1
|
Rifa RA, Rojo MG, Lavado R. Mechanisms of toxicity caused by bisphenol analogs in human in vitro cell models. Chem Biol Interact 2025; 412:111475. [PMID: 40086714 DOI: 10.1016/j.cbi.2025.111475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Bisphenol analogs, structurally similar to bisphenol A (BPA), are widely used in various industries as a safer alternative to BPA. However, these alternatives also present risks, such as inflammation and potential connections to chronic diseases like cancer and diabetes, highlighting the need for further research into their toxicity mechanisms. Building on our previous cytotoxicity research, this study delves into the mechanisms of toxicity associated with bisphenol analogs (bisphenol AF, bisphenol AP, bisphenol E, and bisphenol P) on human in vitro cell models (HepaRG, Caco-2, HMC3, and HMEC-1). In this study, we assessed the impact of these compounds on key cellular stress markers: reactive oxygen species (ROS) production, mitochondrial membrane potential (ΔΨm), and mitochondrial calcium levels. Results revealed dose-dependent increases in oxidative stress and decrease in mitochondrial membrane potential (ΔΨm), with Caco-2 cells (enterocytes) exhibiting the highest sensitivity, indicating tissue-specific vulnerability. Notably, bisphenol AF, bisphenol AP and bisphenol P were identified as the most potent analogs in inducing ROS, affecting mitochondrial integrity and calcium homeostasis among all cell models. This research highlights the importance of understanding analog-specific and cell-specific responses to bisphenol compounds, providing a foundation for improved regulatory strategies to mitigate health risks associated with their exposure.
Collapse
Affiliation(s)
- Rafia Afroze Rifa
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | | | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
2
|
Zhang J, Xing L, Meng W, Zhang X, Li J, Dong P. Molecular weight distribution and structure analysis of phlorotannins in Sanhai kelp (Saccharina japonica) and evaluation of their antioxidant activities. Food Chem 2025; 469:142569. [PMID: 39721434 DOI: 10.1016/j.foodchem.2024.142569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
In this paper, the structures and composition of phlorotannins with different molecular weights in juvenile and mature kelp (Saccharina japonica), as well as their relationship with antioxidant activity were comprehensively analyzed. Macroporous resin and ultrafiltration were used to obtain phlorotannins with different molecular weights. The structures of low molecular weight and high molecular weight phlorotannins in Sanhai kelp were analyzed using UHPLC-Q-Orbitrap-MS/MS and NMR techniques, respectively. In addition, the antioxidant capacity of phlorotannins with different molecular weights was determined by chemical and HepG2 cell oxidative damage models methods assays. Results showed that the content and molecular weight distribution of phlorotannins in Sanhai kelp were related to its growth stage. Seventeen low molecular weight phlorotannins were identified, and the composition types of the high molecular weight phlorotannins were fucols, phlorethols, fucophlorethols, fuhalols and eckols. In addition, high molecular weight phlorotannins exhibit higher antioxidant activity than low molecular weight phlorotannins.
Collapse
Affiliation(s)
- Jing Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Long Xing
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Wenya Meng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiaojie Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Ping Dong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
3
|
Shahzad A, Liu W, Sun Y, Liu X, Xia J, Cui K, Sai B, Zhu Y, Yang Z, Zhang Q. Flavonoids as modulators of metabolic reprogramming in renal cell carcinoma (Review). Oncol Rep 2024; 52:167. [PMID: 39422066 PMCID: PMC11526433 DOI: 10.3892/or.2024.8826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Renal cell carcinoma (RCC) is distinguished by its varied metabolic reprogramming driven by tumor suppressor gene dysregulation and oncogene activation. Tumors can adapt nutrient uptake and metabolism pathways to meet the altered biosynthetic, bioenergetic and redox demands of cancer cells, whereas conventional chemotherapeutics and molecular inhibitors predominantly target individual metabolic pathways without addressing this adaptability. Flavonoids, which are well‑known for their antioxidant and anti‑inflammatory properties, offer a unique approach by influencing multiple metabolic targets. The present comprehensive review reveals the intricate processes of RCC metabolic reprogramming, encompassing glycolysis, mitochondrial oxidative phosphorylation and fatty acid biosynthesis. The insights derived from the present review may contribute to the understanding of the specific anticancer mechanisms of flavonoids, potentially paving the way for the development of natural antitumor drugs focused on the metabolic reprogramming of RCC.
Collapse
Affiliation(s)
- Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yijian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xiangjie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jiaojiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Buqing Sai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Zhe Yang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
4
|
Liu Y, Yan N, Chen Q, Dong L, Li Y, Weng P, Wu Z, Pan D, Liu L, Farag MA, Wang L, Liu L. Research advances in citrus polyphenols: green extraction technologies, gut homeostasis regulation, and nano-targeted delivery system application. Crit Rev Food Sci Nutr 2024; 64:11493-11509. [PMID: 37552798 DOI: 10.1080/10408398.2023.2239350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Citrus polyphenols can modulate gut microbiota and such bi-directional interaction that can yield metabolites such as short-chain fatty acids (SCFAs) to aid in gut homeostasis. Such interaction provides citrus polyphenols with powerful prebiotic potential, contributing to guts' health status and metabolic regulation. Citrus polyphenols encompass unique polymethoxy flavonoids imparting non-polar nature that improve their bioactivities and ability to penetrate the blood-brain barrier. Green extraction technology targeting recovery of these polyphenols has received increasing attention due to its advantages of high extraction yield, short extraction time, low solvent consumption, and environmental friendliness. However, the low bioavailability of citrus polyphenols limits their applications in extraction from citrus by-products. Meanwhile, nano-encapsulation technology may serve as a promising approach to improve citrus polyphenols' bioavailability. As citrus polyphenols encompass multiple hydroxyl groups, they are potential to interact with bio-macromolecules such as proteins and polysaccharides in nano-encapsulated systems that can improve their bioavailability. This multifaceted review provides a research basis for the green and efficient extraction techniques of citrus polyphenols, as well as integrated mechanisms for its anti-inflammation, alleviating metabolic syndrome, and regulating gut homeostasis, which is more capitalized upon using nano-delivery systems as discussed in that review to maximize their health and food applications.
Collapse
Affiliation(s)
- Yahui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ning Yan
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Laoshan District, Qingdao, China
| | - Qin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Peifang Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Lei Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
5
|
Yu C, Xu Y, Zhao M, Song P, Yu J. New insights into mechanism of ellagic acid alleviating arsenic-induced oxidative stress through MAPK/keap1-Nrf2 signaling pathway response, molecular docking and metabolomics analysis in HepG2 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117029. [PMID: 39277998 DOI: 10.1016/j.ecoenv.2024.117029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/01/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
The increase of oxidative stress level is one of the vital mechanisms of liver toxicity induced by arsenic (As). Ellagic acid (EA) is widely known due to its excellent antioxidation. Nevertheless, whether EA could alleviate As-induced oxidative stress and the underlying mechanisms remain unknown. Herein, As (2 and 4 μM) and EA (25 and 50 μM) were selected for alone and combined exposure of HepG2 cells to investigate the effects of EA on As-induced oxidative stress. Results indicated that EA could alleviate the oxidative stress caused by As via decreasing intracellular ROS level and MDA content, as well as improving SOD, CAT and GSH-PX activities. qRT-PCR showed that EA might enhance the expression levels of antioxidant enzymes NQO1, CAT and GPX1 by activating MAPK (JNK, p38 and ERK)/keap1-Nrf2 signaling pathway. EA was found to promote dissociation from keap1 and nuclear translocation of Nrf2 by competing with Nrf2 at ARG-380 and ARG-415 sites on keap1 to exert antioxidation using molecular docking. Moreover, metabolomics revealed that EA might maintain the redox balance of HepG2 cells by modulating or reversing disorders of carbon, amino acid, lipid and other metabolisms caused by As. This study provides diversified new insights for the removal of liver toxicity of As and the application of EA.
Collapse
Affiliation(s)
- Changhao Yu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Yawen Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Mengying Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Ping Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| | - Jing Yu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
6
|
Tiwari V, Gupta P, Malladi N, Salgar S, Banerjee SK. Doxorubicin induces phosphorylation of lamin A/C and loss of nuclear membrane integrity: A novel mechanism of cardiotoxicity. Free Radic Biol Med 2024; 218:94-104. [PMID: 38582228 DOI: 10.1016/j.freeradbiomed.2024.04.212] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024]
Abstract
Lamin A/C, essential inner nuclear membrane proteins, have been linked to progeria, a disease of accelerated aging, and many other diseases, which include cardiac disorder. Lamin A/C mutation and its phosphorylation are associated with altering nuclear shape and size. The role of lamin A/C in regulating normal cardiac function was reported earlier. In the present study, we hypothesized that Doxorubicin (Dox) may alter total lamin A/C expression and phosphorylation, thereby taking part in cardiac injury. An in vitro cellular injury model was generated with Dox (0.1-10.0 μM) treatment on cardiomyoblast cells (H9c2) to prove our hypothesis. Increased size and irregular (ameboid) nucleus shape were observed in H9c2 cells after Dox treatment. Similarly, we have observed a significant increase in cell death on increasing the Dox concentration. The expression of lamin A/C and its phosphorylation at serine 22 significantly decreased and increased, respectively in H9c2 cells and rat hearts after Dox exposure. Phosphorylation led to depolymerization of the lamin A/C in the inner nuclear membrane and was evidenced by their presence throughout the nucleoplasm as observed by immunocytochemistry techniques. Thinning and perforation on the walls of the nuclear membrane were observed in Dox-treated H9c2 cells. LMNA-overexpression in H9c2 protected the cells from Dox-induced cell death, reversing all changes described above. Further, improvement of lamin A/C levels was observed in Dox-treated H9c2 cells when treated with Purvalanol A, a CDK1 inhibitor and N-acetylcysteine, an antioxidant. The study provides new insight regarding Dox-induced cardiac injury with the involvement of lamin A/C and alteration of inner nuclear membrane structure.
Collapse
Affiliation(s)
- Vikas Tiwari
- National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
| | - Paras Gupta
- National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
| | - Navya Malladi
- National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
| | - Sanjay Salgar
- National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
| | - Sanjay K Banerjee
- National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
| |
Collapse
|
7
|
Ulagesan S, Krishnan S, Nam TJ, Choi YH. Crassostrea gigas peptide PEP-1 prevents tert-butyl hydroperoxide (t-BHP) induced oxidative stress in HepG2 cells. Food Sci Biotechnol 2024; 33:1245-1254. [PMID: 38440692 PMCID: PMC10908960 DOI: 10.1007/s10068-023-01418-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/16/2023] [Accepted: 08/10/2023] [Indexed: 03/06/2024] Open
Abstract
Exposure to tert-butyl hydroperoxide (t-BHP) leads to cytotoxicity and oxidative stress in various organs and cell types. The bioactive peptides extracted from Oysters exhibit marked antioxidant activity. The impacts of Crassostrea gigas peptides on t-BHP-triggered oxidative stress remain largely unknown. The protective and antioxidant activity of a C.gigas peptide, PEP-1, on t-BHP-treated HepG2 cells, was investigated. PEP-1, this peptide is arginine kinase in oysters. This enzyme functions as a catalyst for the chemical reaction and serves as a phosphate transferase. Since it was the most expressed protein in the adductor muscle of oysters. Our determination showed the lowest level of a toxic concentration of t-BHP (200 µM) and the resting concentration of PEP-1 (0-1000 ng/ml). PEP-1 exerted a protective effect against t-BHP-induced apoptosis by modifying the expression of pro-and anti-apoptotic proteins. PEP-1 administration reduced nitric oxide and ROS levels while restoring levels of antioxidant proteins in t-BHP-induced cells. PEP-1 exhibited the capacity to enhance the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2). Therefore, the C. gigas peptide PEP-1 has demonstrated its ability to protect HepG2 cells against oxidative stress induced by t-BHP.
Collapse
Affiliation(s)
- Selvakumari Ulagesan
- Division of Fisheries Life Sciences, Pukyong National University, Nam-Gu, Busan, 48513 Republic of Korea
| | - Sathish Krishnan
- Institute of Fisheries Sciences, Pukyong National University, Gijang-Gun, Busan, 46041 Republic of Korea
| | - Taek-Jeong Nam
- Institute of Fisheries Sciences, Pukyong National University, Gijang-Gun, Busan, 46041 Republic of Korea
| | - Youn-Hee Choi
- Division of Fisheries Life Sciences, Pukyong National University, Nam-Gu, Busan, 48513 Republic of Korea
- Institute of Fisheries Sciences, Pukyong National University, Gijang-Gun, Busan, 46041 Republic of Korea
| |
Collapse
|
8
|
Kim M, Jee SC, Sung JS. Hepatoprotective Effects of Flavonoids against Benzo[a]Pyrene-Induced Oxidative Liver Damage along Its Metabolic Pathways. Antioxidants (Basel) 2024; 13:180. [PMID: 38397778 PMCID: PMC10886006 DOI: 10.3390/antiox13020180] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Benzo[a]pyrene (B[a]P), a highly carcinogenic polycyclic aromatic hydrocarbon primarily formed during incomplete organic matter combustion, undergoes a series of hepatic metabolic reactions once absorbed into the body. B[a]P contributes to liver damage, ranging from molecular DNA damage to the onset and progression of various diseases, including cancer. Specifically, B[a]P induces oxidative stress via reactive oxygen species generation within cells. Consequently, more research has focused on exploring the underlying mechanisms of B[a]P-induced oxidative stress and potential strategies to counter its hepatic toxicity. Flavonoids, natural compounds abundant in plants and renowned for their antioxidant properties, possess the ability to neutralize the adverse effects of free radicals effectively. Although extensive research has investigated the antioxidant effects of flavonoids, limited research has delved into their potential in regulating B[a]P metabolism to alleviate oxidative stress. This review aims to consolidate current knowledge on B[a]P-induced liver oxidative stress and examines the role of flavonoids in mitigating its toxicity.
Collapse
Affiliation(s)
| | | | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea; (M.K.); (S.-C.J.)
| |
Collapse
|
9
|
Mushtaq Z, Aslam M, Imran M, Abdelgawad MA, Saeed F, Khursheed T, Umar M, Abdulmonem WA, Ghorab AHA, Alsagaby SA, Tufail T, Raza MA, Hussain M, Al JBawi E. Polymethoxyflavones: an updated review on pharmacological properties and underlying molecular mechanisms. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2189568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Affiliation(s)
- Zarina Mushtaq
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mahwish Aslam
- Faculty of Allied Health Sciences, University Institute of Diet and Nutritional Sciences, Lahore, Pakistan
| | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal-Pakistan, Narowal, Pakistan
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Tara Khursheed
- Department of Nutrition and Dietetics, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Maryam Umar
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Ahmed H. Al Ghorab
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Suliman A. Alsagaby
- Department of Medical Laboratory sciences, College of Applied Medical Sciences, Majmaah University, AI Majmaah, Saudi Arabia
| | - Tabussam Tufail
- University Institute of Diet & Nutritional Sciences, the University of Lahore, Lahore, Pakistan
| | - Muhammad Ahtisham Raza
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | | |
Collapse
|
10
|
Labhade S, Jain S, Chitlange S, Paliwal S, Sharma S. Decalepis hamiltonii root fraction alleviates CCl 4 hepatotoxicity in a rat model. J Ayurveda Integr Med 2023; 14:100818. [PMID: 38011760 PMCID: PMC10785264 DOI: 10.1016/j.jaim.2023.100818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Decalepis hamiltonii (D. hamiltonii) is Indian folk medicine in herbal preparations, to reduce appetite, and cures dysentery, bronchitis, uterine hemorrhage, and other ailments. OBJECTIVE The current investigation focused on the hepatoprotective effect of D. hamiltonii roots fractions against liver damage. MATERIALS AND METHODS The current research discussed the fraction from D. hamiltonii root extracts was used. Male Wistar rats (albino strain) were grouped into 4 distinct groups of six animals each. Group I: plain water and vehicle whereas Group II (CCl4 control): CCl4 (1 ml/kg, 20 % v/v in olive oil) over 7 days and vehicle; Over 7 days, Group III received Silymarin 100 mg/kg/day and tap water with 20 % v/v of CCl4, whereas Group IV (treatment group) received DHE 50 mg/kg/day, 100 mg/kg/day, and water. Assessment of biochemical parameters, Mitochondrial modulation, gene expression analysis, and RT-PCR, was used to estimate the protective action of DHEF in CCl4-intoxicated rats. RESULTS The administration of CCl4 increased levels of total bilirubin (0.63 ± 0.97 mg/dl) plasma amino transferases (110.36 ± 1.13 U/L, 86.56 ± 2.41 U/L and 1.51 ± 1.36 mg/dl respectively) which were mitigated by D. hamiltonii treatment. Activity like Lipid peroxidation and content of nitric oxide also augmented, while the antioxidant action measured by GSH (9.64 ± 0.18 U/mg protein), SOD (3.69 ± 0.22 U/mg protein), and CAT (1.47 ± 0.01 U/mg protein) was reduced. Decalepis hamiltonii root provided substantial restoration of GSH (14.92 ± 0.04 nmol/gm protein), SOD (4.20 ± 0.18 U/mg protein), and CAT (2.71 ± 0.04 U/mg protein) levels. In addition, the acute phase reactants stimulated by CCl4 administration enhanced mRNA expressions of IL-6, IL-10, TNF-a, NF-κβ, and COX-2, which were enhanced by D. hamiltonii treatment. CONCLUSIONS In summary, DHEF protects the liver against CCl4-induced damage, possibly by mitochondrial modulation mechanism. These findings indicate that D. hamiltonii significantly moderates oxidative stress of CCl4-induced hepatotoxicity.
Collapse
Affiliation(s)
- Sonali Labhade
- Banasthali Vidyapith, Rajasthan, India; Dr. D.Y.Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India.
| | | | - Sohan Chitlange
- Dr. D.Y.Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| | | | | |
Collapse
|
11
|
de Luna FCF, Ferreira WAS, Casseb SMM, de Oliveira EHC. Anticancer Potential of Flavonoids: An Overview with an Emphasis on Tangeretin. Pharmaceuticals (Basel) 2023; 16:1229. [PMID: 37765037 PMCID: PMC10537037 DOI: 10.3390/ph16091229] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Natural compounds with pharmacological activity, flavonoids have been the subject of an exponential increase in studies in the field of scientific research focused on therapeutic purposes due to their bioactive properties, such as antioxidant, anti-inflammatory, anti-aging, antibacterial, antiviral, neuroprotective, radioprotective, and antitumor activities. The biological potential of flavonoids, added to their bioavailability, cost-effectiveness, and minimal side effects, direct them as promising cytotoxic anticancer compounds in the optimization of therapies and the search for new drugs in the treatment of cancer, since some extensively antineoplastic therapeutic approaches have become less effective due to tumor resistance to drugs commonly used in chemotherapy. In this review, we emphasize the antitumor properties of tangeretin, a flavonoid found in citrus fruits that has shown activity against some hallmarks of cancer in several types of cancerous cell lines, such as antiproliferative, apoptotic, anti-inflammatory, anti-metastatic, anti-angiogenic, antioxidant, regulatory expression of tumor-suppressor genes, and epigenetic modulation.
Collapse
Affiliation(s)
- Francisco Canindé Ferreira de Luna
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SEAMB), Evandro Chagas Institute (IEC), BR 316, KM 7, s/n, Levilândia, Ananindeua 67030-000, Brazil; (W.A.S.F.); (E.H.C.d.O.)
| | - Wallax Augusto Silva Ferreira
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SEAMB), Evandro Chagas Institute (IEC), BR 316, KM 7, s/n, Levilândia, Ananindeua 67030-000, Brazil; (W.A.S.F.); (E.H.C.d.O.)
| | | | - Edivaldo Herculano Correa de Oliveira
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SEAMB), Evandro Chagas Institute (IEC), BR 316, KM 7, s/n, Levilândia, Ananindeua 67030-000, Brazil; (W.A.S.F.); (E.H.C.d.O.)
- Faculty of Natural Sciences, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Rua Augusto Correa, 01, Belém 66075-990, Brazil
| |
Collapse
|
12
|
Restivo I, Basilicata MG, Giardina IC, Massaro A, Pepe G, Salviati E, Pecoraro C, Carbone D, Cascioferro S, Parrino B, Diana P, Ostacolo C, Campiglia P, Attanzio A, D’Anneo A, Pojero F, Allegra M, Tesoriere L. A Combination of Polymethoxyflavones from Citrus sinensis and Prenylflavonoids from Humulus lupulus Counteracts IL-1β-Induced Differentiated Caco-2 Cells Dysfunction via a Modulation of NF-κB/Nrf2 Activation. Antioxidants (Basel) 2023; 12:1621. [PMID: 37627616 PMCID: PMC10451557 DOI: 10.3390/antiox12081621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
We here investigated the anti-inflammatory activity of a polymethoxylated flavone-containing fraction (PMFF) from Citrus sinensis and of a prenylflavonoid-containing one (PFF) from Humulus lupulus, either alone or in combination (MIX). To this end, an in vitro model of inflammatory bowel disease (IBD), consisting of differentiated, interleukin (IL)-1β-stimulated Caco-2 cells, was employed. We demonstrated that non-cytotoxic concentrations of either PMFF or PFF or MIX reduced nitric oxide (NO) production while PFF and MIX, but not PMFF, also inhibited prostaglandin E2 release. Coherently, MIX suppressed both inducible NO synthase and cyclooxygenase-2 over-expression besides NF-κB activation. Moreover, MIX increased nuclear factor erythroid 2-related factor 2 (Nrf2) activation, heme oxygenase-1 expression, restoring GSH and reactive oxygen and nitrogen species (RONs) levels. Remarkably, these effects with MIX were stronger than those produced by PMFF or PFF alone. Noteworthy, nobiletin (NOB) and xanthohumol (XTM), two of the most represented phytochemicals in PMFF and PFF, respectively, synergistically inhibited RONs production. Overall, our results demonstrate that MIX enhances the anti-inflammatory and anti-oxidative effects of the individual fractions in a model of IBD, via a mechanism involving modulation of NF-κB and Nrf2 signalling. Synergistic interactions between NOB and XTM emerge as a relevant aspect underlying this evidence.
Collapse
Affiliation(s)
- Ignazio Restivo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (I.C.G.); (A.M.); (A.A.); (A.D.); (F.P.); (L.T.)
| | | | - Ilenia Concetta Giardina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (I.C.G.); (A.M.); (A.A.); (A.D.); (F.P.); (L.T.)
| | - Alessandro Massaro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (I.C.G.); (A.M.); (A.A.); (A.D.); (F.P.); (L.T.)
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (M.G.B.); (E.S.); (C.O.); (P.C.)
| | - Emanuela Salviati
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (M.G.B.); (E.S.); (C.O.); (P.C.)
| | - Camilla Pecoraro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (D.C.); (S.C.); (B.P.); (P.D.)
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (D.C.); (S.C.); (B.P.); (P.D.)
| | - Stella Cascioferro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (D.C.); (S.C.); (B.P.); (P.D.)
| | - Barbara Parrino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (D.C.); (S.C.); (B.P.); (P.D.)
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy; (C.P.); (D.C.); (S.C.); (B.P.); (P.D.)
| | - Carmine Ostacolo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (M.G.B.); (E.S.); (C.O.); (P.C.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (M.G.B.); (E.S.); (C.O.); (P.C.)
| | - Alessandro Attanzio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (I.C.G.); (A.M.); (A.A.); (A.D.); (F.P.); (L.T.)
| | - Antonella D’Anneo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (I.C.G.); (A.M.); (A.A.); (A.D.); (F.P.); (L.T.)
| | - Fanny Pojero
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (I.C.G.); (A.M.); (A.A.); (A.D.); (F.P.); (L.T.)
| | - Mario Allegra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (I.C.G.); (A.M.); (A.A.); (A.D.); (F.P.); (L.T.)
| | - Luisa Tesoriere
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (I.C.G.); (A.M.); (A.A.); (A.D.); (F.P.); (L.T.)
| |
Collapse
|
13
|
Choi EJ, Kim H, Hong KB, Suh HJ, Ahn Y. Hangover-Relieving Effect of Ginseng Berry Kombucha Fermented by Saccharomyces cerevisiae and Gluconobacter oxydans in Ethanol-Treated Cells and Mice Model. Antioxidants (Basel) 2023; 12:antiox12030774. [PMID: 36979022 PMCID: PMC10045427 DOI: 10.3390/antiox12030774] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
This study aimed to evaluate the hangover relieving effect of ginseng berry kombucha (GBK) fermented with Saccharomyces cerevisiae and Gluconobacter oxydans in in vitro and in vivo models. The antioxidant activity and oxidative stress inhibitory effect of GBK were evaluated in ethanol-treated human liver HepG2 cells. In addition, biochemical and behavioral analyses of ethanol treated male ICR mice were performed to confirm the anti-hangover effect of GBK. The radical scavenging activity of GBK was increased by fermentation, and the total ginsenoside content of GBK was 70.24 μg/mL. In HepG2 cells, in which oxidative stress was induced using ethanol, GBK significantly increased the expression of antioxidant enzymes by upregulating the Nrf2/Keap1 pathway. Moreover, GBK (15 and 30 mg/kg) significantly reduced blood ethanol and acetaldehyde concentrations in ethanol-treated mice. GBK significantly increased the levels of alcohol-metabolizing enzymes, including alcohol dehydrogenase and acetaldehyde dehydrogenase. The balance beam test and elevated plus maze test revealed that high-dose GBK significantly ameliorated ethanol-induced behavioral changes. Collectively, GBK exerted a protective effect against ethanol-induced liver damage by regulating the Nrf2/Keap1 pathway.
Collapse
Affiliation(s)
- Eun Jung Choi
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Hyeongyeong Kim
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Ki-Bae Hong
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Republic of Korea
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Yejin Ahn
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
14
|
Wei J, Zhao J, Su T, Li S, Sheng W, Feng L, Bi Y. Flavonoid Extract from Seed Residues of Hippophae rhamnoides ssp. sinensis Protects against Alcohol-Induced Intestinal Barrier Dysfunction by Regulating the Nrf2 Pathway. Antioxidants (Basel) 2023; 12:antiox12030562. [PMID: 36978810 PMCID: PMC10044812 DOI: 10.3390/antiox12030562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/30/2023] Open
Abstract
Alcohol has been demonstrated to disrupt intestinal barrier integrity. Some flavonoid compounds that exert antioxidant activity have a protective effect on intestinal barrier function. As an important medicinal and edible plant, sea buckthorn (Hippophae) seeds are rich in flavonoids, but their protective effect on the intestinal barrier has not been reported. In our research, 76 kinds of flavonoids were identified in Hippophae rhamnoides ssp. sinensis seed residue flavonoids (HRSF) by ultra-performance liquid chromatography-tandem mass spectrometry. Kaempferol-3-O-rutinoside, isorhamnetin-3-O-rutinoside, kaempferol-3-O-robinoside-7-O-rhamnoside, isorhamnetin-3-O-2G-rhamnosylrutinoside, quercetin-3-O-rutinoside, (-)-epigallocatechin, and B type of procyanidin were the most abundant substances, accounting for 15.276%, 15.128%, 18.328%, 10.904%, 4.596%, 5.082%, and 10.079% of all identified flavonoids, respectively. Meanwhile, pre-treatment with HRSF was able to prevent alcohol-induced disruption of intestinal barrier integrity through elevating the transepithelial monolayer resistance value, inhibiting the flux of fluorescein isothiocyanate-dextran, and upregulating the mRNA and protein level of TJs (occludin and ZO-1). Furthermore, it was also able to reverse alcohol-induced oxidative stress through suppressing the accumulation of reactive oxygen species and malondialdehyde, improving the glutathione level and superoxide dismutase activity. Finally, the results showed that HRSF pre-treatment effectively elevated the erythroid-related factor 2 mRNA and protein level compared with the alcohol-alone treatment group. Our research was the first to demonstrate that HRSF could prevent alcohol-induced intestinal barrier dysfunction through regulating the Nrf2-mediated pathway in order to attenuate oxidative stress and enhance TJ expression.
Collapse
Affiliation(s)
- Juan Wei
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Jinmei Zhao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Tingting Su
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Sha Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenjun Sheng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Lidan Feng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
15
|
Lv C, Li Y, Liang R, Huang W, Xiao Y, Ma X, Wang Y, Zou H, Qin F, Sun C, Li T, Zhang J. Characterization of tangeretin as an activator of nuclear factor erythroid 2-related factor 2/antioxidant response element pathway in HEK293T cells. Curr Res Food Sci 2023; 6:100459. [PMID: 36846469 PMCID: PMC9945746 DOI: 10.1016/j.crfs.2023.100459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Numerous studies have reported that tangeretin is a polymethoxylated flavone with a variety of biological activates, but little research has been done on the antioxidant mechanism of tangeretin. Hence, we investigated the effect of tangeretin on the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway and its potential molecular mechanisms by in vitro and in silico research. The results of molecular docking suggested that tangeretin bound at the top of the central pore of Kelch-like ECH-associated protein 1 (Keap1) Kelch domain, and the hydrophobic and hydrogen bond interactions contributed to their stable binding. Herein, the regulation of Nrf2-ARE pathway by tangeretin was explored in the human embryonic kidney cell line HEK293T, which is relatively easy to be transfected. Upon binding to tangeretin, Nrf2 translocated to the nucleus of HEK293T cells, which in turn activated the Nrf2-ARE pathway. Luciferase reporter gene analysis showed that tangeretin significantly induced ARE-mediated transcriptional activation. Real-time PCR and Western blot assays showed that tangeretin induced the gene and protein expressions of Nrf2-mediated targets, including heme oxygenase 1 (HO-1), nicotinamide adenine dinucleotide phosphate (NADPH) quinone dehydrogenase 1 (NQO1), and glutamate-cysteine ligase (GCLM). In addition, tangeretin could effectively scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radicals. In summary, tangeretin may be a potential antioxidant via activating the Nrf2-ARE pathway.
Collapse
Affiliation(s)
- Chengyu Lv
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China,Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yuqiu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Rong Liang
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng, 252059, China
| | - Wei Huang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yechen Xiao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Xinqi Ma
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yongjun Wang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Fen Qin
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Chang Sun
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Tiezhu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China,Corresponding author.
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China,Corresponding author.
| |
Collapse
|
16
|
Dong L, Wang S, Zhang L, Liu D, You H. DBDPE and ZnO NPs synergistically induce neurotoxicity of SK-N-SH cells and activate mitochondrial apoptosis signaling pathway and Nrf2-mediated antioxidant pathway. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129872. [PMID: 36084461 DOI: 10.1016/j.jhazmat.2022.129872] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/07/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Decabromodiphenyl ethane (DBDPE), a new brominated flame retardant, could negatively affect neurobehavior and pose health risks to humans. Humans are also exposed to widely used nanomaterials. This study investigated the combined toxic effects and action types of DBDPE and Zinc oxide nanoparticles (ZnO NPs) on human neuroblastoma SK-N-SH cells and the toxicity mechanisms. DBDPE inhibited the viability of SK-N-SH cells by 21.87% at 25 mg/L. ZnO NPs synergistically exacerbated the toxic effects of DBDPE. DBDPE and ZnO NPs caused excessive ROS production and inhibition of antioxidant enzyme (SOD and GSH) activity in cells, thus causing oxidative cellular damage. Moreover, DBDPE and ZnO NPs caused apoptosis by disrupting mitochondrial kinetic homeostasis, reducing mitochondrial membrane potential (MMP), increasing cytochrome C release and regulating Bax/Bcl-2 and Caspase-3 mRNA and protein expression. DBDPE and ZnO NPs increased the mRNA expression of nuclear factor erythroid 2- related factor (Nrf2) and its downstream genes. The molecular mechanisms revealed that oxidative stress, apoptosis and mitochondrial dysfunction were the critical factors in combined cytotoxicity. The bioinformatics analysis further indicated that co-exposure affected Nrf2 activation, apoptotic factors expression and mitochondrial fusion. The findings enrich the risk perception of neurotoxicity caused by DBDPE and ZnO NPs.
Collapse
Affiliation(s)
- Liying Dong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin150090, China.
| | - Shutao Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin150090, China.
| | - Lin Zhang
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Dongmei Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin150090, China.
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin150090, China.
| |
Collapse
|
17
|
Liu H, Cao M, Jin Y, Jia B, Wang L, Dong M, Han L, Abankwah J, Liu J, Zhou T, Chen B, Wang Y, Bian Y. Network pharmacology and experimental validation to elucidate the pharmacological mechanisms of Bushen Huashi decoction against kidney stones. Front Endocrinol (Lausanne) 2023; 14:1031895. [PMID: 36864834 PMCID: PMC9971497 DOI: 10.3389/fendo.2023.1031895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
INTRODUCTION Kidney stone disease (KS) is a complicated disease with an increasing global incidence. It was shown that Bushen Huashi decoction (BSHS) is a classic Chinese medicine formula that has therapeutic benefits for patients with KS. However, its pharmacological profile and mechanism of action are yet to be elucidated. METHODS The present study used a network pharmacology approach to characterize the mechanism by which BSHS affects KS. Compounds were retrieved from corresponding databases, and active compounds were selected based on their oral bioavailability (≥30) and drug-likeness index (≥0.18). BSHS potential proteins were obtained from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, whereas KS potential genes were obtained from GeneCards and OMIM, TTD, and DisGeNET. Gene ontology and pathway enrichment analysis were used to determine potential pathways associated with genes. The ingredients of BSHS extract were identified by the ultra-high-performance liquid chromatography coupled with quadrupole orbitrap mass spectrometry (UHPLC-Q/Orbitrap MS). The network pharmacology analyses predicted the potential underlying action mechanisms of BSHS on KS, which were further validated experimentally in the rat model of calcium oxalate kidney stones. RESULTS Our study found that BSHS reduced renal crystal deposition and improved renal function in ethylene glycol(EG)+ammonium chloride(AC)-induced rats, and also reversed oxidative stress levels and inhibited renal tubular epithelial cell apoptosis in rats. BSHS upregulated protein and mRNA expression of E2, ESR1, ESR2, BCL2, NRF2, and HO-1 in EG+AC-induced rat kidney while downregulating BAX protein and mRNA expression, consistent with the network pharmacology results. DISCUSSION This study provides evidence that BSHS plays a critical role in anti-KS via regulation of E2/ESR1/2, NRF2/HO-1, and BCL2/BAX signaling pathways, indicating that BSHS is a candidate herbal drug for further investigation in treating KS.
Collapse
Affiliation(s)
- Haizhao Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Min Cao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yutong Jin
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Beitian Jia
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liming Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengxue Dong
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Han
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Joseph Abankwah
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jianwei Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Zhou
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Baogui Chen
- Wuqing Hospital of Traditional Chinese Medicine Affiliated with Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiyang Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Yiyang Wang, ; Yuhong Bian,
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Yiyang Wang, ; Yuhong Bian,
| |
Collapse
|
18
|
Pine pollen extract alleviates ethanol-induced oxidative stress and apoptosis in HepG2 cells via MAPK signaling. Food Chem Toxicol 2023; 171:113550. [DOI: 10.1016/j.fct.2022.113550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
|
19
|
Xie Y, Feng SL, He F, Yan PY, Yao XJ, Fan XX, Leung ELH, Zhou H. Down-regulating Nrf2 by tangeretin reverses multiple drug resistance to both chemotherapy and EGFR tyrosine kinase inhibitors in lung cancer. Pharmacol Res 2022; 186:106514. [DOI: 10.1016/j.phrs.2022.106514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/27/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
|
20
|
Tao Y, Yu Q, Huang Y, Liu R, Zhang X, Wu T, Pan S, Xu X. Identification of Crucial Polymethoxyflavones Tangeretin and 3,5,6,7,8,3',4'-Heptamethoxyflavone and Evaluation of Their Contribution to Anticancer Effects of Pericarpium Citri Reticulatae 'Chachi' during Storage. Antioxidants (Basel) 2022; 11:1922. [PMID: 36290646 PMCID: PMC9598651 DOI: 10.3390/antiox11101922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022] Open
Abstract
Pericarpium Citri Reticulatae 'Chachi' (PCR-C), rich in polymethoxyflavones (PMFs), has potential anticancer bioactivity and its quality will be improved during storage. However, the main factors influencing the PCR-C quality during its storage remain unclear. In this study, multivariate analysis was performed to investigate free and bound PMFs of PCR-C during storage. The anticancer effects of purified PCR-C flavonoid extracts (PCR-CF) and the important PMFs were evaluated using A549 cells. The results showed that PCR-C samples exhibited remarkable differences in free PMFs during storage, which fell into three clusters: Cluster 1 included fresh (fresh peel) and PCR-C01 (year 1); Cluster 2 consisted of PCR-C03 (year 3) and PCR-C05 (year 5); and PCR-C10 (year 10) was Cluster 3. 3,5,6,7,8,3',4'-heptamethoxyflavone, tangeretin, and isosinensetin were identified as the most important PMFs distinguishing the various types of PCR-C according to its storage periods. Moreover, PCR-CF inhibited A549 cell proliferation and induced cell cycle arrest at G2/M phase, cell apoptosis, and ROS accumulation, and all anticancer indices had an upward tendency during storage. Additionally, tangeretin and 3,5,6,7,8,3',4'-heptamethoxyflavone exhibited anticancer effects on A549 cells, whereas isosinensetin displayed no anticancer effect, indicating that tangeretin and 3,5,6,7,8,3',4'-heptamethoxyflavone jointly contributed to anticancer activity of PCR-C during storage. PCR-CF and the most important PMFs killed cancer cells (A549 cells) but had no cytotoxicity to normal lung fibroblast cells (MRC-5 cells). Overall, the high quality of long-term stored PCR-C might be due to the anticancer effects of tangeretin and 3,5,6,7,8,3',4'-heptamethoxyflavone.
Collapse
Affiliation(s)
- Yexing Tao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Yu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuting Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiting Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiwen Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
21
|
Tariq U, Butt MS, Pasha I, Faisal MN. Prophylactic role of olive fruit extract against cigarette smoke-induced oxidative stress in Sprague-Dawley rats. Cell Stress Chaperones 2022; 27:545-560. [PMID: 35951259 PMCID: PMC9485526 DOI: 10.1007/s12192-022-01291-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 11/03/2022] Open
Abstract
Cigarette smoke exposure increases the production of free radicals leading to initiation of several pathological conditions by triggering the oxidative stress and inflammatory cascade. Olive fruit owing to its unique phytochemical composition possesses antioxidant, immune modulatory, and anti-inflammatory potential. Considering the compositional alterations in olive fruits during ripening, the current experimental trail was designed to investigate the prophylactic role of green and black olives against the oxidative stress induced by cigarette smoke exposure in rats. Purposely, rats were divided into five different groups: NC (negative control; normal diet), PC [positive control; normal diet + smoke exposure (SE)], drug (normal diet + SE + citalopram), GO (normal diet + SE + green olive extract), and BO (normal diet + SE + black olive extract). Rats of all groups were exposed to cigarette smoke except "NC" and were sacrificed for collection of blood and organs after 28 days of experimental trial. The percent reduction in total oxidative stress by citalopram and green and black olive extracts in serum was 29.72, 58.69, and 57.97%, respectively, while the total antioxidant capacity increased by 30.78, 53.94, and 43.98%, accordingly in comparison to PC. Moreover, malondialdehyde (MDA) was reduced by 29.63, 42.59, and 45.70% in drug, GO, and BO groups, respectively. Likewise, green and black olive extracts reduced the leakage of hepatic enzymes in sera, alkaline phosphatase (ALP) by 23.44 and 25.80% and 35.62 and 37.61%, alanine transaminase (ALT) by 42.68 and 24.39% and 51.04 and 35.41%, and aspartate transaminase (AST) by 31.51 and 16.07% and 40.50 and 27.09% from PC and drug group, respectively. Additionally, olive extracts also maintained the antioxidant pool, i.e., superoxide dismutase, catalase, and glutathione in serum. Furthermore, histological examination revealed that olive extracts prevented the cigarette smoke-induced necrosis, pyknotic alterations, and congestion in the lung, hepatic, and renal parenchyma. Besides, gene expression analysis revealed that olive extracts and citalopram decreased the brain and lung damage caused by stress-induced upregulation of NRF-2 and MAPK signaling pathways. Hence, it can be concluded that olives (both green and black) can act as promising antioxidant in alleviating the cigarette smoke-induced oxidative stress.
Collapse
Affiliation(s)
- Urwa Tariq
- Faculty of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
- Department of Human Nutrition and Dietetics, Riphah International University, Faisalabad, 38000, Pakistan
| | - Masood Sadiq Butt
- Faculty of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan.
| | - Imran Pasha
- Faculty of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Naeem Faisal
- Institute of Pharmacy, Physiology and Pharmacology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
22
|
Sakakibara Y, Kojima A, Asai Y, Nadai M, Katoh M. Changes in uridine 5'-diphospho-glucuronosyltransferase 1A6 expression by histone deacetylase inhibitor valproic acid. Biopharm Drug Dispos 2022; 43:175-182. [PMID: 36000181 DOI: 10.1002/bdd.2328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 11/09/2022]
Abstract
Valproic acid (VPA) is well-known as a histone deacetylase (HDAC) inhibitor. It has been reported that HDAC inhibitors enhance basal and aryl hydrocarbon receptor (AhR) ligand-induced aryl hydrocarbon receptor-responsive gene expression. Other studies suggested that HDAC inhibition might significantly activate the NF-E2-related factor-2 (Nrf2). Moreover, VPA activates mitogen-activated protein kinases (MAPKs). MAPK pathways regulate Nrf2 transactivation domain activity. Uridine 5'-diphospho-glucuronosyltransferase (UGT) 1A6 is one of the important isoforms to affect drug pharmacokinetics. UGT1A6 gene is regulated transcriptionally by AhR and Nrf2. The present study aimed to investigate whether UGT1A6 expression was changed by VPA and to elucidate the mechanism of the alteration. Following VPA treatment for 72 h in Caco-2 cells, UGT1A6 mRNA was increased by 7.9-fold. Moreover, UGT1A6 mRNA was increased by other HDAC inhibitors, suggesting that HDAC inhibition caused the UGT1A6 mRNA induction. AhR and Nrf2 proteins in the nucleus of Caco-2 cells were increased by 1.5- and 1.7-fold, respectively, following the VPA treatment. However, VPA treatment did not activate the extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) pathways in Caco-2 cells. In conclusion, we observed that VPA induced UGT1A6 mRNA expression via AhR and Nrf2 pathways, but not via the ERK or JNK pathways.
Collapse
Affiliation(s)
| | - Ayaka Kojima
- Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Yuki Asai
- Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | | | - Miki Katoh
- Faculty of Pharmacy, Meijo University, Nagoya, Japan
| |
Collapse
|
23
|
Babu S, Manoharan S, Ottappilakkil H, Perumal E. Role of oxidative stress-mediated cell death and signaling pathways in experimental fluorosis. Chem Biol Interact 2022; 365:110106. [PMID: 35985521 DOI: 10.1016/j.cbi.2022.110106] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/03/2022]
Abstract
Free radicals and other oxidants have enticed the interest of researchers in the fields of biology and medicine, owing to their role in several pathophysiological conditions, including fluorosis (Fluoride toxicity). Radical species affect cellular biomolecules such as nucleic acids, proteins, and lipids, resulting in oxidative stress. Reactive oxygen species-mediated oxidative stress is a common denominator in fluoride toxicity. Fluorosis is a global health concern caused by excessive fluoride consumption over time. Fluoride alters the cellular redox homeostasis, and its toxicity leads to the activation of cell death mechanisms like apoptosis, autophagy, and necroptosis. Even though a surfeit of signaling pathways is involved in fluorosis, their toxicity mechanisms are not fully understood. Thus, this review aims to understand the role of reactive species in fluoride toxicity with an outlook on the effects of fluoride in vitro and in vivo models. Also, we emphasized the signal transduction pathways and the mechanism of cell death implicated in fluoride-induced oxidative stress.
Collapse
Affiliation(s)
- Srija Babu
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Harsheema Ottappilakkil
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| |
Collapse
|
24
|
Alharbi KS, Almalki WH, Albratty M, Meraya AM, Najmi A, Vyas G, Singh SK, Dua K, Gupta G. The therapeutic role of nutraceuticals targeting the Nrf2/HO-1 signaling pathway in liver cancer. J Food Biochem 2022; 46:e14357. [PMID: 35945911 DOI: 10.1111/jfbc.14357] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
Abstract
Liver cancer (L.C.) is the most common cause of cancer death in the United States and the fifth most common globally. The overexpression of nuclear factor E2 related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) caused by oxidative stress has been associated with tumor growth, aggressiveness, treatment resistance, and poor prognosis. Nutraceuticals that inhibit Nrf2/HO-1 signaling may become the most effective strategy to treat liver cancer. Phytochemicals found in fruits and vegetables, also known as nutraceuticals, tend to emerge as chemopreventive agents, with the added benefit of low toxicity and high nutritional values. This paper reviews the present scientific knowledge of the Nrf2/HO-1 signaling as a possible target molecule for chemotherapeutic agents, its basic control mechanisms, and Nrf2/HO-1 inducers produced from natural products that might be employed as cancer chemopreventive drugs. The growing interest in the contribution of the Nrf2/ARE/HO-1 signaling in the development of liver cancer and the Use of nutraceuticals to treat liver cancer by targeting Nrf2/ARE/HO-1. PRACTICAL APPLICATIONS: An increase in Nrf2 expression indicates that Nrf2 is the most important player in liver cancer. Cancer patients are more resistant to chemotherapy because of this erroneous Nrf2 signaling. Furthermore, an increasing body of evidence indicates that activation of the Nrf2/HO-1 pathway results in the production of phase II detoxifying and antioxidant enzymes, which serve a defense purpose in cells. As a consequence, treating liver cancer. This master regulator may be a possibility. Nutraceuticals that reduce Nrf2/HO-1 signaling may be the most effective strategy for preventing liver cancer. The methods of action of numerous natural substances are examined in this article.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Govind Vyas
- R&D, Quality and Regulatory Compliance, Invahealth Inc., Cranbury, New Jersey, USA
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India.,Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, New South Wales, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Gaurav Gupta
- Department of Pharmacology, School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India.,Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.,Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
25
|
Cao W, Wu T, Liang F, Fang Y, Cheng Y, Pan S, Xu X. Protective effects of di-caffeoylquinic acids from Artemisia selengensis Turcz leaves against monosodium urate-induced inflammation via the modulation of NLRP3 inflammasome and Nrf2 signaling pathway in THP-1 macrophages. J Food Biochem 2022; 46:e14252. [PMID: 35894102 DOI: 10.1111/jfbc.14252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/01/2022] [Accepted: 05/10/2022] [Indexed: 11/27/2022]
Abstract
Artemisia selengensis Turcz (AST) as a common vegetable is rich in di-caffeoylquinic acids (di-CQAs) and has been reported to possess multiple health benefits. However, whether di-CQAs from AST leaf extracts (ASTE) could alleviate gout inflammation is still unknown. Herein, this study explored the inhibitory mechanism of ASTE on gout inflammation in THP-1 macrophages. Results suggested that ASTE suppressed the secretion and mRNA levels of inflammatory cytokines including interleukin-18, interleukin-1β, interleukin-6, and tumor necrosis factor-α. Pretreatment with ASTE inhibited lipopolysaccharide-induced of IκBα degradation, p65 phosphorylation and up-regulation of Nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome proteins. Moreover, ASTE inhibited monosodium urate-induced the up-regulation of active caspase-1 and interleukin-1β, promoted nuclear factor E2-related factor2 (Nrf2) to translocate into the nucleus, reducing the generation of MSU-induced reactive oxygen species. These results suggested that ASTE alleviated gout inflammation via inhibiting NLRP3 inflammasome activation and activating Nrf2 signaling pathway. PRACTICAL APPLICATIONS: Artemisia selengensis Turcz (AST) as a common vegetable in China belongs to genus Artemisia, which are rich in di-caffeoylquinic acids. This study aimed to investigate the effect of ASTE on alleviating gout inflammation and whether NLRP3 inflammasome and Nrf2 signaling pathways are involved in the protection of ASTE against gout inflammation. Our findings are significant for developing di-CQAs from AST by-products as an effective functional food for preventing gout.
Collapse
Affiliation(s)
- Weiwei Cao
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, People's Republic of China
| | - Ting Wu
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, People's Republic of China
| | - Fuqiang Liang
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, People's Republic of China
| | - Yajing Fang
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, People's Republic of China
| | - Yuxin Cheng
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, People's Republic of China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, People's Republic of China
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, People's Republic of China
| |
Collapse
|
26
|
Protective effects of Cordyceps sinensis exopolysaccharide‑selenium nanoparticles on H2O2-induced oxidative stress in HepG2 cells. Int J Biol Macromol 2022; 213:339-351. [DOI: 10.1016/j.ijbiomac.2022.05.173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/05/2022] [Accepted: 05/26/2022] [Indexed: 01/07/2023]
|
27
|
Tao M, Li R, Zhang Z, Wu T, Xu T, Zogona D, Huang Y, Pan S, Xu X. Vitexin and Isovitexin Act Through Inhibition of Insulin Receptor to Promote Longevity and Fitness in Caenorhabditis elegans. Mol Nutr Food Res 2022; 66:e2100845. [PMID: 35413150 DOI: 10.1002/mnfr.202100845] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/24/2022] [Indexed: 11/06/2022]
Abstract
SCOPE Vitexin and isovitexin are natural plant nutraceuticals for human health and longevity. This research investigated the underlying mechanism of vitexin and isovitexin on aging and health. The vital role of DAF-2/IGFR was illustrated in the insulin/insulin-like growth signaling pathway (IIS) modulated by vitexin and isovitexin. METHODS AND RESULTS In vitro, in vivo models and molecular docking methods were performed to explore the antiaging mechanism of vitexin and isovitexin. Vitexin and isovitexin (50 and 100 μM) extended the lifespan of C. elegans. The declines of pharyngeal pumping and body bending rates, and the increase of intestinal lipofuscin accumulation, three markers of aging, were postponed by vitexin and isovitexin. These compounds inhibited the IIS pathway in a daf-16-dependent manner, subsequently increasing the expression of DAF-16 downstream proteins and genes in nematodes. Molecular docking studies demonstrated that these compounds might inhibit insulin signal transduction by binding to the crucial amino acid residue ARG1003 in the pocket of the insulin-like growth factor-1 receptor (IGFR). Western blot indicated that IGFR, PI3K and AKT kinase expressions in senescent cells is decreased after vitexin and isovitexin treatment. CONCLUSION Vitexin and isovitexin might inhibit IIS pathway by occupying the ATP-binding site pocket of IGFR, subsequently decreasing IGFR expression, thereby promoting longevity and fitness. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mingfang Tao
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, P.R. China
| | - Rong Li
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, P.R. China
| | - Zhuo Zhang
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, P.R. China
| | - Ting Wu
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, P.R. China
| | - Tingting Xu
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, P.R. China
| | - Daniel Zogona
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, P.R. China
| | - Yuting Huang
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, P.R. China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, P.R. China
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, P.R. China
| |
Collapse
|
28
|
Shi Y, Chen J, Li S, Wu Y, Yu C, Ni L, Xiao J, Shao Z, Zhu H, Wang J, Wang X, Zhang X. Tangeretin suppresses osteoarthritis progression via the Nrf2/NF-κB and MAPK/NF-κB signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153928. [PMID: 35104760 DOI: 10.1016/j.phymed.2022.153928] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a globally prevalent degenerative disease characterized by extracellular matrix (ECM) degradation and inflammation. Tangeretin is a natural flavonoid that has anti-inflammatory properties. Studies have not explored whether tangeretin modulates OA development. PURPOSE The aim of this study was to explore the potential effects and mechanism underlying the anti-OA properties of tangeretin. STUDY DESIGN Effects of tangeretin on OA were detected in chondrocytes and OA mouse model. METHODS Protective effects of tangeretin on murine articular chondrocytes treated with interleukin-1β (IL-1β) were evaluated using qPCR, western blot analysis, ELISA, ROS detection and immunofluorescent staining in vitro. Healing effect of tangeretin on cartilage degradation in mice was assessed through X-ray imaging, histopathological analysis, immunohistochemical staining and immunofluorescent staining in vivo. RESULTS Tangeretin suppressed IL-1β-mediated inflammatory mediator secretion and degradation of ECM in chondrocytes. The results showed that tangeretin abrogated destabilized medial meniscus (DMM)-induced cartilage degradation in mice. Mechanistic studies showed that tangeretin suppressed OA development by downregulating activation of NF-κB by activating Nrf2/HO-1 axis and suppressing MAPK signaling pathway. CONCLUSION Tangeretin abrogates OA progression by inhibiting inflammation as well as ECM degradation in chondrocytes and animal models. Effects of tangeretin are mediated through Nrf2/NF-κB and the MAPK/NF-κB pathways. Thus, tangeretin is a potential therapeutic agent for osteoarthritis treatment.
Collapse
Affiliation(s)
- Yifeng Shi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiaoxiang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Sunlong Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yuhao Wu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Caiyu Yu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - LiBin Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jian Xiao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhenxuan Shao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Huanqing Zhu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jianshun Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
29
|
Yu Q, Tao Y, Huang Y, Zogona D, Wu T, Liu R, Pan S, Xu X. Aged Pericarpium Citri Reticulatae 'Chachi' Attenuates Oxidative Damage Induced by tert-Butyl Hydroperoxide ( t-BHP) in HepG2 Cells. Foods 2022; 11:273. [PMID: 35159424 PMCID: PMC8834029 DOI: 10.3390/foods11030273] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/24/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
This study investigated the protective effects of aged Pericarpium Citri Reticulatae 'Chachi' (PCR-C) on tert-butyl hydroperoxide (t-BHP)-induced oxidative damage in HepG2 cells. According to HPLC analysis, PCR-C aged 10 years (PCR-C10) had the highest flavonoids content, especially polymethoxyflavones (PMFs), compared with the fresh peel of Citrus reticulata cv. 'Chachiensis' and PCR-C aged 1, 3, and 5 years. Then, flavonoids-rich PCR-C samples and non-flavonoids-rich PCR-C samples (NF) were prepared by extracting and purifying PCR-C of different aging periods, for further cell experiments. Pretreatment with flavonoids-rich PCR-C samples (particularly PCR-C10) considerably reversed t-BHP-induced oxidative damage in HepG2 cells by improving cell viability, increasing SOD activity and GSH levels and reducing the overproduction of ROS and MDA. Correlation analysis further indicated that the accumulation of PMFs, mainly 5,6,7,4'-tetramethoxyflavone and nobiletin, was the main reason that PCR-C10 maintained the redox balance in HepG2 cells. These findings provided direct evidence for the cellular antioxidant activity of aged PCR-C and a guide for PCR-C's classification, authentication and rational use.
Collapse
Affiliation(s)
- Qian Yu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.Y.); (Y.T.); (Y.H.); (D.Z.); (T.W.); (R.L.); (S.P.)
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Yexing Tao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.Y.); (Y.T.); (Y.H.); (D.Z.); (T.W.); (R.L.); (S.P.)
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Yuting Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.Y.); (Y.T.); (Y.H.); (D.Z.); (T.W.); (R.L.); (S.P.)
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Daniel Zogona
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.Y.); (Y.T.); (Y.H.); (D.Z.); (T.W.); (R.L.); (S.P.)
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.Y.); (Y.T.); (Y.H.); (D.Z.); (T.W.); (R.L.); (S.P.)
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiting Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.Y.); (Y.T.); (Y.H.); (D.Z.); (T.W.); (R.L.); (S.P.)
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.Y.); (Y.T.); (Y.H.); (D.Z.); (T.W.); (R.L.); (S.P.)
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.Y.); (Y.T.); (Y.H.); (D.Z.); (T.W.); (R.L.); (S.P.)
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
30
|
Li M, Ke Z, Tan S, Li H, Jiang S, Li Y, Chen R. Tangeretin improves hepatic steatosis and oxidative stress through Nrf2 pathway in nonalcoholic fatty liver disease mice caused by high fat diet. Food Funct 2022; 13:2782-2790. [DOI: 10.1039/d1fo02989d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nonalcoholic liver disease (NAFLD) is a pathological condition characterized by excessive fat deposition in the liver, and NAFLD is usually has a close relation with obesity or metabolic syndrome. Currently,...
Collapse
|
31
|
Wang Y, Jin R, Chen J, Cao J, Xiao J, Li X, Sun C. Tangeretin maintains antioxidant activity by reducing CUL3 mediated NRF2 ubiquitination. Food Chem 2021; 365:130470. [PMID: 34237577 DOI: 10.1016/j.foodchem.2021.130470] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/03/2021] [Accepted: 06/24/2021] [Indexed: 02/08/2023]
Abstract
To explore the antioxidant capacity of citrus flavonoids under different evaluation systems, chemical and biological methods were engaged to determine the antioxidant abilities of flavanones and polymethoxyflavones. Results showed that flavanones exhibited good antioxidant activity, while polymethoxyflavones had a weak ability to scavenge free radicals. Both flavanones and polymethoxyflavones exerted the ability to inhibit H2O2-induced oxidative stress, but the effective concentration of polymethoxyflavones was lower. Further exploration showed that neohesperidin and tangeretin selectively regulated antioxidant enzyme activity, both in vitro and in vivo. Tangeretin also maintained the expression of antioxidant enzymes in L02 cells and in ICR mice liver. The mechanism exploration showed that both neohesperidin and tangeretin promoted the expression of NRF2 and inhibit the expression of KEAP1, but tangeretin could inhibit the ubiquitination of NRF2 by inhibiting CUL3. The mechanism was verified by CUL3 gene silencing. This study demonstrates a novel antioxidant mechanism of natural products.
Collapse
Affiliation(s)
- Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Rong Jin
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Jiebiao Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Jinping Cao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| | - Xian Li
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| |
Collapse
|
32
|
Wu Y, He Y, Wang R, Zhao X. Preventive Effect of Flavonoid Extract from the Peel of Gonggan (Citrus reticulata Blanco Var. Gonggan) on CCl 4-Induced Acute Liver Injury in Mice. J Inflamm Res 2021; 14:5111-5121. [PMID: 34675591 PMCID: PMC8502066 DOI: 10.2147/jir.s332134] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/29/2021] [Indexed: 12/16/2022] Open
Abstract
Objective Citrus peel, a waste product of citrus consumption and processing, is rich in flavonoids. This study aimed to study the protective effect of flavonoid extract from the peel of gonggan (Citrus reticulata Blanco var. gonggan) on acute chemical liver injury. Materials and Methods We established a chemical liver injury model induced by carbon tetrachloride (CCl4) in mice. The flavonoid composition in gonggan (Citrus reticulata Blanco var. gonggan) peel was detected by HPLC. The histopathological sections of liver, related biochemical indicators in serum and liver, and related genes were examined to evaluate the protective effect of gonggan peel flavonoid extract (GPFE). Results The results showed that GPFE contained narirutin, hesperidin, nobiletin, tangeretin, and 5-demethylnobiletin. After 14 days of intragastric administration of GPFE, the result showed GPFE could reduce the increase in liver index, serum alanine aminotransferase (ALT), and aspartate transaminase (AST) levels caused by CCl4. At the same time, pathological sections of liver confirmed that GPFE alleviated the damage to liver tissue. Moreover, biochemical indicator results showed that GPFE increased the activities of superoxide dismutase (SOD) and catalase (CAT) in liver tissue and reduced the content of malondialdehyde (MDA). Also, it reduced the levels of inflammation factors: tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin (IL)-1β, and IL-6. In addition, q-PCR results showed that GPFE upregulated mRNA expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2), copper/zinc superoxide dismutase (SOD1), manganese superoxide dismutase (SOD2), glutathione peroxidase (GSH-Px), γ-glutamylcysteine synthetase (γ-GCS), CAT, and downregulated IL-6 and TNF-α mRNA expression levels. The mechanism of GPFE may be related to the inhibition of oxidative stress and inflammation. Conclusion The experiment indicates GPFE has a good protective effect on acute chemical liver injury in mice induced by CCl4 via antioxidant and anti-inflammatory pathways.
Collapse
Affiliation(s)
- Ya Wu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, People's Republic of China.,College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Yongpeng He
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, People's Republic of China.,Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Rui Wang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, People's Republic of China.,College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| |
Collapse
|
33
|
Vitamin E Supplementation Enhances Lipid Oxidative Stability via Increasing Vitamin E Retention, Rather Than Gene Expression of MAPK-Nrf2 Signaling Pathway in Muscles of Broilers. Foods 2021; 10:foods10112555. [PMID: 34828836 PMCID: PMC8624736 DOI: 10.3390/foods10112555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 12/02/2022] Open
Abstract
Dietary vitamin E (VE) supplementation is a method to produce VE-enriched meat and improve meat lipid oxidative stability. We aimed to study the effect of the VE supplementation duration on meat lipid oxidative stability, VE retention, and antioxidant enzymes’ activity, and explore its relationship with the mitogen-activated protein kinases (MAPK)-nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathway in broilers slaughtered after electrical stunning. A total of 240 male 18-day-old Arbor Acres Plus broilers were distributed to four treatments, with six replicates in each treatment, and ten broilers per replicate. Broilers were fed with a basal diet (no supplementation of VE) or VE diet (200 IU/kg VE, DL-α- tocopherol) for one (W1), two (W2), or three (W3) weeks before electrical stunning (130 mA, 60 Hz, for 1s) and slaughter. The VE retention was positively and linearly affected (p < 0.01) by the VE feeding duration at one to three weeks before slaughter, and negatively (all p < 0.01) related to the thiobarbituric acid reactive substance (TBARS) content in both breast and thigh muscles at d 0, d 2, and d 6 postmortem. The VE retention was negatively (p < 0.05) related to the gene expression of c-Jun N-terminal kinases 1 (JNK1) and 2 (JNK2), Nrf2 in breast muscles, and JNK1 and p38 MAPK in thigh muscles. In conclusion, dietary vitamin E supplementation at 200 IU/kg for three weeks before electrical stunning and slaughter improved lipid oxidative stability via increasing VE retention, rather than the regulation by gene expression of the MAPK-Nrf2 signaling pathway in skeletal muscles of broilers.
Collapse
|
34
|
Zhou Z, Zhou B, Chen H, Lu K, Wang Y. Oxidative stress activates the Nrf2-mediated antioxidant response and P38 MAPK pathway: A possible apoptotic mechanism induced by BDE-47 in rainbow trout (Oncorhynchus mykiss) gonadal RTG-2 cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117341. [PMID: 34023659 DOI: 10.1016/j.envpol.2021.117341] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Our previous study showed that 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), the most biotoxic polybrominated diphenyl ether (PBDE) in the marine environment, induced apoptosis in rainbow trout gonadal RTG-2 cells. This effect occurred via ROS- and Ca2+-mediated apoptotic pathways, but the exact mechanism remains unknown. Therefore, in the present study, the possible mechanism was examined from the perspective of ROS-induced oxidative stress. The results showed that BDE-47 exposure significantly elevated the malondialdehyde (MDA) contents and the intracellular GSH/GSSG ratio, and the GSH-related enzymes were greatly altered, indicating alteration of the redox status and occurrence of oxidative stress. The mRNA levels of nuclear factor E2-related factor 2 (Nrf2) and its downstream genes were simultaneously greatly elevated. The p38 mitogen-activated protein kinase (MAPK) signaling pathway was also found to be induced by BDE-47 exposure. The addition of SB203580, a p38 MAPK inhibitor resulted in decreased apoptosis. In addition, supplementation with Ca2+ inhibitors BAPTA-AM positively affected p38 MAPK activation. Taken together, BDE-47 exposure resulted in the occurrence of oxidative stress and initiated the Nrf2-mediated antioxidant response. Subsequently, the altered redox status induced p38 MAPK activation, which played a pivotal role in the cellular apoptosis of RTG-2 cells.
Collapse
Affiliation(s)
- Zhongyuan Zhou
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China.
| | - Bin Zhou
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Hongmei Chen
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources, Ministry of Education, Pharmacology Department, School of Pharmacy, Shihezi University, Shihezi, 832002, China.
| | - Keyu Lu
- Department of Geography, University College London, London, WC1E 6BT, UK.
| | - You Wang
- Department of Marine Ecology, College of Marine Life Science, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
35
|
Yudhani RD, Nugrahaningsih DAA, Sholikhah EN, Mustofa M. The Molecular Mechanisms of Hypoglycemic Properties and Safety Profiles of Swietenia Macrophylla Seeds Extract: A Review. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
BACKGROUND: Insulin resistance (IR) is known as the root cause of type 2 diabetes; hence, it is a substantial therapeutic target. Nowadays, studies have shifted the focus to natural ingredients that have been utilized as a traditional diabetes treatment, including Swietenia macrophylla. Accumulating evidence supports the hypoglycemic activities of S. macrophylla seeds extract, although its molecular mechanisms have yet to be well-established.
AIM: This review focuses on the hypoglycemic molecular mechanisms of S. macrophylla seeds extract and its safety profiles.
METHODS: An extensive search of the latest literature was conducted from four main databases (PubMed, Scopus, Science Direct, and Google Scholar) using several keywords: “swietenia macrophylla, seeds, and diabetes;” “swietenia macrophylla, seeds, and oxidative stress;” “swietenia macrophylla, seeds, and inflammation;” “swietenia macrophylla, seeds, and GLUT4;” and “swietenia macrophylla, seeds, and toxicities.”
RESULTS: The hypoglycemic activities occur through modulating several pathways associated with IR and T2D pathogenesis. The seeds extract of S. macrophylla modulates oxidative stress by decreasing malondialdehyde (MDA), oxidized low-density lipoprotein, and thiobarbituric acid-reactive substances while increasing antioxidant enzymes (superoxide dismutase, glutathione peroxidase, and catalase). Another propose mechanism is the modulating of the inflammatory pathway by attenuating nuclear factor kappa β, tumor necrosis factor α, inducible nitric oxide synthase, and cyclooxygenase 2. Some studies have shown that the extract can also control phosphatidylinositol-3-kinase/ Akt (PI3K/Akt) pathway by inducing glucose transporter 4, while suppressing phosphoenolpyruvate carboxykinase. Moreover, in vitro cytotoxicity and in vivo toxicity studies supported the safety profile of S. macrophylla seeds extract with the LD50 higher than 2000 mg/kg.
CONCLUSION: The potential of S. macrophylla seeds as antidiabetic candidate is supported by many studies that have documented their non-toxic and hypoglycemic effects, which involve several molecular pathways.
Collapse
|
36
|
Chen PY, Chao TY, Hsu HJ, Wang CY, Lin CY, Gao WY, Wu MJ, Yen JH. The Lipid-Modulating Effect of Tangeretin on the Inhibition of Angiopoietin-like 3 (ANGPTL3) Gene Expression through Regulation of LXRα Activation in Hepatic Cells. Int J Mol Sci 2021; 22:ijms22189853. [PMID: 34576019 PMCID: PMC8471037 DOI: 10.3390/ijms22189853] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
The excessive accumulation of TG-rich lipoproteins (TGRLs) in plasma is associated with dyslipidemia and atherosclerotic cardiovascular diseases (ASCVDs). Tangeretin is a bioactive pentamethoxyflavone mainly found in citrus peels, and it has been reported to protect against hyperlipidemia, diabetes, and obesity. The aim of this study was to investigate the lipid-modulating effects and the underlying mechanisms of tangeretin action in hepatic cells. Transcriptome and bioinformatics analyses with the Gene Ontology (GO) database showed that tangeretin significantly regulated a set of 13 differentially expressed genes (DEGs) associated with the regulation of lipoprotein lipase (LPL) activity. Among these DEGs, angiopoietin-like 3 (ANGPTL3), an essential inhibitor of LPL catalytic activity that regulates TGRL metabolism in plasma, was markedly downregulated by tangeretin. We demonstrated that tangeretin significantly inhibited the mRNA expression of ANGPTL3 in HepG2 and Huh-7 cells. Tangeretin treatment of hepatic cells also reduced the levels of both intracellular and secreted ANGPTL3 proteins. Moreover, we found that inhibition of ANGPTL3 production by tangeretin augmented LPL activity. We further demonstrated that the transcriptional activity of the ANGPTL3 promoter was significantly attenuated by tangeretin, and we identified a DNA element located between the −250 and −121 positions that responded to tangeretin. Furthermore, we found that tangeretin did not alter the levels of the nuclear liver X receptor α (LXRα) protein, an essential transcription factor that binds to the tangeretin-responsive element, but it can counteract LXRα-mediated ANGPTL3 transcription. On the basis of molecular docking analysis, tangeretin was predicted to bind to the ligand-binding domain of LXRα, which would result in suppression of LXRα activation. Our findings support the hypothesis that tangeretin exerts a lipid-lowering effect by modulating the LXRα-ANGPTL3-LPL pathway, and thus, it can be used as a potential phytochemical for the prevention or treatment of dyslipidemia.
Collapse
Affiliation(s)
- Pei-Yi Chen
- Center of Medical Genetics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan;
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (T.-Y.C.); (C.-Y.L.)
| | - Tzu-Ya Chao
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (T.-Y.C.); (C.-Y.L.)
| | - Hao-Jen Hsu
- Department of Life Science, Tzu Chi University, Hualien 97004, Taiwan;
| | - Chih-Yang Wang
- Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Yen Lin
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (T.-Y.C.); (C.-Y.L.)
| | - Wan-Yun Gao
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan;
| | - Ming-Jiuan Wu
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan;
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (T.-Y.C.); (C.-Y.L.)
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan;
- Correspondence: or ; Tel.: +88-63-856-5301 (ext. 2683)
| |
Collapse
|
37
|
Mir H, Elieh Ali Komi D, Pouramir M, Parsian H, Moghadamnia AA, Seyfizadeh N, Lakzaei M. The hepatoprotective effects of Pyrus biossieriana buhse leaf extract on tert-butyl hydroperoxide toxicity in HepG2 cell line. BMC Res Notes 2021; 14:298. [PMID: 34344447 PMCID: PMC8336407 DOI: 10.1186/s13104-021-05713-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/26/2021] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE In present study, the effects of the leaf extract of Pyrus biossieriana Buhse on tert-Butyl hydroperoxide (t-BHP) induced toxicity in the HepG2 cell line were investigated. RESULTS HepG2 cells were exposed to different concentrations of both extract (1.5, 2.0, and 2.5 mg/mL) and t-BHP (100, 150, and 200 μM). The total flavonoid and phenolic contents, the cell viability, lipid peroxidation, NO generation, and the total antioxidant capacity in cell media were assessed. The amount of arbutin was estimated 12.6% of the dry weight of leaves (equivalent to 126 mg/g). Additionally, the amounts of flavonoids and phenols in extract were estimated 119 mg/g and 418 mg/g, respectively. The cells incubated with t-BHP showed a significant decrease in survival (p < 0.001). Preincubation with extract (1.5 mg/mL and 2.0 mg/mL) attenuated the t-BHP toxicity and increased the cell viability in cells exposed even to the highest concentration of t-BHP (200 μM) (p value < 0.001, and p value = 0.035) respectively. Additionally, treatment with extract reduced the cell growth suppression caused by t-BHP. The P. biossieriana Buhse leaf extract at concentrations of 1.5 and 2.0 mg/mL is capable of attenuating t-BHP-induced cytotoxicity in HepG2 cells.
Collapse
Affiliation(s)
- Hamed Mir
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. .,Department of Biochemistry, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.
| | - Daniel Elieh Ali Komi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahdi Pouramir
- Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.,Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Akbar Moghadamnia
- Department of Pharmacology & Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Nayer Seyfizadeh
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Lakzaei
- Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
38
|
Effects of p-Cresol on Oxidative Stress, Glutathione Depletion, and Necrosis in HepaRG Cells: Comparisons to Other Uremic Toxins and the Role of p-Cresol Glucuronide Formation. Pharmaceutics 2021; 13:pharmaceutics13060857. [PMID: 34207666 PMCID: PMC8228354 DOI: 10.3390/pharmaceutics13060857] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 12/14/2022] Open
Abstract
The toxicological effects of p-cresol have primarily been attributed to its metabolism products; however, very little human data are available in the key organ (i.e., liver) responsible for the generation of these metabolites. Experiments were conducted in HepaRG cells utilizing the following markers of cellular toxicity: 2′-7′-dichlorofluorescein (DCF; oxidative stress) formation, total cellular glutathione (GSH) concentration, and lactate dehydrogenase (LDH; cellular necrosis) release. Concentrations of p-cresol, p-cresol sulfate, and p-cresol glucuronide were determined using validated assays. p-Cresol exposure resulted in concentration- and time-dependent changes in DCF (EC50 = 0.64 ± 0.37 mM at 24 h of exposure) formation, GSH (EC50 = 1.00 ± 0.07 mM) concentration, and LDH (EC50 = 0.85 ± 0.14 mM) release at toxicologically relevant conditions. p-Cresol was also relatively more toxic than 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid, indole-3-acetic acid, indoxyl sulfate, kynurenic acid, and hippuric acid on all markers. Although the exogenous administration of p-cresol sulfate and p-cresol glucuronide generated high intracellular concentrations of these metabolites, both metabolites were less toxic compared to p-cresol at equal-molar conditions. Moreover, p-cresol glucuronide was the predominant metabolite generated in situ from p-cresol exposure. Selective attenuation of glucuronidation (without affecting p-cresol sulfate formation, while increasing p-cresol accumulation) using independent chemical inhibitors (i.e., 0.75 mM l-borneol, 75 µM amentoflavone, or 100 µM diclofenac) consistently resulted in further increases in LDH release associated with p-cresol exposure (by 28.3 ± 5.3%, 30.0 ± 8.2% or 27.3 ± 6.8%, respectively, compared to p-cresol treatment). These novel data indicated that p-cresol was a relatively potent toxicant, and that glucuronidation was unlikely to be associated with the manifestation of its toxic effects in HepaRG cells.
Collapse
|
39
|
An evidence update on the protective mechanism of tangeretin against neuroinflammation based on network pharmacology prediction and transcriptomic analysis. Eur J Pharmacol 2021; 906:174094. [PMID: 34087222 DOI: 10.1016/j.ejphar.2021.174094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 01/05/2023]
Abstract
Although the protective effects of tangeretin on neuroinflammation have been proven in cell and animal experiments, few studies explore its underlying molecular mechanism. In this study, we used the network pharmacology method combined with the transcriptome approach to investigate its underlying anti-inflammatory mechanism in human microglial cells. Based on network pharmacology analysis, four putative target proteins and ten potential pathways were identified. Among them, vascular endothelial growth factor A (VEGFA), epidermal growth factor receptor (EGFR) and the related phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT), the mitogen-activated protein kinase (MAPK), mechanistic target of rapamycin (mTOR) signaling pathway were well-supported by transcriptome data. Meanwhile, transcriptome analysis supplemented two crucial targets: the insulin receptor (InsR) and insulin-like growth factor-I (IGF-1) receptor. Subsequently, VEGFA, EGFR, IGF-1 receptor, and InsR were further verified on the protein level. Taken together, we assumed that tangeretin could exert protective effects on neuroinflammation by decreasing the expression of VEGFA, EGFR, InsR, and IGF-1 receptor in the PI3K-AKT, MAPK, mTOR signaling pathway. More importantly, it is for the first time to show that the anti-neuroinflammatory effects of tangeretin through VEGFA, EGFR, IGF-1 receptor, InsR, and mTOR signaling pathway. These works offer new insight into the anti-neuroinflammatory functions of tangeretin and propose novel information on further anti-inflammatory mechanism studies.
Collapse
|
40
|
Yuan J, Che S, Zhang L, Ruan Z. Reparative Effects of Ethanol-Induced Intestinal Barrier Injury by Flavonoid Luteolin via MAPK/NF-κB/MLCK and Nrf2 Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4101-4110. [PMID: 33749262 DOI: 10.1021/acs.jafc.1c00199] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Luteolin, a dietary flavonoid, has gained increasing interest as an intestinal protectant. This study aimed to evaluate the reparative effect of luteolin against ethanol-induced intestinal barrier damage in a Caco-2 cell monolayer model and the potential mechanisms. Luteolin attenuated ethanol-induced intestinal barrier injury, by increasing transepithelial monolayer resistance (TEER, 27.75 ± 14.75% of the ethanol group, p < 0.01), reducing Lucifer yellow flux (13.21 ± 1.23% of ethanol group, p < 0.01), and upregulating the expression of tight junction (TJ) proteins zonulin occludin-1 (ZO-1), occludin, and claudin-1 (37.963 ± 8.62%, 17.69 ± 7.35%, and 29.40 ± 8.08% of the ethanol group, respectively, p < 0.01). Further mechanistic studies showed that luteolin suppressed myosin light chain 2 (MLC) phosphorylation, myosin light chain kinase (MLCK) activation, nuclear factor kappa-B (NF-κB) nuclear translocation, and mitogen-activated-protein-kinase (MAPK) phosphorylation. Moreover, luteolin also acted as antioxidants indirectly by upregulating antioxidant-responsive-element (ARE) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) nuclear translocation to relieve ethanol-induced oxidative damage and TJ dysfunction. The results of the study indicate that luteolin may play an effective role in relieving intestinal barrier damage, and this effect is at least partially due to its indirect antioxidant capacity.
Collapse
Affiliation(s)
- Jinwen Yuan
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang 330047, China
| | - Siyan Che
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang 330047, China
| | - Li Zhang
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang 330047, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang 330047, China
| |
Collapse
|
41
|
Therapeutic Implications of a Polymethoxylated Flavone, Tangeretin, in the Management of Cancer via Modulation of Different Molecular Pathways. Adv Pharmacol Pharm Sci 2021; 2021:4709818. [PMID: 33748757 PMCID: PMC7954633 DOI: 10.1155/2021/4709818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/25/2021] [Accepted: 02/25/2021] [Indexed: 12/27/2022] Open
Abstract
Chemotherapeutics can induce oxidative stress, inflammation, apoptosis, mitochondrial dysfunction, and abnormalities in neurotransmitter metabolism leading to toxicity. Because there have been no therapeutic strategies developed to target inflammation and oxidative stress, there is a continuing need for new and improved therapy. As a result, there has been increasing interest in complementary and alternative medicine with anticancer potential. Studies have shown that the antioxidant activities and anti-inflammatory effects of citrus fruits are promising natural phytochemicals in the development of new anticancer agents. Tangeretin is a naturally polymethoxylated flavone compound extracted from the citrus peel that has shown significant intestinal absorption and adequate bioavailability, with the added benefit of promoting longevity. In addition, tangeretin is known to exhibit considerable selective toxicity to many types of cancer cell proliferation such as ovarian, brain, blood, and skin cancer. Evidence indicates that tangeretin acts through several mechanisms including growth inhibition, induction of apoptosis, autophagy, antiangiogenesis, and estrogenic-like effects. Furthermore, tangeretin works through mitigating levels of inflammatory mediators in the immune system. Using tangeretin in combination with clinically applied anticancer drugs could be a good strategy for increasing the efficiency of these agents and protecting noncancerous cells from damage caused by chemotherapy. The purpose of this review is to highlight the protective effects of a novel natural product, tangeretin against chemotherapeutic-induced toxicity. The development of chemoprevention strategies can lead to significant health care improvement in cancer survivors. Thus, study outcomes may attract more investigators to conduct tangeretin-related research and find out potentially significant impacts on health care of cancer patients and decreased health problems associated with chemotherapeutics-induced toxicity.
Collapse
|
42
|
Feng XH, Xu HY, Wang JY, Duan S, Wang YC, Ma CM. In vivo hepatoprotective activity and the underlying mechanism of chebulinic acid from Terminalia chebula fruit. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 83:153479. [PMID: 33561764 DOI: 10.1016/j.phymed.2021.153479] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/07/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The fruit of Terminalia chebula Retz. is one of the most widely used herbal drug in Traditional medicine prescriptions including those for liver diseases. In the screening of bioactive constituents that have potential hepatoprotective activity, chebulinic acid (CA) which is a major chemical constituent of T. chebula fruit showed potent activity. PURPOSE This work was conducted to investigate the hepatoprotective activity and mechanisms of CA. METHODS The hepatoprotective effect of CA was examined on hepatotoxic models of cells, zebrafish larvae and mice caused by tert-butyl hydrogen peroxide (t-BHP), acetaminophen (APAP) and CCl4, respectively. RESULTS Pretreatment with CA could prevent t-BHP-induced damage in L-02 hepatocytes by blocking the production of ROS, reducing LDH levels and enhancing HO-1 and NQO1 expression via MAPK/Nrf2 signaling pathway. In animal experiments, CA significantly protected mice from CCl4-induced liver injury, as demonstrated by reduced ALT, AST and MDA levels, enhanced SOD activity, improved liver histopathological changes, and the activation of the Nrf2/HO-1 signaling pathway. CA metabolized to chebulic acid isomers with DPPH radical scavenging activity. In a transgenic zebrafish line with liver specific expression of DsRed RFP, CA diminished the hepatotoxicity induced by 10 mM APAP. CONCLUSION Experiments in cell and two animal models demonstrated consistent results and comprehensively expounded the hepatoprotective effects of CA.
Collapse
Affiliation(s)
- Xin-Hong Feng
- Key Laboratory of Forage and Endemic Crop Biotechnology of Ministry of Education, and State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Hai-Yan Xu
- Key Laboratory of Forage and Endemic Crop Biotechnology of Ministry of Education, and State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jian-Ye Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology of Ministry of Education, and State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Shen Duan
- Key Laboratory of Forage and Endemic Crop Biotechnology of Ministry of Education, and State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Ying-Chun Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology of Ministry of Education, and State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| | - Chao-Mei Ma
- Key Laboratory of Forage and Endemic Crop Biotechnology of Ministry of Education, and State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
43
|
Lu Q, Gu W, Luo C, Wang L, Hua W, Sun Y, Tang L. Phytochemical characterization and hepatoprotective effect of active fragment from Adhatoda vasica Nees. against tert-butyl hydroperoxide induced oxidative impairment via activating AMPK/p62/Nrf2 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113454. [PMID: 33065254 DOI: 10.1016/j.jep.2020.113454] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/29/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Adhatoda vasica Nees., which existed in a large; number of Tibetan medicine prescriptions for hepatopathy, used as an adjuvant to treat liver diseases. HYPOTHESIS/PURPOSE Oxidative stress is the key player in the development and progression of liver pathogenesis. In recent years, research is increasingly being focused on exploitation of the active components from medicinal plants to combat the liver oxidative injury. In our study, we aimed to screen the active principles from A. vasica and clarify whether they could relieve oxidative damage induced by tert-Butyl hydroperoxide (t-BHP) and its potential mechanism via activating AMPK/p62/Nrf2 pathway. MATERIALS AND METHODS Ultra performance liquid chromatography (UPLC) was adopted for analysis of chemical composition in the extracts. Furthermore, the antioxidant activity of the fractions was evaluated using DPPH, ABTS and reducing power assay. Along with this, the compounds in this fraction with highest antioxidant activity were analyzed using UPLC-MS. Based on this, the condition for extracting flavonoids of this subfraction was optimized via response surface method. CCK-8 assay was used to detect cell viability. Detection kits were used to measure the activity changes of AST, ALT, LDH and CAT as well as MDA and GSH levels induced by t-BHP. Detection of reactive oxygen species (ROS) production was used DCFH-DA probe. DAPI staining and flow cytometry was used to detect cell apoptosis. In terms of the mechanistic studies, the expression of proteins involved in AMPK/p62/Nrf2 pathway was measured using western blotting. RESULTS Eventually, 70% ethanol extract from leaf of A. vasica was chosen due to its highest active components compared with other extracts. Further, ethyl acetate fraction derived from 70% ethanol extract in A. vasica (AVEA) possess highest ability for scavenging DPPH and ABTS free radicals as well as strongest reducing power than other fractions. Chemical composition analysis showed that AVEA contained 17 compounds, including 1 quinazoline alkaloid, 12 flavonoid-C-glycosides and 4 flavonoid-O-glycosides. In addition, the conditions (ratio of solid-liquid 1:14, the concentration of ethanol 73%, and the temperature 65 °C) were selected to enrich the flavonoids in AVEA. Furthermore, AVEA could attenuate t-BHP induced hepatocyte damage via increasing the cell viability, restoring abnormal the activities of AST, ALT, LDH and CAT as well as the levels of MDA and GSH. ROS fluorescence intensity was reduced by AVEA. Meanwhile, it could inhibit the cell apoptosis of BRL 3 A cells, as evidenced by restoration of cell morphology and decreasing the number of apoptotic cells. Further mechanistic studies indicated AVEA could promote p-AMPK expression to further induce autophagy adaptor-p62 protein expression, which could autophagic degradation of Keap1, leading to Nrf2 release and translocation into nucleus to induce antioxidant genes (HO-1, NQO-1, GCLC and GCLM) expression. CONCLUSION In our study, AVEA was first to screen as the active fraction in A. vasica with alkaloids and abundant flavones. Moreover, the fraction potentiates its beneficial aspect by displaying the protective role on relieving t-BHP induced oxidative stress and activating AMPK/p62/Nrf2 pathway. AVEA helps maintain the redox homeostasis of hepatic cells and could be considered as an effective candidate against oxidative stress related liver disorders.
Collapse
Affiliation(s)
- Qiuxia Lu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, China
| | - Wanqin Gu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, China
| | - Chaomei Luo
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, China
| | - Li Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, China
| | - Wan Hua
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, China
| | - Yiran Sun
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, China
| | - Lin Tang
- National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu, China.
| |
Collapse
|
44
|
Zhou Z, Qi J, Yang D, Yang MS, Jeong H, Lim CW, Kim JW, Kim B. Exogenous activation of toll-like receptor 5 signaling mitigates acetaminophen-induced hepatotoxicity in mice. Toxicol Lett 2021; 342:58-72. [PMID: 33571619 DOI: 10.1016/j.toxlet.2021.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/06/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
Acetaminophen (APAP) poisoning is the most common cause of drug-induced acute liver injury (ALI). Our results showed that toll-like receptor 5 (TLR5) was abundantly expressed in hepatocytes and dramatically downregulated in the toxic mouse livers. Hence, we herein investigated the role of TLR5 signaling after APAP overdose. Mice were intraperitoneally (i.p.) injected with APAP to induce ALI, and then injected with flagellin at one hour after APAP administration. Flagellin attenuated APAP-induced ALI based on decreased histopathologic lesions, serum biochemical, oxidative stress, and inflammation. Furthermore, the protective effects of flagellin were abolished by TH1020 (a TLR5 antagonist) treatment. These results suggest that flagellin exerted protective effects on ALI via TLR5 activation. Mechanistically, flagellin injection promoted the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus in hepatocytes. Consistent with the in vivo results, flagellin increased the activation of Nrf2 in hepatocytes, resulting in decreased APAP toxicity. ML385, a selective inhibitor of Nrf2, abolished the flagellin-mediated hepatoprotective effects in damaged livers and hepatocytes. Additionally, the flagellin-induced Nrf2 translocation was dependent upon the activation of TLR5-JNK/p38 pathways. These findings suggest that TLR5 signaling-induced Nrf2 activation, at least partially, contributed to the protection against APAP-induced ALI by flagellin treatment.
Collapse
Affiliation(s)
- Zixiong Zhou
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, No. 1, Xuefu North Road, University Town, Fuzhou, 350122, Fujian, China
| | - Jing Qi
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, No. 1, Xuefu North Road, University Town, Fuzhou, 350122, Fujian, China
| | - Daram Yang
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Myeon-Sik Yang
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Hyuneui Jeong
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Chae Woong Lim
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Jong-Won Kim
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea; Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Bumseok Kim
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea.
| |
Collapse
|
45
|
Chang SN, Kim SH, Dey DK, Park SM, Nasif O, Bajpai VK, Kang SC, Lee J, Park JG. 5-O-Demethylnobiletin Alleviates CCl 4-Induced Acute Liver Injury by Equilibrating ROS-Mediated Apoptosis and Autophagy Induction. Int J Mol Sci 2021; 22:1083. [PMID: 33499185 PMCID: PMC7865239 DOI: 10.3390/ijms22031083] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 01/08/2023] Open
Abstract
Polymethoxyflavanoids (PMFs) have exhibited a vast array of therapeutic biological properties. 5-O-Demethylnobiletin (5-DN) is one such PMF having anti-inflammatory activity, yet its role in hepatoprotection has not been studied before. Results from in vitro study revealed that 5-DN did not exert a high level of cytotoxicity on HepG2 cells at 40 μM, and it was able to rescue HepG2 cell death induced by carbon tetrachloride (CCl4). Subsequently, we investigated acute liver injury on BALB/c mice induced by CCl4 through the intraperitoneal injection of 1 mL/kg CCl4 and co-administration of 5-DN at (1 and 2 mg/kg) by oral gavage for 15 days. The results illustrated that treatment with 5-DN attenuated CCl4-induced elevated serum aminotransferase (AST)/alanine aminotransferase (ALT) ratio and significantly ameliorated severe hepatic damage such as inflammation and fibrosis evidenced through lesser aberrations in the liver histology of 5-DN dose groups. Additionally, 5-DN efficiently counteracted and equilibrated the production of ROS accelerated by CCl4 and dramatically downregulated the expression of CYP2E1 vitally involved in converting CCl4 to toxic free radicals and also enhanced the antioxidant enzymes. 5-DN treatment also inhibited cell proliferation and inflammatory pathway abnormally regulated by CCl4 treatment. Furthermore, the apoptotic response induced by CCl4 treatment was remarkably reduced by enhanced Bcl-2 expression and noticeable reduction in Bax, Bid, cleaved caspase 3, caspase 9, and apaf-1 expression. 5-DN treatment also induced the conversion of LC3 and promoted the autophagic flux. Conclusively, 5-DN exhibited hepatoprotective effects in vitro and in vivo and prevented liver fibrosis induced by CCl4.
Collapse
Affiliation(s)
- Sukkum Ngullie Chang
- Department of Biotechnology, Daegu University, Gyeongsan 38453, Korea; (S.N.C.); (D.K.D.); (S.C.K.)
- Advanced Bio Convergence Center (ABCC), Pohang Technopark Foundation, Pohang 37668, Korea; (S.H.K.); (S.M.P.)
| | - Se Ho Kim
- Advanced Bio Convergence Center (ABCC), Pohang Technopark Foundation, Pohang 37668, Korea; (S.H.K.); (S.M.P.)
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Debasish Kumar Dey
- Department of Biotechnology, Daegu University, Gyeongsan 38453, Korea; (S.N.C.); (D.K.D.); (S.C.K.)
| | - Seon Min Park
- Advanced Bio Convergence Center (ABCC), Pohang Technopark Foundation, Pohang 37668, Korea; (S.H.K.); (S.M.P.)
| | - Omaima Nasif
- Department of Physiology, College of Medicine, King Saud University (Medical City), King Khalid University Hospital, P.O. Box 2925, Riyadh 11461, Saudi Arabia;
| | - Vivek K. Bajpai
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul 04620, Korea
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Gyeongsan 38453, Korea; (S.N.C.); (D.K.D.); (S.C.K.)
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Jae Gyu Park
- Advanced Bio Convergence Center (ABCC), Pohang Technopark Foundation, Pohang 37668, Korea; (S.H.K.); (S.M.P.)
| |
Collapse
|
46
|
Wang Y, Liu XJ, Chen JB, Cao JP, Li X, Sun CD. Citrus flavonoids and their antioxidant evaluation. Crit Rev Food Sci Nutr 2021; 62:3833-3854. [PMID: 33435726 DOI: 10.1080/10408398.2020.1870035] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The antioxidant ability is the link and bridge connecting a variety of biological activities. Citrus flavonoids play an essential role in regulating oxidative stress and are an important source of daily intake of antioxidant supplements. Many studies have shown that citrus flavonoids promote health through antioxidation. In this review, the biosynthesis, composition and distribution of citrus flavonoids were concluded. The detection methods of antioxidant capacity of citrus flavonoids were divided into four categories: chemical, cellular, animal and clinical antioxidant capacity evaluation systems. The modeling methods, applicable scenarios, and their relative merits were compared based on these four systems. The antioxidant functions of citrus flavonoids under different evaluation systems were also discussed, especially the regulation of the Nrf2-antioxidases pathway. Some shortcomings in the current research were pointed out, and some suggestions for progress were put forward.
Collapse
Affiliation(s)
- Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Xiao-Juan Liu
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Jie-Biao Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Jin-Ping Cao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Xian Li
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Chong-De Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| |
Collapse
|
47
|
Chang SN, Dey DK, Oh ST, Kong WH, Cho KH, Al-Olayan EM, Hwang BS, Kang SC, Park JG. Phorbol 12-Myristate 13-Acetate Induced Toxicity Study and the Role of Tangeretin in Abrogating HIF-1α-NF-κB Crosstalk In Vitro and In Vivo. Int J Mol Sci 2020; 21:9261. [PMID: 33291656 PMCID: PMC7729754 DOI: 10.3390/ijms21239261] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 11/16/2022] Open
Abstract
Phorbol 12-myristate 13-acetate (PMA) is a potent tumor promoter and highly inflammatory in nature. Here, we investigated the toxic effects of PMA on different model system. PMA (10 μg) caused chromosomal aberrations on the Allium cepa root tip and induced mitotic dysfunction. Similarly, PMA caused embryonic and larval deformities and a plummeted survivability rate on zebrafish embryo in a dose-dependent manner. Persistently, PMA treatment on immortalized human keratinocyte human keratinocyte (HaCaT) cells caused massive inflammatory rush at 4 h and a drop in cell survivability at 24 h. Concomitantly, we replicated a cutaneous inflammation similar to human psoriasis induced by PMA. Herein, we used tangeretin (TAN), as an antagonist to counteract the inflammatory response. Results from an in vivo experiment indicated that TAN (10 and 30 mg/kg) significantly inhibited PMA stimulated epidermal hyperplasia and intra-epidermal neutrophilic abscesses. In addition, its treatment effectively neutralized PMA induced elevated reactive oxygen species (ROS) generation on in vitro and in vivo systems, promoting antioxidant response. The association of hypoxia-inducible factor 1-alpha (HIF-1α)-nuclear factor kappa-light-chain-enhancer of activated b cells (NF-κB) crosstalk triggered by PMA enhanced PKCα-ERK1/2-NF-κB pathway; its activation was also significantly counteracted after TAN treatment. Conclusively, we demonstrated TAN inhibited the nuclear translocation of HIF-1α and NF-κB p65. Collectively, TAN treatment ameliorated PMA incited malignant inflammatory response by remodeling the cutaneous microenvironment.
Collapse
Affiliation(s)
- Sukkum Ngullie Chang
- Department of Biotechnology, Daegu University, Gyeongsan 38453, Korea; (S.N.C.); (D.K.D.)
- Advanced Bio Convergence Center, Pohang Technopark Foundation, Pohang 37668, Gyeongbuk, Korea; (S.T.O.); (W.H.K.)
| | - Debasish Kumar Dey
- Department of Biotechnology, Daegu University, Gyeongsan 38453, Korea; (S.N.C.); (D.K.D.)
| | - Seong Taek Oh
- Advanced Bio Convergence Center, Pohang Technopark Foundation, Pohang 37668, Gyeongbuk, Korea; (S.T.O.); (W.H.K.)
- Okinawa Research Center Co. Ltd., 13-33, Suzaki, Uruma-si, Okinawa Ken 904-2234, Japan
| | - Won Ho Kong
- Advanced Bio Convergence Center, Pohang Technopark Foundation, Pohang 37668, Gyeongbuk, Korea; (S.T.O.); (W.H.K.)
| | - Kiu Hyung Cho
- Research Group, Gyeongbuk Institute for Bio Industry (GIB), Andong 36728, Korea;
| | - Ebtesam M. Al-Olayan
- Department of Zoology, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Buyng Su Hwang
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Korea;
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Gyeongsan 38453, Korea; (S.N.C.); (D.K.D.)
| | - Jae Gyu Park
- Advanced Bio Convergence Center, Pohang Technopark Foundation, Pohang 37668, Gyeongbuk, Korea; (S.T.O.); (W.H.K.)
| |
Collapse
|
48
|
Hu Y, Qin Y, Qiu C, Xu X, Jin Z, Wang J. Ultrasound-assisted self-assembly of β-cyclodextrin/debranched starch nanoparticles as promising carriers of tangeretin. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
49
|
Regulation of Nrf2/ARE Pathway by Dietary Flavonoids: A Friend or Foe for Cancer Management? Antioxidants (Basel) 2020; 9:antiox9100973. [PMID: 33050575 PMCID: PMC7600646 DOI: 10.3390/antiox9100973] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 12/25/2022] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cell signaling mechanism in maintaining redox homeostasis in humans. The role of dietary flavonoids in activating Nrf2/ARE in relation to cancer chemoprevention or cancer promotion is not well established. Here we summarize the dual effects of flavonoids in cancer chemoprevention and cancer promotion with respect to the regulation of the Nrf2/ARE pathway, while underlying the possible cellular mechanisms. Luteolin, apigenin, quercetin, myricetin, rutin, naringenin, epicatechin, and genistein activate the Nrf2/ARE pathway in both normal and cancer cells. The hormetic effect of flavonoids has been observed due to their antioxidant or prooxidant activity, depending on the concentrations. Reported in vitro and in vivo investigations suggest that the activation of the Nrf2/ARE pathway by either endogenous or exogenous stimuli under normal physiological conditions contributes to redox homeostasis, which may provide a mechanism for cancer chemoprevention. However, some flavonoids, such as luteolin, apigenin, myricetin, quercetin, naringenin, epicatechin, genistein, and daidzein, at low concentrations (1.5 to 20 µM) facilitate cancer cell growth and proliferation in vitro. Paradoxically, some flavonoids, including luteolin, apigenin, and chrysin, inhibit the Nrf2/ARE pathway in vitro. Therefore, even though flavonoids play a major role in cancer chemoprevention, due to their possible inducement of cancer cell growth, the effects of dietary flavonoids on cancer pathophysiology in patients or appropriate experimental animal models should be investigated systematically.
Collapse
|
50
|
Flavonoids from Aurantii Fructus Immaturus and Aurantii Fructus: promising phytomedicines for the treatment of liver diseases. Chin Med 2020; 15:89. [PMID: 32863858 PMCID: PMC7449045 DOI: 10.1186/s13020-020-00371-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Background Liver diseases and related complications are major sources of morbidity and mortality, which places a huge financial burden on patients and lead to nonnegligible social problems. Therefore, the discovery of novel therapeutic drugs for the treatment of liver diseases is urgently required. Aurantii Fructus Immaturus (AFI) and Aurantii Fructus (AF) are frequently used herbal medicines in traditional Chinese medicine (TCM) formulas for the treatment of diverse ailments. A variety of bioactive ingredients have been isolated and identified from AFI and AF, including alkaloids, flavonoids, coumarins and volatile oils. Main body Emerging evidence suggests that flavonoids, especially hesperidin (HD), naringenin (NIN), nobiletin (NOB), naringin (NRG), tangeretin (TN), hesperetin (HT) and eriodictyol (ED) are major representative bioactive ingredients that alleviate diseases through multi-targeting mechanisms, including anti-oxidative stress, anti-cytotoxicity, anti-inflammation, anti-fibrosis and anti-tumor mechanisms. In the current review, we summarize the recent progress in the research of hepatoprotective effects of HD, NIN, NOB, NRG, TN, HT and ED and highlight the potential underlying molecular mechanisms. We also point out the limitations of the current studies and shed light on further in-depth pharmacological and pharmacokinetic studies of these bioactive flavonoids. Conclusion This review outlines the recent advances in the literature and highlights the potential of these flavonoids isolated from AFI and AF as therapeutic agents for the treatment of liver diseases. Further pharmacological studies will accelerate the development of natural products in AFI and AF and their derivatives as medicines with tantalizing prospects in the clinical application.
Collapse
|