatment results in abnormality of oxidative stress- and ferroptosis-related protein levels at the implantation site on day 5. In conclusion, acrylamide can impair mouse implantation and decidualization by disrupting oxidative stress and ferroptosis.
Collapse
Affiliation(s)
- Hong-Yuan Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Hui-Na Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zai-Mei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Dan-Dan Jin
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Zeng-Ming Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Saeed BI, Uthirapathy S, Kubaev A, Ganesan S, Shankhyan A, Gupta S, Joshi KK, Kariem M, Jasim AS, Ahmed JK. Ferroptosis as a key player in the pathogenesis and intervention therapy in liver injury: focusing on drug-induced hepatotoxicity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04115-w. [PMID: 40244448 DOI: 10.1007/s00210-025-04115-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025]
Abstract
Globally, drug-induced hepatotoxicity or drug-induced liver injury (DILI) is a serious clinical concern. Knowing the processes and patterns of cell death is essential for finding new therapeutic targets since there are not many alternatives to therapy for severe liver lesions. Excessive lipid peroxidation is a hallmark of ferroptosis, an iron-reliant non-apoptotic cell death linked to various liver pathologies. When iron is pathogenic, concomitant inflammation may exacerbate iron-mediated liver injury, and the hepatocyte necrosis that results is a key element in the fibrogenic response. The idea that dysregulated metabolic pathways and compromised iron homeostasis contribute to the development of liver injury by ferroptosis is being supported by new data. Various ferroptosis-linked genes and pathways have been linked to liver injury, although the molecular processes behind ferroptosis's pathogenicity are not well known. Here, we delve into the features of ferroptosis, the processes governing ferroptosis, and our current knowledge of iron metabolism. We also provide an overview of ferroptosis's involvement in the pathophysiology of liver injury, particularly DILI. Lastly, the therapeutic possibilities of ferroptosis targeting for liver injury management have been provided. Natural products, nanoparticles (NPs), mesenchymal stem cell (MSC), and their exosomes have attracted increasing attention among such therapeutics.
Collapse
Affiliation(s)
- Bahaa Ibrahim Saeed
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-Maarif, Anbar, Iraq
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, 140100, Samarkand, Uzbekistan.
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Aman Shankhyan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Sofia Gupta
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, India
- Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Muthena Kariem
- Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
| | - Ahmed Salman Jasim
- Radiology Techniques Department College of Health and Medical Techniques, Al-Mustaqbal University, 51001, Babylon, Iraq
| | - Jawad Kadhim Ahmed
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| |
Collapse
|
5
|
Zhang H, Shi H, Li X, Zhou S, Song X, Ma N, Meng M, Chang G, Shen X. Quercetin alleviates LPS/iE-DAP-induced liver injury by suppressing ferroptosis via regulating ferritinophagy and intracellular iron efflux. Redox Biol 2025; 81:103557. [PMID: 39986118 PMCID: PMC11904602 DOI: 10.1016/j.redox.2025.103557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/06/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025] Open
Abstract
Ruminal dysbiosis-induced liver injury is prevalent in dairy cows, yet its underlying mechanisms remain incompletely understood. Ferroptosis, a newly identified form of programmed cell death distinct from apoptosis and necrosis, has been implicated in various liver diseases by emerging studies. In the present study, lipopolysaccharide (LPS) and γ-D-glutamyl-meso-diaminopimelic acid (iE-DAP) were employed to establish in vitro and in vivo models of liver injury using bovine hepatocytes and mice, respectively. It was observed that noncytotoxic iE-DAP alone did not influence lipid peroxidation or GPX4, but exacerbated LPS-induced ferroptosis and hepatocyte injury. Notably, co-treatment with LPS and iE-DAP (LPS/iE-DAP)-induced hepatocyte injury was mitigated by intervention with the ferroptosis inhibitor ferrostatin-1 (Fer-1). Mechanistically, the activated IL-6/STAT3 signaling pathway was found to mediate LPS/iE-DAP-induced ferroptosis. Suppression of IL-6/STAT3, either through IL6 and STAT3 knockdown or pharmacological intervention, reduced Fe2+ accumulation and alleviated ferroptotic cell death. Further investigations identified that IL-6/STAT3 signaling enhanced ferritinophagy and impaired iron export. Either disrupting ferritinophagy by knocking down NCOA4 or restoring iron export via HAMP knockdown relieved intracellular iron overload and inhibited ferroptosis. Specifically, LPS/iE-DAP treatment increased the interaction between hepcidin and ferroportin, promoting ferroportin ubiquitination and degradation, thereby blocking iron efflux. Furthermore, we provided several evidence to prove that quercetin pretreatment alleviated LPS/iE-DAP-induced ferroptosis and liver injury by decreasing hepatic iron accumulation via targeting the IL-6/STAT3 signaling in vitro and in vivo, effects reversed by the addition of recombinant bovine IL-6. Based on these findings, we concluded that LPS/iE-DAP-induced liver injury by triggering ferroptosis through regulating IL-6/STAT3/ferritinophagy-dependent iron release and IL-6/STAT3/hepcidin/ferroportin-dependent iron export, while quercetin could alleviate this liver injury by inhibiting ferroptosis via IL-6/STAT3 signaling pathway. This study provides novel insights into the mechanisms whereby ruminal dysbiosis induces liver injury and presents a prospective solution for ruminal dysbiosis-induced liver injury.
Collapse
Affiliation(s)
- Hongzhu Zhang
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Huimin Shi
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Xuerui Li
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Shendong Zhou
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Xiaokun Song
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Nana Ma
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Meijuan Meng
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Guangjun Chang
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Xiangzhen Shen
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| |
Collapse
|
6
|
Xia Y, Wang Y, Chen K, Zhang M, Jiang Q, Xu T. Quercetin attenuated necroptosis and apoptosis caused by LPS-induced mitochondrial function dysfunction through the METTL3-mediated PTEN m 6A methylation/PI3K/AKT signaling in broiler livers. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156551. [PMID: 40020631 DOI: 10.1016/j.phymed.2025.156551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/10/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Quercetin (QUE), a natural flavonoid, offered an efficient protection against organism injury. N6-methyladenosine (m6A) methylation is considered to be the most prevalent and abundant modifications involved in various diseases. PURPOSE We sought to explore protective roles of QUE in mitigating necroptosis and apoptosis triggered by LPS-induced imbalances in mitochondria dynamic and energy metabolism in broiler livers, with a focus on m6A methylation modulation. STUDY DESIGN/METHODS We used LPS as a stimulus and treated with QUE to establish this in vivo and in vitro. In addition, we treated LMH cells with siMETTL3 (80 nM) to determine its detailed mechanism. RESULTS Our findings revealed QUE significantly decreased METTL3 expression, leading to a decrease in PTEN m6A methylation and factors related to mitochondria fission, necroptosis, and apoptosis in the QUE+LPS group. In contrast, QUE treatment promoted the expression levels of marker factors for mitochondria fusion, energy metabolism, anti-apoptosis, and PI3K/AKT compared with the LPS group. Additionally, an increase of ΔΨm, ATP content, and ATPase activity was observed. AO/EB staining, Flow cytometry and TUNEL assays confirmed QUE inhibited LPS-induced apoptosis and necroptosis. Molecular docking analysis and cellular thermal shift assay supported an interaction between QUE and METTL3. CONCLUSION In summary, QUE mitigated necroptosis and apoptosis triggered by LPS-induced disorders of mitochondrial kinetic and metabolic processes in broiler livers through its interaction with METTL3, regulating PTEN m6A methylation/PI3K/AKT signaling pathway. This study enhances our understanding of biological functions for QUE and lays a theoretical foundation for developing new therapeutic interventions, highlighting its potential value.
Collapse
Affiliation(s)
- Yu Xia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou 075000, PR China
| | - Yidan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Kai Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Muyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Qihang Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
7
|
Xiong M, Wang M, Liu X, Luo S, Wang X, Yang L, Li K, Li Y, Wei W, Chen H, Wang Y. Quercetin inhibits oligodendrocytes ferroptosis by blocking NCOA4-mediated ferritinophagy. Int Immunopharmacol 2025; 150:114152. [PMID: 39946767 DOI: 10.1016/j.intimp.2025.114152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/21/2024] [Accepted: 01/21/2025] [Indexed: 03/03/2025]
Abstract
Ferritinophagy is a specific type of autophagy that maintains intracellular iron metabolic homeostasis by targeting ferritin, one of the major forms of iron storage in the human body. Previous research has demonstrated that quercetin prevents the ferroptosis of oligodendrocyte progenitor cells (OPCs) by inhibiting the Id2/transferrin pathway. Given the ability of quercetin to suppress autophagy in spinal cord injury (SCI), this study aimed to investigate whether quercetin prevents ferroptosis in an autophagy-dependent manner. In erastin-treated OPCs, quercetin significantly upregulated the protein level of ferritin heavy chain (FTH) and markedly reduced its colocalization with LysoTracker, an indicator of lysosome aggregation. Quercetin significantly reduced the ferrous iron levels, the LC3II/LC3I ratio, and the number of LC3 puncta in OPCs, whereas it increased the level of sequestosome 1 (P62) in erastin-treated OPCs. Pretreatment of OPCs with autophagy inhibitor bafilomycin A1 inhibited quercetin-mediated ferritinophagy and ferroptosis, whereas pretreatment with autophagy activator rapamycin reversed the effect of quercetin on ferritinophagy and ferroptosis of OPCs, as evidenced by reduced protein levels of ferritin heavy chain and p62, as well as increased protein levels of LC3II/LC3I and prostaglandin-endoperoxide synthase 2 (PTGS2). Compared with the erastin and quercetin treated OPCs, increased rerrous iron, lipid peroxidation production, and decreased GSH content, as well as shrunken mitochondria, were observed in OPCs treated with a combination of erastin, quercetin, and rapamycin. In vivo, quercetin significantly downregulated the nuclear receptor coactivator 4 (NCOA4) and PTGS2 protein expression, as well as the LC3II/LC3I ratio. Besides that, quercetin reduced the MDA level and the colocalization of FTH with NCOA4 in spinal cord tissues. Mechanistically, NCOA4 reversed the effect of quercetin on ferritinophagy and ferroptosis of OPCs, whereas mutation of Y71 to alanine only slightly reversed the above effect. In conclusion, our findings revealed that quercetin inhibits OPCs ferroptosis by blocking NCOA4-mediated ferritinophagy. Quercetin and ferritinophagy may be potential therapeutic agents for SCI.
Collapse
Affiliation(s)
- Man Xiong
- Guangzhou University of Chinese Medicine, Guangzhou 510000 China
| | - Mingsen Wang
- Department of Orthopedic, Chaoshan Guoyu Hospital of Jieyang, Jieyang 515300 China
| | - Xinfang Liu
- Orthopedic Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510000 China
| | - Sidong Luo
- Orthopedic Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510000 China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510000 China
| | - Xu Wang
- School of Biomedicine and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006 China
| | - Lei Yang
- Orthopedic Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510000 China
| | - Kaifan Li
- Orthopedic Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510000 China
| | - Yongsheng Li
- Guangdong Cord Blood Bank, Guangzhou 510663 China; Guangzhou Municipality Tianhe Nuoya Bio-engineering Co., Ltd., Guangzhou 510663 China
| | - Wei Wei
- Guangdong Cord Blood Bank, Guangzhou 510663 China; Guangzhou Municipality Tianhe Nuoya Bio-engineering Co., Ltd., Guangzhou 510663 China
| | - Hongdong Chen
- Department of No.1 General Surgery, Guangdong Second Provincial General Hospital, Guangzhou 510000 China
| | - Yeyang Wang
- Orthopedic Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510000 China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510000 China; Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou 510000 China; Zhaoqing Central People's Hospital, Zhaoqing, Guangdong 526000, China.
| |
Collapse
|
8
|
Kacemi R, Campos MG. Bee Pollen Potential to Modulate Ferroptosis: Phytochemical Insights for Age-Related Diseases. Antioxidants (Basel) 2025; 14:265. [PMID: 40227202 PMCID: PMC11939620 DOI: 10.3390/antiox14030265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 04/15/2025] Open
Abstract
Bee pollen (BP) is one of the richest known natural resources of micronutrients and bioactive phytochemicals. Some captivating bioactivities of BP compounds, although being largely investigated for the latter as individual molecules, remain very scarcely investigated or completely uninvestigated in bee pollen as a whole product. Among the most intriguing of these bioactivities, we identified ferroptosis as a major one. Ferroptosis, a recently discovered form of cell death (connecting oxidative stress and inflammation), is a complex pathophysiological process and one of the most crucial and perplexing events in current challenging human diseases such as cancer, neurodegeneration, and general aging diseases. Many BP compounds were found to intricately modulate ferroptosis depending on the cellular context by inducing this cell death mechanism in malignant cells and preventing it in non-malignant cells. Since research in both fields, i.e., BP and ferroptosis, is still recent, we deemed it necessary to undertake this review to figure out the extent of BP potential in modulating ferroptosis mechanisms. Our research proved that a wide range of BP compounds (polyphenols, phenolamides, carotenoids, vitamins, minerals, and others) substantially modulate diverse ferroptosis mechanisms. Accordingly, these phytochemicals and nutrients showed interesting potential in preclinical studies to lead to ferroptosis-mediated outcomes in important pathophysiological processes, including many aging-related disorders. One of the most paramount challenges that remain to be resolved is to determine how different BP compounds act on ferroptosis in different biological and pathophysiological contexts, either through synergistic or antagonistic behaviors. We hope that our current work constitutes a valuable incentive for future investigations in this promising and very relevant research avenue.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, 3000-548 Coimbra, Portugal
| |
Collapse
|
9
|
Meng J, Xu L, Ma B, Hao C, Guo Y, Wang J, Chen J. GABARAPL1 is essential for ACR-induced autophagic cell death of mouse Leydig cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117426. [PMID: 39626489 DOI: 10.1016/j.ecoenv.2024.117426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 01/26/2025]
Abstract
Acrylamide (ACR), a chemical extensively utilized in industry and food processing sectors, has been recognized for its potentially irreversible adverse effect on male reproductive system; however, the underlying mechanism remains elusive. Our study reveals that ACR markedly triggers oxidative stress-mediated autophagy and upregulates the expression of GABAA-receptor-associated protein like-1 (GABARAPL1). Intriguingly, overexpression of GABARAPL1 significantly induces autophagy, while its knockdown alleviates ACR-induced autophagic responses, underscoring its pivotal function. Furthermore, we demonstrate that transcription factors cAMP response element-binding protein 1 (CREB1) and POZ/BTB and AT-hook-containing zinc finger protein 1 (PATZ1) synergistically enhance Gabarapl1 gene transcription by interacting with its promoter region, contributing to ACR-induced autophagy in mouse Leydig cells. Notably, our findings suggest a reciprocal regulation between PATZ1 and CREB1. This study suggests the critical role of GABARAPL1 in ACR-induced autophagy of mouse Leydig cells, shedding light on the underlying mechanism of ACR-caused male reproductive impairment.
Collapse
Affiliation(s)
- Jiahui Meng
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Linlin Xu
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Bingchun Ma
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Chaoju Hao
- Library, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Yanning Guo
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Jinglei Wang
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Jiaxiang Chen
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
10
|
Geng S, Hu B, Guan Y, Jiang Y, Shu Z, Li C, Huang G. Advances of the multifaceted functions of PSTPIP2 in inflammatory diseases. Front Immunol 2024; 15:1492878. [PMID: 39660128 PMCID: PMC11628490 DOI: 10.3389/fimmu.2024.1492878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024] Open
Abstract
The complex interaction between the immune system and autoinflammatory disorders highlights the centrality of autoimmune mechanisms in the pathogenesis of autoinflammatory diseases. With the exploration of PSTPIP2, it has been discovered to play an inhibitory role in immune diseases, suggesting its potential utility in the research and treatment of rheumatic diseases. This review outlines the mechanisms of PSTPIP2 in chronic multifocal osteomyelitis (CMO), rheumatoid arthritis (RA), synovitis-acne-pustulosis-hyperostosis-osteitis (SAPHO) syndrome, liver diseases, renal diseases, pressure ulcer sepsis and diabetic obesity. The mechanisms include inhibiting the IL-1β inflammatory responses, NF-κB, ERK phosphorylation etc., promoting Erβ, and modulating the polarization of macrophage to prevent the inflammatory diseases. This review summarized current findings and offered perspectives on future research directions, laying a foundation for applying of PSTPIP2 in inflammatory diseases.
Collapse
Affiliation(s)
- Shaohui Geng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Bohan Hu
- School of Chinese Materia Medica , Beijing University of Chinese Medicine, Beijing, China
| | - Yiwei Guan
- School of Chinese Materia Medica , Beijing University of Chinese Medicine, Beijing, China
| | - Yijin Jiang
- School of Chinese Materia Medica , Beijing University of Chinese Medicine, Beijing, China
| | - Zixuan Shu
- School of Chinese Materia Medica , Beijing University of Chinese Medicine, Beijing, China
| | - Chen Li
- Department of Rheumatology, Fangshan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Cominelli G, Lonati C, Pinto D, Rinaldi F, Franco C, Favero G, Rezzani R. Melatonin Attenuates Ferritinophagy/Ferroptosis by Acting on Autophagy in the Liver of an Autistic Mouse Model BTBR T +Itpr3 tf/J. Int J Mol Sci 2024; 25:12598. [PMID: 39684310 DOI: 10.3390/ijms252312598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Autism spectrum disorders (ASDs) are a pool of neurodevelopment disorders in which social impairment is the main symptom. Presently, there are no definitive medications to cure the symptoms but the therapeutic strategies that are taken ameliorate them. The purpose of this study was to investigate the effects of melatonin (MLT) in treating ASDs using an autistic mouse model BTBR T+Itpr3tf/J (BTBR). We evaluated the hepatic cytoarchitecture and some markers of autophagy, ferritinophagy/ferroptosis, in BTBR mice treated and not-treated with MLT. The hepatic morphology and the autophagy and ferritinophagy/ferroptosis pathways were analyzed by histological, immunohistochemical, and Western blotting techniques. We studied p62 and microtubule-associated protein 1 light chain 3 B (LC3B) for evaluating the autophagy; nuclear receptor co-activator 4 (NCOA4) and long-chain-coenzyme synthase (ACSL4) for monitoring ferritinophagy/ferroptosis. The liver of BTBR mice revealed that the hepatocytes showed many cytoplasmic inclusions recognized as Mallory-Denk bodies (MDBs); the expression and levels of p62 and LC3B were downregulated, whereas ACSL4 and NCOA4 were upregulated, as compared to control animals. MLT administration to BTBR mice ameliorated liver damage and reduced the impairment of autophagy and ferritinophagy/ferroptosis. In conclusion, we observed that MLT alleviates liver damage in BTBR mice by improving the degradation of intracellular MDBs, promoting autophagy, and suppressing ferritinophagy/ferroptosis.
Collapse
Affiliation(s)
- Giorgia Cominelli
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Claudio Lonati
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale-SISDO), 25123 Brescia, Italy
| | - Daniela Pinto
- Human Microbiome Advanced Project Institute, 20129 Milan, Italy
- Interdepartmental University Center of Research Adaption and Regeneration of Tissues and Organs-(ARTO), University of Brescia, 25123 Brescia, Italy
| | - Fabio Rinaldi
- Human Microbiome Advanced Project Institute, 20129 Milan, Italy
- Interdepartmental University Center of Research Adaption and Regeneration of Tissues and Organs-(ARTO), University of Brescia, 25123 Brescia, Italy
| | - Caterina Franco
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Interdepartmental University Center of Research Adaption and Regeneration of Tissues and Organs-(ARTO), University of Brescia, 25123 Brescia, Italy
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale-SISDO), 25123 Brescia, Italy
- Interdepartmental University Center of Research Adaption and Regeneration of Tissues and Organs-(ARTO), University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
12
|
Bao L, Huang Y, Gu F, Liu W, Guo Y, Chen H, Wang K, Wu Z, Li J. Zearalenone induces liver injury in mice through ferroptosis pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175875. [PMID: 39216757 DOI: 10.1016/j.scitotenv.2024.175875] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Throughout the world, some foods and feeds commonly consumed by humans and animals are inadvertently contaminated with mycotoxins. Zearalenone (ZEA) is a typical environmental/food contaminant that can cause varying degrees of damage to the body, such as reproductive toxicity, hepatotoxicity, immunotoxicity, etc. It poses a serious threat to the living environment and human and animal health. Increasing evidence shows that mycotoxin-induced organ damage may be closely related to ferroptosis. However, the mechanism of ZEA-induced liver injury is still not fully understood. Therefore, this study aimed to explore whether ZEA can trigger ferroptosis in the liver and cause liver injury. This study was conducted by establishing in vivo and in vitro ZEA exposure models. The results showed that ZEA exposure led to typical liver injury indicators. ZEA inhibited the Nrf2/keap1 antioxidant signaling pathway, aggravated the oxidative stress response, and inhibited the body's antioxidant function. Additionally, it was found that ZEA can aggravate lipid peroxidation by blocking the system Xc-/GSH/GPX4 axis, upregulating the protein expression of ACSL4, and affecting the import, storage, and export of iron ions, thereby inducing iron ion metabolism disorders. A combination of multiple factors induces ferroptosis in mouse liver and AML12 cells. Pretreatment with deferoxamine, an inhibitor of ferroptosis, can alleviate ferroptosis damage induced by ZEA, indicating the crucial role of ferroptosis in cell damage caused by ZEA. This study deeply explores the hepatic ferroptosis pathway induced by ZEA, provides a new theoretical basis for ZEA-induced hepatotoxicity, and offers new insights for exploring potential treatment strategies.
Collapse
Affiliation(s)
- Lige Bao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, PR China
| | - Yongze Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, PR China
| | - Fuhua Gu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, PR China
| | - Weiqi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuquan Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, PR China
| | - Hao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, PR China
| | - Kun Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhiyong Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
13
|
Jiang J, Zhou X, Chen H, Wang X, Ruan Y, Liu X, Ma J. 18β-Glycyrrhetinic acid protects against deoxynivalenol-induced liver injury via modulating ferritinophagy and mitochondrial quality control. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134319. [PMID: 38657511 DOI: 10.1016/j.jhazmat.2024.134319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024]
Abstract
Deoxynivalenol (DON), a widespread mycotoxin, represents a substantial public health hazard due to its propensity to contaminate agricultural produce, leading to both acute and chronic health issues in humans and animals upon consumption. The role of ferroptosis in DON-induced hepatic damage remains largely unexplored. This study investigates the impact of 18β-glycyrrhetinic acid (GA), a prominent constituent of glycyrrhiza, on DON hepatotoxicity and elucidates the underlying mechanisms. Our results indicate that GA effectively attenuates liver injury inflicted by DON. This was achieved by inhibiting nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy and ferroptosis, as well as by adjusting mitochondrial quality control (MQC). Specifically, GA curtails ferritinophagy by diminishing NCOA4 expression without affecting the autophagic flux. At a molecular level, GA binds to and stabilizes programmed cell death protein 4 (PDCD4), thereby inhibiting its ubiquitination and subsequent degradation. This stabilization of PDCD4 leads to the downregulation of NCOA4 via the JNK-Jun-NCOA4 axis. Knockdown of PDCD4 weakened GA's protective action against DON exposure. Furthermore, GA improved mitochondrial function and limited excessive mitophagy and mitochondrial division induced by DON. Disrupting GA's modulation of MQC nullified its anti-ferroptosis effects. Overall, GA offers protection against DON-induced ferroptosis by blocking ferritinophagy and managing MQC. ENVIRONMENTAL IMPLICATION: Food contamination from mycotoxins, is a problem for agricultural and food industries worldwide. Deoxynivalenol (DON), the most common mycotoxins in cereal commodities. A survey in 2023 showed that the positivity rate for DON contamination in food reached more than 70% globally. DON can damage the health of humans whether exposed to high doses for short periods of time or low doses for long periods of time. We have discovered 18β-Glycyrrhetinic acid (GA), a prominent constituent of glycyrrhiza. Liver damage caused by low-dose DON can be successfully treated with GA. This study will support the means of DON control, including antidotes.
Collapse
Affiliation(s)
- Junze Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xintong Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yongbao Ruan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaohui Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, PR China.
| |
Collapse
|
14
|
Li H, Cao Z, Liu C, Wang Y, Wang L, Tang Y, Yao P. Quercetin Inhibits Neuronal Pyroptosis and Ferroptosis by Modulating Microglial M1/M2 Polarization in Atherosclerosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12156-12170. [PMID: 38755521 DOI: 10.1021/acs.jafc.4c01134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Atherosclerosis (AS) with iron and lipid overload and systemic inflammation is a risk factor for Alzheimer's disease. M1 macrophage/microglia participate in neuronal pyroptosis and recently have been reported to be the ferroptosis-resistant phenotype. Quercetin plays a prominent role in preventing and treating neuroinflammation, but the protective mechanism against neurodegeneration caused by iron deposition is poorly understood. ApoE-/- mice were fed a high-fat diet with or without quercetin treatment. The Morris water maze and novel object recognition tests were conducted to assess spatial learning and memory, and nonspatial recognition memory, respectively. Prussian blue and immunofluorescence staining were performed to assess the iron levels in the whole brain and in microglia, microglia polarization, and the degree of microglia/neuron ferroptosis. In vitro, we further explored the molecular biological alterations associated with microglial polarization, neuronal pyroptosis, and ferroptosis via Western blot, flow cytometry, CCK8, LDH, propidium iodide, and coculture system. We found that quercetin improved brain lesions and spatial learning and memory in AS mice. Iron deposition in the whole brain or microglia was reversed by the quercetin treatment. In the AS group, the colocalization of iNOS with Iba1 was increased, which was reversed by quercetin. However, the colocalization of iNOS with PTGS2/TfR was not increased in the AS group, suggesting a character resisting ferroptosis. Quercetin induced the expression of Arg-1 and decreased the colocalizations of Arg-1 with PTGS2/TfR. In vitro, ox-LDL combined with ferric ammonium citrate treatment (OF) significantly shifted the microglial M1/M2 phenotype balance and increased the levels of free iron, ROS, and lipid peroxides, which was reversed by quercetin. M1 phenotype induced by OF caused neuronal pyroptosis and was promoted to ferroptosis by L-NIL treatment, which contributed to neuronal ferroptosis as well. However, quercetin induced the M1 to M2 phenotype and inhibited M2 macrophages/microglia and neuron pyroptosis or ferroptosis. In summary, quercetin alleviated neuroinflammation by inducing the M1 to M2 phenotype to inhibit neuronal pyroptosis and protected neurons from ferroptosis, which may provide a new idea for neuroinflammation prevention and treatment.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiqiang Cao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chang Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lili Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ping Yao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
15
|
Lu J, Su D, Yang Y, Shu M, Wang Y, Zhou X, Yu Q, Li C, Xie J, Chen Y. Disruption of intestinal epithelial permeability in the Co-culture system of Caco-2/HT29-MTX cells exposed individually or simultaneously to acrylamide and ochratoxin A. Food Chem Toxicol 2024; 186:114582. [PMID: 38460668 DOI: 10.1016/j.fct.2024.114582] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/13/2023] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Mycotoxins and thermal processing hazards are common contaminants in various foods and cause severe problems in terms of food safety and health. Combined use of acrylamide (AA) and ochratoxin A (OTA) would result in more significant intestinal toxicity than either toxin alone, but the underlying mechanisms behind this poor outcome remain unclear. Herein, we established the co-culture system of Caco-2/HT29-MTX cells for simulating a real intestinal environment that is more sensitive to AA and OTA, and showed that the combination of AA and OTA could up-regulate permeability of the intestine via increasing LY permeabilization, and decreasing TEER, then induce oxidative stress imbalance (GSH, SOD, MDA, and ROS) and inflammatory system disorder (TNF-α, IL-1β, IL-10, and IL-6), thereby leading a rapid decline in cell viability. Western blot, PAS- and AB-staining revealed that AA and OTA showed a synergistic effect on the intestine mainly through the disruption of tight junctions (TJs) and a mucus layer. Furthermore, based on correlation analysis, oxidative stress was more relevant to the mucus layer and TJs. Therefore, our findings provide a better evaluation model and a potential mechanism for further determining or preventing the combined toxicity caused by AA and OTA.
Collapse
Affiliation(s)
- Jiawen Lu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Dan Su
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Ying Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Mengni Shu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Yuting Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Xingtao Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Chang Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
16
|
Ding L, Dang S, Sun M, Zhou D, Sun Y, Li E, Peng S, Li J, Li G. Quercetin induces ferroptosis in gastric cancer cells by targeting SLC1A5 and regulating the p-Camk2/p-DRP1 and NRF2/GPX4 Axes. Free Radic Biol Med 2024; 213:150-163. [PMID: 38190923 DOI: 10.1016/j.freeradbiomed.2024.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
Quercetin (Quer) is a natural flavonoid known for its inhibitory effects against various cancers. However, the mechanism by which Quer inhibits gastric cancer (GC) has not yet been fully elucidated. Ferroptosis, a mode of programmed cell death resulting from lipid peroxidation, is regulated by abnormalities in the antioxidant system and iron metabolism. Through flow cytometry and other detection methods, we found that Quer elevated lipid peroxidation levels in GC cells. Transmission electron microscopy confirmed an increase in ferroptosis in Quer-induced GC. We demonstrated that Quer inhibits SLC1A5 expression. Molecular docking revealed Quer's binding to SLC1A5 at SER-343, SER-345, ILE-423, and THR-460 residues. Using immunofluorescence and other experiments, we found that Quer altered the intracellular ROS levels, antioxidant system protein expression levels, and iron content. Mechanistically, Quer binds to SLC1A5, inhibiting the nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2), resulting in decreased xCT/GPX4 expression. Quer/SLC1A5 signaling activated p-Camk2, leading to upregulated p-DRP1 and enhanced ROS release. Additionally, Quer increased the intracellular iron content by inhibiting SLC1A5. These three changes collectively led to ferroptosis in GC cells. In conclusion, Quer targets SLC1A5 in GC cells, inhibiting the NRF2/xCT pathway, activating the p-Camk2/p-DRP1 pathway, and accelerating iron deposition. Ultimately, Quer promotes ferroptosis in GC cells, inhibiting GC progression. Overall, our study reveals that Quer can potentially impede GC progression by targeting SLC1A5, offering novel therapeutic avenues through the modulation of ferroptosis and iron homeostasis.
Collapse
Affiliation(s)
- Lixian Ding
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Shuwei Dang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Mingjun Sun
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Dazhi Zhou
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Yanyan Sun
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Encheng Li
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Shuqi Peng
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Jinxing Li
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Department of General Surgery, The Fourth Hospital of Harbin, Harbin, 150001, China.
| | - Guodong Li
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
17
|
Sun Q, Wang Y, Hou L, Li S, Hong JS, Wang Q, Zhao J. Clozapine-N-oxide protects dopaminergic neurons against rotenone-induced neurotoxicity by preventing ferritinophagy-mediated ferroptosis. Free Radic Biol Med 2024; 212:384-402. [PMID: 38182072 PMCID: PMC10842931 DOI: 10.1016/j.freeradbiomed.2023.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, yet treatment options are limited. Clozapine (CLZ), an antipsychotic used for schizophrenia, has potential as a PD treatment. CLZ and its metabolite, Clozapine-N-Oxide (CNO), show neuroprotective effects on dopaminergic neurons, with mechanisms needing further investigation. This study aimed to confirm the neuroprotective effects of CLZ and CNO in a rotenone-induced mouse model and further explore the underlying mechanisms of CNO-afforded protection. Gait pattern and rotarod activity evaluations showed motor impairments in rotenone-exposed mice, with CLZ or CNO administration ameliorating behavioral deficits. Cell counts and biochemical analysis demonstrated CLZ and CNO's effectiveness in reducing rotenone-induced neurodegeneration of dopaminergic neurons in the nigrostriatal system in mice. Mechanistic investigations revealed that CNO suppressed rotenone-induced ferroptosis of dopaminergic neurons by rectifying iron imbalances, curtailing lipid peroxidation, and mitigating mitochondrial morphological changes. CNO also reversed autolysosome and ferritinophagic activation in rotenone-exposed mice. SH-SY5Y cell cultures validated these findings, indicating ferritinophage involvement, where CNO-afforded protection was diminished by ferritinophagy enhancers. Furthermore, knockdown of NCOA4, a crucial cargo receptor for ferritin degradation in ferritinophagy, hampered rotenone-induced ferroptosis and NCOA4 overexpression countered the anti-ferroptotic effects of CNO. Whereas, iron-chelating agents and ferroptosis enhancers had no effect on the anti-ferritinophagic effects of CNO in rotenone-treated cells. In summary, CNO shielded dopaminergic neurons in the rotenone-induced PD model by modulating NCOA4-mediated ferritinophagy, highlighting a potential therapeutic pathway for PD treatment. This research provided insights into the role of NCOA4 in ferroptosis and suggested new approaches for PD therapy.
Collapse
Affiliation(s)
- Qingquan Sun
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China; Department of Neurology, Dalian University Affiliated Xinhua Hospital, No. 156 W. Wansui Road, Dalian 116021, China
| | - Yan Wang
- Institute of Integrative Medicine, College of Pharmacy, Dalian Medical University Library, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Liyan Hou
- Dalian Medical University Library, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Sheng Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Jau-Shyong Hong
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health, Sciences, NIH, MD F1-01, P. O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Qingshan Wang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China; School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China.
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China.
| |
Collapse
|
18
|
Yang L, Cai X, Li R. Ferroptosis Induced by Pollutants: An Emerging Mechanism in Environmental Toxicology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2166-2184. [PMID: 38275135 DOI: 10.1021/acs.est.3c06127] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Environmental pollutants have been recognized for their ability to induce various adverse outcomes in both the environment and human health, including inflammation, apoptosis, necrosis, pyroptosis, and autophagy. Understanding these biological mechanisms has played a crucial role in risk assessment and management efforts. However, the recent identification of ferroptosis as a form of programmed cell death has emerged as a critical mechanism underlying pollutant-induced toxicity. Numerous studies have demonstrated that fine particulates, heavy metals, and organic substances can trigger ferroptosis, which is closely intertwined with lipid, iron, and amino acid metabolism. Given the growing evidence linking ferroptosis to severe diseases such as heart failure, chronic obstructive pulmonary disease, liver injury, Parkinson's disease, Alzheimer's disease, and cancer, it is imperative to investigate the role of pollutant-induced ferroptosis. In this review, we comprehensively analyze various pollutant-induced ferroptosis pathways and intricate signaling molecules and elucidate their integration into the driving and braking axes. Furthermore, we discuss the potential hazards associated with pollutant-induced ferroptosis in various organs and four representative animal models. Finally, we provide an outlook on future research directions and strategies aimed at preventing pollutant-induced ferroptosis. By enhancing our understanding of this novel form of cell death and developing effective preventive measures, we can mitigate the adverse effects of environmental pollutants and safeguard human and environmental health.
Collapse
Affiliation(s)
- Lili Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaoming Cai
- School of Public Health, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
19
|
Luo D, Chen S, Wang X, Wang Y, Khoso PA, Xu S, Li S. Unraveling the mechanism of quercetin alleviating perfluorooctane sulfonate-induced apoptosis in grass carp (Ctenopharyngodon idellus) hepatocytes: AMPK/mTOR-mediated mitophagy. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106769. [PMID: 37980849 DOI: 10.1016/j.aquatox.2023.106769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Exposure to persistent new organic pollutants in the environment often leads to high mortality and causes serious economic losses to the aquaculture industry. Currently, perfluorooctane sulfonate (PFOS) is persistent and bio-accumulative in the environment, causing potential risks to aquatic ecosystems, but its toxicity mechanism to aquatic organisms is still unclear. As a natural flavonoid compound, quercetin (QU) has many biological activities such as anti-oxidation, anti-inflammatory, anti-apoptosis and immune regulation. Whether it can be used as a candidate medicine to alleviate PFOS toxicity needs to be further explored. Therefore, in this study, we treated (Ctenopharyngodon idellus) grass carp hepatocytes (L8824) with PFOS (200 μM) and/or QU (60 μM) for 24 h. The results showed that PFOS significantly increased the release of LDH and active oxygen (ROS) in L8824 cells, and led to the decrease of mitochondrial membrane potential (ΔΨm) and ATP content, the increase of mitochondrial ROS, the disorder of mitochondrial dynamics, and the initiation of Bcl-2/Bax-mediated apoptosis. Surprisingly, QU can alleviate the above PFOS-induced grass carp hepatocyte toxicity. In addition, in order to further explore the protective mechanism of QU, we used the molecular docking to predict the binding site between QU and AMPK, and found that there was a high binding capacity between QU and AMPK. In addition, we used Compound C (CC) and 3-Methyladenine (3-MA) to intervene. The results showed that CC and 3-MA intervention aggravated mitochondrial dysfunction and apoptosis factor expression in the QU+PFOS group. These data indicate that PFOS induces oxidative stress, mitochondrial dysfunction, and apoptosis. The regulation of AMPK/mTOR mediated mitophagy by QU may be a new therapeutic strategy to alleviate the hepatotoxicity of PFOS grass carp. This study provides theoretical basis and reference for exploring the toxic mechanism and biological toxic effects of PFOS, and provides a scheme for improving the economic benefits of aquaculture.
Collapse
Affiliation(s)
- Dongliu Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shasha Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xixi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yixuan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Pervez Ahmed Khoso
- Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
20
|
Zheng Q, Wang D, Lin R, Chen Y, Xu Z, Xu W. Quercetin is a Potential Therapy for Rheumatoid Arthritis via Targeting Caspase-8 Through Ferroptosis and Pyroptosis. J Inflamm Res 2023; 16:5729-5754. [PMID: 38059150 PMCID: PMC10697095 DOI: 10.2147/jir.s439494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023] Open
Abstract
Background Rheumatoid arthritis (RA) is one of the most common chronic inflammatory autoimmune diseases. However, the underlying molecular mechanisms of its pathogenesis are unknown. This study aimed to identify the common biomarkers of ferroptosis and pyroptosis in RA and screen potential drugs. Methods The RA-related differentially expressed genes (DEGs) in GSE55235 were screened by R software and intersected with ferroptosis and pyroptosis gene libraries to obtain differentially expressed ferroptosis-related genes (DEFRGs) and differentially expressed pyroptosis-related genes (DEPRGs). We performed Gene Ontology (GO), Kyoto Encyclopedia of the Genome (KEGG), ClueGO, and Protein-Protein Interaction (PPI) analysis for DEFRGs and DEPRGs and validated them by machine learning. The microRNA/transcription factor (TF)-hub genes regulatory network was further constructed. The key gene was validated using the GSE77298 validation set, cellular validation was performed in in vitro experiments, and immune infiltration analysis was performed using CIBERSORT. Network pharmacology was used to find key gene-targeting drugs, followed by molecular docking and molecular dynamics simulations to analyze the binding stability between small-molecule drugs and large-molecule proteins. Results Three hub genes (CASP8, PTGS2, and JUN) were screened via bioinformatics, and the key gene (CASP8) was validated and obtained through the validation set, and the diagnostic efficacy was verified to be excellent through the receiver operating characteristic (ROC) curves. The ferroptosis and pyroptosis phenotypes were constructed by fibroblast-like synoviocytes (FLS), and caspase-8 was detected and validated as a common biomarker for ferroptosis and pyroptosis in RA, and quercetin can reduce caspase-8 levels. Quercetin was found to be a potential target drug for caspase-8 by network pharmacology, and the stability of their binding was further verified using molecular docking and molecular dynamics simulations. Conclusion Caspase-8 is an important biomarker for ferroptosis and pyroptosis in RA, and quercetin is a potential therapy for RA via targeting caspase-8 through ferroptosis and pyroptosis.
Collapse
Affiliation(s)
- Qingcong Zheng
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Du Wang
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Rongjie Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, People’s Republic of China
| | - Yuchao Chen
- Department of Paediatrics, Fujian Provincial Hospital South Branch, Fuzhou, People’s Republic of China
| | - Zixing Xu
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Weihong Xu
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| |
Collapse
|
21
|
Ma M, Chen L, Tang Z, Song Z, Kong X. Hepatoprotective effect of total flavonoids from Carthamus tinctorius L. leaves against carbon tetrachloride-induced chronic liver injury in mice. Fitoterapia 2023; 171:105605. [PMID: 37437698 DOI: 10.1016/j.fitote.2023.105605] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Carthamus tinctorius L. leaves, a waste product after Carthami flos production, are rich in flavonoids. Total flavonoids from C. tinctorius L. leaves (TFCTLL) exhibited the protective effect on acute liver injury in mice in previous studies. The aim of the present study was to evaluate the hepatoprotective effect of TFCTLL on chronic liver injury (CLI) and investigate the underlying mechanism. The chemical components of TFCTLL were identified by UPLC-Q-TOF/MS, and their migration into blood was evaluated. The protective effect of TFCTLL on CLI was evaluated by antioxidative and anti-inflammatory experiments in vitro, network pharmacology and a carbon tetrachloride (CCl4)-induced CLI mouse model. We indentified 18 chemical components in the TFCTLL samples and 4 components in plasma. TFCTLL showed significant anti-inflammatory activity and antioxidant capacity in vitro and in vivo. TFCTLL administration prominently improved the liver function and structure, decreased the mRNA expression levels of TLR2, TLR3, TLR4, NF-κB p65, IRF3, AKT1, TRIF, PI3K, MyD88, IL-1β and TNF-α and inhibited the protein expression and nuclear translocation of NF-κB p65 in mice with CLI. The molecular docking results showed that components in plasma had high binding affinity for the targets TLR4, PI3K and AKT1. Therefore, TFCTLL has a protective effect against CCl4-induced CLI, and the underlying mechanisms may be related to antioxidation, anti-inflammation and modulation of the TLRs/NF-κB and PI3K/AKT pathways.
Collapse
Affiliation(s)
- Mengge Ma
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, 712083, Xianyang, Shaanxi, PR China
| | - Lin Chen
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, 712083, Xianyang, Shaanxi, PR China.
| | - Zhishu Tang
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, 712083, Xianyang, Shaanxi, PR China; China Academy of Chinese Medical Sciences, 100700 Beijing, PR China.
| | - Zhongxing Song
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, 712083, Xianyang, Shaanxi, PR China
| | - Xin Kong
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, 712083, Xianyang, Shaanxi, PR China
| |
Collapse
|
22
|
Cruz-Gregorio A, Aranda-Rivera AK. Quercetin and Ferroptosis. Life (Basel) 2023; 13:1730. [PMID: 37629587 PMCID: PMC10455543 DOI: 10.3390/life13081730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Quercetin is a flavonoid present in apples, onions, tea, red wines, and berries, and it has shown different beneficial effects, such as providing cardiovascular protection, possessing anti-inflammatory properties, and demonstrating anticancer activity, among others. These diseases are related to oxidizing molecules such as ROS because these species react and induce the oxidation of cellular biomolecules, such as proteins, lipids, DNA, or carbohydrates, which alters cellular homeostasis. Regarding lipids, the oxidation of these molecules induces lipid hydroperoxides which, if not decreased, particularly by GPX4, produce highly reactive aldehydes such as 4HNE and MDA. These oxidative conditions induce ferroptosis, a type of cell death associated with oxidation that differs from other types of cell death, such as apoptosis, necrosis, or autophagy. The induction of ferroptosis is desired in some diseases, such as cancer, but in others, such as cardiovascular diseases, this type of cell death is not wanted. The possible effects of quercetin associated with reducing or inducing ferroptosis have not been reviewed. Thus, this review focuses on the ability of quercetin to produce ferroptosis in diseases such as cancer as a treatment option and, conversely, on its role in deactivating ferroptosis to alleviate diseases such as cardiovascular diseases.
Collapse
Affiliation(s)
- Alfredo Cruz-Gregorio
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Ana Karina Aranda-Rivera
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|