1
|
Saccaram C, Brosse C, Collet B, Sourdeval D, François T, Bernay B, Corso M, Rajjou L. A mass spectrometry-based peptidomic dataset of the spermosphere in common bean (Phaseolus vulgaris L.) seeds. Sci Data 2024; 11:1202. [PMID: 39511243 PMCID: PMC11543924 DOI: 10.1038/s41597-024-04044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024] Open
Abstract
The spermosphere, a dynamic microenvironment surrounding germinating seeds, is shaped by the complex interactions between natural compounds exuded by seeds and seed-associated microbial communities. While peptides exuded by plants are known to influence microbiota diversity, little is known about those specifically exuded by seeds. In this study, we characterised the peptidome profile of the spermosphere for the first time using seeds from eight genotypes of common bean (Phaseolus vulgaris) grown in two contrasting production regions. An untargeted LC-MS/MS peptidomic analysis revealed 3,258 peptides derived from 414 precursor proteins of common bean in the spermosphere. This comprehensive peptidomic dataset provides valuable insights into the characteristics of peptides exuded by common bean seeds in the spermosphere. It can be used to identify peptides with potential antimicrobial or other biological activities, advancing our understanding of the functional roles of seed-exuded peptides in the spermosphere.
Collapse
Affiliation(s)
- Chandrodhay Saccaram
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France.
| | - Céline Brosse
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Boris Collet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Delphine Sourdeval
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Tracy François
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Benoît Bernay
- Plateforme Proteogen, US EMerode, Université de Caen Normandie, 14000, Caen, France
| | - Massimiliano Corso
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Loïc Rajjou
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France.
| |
Collapse
|
2
|
Hubert B, Leprince O, Buitink J. Sleeping but not defenceless: seed dormancy and protection. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6110-6124. [PMID: 38758708 PMCID: PMC11480657 DOI: 10.1093/jxb/erae213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/16/2024] [Indexed: 05/19/2024]
Abstract
To ensure their vital role in disseminating the species, dormant seeds have developed adaptive strategies to protect themselves against pathogens and predators. This is orchestrated through the synthesis of an array of constitutive defences that are put in place in a developmentally regulated manner, which are the focus of this review. We summarize the defence activity and the nature of the molecules coming from the exudate of imbibing seeds that leak into their vicinity, also referred to as the spermosphere. As a second layer of protection, the dual role of the seed coat will be discussed; as a physical barrier and a multi-layered reservoir of defence compounds that are synthesized during seed development. Since imbibed dormant seeds can persist in the soil for extensive periods, we address the question of whether during this time a constitutively regulated defence programme is switched on to provide further protection, via the well-defined pathogenesis-related (PR) protein family. In addition, we review the hormonal and signalling pathways that might be involved in the interplay between dormancy and defence and point out questions that need further attention.
Collapse
Affiliation(s)
- Benjamin Hubert
- INRAE, Institut Agro, Université d'Angers, IRHS, SFR QUASAV, F‐49000 Angers, France
| | - Olivier Leprince
- INRAE, Institut Agro, Université d'Angers, IRHS, SFR QUASAV, F‐49000 Angers, France
| | - Julia Buitink
- INRAE, Institut Agro, Université d'Angers, IRHS, SFR QUASAV, F‐49000 Angers, France
| |
Collapse
|
3
|
Balda RS, Cogo C, Falduti O, Bongiorno FM, Brignoli D, Sandobal TJ, Althabegoiti MJ, Lodeiro AR. Ribulose 1,5-Bisphosphate Carboxylase/Oxygenase Is Required in Bradyrhizobium diazoefficiens for Efficient Soybean Root Colonization and Competition for Nodulation. PLANTS (BASEL, SWITZERLAND) 2024; 13:2362. [PMID: 39273846 PMCID: PMC11397080 DOI: 10.3390/plants13172362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
The Hyphomicrobiales (Rhizobiales) order contains soil bacteria with an irregular distribution of the Calvin-Benson-Bassham cycle (CBB). Key enzymes in the CBB cycle are ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO), whose large and small subunits are encoded in cbbL and cbbS, and phosphoribulokinase (PRK), encoded by cbbP. These genes are often found in cbb operons, regulated by the LysR-type regulator CbbR. In Bradyrhizobium, pertaining to this order and bearing photosynthetic and non-photosynthetic species, the number of cbbL and cbbS copies varies, for example: zero in B. manausense, one in B. diazoefficiens, two in B. japonicum, and three in Bradyrhizobium sp. BTAi. Few studies addressed the role of CBB in Bradyrhizobium spp. symbiosis with leguminous plants. To investigate the horizontal transfer of the cbb operon among Hyphomicrobiales, we compared phylogenetic trees for concatenated cbbL-cbbP-cbbR and housekeeping genes (atpD-gyrB-recA-rpoB-rpoD). The distribution was consistent, indicating no horizontal transfer of the cbb operon in Hyphomicrobiales. We constructed a ΔcbbLS mutant in B. diazoefficiens, which lost most of the coding sequence of cbbL and has a frameshift creating a stop codon at the N-terminus of cbbS. This mutant nodulated normally but had reduced competitiveness for nodulation and long-term adhesion to soybean (Glycine max (L.) Merr.) roots, indicating a CBB requirement for colonizing soybean rhizosphere.
Collapse
Affiliation(s)
- Rocío S Balda
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Centro Científico Tecnológico (CCT)-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata 1900, Argentina
| | - Carolina Cogo
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Centro Científico Tecnológico (CCT)-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata 1900, Argentina
- Departamento de Ciencias Básicas, Facultad de Ingeniería, UNLP, La Plata 1900, Argentina
| | - Ornella Falduti
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Centro Científico Tecnológico (CCT)-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata 1900, Argentina
| | - Florencia M Bongiorno
- Cátedra de Genética, Facultad de Ciencias Agrarias y Forestales, UNLP, La Plata 1900, Argentina
| | - Damián Brignoli
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Centro Científico Tecnológico (CCT)-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata 1900, Argentina
- Cátedra de Genética, Facultad de Ciencias Agrarias y Forestales, UNLP, La Plata 1900, Argentina
| | - Tamara J Sandobal
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Centro Científico Tecnológico (CCT)-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata 1900, Argentina
- Cátedra de Genética, Facultad de Ciencias Agrarias y Forestales, UNLP, La Plata 1900, Argentina
| | - María Julia Althabegoiti
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Centro Científico Tecnológico (CCT)-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata 1900, Argentina
| | - Aníbal R Lodeiro
- Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Centro Científico Tecnológico (CCT)-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata 1900, Argentina
- Cátedra de Genética, Facultad de Ciencias Agrarias y Forestales, UNLP, La Plata 1900, Argentina
| |
Collapse
|
4
|
Maitra P, Hrynkiewicz K, Szuba A, Jagodziński AM, Al-Rashid J, Mandal D, Mucha J. Metabolic niches in the rhizosphere microbiome: dependence on soil horizons, root traits and climate variables in forest ecosystems. FRONTIERS IN PLANT SCIENCE 2024; 15:1344205. [PMID: 38645395 PMCID: PMC11026606 DOI: 10.3389/fpls.2024.1344205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/18/2024] [Indexed: 04/23/2024]
Abstract
Understanding belowground plant-microbial interactions is important for biodiversity maintenance, community assembly and ecosystem functioning of forest ecosystems. Consequently, a large number of studies were conducted on root and microbial interactions, especially in the context of precipitation and temperature gradients under global climate change scenarios. Forests ecosystems have high biodiversity of plants and associated microbes, and contribute to major primary productivity of terrestrial ecosystems. However, the impact of root metabolites/exudates and root traits on soil microbial functional groups along these climate gradients is poorly described in these forest ecosystems. The plant root system exhibits differentiated exudation profiles and considerable trait plasticity in terms of root morphological/phenotypic traits, which can cause shifts in microbial abundance and diversity. The root metabolites composed of primary and secondary metabolites and volatile organic compounds that have diverse roles in appealing to and preventing distinct microbial strains, thus benefit plant fitness and growth, and tolerance to abiotic stresses such as drought. Climatic factors significantly alter the quantity and quality of metabolites that forest trees secrete into the soil. Thus, the heterogeneities in the rhizosphere due to different climate drivers generate ecological niches for various microbial assemblages to foster beneficial rhizospheric interactions in the forest ecosystems. However, the root exudations and microbial diversity in forest trees vary across different soil layers due to alterations in root system architecture, soil moisture, temperature, and nutrient stoichiometry. Changes in root system architecture or traits, e.g. root tissue density (RTD), specific root length (SRL), and specific root area (SRA), impact the root exudation profile and amount released into the soil and thus influence the abundance and diversity of different functional guilds of microbes. Here, we review the current knowledge about root morphological and functional (root exudation) trait changes that affect microbial interactions along drought and temperature gradients. This review aims to clarify how forest trees adapt to challenging environments by leveraging their root traits to interact beneficially with microbes. Understanding these strategies is vital for comprehending plant adaptation under global climate change, with significant implications for future research in plant biodiversity conservation, particularly within forest ecosystems.
Collapse
Affiliation(s)
- Pulak Maitra
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Agnieszka Szuba
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Andrzej M. Jagodziński
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
- Department of Game Management and Forest Protection, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Poznań, Poland
| | - Jubair Al-Rashid
- Tianjin Institute of Industrial Biotechnology, University of Chinese Academy of Sciences, Tianjin, China
| | - Dipa Mandal
- Institute of Microbiology, University of Chinese Academy of Sciences, Beijing, China
| | - Joanna Mucha
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
- Department of Forest Entomology and Pathology, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
5
|
Hubert B, Marchi M, Ly Vu J, Tranchant C, Tarkowski ŁP, Leprince O, Buitink J. A method to determine antifungal activity in seed exudates by nephelometry. PLANT METHODS 2024; 20:16. [PMID: 38287427 PMCID: PMC10826049 DOI: 10.1186/s13007-024-01144-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/20/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND One of the levers towards alternative solutions to pesticides is to improve seed defenses against pathogens, but a better understanding is needed on the type and regulation of existing pathways during germination. Dormant seeds are able to defend themselves against microorganisms during cycles of rehydration and dehydration in the soil. During imbibition, seeds leak copious amounts of exudates. Here, we developed a nephelometry method to assay antimicrobial activity (AA) in tomato seed exudates as a proxy to assess level of defenses. RESULTS A protocol is described to determine the level of AA against the nonhost filamentous fungus Alternaria brassicicola in the exudates of tomato seeds and seedlings. The fungal and exudate concentrations can be adjusted to modulate the assay sensitivity, thereby providing a large window of AA detection. We established that AA in dormant seeds depends on the genotype. It ranged from very strong AA to complete absence of AA, even after prolonged imbibition. AA depends also on the stages of germination and seedling emergence. Exudates from germinated seeds and seedlings showed very strong AA, while those from dormant seeds exhibited less activity for the same imbibition time. The exudate AA did not impact the growth of a pathogenic fungus host of tomato, Alternaria alternata, illustrating the adaptation of this fungus to its host. CONCLUSIONS We demonstrate that our nephelometry method is a simple yet powerful bioassay to quantify AA in seed exudates. Different developmental stages from dormant seed to seedlings show different levels of AA in the exudate that vary between genotypes, highlighting a genetic diversity x developmental stage interaction in defense. These findings will be important to identify molecules in the exudates conferring antifungal properties and obtain a better understanding of the regulatory and biosynthetic pathways through the lifecycle of seeds, from dormant seeds until seedling emergence.
Collapse
Affiliation(s)
- Benjamin Hubert
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
| | - Muriel Marchi
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
| | - Joseph Ly Vu
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
| | - Camille Tranchant
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
| | - Łukasz P Tarkowski
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
- INRAE, Université de Strasbourg, UMR SVQV, Colmar, France
| | - Olivier Leprince
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
| | - Julia Buitink
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France.
| |
Collapse
|
6
|
Wang X, Wang C, Chen R, Wang W, Wang D, Tian X. Plant Genotype Shapes the Soil Nematode Community in the Rhizosphere of Tomatoes with Different Resistance to Meloidognye incognita. PLANTS (BASEL, SWITZERLAND) 2023; 12:1528. [PMID: 37050154 PMCID: PMC10097389 DOI: 10.3390/plants12071528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Soil nematodes are considered indicators of soil quality due to their immediate responses to changes in the soil environment and plants. However, little is known about the effects of plant genotypes on the soil nematode community. To elucidate this, high-throughput sequencing and gas chromatography/mass spectrometry analysis was conducted to analyze the soil nematode community and the structure of root exudates in the rhizosphere of tomatoes with different resistance to Meloidognye incognita. The dominant soil nematode group in the soil of resistant tomatoes was Acrobeloides, while the soil nematode group in the rhizosphere of the susceptible and tolerant tomatoes was Meloidognye. Hierarchical clustering analysis and non-metric multidimensional scaling showed that the three soil nematode communities were clustered into three groups according to the resistance level of the tomato cultivars. The soil nematode community of the resistant tomatoes had a higher maturity index and a low plant-parasite index, Wasilewska index and disease index compared to the values of the susceptible and tolerant tomatoes. Redundancy analysis revealed that the disease index and root exudates were strongly related to the soil nematode community of three tomato cultivars. Taken together, the resistance of the tomato cultivars and root exudates jointly shapes the soil nematode community. This study provided a valuable contribution to understanding the mechanism of plant genotypes shaping the soil nematode community.
Collapse
Affiliation(s)
- Xiangmei Wang
- College of Biology and Food Engineering, China Three Gorges University, Yichang 443005, China
| | - Chaoyan Wang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408102, China (D.W.)
| | - Ru Chen
- Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang 453600, China
| | - Wenxing Wang
- Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang 453600, China
| | - Diandong Wang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408102, China (D.W.)
| | - Xueliang Tian
- Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang 453600, China
| |
Collapse
|
7
|
Understanding Molecular Plant–Nematode Interactions to Develop Alternative Approaches for Nematode Control. PLANTS 2022; 11:plants11162141. [PMID: 36015444 PMCID: PMC9415668 DOI: 10.3390/plants11162141] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 12/26/2022]
Abstract
Developing control measures of plant-parasitic nematodes (PPNs) rank high as they cause big crop losses globally. The growing awareness of numerous unsafe chemical nematicides and the defects found in their alternatives are calling for rational molecular control of the nematodes. This control focuses on using genetically based plant resistance and exploiting molecular mechanisms underlying plant–nematode interactions. Rapid and significant advances in molecular techniques such as high-quality genome sequencing, interfering RNA (RNAi) and gene editing can offer a better grasp of these interactions. Efficient tools and resources emanating from such interactions are highlighted herein while issues in using them are summarized. Their revision clearly indicates the dire need to further upgrade knowledge about the mechanisms involved in host-specific susceptibility/resistance mediated by PPN effectors, resistance genes, or quantitative trait loci to boost their effective and sustainable use in economically important plant species. Therefore, it is suggested herein to employ the impacts of these techniques on a case-by-case basis. This will allow us to track and optimize PPN control according to the actual variables. It would enable us to precisely fix the factors governing the gene functions and expressions and combine them with other PPN control tactics into integrated management.
Collapse
|
8
|
Ali R, Rooman M, Mussarat S, Norin S, Ali S, Adnan M, Khan SN. A Systematic Review on Comparative Analysis, Toxicology, and Pharmacology of Medicinal Plants Against Haemonchus contortus. Front Pharmacol 2021; 12:644027. [PMID: 34040520 PMCID: PMC8141741 DOI: 10.3389/fphar.2021.644027] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/26/2021] [Indexed: 12/19/2022] Open
Abstract
Background:Haemonchus contortus is an important pathogenic nematode parasite and major economic constraint of small ruminants in tropics and subtropics regions. This review is an attempt to systematically address the; (a) efficacy of different plants against H. contortus by in vitro and in vivo proof; (b) toxicology, mechanism of action, and active phyto-compounds involve in anti-haemonchiasis activity; (c) and comparative analysis of plant species evaluated both in vitro and in vivo. Methods: Online databases (Google Scholar, PubMed, Scopus, and ScienceDirect) were searched and published research articles (1980–2020) were gathered and reviewed. Results: A total of 187 plant species were reported belonging to 59 families and 145 genera with Asteraceae and Fabaceae being frequently used. Out of the total plant species, 171 species were found to be evaluated in vitro and only 40 species in vivo. Twenty-four species were commonly evaluated for in vitro and in vivo anti-haemonchiasis activity. Among the reported assays, egg hatching test (EHT) and fecal egg count reduction (FECR) were the most widely used assays in vitro and in vivo, respectively. Moreover, sheep were the frequently used experimental model in vivo. After comparative analysis, Lachesiodendron viridiflorum, Corymbia citriodora, Calotropis procera, and Artemisia herba-alba were found highly effective both in vitro and in vivo. L. viridiflorum inhibited enzymatic activities and metabolic processes of the parasite and was found to be safe without toxic effects. C. citriodora was moderately toxic in vivo, however, the plant extract produced promising nematicidal effects by causing muscular disorganization and changes in the mitochondrial profile. Additionally, C. procera and A. herba-alba despite of their high anti-haemonchiasis activity were found to be highly toxic at the tested concentrations. C. procera caused perforation and tegumental disorganization along with adult worm paralysis. Nineteen compounds were reported, among which anethole and carvone completely inhibited egg hatching in vitro and significantly reduced fecal egg count, decreased male length, and reproductive capacity of female in vivo. Conclusion: This review summarized different medicinal plants owing to nematicidal activities against H. contortus eggs, larvae, and adult worms. Plants like L. viridiflorum, C. citriodora, C. procera, and A. herba-alba, while compounds anethole and carvone having promising nematicidal activities and could be an alternative source for developing novel drugs after further investigation.
Collapse
Affiliation(s)
- Rehman Ali
- Department of Zoology, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhammad Rooman
- Department of Zoology, Hazara University Mansehra, Kohat, Pakistan
| | - Sakina Mussarat
- Department of Botanical and Environmental Sciences, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Sadia Norin
- Department of Zoology, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Shandana Ali
- Department of Zoology, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhammad Adnan
- Department of Botanical and Environmental Sciences, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Shahid Niaz Khan
- Department of Zoology, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| |
Collapse
|
9
|
Licá ICL, Soares AMS, Ferreira ATS, Perales J, Cunha IAL, Souza PFN, Costa-Júnior LM. In vitro assessment of the efficacy of protein exudates from seeds against Haemonchus contortus. Vet Parasitol 2021; 292:109399. [PMID: 33711619 DOI: 10.1016/j.vetpar.2021.109399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 10/22/2022]
Abstract
Nematodes develop resistance to the most common commercially available drugs. The aim of this study was to identify and evaluate the action of protein exudates from Mimosa caesalpiniifolia, Leucaena leucocephala, Acacia mangium, and Stylosanthes capitata seeds on the gastrointestinal nematode Haemonchus contortus. The exuded proteins were precipitated, dialyzed, lyophilized, and assessed for their effect on egg hatching and artificial larval exsheathment inhibition. Proteome analysis of the protein extracts was also performed. Although no egg-hatching inhibition was observed, all exudates showed efficacy in inhibiting the larval exsheathment of H. contortus larvae with an EC50 varying from 0.61 to 0.26 mg P mL-1. Proteomic analysis revealed the presence of proteases, protease inhibitors, chitinases, and lectins among other proteins in the exudates. Most of the exuded proteins belong to the oxidative stress/plant defense and energy/carbohydrate metabolism functional clusters. This study concluded that the bioactive proteins from different classes exuded by seeds of M. caesalpiniifolia, L. leucocephala, A. mangium, and S. capitata show stage-specific inhibition against H. contortus.
Collapse
Affiliation(s)
- Irlla Correia Lima Licá
- Postgraduate Program in Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil; Laboratory of Plant Biochemistry, Federal University of Maranhão, São Luís, MA, Brazil
| | - Alexandra Martins Santos Soares
- Postgraduate Program in Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil; Laboratory of Plant Biochemistry, Federal University of Maranhão, São Luís, MA, Brazil.
| | | | - Jonas Perales
- Laboratory of Toxinology, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | - Livio Martins Costa-Júnior
- Postgraduate Program in Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil; Laboratory of Parasite Control, Federal University of Maranhão, São Luís, MA, Brazil.
| |
Collapse
|
10
|
Ribeiro HS, Soares AMS, de Jesus Castro Brito D, Oliveira JTA, Costa-Junior LM. Inhibition of Protease and Egg Hatching of Haemonchus contortus by Soybean Seed Exudates. J Parasitol 2021; 107:23-28. [PMID: 33498082 DOI: 10.1645/19-47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Gastrointestinal nematode infection of small ruminants causes losses in livestock production. Plant compounds show promises as alternatives to commercial anthelmintics that have been exerting selective pressures that lead to the development of drug-resistant parasites. Soybean (Glycine max) is an economical value crop, with a higher protein content compared to other legumes. The objective of this study was to evaluate whether the protease inhibitors exuded from the G. max mature seeds have anthelmintic activity against Haemonchus contortus. To obtain the soybean exudates (SEX), mature seeds were immersed in 100 mM sodium acetate buffer, pH 5.0, at 10 C, for 24 hr. Then the naturally released substances present in SEX were collected and exhaustively dialyzed (cutoff 12 kDa) against distilled water. The dialyzed seed exudates (SEXD) were heated at 100 C for 10 min and centrifuged (12,000 g, at 4 C for 15 min). The supernatant obtained was recovered and designated as the heat-treated exudate fraction (SEXDH). The protein content, protease inhibitor activity, and the effect of each fraction on H. contortus egg hatch rate were evaluated. The inhibition extent of SEX, SEXD, and SEXDH on H. contortus egg proteases was 31.1, 42.9, and 63.8%, respectively. Moreover, SEX, SEXD, and SEXDH inhibited the egg hatching with EC50 of 0.175, 0.175, and 0.241 mg ml-1, respectively. Among the commercial protease inhibitors tested, only EDTA and E-64 inhibited the H. contortus hatch rate (79.0 and 28.9%, respectively). We present evidence demonstrating that soybean exudate proteins can effectively inhibit H. contortus egg hatching. This bioactivity is displayed by thermostable proteins and provides evidence that protease inhibitors are a potential candidate for anthelmintic use.
Collapse
Affiliation(s)
- Helen Silva Ribeiro
- Laboratory of Plant Biochemistry, Center for Exact Sciences and Technology, Federal University of Maranhao, Sao Luis, MA, 65080-805, Brazil
| | - Alexandra Martins Santos Soares
- Laboratory of Plant Biochemistry, Center for Exact Sciences and Technology, Federal University of Maranhao, Sao Luis, MA, 65080-805, Brazil
| | - Daniella de Jesus Castro Brito
- Laboratory of Plant Biochemistry, Center for Exact Sciences and Technology, Federal University of Maranhao, Sao Luis, MA, 65080-805, Brazil
| | - José Tadeu A Oliveira
- Laboratory of Plant Defense Proteins, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, 60440-900, Brazil
| | - Lívio Martins Costa-Junior
- Laboratory of Parasite Control, Center for Biological and Health Sciences, Federal University of Maranhao, Sao Luis, MA, 65080-805, Brazil
| |
Collapse
|
11
|
Sousa AJ, Souza PF, Gifoni JM, Dias LP, Freitas CD, Oliveira JT, Sousa DO, Vasconcelos IM. Scanning electron microscopy reveals deleterious effects of Moringa oleifera seed exuded proteins on root-knot nematode Meloidogyne incognita eggs. Int J Biol Macromol 2020; 154:1237-1244. [DOI: 10.1016/j.ijbiomac.2019.10.278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/21/2019] [Accepted: 10/31/2019] [Indexed: 12/21/2022]
|
12
|
Feng X, Hua Y, Zhang C, Kong X, Li X, Chen Y. Effect of soaking conditions on the formation of lipid derived free radicals in soymilk. Food Chem 2020; 315:126237. [PMID: 32014666 DOI: 10.1016/j.foodchem.2020.126237] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/26/2019] [Accepted: 01/16/2020] [Indexed: 02/03/2023]
Abstract
Lipid derived free radical in soymilks were studied by combining 5,5-dimethyl-pyrroline-l-oxide (DMPO) spin trap, chloroform-methanol extraction and electron spin resonance (ESR) spectroscopy. Five lipid derived free radical adducts: DMPO-X, DMPO-L, DMPO-R, DMPO-LOO, and DMPO-RO were presented in soymilks. The total amounts of spins increased as the soaking temperature increased from 4 °C to 50 °C and the soaking pH increased from 3 to 9 and in paralleled with the diffusion of soybean exudates to soaking water. Prolonged soaking of soybean at 50 °C resulted in a higher signal intensity of DMPO-R than that of DMPO-LOO. Soybean lipoxygenases (LOXs) were responsible for the formation of lipid derived free radicals in soymilks. Soybean exudates affected the total amounts of lipid radicals in linoleic acid (LA) - LOX model system. The relative signal intensities of DMPO-R and DMPO-LOO were depended on the contents of soybean exudates in the system.
Collapse
Affiliation(s)
- Xiaoxiao Feng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Yufei Hua
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, PR China.
| | - Caimeng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Xiangzhen Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Xingfei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Yeming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| |
Collapse
|
13
|
Rodríguez-Sifuentes L, Marszalek JE, Chuck-Hernández C, Serna-Saldívar SO. Legumes Protease Inhibitors as Biopesticides and Their Defense Mechanisms against Biotic Factors. Int J Mol Sci 2020; 21:E3322. [PMID: 32397104 PMCID: PMC7246880 DOI: 10.3390/ijms21093322] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 11/29/2022] Open
Abstract
Legumes are affected by biotic factors such as insects, molds, bacteria, and viruses. These plants can produce many different molecules in response to the attack of phytopathogens. Protease inhibitors (PIs) are proteins produced by legumes that inhibit the protease activity of phytopathogens. PIs are known to reduce nutrient availability, which diminishes pathogen growth and can lead to the death of the pathogen. PIs are classified according to the specificity of the mechanistic activity of the proteolytic enzymes, with serine and cysteine protease inhibitors being studied the most. Previous investigations have reported the efficacy of these highly stable proteins against diverse biotic factors and the concomitant protective effects in crops, representing a possible replacement of toxic agrochemicals that harm the environment.
Collapse
Affiliation(s)
- Lucio Rodríguez-Sifuentes
- Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km 7.5, Torreón Coahuila 27104, Mexico; (L.R.-S.); (J.E.M.)
| | - Jolanta Elzbieta Marszalek
- Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros Km 7.5, Torreón Coahuila 27104, Mexico; (L.R.-S.); (J.E.M.)
| | - Cristina Chuck-Hernández
- Tecnológico de Monterrey, School of Engineering and Sciences, Eugenio Garza Sada 2501, Col. Tecnológico, Monterrey Nuevo León 64849, Mexico;
| | - Sergio O. Serna-Saldívar
- Tecnológico de Monterrey, School of Engineering and Sciences, Eugenio Garza Sada 2501, Col. Tecnológico, Monterrey Nuevo León 64849, Mexico;
| |
Collapse
|
14
|
Arantes MR, Dias LP, Costa JH, Saraiva KDC, Morais JKS, Sousa DOB, Soares AA, Vasconcelos IM, Oliveira JTA. Gene expression during development and overexpression after Cercospora kikuchii and salicylic acid challenging indicate defensive roles of the soybean toxin. PLANT CELL REPORTS 2020; 39:669-682. [PMID: 32123995 DOI: 10.1007/s00299-020-02523-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
KEY MESSAGE SBTX has defensive role against C. kikuchii, and therefore, its constituent genes SBTX17 and SBTX27 are promising candidates to engineer pathogen resistant plants. Soybean (Glycine max [L.] Merr.) is economically the most important legume crop in the world. Its productivity is strongly affected by fungal diseases, which reduce soybean production and seed quality and cause losses of billions of dollars worldwide. SBTX is a protein that apparently takes part in the defensive chemical arsenal of soybean against pathogens. This current study provides data that reinforce this hypothesis. Indeed, SBTX inhibited in vitro the mycelial growth of Cercospora kikuchii, it is constitutively located in the epidermal region of the soybean seed cotyledons, and it is exuded from mature imbibed seeds. Moreover, RT-qPCR analysis of the SBTX associated genes, SBTX17 and SBTX27, which encode for the 17 and 27 kDa polypeptide chains, showed that both genes are expressed in all studied plant tissues during the soybean development, with the highest levels found in the mature seeds and unifoliate leaves. In addition, to assess a local response of the soybean secondary leaves from 35-day-old plants, they were inoculated with C. kikuchii and treated with salicylic acid. It was verified using RT-qPCR that SBTX17 and SBTX27 genes overexpressed in leaves compared to controls. These findings strongly suggest that SBTX has defensive roles against C. kikuchii. Therefore, SBTX17 and SBTX27 genes are promising candidates to engineer pathogen resistant plants.
Collapse
Affiliation(s)
- Mariana R Arantes
- Laboratory of Plant Defense Proteins, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Av. Mister Hull, P.O. Box: 60451, Fortaleza, CE, 60440-900, Brazil
| | - Lucas P Dias
- Laboratory of Plant Defense Proteins, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Av. Mister Hull, P.O. Box: 60451, Fortaleza, CE, 60440-900, Brazil.
| | - Jose H Costa
- Laboratory of Plant Defense Proteins, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Av. Mister Hull, P.O. Box: 60451, Fortaleza, CE, 60440-900, Brazil
| | - Katia D C Saraiva
- Laboratory of Plant Defense Proteins, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Av. Mister Hull, P.O. Box: 60451, Fortaleza, CE, 60440-900, Brazil
| | - Janne K S Morais
- Laboratory of Plant Defense Proteins, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Av. Mister Hull, P.O. Box: 60451, Fortaleza, CE, 60440-900, Brazil
| | - Daniele O B Sousa
- Laboratory of Plant Defense Proteins, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Av. Mister Hull, P.O. Box: 60451, Fortaleza, CE, 60440-900, Brazil
| | - Arlete A Soares
- Department of Biology, Federal University of Ceara, Fortaleza, CE, 60440-900, Brazil
| | - Ilka M Vasconcelos
- Laboratory of Plant Defense Proteins, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Av. Mister Hull, P.O. Box: 60451, Fortaleza, CE, 60440-900, Brazil
| | - Jose T A Oliveira
- Laboratory of Plant Defense Proteins, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Av. Mister Hull, P.O. Box: 60451, Fortaleza, CE, 60440-900, Brazil.
| |
Collapse
|
15
|
Ibrahim HMM, Ahmad EM, Martínez-Medina A, Aly MAM. Effective approaches to study the plant-root knot nematode interaction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:332-342. [PMID: 31207494 DOI: 10.1016/j.plaphy.2019.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/26/2019] [Accepted: 06/08/2019] [Indexed: 05/24/2023]
Abstract
Plant-parasitic nematodes cause major agricultural losses worldwide. Examining the molecular mechanisms underlying plant-nematode interactions and how plants respond to different invading pathogens is attracting major attention to reduce the expanding gap between agricultural production and the needs of the growing world population. This review summarizes the most recent developments in plant-nematode interactions and the diverse approaches used to improve plant resistance against root knot nematode (RKN). We will emphasize the recent rapid advances in genome sequencing technologies, small interfering RNA techniques (RNAi) and targeted genome editing which are contributing to the significant progress in understanding the plant-nematode interaction mechanisms. Also, molecular approaches to improve plant resistance against nematodes are considered.
Collapse
Affiliation(s)
- Heba M M Ibrahim
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt.
| | - Esraa M Ahmad
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ainhoa Martínez-Medina
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research, Leipzig, Germany
| | - Mohammed A M Aly
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
16
|
Soares AMS, Oliveira JTA, Rocha CQ, Ferreira ATS, Perales J, Zanatta AC, Vilegas W, Silva CR, Costa-Junior LM. Myracrodruon urundeuva seed exudates proteome and anthelmintic activity against Haemonchus contortus. PLoS One 2018; 13:e0200848. [PMID: 30024949 PMCID: PMC6053183 DOI: 10.1371/journal.pone.0200848] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/03/2018] [Indexed: 11/29/2022] Open
Abstract
Seed exudates are plant-derived natural bioactive compounds consisting of a complex mixture of organic and inorganic molecules. Plant seed exudates have been poorly studied against parasite nematodes. This study was undertaken to identify proteins in the Myracrodruon urundeuva seed exudates and to assess the anthelmintic activity against Haemonchus contortus, an important parasite of small ruminants. M. urundeuva seed exudates (SEX) was obtained after immersion of seeds in sodium acetate buffer. SEX was fractionated with ammonium sulfate at 0–90% concentration to generate the ressuspended pellet (SEXF1) and the supernatant (SEXF2). SEX, SEXF1, and SEXF2 were exhaustively dialyzed against distilled water (cut-off: 12 kDa) and the protein contents determined. Mass spectrometry analyses of SEX, SEXF1, and SEXF2 were done to identify proteins and secondary metabolites. The seed exudates contained protease, protease inhibitor, peptidase, chitinase, and lipases as well as the low molecular weight secondary compounds ellagic acid and quercetin rhamnoside. SEX inhibited H. contortus larval development (LDA) (IC50 = 0.29 mg mL-1), but did not affect larval exsheathment (LEIA). On the other hand, although SEXF1 and SEXF2 inhibited H. contortus LEIA (IC50 = 1.04 and 0.93 mg mL-1, respectively), they showed even greater inhibition efficiency of H. contortus larval development (IC50 = 0.29 and 0.42 mg mL-1, respectively). To the best of our knowledge, this study is the first to show the anthelmintic activity of plant exudates against a gastrointestinal nematode. Moreover, it suggests the potential of exuded proteins as candidates to negatively interfere with H. contortus life cycle.
Collapse
Affiliation(s)
- Alexandra M. S. Soares
- Laboratory of Plant Biochemistry, Chemical Engineering Program, Exact Sciences Center and Technology, Federal University of Maranhão, Sao Luís, Maranhão, Brazil
- * E-mail: (AMSS); (LMCJ)
| | - Jose T. A. Oliveira
- Laboratory of Plant Defense Proteins, Federal University of Ceará, Campus do Pici, Fortaleza, Ceará, Brazil
| | - Cláudia Q. Rocha
- Laboratory of Advanced Studies in Phytomedicines, Department of Chemistry, Center for Exact Sciences and Technology, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - André T. S. Ferreira
- Laboratory of Toxinology, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jonas Perales
- Laboratory of Toxinology, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Caroline Zanatta
- Laboratory of Natural Products, Institute of Biosciences, Bioprospecting, Coastal Campus of São Vicente, São Vicente, São Paulo, Brazil
| | - Wagner Vilegas
- Laboratory of Natural Products, Institute of Biosciences, Bioprospecting, Coastal Campus of São Vicente, São Vicente, São Paulo, Brazil
| | - Carolina R. Silva
- Laboratory of Parasite Control, Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Livio M. Costa-Junior
- Laboratory of Parasite Control, Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, Maranhão, Brazil
- * E-mail: (AMSS); (LMCJ)
| |
Collapse
|
17
|
Licá ICL, Soares AMDS, de Mesquita LSS, Malik S. Biological properties and pharmacological potential of plant exudates. Food Res Int 2018; 105:1039-1053. [DOI: 10.1016/j.foodres.2017.11.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/16/2017] [Accepted: 11/19/2017] [Indexed: 01/27/2023]
|
18
|
Malinich EA, Bauer CE. The plant growth promoting bacterium Azospirillum brasilense is vertically transmitted in Phaseolus vulgaris (common bean). Symbiosis 2018. [DOI: 10.1007/s13199-018-0539-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
19
|
Fu QL, Blaney L, Zhou DM. Identifying Plant Stress Responses to Roxarsone in Soybean Root Exudates: New Insights from Two-Dimensional Correlation Spectroscopy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:53-62. [PMID: 29240415 DOI: 10.1021/acs.jafc.7b04706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Roxarsone (ROX) is an organoarsenic feed additive of increasing interest used in the poultry industry. Soybean responses to ROX stress were investigated in root exudates (REs) using two-dimensional correlation spectroscopy (2D-COS) with fluorescence and Fourier transform infrared spectra. Environmentally relevant ROX concentrations caused negligible toxicity to crop growth and photosynthesis activity but blackened soybean roots at high concentrations. 2D-COS analysis revealed that the protein-like fluorophore and C═C and C═O, aliphatic OH, and polysaccharide C-O-H moieties in soybean REs were most sensitive to ROX stress. Heterospectral 2D-COS results suggested that aromatic, amide I, quinone, ketone, and aliphatic functional groups were the foundational components of protein-like and short-wavelength excited humic-like fluorophores in soybean REs. Carboxyl and phenolic moieties were related to the long-wavelength excited humic-like fluorophore. Overall, 2D-COS combined with molecular-based spectral analysis of REs provided an innovative approach to characterize the physiological responses of crops to contaminants at sublethal levels.
Collapse
Affiliation(s)
- Qing-Long Fu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences , Nanjing, Jiangsu 210008, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Lee Blaney
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County , 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Dong-Mei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences , Nanjing, Jiangsu 210008, People's Republic of China
| |
Collapse
|
20
|
Araújo SA, Soares AMDS, Silva CR, Almeida Júnior EB, Rocha CQ, Ferreira ATDS, Perales J, Costa-Júnior LM. In vitro anthelmintic effects of Spigelia anthelmia protein fractions against Haemonchus contortus. PLoS One 2017; 12:e0189803. [PMID: 29244856 PMCID: PMC5731696 DOI: 10.1371/journal.pone.0189803] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 12/02/2017] [Indexed: 11/18/2022] Open
Abstract
Gastrointestinal nematodes are a significant concern for animal health and well-being, and anthelmintic treatment is mainly performed through the use of chemical products. However, bioactive compounds produced by plants have shown promise for development as novel anthelmintics. The aim of this study is to assess the anthelmintic activity of protein fractions from Spigelia anthelmia on the gastrointestinal nematode Haemonchus contortus. Plant parts were separated into leaves, stems and roots, washed with distilled water, freeze-dried and ground into a fine powder. Protein extraction was performed with sodium phosphate buffer (75 mM, pH 7.0). The extract was fractionated using ammonium sulfate (0–90%) and extensively dialyzed. The resulting fractions were named LPF (leaf protein fraction), SPF (stem protein fraction) and RPF (root protein fraction), and the protein contents and activities of the fractions were analyzed. H. contortus egg hatching (EHA), larval exsheathment inhibition (LEIA) and larval migration inhibition (LMIA) assays were performed. Proteomic analysis was conducted, and high-performance liquid chromatography (HPLC) chromatographic profiles of the fractions were established to identify proteins and possible secondary metabolites. S. anthelmia fractions inhibited H. contortus egg hatching, with LPF having the most potent effects (EC50 0.17 mg mL-1). During LEIA, SPF presented greater efficiency than the other fractions (EC50 0.25 mg mL-1). According to LMIA, the fractions from roots, stems and leaves also reduced the number of larvae, with EC50 values of 0.11, 0.14 and 0.21 mg mL-1, respectively. Protein analysis indicated the presence of plant defense proteins in the S. anthelmia fractions, including protease, protease inhibitor, chitinase and others. Conversely, secondary metabolites were absent in the S. anthemia fractions. These results suggest that S. anthelmia proteins are promising for the control of the gastrointestinal nematode H. contortus.
Collapse
Affiliation(s)
- Sandra Alves Araújo
- Laboratory of Plant Biochemistry, Chemical Engineering Course, Centre for Exact Sciences and Technology, Federal University of Maranhão, São Luíz MA, Brazil
| | - Alexandra Martins dos Santos Soares
- Laboratory of Plant Biochemistry, Chemical Engineering Course, Centre for Exact Sciences and Technology, Federal University of Maranhão, São Luíz MA, Brazil
- * E-mail: (AMDSS); (LMCJ)
| | - Carolina Rocha Silva
- Laboratory of Parasite Control, Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luíz MA, Brazil
| | - Eduardo Bezerra Almeida Júnior
- Laboratory of Botanical Studies, Department of Biology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís MA, Brazil
| | - Cláudia Quintino Rocha
- Laboratory of Advanced Studies in Phytomedicines, Department of Chemistry, Centre for Exact Sciences and Technology, Federal University of Maranhão, São Luís MA, Brazil
| | | | - Jonas Perales
- Laboratory of Toxinology, Oswaldo Cruz Foundation, Rio de Janeiro RJ, Brazil
| | - Livio M. Costa-Júnior
- Laboratory of Parasite Control, Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luíz MA, Brazil
- * E-mail: (AMDSS); (LMCJ)
| |
Collapse
|
21
|
Akbar Basha S, Maheswaraiah A, Prasada Rao UJS. Antioxidant profile, acetylcholinesterase inhibition, and platelet aggregation of polyphenols and proteins from germinating green gram (Vigna radiata). INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1325899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Shaik Akbar Basha
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India
| | - Anikisetty Maheswaraiah
- Department of Lipid Science, CSIR-Central Food Technological Research Institute, Mysore, India
| | - U. J. S. Prasada Rao
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India
| |
Collapse
|
22
|
Xing X, Li X, Zhang M, Wang Y, Liu B, Xi Q, Zhao K, Wu Y, Yang T. Transcriptome analysis of resistant and susceptible tobacco (Nicotiana tabacum) in response to root-knot nematode Meloidogyne incognita infection. Biochem Biophys Res Commun 2017; 482:1114-1121. [PMID: 27914810 DOI: 10.1016/j.bbrc.2016.11.167] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 11/29/2022]
Abstract
The root-knot nematode (RKN) Meloidogyne incognita reproduces on the roots of tobacco (Nicotiana tabacum), damaging crops, reducing crop yield, and causing economic losses annually. The development of resistant genotypes is an alternative strategy to effectively control these losses. However, the molecular mechanism responsible for host pathogenesis and defense responses in tobacco specifically against RKNs remain poorly understood. Here, root transcriptome analysis of resistant (Yuyan12) and susceptible (Changbohuang) tobacco varieties infected with RKNs was performed. Moreover, 2623 and 545 differentially expressed genes (DEGs) in RKN-infected roots were observed in Yuyan12 and Changbohuang, respectively, compared to those in non-infected roots, including 289 DEGs commonly expressed in the two genotypes. Among these DEGs, genes encoding cell wall modifying proteins, auxin-related proteins, the ROS scavenging system, and transcription factors involved in various biological and physiochemical processes were significantly expressed in both the resistant and susceptible genotypes. This work is thus the first report on the relationships in the RKN-tobacco interaction using transcriptome analysis, and the results provide important information on the mechanism of RKN resistance in tobacco.
Collapse
Affiliation(s)
- Xuexia Xing
- College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Xiaohui Li
- College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Mingzhen Zhang
- College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yuan Wang
- College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Bingyang Liu
- College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Qiliang Xi
- College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Ke Zhao
- College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yunjie Wu
- College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Tiezhao Yang
- College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| |
Collapse
|
23
|
Yang G, Zhou B, Zhang X, Zhang Z, Wu Y, Zhang Y, Lü S, Zou Q, Gao Y, Teng L. Effects of Tomato Root Exudates on Meloidogyne incognita. PLoS One 2016; 11:e0154675. [PMID: 27128659 PMCID: PMC4851295 DOI: 10.1371/journal.pone.0154675] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/18/2016] [Indexed: 11/29/2022] Open
Abstract
Plant root exudates affect root-knot nematodes egg hatch. Chemicals in root exudates can attract nematodes to the roots or result in repellence, motility inhibition or even death. However, until recently little was known about the relationship between tomato root exudates chemicals and root-knot nematodes. In this study, root exudates were extracted from three tomato rootstocks with varying levels of nematode resistance: Baliya (highly resistant, HR), RS2 (moderately resistant, MR) and L-402 (highly susceptible, T). The effects of the root exudates on Meloidogyne incognita (M. incognita) egg hatch, survival and chemotaxis of second-stage juveniles (J2) were explored. The composition of the root exudates was analysed by gas chromatography/mass spectrometry (GC/MS) prior to and following M. incognita inoculation. Four compounds in root exudates were selected for further analysis and their allopathic effect on M. incognita were investigated. Root exudates from each tomato rootstocks (HR, MR and T strains) suppressed M. incognita egg hatch and increased J2 mortality, with the highest rate being observed in the exudates from the HR plants. Exudate from HR variety also repelled M. incognita J2 while that of the susceptible plant, T, was demonstrated to be attractive. The relative amount of esters and phenol compounds in root exudates from HR and MR tomato rootstocks increased notably after inoculation. Four compounds, 2,6-Di-tert-butyl-p-cresol, L-ascorbyl 2,6-dipalmitate, dibutyl phthalate and dimethyl phthalate increased significantly after inoculation. The egg hatch of M. incognita was suppressed by each of the compound. L-ascorbyl 2,6-dipalmitate showed the most notable effect in a concentration-dependent manner. All four compounds were associated with increased J2 mortality. The greatest effect was observed with dimethyl phthalate at 2 mmol·L-1. Dibutyl phthalate was the only compound observed to repel M. incognita J2 with no effect being detected in the other compounds. Each of the four compounds were correlated with a reduction in disease index in the susceptible cultivar, T, and tomato seedlings irrigated with L-ascorbyl 2,6-dipalmitate at 2 mmol·L-1 showed the best resistance to M. incognita. Taken together, this study provided a valuable contribution to understanding the underlying mechanism of nematode resistance in tomato cultivars.
Collapse
Affiliation(s)
- Guodong Yang
- College of Horticulture, Shenyang Agricultural University, Shenyang, P. R. China
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, P. R. China
| | - Baoli Zhou
- College of Horticulture, Shenyang Agricultural University, Shenyang, P. R. China
- * E-mail:
| | - Xinyu Zhang
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, P. R. China
| | - Zijun Zhang
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, P. R. China
| | - Yuanyuan Wu
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, P. R. China
| | - Yiming Zhang
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, P. R. China
| | - Shuwen Lü
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, P. R. China
| | - Qingdao Zou
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, P. R. China
| | - Yuan Gao
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, P. R. China
| | - Long Teng
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, P. R. China
| |
Collapse
|
24
|
Wang GL, Chen X, Chang YN, Du D, Li Z, Xu XY. Synthesis of 1,2,3-benzotriazin-4-one derivatives containing spirocyclic indoline-2-one moieties and their nematicidal evaluation. CHINESE CHEM LETT 2015. [DOI: 10.1016/j.cclet.2015.10.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|