1
|
Gao J, Lin Z, Zhou M, Hu Z, Zhu Y, Lin Z, Dai W. Recent Advances in N-Ethyl-2-Pyrrolidinone-Substituted Flavanols (EPSFs), Novel Bioactive Components in Tea: Chemical Structure, Formation Mechanism, and Potential Health Benefits. Compr Rev Food Sci Food Saf 2025; 24:e70195. [PMID: 40371457 DOI: 10.1111/1541-4337.70195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/04/2025] [Accepted: 04/27/2025] [Indexed: 05/16/2025]
Abstract
N-Ethyl-2-pyrrolidinone-substituted flavanols (EPSFs) are a newly discovered class of flavanol derivatives in tea and have emerged as a focal point in tea studies in recent years. Over 50 EPSFs and their analogs have been identified in fresh tea leaves and various tea products. These compounds are characterized by N-ethyl-2-pyrrolidinone substitution at either the C-8 or C-6 position of flavanols, and they exist as chiral enantiomers (R- or S-configuration). EPSFs are formed from theanine and flavanols through biosynthesis in fresh tea leaves, microbial-mediated synthesis during postfermentation of dark tea, chemical synthesis during thermal processing, and accumulation over prolonged storage periods. The contents of these compounds in teas are closely related to tea processing and storage; thus, they hold promise as potential markers for monitoring the degree of thermal processing (baking and roasting) and storage age of tea. Moreover, EPSFs exhibit a range of significant biological activities, as substantiated through both in vitro and in vivo studies. Nonetheless, the current status of EPSFs has not yet been systematically reviewed. This article aims to provide a comprehensive review of recent advancements in EPSFs from years 2005 to 2024, with a focus on their chemical structures, formation mechanisms, analytical methods, relationships with processing and storage, and bioactivities, as well as techniques for EPSF enrichment in teas. Furthermore, this review discusses future prospects of EPSF-containing functional foods and nutritional health products to illuminate potential applications of EPSFs in both the tea industry and the healthcare sector.
Collapse
Affiliation(s)
- Jianjian Gao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiyuan Lin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Mengxue Zhou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Zhengyan Hu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Yin Zhu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Zhi Lin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Weidong Dai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Ke JP, Lai G, Han Z, Cheng Y, Zhu M, Zhang L. Formation and characterization of theanine-flavonol glycoside adduct and its quantitative analysis during the processing of green tea. Food Res Int 2025; 202:115734. [PMID: 39967181 DOI: 10.1016/j.foodres.2025.115734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025]
Abstract
In addition to forming N-ethyl-2-pyrrolidinone-substituted flavan-3-ols (EPSFs) with catechins, the Strecker degradation products of theanine can also combine with flavonol glycosides (FGs) to form EPSFGs during tea processing. In the present study, a novel adduct of theanine and rutin was identified and named as EPS-rutin. The effects of reaction temperature, time, initial reactant ratio, and water content on the generation of EPS-rutin in thermal reaction models were also analyzed. When the initial mass ratio of rutin to theanine was 1:5 and heating under 140 °C for 60 min, the content of EPS-rutin was the highest. Meanwhile, the content of EPS-rutin in green tea during processing was determined. Results showed EPS-rutin was formed during the first drying stage, and its level significantly increased after final drying. Furthermore, the bitterness and astringency thresholds of EPS-rutin were determined to be higher than those of rutin. This study further improved the understanding of the transformation pathways of theanine and polyphenols during tea processing, as well as contributed to exploring the flavor characteristics and health benefits of EPS-rutin.
Collapse
Affiliation(s)
- Jia-Ping Ke
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036 China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036 China
| | - Guoping Lai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036 China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036 China
| | - Zisheng Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036 China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036 China.
| | - Yong Cheng
- Zhejiang Skyherb Biotechnology Inc., Huzhou 313000 China
| | - Mengting Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036 China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036 China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036 China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036 China.
| |
Collapse
|
3
|
Long P, Su S, Wen M, Ho CT, Han Z, Zuo X, Jiang Y, Ke JP, Lai G, Zhu M, Wan X, Zhang L. Novel Pink Pigments Produced by Thermal Interaction of Theaflavins, Theanine, and Glucose: Color Formation, Isolation, and Structural Characterization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22303-22315. [PMID: 39324431 DOI: 10.1021/acs.jafc.4c07072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
A color-deepening effect of theaflavins on the theanine-glucose thermal reaction model was revealed. Generated chromogenic intermediates in the initial stage and an accelerated browning rate through the promoted degradation of theanine-glucose Amadori rearrangement product in the intermediate and final stages are responsible for the color-deepening effect. Four pink-to-red theaflavin-theanine intermediates were verified as theaflavinies referencing the nuclear magnetic resonance and liquid chromatography-mass spectrometry information on theaflavins and l-theanine, including one accurately identified as theaflavinie 4. Theaflavinie 4 showed two maximum absorption peaks at 401 and 506 nm with parallel intensities, which resulted in a significant dichromic color change from pale pink to orange and red. Theaflavinies also could undergo further thermal reactions to yield brown polymers under higher temperatures (130 and 140 °C). This research provided new insight into realizing thermally formed polymers during black tea processing, which may be formed by oxidation products and amino acids or proteins through non-enzymatic thermal reactions.
Collapse
Affiliation(s)
- Piaopiao Long
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Shengxiao Su
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Zisheng Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Xiaobo Zuo
- Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Resources, Hangzhou Tea Research Institute, CHINA COOP, Hangzhou 310016, China
| | - Yulan Jiang
- Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Resources, Hangzhou Tea Research Institute, CHINA COOP, Hangzhou 310016, China
| | - Jia-Ping Ke
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Guoping Lai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Mengting Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
4
|
Yao Z, Wu Q, Sheng W, Zhou X, Cheng L, Tian X, Yuan H, Gong L, Wang W, Li B, Peng C. Flavonoidal alkaloids: Emerging targets for drug discovery from Nature's bounty. Fitoterapia 2024; 177:106099. [PMID: 38945491 DOI: 10.1016/j.fitote.2024.106099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
This paper explores the potential of flavonoid alkaloids, a unique class of compounds that contain both flavonoid and alkaloid structures, as emerging targets for drug discovery. These compounds exhibit diverse biological activities, such as anti-inflammatory, anti-cancer, and anti-diabetic effects, which are attributed to the combination of different flavonoid scaffolds and alkaloid groups. Flavonoid alkaloids have attracted researchers' attention due to their diverse structures and important bio-activities. Therefore, this review summarizes recent advances in the extraction, purification, structural characterization, synthesis pathways and biological activities of flavonoid alkaloids from natural sources. Finally, the potential prospects and challenges associated with this class of compounds in pharmacological research are discussed along with details of a mechanistic investigation and future clinical applications in this research field.
Collapse
Affiliation(s)
- Zhijian Yao
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Hunan Provincial TCM and Ethnomedicine Internationnal Science & Technology Innovation Cooperation Base, Hunan Province Laboratory of Natural Medicial Resources and Functions, Changsha 410208, China
| | - Qian Wu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Hunan Provincial TCM and Ethnomedicine Internationnal Science & Technology Innovation Cooperation Base, Hunan Province Laboratory of Natural Medicial Resources and Functions, Changsha 410208, China; Chinese Medicine Hospital of Hengyang, Hengyang 421009, China
| | - Wenbing Sheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Hunan Provincial TCM and Ethnomedicine Internationnal Science & Technology Innovation Cooperation Base, Hunan Province Laboratory of Natural Medicial Resources and Functions, Changsha 410208, China
| | - XuDong Zhou
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Hunan Provincial TCM and Ethnomedicine Internationnal Science & Technology Innovation Cooperation Base, Hunan Province Laboratory of Natural Medicial Resources and Functions, Changsha 410208, China
| | - Lidong Cheng
- Shimen Yirentang Traditional Chinese Medicine Sliced Medicine Co., Ltd. Changde 415300, China
| | - Xing Tian
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Hunan Provincial TCM and Ethnomedicine Internationnal Science & Technology Innovation Cooperation Base, Hunan Province Laboratory of Natural Medicial Resources and Functions, Changsha 410208, China
| | - Hanwen Yuan
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Hunan Provincial TCM and Ethnomedicine Internationnal Science & Technology Innovation Cooperation Base, Hunan Province Laboratory of Natural Medicial Resources and Functions, Changsha 410208, China
| | - Limin Gong
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Hunan Provincial TCM and Ethnomedicine Internationnal Science & Technology Innovation Cooperation Base, Hunan Province Laboratory of Natural Medicial Resources and Functions, Changsha 410208, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Hunan Provincial TCM and Ethnomedicine Internationnal Science & Technology Innovation Cooperation Base, Hunan Province Laboratory of Natural Medicial Resources and Functions, Changsha 410208, China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Hunan Provincial TCM and Ethnomedicine Internationnal Science & Technology Innovation Cooperation Base, Hunan Province Laboratory of Natural Medicial Resources and Functions, Changsha 410208, China.
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Hunan Provincial TCM and Ethnomedicine Internationnal Science & Technology Innovation Cooperation Base, Hunan Province Laboratory of Natural Medicial Resources and Functions, Changsha 410208, China; Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
5
|
Yang JN, Yi JL, Zou JH, Chen ZX, Chen GY, Hui Y, Sun ZF, Chen WH. Flavonoidal alkaloids from the flowers of Chromolaena odorata (L.) R.M.King & H.Rob. Nat Prod Res 2024; 38:2964-2972. [PMID: 37081808 DOI: 10.1080/14786419.2023.2202395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/22/2023]
Abstract
A pair of epimers of flavonoid alkaloids, with a pyrrolidone moiety, 2S,5''R-eupodoratin A (1), 2S,5''S-eupodoratin A (2), together with two known analogues, drahebephin A (3), drahebephin B (4), were isolated from the flowers of Chromolaena odorata (L.) R.M.King & H.Rob. Their structures were elucidated on the basis of HR-ESI-MS, 1D/2D NMR spectral analyses. The absolute configuration of compounds (1) and (2) was determined by its experimental and calculated electronic circular dichroism (ECD) spectra. All compounds were isolated from the Asteraceae family for the first time. The ABTS·+ scavenging activity of compound (4) reached 93.56% at a concentration of 0.5 mM, while the scavenging capacity of positive control Trolox was 55.94%. In addition, all compounds show moderate antimicrobial activity against Escherichia coli (ATCC, 337304), Staphylococcus aureus (ATCC, 337371) and Candida albicans (ATCC, 186382) with a MIC value of more than 50 µg/mL.
Collapse
Affiliation(s)
- Jian-Ni Yang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, P.R. China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, P.R. China
| | - Ji-Ling Yi
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, P.R. China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, P.R. China
| | - Jing-Hua Zou
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, P.R. China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, P.R. China
| | - Zhao-Xia Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, P.R. China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, P.R. China
| | - Guang-Ying Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, P.R. China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, P.R. China
| | - Yang Hui
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, P.R. China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, P.R. China
| | - Zhen-Fan Sun
- Key Laboratory of Medicinal and Edible Plants Resources of Hainan Province, Hainan Vocational University of Science and Technology, Haikou, P.R. China
| | - Wen-Hao Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, P.R. China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, P.R. China
| |
Collapse
|
6
|
Gao J, Chen D, Xie D, Peng J, Hu Z, Lin Z, Dai W. Investigations of the highly efficient processing technique, chemical constituents, and anti-inflammatory effect of N-ethyl-2-pyrrolidinone-substituted flavan-3-ol (EPSF)-enriched white tea. Food Chem 2024; 450:139328. [PMID: 38626712 DOI: 10.1016/j.foodchem.2024.139328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 04/18/2024]
Abstract
N-Ethyl-2-pyrrolidinone-substituted flavan-3-ols (EPSFs) are a newly discovered compound class in tea with various bioactivities. This study aimed to develop a novel processing technique to enhance EPSF contents in white tea efficiently. Using optimal processing parameters of 125 °C and 30 min in a high-temperature sterilizing oven, total EPSF content significantly increased by 1.42-18.80-fold to 1.57-6.22 mg/g without impacting sensory characteristics. Metabolomics analysis revealed elevated levels of nucleosides, nucleotides, bases, theaflavins, flavonol aglycones, EPSFs, and most flavone-C-glycosides, as well as decreased levels of amino acids, procyanidins, theasinensins, several flavanols, and flavonol-O-glycosides after EPSF-enrichment treatment. Furthermore, the EPSF-enriched white tea exhibited notable anti-inflammatory effects, mitigating xylene-induced ear edema in mice and carrageenan-induced paw edema and cotton ball-induced granulomas in rats. This study developed a new processing technique for highly efficient enhancement of EPSFs in white tea and demonstrated that EPSF-enriched white tea has a potential to serve as effective anti-inflammatory dietary supplement.
Collapse
Affiliation(s)
- Jianjian Gao
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China
| | - Dan Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China
| | - Dongchao Xie
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China
| | - Jiakun Peng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China
| | - Zhengyan Hu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China.
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China
| | - Weidong Dai
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China.
| |
Collapse
|
7
|
Ouyang J, Jiang R, Chen H, Liu Q, Yi X, Wen S, Huang F, Zhang X, Li J, Wen H, Xiong L, Liu Z, Huang J. Characterization of key odorants in 'Baimaocha' black teas from different regions. Food Chem X 2024; 22:101303. [PMID: 38590631 PMCID: PMC10999827 DOI: 10.1016/j.fochx.2024.101303] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/29/2024] [Accepted: 03/16/2024] [Indexed: 04/10/2024] Open
Abstract
'Baimmaocha' is a distinctive resource for production of high-quality black tea, and its processed black tea has unique aroma characteristics. 190 volatile compounds were identified by comprehensive two-dimensional gas chromatography-olfactometry-quadrupole-time-of-flight mass spectrometry(GC × GC-O-Q-TOMS), and among them 23 compounds were recognized as key odorants contributing to forming different aroma characteristics in 'Baimaocha' black teas of Rucheng, Renhua, and Lingyun (RCBT, RHBT, LYBT). The odor activity value coupled with GC-O showed that methyl salicylate (RCBT), geraniol (RHBT), trans-β-ionone and benzeneacetaldehyde (LYBT) might be the most definitive aroma compounds identified from their respective regions. Furthermore, PLS analysis revealed three odorants as significant contributors to floral characteristic, four odorants related to fruity attribute, four odorants linked to fresh attribute, and three odorants associated with roasted attribute. These results provide novel insights into sensory evaluation and chemical substances of 'Baimaocha' black tea and provide a theoretical basis for controlling and enhancement tea aroma quality.
Collapse
Affiliation(s)
- Jian Ouyang
- Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
| | - Ronggang Jiang
- Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
| | - Hongyu Chen
- Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
| | - Qi Liu
- Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoqin Yi
- Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
| | - Shuai Wen
- Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
| | - Fangfang Huang
- Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
| | - Xinyi Zhang
- Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
| | - Juan Li
- Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, 410128 Changsha, China
| | - Haitao Wen
- Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, 410128 Changsha, China
| | - Ligui Xiong
- Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, 410128 Changsha, China
| | - Zhonghua Liu
- Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, 410128 Changsha, China
| | - Jianan Huang
- Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, 410128 Changsha, China
| |
Collapse
|
8
|
Wang Y, Xun H, Wang L, Aktar S, Lei Y, Zhang R, Wang L, Wei K. Identification of Key Genes Associated with 1,2,6-Tri-O-galloyl-β-D-glucopyranose Accumulation in Camellia sinensis Based on Transcriptome Sequencing. Foods 2024; 13:495. [PMID: 38338630 PMCID: PMC10855904 DOI: 10.3390/foods13030495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Hydrolyzed tannin 1,2,6-tri-O-galloyl-β-D-glucopyranose (1,2,6-TGGP) possesses significant medicinal properties. However, little is known about its underlying molecular mechanisms. In this study, the levels of 1,2,6-TGGP in tea materials from different cultivars and leaf positions were compared. Additionally, one leaf and one bud sample from six tea cultivars with significant variations in 1,2,6-TGGP levels were analyzed using transcriptome high-throughput sequencing to identify the genes that are responsible for 1,2,6-TGGP accumulation. The sequencing results were mapped to the reference tea genome, revealing a total of 2735 differentially expressed genes (DEGs). This set included four UDP glycosyltransferase (UGTs) and six serine carboxypeptidases-like (SCPLs) genes. Among them, the upregulated SCPLs (CSS0032817) may directly participate in the acylation reaction of 1,2,6-TGGP. In addition, several classes of DEGs, including cytochrome P450, were significantly associated with the 1,2,6-TGGP content, which is potentially involved in their regulation. Overall, these results provide new insights into the molecular mechanism of 1,2,6-TGGP accumulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kang Wei
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (Y.W.); (H.X.); (L.W.); (S.A.); (Y.L.); (R.Z.); (L.W.)
| |
Collapse
|
9
|
Murray AP, Biscussi B, Cavallaro V, Donozo M, Rodriguez SA. Naturally Occurring Cholinesterase Inhibitors from Plants, Fungi, Algae, and Animals: A Review of the Most Effective Inhibitors Reported in 2012-2022. Curr Neuropharmacol 2024; 22:1621-1649. [PMID: 37357520 PMCID: PMC11284722 DOI: 10.2174/1570159x21666230623105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/11/2023] [Accepted: 02/26/2023] [Indexed: 06/27/2023] Open
Abstract
Since the development of the "cholinergic hypothesis" as an important therapeutic approach in the treatment of Alzheimer's disease (AD), the scientific community has made a remarkable effort to discover new and effective molecules with the ability to inhibit the enzyme acetylcholinesterase (AChE). The natural function of this enzyme is to catalyze the hydrolysis of the neurotransmitter acetylcholine in the brain. Thus, its inhibition increases the levels of this neurochemical and improves the cholinergic functions in patients with AD alleviating the symptoms of this neurological disorder. In recent years, attention has also been focused on the role of another enzyme, butyrylcholinesterase (BChE), mainly in the advanced stages of AD, transforming this enzyme into another target of interest in the search for new anticholinesterase agents. Over the past decades, Nature has proven to be a rich source of bioactive compounds relevant to the discovery of new molecules with potential applications in AD therapy. Bioprospecting of new cholinesterase inhibitors among natural products has led to the discovery of an important number of new AChE and BChE inhibitors that became potential lead compounds for the development of anti-AD drugs. This review summarizes a total of 260 active compounds from 142 studies which correspond to the most relevant (IC50 ≤ 15 μM) research work published during 2012-2022 on plant-derived anticholinesterase compounds, as well as several potent inhibitors obtained from other sources like fungi, algae, and animals.
Collapse
Affiliation(s)
- Ana Paula Murray
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Brunella Biscussi
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Valeria Cavallaro
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Martina Donozo
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Silvana A. Rodriguez
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
10
|
Li ZQ, Yin XL, Gu HW, Zou D, Ding B, Li Z, Chen Y, Long W, Fu H, She Y. Revealing the chemical differences and their application in the storage year prediction of Qingzhuan tea by SWATH-MS based metabolomics analysis. Food Res Int 2023; 173:113238. [PMID: 37803551 DOI: 10.1016/j.foodres.2023.113238] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 10/08/2023]
Abstract
It's generally believed that the longer the storage, the better the quality of dark tea, but the chemical differences of Qingzhuan tea (QZT) with different storage years is still unclear. Herein, in this work, an untargeted metabolomic approach based on SWATH-MS was established to investigate the differential compounds of QZT with 0-9 years' storage time. These QZT samples were roughly divided into two categories by principal component analysis (PCA). After orthogonal projections to latent structures discriminant analysis (OPLS-DA), 18 differential compounds were putatively identified as chemical markers for the storage year variation of QZT. Heatmap visualization showed that the contents of catechins, fatty acids, and some phenolic acids significantly reduced, flavonoid glycosides, triterpenoids, and 8-C N-ethyl-2-pyrrolidinone-substituted flavan-3-ols (EPSFs) increased with the increase of storage time. Furthermore, these chemical markers were verified by the peak areas corresponding to MS2 ions from SWATH-MS. Based on the extraction chromatographic peak areas of MS and MS2 ions, a duration time prediction model was built for QZT with correlation coefficient R2 of 0.9080 and 0.9701, and RMSEP value of 0.85 and 1.24, respectively. This study reveals the chemical differences of QZT with different storage years and provides a theoretical basis for the quality evaluation of stored dark tea.
Collapse
Affiliation(s)
- Zhi-Quan Li
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Xiao-Li Yin
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China.
| | - Hui-Wen Gu
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Dan Zou
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Baomiao Ding
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Zhenshun Li
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Ying Chen
- College of Life Sciences, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434025, China
| | - Wanjun Long
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
11
|
Carloni P, Girolametti F, Giorgini E, Bacchetti T, Truzzi C, Illuminati S, Damiani E. Insights on the Nutraceutical Properties of Different Specialty Teas Grown and Processed in a German Tea Garden. Antioxidants (Basel) 2023; 12:1943. [PMID: 38001796 PMCID: PMC10669839 DOI: 10.3390/antiox12111943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
European countries have recently started experimenting with growing and producing their own teas in small quantities, mainly for the specialty tea sector. To characterize European teas, this study investigated a set of five tea types obtained from different Camellia sinensis varieties/cultivars, representing various oxidation grades (green, white, yellow, oolong, black), all grown and processed in the only tea garden in Europe (in Germany) that focuses on all five types. Hot and cold brews were studied by measuring the total phenolic (TPC) and flavonoid contents (TFC), the antioxidant capacity and UV-Vis spectra, also with the objective of discriminating between the different tea types and the different plant varieties. The dried leaves were analyzed to measure the content of essential and toxic elements and by ATR-FTIR spectroscopy to determine a chemical fingerprint for identifying the tea varieties and types. The average levels of TPC (hot brew = 5.82 ± 2.06; cold brew = 5.4 ± 2.46 mM GAEq), TFC (hot brew = 0.87 ± 0.309; cold brew = 0.87 ± 0.413 mM CAEq), and antioxidant capacity (ORAC assay-hot brew = 20.9 ± 605; cold brew = 21.8 ± 8.0 mM TXEq, ABTS assay-hot brew = 15.2 ± 5.09; cold brew = 15.1 ± 5.8 mM TXEq, FRAP assay-hot brew = 9.2 ± 3.84; cold brew = 10.4 ± 5.23 mM AAEq) observed compared well with those from other parts of the world such as China, Africa, and Taiwan. The hazard quotient <1 and the hazard index of 0.14 indicate that there is no non-carcinogenic risk from consumption of these teas. The obtained information is essential for elucidating the characteristics and the impact of tea processing and tea variety on the health benefits of these tea products coming from a single European tea garden. This multifaceted approach would help tea growers in Europe increase their knowledge on the health attributes of the teas they grow, ultimately leading to optimization of the nutraceutical properties of these teas.
Collapse
Affiliation(s)
- Patricia Carloni
- Department of Agricultural, Food and Environmental Sciences-D3A, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| | - Federico Girolametti
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (F.G.); (E.G.); (T.B.); (C.T.); (S.I.)
| | - Elisabetta Giorgini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (F.G.); (E.G.); (T.B.); (C.T.); (S.I.)
| | - Tiziana Bacchetti
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (F.G.); (E.G.); (T.B.); (C.T.); (S.I.)
| | - Cristina Truzzi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (F.G.); (E.G.); (T.B.); (C.T.); (S.I.)
| | - Silvia Illuminati
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (F.G.); (E.G.); (T.B.); (C.T.); (S.I.)
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (F.G.); (E.G.); (T.B.); (C.T.); (S.I.)
| |
Collapse
|
12
|
Li Y, Zhou H, Tian T, Hou Y, Chen D, Zhou J, Liu S, Yu Y, Dai W, Zhou T. Nontargeted and targeted metabolomics analysis for evaluating the effect of "golden flora" amount on the sensory quality, metabolites, and the alpha-amylase and lipase inhibitory activities of Fu brick tea. Food Chem 2023; 416:135795. [PMID: 36871505 DOI: 10.1016/j.foodchem.2023.135795] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023]
Abstract
To investigate the effects of "golden flora" amount on the sensory quality, metabolites and bioactivities of Fu brick tea (FBT), FBT samples with different "golden flora" amounts were prepared from the same materials by adjusting the water content before pressing. With the increase of "golden flora" in samples, the tea liquor color changed from yellow to orange red and the astringent taste gradually diminished. Targeted analysis demonstrated that (-)-epigallocatechin gallate, (-)-epicatechin gallate, and most amino acids gradually decreased as the increase of "golden flora". Seventy differential metabolites were identified by untargeted analysis. Among them, sixteen compounds including two Fuzhuanins and four EPSFs were positively correlated with "golden flora" amount (P < 0.05). The FBT samples with "golden flora" exhibited significantly higher inhibitory potency on α-amylase and lipase than the samples without "golden flora". Our results provide a theoretical basis of guiding FBT processing based on desired sensory quality and metabolites.
Collapse
Affiliation(s)
- Yingying Li
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - He Zhou
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Tian Tian
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yihong Hou
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Dan Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China.
| | - Jie Zhou
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Shuyuan Liu
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Youben Yu
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Weidong Dai
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China.
| | - Tianshan Zhou
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
13
|
Chen M, Li N, Zhu HT, Zhang M, Duan ZH, Wang D, Yang CR, Zhang YJ. New Hydrolyzable Tannin with Potent Antioxidant and α-Glucosidase Inhibitory Activity from Black Tea Produced from Camellia taliensis. Foods 2023; 12:2512. [PMID: 37444250 DOI: 10.3390/foods12132512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Camellia taliensis (W. W. Smith) Melchior, belonging to the genus Camellia sect. Thea., is mainly distributed from northern Myanmar to western and southwestern Yunnan province of China, and its leaves have been used to make various teas by the locals of its growing regions. The chemical constituents of C. taliensis are significantly related to those of cultivated tea plants, C. sinensis and C. sinensis var. assamica. The HPLC-ESI-MS analysis of black tea prepared from the leaves of C. taliensis showed a rich existence of polyphenols. Further comprehensive chemical study led to the separation and recognition of 32 compounds (1-32), including one new hydrolyzable tannin, 1-O-galloyl-4,6-tetrahydroxydibenzofurandicarboxyl-β-D-glucopyranose (1), and one new natural product (24). The known compounds referred to seven hydrolyzable tannins (2-8), 10 flavonols and glycosides (9-18), and 14 simple phenolics (19-32). Their structures were elucidated by comprehensive spectroscopic analyses. Among them, 20 compounds (2, 3, 6, 7, 8, 15, 17, 18, 20-22, 24-32) were isolated from black tea for the first time. Most isolates displayed obvious antioxidant activities on DPPH and ABTS+ assays, and the hydrolyzable tannins 1, 3-5, 7, and 8 exhibited stronger inhibitory activities on α-glycosidase than quercetin and acarbose (IC50 = 5.75 and 223.30 μM, respectively), with IC50 values ranging from 0.67 to 2.01 μM.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hong-Tao Zhu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Man Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | | | - Dong Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Chong-Ren Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ying-Jun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
14
|
Jiang Z, Zhou F, Huo H, Han Z, Qin C, Ho CT, Zhang L, Wan X. Formation Mechanism of Di- N-ethyl-2-pyrrolidinone-Substituted Epigallocatechin Gallate during High-Temperature Roasting of Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2975-2989. [PMID: 36734013 DOI: 10.1021/acs.jafc.2c07071] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Four di-N-ethyl-2-pyrrolidinone-substituted epigallocatechin gallate (EGCG) and two di-N-ethyl-2-pyrrolidinone-substituted gallocatechin gallate (GCG) flavan-3-ols (di-EPSFs) were prepared by the thermal simulation reaction. The effects of reaction temperature and time, initial reactant ratios, and pH values on the content of di-EPSFs were studied. The formation of six di-EPSFs was most favored when the initial reactant ratio of EGCG and theanine was 1:2 and heated under 130 °C at pH 10 for 120 min. The contents of di-EPSF1, di-EPSF2, and di-EPSF5 in large-leaf yellow tea (LYT) increased with the increase of roasting degree. Through quantitative analysis, it was found that EGCG would interact with the Strecker degradation products of theanine to form EPSFs, which further combined with the Strecker degradation products of theanine to form di-EPSFs. This study further improved the understanding of the transformation pathways of EGCG and theanine during tea processing and contributed to exploring the flavor characteristics and health benefits of di-EPSFs.
Collapse
Affiliation(s)
- Zongde Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, People's Republic of China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Feng Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, People's Republic of China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Huixia Huo
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Zisheng Han
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Chunyin Qin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, People's Republic of China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Chi-Tang Ho
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, People's Republic of China
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, People's Republic of China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, People's Republic of China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, People's Republic of China
| |
Collapse
|
15
|
Wu Y, Han Z, Wen M, Ho CT, Jiang Z, Wang Y, Xu N, Xie Z, Zhang J, Zhang L, Wan X. Screening of α-glucosidase inhibitors in large-leaf yellow tea by offline bioassay coupled with liquid chromatography tandem mass spectrometry. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Li S, Zhang L, Wan X, Zhan J, Ho CT. Focusing on the recent progress of tea polyphenol chemistry and perspectives. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Jiang Z, Zhang H, Han Z, Zhai X, Qin C, Wen M, Lai G, Ho CT, Zhang L, Wan X. Study on In Vitro Preparation and Taste Properties of N-Ethyl-2-Pyrrolidinone-Substituted Flavan-3-Ols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3832-3841. [PMID: 35289174 DOI: 10.1021/acs.jafc.2c00798] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
N-ethyl-2-pyrrolidinone-substituted flavan-3-ols (EPSFs) were prepared by an in vitro model reaction, and the taste thresholds of EPSFs and their dose-over-threshold factors in large-leaf yellow tea (LYT) were investigated. The effects of initial reactant ratios, reaction temperatures and time, pH values, and water addition on the yield of EPSFs were explored. The contents of EPSFs during roasting were determined by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS). When the initial ratio of (-)-epigallocatechin gallate (EGCG) to theanine was 1:2 and roasted under 120 °C for 120 min, the contents of EPSFs were the highest. The bitterness and astringency thresholds of four EPSF isomers were measured by the half-tongue method, of which EPSF2 and EPSF3 had higher thresholds than EGCG. In LYT, four EPSFs had lower bitterness and astringency dose-over-threshold factors than EGCG. This study suggested that the reduction of bitterness and astringency of tea after roasting may be mainly due to the formation of EPSFs.
Collapse
Affiliation(s)
- Zongde Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Hui Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zisheng Han
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901-8554, United States
| | - Xiaoting Zhai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Chunyin Qin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Guoping Lai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Chi-Tang Ho
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901-8554, United States
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
18
|
Selim DA, Shawky E, Abu El-Khair RM. Identification of the discriminatory chemical markers of different grades of Sri Lankan white, green and black tea (Camellia sinenesis L.) via metabolomics combined to chemometrics. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Hou ZW, Chen CH, Ke JP, Zhang YY, Qi Y, Liu SY, Yang Z, Ning JM, Bao GH. α-Glucosidase Inhibitory Activities and the Interaction Mechanism of Novel Spiro-Flavoalkaloids from YingDe Green Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:136-148. [PMID: 34964344 DOI: 10.1021/acs.jafc.1c06106] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Flavoalkaloids are a unique class of compounds in tea, most of which have an N-ethyl-2-pyrrolidinone moiety substituted at the A ring of a catechin skeleton. 1-Ethyl-5-hydroxy-pyrrolidone, a decomposed product of theanine, was supposed to be the key intermediate to form tea flavoalkaloids. However, we have also detected another possible theanine intermediate, 1-ethyl-5-oxopyrrolidine-2-carboxylic acid, and speculated if there are related conjugated catechins. Herein, four novel spiro-flavoalkaloids with a spiro-γ-lactone structural moiety were isolated from Yingde green tea (Camellia sinensis var. assamica) in our continuing exploration of new chemical constituents from tea. The structures of the new compounds, spiro-flavoalkaloids A-D (1-4), were further elucidated by extensive nuclear magnetic resonance (NMR) spectroscopy together with the calculated 13C NMR, IR, UV-vis, high-resolution mass, optical rotation, experimental, and calculated circular dichroism spectra. We also provided an alternative pathway to produce these novel spiro-flavoalkaloids. Additionally, their α-glucosidase inhibitory activities were determined with IC50 values of 3.34 (1), 5.47 (2), 22.50 (3), and 15.38 (4) μM. Docking results revealed that compounds 1 and 2 mainly interacted with residues ASP-215, ARG-442, ASP-352, GLU-411, HIS-280, ARG-315, and ASN-415 of α-glucosidase through hydrogen bonds. The fluorescence intensity of α-glucosidase could be quenched by compounds 1 and 2 in a static style.
Collapse
Affiliation(s)
- Zhi-Wei Hou
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Chen-Hui Chen
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Jia-Ping Ke
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Yuan-Yuan Zhang
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Yan Qi
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Shi-Yu Liu
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Zi Yang
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Jing-Ming Ning
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Guan-Hu Bao
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| |
Collapse
|
20
|
Peng J, Dai W, Lu M, Yan Y, Zhang Y, Chen D, Wu W, Gao J, Dong M, Lin Z. New insights into the influences of baking and storage on the nonvolatile compounds in oolong tea: A nontargeted and targeted metabolomics study. Food Chem 2021; 375:131872. [PMID: 34953237 DOI: 10.1016/j.foodchem.2021.131872] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022]
Abstract
A nontargeted and targeted metabolomics method was applied to comprehensively investigate the influences of baking and storage on chemical constituents in fresh-, strong-, and aged-scent types of Foshou oolong teas. The contents of N-ethyl-2-pyrrolidone-substituted flavanols (EPSFs), flavone C-glycosides, gallic acid, and most lipids increased after baking and storage, while the contents of cis-flavanols, alkaloids, flavonol O-glycosides, and most amino acids decreased. Degradation, epimerization, and interaction with theanine were main pathways for the decrease in cis-flavanols. Approximately 20.7%, 12.8%, and 11.6% of epigallocatechin gallate were degraded, epimerized, and interacted with theanine after baking, respectively; 22.5% and 8.71% of epigallocatechin gallate were degraded and interacted with theanine after 10-year storage, respectively. Simulated reactions confirmed that the increases in EPSFs and apigenin C-glycosides were caused by interactions between theanine and flavanols and between apigenin aglycone and glucose, respectively. This study offers novel insights into chemical changes during baking and storage of oolong tea.
Collapse
Affiliation(s)
- Jiakun Peng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weidong Dai
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China.
| | - Meiling Lu
- Agilent Technologies (China) Limited, Beijing 100102, China
| | - Yongquan Yan
- Yongchun County Agricultural and Rural Bureau, Quanzhou, Fujian 362600, China
| | - Yue Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China
| | - Dan Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China
| | - Wenliang Wu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China
| | - Jianjian Gao
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Minghua Dong
- Yongchun County Agricultural and Rural Bureau, Quanzhou, Fujian 362600, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China.
| |
Collapse
|
21
|
Shi J, Yang G, You Q, Sun S, Chen R, Lin Z, Simal-Gandara J, Lv H. Updates on the chemistry, processing characteristics, and utilization of tea flavonoids in last two decades (2001-2021). Crit Rev Food Sci Nutr 2021:1-28. [PMID: 34898343 DOI: 10.1080/10408398.2021.2007353] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Tea flavonoids are widely recognized as critical flavor contributors and crucial health-promoting bioactive compounds, and have long been the focus of research worldwide in food science. The aim of this review paper is to summarize the major progress in tea flavonoid chemistry, their dynamics of constituents and concentrations during tea processing as well as storage, and their health functions studied between 2001 and 2021. Moreover, the utilization of tea flavonoids in the human body has also been discussed for a detailed understanding of their uptake, metabolism, and interaction with the gut microbiota. Many novel tea flavonoids have been identified, including novel A- and B-ring substituted flavan-3-ol derivatives, condensed and oxidized flavan-3-ol derivatives, and glycosylated and methylated flavonoids, and are found to be closely associated with the characteristic color, flavor, and health benefits of tea. Flavoalkaloids exist widely in various teas, particularly 8-C N-ethyl-2-pyrrolidinone-substituted flavan-3-ols. Tea flavonoids behave significantly difference in constituents and concentrations depending on tea cultivars, plantation conditions, multiple stresses, the tea-specified manufacturing steps, and even the long-term storage period. Tea flavonoids exhibit multiple health-promoting effects, particularly their anti-inflammatory in alleviating metabolic syndromes. Interaction of tea flavonoids with the gut microbiota plays vital roles in their health function.
Collapse
Affiliation(s)
- Jiang Shi
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Gaozhong Yang
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiushuang You
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shili Sun
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ruohong Chen
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Food Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Haipeng Lv
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
22
|
Liu SY, Zhang YY, Chu GX, Bao GH. N-ethyl-2-pyrrolidinone substitution enhances binding affinity between tea flavoalkaloids and human serum albumin: Greatly influenced by esterization. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120097. [PMID: 34182296 DOI: 10.1016/j.saa.2021.120097] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/04/2021] [Accepted: 06/17/2021] [Indexed: 05/25/2023]
Abstract
Formation of catechins-human serum albumin (HSA) complex contributes to stably transporting catechins and regulating their bioavailability. Recently, a new class of catechins namely flavoalkaloids have been reported from tea. The unique structural modification with an N-ethyl-2-pyrrolidinone ring at catechins from these flavoalkaloids has raised our interest in their HSA binding affinity. Thus, we investigated the interaction between HSA and flavoalkaloids by molecular docking, UV-Vis spectroscopy (UV), fluorescence quenching approaches, and surface plasmon resonance (SPR). Thermodynamic parameters suggest that electrostatic forces contribute greatly to the interaction. The binding ability is affected by different ester group (galloyl or cinnamoyl) at 3-OH, N-ethyl-2-pyrrolidinone substituted position (C-6 or C-8), C-2, C-3 and C-5''' configurations, and hydroxyl group numbers at B ring, among which the 3-O-cinnamoyl substitution and 5'''-R configuration present the strongest contributions. UV showed slight changes in the conformation and microenvironment of HSA during the binding process. The quenching and binding constants suggest that the quenching is a static type. The small KD values (1-20 μM) detected by SPR confirmed the strong binding affinities between HSA and flavoalkaloids. Present study will help us to understand the interaction mechanism between flavoalkaloids and HSA, shedding light on structural modification of common catechins to enhance the stability, bioavailability and bioactivities.
Collapse
Affiliation(s)
- Shi-Yu Liu
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, People's Republic of China.
| | - Yuan-Yuan Zhang
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, People's Republic of China.
| | - Gang-Xiu Chu
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, People's Republic of China.
| | - Guan-Hu Bao
- Natural Products Laboratory, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, People's Republic of China.
| |
Collapse
|
23
|
Isolation of N-Ethyl-2-pyrrolidinone-Substituted Flavanols from White Tea Using Centrifugal Countercurrent Chromatography Off-Line ESI-MS Profiling and Semi-Preparative Liquid Chromatography. Molecules 2021; 26:molecules26237284. [PMID: 34885862 PMCID: PMC8658928 DOI: 10.3390/molecules26237284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
N-Ethyl-2-pyrrolidinone-substituted flavanols (EPSF) are marker compounds for long-term stored white teas. However, due to their low contents and diasteromeric configuration, EPSF compounds are challenging to isolate. In this study, two representative epimeric EPSF compounds, 5'''R- and 5'''S-epigallocatechin gallate-8-C N-ethyl-2-pyrrolidinone (R-EGCG-cThea and S-EGCG-cThea), were isolated from white tea using centrifugal partition chromatography (CPC). Two different biphasic solvent systems composed of 1. N-hexane-ethyl acetate-methanol-water (1:5:1:5, v/v/v/v) and 2. N-hexane-ethyl acetate-acetonitrile-water (0.7:3.0:1.3:5.0, v/v/v/v) were used for independent pre-fractionation experiments; 500 mg in each separation of white tea ethyl acetate partition were fractionated. The suitability of the two solvent systems was pre-evaluated by electrospray mass-spectrometry (ESI-MS/MS) analysis for metabolite distribution and compared to the results of the CPC experimental data using specific metabolite partition ratio KD values, selectivity factors α, and resolution factors RS. After size-exclusion and semi-preparative reversed-phase liquid chromatography, 6.4 mg of R-EGCG-cThea and 2.9 mg of S-EGCG-cThea were recovered with purities over 95%. Further bioactivity evaluation showed that R- and S-EGCG-cThea possessed in vitro inhibition effects on α-glucosidase with IC50 of 70.3 and 161.7 μM, respectively.
Collapse
|
24
|
Chen D, Zhao Y, Peng J, Zhang Y, Gao J, Wu W, Xie D, Hu Z, Lin Z, Dai W. Metabolomics Analysis Reveals Four Novel N-Ethyl-2-pyrrolidinone-Substituted Theaflavins as Storage-Related Marker Compounds in Black Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14037-14047. [PMID: 34780189 DOI: 10.1021/acs.jafc.1c05850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tea market is currently oversupplied, and unsold tea often needs to be properly stored for a period of time. However, the chemical changes occurring in black tea during storage are limitedly understood. In this study, a comprehensive nontargeted and targeted metabolomics approach was used to investigate the dynamic changes in compounds in time-series (0-19 months)-stored black teas. The contents of flavanols, theaflavins (TFs), theasinensins, procyanidins, most phenolic acids, amino acids, quercetin-O-glycosides, and myricetin-O-glycosides decreased during storage, while the contents of N-ethyl-2-pyrrolidinone-substituted flavanols, flavone-C-glycosides, and most kaempferol-O-glycosides increased. More importantly, four novel compounds strongly positively correlated with storage duration (r = 0.922-0.969) were structurally assigned as N-ethyl-2-pyrrolidinone-substituted TFs and validated with synthetic reactions of TFs and theanine standards. The content of N-ethyl-2-pyrrolidinone-substituted TFs was 51.54 μg/g in black tea stored for 19 months. To the best of our knowledge, N-ethyl-2-pyrrolidinone-substituted TFs were discovered in tea for the first time.
Collapse
Affiliation(s)
- Dan Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, P. R. China
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Yanni Zhao
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Jiakun Peng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, P. R. China
| | - Yue Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, P. R. China
| | - Jianjian Gao
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, P. R. China
| | - Wenliang Wu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, P. R. China
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, P. R. China
| | - Dongchao Xie
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, P. R. China
| | - Zhengyan Hu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, P. R. China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, P. R. China
| | - Weidong Dai
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, P. R. China
| |
Collapse
|
25
|
Jiang Z, Han Z, Qin C, Lai G, Wen M, Ho CT, Zhang L, Wan X. Model Studies on the Reaction Products Formed at Roasting Temperatures from either Catechin or Tea Powder in the Presence of Glucose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11417-11426. [PMID: 34519500 DOI: 10.1021/acs.jafc.1c03771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
During tea processing, roasting significantly affects the transformation pathway of catechins. When (-)-epigallocatechin gallate (EGCG) and glucose were roasted at different pH values, the degree of degradation and isomerization of EGCG was the lowest at pH 7 and the highest at pH 8. Thirty-five products were found in the model reaction of EGCG and glucose under high temperatures, of which four EGCG-glucose adducts were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and nuclear magnetic resonance (NMR). In addition, catechins, gallic acid, and theanine in tea with added glucose were significantly reduced during roasting. The contents of four EGCG-glucose adducts were increased significantly at 150 °C after 30 min and dropped gradually after 60 min. Therefore, based on the present study, EGCG could form crosslinks with glucose under high temperatures in a short time, which provides insight for tea processing and synthesis of catechin-sugar adducts.
Collapse
Affiliation(s)
- Zongde Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zisheng Han
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Chunyin Qin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Guoping Lai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Chi-Tang Ho
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
26
|
Wang W, Zhang P, Liu XH, Ke JP, Zhuang JH, Ho CT, Xie ZW, Bao GH. Identification and quantification of hydroxycinnamoylated catechins in tea by targeted UPLC-MS using synthesized standards and their potential use in discrimination of tea varieties. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
27
|
Abstract
Herbal Teas prepared from leaves, roots, fruits, and flowers of different herbs contain
many useful nutrients that may be a good replacement for medicating certain diseases. These herbal
teas are very rich in poly-phenols, therefore are significant for their antioxidant, anti-inflammation,
anticancer, anticardiovascular, antimicrobial, antihyperglycemic, and antiobesity properties. Medical
chronic conditions, such as cardiovascular diseases, cancer, Alzheimer’s disease, Parkinson’s disease,
constipation, diabetes, and bed wetting in children can be easily cured by the use of these herbal
teas in regular and moderate amounts. This review focuses on the diverse constituents of herbal teas
due to which these can be an attractive alternative towards promoting human health.
Collapse
Affiliation(s)
- Tabinda Sattar
- Department of Chemistry, ICS, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
28
|
Dai W, Lou N, Xie D, Hu Z, Song H, Lu M, Shang D, Wu W, Peng J, Yin P, Lin Z. N-Ethyl-2-Pyrrolidinone-Substituted Flavan-3-Ols with Anti-inflammatory Activity in Lipopolysaccharide-Stimulated Macrophages Are Storage-Related Marker Compounds for Green Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12164-12172. [PMID: 33074673 DOI: 10.1021/acs.jafc.0c03952] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fresh green tea (GT) is commonly considered to have better sensory flavor and higher commercial value than long-term-stored GT; however, the chemical variations during storage are unclear. In this study, the chemical profiles of stored GT were surveyed among time-series samples from 0 to 19 months using a nontargeted metabolomics method. Seven N-ethyl-2-pyrrolidinone-substituted flavan-3-ols (EPSFs) increased from 0.022 ± 0.019 to 3.212 ± 0.057 mg/g within 19 months (correlation coefficients with storage duration ranging from 0.936 to 0.965), and they were the most significantly increased compounds among the 127 identified compounds. Two representative EPSFs (R-EGCG-cThea and S-EGCG-cThea) possess potential anti-inflammatory properties by suppressing the expression, phosphorylation, and nuclear translocation of nuclear factor kappa-B (NF-κB) p65 in lipopolysaccharide-stimulated macrophages based on western blotting and immunofluorescence results. In conclusion, EPSFs were found to be marker compounds for stored GT and showed potential anti-inflammatory activity by regulating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Weidong Dai
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, People's Republic of China
| | - Ni Lou
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, People's Republic of China
- College of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116044, People's Republic of China
| | - Dongchao Xie
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, People's Republic of China
| | - Zhengyan Hu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, People's Republic of China
| | - Huiyi Song
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, People's Republic of China
- College of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116044, People's Republic of China
| | - Meiling Lu
- Agilent Technologies (China) Limited, Beijing 100102, People's Republic of China
| | - Dong Shang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, People's Republic of China
- College of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116044, People's Republic of China
| | - Wenliang Wu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, People's Republic of China
| | - Jiakun Peng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, People's Republic of China
| | - Peiyuan Yin
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, People's Republic of China
- College of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116044, People's Republic of China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, People's Republic of China
| |
Collapse
|
29
|
Comparative analysis of phenolic compound metabolism among tea plants in the section Thea of the genus Camellia. Food Res Int 2020; 135:109276. [DOI: 10.1016/j.foodres.2020.109276] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/10/2020] [Accepted: 04/23/2020] [Indexed: 11/23/2022]
|
30
|
Zhang P, Wang W, Liu XH, Yang Z, Gaur R, Wang JJ, Ke JP, Bao GH. Detection and quantification of flavoalkaloids in different tea cultivars and during tea processing using UPLC-TOF-MS/MS. Food Chem 2020; 339:127864. [PMID: 32858385 DOI: 10.1016/j.foodchem.2020.127864] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/18/2020] [Accepted: 08/15/2020] [Indexed: 12/24/2022]
Abstract
Flavoalkaloids have been found from tea. However, there is limited information about their content in different teas. Herein, 51 tea samples were screened for flavoalkaloid content. Twelve teas with relatively higher contents of flavoalkaloids were further quantified by UPLC-TOF-MS/MS. The cultivars Yiwu and Bulangshan had the highest levels, with total flavoalkaloid contents of 3063 and 2727 µg g-1, respectively. Each of the six flavoalkaloids were at levels > 198 µg g-1 in these cultivars. Of the flavoalkaloids, etc-pyrrolidinone A had the highest content in the teas, reaching 835 µg g-1 in Yiwu. The content of the flavoalkaloids varied among tea cultivars and with processing procedures, particularly heating. The potential of using flavoalkaloids to discriminate grades of Keemun black tea was studied and discussed. The teas identified in this work with high levels of flavoalkaloids can be used in the future to study the mechanisms by which flavoalkaloids are synthesized in tea.
Collapse
Affiliation(s)
- Peng Zhang
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Wei Wang
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Xiao-Huan Liu
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Zi Yang
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Rashmi Gaur
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Jing-Jing Wang
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Jia-Ping Ke
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Guan-Hu Bao
- Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Health Effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
31
|
Li N, Zhu HT, Wang D, Zhang M, Yang CR, Zhang YJ. New Flavoalkaloids with Potent α-Glucosidase and Acetylcholinesterase Inhibitory Activities from Yunnan Black Tea 'Jin-Ya'. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7955-7963. [PMID: 32628847 DOI: 10.1021/acs.jafc.0c02401] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As a subgroup of flavoalkaloids, N-ethyl-2-pyrrolidinone substituted flavan-3-ols are reported to possess various biological activities that may play important roles in the beneficial healthcare functions of tea. The HPLC and LC-MS analyses showed the existence of N-ethyl-2-pyrrolidinone substituted flavan-3-ols in 'Jin-Ya', which is a Yunnan black tea produced only from the buds of the tea plant Camellia sinensis var. assamica. Further phytochemical study on this precious black tea led to the identification of 8 flavoalkaloids, 1-8, along with 11 known flavan-3-ols (9-14) and flavonol glycosides (15-19). The new compounds, (-)-6-(5″S)-N-ethyl-2-pyrrolidinone-epiafzelechin (1), (-)-8-(5″R)-N-ethyl-2-pyrrolidinone-epiafzelechin-3-O-gallate (2a), and (-)-8-(5″S)-N-ethyl-2-pyrrolidinone-epiafzelechin-3-O-gallate (2b), were identified based on extensive spectroscopic analysis. Flavoalkaloids 2-6 showed inhibitory activity on α-glucosidase with IC50 values ranging from 2.09 to 8.47 μM, compared to those of quercetin and acarbose (IC50 = 6.87 and 228.9 μM, respectively). Moreover, compounds 2, 3, and 6 displayed an inhibitory effect on acetyl-cholinesterase with IC50 values of 14.23, 33.79, and 34.82 μM, respectively, compared to tacrine (IC50 = 0.223 μM).
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hong-Tao Zhu
- State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Dong Wang
- State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Man Zhang
- State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Chong-Ren Yang
- State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Ying-Jun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| |
Collapse
|
32
|
Zhao J, Li P, Xia T, Wan X. Exploring plant metabolic genomics: chemical diversity, metabolic complexity in the biosynthesis and transport of specialized metabolites with the tea plant as a model. Crit Rev Biotechnol 2020; 40:667-688. [PMID: 32321331 DOI: 10.1080/07388551.2020.1752617] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The diversity and complexity of secondary metabolites in tea plants contribute substantially to the popularity of tea, by determining tea flavors and their numerous health benefits. The most significant characteristics of tea plants are that they concentrate the complex plant secondary metabolites into one leaf: flavonoids, alkaloids, theanine, volatiles, and saponins. Many fundamental questions regarding tea plant secondary metabolism remain unanswered. This includes how tea plants accumulate high levels of monomeric galloylated catechins, unlike the polymerized flavan-3-ols in most other plants, as well as how they are evolved to selectively synthesize theanine and caffeine, and how tea plants properly transport and store these cytotoxic products and then reuse them in defense. Tea plants coordinate many metabolic pathways that simultaneously take place in young tea leaves in response to both developmental and environmental cues. With the available genome sequences of tea plants and high-throughput metabolomic tools as great platforms, it is of particular interest to launch metabolic genomics studies using tea plants as a model system. Plant metabolic genomics are to investigate all aspects of plant secondary metabolism at the genetic, genome, and molecular levels. This includes plant domestication and adaptation, divergence and convergence of secondary metaboloic pathways. The biosynthesis, transport, storage, and transcriptional regulation mechanisms of all metabolites are of core interest in the plant as a whole. This review highlights relevant contexts of metabolic genomics, outstanding questions, and strategies for answering them, with aim to guide future research for genetic improvement of nutrition quality for healthier plant foods.
Collapse
Affiliation(s)
- Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
33
|
Xie D, Dai W, Lu M, Tan J, Zhang Y, Chen M, Lin Z. Nontargeted metabolomics predicts the storage duration of white teas with 8-C N-ethyl-2-pyrrolidinone-substituted flavan-3-ols as marker compounds. Food Res Int 2019; 125:108635. [DOI: 10.1016/j.foodres.2019.108635] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/14/2023]
|
34
|
Xu S, Wang JJ, Wei Y, Deng WW, Wan X, Bao GH, Xie Z, Ling TJ, Ning J. Metabolomics Based on UHPLC-Orbitrap-MS and Global Natural Product Social Molecular Networking Reveals Effects of Time Scale and Environment of Storage on the Metabolites and Taste Quality of Raw Pu-erh Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12084-12093. [PMID: 31560531 DOI: 10.1021/acs.jafc.9b05314] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Raw Pu-erh tea (RPT) needs ageing before drinking. However, the influence from environment and time of storage on chemical profile and flavor of RPT is unclear. In this study, the RPTs stored in wet-hot or dry-cold environment for 1-9 years were assessed using metabolomics based on UHPLC-Orbitrap-MS and global natural product social (GNPS) feature-based molecular networking as well as electronic tongue measurement. The results exhibited that the chemical profiles of RPTs were similar at an early stage but started to differentiate from each other at the 5th and the 7th year in wet-hot and dry-cold environments. The discriminating features including N-ethyl-2-pyrrolidinone-substituted flavan-3-ols (flavoalkaloids), unsaturated fatty acids, lysophosphatidylcholines, flavan-3-ols, amino acids, and flavonol-O-glycosides among the three chemical profiles were discovered and analyzed by means of multivariate statistics, GNPS multilibraries matching, and SIRIUS calculation. The metabolomic data were consistent with the results obtained through electronic tongue measurement.
Collapse
Affiliation(s)
- Shanshan Xu
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , China
| | - Jing-Jing Wang
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , China
| | - Yuming Wei
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , China
| | - Wei-Wei Deng
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , China
| | - Guan-Hu Bao
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , China
| | - Tie-Jun Ling
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , China
| |
Collapse
|
35
|
Zhang L, Ho CT, Zhou J, Santos JS, Armstrong L, Granato D. Chemistry and Biological Activities of Processed Camellia sinensis Teas: A Comprehensive Review. Compr Rev Food Sci Food Saf 2019; 18:1474-1495. [PMID: 33336903 DOI: 10.1111/1541-4337.12479] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/05/2019] [Accepted: 06/25/2019] [Indexed: 01/20/2023]
Abstract
Tea is a typical processed beverage from the fresh leaves of Camellia sinensis [Camellia sinensis (L.) O. Kuntze] or Camellia assamica [Camellia sinensis var. assamica (Mast.) Kitamura] through different manufacturing techniques. The secondary metabolites of fresh tea leaves are mainly flavan-3-ols, phenolic acids, purine alkaloids, condensed tannins, hydrolysable tannins, saponins, flavonols, and their glycoside forms. During the processing, tea leaves go through several steps, such as withering, rolling, fermentation, postfermentation, and roasting (drying) to produce different types of tea. After processing, theaflavins, thearubigins, and flavan-3-ols derivatives emerge as the newly formed compounds with a corresponding decrease in concentrations of catechins. Each type of tea has its own critical process and presents unique chemical composition and flavor. The components among different teas also cause significant changes in their biological activities both in vitro and in vivo. In the present review, the progress of tea chemistry and the effects of individual unit operation on components were comprehensively described. The health benefits of tea were also reviewed based on the human epidemiological and clinical studies. Although there have been multiple studies about the tea chemistry and biological activities, most of existing results are related to tea polyphenols, especially (-)-epigallocatechin gallate. Other compounds, including the novel compounds, as well as isomers of amino acids and catechins, have not been explored in depth.
Collapse
Affiliation(s)
- Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural Univ., 230036, Hefei, People's Republic of China
| | - Chi-Tang Ho
- Dept. of Food Science, Rutgers Univ., New Brunswick, 08901-8554, NJ, U.S.A
| | - Jie Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural Univ., 230036, Hefei, People's Republic of China
| | - Jânio Sousa Santos
- Graduation Program in Food Science and Technology, State Univ. of Ponta Grossa, 84030-900, Ponta Grossa, Brazil
| | - Lorene Armstrong
- Graduation Program in Chemistry, State Univ. of Ponta Grossa, 84030-900, Ponta Grossa, Brazil
| | - Daniel Granato
- Graduation Program in Food Science and Technology, State Univ. of Ponta Grossa, 84030-900, Ponta Grossa, Brazil.,Innovative Food System Unit, Natural Resources Inst. Finland (LUKE), FI-02150, Espoo, Finland
| |
Collapse
|
36
|
Meng Q, Li S, Huang J, Wei CC, Wan X, Sang S, Ho CT. Importance of the Nucleophilic Property of Tea Polyphenols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5379-5383. [PMID: 30406649 DOI: 10.1021/acs.jafc.8b05917] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tea is the second most popular beverage in the world after water. Vast accumulative evidence attest that tea consumption may promote human health, such as antioxidant, anti-obesity, and anticancer activities. Therefore, tea phytochemicals have drawn exceeding attention from researchers in structure confirmation, formation mechanism, component clarification, and bioactivity screening of interested constituents. Particularly, most investigations of chemical or biochemical reactions of catechins have concentrated on the B ring of the C6-C3-C6 skeleton. Hence, in this perspective, we reviewed the profound findings of the carbon-carbon (C-C) connection from the unambiguous characterization of novel A-ring addition derivatives of tea catechins, including catechin-carbonyl and catechin-theanine conjugates and the C-C formation mechanisms, and offered our view of the potential effects of catechin-carbonyl interactions on flavor generation and bioactive action in tea.
Collapse
Affiliation(s)
- Qing Meng
- Department of Tea Science , Southwest University , Chongqing 400715 , People's Republic of China
| | - Shiming Li
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources , Huanggang Normal University , Huanggang , Hubei 438000 , People's Republic of China
| | - Junqing Huang
- Department of Food Science , Rutgers, The State University of New Jersey , New Brunswick , New Jersey 08901 , United States
- School of Traditional Chinese Medicine , Jinan University , Guangzhou , Guangdong 510632 , People's Republic of China
| | - Chia-Cheng Wei
- Department of Food Science , Rutgers, The State University of New Jersey , New Brunswick , New Jersey 08901 , United States
- Institute of Food Safety and Health, College of Public Health , National Taiwan University , Taipei 10051 , Taiwan
| | | | - Shengmin Sang
- Laboratory for Functional Foods and Human Nutrition, Center for Excellence in Post-Harvest Technologies , North Carolina Agricultural and Technical State University , North Carolina Research Campus, Kannapolis , North Carolina 28080 , United States
| | - Chi-Tang Ho
- Department of Food Science , Rutgers, The State University of New Jersey , New Brunswick , New Jersey 08901 , United States
| |
Collapse
|
37
|
Meng XH, Li N, Zhu HT, Wang D, Yang CR, Zhang YJ. Plant Resources, Chemical Constituents, and Bioactivities of Tea Plants from the Genus Camellia Section Thea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5318-5349. [PMID: 30449099 DOI: 10.1021/acs.jafc.8b05037] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Tea, as one of the most popular beverages with various bioactivities, is commonly produced from the fresh leaves of two widely cultivated tea plants, Camellia sinensis and C. sinensis var. assamica. Both plants belong to the genus Camellia section Thea, which was considered to have 12 species and 6 varieties according to Min's taxonomic system. Most species, except the cultivated species, are known as wild tea plants and have been exploited and utilized to produce tea by the local people of its growing areas. Thus far, six species and varieties have been phytochemically studied, leading to the identification of 398 compounds, including hydrolyzable tannins, flavan-3-ols, flavonoids, terpenoids, alkaloids, and other phenolic and related compounds. Various beneficial health effects were reported for tea and its components, involving antioxidant, antitumor, antimutagenic, antidiabetic, hypolipidemic, anti-inflammatory, antimicrobial, antiviral, antifungal, neuroprotective, hepatoprotective, etc. In this review, the geographical distribution of tea plants and the chemical constituents (1-398) reported from the genus Camellia section Thea and some tea products (green, black, oolong, and pu-erh tea) that have ever been studied between 1970 and 2018 have been summarized, taking species as the main hint, and the main biological activities are also discussed.
Collapse
Affiliation(s)
- Xiu-Hua Meng
- State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming , Yunnan 650201 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Na Li
- State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming , Yunnan 650201 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Hong-Tao Zhu
- State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming , Yunnan 650201 , People's Republic of China
| | - Dong Wang
- State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming , Yunnan 650201 , People's Republic of China
| | - Chong-Ren Yang
- State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming , Yunnan 650201 , People's Republic of China
| | - Ying-Jun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming , Yunnan 650201 , People's Republic of China
| |
Collapse
|
38
|
Zhou J, Wu Y, Long P, Ho CT, Wang Y, Kan Z, Cao L, Zhang L, Wan X. LC-MS-Based Metabolomics Reveals the Chemical Changes of Polyphenols during High-Temperature Roasting of Large-Leaf Yellow Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5405-5412. [PMID: 30485095 DOI: 10.1021/acs.jafc.8b05062] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Large-leaf yellow tea (LYT) is made from mature tea leaves with stems and has unique sensory characteristics different from other teas. To study the chemical changes of LYT during processing, samples were collected from each step for quantitative and qualitative analyses by high-performance liquid chromatography and liquid chromatography-mass spectrometry (LC-MS). LC-MS-based nontargeted and targeted metabolomics analyses revealed that the tea sample after roasting was markedly different from samples before roasting, with the levels of epicatechins and free amino acids significantly decreased, but the epimerized catechins increased dramatically. After accounting for common compounds in tea, N-ethyl-2-pyrrolidinone-substituted flavan-3-ols were found to be the marker compounds responsible for the classification of all samples, as they rapidly rose with increasing processing temperature. These findings suggested that the predominant changes in the tea constituents during large-leaf yellow tea roasting were the thermally induced degradation and epimerization of catechins and the formation of N-ethyl-2-pyrrolidinone-substituted flavan-3-ols from l-theanine.
Collapse
Affiliation(s)
| | | | | | - Chi-Tang Ho
- Department of Food Science , Rutgers University , New Brunswick , New Jersey , United States
| | | | | | | | | | | |
Collapse
|
39
|
Li D, Wang Y, Zhang Z, Wan X, Ho CT. Introduction to the International Symposium on Chemistry, Flavor, and Health Effects of Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5303-5305. [PMID: 30803228 DOI: 10.1021/acs.jafc.9b00719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A symposium entitled "Chemistry, Flavor, and Health Effects of Tea" was held at the 256th American Chemical Society (ACS) Meeting in August 2018 in Boston, MA, U.S.A., and was sponsored by the ACS Division of Agricultural and Food Chemistry and the International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, China. The purpose of the symposium was to bring together the leading tea researchers throughout the world to discuss the current state of knowledge as well as research needs with respect to chemistry and health beneficial properties of tea. Speakers from North America, Europe, and Asia delivered a total of 35 oral presentations. The presentations covered such diverse topics as polyphenol chemistry and flavor chemistry of tea, metabolomics application to identify the changes of phytochemical composition during processing, and health beneficial effects of drinking tea. This paper is intended to provide a brief summary of the presentations.
Collapse
Affiliation(s)
- Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , People's Republic of China
- International Joint Laboratory on Tea Chemistry and Health Effects , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , People's Republic of China
| | - Yu Wang
- Citrus Research and Education Center , University of Florida , 700 Experiment Station Road , Lake Alfred , Florida 33850 , United States
| | - Zhengzhu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , People's Republic of China
- International Joint Laboratory on Tea Chemistry and Health Effects , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , People's Republic of China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , People's Republic of China
- International Joint Laboratory on Tea Chemistry and Health Effects , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , People's Republic of China
| | - Chi-Tang Ho
- International Joint Laboratory on Tea Chemistry and Health Effects , Anhui Agricultural University , 130 West Changjiang Road , Hefei , Anhui 230036 , People's Republic of China
- Department of Food Science , Rutgers, The State University of New Jersey , New Brunswick , New Jersey 08901 , United States
| |
Collapse
|