1
|
Jing Xuan H, Ali J, Jianye Z, Chen XX, Ghramh HA, Khan KA, Alam SS, Munawar A, Tonğa A, Chen RZ. Prior Brassica rapa infestation by the cabbage bug, Eurydema ornata alters the performance and behavior of the peach-potato aphid, Myzus persicae and its natural enemies. PEST MANAGEMENT SCIENCE 2025. [PMID: 40433809 DOI: 10.1002/ps.8921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 05/02/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025]
Abstract
BACKGROUND Plant infestation by insect pests can alter plant physiology, thereby influencing the performance and behavior of subsequent herbivores and their natural enemies through indirect effects-changes in plant traits mediated by prior herbivory. This study investigates how prior infestation of Brassica rapa by the cabbage bug Eurydema ornata (Hemiptera: Pentatomidae) affects the aphid Myzus persicae (Hemiptera: Aphididae) and its natural enemies, the predator Harmonia axyridis Coleoptera: Coccinedllidae) and the parasitoid Aphidius gifuensis (Hymenoptera: Braconidae). To explore these interactions, we assessed aphid survival and fecundity, monitored population dynamics, examined the behavior of the predator and parasitoid, and analyzed plant volatile emissions. RESULTS Our findings revealed a significant reduction in M. persicae fecundity on E. ornata infested plants. Additionally, aphids showed a significantly lower frequency of entering the olfactometer arm loaded with odors emitted from infested plants compared to those with odors from healthy plants. Both natural enemies, H. axyridis and A. gifuensis, demonstrated stronger attraction to infested plants in preference and foraging bioassays. Volatile analysis revealed higher emissions from infested plants, with significant increases in key compounds, such as 3-pentanol, (Z)-3-Hexenol, methyl isothiocyanate, dihydrojasmone, cis-Jasmone, D-Limonene, (E)-β-ocimene, β-Elemene, (E)-4,8-dimethyl-nonatriene and (E, E)-⍺-Farnesene. CONCLUSIONS E. ornata infestation reduces the suitability of B. rapa for M. persicae and enhances the biocontrol potential of its natural enemies. These interactions highlight the importance of intra-guild competition and host manipulation in ecological, evolutionary and pest management perspectives. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huang Jing Xuan
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Jamin Ali
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Zhao Jianye
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Xi Xian Chen
- College of Plant Protection, Northeast Agricultural University, Harbin, China
| | - Hamed A Ghramh
- Center of Bee Research and Its Products, King Khalid University, Abha, Saudi Arabia
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Khalid Ali Khan
- Center of Bee Research and Its Products, King Khalid University, Abha, Saudi Arabia
- Applied College, King Khalid University, Abha, Saudi Arabia
| | - Syed Shane Alam
- College of Plant Protection, Northwest A&F University, Xianyang, China
| | - Asim Munawar
- State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Adil Tonğa
- Entomology Department, Diyarbakır Plant Protection Research Institute, Diyarbakir, Türkiye
| | - Ri Zhao Chen
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| |
Collapse
|
2
|
Luo L, Gao T, Deng Y, Chai M, Li B, Ni H, Wang K, Zhang M, Liu Y, Jiang H, Song C, Jing T. Tea Aphid-Induced β-Elemene Biosynthesis by CsELE Enhances JA-Dependent Herbivore Resistance in Tea Plants. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40387252 DOI: 10.1111/pce.15625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/20/2025]
Abstract
Herbivore-induced plant volatiles play a crucial role in enhancing plant resistance and adaptability. However, the key volatiles triggering this response and their activation mechanisms remain largely unknown. Although tea aphids (Toxoptera aurantii) are common tea plantation pests, the underlying biochemical pathways by which aphid-induced volatiles in Camellia sinensis contribute to aphid resistance are not well understood. In this study, we measured jasmonic acid (JA) accumulation induced by aphid feeding using LC-MS and DESI-IMS analysis. We also identified a diverse array of aphid-induced volatiles through GC-MS. Notably, tea aphids stimulated β-Elemene accumulation, enhancing 'Shuchazao' resistance to tea aphids. We also evaluated the insecticidal activity of β-Elemene through contact toxicity and repellent bioassays. For the first time, we identified aphid-induced CsELE as a terpene synthase enzyme catalyzing the final step in β-Elemene biosynthesis from farnesyl pyrophosphate. Transient overexpression and gene silencing of CsELE affected β-Elemene accumulation, thereby influencing tea plant resistance to aphids. Furthermore, Dual-Luciferase and Y1H assays revealed that MYC2a, a core transcription factor in the JA signaling pathway, positively regulates CsELE expression. Overall, this study advances our understanding of the transcriptional regulation of tea volatiles in response to pest attacks, providing new insights into the ecological significance of terpene volatiles under biotic stress.
Collapse
Affiliation(s)
- Lanxin Luo
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei, P.R. China
| | - Ting Gao
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei, P.R. China
| | - Yanni Deng
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei, P.R. China
| | - Mengyao Chai
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei, P.R. China
| | - Bo Li
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei, P.R. China
| | - Hao Ni
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei, P.R. China
| | - Kai Wang
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei, P.R. China
| | - Mengting Zhang
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei, P.R. China
| | - Yaojia Liu
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei, P.R. China
| | - Hao Jiang
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei, P.R. China
| | - Chuankui Song
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei, P.R. China
| | - Tingting Jing
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei, P.R. China
| |
Collapse
|
3
|
Kumaraswamy S, Yogendra K, Sotelo-Cardona P, Shivanna A, Hemalatha S, Mohan M, Srinivasan R. Non-targeted metabolomics reveals fatty acid and associated pathways driving resistance to whitefly and tomato leafminer in wild tomato accessions. Sci Rep 2025; 15:3754. [PMID: 39885264 PMCID: PMC11782529 DOI: 10.1038/s41598-025-86191-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025] Open
Abstract
Wild tomato species exhibit natural insect resistance, yet the specific secondary metabolites and underlying mechanisms governing the resistance remain unclear. Moreover, defense expression dynamically adapts to insect herbivory, causing significant metabolic changes and species-specific secondary metabolite accumulation. The present study aims to identify the resistance-related metabolites in wild tomato accessions that influence the defense mechanism against whitefly (Bemisia tabaci Asia II 7) and leafminer (Phthorimaea absoluta). In this study, LC-HRMS-based non-targeted metabolomics of resistant wild (Solanum cheesmaniae and Solanum galapagense) and susceptible cultivated (Solanum lycopersicum) accessions following 6- and 12-h post-infestation (hpi) by B. tabaci Asia II 7 and P. absoluta revealed distinct sets of resistance-related constitutive (RRC) and induced (RRI) metabolites. The key resistance-related metabolites were those involved in the fatty acid and associated biosynthesis pathways (e.g., triacontane, di-heptanoic acid, dodecanoic acid, undecanoic acid, N-hexadecanoic acid, pentacosane, monogalactosyldiacylglycerols, sphinganine, and 12-hydroxyjasmonic acid), which are recognized for their direct or indirect role in mediating plant defense against insects. Additionally, the differential accumulation of metabolites was evident through partial least squares-discriminant analysis (PLS-DA), highlighting differences in metabolite profiles between resistant and susceptible accessions at 6 and 12 hpi of B. tabaci and P. absoluta. Volcano plot analysis revealed a higher number of significantly upregulated metabolites in wild accessions following herbivory. Moreover, wild tomato accessions responded uniquely to B. tabaci and P. absoluta, highlighting species-specific metabolic responses of tomato accessions to the two feeding guilds. This study uncovered biochemical mechanisms governing resistance in wild tomato accessions, elucidated the influence of dual herbivory on the plant metabolome, and offered well-characterized parent materials and candidate metabolites for breeding insect-resistant varieties.
Collapse
Affiliation(s)
- Sunil Kumaraswamy
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560024, India
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Kalenahalli Yogendra
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, 502324, India
| | - Paola Sotelo-Cardona
- World Vegetable Center, 60 Yi-Min Liao, Shanhua, Tainan, 74151, Taiwan
- Oregon IPM Center, Oregon State University, Corvallis, OR, 97330, USA
| | - Aparna Shivanna
- World Vegetable Center, South and Central Asia, ICRISAT Campus, Hyderabad, 502324, India
| | - Sanivarapu Hemalatha
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, 502324, India
| | - Muthugounder Mohan
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560024, India
| | | |
Collapse
|
4
|
Zytowski E, Mollavali M, Baldermann S. Uptake and translocation of nanoplastics in mono and dicot vegetables. PLANT, CELL & ENVIRONMENT 2025; 48:134-148. [PMID: 39248316 PMCID: PMC11615417 DOI: 10.1111/pce.15115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024]
Abstract
The excessive production and use of plastics increase the release of micro- and nanoplastics (MNPs) into the environment. In recent years, research has focused on the occurrence of MNPs in air, soil and water. Nevertheless, there is still a lack of knowledge regarding MNPs in plants. To determine the load, translocation of MNPs and their effects on metabolism, pak choi, tomato, radish and asparagus have been exposed with fluorescent-labelled poly(methyl methacrylate) or polystyrene (PS) MNPs. The entry of nanoparticles (NPs) of various sizes (100-500 nm) and surface modifications (unmodified, COOH or NH2) into plants has been demonstrated using confocal laser scanning microscopy (CLSM). The translocalization from root to shoot and the accumulation of NP in the intercellular spaces were regardless of the surface modification. In addition, metabolomics was used to evaluate metabolic changes induced by MNPs in pak choi. Changes in phenolic compounds, phytohormone derivatives and other classes of compounds known to be triggered by various environmental stresses have been identified. The present study demonstrates the uptake and translocalization of MNPs in edible parts of vegetables and may pose a hazard for humans.
Collapse
Affiliation(s)
- Eric Zytowski
- Leibniz Institute for Vegetable and Ornamental Crops (IGZ)GrossbeerenGermany
- Institute of Nutritional ScienceUniversity PotsdamNuthetalGermany
| | - Mohanna Mollavali
- Leibniz Institute for Vegetable and Ornamental Crops (IGZ)GrossbeerenGermany
| | - Susanne Baldermann
- Leibniz Institute for Vegetable and Ornamental Crops (IGZ)GrossbeerenGermany
- Faculty for Life Sciences: Food, Nutrition and Health, Campus in Kulmbach University of BayreuthBayreuthGermany
| |
Collapse
|
5
|
Hassan A, Akram W, Rizwana H, Aftab ZEH, Hanif S, Anjum T, Alwahibi MS. The Imperative Use of Bacillus Consortium and Quercetin Contributes to Suppress Fusarium Wilt Disease by Direct Antagonism and Induced Resistance. Microorganisms 2023; 11:2603. [PMID: 37894261 PMCID: PMC10609423 DOI: 10.3390/microorganisms11102603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Fusarium wilt diseases severely influence the growth and productivity of numerous crop plants. The consortium of antagonistic rhizospheric Bacillus strains and quercetin were evaluated imperatively as a possible remedy to effectively manage the Fusarium wilt disease of tomato plants. The selection of Bacillus strains was made based on in-vitro antagonistic bioassays against Fusarium oxysporum f.sp. lycoprsici (FOL). Quercetin was selected after screening a library of phytochemicals during in-silico molecular docking analysis using tomato LysM receptor kinases "SILKY12" based on its dual role in symbiosis and plant defense responses. After the selection of test materials, pot trials were conducted where tomato plants were provided consortium of Bacillus strains as soil drenching and quercetin as a foliar spray in different concentrations. The combined application of consortium (Bacillus velezensis strain BS6, Bacillus thuringiensis strain BS7, Bacillus fortis strain BS9) and quercetin (1.0 mM) reduced the Fusarium wilt disease index up to 69%, also resulting in increased plant growth attributes. Likewise, the imperative application of the Bacillus consortium and quercetin (1.0 mM) significantly increased total phenolic contents and activities of the enzymes of the phenylpropanoid pathway. Non-targeted metabolomics analysis was performed to investigate the perturbation in metabolites. FOL pathogen negatively affected a range of metabolites including carbohydrates, amino acids, phenylpropanoids, and organic acids. Thereinto, combined treatment of Bacillus consortium and quercetin (1.0 mM) ameliorated the production of different metabolites in tomato plants. These findings prove the imperative use of Bacillus consortium and quercetin as an effective and sustainable remedy to manage Fusarium wilt disease of tomato plants and to promote the growth of tomato plants under pathogen stress conditions.
Collapse
Affiliation(s)
- Ali Hassan
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Waheed Akram
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Humaira Rizwana
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Zill-E-Huma Aftab
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Sana Hanif
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Tehmina Anjum
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Mona S Alwahibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| |
Collapse
|
6
|
Fitzner M, Schreiner M, Baldermann S. The interaction of salinity and light regime modulates photosynthetic pigment content in edible halophytes in greenhouse and indoor farming. FRONTIERS IN PLANT SCIENCE 2023; 14:1105162. [PMID: 37082347 PMCID: PMC10110887 DOI: 10.3389/fpls.2023.1105162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Given its limited land and water use and the changing climate conditions, indoor farming of halophytes has a high potential to contribute significantly to global agriculture in the future. Notably, indoor farming and classical greenhouse cultivation differ in their light regime between artificial and solar lighting, which can influence plant metabolism, but how this affects the cultivation of halophytes has not yet been investigated. To address this question, we studied the yield and content of abscisic acid, carotenoids, and chlorophylls as well as chloride of three halophyte species (Cochlearia officinalis, Atriplex hortensis, and Salicornia europaea) differing in their salt tolerance mechanisms and following four salt treatments (no salt to 600 mM of NaCl) in two light regimes (greenhouse/indoor farming). In particular, salt treatment had a strong influence on chloride accumulation which is only slightly modified by the light regime. Moreover, fresh and dry mass was influenced by the light regime and salinity. Pigments exhibited different responses to salt treatment and light regime, reflecting their differing functions in the photosynthetic apparatus. We conclude that the interaction of light regime and salt treatment modulates the content of photosynthetic pigments. Our study highlights the potential applications of the cultivation of halophytes for indoor farming and underlines that it is a promising production system, which provides food alternatives for future diets.
Collapse
Affiliation(s)
- Maria Fitzner
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Grossbeeren, Germany
- Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
- Food4Future (F4F), c/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Department Plant Quality and Food Security, Grossbeeren, Germany
| | - Monika Schreiner
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Grossbeeren, Germany
- Food4Future (F4F), c/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Department Plant Quality and Food Security, Grossbeeren, Germany
| | - Susanne Baldermann
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Grossbeeren, Germany
- Food4Future (F4F), c/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Department Plant Quality and Food Security, Grossbeeren, Germany
- Food Metabolome, Faculty of Life Science: Food, Nutrition and Health, University of Bayreuth, Kulmbach, Germany
| |
Collapse
|
7
|
Abiotic and Herbivory Combined Stress in Tomato: Additive, Synergic and Antagonistic Effects and Within-Plant Phenotypic Plasticity. Life (Basel) 2022; 12:life12111804. [DOI: 10.3390/life12111804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Background: Drought, N deficiency and herbivory are considered the most important stressors caused by climate change in the agro- and eco-systems and varied in space and time shaping highly dynamic and heterogeneous stressful environments. This study aims to evaluate the tomato morpho-physiological and metabolic responses to combined abiotic and herbivory at different within-plant spatial levels and temporal scales. Methods: Leaf-level morphological, gas exchange traits and volatile organic compounds (VOCs) profiles were measured in tomato plants exposed to N deficiency and drought, Tuta absoluta larvae and their combination. Additive, synergistic or antagonistic effects of the single stress when combined were also evaluated. Morpho-physiological traits and VOCs profile were also measured on leaves located at three different positions along the shoot axes. Results: The combination of the abiotic and biotic stress has been more harmful than single stress with antagonistic and synergistic but non-additive effects for the morpho-physiological and VOCs tomato responses, respectively. Combined stress also determined a high within-plant phenotypic plasticity of the morpho-physiological responses. Conclusions: These results suggested that the combined stress in tomato determined a “new stress state” and a higher within-plant phenotypic plasticity which could permit an efficient use of the growth and defense resources in the heterogeneous and multiple stressful environmental conditions.
Collapse
|
8
|
Roca M, Pérez-Gálvez A. Metabolomics of Chlorophylls and Carotenoids: Analytical Methods and Metabolome-Based Studies. Antioxidants (Basel) 2021; 10:1622. [PMID: 34679756 PMCID: PMC8533378 DOI: 10.3390/antiox10101622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/03/2021] [Accepted: 10/12/2021] [Indexed: 01/27/2023] Open
Abstract
Chlorophylls and carotenoids are two families of antioxidants present in daily ingested foods, whose recognition as added-value ingredients runs in parallel with the increasing number of demonstrated functional properties. Both groups include a complex and vast number of compounds, and extraction and analysis methods evolved recently to a modern protocol. New methodologies are more potent, precise, and accurate, but their application requires a better understanding of the technical and biological context. Therefore, the present review compiles the basic knowledge and recent advances of the metabolomics of chlorophylls and carotenoids, including the interrelation with the primary metabolism. The study includes material preparation and extraction protocols, the instrumental techniques for the acquisition of spectroscopic and spectrometric properties, the workflows and software tools for data pre-processing and analysis, and the application of mass spectrometry to pigment metabolomics. In addition, the review encompasses a critical description of studies where metabolomics analyses of chlorophylls and carotenoids were developed as an approach to analyzing the effects of biotic and abiotic stressors on living organisms.
Collapse
Affiliation(s)
| | - Antonio Pérez-Gálvez
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), Building 46, 41013 Sevilla, Spain;
| |
Collapse
|
9
|
Sardans J, Gargallo‐Garriga A, Urban O, Klem K, Holub P, Janssens IA, Walker TWN, Pesqueda A, Peñuelas J. Ecometabolomics of plant–herbivore and plant–fungi interactions: a synthesis study. Ecosphere 2021. [DOI: 10.1002/ecs2.3736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Jordi Sardans
- CSIC Global Ecology Unit CREAF‐CSIC‐UAB Bellaterra Catalonia 08193 Spain
- CREAF Cerdanyola del Valles Catalonia 08193 Spain
- Global Change Research Institute Czech Academy of Sciences Bělidla 986/4a Brno CZ‐60300 Czech Republic
| | - Albert Gargallo‐Garriga
- CSIC Global Ecology Unit CREAF‐CSIC‐UAB Bellaterra Catalonia 08193 Spain
- CREAF Cerdanyola del Valles Catalonia 08193 Spain
- Global Change Research Institute Czech Academy of Sciences Bělidla 986/4a Brno CZ‐60300 Czech Republic
| | - Otmar Urban
- Global Change Research Institute Czech Academy of Sciences Bělidla 986/4a Brno CZ‐60300 Czech Republic
| | - Karel Klem
- Global Change Research Institute Czech Academy of Sciences Bělidla 986/4a Brno CZ‐60300 Czech Republic
| | - Petr Holub
- Global Change Research Institute Czech Academy of Sciences Bělidla 986/4a Brno CZ‐60300 Czech Republic
| | - Ivan A. Janssens
- Department of Biology University of Antwerp Wilrijk 2610 Belgium
| | - Tom W. N. Walker
- Department of Environmental Systems Science Institute of Integrative Biology ETH Zürich Zurich 8092 Switzerland
| | - Argus Pesqueda
- CSIC Global Ecology Unit CREAF‐CSIC‐UAB Bellaterra Catalonia 08193 Spain
- CREAF Cerdanyola del Valles Catalonia 08193 Spain
| | - Josep Peñuelas
- CSIC Global Ecology Unit CREAF‐CSIC‐UAB Bellaterra Catalonia 08193 Spain
- CREAF Cerdanyola del Valles Catalonia 08193 Spain
- Global Change Research Institute Czech Academy of Sciences Bělidla 986/4a Brno CZ‐60300 Czech Republic
| |
Collapse
|
10
|
Cagliero C, Mastellone G, Marengo A, Bicchi C, Sgorbini B, Rubiolo P. Analytical strategies for in-vivo evaluation of plant volatile emissions - A review. Anal Chim Acta 2020; 1147:240-258. [PMID: 33485582 DOI: 10.1016/j.aca.2020.11.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/14/2022]
Abstract
Biogenic volatile organic compounds (BVOCs) are metabolites emitted by living plants that have a fundamental ecological role since they influence atmospheric chemistry, plant communication and pollinator/herbivore behaviour, and human activities. Over the years, several strategies have been developed to isolate and identify them, and to take advantage of their activity. The main techniques used for in-vivo analyses include dynamic headspace (D-HS), static headspace (S-HS) and, more recently, direct contact (DC) methods in association with gas chromatography (GC) and mass spectrometry (MS). The aim of this review is to provide insight into the in-vivo characterisation of plant volatile emissions with a focus on sampling, analysis and possible applications. This review first provides a critical discussion of the challenges associated with conventional approaches and their limitations and advantages. Then, it describes a series of applications of in-vivo volatilomic studies to enhance how the information they provide impact on our knowledge of plant behaviour, including the effects of abiotic (damage, flooding, climate) and biotic (insect feeding) stress factors in relation to the plants.
Collapse
Affiliation(s)
- Cecilia Cagliero
- Dipartimento di Scienza e Tecnologia Del Farmaco, Università Degli Studi di Torino, I, 10125, Turin, Italy.
| | - Giulia Mastellone
- Dipartimento di Scienza e Tecnologia Del Farmaco, Università Degli Studi di Torino, I, 10125, Turin, Italy
| | - Arianna Marengo
- Dipartimento di Scienza e Tecnologia Del Farmaco, Università Degli Studi di Torino, I, 10125, Turin, Italy
| | - Carlo Bicchi
- Dipartimento di Scienza e Tecnologia Del Farmaco, Università Degli Studi di Torino, I, 10125, Turin, Italy
| | - Barbara Sgorbini
- Dipartimento di Scienza e Tecnologia Del Farmaco, Università Degli Studi di Torino, I, 10125, Turin, Italy
| | - Patrizia Rubiolo
- Dipartimento di Scienza e Tecnologia Del Farmaco, Università Degli Studi di Torino, I, 10125, Turin, Italy
| |
Collapse
|
11
|
Gas chromatography-mass spectrometry analysis reveals the differences in volatile components of royal jelly from different honeybee stocks. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Dai Q, Liu S, Jiang Y, Gao J, Jin H, Zhang Y, Zhang Z, Xia T. Recommended storage temperature for green tea based on sensory quality. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2019; 56:4333-4348. [PMID: 31478003 DOI: 10.1007/s13197-019-03902-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/25/2019] [Accepted: 06/24/2019] [Indexed: 10/26/2022]
Abstract
This study aimed to evaluate the effect of storage temperature on the alteration of the sensory quality of tea. Huangshan Maofeng tea was stored at - 80 °C, - 20 °C, 4 °C, or room temperature for up to 150 days. The physicochemical parameters, taste-related components, appearance color, volatile compounds and sensory quality of tea were analyzed and compared. Results showed that storing tea at - 80 °C and - 20 °C effectively preserved the physicochemical parameters, taste-related compounds and appearance color in tea. Multivariate statistical analysis (PCA and OPLS-DA) indicated that tea stored at - 80 °C exhibited a similar volatiles composition as fresh tea based on gas chromatography-mass spectrometry, whereas the composition of volatiles was significantly altered in tea stored at 4 °C after 100 days of storage. Sensory evaluation illustrated that tea stored at - 80 °C and - 20 °C remained the freshness regarding leaves appearance and tea infusion color, taste and aroma, whereas an obvious decrease on the tea freshness was found in tea stored at 4 °C and room temperature. These findings indicated that storage temperature played a vital role in altering the aromatic and sensory quality of Huangshan Maofeng tea and the recommended tea storage temperature was - 80 °C or - 20 °C.
Collapse
Affiliation(s)
- Qianying Dai
- 1State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China.,2School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Sitong Liu
- 1State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China.,2School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Yurong Jiang
- 1State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China.,2School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Jing Gao
- 1State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China.,2School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Huozhu Jin
- 1State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China.,2School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Yajuan Zhang
- 1State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China.,2School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Zhengzhu Zhang
- 1State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China.,2School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Tao Xia
- 1State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China.,2School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036 Anhui China
| |
Collapse
|
13
|
Shi J, Xie D, Qi D, Peng Q, Chen Z, Schreiner M, Lin Z, Baldermann S. Methyl Jasmonate-Induced Changes of Flavor Profiles During the Processing of Green, Oolong, and Black Tea. FRONTIERS IN PLANT SCIENCE 2019; 10:781. [PMID: 31258544 PMCID: PMC6587438 DOI: 10.3389/fpls.2019.00781] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 05/29/2019] [Indexed: 05/27/2023]
Abstract
Tea aroma is one of the most important factors affecting the character and quality of tea. Here we describe the practical application of methyl jasmonate (MeJA) to improve the aroma quality of teas. The changes of selected metabolites during crucial tea processing steps, namely, withering, fixing and rolling, and fermentation, were analyzed. MeJA treatment of tea leaves (12, 24, 48, and 168 h) greatly promotes the aroma quality of green, oolong, and black tea products when comparing with untreated ones (0 h) and as confirmed by sensory evaluation. MeJA modulates the aroma profiles before, during, and after processing. Benzyl alcohol, benzaldehyde, 2-phenylethyl alcohol, phenylacetaldehyde, and trans-2-hexenal increased 1.07- to 3-fold in MeJA-treated fresh leaves and the first two maintained at a higher level in black tea and the last two in green tea. This correlates with a decrease in aromatic amino acids by more than twofold indicating a direct relation to tryptophan- and phenylalanine-derived volatiles. MeJA-treated oolong tea was characterized by a more pleasant aroma. Especially the terpenoids linalool and oxides, geraniol, and carvenol increased by more than twofold.
Collapse
Affiliation(s)
- Jiang Shi
- Leibniz Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Dongchao Xie
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dandan Qi
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qunhua Peng
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Zongmao Chen
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Monika Schreiner
- Leibniz Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Susanne Baldermann
- Leibniz Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| |
Collapse
|
14
|
Qi D, Li J, Qiao X, Lu M, Chen W, Miao A, Guo W, Ma C. Non-targeted Metabolomic Analysis Based on Ultra-High-Performance Liquid Chromatography Quadrupole Time-of-Flight Tandem Mass Spectrometry Reveals the Effects of Grafting on Non-volatile Metabolites in Fresh Tea Leaves ( Camellia sinensis L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6672-6682. [PMID: 31117493 DOI: 10.1021/acs.jafc.9b01001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To investigate the effects of grafting on non-volatile metabolites in tea, non-targeted metabolomic analyses of fresh leaves were performed on the basis of ultra-high-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF/MS). One non-grafted YingHong No. 9 and four grafted tea [grafting scion YingHong No. 9 on four different rootstocks, BaiMao No. 2 (BM2), BaiYeDanCong (BY), HeiYeShuiXian (HY), and WuLingHong (WLH)] were chosen as materials. In total, 32 differential metabolites were identified, including phenolic acids, flavan-3-ols, dimeric catechins, flavonol and flavonol/flavone glycosides, etc. Partial least squares discrimination analysis and hierarchical cluster analysis showed various effects of different rootstocks on metabolites. Thereinto, rootstocks of WLH and BY showed extremely outstanding performance in up- and downregulating these metabolites, respectively. Differential metabolites were enriched into three crucial pathways, including biosynthesis of phenylpropanoids, flavonoid biosynthesis, and flavone and flavonol biosynthesis, which might influence the quality of tea. This study provides a theoretical basis for grafting-related variations of non-volatile metabolites in fresh tea leaves.
Collapse
Affiliation(s)
- Dandan Qi
- Tea Research Institute , Guangdong Academy of Agricultural Science/Guangdong Key Laboratory of Tea Plant Resources Innovation & Utilization , Guangzhou , Guangdong 510640 , People's Republic of China
| | - Junxing Li
- Vegetable Research Institute , Guangdong Academy of Agricultural Sciences , Guangzhou , Guangdong 510640 , People's Republic of China
| | - Xiaoyan Qiao
- Tea Research Institute , Guangdong Academy of Agricultural Science/Guangdong Key Laboratory of Tea Plant Resources Innovation & Utilization , Guangzhou , Guangdong 510640 , People's Republic of China
| | - Meiling Lu
- Agilent Technologies (China) Company, Limited , Beijing 100102 , People's Republic of China
| | - Wei Chen
- Tea Research Institute , Guangdong Academy of Agricultural Science/Guangdong Key Laboratory of Tea Plant Resources Innovation & Utilization , Guangzhou , Guangdong 510640 , People's Republic of China
| | - Aiqing Miao
- Tea Research Institute , Guangdong Academy of Agricultural Science/Guangdong Key Laboratory of Tea Plant Resources Innovation & Utilization , Guangzhou , Guangdong 510640 , People's Republic of China
| | - Weiqing Guo
- Tea Research Institute , Guangdong Academy of Agricultural Science/Guangdong Key Laboratory of Tea Plant Resources Innovation & Utilization , Guangzhou , Guangdong 510640 , People's Republic of China
| | - Chengying Ma
- Tea Research Institute , Guangdong Academy of Agricultural Science/Guangdong Key Laboratory of Tea Plant Resources Innovation & Utilization , Guangzhou , Guangdong 510640 , People's Republic of China
| |
Collapse
|
15
|
Li T, Wang YH, Liu JX, Feng K, Xu ZS, Xiong AS. Advances in genomic, transcriptomic, proteomic, and metabolomic approaches to study biotic stress in fruit crops. Crit Rev Biotechnol 2019; 39:680-692. [DOI: 10.1080/07388551.2019.1608153] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Kai Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
16
|
Rossouw LT, Madala NE, Tugizimana F, Steenkamp PA, Esterhuizen LL, Dubery IA. Deciphering the Resistance Mechanism of Tomato Plants Against Whitefly-Mediated Tomato Curly Stunt Virus Infection through Ultra-High-Performance Liquid Chromatography Coupled to Mass Spectrometry (UHPLC-MS)-Based Metabolomics Approaches. Metabolites 2019; 9:E60. [PMID: 30925828 PMCID: PMC6523100 DOI: 10.3390/metabo9040060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 01/13/2023] Open
Abstract
Begomoviruses, such as the Tomato curly stunt virus (ToCSV), pose serious economic consequences due to severe crop losses. Therefore, the development and screening of possible resistance markers is imperative. While some tomato cultivars exhibit differential resistance to different begomovirus species, in most cases, the mechanism of resistance is not fully understood. In this study, the response of two near-isogenic lines of tomato (Solanum lycopersicum), differing in resistance against whitefly-mediated ToCSV infection were investigated using untargeted ultra-high-performance liquid chromatography coupled to mass spectrometry (UHPLC-MS)-based metabolomics. The responses of the two lines were deciphered using multivariate statistics models. Principal component analysis (PCA) scores plots from various time intervals revealed that the resistant line responded more rapidly with changes to the metabolome than the susceptible counterpart. Moreover, the metabolic reprogramming of chemically diverse metabolites that span a range of metabolic pathways was associated with the defence response. Biomarkers primarily included hydroxycinnamic acids conjugated to quinic acid, galactaric acid, and glucose. Minor constituents included benzenoids, flavonoids, and steroidal glycoalkaloids. Interestingly, when reduced to the level of metabolites, the phytochemistry of the infected plants' responses was very similar. However, the resistant phenotype was strongly associated with the hydroxycinnamic acid derivatives deployed in response to infection. In addition, the resistant line was able to mount a stronger and quicker response.
Collapse
Affiliation(s)
- Leandri T Rossouw
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa.
| | - Ntakadzeni E Madala
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa.
| | - Fidele Tugizimana
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa.
| | - Paul A Steenkamp
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa.
| | - Lindy L Esterhuizen
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa.
| | - Ian A Dubery
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa.
| |
Collapse
|
17
|
Dreher D, Baldermann S, Schreiner M, Hause B. An arbuscular mycorrhizal fungus and a root pathogen induce different volatiles emitted by Medicago truncatula roots. J Adv Res 2019; 19:85-90. [PMID: 31341673 PMCID: PMC6629603 DOI: 10.1016/j.jare.2019.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 11/29/2022] Open
Abstract
Plants are in permanent contact with various microorganisms and are always impacted by them. To better understand the first steps of a plant's recognition of soil-borne microorganisms, the early release of volatile organic compounds (VOCs) emitted from roots of Medicago truncatula in response to the symbiont Rhizophagus irregularis or the pathogenic oomycete Aphanomyces euteiches was analysed. More than 90 compounds were released from roots as detected by an untargeted gas chromatography-mass spectrometry approach. Principal component analyses clearly distinguished untreated roots from roots treated with either R. irregularis or A. euteiches. Several VOCs were found to be emitted specifically in response to each of the microorganisms. Limonene was specifically emitted from wild-type roots after contact with R. irregularis spores but not from roots of the mycorrhiza-deficient mutant does not make infections3. The application of limonene to mycorrhizal roots, however, did not affect the mycorrhization rate. Inoculation of roots with A. euteiches zoospores resulted in the specific emission of several sesquiterpenes, such as nerolidol, viridiflorol and nerolidol-epoxyacetate but application of nerolidol to zoospores of A. euteiches did not affect their vitality. Therefore, plants discriminate between different microorganisms at early stages of their interaction and respond differently to the level of root-emitted volatiles.
Collapse
Affiliation(s)
- Dorothée Dreher
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle/Saale, Germany
| | - Susanne Baldermann
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, D-14979 Großbeeren, Germany.,University of Potsdam, Institute of Nutritional Science, Department of Food Chemistry, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | - Monika Schreiner
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, D-14979 Großbeeren, Germany
| | - Bettina Hause
- Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle/Saale, Germany
| |
Collapse
|
18
|
Kiełkiewicz M, Barczak-Brzyżek A, Karpińska B, Filipecki M. Unravelling the Complexity of Plant Defense Induced by a Simultaneous and Sequential Mite and Aphid Infestation. Int J Mol Sci 2019; 20:E806. [PMID: 30781828 PMCID: PMC6412847 DOI: 10.3390/ijms20040806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/05/2019] [Accepted: 02/10/2019] [Indexed: 12/14/2022] Open
Abstract
In natural and agricultural conditions, plants are attacked by a community of herbivores, including aphids and mites. The green peach aphid and the two-spotted spider mite, both economically important pests, may share the same plant. Therefore, an important question arises as to how plants integrate signals induced by dual herbivore attack into the optimal defensive response. We showed that regardless of which attacker was first, 24 h of infestation allowed for efficient priming of the Arabidopsis defense, which decreased the reproductive performance of one of the subsequent herbivores. The expression analysis of several defense-related genes demonstrated that the individual impact of mite and aphid feeding spread systematically, engaging the salicylic acid (SA) and jasmonic acid (JA) signaling pathways. Interestingly, aphids feeding on the systemic leaf of the plant simultaneously attacked by mites, efficiently reduced the magnitude of the SA and JA activation, whereas mites feeding remotely increased the aphid-induced SA marker gene expression, while the JA-dependent response was completely abolished. We also indicated that the weaker performance of mites and aphids in double infestation essays might be attributed to aliphatic glucosinolates. Our report is the first to provide molecular data on signaling cross-talk when representatives of two distinct taxonomical classes within the phylum Arthropoda co-infest the same plant.
Collapse
Affiliation(s)
- Małgorzata Kiełkiewicz
- Department of Applied Entomology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland.
| | - Anna Barczak-Brzyżek
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland.
| | - Barbara Karpińska
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Marcin Filipecki
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland.
| |
Collapse
|
19
|
Åhman I, Kim SY, Zhu LH. Plant Genes Benefitting Aphids-Potential for Exploitation in Resistance Breeding. FRONTIERS IN PLANT SCIENCE 2019; 10:1452. [PMID: 31798609 PMCID: PMC6874142 DOI: 10.3389/fpls.2019.01452] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/18/2019] [Indexed: 05/17/2023]
Abstract
Aphids are phloem sap-feeding insects common as pests in various crops. Here we review 62 omics studies of aphid/plant interactions to search for indications of how aphids may manipulate the plants to make them more suitable as hosts, i.e. more susceptible. Our aim is to try to reveal host plant susceptibility (S) genes, knowledge which can be exploited for making a plant more resistant to its pest by using new plant breeding techniques to knock out or down such S genes. S genes may be of two types, those that are involved in reducing functional plant defense and those involved in further increasing plant factors that are positive to the aphid, such as facilitated access to food or improved nutritional quality. Approximately 40% of the omics studies we have reviewed indicate how aphids may modify their host to their advantage. To exploit knowledge obtained so far, we suggest knocking out/down candidate aphid S genes using CRISPR/Cas9 or RNAi techniques in crops to evaluate if this will be sufficient to keep the aphid pest at economically viable levels without severe pleiotropic effects. As a complement, we also propose functional studies of recessively inherited resistance previously discovered in some aphid-crop combinations, to potentially identify new types of S genes that later could be knocked out or down also in other crops to improve their resistance to aphids.
Collapse
|
20
|
Galeano Garcia P, Neves Dos Santos F, Zanotta S, Eberlin MN, Carazzone C. Metabolomics of Solanum lycopersicum Infected with Phytophthora infestans Leads to Early Detection of Late Blight in Asymptomatic Plants. Molecules 2018; 23:E3330. [PMID: 30558273 PMCID: PMC6320815 DOI: 10.3390/molecules23123330] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023] Open
Abstract
Tomato crops suffer attacks of various pathogens that cause large production losses. Late blight caused by Phytophthora infestans is a devastating disease in tomatoes because of its difficultly to control. Here, we applied metabolomics based on liquid chromatography⁻mass spectrometry (LC-MS) and metabolic profiling by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) in combination with multivariate data analysis in the early detection of late blight on asymptomatic tomato plants and to discriminate infection times of 4, 12, 24, 36, 48, 60, 72 and 96 h after inoculation (hpi). MALDI-MS and LC-MS profiles of metabolites combined with multivariate data analysis are able to detect early-late blight-infected tomato plants, and metabolomics based on LC-MS discriminates infection times in asymptomatic plants. We found the metabolite tomatidine as an important biomarker of infection, saponins as early infection metabolite markers and isocoumarin as early and late asymptomatic infection marker along the post infection time. MALDI-MS and LC-MS analysis can therefore be used as a rapid and effective method for the early detection of late blight-infected tomato plants, offering a suitable tool to guide the correct management and application of sanitary defense approaches. LC-MS analysis also appears to be a suitable tool for identifying major metabolites of asymptomatic late blight-infected tomato plants.
Collapse
Affiliation(s)
- Paula Galeano Garcia
- Laboratory of Advanced Analytical Techniques in Natural Products, Universidad de los Andes, Bogotá 111711, Colombia.
- Bioprospección de los Productos Naturales Amazónicos, Facultad de Ciencias Básicas, Universidad de la Amazonia, Florencia 180002, Colombia.
- ThoMSon Mass Spectrometry Laboratory, University of Campinas, Institute of Chemistry, Campinas 13083-970, Brazil.
| | - Fábio Neves Dos Santos
- ThoMSon Mass Spectrometry Laboratory, University of Campinas, Institute of Chemistry, Campinas 13083-970, Brazil.
| | - Samantha Zanotta
- Laboratório de Diagnostico Fitopatológico, Instituto Biológico, São Paulo 04014-900, Brazil.
| | - Marcos Nogueira Eberlin
- ThoMSon Mass Spectrometry Laboratory, University of Campinas, Institute of Chemistry, Campinas 13083-970, Brazil.
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products, Universidad de los Andes, Bogotá 111711, Colombia.
| |
Collapse
|
21
|
Natural diversity of hydroxycinnamic acid derivatives, flavonoid glycosides, carotenoids and chlorophylls in leaves of six different amaranth species. Food Chem 2018; 267:376-386. [DOI: 10.1016/j.foodchem.2017.11.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/02/2017] [Accepted: 11/10/2017] [Indexed: 11/20/2022]
|
22
|
Study on the effects of rapid aging technology on the aroma quality of white tea using GC–MS combined with chemometrics: In comparison with natural aged and fresh white tea. Food Chem 2018; 265:189-199. [DOI: 10.1016/j.foodchem.2018.05.080] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 12/16/2022]
|
23
|
Baldermann S, Homann T, Neugart S, Chmielewski FM, Götz KP, Gödeke K, Huschek G, Morlock GE, Rawel HM. Selected Plant Metabolites Involved in Oxidation-Reduction Processes during Bud Dormancy and Ontogenetic Development in Sweet Cherry Buds ( Prunus avium L.). Molecules 2018; 23:E1197. [PMID: 29772774 PMCID: PMC6099681 DOI: 10.3390/molecules23051197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 11/25/2022] Open
Abstract
Many biochemical processes are involved in regulating the consecutive transition of different phases of dormancy in sweet cherry buds. An evaluation based on a metabolic approach has, as yet, only been partly addressed. The aim of this work, therefore, was to determine which plant metabolites could serve as biomarkers for the different transitions in sweet cherry buds. The focus here was on those metabolites involved in oxidation-reduction processes during bud dormancy, as determined by targeted and untargeted mass spectrometry-based methods. The metabolites addressed included phenolic compounds, ascorbate/dehydroascorbate, reducing sugars, carotenoids and chlorophylls. The results demonstrate that the content of phenolic compounds decrease until the end of endodormancy. After a long period of constancy until the end of ecodormancy, a final phase of further decrease followed up to the phenophase open cluster. The main phenolic compounds were caffeoylquinic acids, coumaroylquinic acids and catechins, as well as quercetin and kaempferol derivatives. The data also support the protective role of ascorbate and glutathione in the para- and endodormancy phases. Consistent trends in the content of reducing sugars can be elucidated for the different phenophases of dormancy, too. The untargeted approach with principle component analysis (PCA) clearly differentiates the different timings of dormancy giving further valuable information.
Collapse
Affiliation(s)
- Susanne Baldermann
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Potsdam, Germany.
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany.
| | - Thomas Homann
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Potsdam, Germany.
| | - Susanne Neugart
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany.
| | - Frank-M Chmielewski
- Agricultural Climatology, Faculty of Life Sciences, Humboldt-University of Berlin, Albrecht-Thaer-Weg 5, 14195 Berlin, Germany.
| | - Klaus-Peter Götz
- Agricultural Climatology, Faculty of Life Sciences, Humboldt-University of Berlin, Albrecht-Thaer-Weg 5, 14195 Berlin, Germany.
| | - Kristin Gödeke
- IGV-Institut für Getreideverarbeitung GmbH, Arthur-Scheunert-Allee 40/41, 14558, Nuthetal OT Bergholz-Rehbrücke, Germany.
| | - Gerd Huschek
- IGV-Institut für Getreideverarbeitung GmbH, Arthur-Scheunert-Allee 40/41, 14558, Nuthetal OT Bergholz-Rehbrücke, Germany.
| | - Getrud E Morlock
- Chair of Food Sciences, Institute of Nutritional Science, Interdisciplinary Research Center (IFZ), Justus Liebig University Giessen, Heinrich Buff Ring 26-32, D-35392 Giessen, Germany.
| | - Harshadrai M Rawel
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Potsdam, Germany.
| |
Collapse
|
24
|
Study of the aroma formation and transformation during the manufacturing process of oolong tea by solid-phase micro-extraction and gas chromatography-mass spectrometry combined with chemometrics. Food Res Int 2018; 108:413-422. [PMID: 29735074 DOI: 10.1016/j.foodres.2018.03.052] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 02/02/2023]
Abstract
Oolong tea is a typical semi-fermented tea and is famous for its unique aroma. The aim of this study was to compare the volatile compounds during manufacturing process to reveal the formation of aroma. In this paper, a method was developed based on head-space solid phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS) combined with chemometrics to assess volatile profiles during manufacturing process (fresh leaves, sun-withered leaves, rocked leaves and leaves after de-enzyming). A total of 24 aroma compounds showing significant differences during manufacturing process were identified. Subsequently, according to these aroma compounds, principal component analysis and hierarchical cluster analysis showed that the four samples were clearly distinguished from each other, which suggested that the 24 identified volatile compounds can represent the changes of volatile compounds during the four steps. Additionally, sun-withering, rocking and de-enzyming can influence the variations of volatile compounds in different degree, and we found the changes of volatile compounds in withering step were less than other two manufacturing process, indicating that the characteristic volatile compounds of oolong tea might be mainly formed in rocking stage by biological reactions and de-enzyming stage through thermal chemical transformations rather than withering stage. This study suggested that HS-SPME/GC-MS combined with chemometrics methods is accurate, sensitive, fast and ideal for rapid routine analysis of the aroma compounds changes in oolong teas during manufacturing processing.
Collapse
|
25
|
Neugart S, Wiesner-Reinhold M, Frede K, Jander E, Homann T, Rawel HM, Schreiner M, Baldermann S. Effect of Solid Biological Waste Compost on the Metabolite Profile of Brassica rapa ssp. chinensis. FRONTIERS IN PLANT SCIENCE 2018; 9:305. [PMID: 29616051 PMCID: PMC5864931 DOI: 10.3389/fpls.2018.00305] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
Large quantities of biological waste are generated at various steps within the food production chain and a great utilization potential for this solid biological waste exists apart from the current main usage for the feedstuff sector. It remains unclear how the usage of biological waste as compost modulates plant metabolites. We investigated the effect of biological waste of the processing of coffee, aronia, and hop added to soil on the plant metabolite profile by means of liquid chromatography in pak choi sprouts. Here we demonstrate that the solid biological waste composts induced specific changes in the metabolite profiles and the changes are depending on the type of the organic residues and its concentration in soil. The targeted analysis of selected plant metabolites, associated with health beneficial properties of the Brassicaceae family, revealed increased concentrations of carotenoids (up to 3.2-fold) and decreased amounts of glucosinolates (up to 4.7-fold) as well as phenolic compounds (up to 1.5-fold).
Collapse
Affiliation(s)
- Susanne Neugart
- Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| | | | - Katja Frede
- Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Elisabeth Jander
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Thomas Homann
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Harshadrai M. Rawel
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Monika Schreiner
- Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| | - Susanne Baldermann
- Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| |
Collapse
|
26
|
Heinze M, Hanschen FS, Wiesner-Reinhold M, Baldermann S, Gräfe J, Schreiner M, Neugart S. Effects of Developmental Stages and Reduced UVB and Low UV Conditions on Plant Secondary Metabolite Profiles in Pak Choi (Brassica rapa subsp. chinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1678-1692. [PMID: 29397716 DOI: 10.1021/acs.jafc.7b03996] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Pak choi (Brassica rapa subsp. chinensis) is rich in secondary metabolites and contains numerous antioxidants, including flavonoids; hydroxycinnamic acids; carotenoids; chlorophylls; and glucosinolates, which can be hydrolyzed to epithionitriles, nitriles, or isothiocyanates. Here, we investigate the effect of reduced exposure to ultraviolet B (UVB) and UV (UVA and UVB) light at four different developmental stages of pak choi. We found that both the plant morphology and secondary metabolite profiles were affected by reduced exposure to UVB and UV, depending on the plant's developmental stage. In detail, mature 15- and 30-leaf plants had higher concentrations of flavonoids, hydroxycinnamic acids, carotenoids, and chlorophylls, whereas sprouts contained high concentrations of glucosinolates and their hydrolysis products. Dry weights and leaf areas increased as a result of reduced UVB and low UV. For the flavonoids and hydroxycinnamic acids in 30-leaf plants, less complex compounds were favored, for example, sinapic acid acylated kaempferol triglycoside instead of the corresponding tetraglycoside. Moreover, also in 30-leaf plants, zeaxanthin, a carotenoid linked to protection during photosynthesis, was increased under low UV conditions. Interestingly, most glucosinolates were not affected by reduced UVB and low UV conditions. However, this study underlines the importance of 4-(methylsulfinyl)butyl glucosinolate in response to UVA and UVB exposure. Further, reduced UVB and low UV conditions resulted in higher concentrations of glucosinolate-derived nitriles. In conclusion, exposure to low doses of UVB and UV from the early to late developmental stages did not result in overall lower concentrations of plant secondary metabolites.
Collapse
Affiliation(s)
- Mandy Heinze
- Leibniz Institute of Vegetable and Ornamental Crops , Theodor-Echtermeyer-Weg 1, Grossbeeren 14979, Germany
| | - Franziska S Hanschen
- Leibniz Institute of Vegetable and Ornamental Crops , Theodor-Echtermeyer-Weg 1, Grossbeeren 14979, Germany
| | - Melanie Wiesner-Reinhold
- Leibniz Institute of Vegetable and Ornamental Crops , Theodor-Echtermeyer-Weg 1, Grossbeeren 14979, Germany
| | - Susanne Baldermann
- Leibniz Institute of Vegetable and Ornamental Crops , Theodor-Echtermeyer-Weg 1, Grossbeeren 14979, Germany
- Institute of Nutritional Science, University of Potsdam , Arthur-Scheunert-Allee 114-116, Nuthetal 14558, Germany
| | - Jan Gräfe
- Leibniz Institute of Vegetable and Ornamental Crops , Theodor-Echtermeyer-Weg 1, Grossbeeren 14979, Germany
| | - Monika Schreiner
- Leibniz Institute of Vegetable and Ornamental Crops , Theodor-Echtermeyer-Weg 1, Grossbeeren 14979, Germany
| | - Susanne Neugart
- Leibniz Institute of Vegetable and Ornamental Crops , Theodor-Echtermeyer-Weg 1, Grossbeeren 14979, Germany
- Department of Biological Sciences, Loyola University New Orleans , 6363 Saint Charles Avenue, New Orleans, Louisiana 70118, United States
| |
Collapse
|
27
|
Silva DB, Bueno VHP, Van Loon JJA, Peñaflor MFGV, Bento JMS, Van Lenteren JC. Attraction of Three Mirid Predators to Tomato Infested by Both the Tomato Leaf Mining Moth Tuta absoluta and the Whitefly Bemisia tabaci. J Chem Ecol 2017; 44:29-39. [PMID: 29177897 DOI: 10.1007/s10886-017-0909-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 11/06/2017] [Accepted: 11/13/2017] [Indexed: 11/25/2022]
Abstract
Plants emit volatile compounds in response to insect herbivory, which may play multiple roles as defensive compounds and mediators of interactions with other plants, microorganisms and animals. Herbivore-induced plant volatiles (HIPVs) may act as indirect plant defenses by attracting natural enemies of the attacking herbivore. We report here the first evidence of the attraction of three Neotropical mirid predators (Macrolophus basicornis, Engytatus varians and Campyloneuropsis infumatus) toward plants emitting volatiles induced upon feeding by two tomato pests, the leaf miner Tuta absoluta and the phloem feeder Bemisia tabaci, in olfactometer bioassays. Subsequently, we compared the composition of volatile blends emitted by insect-infested tomato plants by collecting headspace samples and analyzing them with GC-FID and GC-MS. Egg deposition by T. absoluta did not make tomato plants more attractive to the mirid predators than uninfested tomato plants. Macrolophus basicornis is attracted to tomato plants infested with either T. absoluta larvae or by a mixture of B. tabaci eggs, nymphs and adults. Engytatus varians and C. infumatus responded to volatile blends released by tomato plants infested with T. absoluta larvae over uninfested plants. Also, multiple herbivory by T. absoluta and B. tabaci did not increase the attraction of the mirids compared to infestation with T. absoluta alone. Terpenoids represented the most important class of compounds in the volatile blends and there were significant differences between the volatile blends emitted by tomato plants in response to attack by T. absoluta, B. tabaci, or by both insects. We, therefore, conclude that all three mirids use tomato plant volatiles to find T. absoluta larvae. Multiple herbivory did neither increase, nor decrease attraction of C. infumatus, E. varians and M. basicornis. By breeding for higher rates of emission of selected terpenes, increased attractiveness of tomato plants to natural enemies may improve the effectiveness of biological control.
Collapse
Affiliation(s)
- Diego B Silva
- Department of Entomology, Federal University of Lavras (UFLA), P.O.Box 3037, Lavras, MG, 37200-000, Brazil
- Luiz de Queiroz College of Agriculture (USP/ESALQ), Department of Entomology and Acarology, University of Sao Paulo, P.O. Box 9, Piracicaba, SP, 13418-900, Brazil
| | - Vanda H P Bueno
- Department of Entomology, Federal University of Lavras (UFLA), P.O.Box 3037, Lavras, MG, 37200-000, Brazil.
- Luiz de Queiroz College of Agriculture (USP/ESALQ), Department of Entomology and Acarology, University of Sao Paulo, P.O. Box 9, Piracicaba, SP, 13418-900, Brazil.
| | - Joop J A Van Loon
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Maria Fernanda G V Peñaflor
- Department of Entomology, Federal University of Lavras (UFLA), P.O.Box 3037, Lavras, MG, 37200-000, Brazil
- Luiz de Queiroz College of Agriculture (USP/ESALQ), Department of Entomology and Acarology, University of Sao Paulo, P.O. Box 9, Piracicaba, SP, 13418-900, Brazil
| | - José Maurício S Bento
- Luiz de Queiroz College of Agriculture (USP/ESALQ), Department of Entomology and Acarology, University of Sao Paulo, P.O. Box 9, Piracicaba, SP, 13418-900, Brazil
| | - Joop C Van Lenteren
- Luiz de Queiroz College of Agriculture (USP/ESALQ), Department of Entomology and Acarology, University of Sao Paulo, P.O. Box 9, Piracicaba, SP, 13418-900, Brazil
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
28
|
Berger B, Baldermann S, Ruppel S. The plant growth-promoting bacterium Kosakonia radicincitans improves fruit yield and quality of Solanum lycopersicum. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:4865-4871. [PMID: 28382622 DOI: 10.1002/jsfa.8357] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/30/2017] [Accepted: 04/01/2017] [Indexed: 05/25/2023]
Abstract
BACKGROUND Production and the quality of tomato fruits have a strong economic relevance. Microorganisms such as the plant growth-promoting bacterium (PGPB) Kosakonia radicincitans (DSM 16656) have been demonstrated to improve shoot and root growth of young tomato plants, but data on yield increase and fruit quality by K. radicincitans are lacking. RESULTS This study investigated how K. radicincitans affects tomato fruits. After inoculation of tomato seeds with K. radicincitans or a sodium chloride buffer control solution, stalk length, first flowering and the amount of ripened fruits produced by inoculated and non-inoculated plants were monitored over a period of 21 weeks. Inoculation of tomato seeds with K. radicincitans accelerated flowering and ripening of tomato fruits. Sugars, acidity, amino acids, volatile organic compounds and carotenoids in the fruits were also analyzed. CONCLUSION It was found that the PGPB K. radicincitans affected the amino acid, sugar and volatile composition of ripened fruits, contributing to a more pleasant-tasting fruit without forfeiting selected quality indicators. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Beatrice Berger
- Leibniz-Institute of Vegetable and Ornamental Crops e.V., Grossbeeren, Germany
| | - Susanne Baldermann
- Leibniz-Institute of Vegetable and Ornamental Crops e.V., Grossbeeren, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Silke Ruppel
- Leibniz-Institute of Vegetable and Ornamental Crops e.V., Grossbeeren, Germany
| |
Collapse
|
29
|
Kfoury N, Scott E, Orians C, Robbat A. Direct Contact Sorptive Extraction: A Robust Method for Sampling Plant Volatiles in the Field. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8501-8509. [PMID: 28854785 DOI: 10.1021/acs.jafc.7b02847] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plants produce volatile organic compounds (VOCs) with diverse structures and functions, which change in response to environmental stimuli and have important consequences for interactions with other organisms. To understand these changes, in situ sampling is necessary. In contrast to dynamic headspace (DHS), which is the most often employed method, direct contact sampling employing a magnetic stir bar held in place by a magnet eliminates artifacts produced by enclosing plant materials in glass or plastic chambers. Direct-contact sorptive extraction (DCSE) using polydimethylsiloxane coated stir bars (Twisters) coated stir bars is more sensitive than DHS, captures a wider range of compounds, minimizes VOC collection from neighboring plants, and distinguishes the effects of herbivory in controlled and field conditions. Because DCSE is relatively inexpensive and simple to employ, scalability of field trials can be expanded concomitant with increased sample replication. The sensitivity of DCSE combined with the spectral deconvolution data analysis software makes the two ideal for comprehensive, in situ profiling of plant volatiles.
Collapse
Affiliation(s)
- Nicole Kfoury
- Department of Chemistry and ‡Department of Biology, Tufts University , Medford, Massachusetts 02155, United States
| | - Eric Scott
- Department of Chemistry and ‡Department of Biology, Tufts University , Medford, Massachusetts 02155, United States
| | - Colin Orians
- Department of Chemistry and ‡Department of Biology, Tufts University , Medford, Massachusetts 02155, United States
| | - Albert Robbat
- Department of Chemistry and ‡Department of Biology, Tufts University , Medford, Massachusetts 02155, United States
| |
Collapse
|
30
|
Lubes G, Goodarzi M. Analysis of Volatile Compounds by Advanced Analytical Techniques and Multivariate Chemometrics. Chem Rev 2017; 117:6399-6422. [PMID: 28306239 DOI: 10.1021/acs.chemrev.6b00698] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Smelling is one of the five senses, which plays an important role in our everyday lives. Volatile compounds are, for example, characteristics of food where some of them can be perceivable by humans because of their aroma. They have a great influence on the decision making of consumers when they choose to use a product or not. In the case where a product has an offensive and strong aroma, many consumers might not appreciate it. On the contrary, soft and fresh natural aromas definitely increase the acceptance of a given product. These properties can drastically influence the economy; thus, it has been of great importance to manufacturers that the aroma of their food product is characterized by analytical means to provide a basis for further optimization processes. A lot of research has been devoted to this domain in order to link the quality of, e.g., a food to its aroma. By knowing the aromatic profile of a food, one can understand the nature of a given product leading to developing new products, which are more acceptable by consumers. There are two ways to analyze volatiles: one is to use human senses and/or sensory instruments, and the other is based on advanced analytical techniques. This work focuses on the latter. Although requirements are simple, low-cost technology is an attractive research target in this domain; most of the data are generated with very high-resolution analytical instruments. Such data gathered based on different analytical instruments normally have broad, overlapping sensitivity profiles and require substantial data analysis. In this review, we have addressed not only the question of the application of chemometrics for aroma analysis but also of the use of different analytical instruments in this field, highlighting the research needed for future focus.
Collapse
Affiliation(s)
- Giuseppe Lubes
- Laboratorio de Química en Solución. Universidad Simón Bolívar (USB) , Apartado 89000, Caracas 1080 A, Venezuela
| | - Mohammad Goodarzi
- Department of Biochemistry, University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| |
Collapse
|
31
|
Neugart S, Baldermann S, Ngwene B, Wesonga J, Schreiner M. Indigenous leafy vegetables of Eastern Africa - A source of extraordinary secondary plant metabolites. Food Res Int 2017; 100:411-422. [PMID: 28964364 DOI: 10.1016/j.foodres.2017.02.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/10/2017] [Accepted: 02/26/2017] [Indexed: 01/09/2023]
Abstract
Indigenous African leafy vegetables vary enormously in their secondary plant metabolites whereat genus and the species have a great impact. In African nightshade (Solanum scabrum), spiderplant (Cleome gynandra), amaranth (Amaranthus cruentus), cowpea (Vigna unguiculata), Ethiopian kale (Brassica carinata) and common kale (Brassica oleracea) the specific secondary metabolite profile was elucidated and gained detailed data about carotenoids, chlorophylls, glucosinolates and phenolic compounds all having an appropriate contribution to health beneficial properties of indigenous African leafy vegetables. Exemplarily, various quercetin glycosides such as quercetin-3-rutinoside occur in high concentrations in African nightshade, spiderplant, and amaranth between ~1400-3300μg/g DW. Additionally the extraordinary hydroxycinnamic acid derivatives such as glucaric isomers and isocitric acid isomers are found especially in amaranth (up to ~1250μg/g DW) and spiderplant (up to 120μg/g DW). Carotenoids concentrations are high in amaranth (up to101.7μg/g DW) and spiderplants (up to 64.7μg/g DW) showing high concentrations of β-carotene, the pro-vitamin A. In contrast to the ubiquitous occurring phenolics and carotenoids, glucosinolates are only present in the Brassicales species Ethiopian kale, common kale and spiderplant characterized by diverse glucosinolate profiles. Generally, the consumption of a variety of these indigenous African leafy vegetables can be recommended to contribute to different benefits such as antioxidant activity, increase pro-vitamin A and anticancerogenic compounds in a healthy diet.
Collapse
Affiliation(s)
- Susanne Neugart
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany.
| | - Susanne Baldermann
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany; Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Benard Ngwene
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| | - John Wesonga
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, 00200 Nairobi, Kenya
| | - Monika Schreiner
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| |
Collapse
|
32
|
Evaluation of an Aqueous Extract from Horseradish Root ( Armoracia rusticana Radix) against Lipopolysaccharide-Induced Cellular Inflammation Reaction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:1950692. [PMID: 28182113 PMCID: PMC5274677 DOI: 10.1155/2017/1950692] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/21/2016] [Indexed: 11/18/2022]
Abstract
Horseradish (Armoracia rusticana) is a perennial crop and its root is used in condiments. Traditionally, horseradish root is used to treat bacterial infections of the respiratory tract and urinary bladder. The antiphlogistic activity, determined in activated primary human peripheral blood mononuclear cells (PBMC), was evaluated for an aqueous extract and its subfractions, separated by HPLC. Compound analysis was done by UHPLC-QToF/MS and GC-MS. The aqueous extract concentration-dependently inhibited the anti-inflammatory response to lipopolysaccharide (LPS) in terms of TNF-α release at ≥37 μg/mL. Further, the cyclooxygenase as well as lipoxygenase pathway was blocked by the extract as demonstrated by inhibition of COX-2 protein expression and PGE2 synthesis at ≥4 μg/mL and leukotriene LTB4 release. Mechanistic studies revealed that inhibition of ERK1/2 and c-Jun activation preceded COX-2 suppression upon plant extract treatment in the presence of LPS. Chemical analysis identified target compounds with a medium polarity as relevant for the observed bioactivity. Importantly, allyl isothiocyanate, which is quite well known for its anti-inflammatory capacity and as the principal pungent constituent in horseradish roots, was not relevant for the observations. The results suggest that horseradish root exerts an antiphlogistic activity in human immune cells by regulation of the COX and LOX pathway via MAPK signalling.
Collapse
|
33
|
Silva DB, Weldegergis BT, Van Loon JJA, Bueno VHP. Qualitative and Quantitative Differences in Herbivore-Induced Plant Volatile Blends from Tomato Plants Infested by Either Tuta absoluta or Bemisia tabaci. J Chem Ecol 2017; 43:53-65. [PMID: 28050733 PMCID: PMC5331093 DOI: 10.1007/s10886-016-0807-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 11/23/2016] [Accepted: 12/11/2016] [Indexed: 11/24/2022]
Abstract
Plants release a variety of volatile organic compounds that play multiple roles in the interactions with other plants and animals. Natural enemies of plant-feeding insects use these volatiles as cues to find their prey or host. Here, we report differences between the volatile blends of tomato plants infested with the whitefly Bemisia tabaci or the tomato borer Tuta absoluta. We compared the volatile emission of: (1) clean tomato plants; (2) tomato plants infested with T. absoluta larvae; and (3) tomato plants infested with B. tabaci adults, nymphs, and eggs. A total of 80 volatiles were recorded of which 10 occurred consistently only in the headspace of T. absoluta-infested plants. Many of the compounds detected in the headspace of the two herbivory treatments were emitted at different rates. Plants damaged by T. absoluta emitted at least 10 times higher levels of many compounds compared to plants damaged by B. tabaci and intact plants. The multivariate separation of T. absoluta-infested plants from those infested with B. tabaci was due largely to the chorismate-derived compounds as well as volatile metabolites of C18-fatty acids and branched chain amino acids that had higher emission rates from T. absoluta-infested plants, whereas the cyclic sesquiterpenes α- and β-copaene, valencene, and aristolochene were emitted at significantly higher levels from B. tabaci-infested plants. Our findings imply that feeding by T. absoluta and B. tabaci induced emission of volatile blends that differ quantitatively and qualitatively, providing a chemical basis for the recently documented behavioral discrimination by two generalist predatory mirid species, natural enemies of T. absoluta and B. tabaci employed in biological control.
Collapse
Affiliation(s)
- Diego B Silva
- Laboratory of Biological Control, Department of Entomology, Federal University of Lavras, P.O.Box 3037, Lavras/MG, 37200-000, Brazil.,Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Berhane T Weldegergis
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| | - Joop J A Van Loon
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Vanda H P Bueno
- Laboratory of Biological Control, Department of Entomology, Federal University of Lavras, P.O.Box 3037, Lavras/MG, 37200-000, Brazil.
| |
Collapse
|
34
|
Raila J, Schweigert FJ, Stanitznig A, Lambacher B, Franz S, Baldermann S, Wittek T. No detectable carotenoid concentrations in serum of llamas and alpacas. J Anim Physiol Anim Nutr (Berl) 2016; 101:629-634. [DOI: 10.1111/jpn.12638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 10/09/2016] [Indexed: 12/17/2022]
Affiliation(s)
- J. Raila
- Institute of Nutritional Science; University of Potsdam; Potsdam Germany
| | - F. J. Schweigert
- Institute of Nutritional Science; University of Potsdam; Potsdam Germany
| | - A. Stanitznig
- University Clinic for Ruminants; University of Veterinary Medicine Vienna; Vienna Austria
| | - B. Lambacher
- University Clinic for Ruminants; University of Veterinary Medicine Vienna; Vienna Austria
| | - S. Franz
- University Clinic for Ruminants; University of Veterinary Medicine Vienna; Vienna Austria
| | - S. Baldermann
- Institute of Nutritional Science; University of Potsdam; Potsdam Germany
- Leibniz Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V. (IGZ); Großbeeren Germany
| | - T. Wittek
- University Clinic for Ruminants; University of Veterinary Medicine Vienna; Vienna Austria
| |
Collapse
|
35
|
Errard A, Ulrichs C, Kühne S, Mewis I, Mishig N, Maul R, Drungowski M, Parolin P, Schreiner M, Baldermann S. Metabolite Profiling Reveals a Specific Response in Tomato to Predaceous Chrysoperla carnea Larvae and Herbivore(s)-Predator Interactions with the Generalist Pests Tetranychus urticae and Myzus persicae. FRONTIERS IN PLANT SCIENCE 2016; 7:1256. [PMID: 27610113 PMCID: PMC4997045 DOI: 10.3389/fpls.2016.01256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/08/2016] [Indexed: 05/31/2023]
Abstract
The spider mite Tetranychus urticae Koch and the aphid Myzus persicae (Sulzer) both infest a number of economically significant crops, including tomato (Solanum lycopersicum). Although used for decades to control pests, the impact of green lacewing larvae Chrysoperla carnea (Stephens) on plant biochemistry was not investigated. Here, we used profiling methods and targeted analyses to explore the impact of the predator and herbivore(s)-predator interactions on tomato biochemistry. Each pest and pest-predator combination induced a characteristic metabolite signature in the leaf and the fruit thus, the plant exhibited a systemic response. The treatments had a stronger impact on non-volatile metabolites including abscisic acid and amino acids in the leaves in comparison with the fruits. In contrast, the various biotic factors had a greater impact on the carotenoids in the fruits. We identified volatiles such as myrcene and α-terpinene which were induced by pest-predator interactions but not by single species, and we demonstrated the involvement of the phytohormone abscisic acid in tritrophic interactions for the first time. More importantly, C. carnea larvae alone impacted the plant metabolome, but the predator did not appear to elicit particular defense pathways on its own. Since the presence of both C. carnea larvae and pest individuals elicited volatiles which were shown to contribute to plant defense, C. carnea larvae could therefore contribute to the reduction of pest infestation, not only by its preying activity, but also by priming responses to generalist herbivores such as T. urticae and M. persicae. On the other hand, the use of C. carnea larvae alone did not impact carotenoids thus, was not prejudicial to the fruit quality. The present piece of research highlights the specific impact of predator and tritrophic interactions with green lacewing larvae, spider mites, and aphids on different components of the tomato primary and secondary metabolism for the first time, and provides cues for further in-depth studies aiming to integrate entomological approaches and plant biochemistry.
Collapse
Affiliation(s)
- Audrey Errard
- Leibniz Institute of Vegetable and Ornamental CropsGroßbeeren, Germany
- Institute of Nutritional Science, University of PotsdamNuthetal, Germany
| | - Christian Ulrichs
- Urban Plant Ecophysiology, Faculty of Life Sciences, Humboldt-Universität zu BerlinBerlin, Germany
| | - Stefan Kühne
- Julius Kühn-Institut, Federal Research Center for Cultivated Plants, Institute for Strategies and Technology AssessmentKleinmachnow, Germany
| | - Inga Mewis
- Julius Kühn-Institut, Federal Research Center for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product ProtectionBerlin, Germany
| | - Narantuya Mishig
- Leibniz Institute of Vegetable and Ornamental CropsGroßbeeren, Germany
- Institute of Nutritional Science, University of PotsdamNuthetal, Germany
| | - Ronald Maul
- Leibniz Institute of Vegetable and Ornamental CropsGroßbeeren, Germany
- Hamburg School of Food Science, Institute of Food Chemistry, University of HamburgHamburg, Germany
| | - Mario Drungowski
- Leibniz Institute of Vegetable and Ornamental CropsGroßbeeren, Germany
| | - Pia Parolin
- Institut Sophia Agrobiotech, UMR 1355-7254, Institut National de la Recherche Agronomique-Center National de la Recherche Scientifique-Université de Nice Sophia AntipolisSophia Antipolis, France
| | - Monika Schreiner
- Leibniz Institute of Vegetable and Ornamental CropsGroßbeeren, Germany
| | - Susanne Baldermann
- Leibniz Institute of Vegetable and Ornamental CropsGroßbeeren, Germany
- Institute of Nutritional Science, University of PotsdamNuthetal, Germany
| |
Collapse
|
36
|
Mageney V, Baldermann S, Albach DC. Intraspecific Variation in Carotenoids of Brassica oleracea var. sabellica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3251-3257. [PMID: 27045759 DOI: 10.1021/acs.jafc.6b00268] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Carotenoids are best known as a source of natural antioxidants. Physiologically, carotenoids are part of the photoprotection in plants as they act as scavengers of reactive oxygen species (ROS). An important source of carotenoids in European food is Brassica oleracea. Focusing on the most abundant carotenoids, we estimated the contents of ß-carotene, (9Z)-neoxanthin, zeaxanthin, and lutein as well as those of chlorophylls a and b to assess their variability in Brassica oleracea var. sabellica. Our analyses included more than 30 cultivars categorized in five distinct sets grouped according to morphological characteristics or geographical origin. Our results demonstrated specific carotenoid patterns characteristic for American, Italian, and red-colored kale cultivars. Moreover, we demonstrated a tendency of high zeaxanthin proportions under traditional harvest conditions, which accord to low-temperature regimes. We also compared the carotenoid patterns of self-generated hybrid lines. Corresponding findings indicated that crossbreeding has a high potential for carotenoid content optimization in kale.
Collapse
Affiliation(s)
- Vera Mageney
- Institute of Biology and Environmental Sciences, Carl von Ossietzky University , Oldenburg Carl von Ossietzky Str. 9-11, 26129 Oldenburg, Germany
| | - Susanne Baldermann
- Leibniz-Institute of Vegetables and Ornamental Crops Grossbeeren/Erfurt e. V. , Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
- Institute of Nutritional Science, University of Potsdam , Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Dirk C Albach
- Institute of Biology and Environmental Sciences, Carl von Ossietzky University , Oldenburg Carl von Ossietzky Str. 9-11, 26129 Oldenburg, Germany
| |
Collapse
|