1
|
Xian ZN, Gong H, Xu Y, Zhu N. Recent advances in occurrence, biotreatment, and integrated insights into bacterial degradation of phthalic acid esters in aquatic environments. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138248. [PMID: 40239513 DOI: 10.1016/j.jhazmat.2025.138248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/08/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025]
Abstract
Phthalic acid esters (PAEs) are prevalent as emerging contaminants owing to their widespread use as plasticizers in industry. Despite their environmental and health risks, a limited understanding of PAE contamination in aquatic environments hinders the practical implementation of biotreatment strategies for their removal. This paper reviews the advances in occurrence, biotreatment, and relevant integrative analysis of bacterial PAE degradation over the past decade. In various aquatic environments, dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) are the predominant PAE pollutants across different regions, with alarming levels reported in Eastern China. PAEs in water usually inhibit the growth and metabolism of surrounding organisms. Meanwhile, various biotreatment techniques have proven effective in removing PAEs from leachate and wastewater. The treatment efficiency can be further enhanced by incorporating suitable physicochemical processes and optimizing key factors, such as the initial pollutant concentration, PAE type, and reaction time. Additionally, a K-means machine learning algorithm and 16S rRNA gene-based evolutionary analysis were employed to reveal that soil is a preferred source for isolating strains, with Gordonia and Pseudomonas being the dominant genera of PAE-degrading bacteria exhibiting high degradation efficiency. Moreover, most PAE hydrolase genes were discovered in these two genera. Different gene clusters facilitated the subsequent degradation pathways under aerobic or anaerobic conditions. This paper presents the latest updates on PAE biotreatment and offers an integrated analysis of the bacterial degradation involved. Future research should apply these insights to enhance the overall effectiveness of PAE removal in water.
Collapse
Affiliation(s)
- Zhuo-Ning Xian
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Huabo Gong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ying Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 20040, China
| | - Nanwen Zhu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
2
|
Pongsupasa V, Watthaisong P, Treesukkasem N, Naramittanakul A, Tirapanampai C, Weeranoppanant N, Chaiyen P, Wongnate T. Sustainable Pesticide Degradation Using Esterase and Coimmobilized Cells in Agriculture. Biotechnol J 2025; 20:e70034. [PMID: 40371935 DOI: 10.1002/biot.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/01/2025] [Accepted: 04/22/2025] [Indexed: 05/16/2025]
Abstract
This study presents an enzymatic approach to mitigate the environmental and health impacts of organophosphate pesticides (OPs) in agriculture. Using esterase enzymes from the Sphingobium fuliginis strain ATCC 27551 (Opd), we developed a bioremediation system capable of degrading OPs under both buffered and unbuffered conditions. Enzyme activity was evaluated across pH and temperature ranges, with optimal performance observed at pH 8.5-10 and sustained stability for over 28 days. A key innovation was the coimmobilization of Escherichia coli cells expressing Opd and flavin-dependent monooxygenase (HadA) in calcium alginate, enabling the transformation of toxic OPs into less harmful benzoquinones. The system demonstrated high degradation efficiency, achieving 100% degradation of ethyl parathion, along with substantial degradation of methyl parathion (98%), fenitrothion (91%), ethyl chlorpyrifos (83%), and profenofos (62%). Validation in flow cells and column-based setups confirmed the practical applicability of this approach for treating OP-contaminated soil and water. These findings highlight the potential of enzyme-based, cell-immobilized systems for sustainable pesticide remediation. This method offers a practical, eco-friendly solution for reducing pesticide residues in agricultural environments and supports the advancement of greener farming practices.
Collapse
Affiliation(s)
- Vinutsada Pongsupasa
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Pratchaya Watthaisong
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Nidar Treesukkasem
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Apisit Naramittanakul
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Charndanai Tirapanampai
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
- Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| |
Collapse
|
3
|
Wang B, Tang H, Cheng H, Cheng Y, Qiao R, He Y, Wang G. One-step biomineralization to synthesize reusable CRL@ZnCo-MOF for boosting lipase stability and sustainable dibutyl phthalate removal. Int J Biol Macromol 2025; 293:139460. [PMID: 39755071 DOI: 10.1016/j.ijbiomac.2025.139460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/23/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
Adsorption and biodegradation are two important means to remove the pollutants from the environment, but how to combine them and improve the catalytic performance and stability of free enzyme are facing great challenges. Herein, lipase from Candida rugosa (CRL) was immobilized into bimetallic ZnCo-MOF by biomineralization, which not only significantly improved the catalytic activity and stability of CRL but also endowed it with excellent reusability. Furthermore, CRL@ZnCo-MOF established a synergetic system of combined adsorption and enzymatic degradation for the sustainable removal of dibutyl phthalate (DBP) in actual water environment. The adsorption of DBP by CRL@ZnCo-MOF with mesoporous structure is mainly carried out by the monolayer adsorption via chemical adsorption, wherein the interaction between them is predominantly mediated by the hydrogen bonds and coordination bonds of MOF and DBP. Moreover, due to the ester bond cleavage ability of CRL, the DBP was degradated to less toxic monobutyl phthalate (MBP) and phthalic acid (PA) by CRL@ZnCo-MOF. Therefore, this study provides new insights into the development of novel approaches for the treatment of pollutants using enzyme@MOF biocomposite through the integration of adsorption-biodegradation effect.
Collapse
Affiliation(s)
- Baojuan Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China.
| | - Huiliang Tang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Huili Cheng
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Yujie Cheng
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Ruonan Qiao
- Key Laboratory of Chem-Biosensing of Anhui Province, Key Laboratory of Functional Molecular Solids of Anhui Province, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Yuezhen He
- Key Laboratory of Chem-Biosensing of Anhui Province, Key Laboratory of Functional Molecular Solids of Anhui Province, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Guangfeng Wang
- Key Laboratory of Chem-Biosensing of Anhui Province, Key Laboratory of Functional Molecular Solids of Anhui Province, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, Anhui, China.
| |
Collapse
|
4
|
Verma S, Choudhary S, Amith Kumar K, Mahto JK, Vamsi K AK, Mishra I, Prakash VB, Sircar D, Tomar S, Kumar Sharma A, Singla J, Kumar P. Mechanistic and structural insights into EstS1 esterase: A potent broad-spectrum phthalate diester degrading enzyme. Structure 2025; 33:247-261.e3. [PMID: 39642872 DOI: 10.1016/j.str.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/20/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024]
Abstract
Phthalate diesters are important pollutants and act as endocrine disruptors. While certain bacterial esterases have been identified for phthalate diesters degradation to monoesters, their structural and mechanistic characteristics remain largely unexplored. Here, we highlight the potential of the thermostable and pH-tolerant EstS1 esterase from Sulfobacillus acidophilus DSM10332 to degrade high molecular weight bis(2-ethylhexyl) phthalate (DEHP) by combining biophysical and biochemical approaches along with high-resolution EstS1 crystal structures of the apo form and with bound substrates, products, and their analogs to elucidate its mechanism. The catalytic tunnel mediates entry and exit of the substrate and product, respectively. The centralized Ser-His-Asp triad performs catalysis by a bi-bi ping-pong mechanism, forming a tetrahedral intermediate. Mutagenesis analysis showed that the Met207Ala mutation abolished DEHP binding at the active site, confirming its essential role in supporting catalysis. These findings underscore EstS1 as a promising tool for advancing technologies aimed at phthalate diesters biodegradation.
Collapse
Affiliation(s)
- Shalja Verma
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Kamble Amith Kumar
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Jai Krishna Mahto
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Anil Kumar Vamsi K
- Department of Civil Engineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Ishani Mishra
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | | | - Debabrata Sircar
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Jitin Singla
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
5
|
Saeng-Kla K, Mhuantong W, Termsaithong T, Pinyakong O, Sonthiphand P. Biodegradation of Di-2-Ethylhexyl Phthalate by Mangrove Sediment Microbiome Impacted by Chronic Plastic Waste. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 27:19. [PMID: 39625614 DOI: 10.1007/s10126-024-10399-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/27/2024] [Indexed: 02/26/2025]
Abstract
Plastic pollution through the leaching of di(2-ethylhexyl) phthalate (DEHP), a widely used plasticizer, has led to the emergence of mangrove pollution. This study aimed to assess the DEHP removal efficiency of indigenous mangrove sediment microbiomes and identify key DEHP degraders using microcosm construction and metagenomic analysis. During the 35-day incubation period, the indigenous mangrove sediment microbiome, affected by chronic plastic pollution, demonstrated a 99% degradation efficiency of 200 mg/kg DEHP. Spearman's correlation analysis suggested that Myxococcales, Methyloligellaceae, Mycobacterium, and Micromonospora were potentially responsible for DEHP degradation. Based on PICRUSt2, the DEHP-degrading pathway in the sediment was predicted to be an anaerobic process involving catechol metabolism through catC, pcaD, pcaI, pcaF, and fadA. Efficient bacterial isolates from the mangrove sediment, identified as Gordonia sp. and Gordonia polyisoprenivorans, were able to degrade DEHP (65-97%) within 7 days and showed the ability to degrade other phthalate esters (PAEs).
Collapse
Affiliation(s)
- Kanphorn Saeng-Kla
- Department of Biology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Teerasit Termsaithong
- Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
- Theoretical and Computational Physics (TCP) Group, Center of Excellence in Theoretical and Computational Science (TaCS-CoE), King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Onruthai Pinyakong
- Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok, 10330, Thailand
| | - Prinpida Sonthiphand
- Department of Biology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
6
|
Hernández-Sánchez B, Santacruz-Juárez E, Figueroa-Martínez F, Castañeda-Antonio D, Portillo-Reyes R, Viniegra-González G, Sánchez C. A novel and efficient strategy for the biodegradation of di(2-ethylhexyl) phthalate by Fusarium culmorum. Appl Microbiol Biotechnol 2024; 108:94. [PMID: 38212966 DOI: 10.1007/s00253-023-12961-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer that is used worldwide and raises concerns because of its prevalence in the environment and potential toxicity. Herein, the capability of Fusarium culmorum to degrade a high concentration (3 g/L) of DEHP as the sole carbon and energy source in solid-state fermentation (SSF) was studied. Cultures grown on glucose were used as controls. The biodegradation of DEHP by F. culmorum reached 96.9% within 312 h. This fungus produced a 3-fold higher esterase activity in DEHP-supplemented cultures than in control cultures (1288.9 and 443.2 U/L, respectively). In DEHP-supplemented cultures, nine bands with esterase activity (24.6, 31.2, 34.2, 39.5, 42.8, 62.1, 74.5, 134.5, and 214.5 kDa) were observed by zymography, which were different from those in control cultures and from those previously reported for cultures grown in submerged fermentation. This is the first study to report the DEHP biodegradation pathway by a microorganism grown in SSF. The study findings uncovered a novel biodegradation strategy by which high concentrations of DEHP could be biodegraded using two alternative pathways simultaneously. F. culmorum has an outstanding capability to efficiently degrade DEHP by inducing esterase production, representing an ecologically promising alternative for the development of environmental biotechnologies, which might help mitigate the negative impacts of environmental contamination by this phthalate. KEY POINTS: • F. culmorum has potential to tolerate and remove di(2-ethylhexyl) phthalate (DEHP) • Solid-state fermentation is an efficient system for DEHP degradation by F. culmorum • High concentrations of DEHP induce high levels of esterase production by F. culmorum.
Collapse
Affiliation(s)
- Brenda Hernández-Sánchez
- PhD program in Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Iztapalapa, CDMX, Mexico
| | - Ericka Santacruz-Juárez
- Polytechnic University of Tlaxcala, San Pedro Xalcatzinco, 90180, Tepeyanco, Tlaxcala, Mexico
| | | | - Dolores Castañeda-Antonio
- Research Centre for Microbiological Sciences, Institute of Sciences, Meritorious Autonomous University of Puebla, 72590, Puebla, Puebla, Mexico
| | - Roberto Portillo-Reyes
- Faculty of Chemical Sciences, Meritorious Autonomous University of Puebla, 72570, Puebla, Puebla, Mexico
| | - Gustavo Viniegra-González
- Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, 09340, Iztapalapa, CDMX, Mexico
| | - Carmen Sánchez
- Laboratory of Biotechnology, Research Centre for Biological Sciences, Universidad Autónoma de Tlaxcala, 90120, Ixtacuixtla, Tlaxcala, Mexico.
| |
Collapse
|
7
|
Chacón M, Dixon N. Genetically encoded biosensors for the circular plastics bioeconomy. Metab Eng Commun 2024; 19:e00255. [PMID: 39737114 PMCID: PMC11683335 DOI: 10.1016/j.mec.2024.e00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/21/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Current plastic production and consumption routes are unsustainable due to impact upon climate change and pollution, and therefore reform across the entire value chain is required. Biotechnology offers solutions for production from renewable feedstocks, and to aid end of life recycling/upcycling of plastics. Biology sequence/design space is complex requiring high-throughput analytical methods to facilitate the iterative optimisation, design-build, test-learn (DBTL), cycle of Synthetic Biology. Furthermore, genetic regulatory tools can enable harmonisation between biotechnological demands and the physiological constraints of the selected production host. Genetically encoded biosensors offer a solution for both requirements to facilitate the circular plastic bioeconomy. In this review we present a summary of biosensors developed to date reported to be responsive to plastic precursors/monomers. In addition, we provide a summary of the demonstrated and prospective applications of these biosensors for the construction and deconstruction of plastics. Collectively, this review provides a valuable resource of biosensor tools and enabled applications to support the development of the circular plastics bioeconomy.
Collapse
Affiliation(s)
- Micaela Chacón
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, University of Manchester, Manchester, M1 7DN, UK
| | - Neil Dixon
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, University of Manchester, Manchester, M1 7DN, UK
| |
Collapse
|
8
|
Singh S, Soni M, Gupta N, Sandhu P, Tripathi D, Venkatesh Pratap J, Subramanian S, Manickam N. Unravelling biochemical and molecular mechanism of a carboxylesterase from Dietzia kunjamensis IITR165 reveal novel activities against polyethylene terephthalate. Biochem Biophys Res Commun 2024; 735:150833. [PMID: 39423573 DOI: 10.1016/j.bbrc.2024.150833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/15/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Plastics and plasticizers accumulate in the ecological niches affecting biodiversity, and human and environmental health. Bacteria degrading polyethylene terephthalate (PET) were screened and PETases involved in PET degradation were characterized. Here, we identified a carboxylesterase Dkca1 of 48.44 kDa molecular mass from Dietzia kunjamensis IITR165 shown to degrade amorphous PET film into bis(2-hydroxyethyl) terephthalate (BHET) and terephthalic acid (TPA) formed 64.35 μM and 35.26 μM, respectively within 96 h at 37 °C as revealed by LC-MS analysis showed significant PET hydrolase activity similar to reported PETases. SEM analysis confirms the surface erosion as cavities and holes. Dkca1 also hydrolysed BHET and dibutyl phthalate (DBP) at a concentration of 1 mM within 3 h indicating its versatility. Fluorescence quenching shows Dkca1 protein has a maximum affinity (Kd) towards BHET (86.55 μM) than DBP (134.2 μM). The protein demonstrated high stability under temperatures above 40 °C and at the pH range of 6.0-9.0. Moreover, Amino acid composition showed that the Dkca1 enzyme belongs to family VII carboxylesterase containing conserved catalytic triad of Ser183-Glu289-His378 with pentapeptide motif GXSAG and an oxyanion hole H103GGG106, sharing 37.47 % and 32.44 % similarity with a PET hydrolase TfCa from Thermobifida fusca and PAE hydrolase CarEW from Bacillus sp. K91, respectively. A docking study revealed that ligand PET, BHET, and DBP showed favourable binding in the catalytic pocket of the Dkca1 protein.
Collapse
Affiliation(s)
- Saurabh Singh
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, FEST Division. CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Mohini Soni
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Neha Gupta
- Analytical Chemistry Laboratory, Analytical Sciences and Accredited Testing Services, ASSIST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Padmani Sandhu
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Deepali Tripathi
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, FEST Division. CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - J Venkatesh Pratap
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Srikrishna Subramanian
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Natesan Manickam
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, FEST Division. CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
9
|
Dhar R, Basu S, Bhattacharyya M, Acharya D, Dutta TK. Bacterial Catabolism of Phthalates With Estrogenic Activity Used as Plasticisers in the Manufacture of Plastic Products. Microb Biotechnol 2024; 17:e70055. [PMID: 39548699 PMCID: PMC11568242 DOI: 10.1111/1751-7915.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024] Open
Abstract
Phthalic acid esters (PAEs), the pervasive and ubiquitous endocrine-disrupting chemicals of environmental concern, generated annually on a million-ton scale, are primarily employed as plasticisers in the production of a variety of plastic products and as additives in a large number of commercial supplies. The increased awareness of various adverse effects on the ecosystem and human health including reproductive and developmental disorders has led to a striking increase in research interest aimed at managing these man-made oestrogenic chemicals. In these circumstances, microbial metabolism appeared as the major realistic process to neutralise the toxic burdens of PAEs in an ecologically accepted manner. Among a wide variety of microbial species capable of degrading/transforming PAEs reported so far, bacteria-mediated degradation has been studied most extensively. The main purpose of this review is to provide current knowledge of metabolic imprints of microbial degradation/transformation of PAEs, a co-contaminant of plastic pollution. In addition, this communication illustrates the recent advancement of the structure-functional aspects of the key metabolic enzyme phthalate hydrolase, their inducible regulation of gene expression and evolutionary relatedness, besides prioritising future research needs to facilitate the development of new insights into the bioremediation of PAE in the environment.
Collapse
Affiliation(s)
- Rinita Dhar
- Department of MicrobiologyBose InstituteKolkataIndia
| | - Suman Basu
- Department of MicrobiologyBose InstituteKolkataIndia
| | | | | | | |
Collapse
|
10
|
Durante‐Rodríguez G, de Francisco‐Polanco S, Fernández‐Arévalo U, Díaz E. Engineering bacterial biocatalysts for the degradation of phthalic acid esters. Microb Biotechnol 2024; 17:e70024. [PMID: 39365609 PMCID: PMC11451385 DOI: 10.1111/1751-7915.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
Phthalic acid esters (PAEs) are synthetic diesters derived from o-phthalic acid, commonly used as plasticizers. These compounds pose significant environmental and health risks due to their ability to leach into the environment and act as endocrine disruptors, carcinogens, and mutagens. Consequently, PAEs are now considered major emerging contaminants and priority pollutants. Microbial degradation, primarily by bacteria and fungi, offers a promising method for PAEs bioremediation. This article highlights the current state of microbial PAEs degradation, focusing on the major bottlenecks and associated challenges. These include the identification of novel and more efficient PAE hydrolases to address the complexity of PAE mixtures in the environment, understanding PAEs uptake mechanisms, characterizing novel o-phthalate degradation pathways, and studying the regulatory network that controls the expression of PAE degradation genes. Future research directions include mitigating the impact of PAEs on health and ecosystems, developing biosensors for monitoring and measuring bioavailable PAEs concentrations, and valorizing these residues into other products of industrial interest, among others.
Collapse
Affiliation(s)
| | | | - Unai Fernández‐Arévalo
- Department of BiotechnologyCentro de Investigaciones Biológicas Margarita Salas‐CSICMadridSpain
| | - Eduardo Díaz
- Department of BiotechnologyCentro de Investigaciones Biológicas Margarita Salas‐CSICMadridSpain
| |
Collapse
|
11
|
Verma S, Singh A, Kumar P, Singla J. In-silico characterization of a hypothetical protein of Sulfobacillus sp. hq2 for degradation of phthalate diesters. Int J Biol Macromol 2024; 280:136006. [PMID: 39326604 DOI: 10.1016/j.ijbiomac.2024.136006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Phthalate plasticizers are hazardous compounds capable of causing endocrine disruption, cancers, and developmental disorders. Phthalate diesters are commonly used plasticizers in plastic products (PVC pipes) that leach out into the environment due to changes in temperature, pressure, and pH, posing harmful effects on different life forms. Bioremediation of phthalate diesters utilizing bacterial esterase has been recognized as an efficient approach but few effective esterases capable of degrading a wide range of phthalate diesters have been identified. Further, the thermostability of these esterases is a highly desirable property for their applications in diverse in-situ conditions. In this present in-silico study a hypothetical protein (POB10642.1) as a high-potential esterase from a thermostable strain of Sulfobacillus sp. hq2 has been characterized. Analysis revealed a significant sequence identity of 42.67 % and structural similarity (RMSD 0.557) with known phthalate diester degrading EstS1 esterase and a high Tm range of 55-66 °C. Structural analysis revealed the presence of two cavities on the surface mediating toward the catalytic site forming a catalytic tunnel. The enzyme POB10642.1 has significant molecular docking binding energies in the range of -5.4 to -7.5 kcal/mol with several phthalate diesters, including Diethyl phthalate, Dipropyl phthalate, Dibutyl phthalate, Dipentyl phthalate, Dihexyl phthalate, Benzyl butyl phthalate, Dicyclohexyl phthalate, and Bis(2-ethylhexyl) phthalate. High stability of binding during 100 ns molecular dynamics simulations revealed efficient and stable binding of the enzyme with a wide range of phthalate diesters at its active site, demonstrating the ability of the identified esterase to interact with and degrade diverse phthalate diesters. Therefore, POB10642.1 esterase can be an efficient candidate to be utilized in the development of enzyme-based bioremediation technologies to reduce the toxic levels of phthalate diesters.
Collapse
Affiliation(s)
- Shalja Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India
| | - Anika Singh
- Montfort School, Roorkee 24766, Uttarakhand, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India.
| | - Jitin Singla
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
12
|
Shah BA, Malhotra H, Papade SE, Dhamale T, Ingale OP, Kasarlawar ST, Phale PS. Microbial degradation of contaminants of emerging concern: metabolic, genetic and omics insights for enhanced bioremediation. Front Bioeng Biotechnol 2024; 12:1470522. [PMID: 39364263 PMCID: PMC11446756 DOI: 10.3389/fbioe.2024.1470522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
The perpetual release of natural/synthetic pollutants into the environment poses major risks to ecological balance and human health. Amongst these, contaminants of emerging concern (CECs) are characterized by their recent introduction/detection in various niches, thereby causing significant hazards and necessitating their removal. Pharmaceuticals, plasticizers, cyanotoxins and emerging pesticides are major groups of CECs that are highly toxic and found to occur in various compartments of the biosphere. The sources of these compounds can be multipartite including industrial discharge, improper disposal, excretion of unmetabolized residues, eutrophication etc., while their fate and persistence are determined by factors such as physico-chemical properties, environmental conditions, biodegradability and hydrological factors. The resultant exposure of these compounds to microbiota has imposed a selection pressure and resulted in evolution of metabolic pathways for their biotransformation and/or utilization as sole source of carbon and energy. Such microbial degradation phenotype can be exploited to clean-up CECs from the environment, offering a cost-effective and eco-friendly alternative to abiotic methods of removal, thereby mitigating their toxicity. However, efficient bioprocess development for bioremediation strategies requires extensive understanding of individual components such as pathway gene clusters, proteins/enzymes, metabolites and associated regulatory mechanisms. "Omics" and "Meta-omics" techniques aid in providing crucial insights into the complex interactions and functions of these components as well as microbial community, enabling more effective and targeted bioremediation. Aside from natural isolates, metabolic engineering approaches employ the application of genetic engineering to enhance metabolic diversity and degradation rates. The integration of omics data will further aid in developing systemic-level bioremediation and metabolic engineering strategies, thereby optimising the clean-up process. This review describes bacterial catabolic pathways, genetics, and application of omics and metabolic engineering for bioremediation of four major groups of CECs: pharmaceuticals, plasticizers, cyanotoxins, and emerging pesticides.
Collapse
Affiliation(s)
- Bhavik A Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sandesh E Papade
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Tushar Dhamale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Omkar P Ingale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sravanti T Kasarlawar
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| |
Collapse
|
13
|
Pereyra-Camacho MA, Balderas-Hernández VE, Barba-de la Rosa AP, De Leon-Rodriguez A. Whole-cell biocatalysis for phthalate esters biodegradation in wastewater by a saline soil bacteria SSB-consortium. CHEMOSPHERE 2024; 364:143243. [PMID: 39233295 DOI: 10.1016/j.chemosphere.2024.143243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Phthalic acid esters (PAE) are widely used as plasticizers and have been classified as ubiquitous environmental contaminants of primary concern. PAE have accumulated intensively in surface water, groundwater, and wastewaters; thus, PAE degradation is essential. In the present study, the ability of a saline soil bacteria (SSB)-consortium to degrade synthetic wastewater-phthalates with alkyl chains of different lengths, such as diethyl phthalate (DEP), di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), and di (2-ethylhexyl) phthalate (DEHP) was characterized. A central composite design-response surface methodology was applied to optimize the degradation of each phthalate, where the independent variables were temperature (21-41 °C), pH (5.3-8.6) and PAE concentration (79.5-920.4 mg L-1), and Gas Chromatography-Mass Spectrometry was used to identify the metabolites generated during phthalate degradation. Optimal conditions were 31 °C, pH 7.0, and an initial PAE concentration of 500 mg L-1, where the SSB-consortium removed 84.9%, 98.47%, 99.09% and 98.25% of initial DEP, DBP, BBP, and DEHP, respectively, in 168h. A first-order kinetic model explained - the biodegradation progression, while the half-life of PAE degradation ranged from 12.8 to 29.8 h. Genera distribution of the SSB-consortium was determined by bacterial meta-taxonomic analysis. Serratia, Methylobacillus, Acrhomobacter, and Pseudomonas were the predominant genera; however, the type of phthalate directly affected their distribution. Scanning electron microscopy analysis showed that high concentrations (1000 mg L-1) of phthalates induced morphological alterations in the bacterial SSB-consortium. The metabolite profiling showed that DEP, DBP, BBP, and DEHP could be fully metabolized through the de-esterification and β-oxidation pathways. Therefore, the SSB-consortium can be considered a potential candidate for bioremediation of complex phthalate-contaminated water resources.
Collapse
Affiliation(s)
- Marco A Pereyra-Camacho
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C. Camino a la Presa San José No. 2055, Lomas 4a sección, San Luis Potosí, San Luis Potosí, 78216 Mexico
| | - Victor E Balderas-Hernández
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C. Camino a la Presa San José No. 2055, Lomas 4a sección, San Luis Potosí, San Luis Potosí, 78216 Mexico
| | - Ana P Barba-de la Rosa
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C. Camino a la Presa San José No. 2055, Lomas 4a sección, San Luis Potosí, San Luis Potosí, 78216 Mexico
| | - Antonio De Leon-Rodriguez
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C. Camino a la Presa San José No. 2055, Lomas 4a sección, San Luis Potosí, San Luis Potosí, 78216 Mexico.
| |
Collapse
|
14
|
Hou Z, Pan H, Gu M, Chen X, Ying T, Qiao P, Cao J, Wang H, Hu T, Zheng L, Zhong W. Simultaneously degradation of various phthalate esters by Rhodococcus sp. AH-ZY2: Strain, omics and enzymatic study. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134776. [PMID: 38852255 DOI: 10.1016/j.jhazmat.2024.134776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/14/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
Phthalate esters (PAEs) are widely used as plasticizers and cause serious complex pollution problem in environment. Thus, strains with efficient ability to simultaneously degrade various PAEs are required. In this study, a newly isolated strain Rhodococcus sp. AH-ZY2 can degrade 500 mg/L Di-n-octyl phthalate completely within 16 h and other 500 mg/L PAEs almost completely within 48 h at 37 °C, 180 rpm, and 2 % (v/v) inoculum size of cultures with a OD600 of 0.8. OD600 = 0.8, 2 % (v/v). Twenty genes in its genome were annotated as potential esterase and four of them (3963, 4547, 5294 and 5359) were heterogeneously expressed and characterized. Esterase 3963 and 4547 is a type I PAEs esterase that hydrolyzes PAEs to phthalate monoesters. Esterase 5294 is a type II PAEs esterase that hydrolyzes phthalate monoesters to phthalate acid (PA). Esterase 5359 is a type III PAEs esterase that simultaneously degrades various PAEs to PA. Molecular docking results of 5359 suggested that the size and indiscriminate binding feature of spacious substrate binding pocket may contribute to its substrate versatility. AH-ZY2 is a potential strain for efficient remediation of PAEs complex pollution in environment. It is first to report an esterase that can efficiently degrade mixed various PAEs.
Collapse
Affiliation(s)
- Zhengyu Hou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hejuan Pan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengjie Gu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaowang Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tongtong Ying
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Pei Qiao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junwei Cao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Haixia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tong Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lianbao Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
15
|
Ning H, Liu WL, Li QY, Liu YY, Huang ST, Liu HB, Tang AX. Substrate Characterization for Hydrolysis of Multiple Types of Aromatic Esters by Promiscuous Aminopeptidases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39021280 DOI: 10.1021/acs.jafc.4c02053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Synthetic aromatic esters, widely employed in agriculture, food, and chemical industries, have become emerging environmental pollutants due to their strong hydrophobicity and poor bioavailability. This study attempted to address this issue by extracellularly expressing the promiscuous aminopeptidase (Aps) from Pseudomonas aeruginosa GF31 in B. subtilis, achieving an impressive enzyme activity of 13.7 U/mg. Notably, we have demonstrated, for the first time, the Aps-mediated degradation of diverse aromatic esters, including but not limited to pyrethroids, phthalates, and parabens. A biochemical characterization of Aps reveals its esterase properties and a broader spectrum of substrate profiles. The degradation rates of p-nitrobenzene esters (p-NB) with different side chain structures vary under the action of Aps, showing a preference for substrates with relatively longer alkyl side chains. The structure-dependent degradability aligns well with the binding energies between Aps and p-NB. Molecular docking and enzyme-substrate interaction elucidate that hydrogen bonding, hydrophobic interactions, and π-π stacking collectively stabilize the enzyme-substrate conformation, promoting substrate hydrolysis. These findings provide new insights into the enzymatic degradation of aromatic ester pollutants, laying a foundation for the further development and modification of promiscuous enzymes.
Collapse
Affiliation(s)
- Hang Ning
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Wen-Long Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Qing-Yun Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
- Key Laboratory of Guangxi Biorefinery, Nanning 530003, People's Republic of China
| | - You-Yan Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
- Key Laboratory of Guangxi Biorefinery, Nanning 530003, People's Republic of China
| | - Shi-Ting Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Hai-Bo Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Ai-Xing Tang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
- Key Laboratory of Guangxi Biorefinery, Nanning 530003, People's Republic of China
| |
Collapse
|
16
|
Sun Q, Liu C, Zhang X, Wang Z, Guan P, Wang Z, Wang Z, Shi M. Phthalate ester (PAEs) accumulation in wheat tissues and dynamic changes of rhizosphere microorganisms in the field with plastic-film residue. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172833. [PMID: 38688369 DOI: 10.1016/j.scitotenv.2024.172833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Phthalates acid esters (PAEs) have accumulated in soil and crops like wheat as a result of the widespread usage of plastic films. It is yet unclear, nevertheless, how these dynamic variations in PAE accumulation in wheat tissues relate to rhizosphere bacteria in the field. In this work, a field root-bag experiment was conducted to examine the changes of PAEs accumulation in the rhizosphere soil and wheat tissues under film residue conditions at four different growth stages of wheat, and to clarify the roles played by the microbial community in the alterations. Results showed that the plastic film residues significantly increased the concentrations of PAEs in soils, wheat roots, straw and grains. The maximum ΣPAEs concentration in soils and different wheat tissues appeared at the maturity, with the ΣPAEs concentration of 1.57 mg kg-1, 4.77 mg kg-1, 5.21 mg kg-1, 1.81 mg kg-1 for rhizosphere soils, wheat roots, straw and grains, respectively. The plastic film residues significantly changed the functions and components of the bacterial community, increased the stochastic processes of the bacterial community assembly, and reduced the complexity and stability of the bacterial network. In addition, the present study identified some bacteria associated with plastic film residues and PAEs degradation in key-stone taxa, and their relative abundances were positive related to the ΣPAEs concentration in soils. The PAEs content and key-stone taxa in rhizosphere soil play a crucial role in the formation of rhizosphere soil bacterial communities. This field study provides valuable information for better understanding the role of microorganisms in the complex system consisting of film residue, soil and crops.
Collapse
Affiliation(s)
- Qing Sun
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture/College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chenrui Liu
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture/College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xinxin Zhang
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture/College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zilin Wang
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture/College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Peiyi Guan
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture/College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ziming Wang
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture/College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhaohui Wang
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture/College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China; State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mei Shi
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture/College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China; State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
17
|
Sun X, Zhang X, Li Z, Wang T, Zeng J, Liu Y, Li Z, Li L. Efficient remediation of di-(2-ethylhexyl) phthalate and plant-growth promotion with the application of a phosphate-solubilizing compound microbial agent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171904. [PMID: 38527548 DOI: 10.1016/j.scitotenv.2024.171904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
The ecotoxic endocrine-disrupting chemical di-(2-ethylhexyl) phthalate (DEHP) is ubiquitous in agricultural soil, posing a serious threat to human health. Here, we report efficient soil-borne DEHP degradation and plant growth promotion by a microbial organic fertilizer GK-PPB prepared by combining a recycled garden waste-kitchen waste compost product with ternary compound microbial agent PPB-MA, composed of Penicillium oxalic MB08F, Pseudomonas simiae MB751, and Bacillus tequilensis MB05B. The combination of MB08F and MB751 provided synergistic phosphorus solubilization, and MB05B enhanced the DEHP degradation capacity of MB08F via bioemulsification. Under optimal conditions (25.70 °C and pH 7.62), PPB-MA achieved a 96.81 % degradation percentage for 1000 mg L-1 DEHP within 5 days. The degradation curve followed first-order kinetics with a half-life of 18.24 to 24.76 h. A complete mineralization pathway was constructed after identifying the degradation intermediates of 2H-labeled DEHP. Evaluation in Caenorhabditis elegans N2 showed that PPB-MA eliminated the ecological toxicity of DEHP. A pakchoi (Brassica chinensis L.) pot experiment demonstrated that GK-PPB promoted phosphorus solubilization and plant growth, reduced soil DEHP residue, and decreased DEHP accumulation in pakchoi, suggesting its potential practical utility in environmentally responsible and safe cultivation of vegetables.
Collapse
Affiliation(s)
- Xiaowen Sun
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xue Zhang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tan Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Zeng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongxuan Liu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhe Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lin Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
18
|
Kushwaha M, Singh D, Akhter Y, Chatterjee S. Biodegradation of DEP, DIBP, and BBP by a psychrotolerant Sphingobium yanoikuyae strain P4: Degradation potentiality and mechanism study. Arch Microbiol 2024; 206:254. [PMID: 38727835 DOI: 10.1007/s00203-024-03977-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/19/2024] [Accepted: 04/24/2024] [Indexed: 06/18/2024]
Abstract
Phthalic acid esters (PAEs) are human made chemicals widely used as plasticizers to enhance the flexibility of plastic products. Due to the lack of chemical bonding between phthalates and plastics, these materials can easily enter the environment. Deleterious effects caused by this chemo-pollutant have drawn the attention of the scientific community to remediate them from different ecosystem. In this context, many bacterial strains have been reported across different habitats and Sphingobium yanoikuyae strain P4 is among the few psychrotolerant bacterial species reported to biodegrade simple and complex phthalates. In the present study, biodegradation of three structurally different PAEs viz., diethyl phthalate (DEP), di-isobutyl phthalate (DIBP), and butyl benzyl phthalate (BBP) have been investigated by the strain P4. Quantitative analyses through High-performance liquid chromatography (HPLC) revealed that the bacterium completely degraded 1 g/L of DEP, DIBP, and BBP supplemented individually in minimal media pH 7.0 within 72, 54, and 120 h of incubation, respectively, at 28 °C and under shake culture condition (180 rpm). In addition, the strain could grow in minimal media supplemented individually with up to 3 g/L of DEP and 10.0 g/L of DIBP and BBP at 28 °C and pH 7.0. The strain also could grow in metabolites resulting from biodegradation of DEP, DIBP, and BBP, viz. n-butanol, isobutanol, butyric acid, ethanol, benzyl alcohol, benzoic acid, phthalic acid, and protocatechuic acid. Furthermore, phthalic acid and protocatechuic acid were also detected as degradation pathway metabolites of DEP and DIBP by HPLC, which gave an initial idea about the biodegradation pathway(s) of these phthalates.
Collapse
Affiliation(s)
- Madhulika Kushwaha
- Bioremediation and Metabolomics Research Group, Department of Environmental Sciences, Central University of Himachal Pradesh, Academic Block-Shahpur, District-Kangra, Himachal Pradesh, 176206, India
| | - Dharam Singh
- Molecular and Microbial Genetics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, District-Kangra, Himachal Pradesh, 176061, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Subhankar Chatterjee
- Bioremediation and Metabolomics Research Group, Department of Environmental Sciences, Central University of Himachal Pradesh, Academic Block-Shahpur, District-Kangra, Himachal Pradesh, 176206, India.
- Bioremediation and Metabolomics Research Group, Department of Ecology & Environmental Sciences, School of Life Sciences, Pondicherry University, R.V. Nagar, Kalapet, Puducherry, 605 014, India.
| |
Collapse
|
19
|
Esmaeili Nasrabadi A, Ramavandi B, Bonyadi Z, Farjadfard S, Fattahi M. Landfill leachates as a significant source for emerging pollutants of phthalic acid esters: Identification, occurrence, characteristics, fate, and transport. CHEMOSPHERE 2024; 356:141873. [PMID: 38593958 DOI: 10.1016/j.chemosphere.2024.141873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/09/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024]
Abstract
Phthalic acid esters (PAEs) are byproducts released from various sources, including microplastics, cosmetics, personal care products, pharmaceuticals, waxes, inks, detergents, and insecticides. This review article provides an overview of the literature on PAEs in landfill leachates, exploring their identification, occurrence, characteristics, fate, and transport in landfills across different countries. The study emphasizes the influence of these substances on the environment, especially on water and soil. Various analytical techniques, such as GC-MS, GC-FID, and HPLC, are commonly employed to quantify concentrations of PAEs. Studies show significant variations in levels of PAEs among different countries, with the highest concentration observed in landfill leachates in Brazil, followed by Iran. Among the different types of PAE, the survey highlights DEHP as the most concentrated PAE in the leachate, with a concentration of 89.6 μg/L. The review also discusses the levels of other types of PAEs. The data shows that DBP has the highest concentration at 6.8 mg/kg, while DOP has the lowest concentration (0.04 mg/kg). The concentration of PAEs typically decreases as the depth in the soil profile increases. In older landfills, concentrations of PAE decrease significantly, possibly due to long-term degradation and conversion of PAE into other chemical compounds. Future research should prioritize evaluating the effectiveness of landfill liners and waste management practices in preventing the release of PAE and other pollutants into the environment. It is also possible to focus on developing efficient physical, biological, and chemical methods for removing PAEs from landfill leachates. Additionally, the effectiveness of existing treatment processes in removing PAEs from landfill leachates and the necessity for new treatment processes can be considered.
Collapse
Affiliation(s)
- Afsaneh Esmaeili Nasrabadi
- Student Research Committee, Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Ziaeddin Bonyadi
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sima Farjadfard
- Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
20
|
Peng C, Tang J, Zhou X, Zhou H, Zhang Y, Wang S, Wang W, Xiang W, Zhang Q, Yu X, Cai T. Quantitative proteomic analysis reveals the mechanism and key esterase of β-cypermethrin degradation in a bacterial strain from fermented food. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105858. [PMID: 38685237 DOI: 10.1016/j.pestbp.2024.105858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 05/02/2024]
Abstract
Beta-cypermethrin (β-CY) residues in food are an important threat to human health. Microorganisms can degrade β-CY residues during fermentation of fruits and vegetables, while the mechanism is not clear. In this study, a comprehensively investigate of the degradation mechanism of β-CY in a food microorganism was conducted based on proteomics analysis. The β-CY degradation bacteria Gordonia alkanivorans GH-1 was derived from fermented Pixian Doubanjiang. Its crude enzyme extract could degrade 77.11% of β-CY at a concentration of 45 mg/L within 24 h. Proteomics analysis revealed that the ester bond of β-CY is broken under the action of esterase to produce 3-phenoxy benzoic acid, which was further degraded by oxidoreductase and aromatic degrading enzyme. The up-regulation expression of oxidoreductase and esterase was confirmed by transcriptome and quantitative reverse transcription PCR. Meanwhile, the expression of esterase Est280 in Escherichia coli BL21 (DE3) resulted in a 48.43% enhancement in the degradation efficiency of β-CY, which confirmed that this enzyme was the key enzyme in the process of β-CY degradation. This study reveals the degradation mechanism of β-CY by microorganisms during food fermentation, providing a theoretical basis for the application of food microorganisms in β-CY residues.
Collapse
Affiliation(s)
- Chuanning Peng
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, People's Republic of China
| | - Jie Tang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, People's Republic of China; Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, Sichuan, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, Chengdu 610039, China.
| | - Xuerui Zhou
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, People's Republic of China
| | - Hu Zhou
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, People's Republic of China
| | - Yingyue Zhang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, People's Republic of China
| | - Su Wang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, People's Republic of China
| | - Wanting Wang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, People's Republic of China
| | - Wenliang Xiang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, People's Republic of China; Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, Sichuan, China
| | - Qing Zhang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, People's Republic of China; Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, Sichuan, China
| | - Xuan Yu
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, People's Republic of China; Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, Sichuan, China
| | - Ting Cai
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, People's Republic of China; Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, Sichuan, China
| |
Collapse
|
21
|
Shi QQ, Xu F, Shen T, Zhang RR, Liu H, Chen MZ, Sun AL, Zhang ZM, Shi XZ. High-throughput analytical methodology of monoalkyl phthalate esters and the composite risk assessment with their parent phthalate esters in aquatic organisms and seawater. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133186. [PMID: 38086300 DOI: 10.1016/j.jhazmat.2023.133186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 02/08/2024]
Abstract
A sensitive, robust, and highly efficient analytical methodology involving solid phase extraction coupled to ultra-high performance liquid chromatography tandem mass spectrometry was successfully established to detect 13 monoalkyl phthalate esters (MPAEs) in aquatic organisms and seawater. After the organisms were preprocessed using enzymatic deconjugation with β-glucuronidase, extraction, purification, and qualitative and quantitative optimization procedures were performed. Under optimal conditions, the limits of detection varied from 0.07 to 0.88 μg/kg (wet weight) and 0.04-1.96 ng/L in organisms and seawater, respectively. Collectively, MPAEs achieved acceptable recovery values (91.0-102.7%) with relative standard deviations less than 10.4% and matrix effects ranging from 0.93 to 1.07 in the above matrix. Furthermore, MPAEs and phthalate esters were detected by the developed methodology and gas chromatography-triple quadrupole tandem mass spectrometer in practical samples, respectively. Mono-n-butyl phthalate and mono-iso-butyl phthalate were the most predominant congeners, accounting for 24.8-35.2% in aquatic organisms and seawater. Comprehensive health and ecological risks were higher after the MPAEs were incorporated than when phthalate esters were considered separately, and greater than their risk threshold. Therefore, the risks caused by substances and their metabolites in multiple media, with analogous structure-activity relationships, should be considered to ensure the safety of aquatic organisms and consumers.
Collapse
Affiliation(s)
- Qiang-Qiang Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Feng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Tao Shen
- Ningbo Ecological and Environment Protection Society, Ningbo 315012, PR China
| | - Rong-Rong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Hua Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; School of Marine Sciences, Ningbo University, Ningbo 31211, PR China
| | - Ming-Ze Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Ai-Li Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Ze-Ming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; School of Marine Sciences, Ningbo University, Ningbo 31211, PR China.
| | - Xi-Zhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; School of Marine Sciences, Ningbo University, Ningbo 31211, PR China.
| |
Collapse
|
22
|
Wei Z, Niu S, Wei Y, Liu Y, Xu Y, Yang Y, Zhang P, Zhou Q, Wang JJ. The role of extracellular polymeric substances (EPS) in chemical-degradation of persistent organic pollutants in soil: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168877. [PMID: 38013104 DOI: 10.1016/j.scitotenv.2023.168877] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
Persistent organic pollutants (POPs) in soil show high environmental risk due to their high toxicity and low biodegradability. Studies have demonstrated the degradation function of microbial extracellular polymeric substances (EPS) on POPs in various matrices. However, the degradation mechanisms and the factors that influence the process in soil have not been clearly illustrated. In this review, the characteristics of EPS were introduced and the possible mechanisms of EPS on degradation of organic pollutants (e.g., external electron transfer, photodegradation, and enzyme catalysis) were comprehensively discussed. In addition, the environmental conditions (e.g., UV, nutrients, and redox potential) that could influence the production and degradation-related active components of EPS were addressed. Moreover, the current approaches on the application of EPS in biotechnology were summarized. Further, the future perspectives of enhancement on degradation of POPs by regulating EPS were discussed. Overall, this review could provide a new thought on remediation of POPs by widely-existing EPS in soil with low-cost and minimized eco-disturbance.
Collapse
Affiliation(s)
- Zhuo Wei
- Faculty of Environmental Science and Engineering, Kumming University of Science and Technology, Kumming 650500, Yunnan, China
| | - Shuai Niu
- Faculty of Environmental Science and Engineering, Kumming University of Science and Technology, Kumming 650500, Yunnan, China
| | - Yi Wei
- Faculty of Environmental Science and Engineering, Kumming University of Science and Technology, Kumming 650500, Yunnan, China
| | - Yang Liu
- Faculty of Environmental Science and Engineering, Kumming University of Science and Technology, Kumming 650500, Yunnan, China.
| | - Yaxi Xu
- Faculty of Environmental Science and Engineering, Kumming University of Science and Technology, Kumming 650500, Yunnan, China
| | - Yaheng Yang
- Faculty of Environmental Science and Engineering, Kumming University of Science and Technology, Kumming 650500, Yunnan, China
| | - Peng Zhang
- Faculty of Environmental Science and Engineering, Kumming University of Science and Technology, Kumming 650500, Yunnan, China
| | - Qingqiu Zhou
- Faculty of Environmental Science and Engineering, Kumming University of Science and Technology, Kumming 650500, Yunnan, China
| | - Jim J Wang
- School of Plant, Environment and Soil Sciences, Louisiana State University AgCenter, Baton Rouge, LA 70803, USA
| |
Collapse
|
23
|
Huang H, Xu Y, Lin M, Li X, Zhu H, Wang K, Sun B. Complete genome sequence of Acinetobacter indicus and identification of the hydrolases provides direct insights into phthalate ester degradation. Food Sci Biotechnol 2024; 33:103-113. [PMID: 38186616 PMCID: PMC10766577 DOI: 10.1007/s10068-023-01334-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/30/2023] [Accepted: 05/04/2023] [Indexed: 01/09/2024] Open
Abstract
A strain designated Acinetobacter indicus WMB-7 with the ability to hydrolyze phthalate esters (PAEs) was isolated from the fermented grains of Baijiu. The genome of the strain was sequenced with a length of 3,256,420 bp and annotated with 3183 genes, of which 36 hydrolases encoding genes were identified. The hydrolases were analyzed by protein structure modeling and molecular docking, and 14 enzymes were docked to the ligand di-butyl phthalate with the catalytic active regions, and showed binding affinity. The 14 enzymes were expressed in E. coli and 5 of them showed the ability for PAEs hydrolysis. Enzyme GK020_RS15665 showed high efficiency for PAEs hydrolysis and could efficiently hydrolyze di-butyl phthalate under an initial concentration of 1000 mg/L with a half-life of 4.24 h. This work combined a series of methods for identifying PAEs hydrolases and offered a molecular basis for PAEs degradation of A. indicus strains from Baijiu. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01334-w.
Collapse
Affiliation(s)
- Huiqin Huang
- School of Food and Human Health, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
| | - Youqiang Xu
- School of Food and Human Health, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
| | - Mengwei Lin
- School of Food and Human Health, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
| | - Xiuting Li
- School of Food and Human Health, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing, 100048 China
| | - Hua Zhu
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing, 100048 China
- Beijing Huadu Wine Food Limited Liability Company, Beijing, 102212 China
| | - Kun Wang
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing, 100048 China
- Beijing Huadu Wine Food Limited Liability Company, Beijing, 102212 China
| | - Baoguo Sun
- School of Food and Human Health, Beijing Technology and Business University, No. 33, Fucheng Road, Haidian District, Beijing, 100048 China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing, 100048 China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, 100048 China
| |
Collapse
|
24
|
Wang L, Wen W, Gu Y, Mao J, Tong X, Jia B, Yan J, Zhu K, Bai Z, Zhang W, Shi L, Chen Y, Morawska L, Chen J, Huang LH. Characterization of Biodiesel and Diesel Combustion Particles: Chemical Composition, Lipid Metabolism, and Implications for Health and Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20460-20469. [PMID: 38019752 DOI: 10.1021/acs.est.3c04994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Biodiesel, derived from alkyl esters of vegetable oils or animal fats, has gained prominence as a greener alternative to diesel due to its reduced particle mass. However, it remains debatable whether biodiesel exposure has more severe health issues than diesel. This study performed high-resolution mass spectrometry to examine the detailed particle chemical compositions and lipidomics analysis of human lung epithelial cells treated with emissions from biodiesel and diesel fuels. Results show the presence of the peak substances of CHO compounds in biodiesel combustion that contain a phthalate ester (PAEs) structure (e.g., n-amyl isoamyl phthalate and diisobutyl phthalate). PAEs have emerged as persistent organic pollutants across various environmental media and are known to possess endocrine-disrupting properties in the environment. We further observed that biodiesel prevents triglyceride storage compared to diesel and inhibits triglycerides from becoming phospholipids, particularly with increased phosphatidylglycerols (PGs) and phosphatidylethanolamines (PEs), which potentially could lead to a higher probability of cancer metastasis.
Collapse
Affiliation(s)
- Lina Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wen Wen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Yu Gu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai200438, China
| | - Jianwen Mao
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai200438, China
| | - Xiao Tong
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai200438, China
| | - Boyue Jia
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Jiaqian Yan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Ke Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Zhe Bai
- School of Ecology and Environment, Inner Mongolia University, Inner Mongolia 010021, China
| | - Wei Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Longbo Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Yingjun Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Lidia Morawska
- International Laboratory for Air Quality and Health (ILAQH), School of Earth of Atmospheric Sciences, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Li-Hao Huang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai200438, China
| |
Collapse
|
25
|
Liu H, Liu M, Zong X, Liu A, Yuan M, Fang S. Mechanism of safener mefenpyr-diethyl biodegradation by a newly isolated Chryseobacterium sp. B6 from wastewater sludge and application in co-contaminated soil. CHEMOSPHERE 2023; 345:140385. [PMID: 37839750 DOI: 10.1016/j.chemosphere.2023.140385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 07/14/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Safener mefenpyr-diethyl (MFD) was applied to cereal crops along with herbicides to improve herbicide selectivity for crops and weeds. However, the degradation mechanism of MFD in the environment remains unclear. One MFD-degrading bacterium, Chryseobacterium sp. B6, was isolated from activated sludge. According to Box-Behnken's optimal design, the degradation efficiency of MFD can reach 92% under conditions of pH 7.5, 30 °C, and a MFD concentration of 184 mg L-1. The degradation half-life experiment showed that a high concentration of MFD (300 mg L-1) inhibited the degradation ability of strain B6. Additionally, strain B6 was resistant to Ba2+, Cr3+, Li+, Zn2+, and Cu2+. The MFD degradation products of strain B6 were detected by GC/MS and its degradation pathway was proposed. MFD was first hydrolyzed by a hydrolase to an intermediate (RS)-1-(2,4-dichlorophenyl)-5-methyl-2-pyrazoline-5-carboxylic acid ethyl ester-3-carboxylic acid, and then further degraded by a decarboxylase to form the intermediate (RS)-1-(2,4-dichlorophenyl)-5-methyl-2-pyrazoline-5-carboxylic acid ethyl ester, finally, it is completely degraded by strain B6. Furthermore, strain B6 could effectively remove MFD from MFD-contaminated soil, and the half-life of MFD was also significantly reduced in MFD and Cu2+ co-contaminated soil after inoculating strain B6. To our knowledge, strain B6 was the first strain reported to degrade safener MFD, and this study provides a valuable candidate to remediate the co-contaminated soil with MFD and Cu2+.
Collapse
Affiliation(s)
- Hongming Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Anhui Normal University, Wuhu, 241000, PR China; Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, 241000, PR China.
| | - Mengna Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Anhui Normal University, Wuhu, 241000, PR China; Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, 241000, PR China
| | - Xuan Zong
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Anhui Normal University, Wuhu, 241000, PR China; Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, 241000, PR China
| | - Aimin Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Anhui Normal University, Wuhu, 241000, PR China; Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, 241000, PR China
| | - Meng Yuan
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Anhui Normal University, Wuhu, 241000, PR China; Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, 241000, PR China
| | - Shangping Fang
- School of Anesthesiology, Wannan Medical College, Wuhu, Anhui, 241002, PR China.
| |
Collapse
|
26
|
Sahu S, Kaur A, Khatri M, Singh G, Arya SK. A review on cutinases enzyme in degradation of microplastics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119193. [PMID: 37797518 DOI: 10.1016/j.jenvman.2023.119193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
From the surface of the earth to the depths of the ocean, microplastics are a hazard for both aquatic and terrestrial habitats. Due to their small size and vast expanse, they can further integrate into living things. The fate of microplastics in the environment depends upon the biotic components such as microorganisms which have potential enzymes to degrade the microplastics. As a result, scientists are interested in using microorganisms like bacteria, fungi, and others to remediate microplastic. These microorganisms release the cutinase enzyme, which is associated with the enzymatic breakdown of microplastics and plastic films. Yet, numerous varieties of microplastics exist in the environment and their contaminants act as a significant challenge in degrading microplastics. The review discusses the cutinases enzyme degradation strategies and potential answers to deal with existing and newly generated microplastic waste - polyethylene (PE), polyethylene terephthalate (PET), poly-ε-caprolactone (PCL), polyurethanes (PU), and polybutylene succinate (PBS), along with their degradation pathways. The potential of cutinase enzymes from various microorganisms can effectively act to remediate the global problem of microplastic pollution.
Collapse
Affiliation(s)
- Sudarshan Sahu
- Department of Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Anupreet Kaur
- Department of Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Madhu Khatri
- Department of Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Shailendra Kumar Arya
- Department of Biotechnology Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, India.
| |
Collapse
|
27
|
Zhang M, Yang K, Yang L, Diao Y, Wang X, Hu K, Li Q, Li J, Zhao N, He L, Chen S, Liu A, Ao X, Yang Y, Liu S. A novel cold-adapted pyrethroid-degrading esterase from Bacillus subtilis J6 and its application for pyrethroid-residual alleviation in food matrix. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132847. [PMID: 39491987 DOI: 10.1016/j.jhazmat.2023.132847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/09/2023] [Accepted: 10/22/2023] [Indexed: 11/05/2024]
Abstract
Prolonged and widespread use of pyrethroid pesticides a significant concern for human health. The initial step in pyrethroid bioremediation involves the hydrolysis of ester-bond. In the present study, the esterase genes est10 and est13, derived from Bacillus subtilis, were successfully cloned and expressed in Escherichia coli. Recombinant Est10 and Est13 were classified within esterase families VII and XIII, respectively, both of which exhibited conserved G-X-G-X-G motifs. These enzymes demonstrated the capability to degrade pyrethroids, with Est13 exhibiting superior efficiency, and thus was selected for further investigation. The degradation products of β-cypermethrin by Est13 were identified as 3-phenoxybenzoic acid, 3-phenoxybenzaldehyde, and 3-(2,2-Dichloroethenyl)- 2,2-dimethyl-cyclopropanecarboxylate, with key catalytic triads comprising Ser93, Asp192, and His222. Notably, Est13 exhibited the highest β-cypermethrin-hydrolytic activity at 25 °C and a pH of 7.0, showing robust stability in low and medium temperature environment and a broad range of pH levels. Furthermore, Est13 displayed notable resistance to organic solvents and NaCl, coupled with wide substrate specificity. Moreover, Est13 exhibited substantial efficiency in removing β-cypermethrin residues from various food items such as milk, meat, vegetables, and fruits. These findings underscore the potential of Est13 for application in the bioremediation of pyrethroid-contaminated environments and reduction of pyrethroid residues in food products.
Collapse
Affiliation(s)
- Mengmei Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Kun Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Li Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Yangyu Diao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Xingjie Wang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Qin Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Ning Zhao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Xiaolin Ao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China.
| |
Collapse
|
28
|
Cheng J, Du H, Zhou MS, Ji Y, Xie YQ, Huang HB, Zhang SH, Li F, Xiang L, Cai QY, Li YW, Li H, Li M, Zhao HM, Mo CH. Substrate-enzyme interactions and catalytic mechanism in a novel family VI esterase with dibutyl phthalate-hydrolyzing activity. ENVIRONMENT INTERNATIONAL 2023; 178:108054. [PMID: 37354883 DOI: 10.1016/j.envint.2023.108054] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/19/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
Microbial degradation has been confirmed as effective and environmentally friendly approach to remediate phthalates from the environment, and hydrolase is an effective element for contaminant degradation. In the present study, a novel dibutyl phthalate (DBP)-hydrolyzing carboxylesterase (named PS06828) from Pseudomonas sp. PS1 was heterogeneously expressed in E. coli, which was identified as a new member of the lipolytic family VI. Purified PS06828 could efficiently degrade DBP with a wide range of temperature (25-37 °C) and pH (6.5-9.0). Multi-spectroscopy methods combined with molecular docking were employed to study the interaction of PS06828 with DBP. Fluorescence and UV-visible absorption spectra revealed the simultaneous presence of static and dynamic component in the fluorescence quenching of PS06828 by DBP. Synchronous fluorescence and circular dichroism spectra showed inconspicuous alteration in micro-environmental polarity around amino acid residues but obvious increasing of α-helix and reducing of β-sheet and random coil in protein conformation. Based on the information on exact binding sites of DBP on PS06828 provided by molecular docking, the catalytic mechanism mediated by key residues (Ser113, Asp166, and His197) was proposed and subsequently confirmed by site-directed mutagenesis. The results can strengthen our mechanistic understanding of family VI esterase involved in hydrolysis of phthalic acid esters, and provide a solid foundation for further enzymatic modification.
Collapse
Affiliation(s)
- Jiliang Cheng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huan Du
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangzhou Customs Technology Center, No. 66 Huacheng Avenue, Tianhe District, Guangzhou, China
| | - Meng-Sha Zhou
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yuan Ji
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - You-Qun Xie
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - He-Biao Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shu-Hui Zhang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Fen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Meng Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
29
|
Liu YY, Zhang YX, Wen HM, Liu XL, Fan XJ. Cloning and rational modification of a cold-adapted esterase for phthalate esters and parabens degradation. CHEMOSPHERE 2023; 325:138393. [PMID: 36925017 DOI: 10.1016/j.chemosphere.2023.138393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/01/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Phthalate esters (PAEs) and parabens are environmental pollutants that can be toxic to human health. Herein, a cold-adapted esterase from the Mao-tofu metagenome named Est1260 was screened for its PAE-hydrolyzing potential in cold temperatures. The results showed that purified Est1260 could degrade a variety of PAEs and parabens at temperatures as low as 0 °C. After careful analysis of the structural information and molecular docking, site-saturation mutation was conducted at the identified hotspots. Protein expression of variant A1B6 doubled, and its thermal stability significantly improved (24 times) without sacrificing activity at low temperatures. In addition, Est1260 and its variants were activated by NaCl and demonstrated resistance to high concentrations of saline (up to 5 M), making it a potential biocatalyst for bioremediation of PAE and paraben-polluted environments.
Collapse
Affiliation(s)
- Yan-Yan Liu
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, People's Republic of China; Clinical Laboratory of Suzhou First People's Hospital, People's Republic of China
| | - Yi-Xin Zhang
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, People's Republic of China
| | - Hua-Mei Wen
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, People's Republic of China
| | - Xiao-Long Liu
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, People's Republic of China; University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.
| | - Xin-Jiong Fan
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, People's Republic of China.
| |
Collapse
|
30
|
Dhar R, Basu S, Bhattacharyya M, Dutta TK. Evaluation of distinct molecular architectures and coordinated regulation of the catabolic pathways of oestrogenic dioctyl phthalate isomers in Gordonia sp. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001353. [PMID: 37384374 PMCID: PMC10333787 DOI: 10.1099/mic.0.001353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023]
Abstract
Bacterial strain GONU, belonging to the genus Gordonia, was isolated from a municipal waste-contaminated soil sample and was capable of utilizing an array of endocrine-disrupting phthalate diesters, including di-n-octyl phthalate (DnOP) and its isomer di(2-ethylhexyl) phthalate (DEHP), as the sole carbon and energy sources. The biochemical pathways of the degradation of DnOP and DEHP were evaluated in strain GONU by using a combination of various chromatographic, spectrometric and enzymatic analyses. Further, the upregulation of three different esterases (estG2, estG3 and estG5), a phthalic acid (PA)-metabolizing pht operon and a protocatechuic acid (PCA)-metabolizing pca operon were revealed based on de novo whole genome sequence information and substrate-induced protein profiling by LC-ESI-MS/MS analysis followed by differential gene expression by real-time PCR. Subsequently, functional characterization of the differentially upregulated esterases on the inducible hydrolytic metabolism of DnOP and DEHP revealed that EstG5 is involved in the hydrolysis of DnOP to PA, whereas EstG2 and EstG3 are involved in the metabolism of DEHP to PA. Finally, gene knockout experiments further validated the role of EstG2 and EstG5, and the present study deciphered the inducible regulation of the specific genes and operons in the assimilation of DOP isomers.
Collapse
Affiliation(s)
- Rinita Dhar
- Department of Microbiology, Bose Institute, EN-80, Sector V, Salt Lake, Kolkata – 700091, West Bengal, India
| | - Suman Basu
- Department of Microbiology, Bose Institute, EN-80, Sector V, Salt Lake, Kolkata – 700091, West Bengal, India
| | - Mousumi Bhattacharyya
- Department of Microbiology, Bose Institute, EN-80, Sector V, Salt Lake, Kolkata – 700091, West Bengal, India
| | - Tapan K. Dutta
- Department of Microbiology, Bose Institute, EN-80, Sector V, Salt Lake, Kolkata – 700091, West Bengal, India
| |
Collapse
|
31
|
Mao S, He C, Zhao Z, Wang F, Chen X, Liu X, Wang D. Lurgi-Thyssen dust catalytic thermal desorption remediation of di-(2-ethylhexyl) phthalate contaminated soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117138. [PMID: 36623387 DOI: 10.1016/j.jenvman.2022.117138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Fe2O3-assisted pyrolysis has been demonstrated to be a cost-effective thermal desorption (TD) technology. Lurgi-Thyssen dust (LTD) is a type of steel slag waste that contains a large amount of Fe2O3. In this study, to reduce energy consumption, LTD was added to contaminated soil to evaluate the feasibility of enhancing the TD removal efficiency of di-(2-ethylhexyl) phthalate (DEHP). The DEHP removal rate increased by 22.39% after adding 2% LTD at 200 °C for 20 min. Because of the catalytic pyrolysis of LTD, DEHP was pyrolyzed to form three types of short-chain esters: mono-(2-ethylhexyl) phthalate (MEHP), di (2-methylbutyl) ester, and methyl 2-ethylhexyl phthalate. The pyrolysis products of DEHP were less toxic and did not affect soil reuse. When the DEHP removal rate was 87.10%, LTD addition decreased the temperature and residence time of TD and alleviated the effect of TD on the soil physicochemical properties. Additionally, the desorption of DEHP from soil fitted the pseudo-second-order kinetic model well. Thus, the addition of LTD to contaminated soil enhanced the efficiency of TD remediation. Moreover, this study could provide a practical and economical strategy for LTD reuse.
Collapse
Affiliation(s)
- Shaohua Mao
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Chiquan He
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Zhenzhen Zhao
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Feifei Wang
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xueping Chen
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xiaoyan Liu
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Daoyuan Wang
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
32
|
Sun S, Tan Y, Wang L, Wu Z, Zhou J, Wu G, Shao Y, Wang M, Song Z, Xin Z. Improving the activity and expression level of a phthalate-degrading enzyme by a combination of mutagenesis strategies and strong promoter replacement. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41107-41119. [PMID: 36630040 DOI: 10.1007/s11356-023-25263-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Phthalic acid esters (PAEs) are widely used plasticizers found in consumer products, which enter the environment and pose severe threats to human health. Here, a new PAE-degrading enzyme EstJ6 was modified by combining mutagenesis strategies and a strong promoter replacement to improve its catalytic activity and expression level. Four mutants with enhanced activity were obtained by random mutation, among which EstJ6M1.1 exhibited the highest catalytic activity with an increase in catalytic activity by 2.9-fold toward dibutyl phthalate (DBP) than that of the wild-type (WT) enzyme. With these mutants as a template, a variant EstJ6M2 with 3.1-fold higher catalytic activity and 4.61 times higher catalytic efficiency (Kcat/Km) was identified by staggered extension PCR. Targeting four mutation sites of EstJ6M2, a variant EstJ6M3.1 was gained by site-directed saturation mutagenesis and displayed 4.3-fold higher activity and 5.97 times higher Kcat/Km than WT. The expression level of three mutants EstJ6M1.1, EstJ6M2, and EstJ6M3.1, as well as the WT, increased nearly threefold after a strong promoter replacement. These results provide a proof-theoretical basis and practicable pipeline for applying PAE-degrading enzymes.
Collapse
Affiliation(s)
- Shengwei Sun
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yuzhi Tan
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Luyao Wang
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zichao Wu
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jingjie Zhou
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Guojun Wu
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yuting Shao
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Mengxi Wang
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhe Song
- Instrumental Analysis Center of CPU, China Pharmaceutical University, Ministry of Education, Nanjing, 210009, People's Republic of China
| | - Zhihong Xin
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
33
|
Hsu YS, Liu YH, Lin CH, Tsai CH, Wu WF. Dual bio-degradative pathways of di-2-ethylhexyl phthalate by a novel bacterium Burkholderia sp. SP4. World J Microbiol Biotechnol 2023; 39:44. [DOI: 10.1007/s11274-022-03490-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
|
34
|
Lai J, Huang H, Lin M, Xu Y, Li X, Sun B. Enzyme catalyzes ester bond synthesis and hydrolysis: The key step for sustainable usage of plastics. Front Microbiol 2023; 13:1113705. [PMID: 36713200 PMCID: PMC9878459 DOI: 10.3389/fmicb.2022.1113705] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
Petro-plastic wastes cause serious environmental contamination that require effective solutions. Developing alternatives to petro-plastics and exploring feasible degrading methods are two solving routes. Bio-plastics like polyhydroxyalkanoates (PHAs), polylactic acid (PLA), polycaprolactone (PCL), poly (butylene succinate) (PBS), poly (ethylene furanoate) s (PEFs) and poly (ethylene succinate) (PES) have emerged as promising alternatives. Meanwhile, biodegradation plays important roles in recycling plastics (e.g., bio-plastics PHAs, PLA, PCL, PBS, PEFs and PES) and petro-plastics poly (ethylene terephthalate) (PET) and plasticizers in plastics (e.g., phthalate esters, PAEs). All these bio- and petro-materials show structure similarity by connecting monomers through ester bond. Thus, this review focused on bio-plastics and summarized the sequences and structures of the microbial enzymes catalyzing ester-bond synthesis. Most of these synthetic enzymes belonged to α/β-hydrolases with conserved serine catalytic active site and catalyzed the polymerization of monomers by forming ester bond. For enzymatic plastic degradation, enzymes about PHAs, PBS, PCL, PEFs, PES and PET were discussed, and most of the enzymes also belonged to the α/β hydrolases with a catalytic active residue serine, and nucleophilically attacked the ester bond of substrate to generate the cleavage of plastic backbone. Enzymes hydrolysis of the representative plasticizer PAEs were divided into three types (I, II, and III). Type I enzymes hydrolyzed only one ester-bond of PAEs, type II enzymes catalyzed the ester-bond of mono-ester phthalates, and type III enzymes hydrolyzed di-ester bonds of PAEs. Divergences of catalytic mechanisms among these enzymes were still unclear. This review provided references for producing bio-plastics, and degrading or recycling of bio- and petro-plastics from an enzymatic point of view.
Collapse
Affiliation(s)
- Jinghui Lai
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commence, Beijing Technology and Business University, Beijing, China
| | - Huiqin Huang
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commence, Beijing Technology and Business University, Beijing, China
| | - Mengwei Lin
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commence, Beijing Technology and Business University, Beijing, China
| | - Youqiang Xu
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commence, Beijing Technology and Business University, Beijing, China
| | - Xiuting Li
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commence, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering of China General Chamber of Commence, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
35
|
Savinova OS, Shabaev AV, Glazunova OA, Moiseenko KV, Fedorova TV. Benzyl Butyl Phthalate and Diisobutyl Phthalate Biodegradation by White-rot Fungus Trametes hirsuta. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
36
|
Wang L, Gan D, Gong L, Zhang Y, Wang J, Guan R, Zeng L, Qu J, Dong M, Wang L. Analysis of the performance of the efficient di-(2-ethylhexyl) phthalate-degrading bacterium Rhodococcus pyridinovorans DNHP-S2 and associated catabolic pathways. CHEMOSPHERE 2022; 306:135610. [PMID: 35810862 DOI: 10.1016/j.chemosphere.2022.135610] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/17/2022] [Accepted: 07/03/2022] [Indexed: 05/12/2023]
Abstract
The widespread use of plastic has led to the global occurrence of phthalate esters (PAEs) pollution. PAEs can be effectively removed from polluted environments by microbe-mediated degradation. Di-(2-ethylhexyl) phthalate (DEHP) has the highest residual concentration in agricultural soil-contaminated areas compared to other PAEs in most of China. The Rhodococcus pyridinovorans DNHP-S2 microbial isolate identified was found to efficiently degrade DEHP. Within a 72 h period, the bacteria were able to degrade 52.47% and 99.75% of 500 mg L-1 DEHP at 10 °C and 35 °C, respectively. Dimethyl phthalate (DMP) was first identified as an intermediate metabolite of DEHP, which is different from the previously reported DEHP catabolic pathway. Genomic sequencing of DNHP-S2 identified benzoate 1,2-dioxygenase and catechol 2,3/1,2-dioxygenase as potential mediators of DEHP degradation, consistent with the existence of two downstream metabolic pathways governing DEHP degradation. Three targets DEHP metabolism-related enzymes were found to be DEHP-inducible at the mRNA level, and DNHP-S2 was able to mediate the complete degradation of DEHP at lower temperatures, as confirmed via RT-qPCR. DNHP-S2 was also found to readily break down other PAEs including DMP, di-n-butyl phthalate (DBP), di-n-octyl phthalate (DnOP), and n-butyl benzyl phthalate (BBP). Together, these results thus highlight DNHP-S2 as a bacterial strain with great promise as a tool for the remediation of PAE pollution. In addition to providing new germplasm and genetic resources for use in the context of PAE degradation, these results also offer new insight into the potential mechanisms whereby PAEs undergo catabolic degradation, making them well-suited for use in PAE-contaminated environments.
Collapse
Affiliation(s)
- Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Deping Gan
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Li Gong
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Jingyi Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Rui Guan
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Lingling Zeng
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Maofeng Dong
- Pesticide Safety Evaluation Research Center, Shanghai Academy of Agricultural Sciences, 2901 Beizhai Road, Minhang District, Shanghai, People's Republic of China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| |
Collapse
|
37
|
Mondal T, Mondal S, Ghosh SK, Pal P, Soren T, Pandey S, Maiti TK. Phthalates - A family of plasticizers, their health risks, phytotoxic effects, and microbial bioaugmentation approaches. ENVIRONMENTAL RESEARCH 2022; 214:114059. [PMID: 35961545 DOI: 10.1016/j.envres.2022.114059] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/18/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Phthalates are a family of reprotoxicant compounds, predominantly used as a plasticizer to improve the flexibility and longevity of consumable plastic goods. After their use these plastic products find their way to the waste disposal sites where they leach out the hazardous phthalates present within them, into the surrounding environment, contaminating soil, groundwater resources, and the nearby water bodies. Subsequently, phthalates move into the living system through the food chain and exhibit the well-known phenomenon of biological magnification. Phthalates as a primary pollutant have been classified as 1B reprotoxicants and teratogens by different government authorities and they have thus imposed restrictions on their use. Nevertheless, the release of these compounds in the environment is unabated. Bioremediation has been suggested as one of the ways of mitigating this menace, but studies regarding the field applications of phthalate utilizing microbes for this purpose are limited. Through this review, we endeavor to make a deeper understanding of the cause and concern of the problem and to find out a possible solution to it. The review critically emphasizes the various aspects of phthalates toxicity, including their chemical nature, human health risks, phytoaccumulation and entry into the food chain, microbial role in phthalate degradation processes, and future challenges.
Collapse
Affiliation(s)
- Tanushree Mondal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| | - Sayanta Mondal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| | - Sudip Kumar Ghosh
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| | - Priyanka Pal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| | - Tithi Soren
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| | - Sanjeev Pandey
- Department of Botany, Banwarilal Bhalotia College, Asansol, 713303, West Bengal, India.
| | - Tushar Kanti Maiti
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| |
Collapse
|
38
|
Whole genome sequencing exploitation analysis of dibutyl phthalate by strain Stenotrophomonas acidaminiphila BDBP 071. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
Yang L, Ma Y, Chen Y, Hollmann F, Wang Y. A Bienzymatic Cascade for the Complete Hydrolysis of Phthalic Acid Esters. ChemistrySelect 2022. [DOI: 10.1002/slct.202201992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Liu Yang
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Yunjian Ma
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
- Neher's Biophysics Laboratory for Innovative Drug Discovery State Key Laboratory of Quality Research in Chinese Medicine Macau University of Science and Technology Taipa, Macau China
| | - Yebao Chen
- School of Bioscience and Bioengineering South China University of Technology Guangzhou 510006 China
| | - Frank Hollmann
- Department of Biotechnology Delft University of Technology van der Maasweg 9 2629HZ Delft, The Netherlands
| | - Yonghua Wang
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
- Guangdong Youmei Institute of Intelligent Bio-manufacturing Co. Ltd Foshan Guangdong 528200 China
| |
Collapse
|
40
|
Wang PH, Chen YL, Wu TY, Wu YW, Wang TY, Shih CJ, Wei STS, Lai YL, Liu CX, Chiang YR. Omics and mechanistic insights into di-(2-ethylhexyl) phthalate degradation in the O 2-fluctuating estuarine sediments. CHEMOSPHERE 2022; 299:134406. [PMID: 35358556 DOI: 10.1016/j.chemosphere.2022.134406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/08/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) represents the most used phthalate plasticizer with an annual production above the millions of tons worldwide. Due to its inadequate disposal, outstanding chemical stability, and extremely low solubility (3 mg/L), endocrine-disrupting DEHP often accumulates in urban estuarine sediments at concentrations above the predicted no-effect concentration (20-100 mg/kg). Our previous study suggested that microbial DEHP degradation in estuarine sediments proceeds synergistically where DEHP side-chain hydrolysis to form phthalic acid represents a bottleneck. Here, we resolved this bottleneck and deconstructed the microbial synergy in O2-fluctuating estuarine sediments. Metagenomic analysis and RNA sequencing suggested that orthologous genes encoding extracellular DEHP hydrolase NCU65476 in Acidovorax sp. strain 210-6 are often flanked by the co-expressed composite transposon and are widespread in aquatic environments worldwide. Therefore, we developed a turbidity-based microplate assay to characterize NCU65476. The optimized assay conditions (with 1 mM Ca2+ and pH 6.0) increased the DEHP hydrolysis rate by a factor of 10. Next, we isolated phthalic acid-degrading Hydrogenophaga spp. and Thauera chlorobenzoica from Guandu estuarine sediment to study the effect of O2(aq) on their metabolic synergy with strain 210-6. The results of co-culture experiments suggested that after DEHP side-chain hydrolysis by strain 210-6, phthalic acid can be degraded by Hydrogenophaga sp. when O2(aq) is above 1 mg/L or degraded by Thauera chlorobenzoica anaerobically. Altogether, our data demonstrates that DEHP could be degraded synergistically in estuarine sediments via divergent pathways responding to O2 availability. The optimized conditions for NCU65476 could facilitate the practice of DEHP bioremediation in estuarine sediments.
Collapse
Affiliation(s)
- Po-Hsiang Wang
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan, 320, Taiwan; Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 145-0061, Japan.
| | - Yi-Lung Chen
- Department of Microbiology, Soochow University, Taipei, 106, Taiwan
| | - Tien-Yu Wu
- Biodiversity Research Center, Academia Sinica, Taipei, 106, Taiwan
| | - Yu-Wei Wu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, 106, Taiwan
| | - Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei, 106, Taiwan
| | - Chao-Jen Shih
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, 300, Taiwan
| | | | - Yi-Li Lai
- Biodiversity Research Center, Academia Sinica, Taipei, 106, Taiwan
| | - Cheng-Xuan Liu
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan, 320, Taiwan
| | - Yin-Ru Chiang
- Biodiversity Research Center, Academia Sinica, Taipei, 106, Taiwan; Department of Agricultural Chemistry, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
41
|
Bhattacharyya M, Basu S, Dhar R, Dutta TK. Phthalate hydrolase: distribution, diversity and molecular evolution. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:333-346. [PMID: 34816599 DOI: 10.1111/1758-2229.13028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 05/12/2023]
Abstract
The alpha/beta-fold superfamily of hydrolases is rapidly becoming one of the largest groups of structurally related enzymes with diverse catalytic functions. In this superfamily of enzymes, esterase deserves special attention because of their wide distribution in biological systems and importance towards environmental and industrial applications. Among various esterases, phthalate hydrolases are the key alpha/beta enzymes involved in the metabolism of structurally diverse estrogenic phthalic acid esters, ubiquitously distributed synthetic chemicals, used as plasticizer in plastic manufacturing processes. Although they vary both at the sequence and functional levels, these hydrolases use a similar acid-base-nucleophile catalytic mechanism to catalyse reactions on structurally different substrates. The current review attempts to present insights on phthalate hydrolases, describing their sources, structural diversities, phylogenetic affiliations and catalytically different types or classes of enzymes, categorized as diesterase, monoesterase and diesterase-monoesterase, capable of hydrolysing phthalate diester, phthalate monoester and both respectively. Furthermore, available information on in silico analyses and site-directed mutagenesis studies revealing structure-function integrity and altered enzyme kinetics have been highlighted along with the possible scenario of their evolution at the molecular level.
Collapse
Affiliation(s)
| | - Suman Basu
- Department of Microbiology, Bose Institute, Kolkata, West Bengal, India
| | - Rinita Dhar
- Department of Microbiology, Bose Institute, Kolkata, West Bengal, India
| | - Tapan K Dutta
- Department of Microbiology, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
42
|
|
43
|
Li J, Nina MRH, Zhang X, Bai Y. Engineering Transcription Factor XylS for Sensing Phthalic Acid and Terephthalic Acid: An Application for Enzyme Evolution. ACS Synth Biol 2022; 11:1106-1113. [PMID: 35192317 DOI: 10.1021/acssynbio.1c00275] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Poly(ethylene terephthalate) (PET) and phthalate esters (PAEs) are used extensively as plastics and plasticizers. Enzymatic degradation of PET and PAEs has drawn great attention in recent years; however, evolution of PET- and PAE-degrading enzymes is still a big challenge, partly because of the lack of an effective screening method to detect phthalic acid (PA) and terephthalic acid (TPA), which are the main hydrolysis products of PAEs and PET. Here, by directed evolution of a promiscuous transcription factor, XylS from Pseudomonas putida, we created two novel variants, XylS-K38R-L224Q and XylS-W88C-L224Q, that are able to bind PA and TPA and activate the downstream expression of a fluorescent reporter protein. Based on these elements, whole-cell biosensors were constructed, which enabled the fluorimetric detection of as little as 10 μM PA or TPA. A PAE hydrolase, GoEst15, was preliminarily engineered using this new biosensor, yielding a mutant GoEst15-V3 whose activity toward dibutyl phthalate (DBP) and p-nitrophenyl butyrate was enhanced 2.0- and 2.5-fold, respectively. It was shown that 96.5% DBP (5 mM) was degraded by GoEst15-V3 in 60 min, while the wild-type enzyme degraded only 55% DBP. This study provides an effective screening tool for directed evolution of PAE-/PET-degrading enzymes.
Collapse
Affiliation(s)
- Jiawei Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Mario Roque Huanca Nina
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiaoyan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yunpeng Bai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
44
|
Phthalate Esters Metabolic Strain Gordonia sp. GZ-YC7, a Potential Soil Degrader for High Concentration Di-(2-ethylhexyl) Phthalate. Microorganisms 2022; 10:microorganisms10030641. [PMID: 35336217 PMCID: PMC8955600 DOI: 10.3390/microorganisms10030641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
As commonly used chemical plasticizers in plastic products, phthalate esters have become a serious ubiquitous environmental pollutant, such as in soil of plastic film mulch culture. Microbial degradation or transformation was regarded as a suitable strategy to solve the phthalate esters pollution. Thus, a new phthalate esters degrading strain Gordonia sp. GZ-YC7 was isolated in this study, which exhibited the highest di-(2-ethylhexyl) phthalate degradation efficiency under 1000 mg/L and the strongest tolerance to 4000 mg/L. The comparative genomic analysis results showed that there exist diverse esterases for various phthalate esters such as di-(2-ethylhexyl) phthalate and dibutyl phthalate in Gordonia sp. GZ-YC7. This genome characteristic possibly contributes to its broad substrate spectrum, high degrading efficiency, and high tolerance to phthalate esters. Gordonia sp. GZ-YC7 has potential for the bioremediation of phthalate esters in polluted soil environments.
Collapse
|
45
|
Vingiani GM, Leone S, De Luca D, Borra M, Dobson ADW, Ianora A, De Luca P, Lauritano C. First identification and characterization of detoxifying plastic-degrading DBP hydrolases in the marine diatom Cylindrotheca closterium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152535. [PMID: 34942245 DOI: 10.1016/j.scitotenv.2021.152535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Diatoms are photosynthetic organisms with potential biotechnological applications in the bioremediation sector, having shown the capacity to reduce environmental concentrations of different pollutants. The diatom Cylindrotheca closterium is known to degrade di-n-butyl phthalate (DBP), one of the most abundant phthalate esters in aquatic environments and a known endocrine-disrupting chemical. In this study, we present for the first time the in silico identification of two putative DBP hydrolases (provisionally called DBPH1 and DBPH2) in the transcriptome of C. closterium. We modeled the structure of both DBPH1-2 and their proposed interactions with the substrate to gain insights into their mechanism of action. Finally, we analyzed the expression levels of the two putative hydrolases upon exposure of C. closterium to different concentrations of DBP (5 and 10 mg/l) for 24 and 48 h. The data showed a DBP concentration-dependent increase in expression levels of both dbph1 and 2 genes, further highlighting their potential involvement in phthalates degradation. This is the first identification of phthalate-degrading enzymes in microalgae, providing new insights into the possible use of diatoms in bioremediation strategies targeting phthalates.
Collapse
Affiliation(s)
- Giorgio Maria Vingiani
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Serena Leone
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Daniele De Luca
- Department of Biology, University of Naples Federico II, Botanic Garden of Naples, Via Foria 223, 80139 Naples, Italy
| | - Marco Borra
- Research Infrastructure for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, Villa Comunale, CAP80121, NA, Italy
| | - Alan D W Dobson
- School of Microbiology, University College Cork, College Road, T12 YN60 Cork, Ireland; Environmental Research Institute, University College Cork, Lee Road, T23XE10 Cork, Ireland
| | - Adrianna Ianora
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Pasquale De Luca
- Research Infrastructure for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, Villa Comunale, CAP80121, NA, Italy
| | - Chiara Lauritano
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| |
Collapse
|
46
|
Xu Y, Zhao J, Huang H, Guo X, Li X, Zou W, Li W, Zhang C, Huang M. Biodegradation of phthalate esters by Pantoea dispersa BJQ0007 isolated from Baijiu. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Chen F, Chen Y, Chen C, Feng L, Dong Y, Chen J, Lan J, Hou H. High-efficiency degradation of phthalic acid esters (PAEs) by Pseudarthrobacter defluvii E5: Performance, degradative pathway, and key genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148719. [PMID: 34214821 DOI: 10.1016/j.scitotenv.2021.148719] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 05/27/2023]
Abstract
Phthalic acid esters (PAEs) are a class of biologically accumulated carcinogenic and teratogenic toxic chemicals that exist widely in the environment. This study, Pseudarthrobacter defluvii E5 was isolated from agricultural soils and showed efficient PAEs-degradation and -mineralization abilities for five PAEs, and encouraging PAEs tolerance and bioavailable range for dibutyl phthalate (DBP) and bis(2-ethylhexyl) phthalate (DEHP) (0.25-1200 mg/L). The complete catalytic system in E5 genome enables PAEs to be degraded into monoester, phthalate (PA) and Protocatechuic acid (PCA), which eventually enter the tricarboxylic acid cycle (TCA cycle). The preferred PAEs-metabolic pathway in soil by E5 is the metabolism induced by enzymes encoded by pehA, mehpH, pht Operon and pca Operon. For the first time, two para-homologous pht gene clusters were found to coexist on the plasmid and contribute to PAEs degradation. Further study showed that P. defluvii E5 has a broad application prospect in microplastics-contaminated environments.
Collapse
Affiliation(s)
- Fangyuan Chen
- School of Resource and Environmental Science, Wuhan University, Wuhan 430079, Hubei, China
| | - Yuchi Chen
- School of Resource and Environmental Science, Wuhan University, Wuhan 430079, Hubei, China; Center for Water and Ecology School of Environment Tsinghua University, Beijing 100084, China
| | - Chang Chen
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China; College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Feng
- School of Resource and Environmental Science, Wuhan University, Wuhan 430079, Hubei, China
| | - Yiqie Dong
- School of Resource and Environmental Science, Wuhan University, Wuhan 430079, Hubei, China
| | - Jiaao Chen
- School of Resource and Environmental Science, Wuhan University, Wuhan 430079, Hubei, China
| | - Jirong Lan
- School of Resource and Environmental Science, Wuhan University, Wuhan 430079, Hubei, China
| | - Haobo Hou
- School of Resource and Environmental Science, Wuhan University, Wuhan 430079, Hubei, China; Zhaoqing (Wuhan University) Environmental Technology Research Institute, Zhaoqing 526200, Guangdong, China.
| |
Collapse
|
48
|
Shariati S, Ebenau-Jehle C, Pourbabaee AA, Alikhani HA, Rodriguez-Franco M, Agne M, Jacoby M, Geiger R, Shariati F, Boll M. Degradation of dibutyl phthalate by Paenarthrobacter sp. Shss isolated from Saravan landfill, Hyrcanian Forests, Iran. Biodegradation 2021; 33:59-70. [PMID: 34751871 PMCID: PMC8803807 DOI: 10.1007/s10532-021-09966-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/29/2021] [Indexed: 11/28/2022]
Abstract
Phthalic acid esters are predominantly used as plasticizers and are industrially produced on the million ton scale per year. They exhibit endocrine-disrupting, carcinogenic, teratogenic, and mutagenic effects on wildlife and humans. For this reason, biodegradation, the major process of phthalic acid ester elimination from the environment, is of global importance. Here, we studied bacterial phthalic acid ester degradation at Saravan landfill in Hyrcanian Forests, Iran, an active disposal site with 800 tons of solid waste input per day. A di-n-butyl phthalate degrading enrichment culture was established from which Paenarthrobacter sp. strain Shss was isolated. This strain efficiently degraded 1 g L-1 di-n-butyl phthalate within 15 h with a doubling time of 5 h. In addition, dimethyl phthalate, diethyl phthalate, mono butyl phthalate, and phthalic acid where degraded to CO2, whereas diethyl hexyl phthalate did not serve as a substrate. During the biodegradation of di-n-butyl phthalate, mono-n-butyl phthalate was identified in culture supernatants by ultra-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry. In vitro assays identified two cellular esterase activities that converted di-n-butyl phthalate to mono-n-butyl phthalate, and the latter to phthalic acid, respectively. Our findings identified Paenarthrobacter sp. Shss amongst the most efficient phthalic acid esters degrading bacteria known, that possibly plays an important role in di-n-butyl phthalate elimination at a highly phthalic acid esters contaminated landfill.
Collapse
Affiliation(s)
- S Shariati
- Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany
| | - C Ebenau-Jehle
- Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany
| | - A A Pourbabaee
- Department of Soil Science Engineering, University of Tehran, Tehran, Iran
| | - H A Alikhani
- Department of Soil Science Engineering, University of Tehran, Tehran, Iran
| | - M Rodriguez-Franco
- Faculty of Biology, Cell Biology, University of Freiburg, Freiburg, Germany
| | - M Agne
- Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - M Jacoby
- Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany
| | - R Geiger
- Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany
| | - F Shariati
- Department of Environmental Science, Islamic Azad University, Lahijan, Iran
| | - M Boll
- Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
49
|
Huang Y, Ren W, Liu H, Wang H, Xu Y, Han Y, Teng Y. Contrasting impacts of drying-rewetting cycles on the dissipation of di-(2-ethylhexyl) phthalate in two typical agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148433. [PMID: 34146807 DOI: 10.1016/j.scitotenv.2021.148433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) pollution has become a growing problem in farmlands of China. Drying-rewetting (DW) cycle is one of frequent environmental changes that agricultural production is confronted with, and also a convenient and practical agronomic regulation measure. In this study, in order to explore the effects of DW cycles on the dissipation of DEHP and their driving mechanisms in different types of soils, we performed a 45-day microcosm culture experiment with two typical agricultural soils, Lou soil (LS) and Red soil (RS). High-throughput sequencing was applied to study the response of soil microbial communities in the process of DEHP dissipation under DW cycles. The results showed that the DW cycles considerably inhibited the dissipation of DEHP in LS while promoted that in RS. The DW cycles obviously decreased the diversity, the relative abundance of significantly differential bacteria, and the total abundance of potential degrading bacterial groups in LS, whereas have little effect on bacterial community in RS, except at the initial cultivation stage when the corresponding parameters were promoted. The inhibition of the DW cycles on DEHP dissipation in LS was mainly derived from microbial degradation, but the interplay between microbial functions and soil attributes contributed to the promotion of DEHP dissipation in RS under the DW cycles. This comprehensive understanding of the contrasting impacts and underlying driving mechanisms may provide crucial implications for the prevention and control of DEHP pollution in regional soils.
Collapse
Affiliation(s)
- Yiwen Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; School of Environment and Safety Engineering, Changzhou University, Changzhou 213164, China
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Haoran Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Huimin Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongfeng Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujuan Han
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
50
|
González-Márquez A, Volke-Sepulveda T, Díaz R, Sánchez C. Enhanced esterase activity during the degradation of dibutyl phthalate by Fusarium species in liquid fermentation. J Ind Microbiol Biotechnol 2021; 48:6371103. [PMID: 34529076 PMCID: PMC8788865 DOI: 10.1093/jimb/kuab062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/13/2021] [Indexed: 12/03/2022]
Abstract
Dibutyl phthalate (DBP) is one of the most abundantly produced and used plasticizers and is incorporated into plastic to make it more flexible and malleable. DBP has been found to be an environmental contaminant and reported as an endocrine disruptor. Therefore, it is crucial to develop ecofriendly alternatives to eliminate phthalate pollution. In the present research, the growth of F. culmorum and F. oxysporum in the presence of DBP was studied in liquid fermentation. The esterase activity, specific growth rate, and growth and enzymatic yield parameters were determined in DBP-supplemented media (1,500 or 2,000 mg/L) and in control medium (lacking DBP). These results show that in general, for both Fusarium species, the highest esterase activities, specific growth rates, and yield parameters were observed in media supplemented with DBP. It was observed that 1,500 and 2,000 mg of DBP/L did not inhibit F. culmorum or F. oxysporum growth and that DBP induced esterase production in both fungi. These organisms have much to offer in the mitigation of environmental pollution caused by the endocrine disruptor DBP. This study reports, for the first time, esterase production during the degradation of high concentrations (i.e., 1,500 and 2,000 mg/L) of DBP by F. culmorum F. oxysporum.
Collapse
Affiliation(s)
- Angel González-Márquez
- Maestría en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, CP 90000, Mexico
| | - Tania Volke-Sepulveda
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco N° 186, Col. Vicentina C.P. 09340, Iztapalapa, CDMX, Mexico
| | - Rubén Díaz
- Laboratory of Biotechnology, Research Centre for Biological Sciences, Universidad Autónoma de Tlaxcala, Ixtacuixtla, CP. 90062, Tlaxcala, Mexico
| | - Carmen Sánchez
- Laboratory of Biotechnology, Research Centre for Biological Sciences, Universidad Autónoma de Tlaxcala, Ixtacuixtla, CP. 90062, Tlaxcala, Mexico
| |
Collapse
|