1
|
Han L, Ho CT, Lu M. Regulatory Role of Bioactive Compounds from Natural Spices on Mitochondrial Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5711-5723. [PMID: 40019340 DOI: 10.1021/acs.jafc.4c12341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Natural spices have gained much attention for their aromatic and pungent flavors as well as their multiple beneficial health effects. As complex organelles that play a central role in energy production, stress response control, cell signal transduction, and metabolism regulation, mitochondria could be regulated by many bioactive components in spices. In this review, the role of mitochondria in maintaining cellular and metabolism homeostasis is summarized. The regulatory effects of mitochondrial function by major bioactive compounds from natural spices are evaluated, including capsaicin, 6-gingerol, 6-shogaol, allicin, quercetin, curcumin, tetrahydrocurcumin, and cinnamaldehyde. The underlying molecular mechanisms are also discussed. This work could enhance our understanding toward health-promoting properties of spice compounds as well as provide new insights into the prevention and treatment of disorders associated with mitochondrial dysfunctions by those nutraceuticals.
Collapse
Affiliation(s)
- Liguang Han
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Muwen Lu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Takahashi H, Morimoto H, Tanaka M, Inoue H, Goto T, Kawada T, Uehara M, Takahashi N. Myricetin and myricitrin indirectly and directly increases uncoupling protein-1 mRNA expression in C3H10T1/2 beige adipocytes. Biochem Biophys Res Commun 2024; 734:150771. [PMID: 39369543 DOI: 10.1016/j.bbrc.2024.150771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
In thermogenic brown and beige adipocytes, the proton gradient formed by energy derived from nutrients such as lipids and carbohydrates is consumed by uncoupling protein-1 (UCP-1), resulting in thermogenesis without ATP production in the mitochondria. Accordingly, increased UCP-1 expression represents a crucial aspect of dietary management for individuals with overweight and obesity. Myricetin and its glycoside, myricitrin, are food-derived flavonoids that possess various beneficial effects. This is the first study to examine the effects of myricetin and myricitrin on the inflammation-inhibited expression of Ucp-1 using a modified cell-based assay with conditioned medium (CM). The CM derived from lipopolysaccharide (LPS)-activated RAW264.7 macrophages was observed to inhibit the Ucp-1 expression induced by adrenergic stimulation in 10T1/2 adipocytes. Conversely, the CM derived from activated macrophages treated with myricetin or myricitrin reversed this inhibition of Ucp-1 expression. Subsequently, the direct effects of both the compounds on basal and adrenaline-induced expression of Ucp-1 were investigated. In contrast to a previous report, myricetin and myricitrin did not increase the basal Ucp-1 mRNA expression in 10T1/2 adipocytes when treated during the differentiation-promoting period. However, we have found for the first time that both compounds enhanced the adrenergic sensitivity of 10T1/2 adipocytes when treated during the differentiation-inducing period. These results indicate that myricetin and myricitrin have indirect effects on inflammation-induced suppression and direct effects on adrenergic sensitivity, suggesting a novel mechanism that both compounds increase Ucp-1 expression in vivo by both indirect and direct effects, rather than by affecting basal expression.
Collapse
Affiliation(s)
- Hisako Takahashi
- Laboratory of Physiology and Metabolism, Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Hiromu Morimoto
- Laboratory of Physiology and Metabolism, Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Miori Tanaka
- Laboratory of Physiology and Metabolism, Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Hirofumi Inoue
- Laboratory of Physiology and Metabolism, Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Teruo Kawada
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mariko Uehara
- Laboratory of Physiology and Metabolism, Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Nobuyuki Takahashi
- Laboratory of Physiology and Metabolism, Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan.
| |
Collapse
|
3
|
Gong D, Lei J, He X, Hao J, Zhang F, Huang X, Gu W, Yang X, Yu J. Keys to the switch of fat burning: stimuli that trigger the uncoupling protein 1 (UCP1) activation in adipose tissue. Lipids Health Dis 2024; 23:322. [PMID: 39342273 PMCID: PMC11439242 DOI: 10.1186/s12944-024-02300-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024] Open
Abstract
As one of the main pathogenic factors of cardiovascular and cerebrovascular diseases, the incidence of metabolic diseases such as adiposity and metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing annually. It is urgent and crucial to find more therapeutic targets to treat these diseases. Mainly expressed in brown adipocytes, mitochondrial uncoupling protein 1 (UCP1) is key to the thermogenesis of classical brown adipose tissue (BAT). Furthermore, white adipose tissue (WAT) is likely to express more UCP1 and subsequently acquire the ability to undergo thermogenesis under certain stimuli. Therefore, targeting and activating UCP1 to promote increased BAT thermogenesis and browning of WAT are helpful in treating metabolic diseases, such as adiposity and MASLD. In this case, the stimuli that activate UCP1 are emerging. Therefore, we summarize the thermogenic stimuli that have activated UCP1 in recent decades, among which cold exposure is one of the stimuli first discovered to activate BAT thermogenesis. As a convenient and efficient therapy with few side effects and good metabolic benefits, physical exercise can also activate the expression of UCP1 in adipose tissue. Notably, for the first time, we have summarized and demonstrated the stimuli of traditional Chinese medicines that can activate UCP1, such as acupuncture, Chinese herbal formulas, and Chinese medicinal herbs. Moreover, pharmacological agents, functional foods, food ingredients, and the gut microbiota are also commonly associated with regulating and activating UCP1. The identification and analysis of UCP1 stimuli can greatly facilitate our understanding of adipose tissue thermogenesis, including the browning of WAT. Thus, it is more conducive to further research and therapy for glucose and lipid metabolism disorders.
Collapse
Affiliation(s)
- Dihong Gong
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China
| | - Juanhong Lei
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China
| | - Xudong He
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China
| | - Junjie Hao
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China
| | - Fan Zhang
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China
| | - Xinya Huang
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China
| | - Wen Gu
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China
| | - Xingxin Yang
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China.
| | - Jie Yu
- Yunnan University of Chinese Medicine, Kunming, 650000, Yunnan, China.
| |
Collapse
|
4
|
Matin M, Joshi T, Wang D, Tzvetkov NT, Matin FB, Wierzbicka A, Jóźwik A, Horbańczuk JO, Atanasov AG. Effects of Ginger ( Zingiber officinale) on the Hallmarks of Aging. Biomolecules 2024; 14:940. [PMID: 39199328 PMCID: PMC11352747 DOI: 10.3390/biom14080940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Ginger (Zingiber officinale Roscoe) is broadly used as a traditional remedy and food ingredient, and numerous preclinical and clinical studies have demonstrated health benefits in a range of age-related disorders. Moreover, longevity-promoting effects have been demonstrated in several (preclinical) research models. With this work, we aimed to comprehensively review the reported effects of ginger and its bioactive constituents on the twelve established hallmarks of aging, with the ultimate goal of gaining a deeper understanding of the potential for future interventions in the area of longevity-extension and counteracting of aging-related diseases. The reviewed literature supports the favorable effects of ginger and some of its constituents on all twelve hallmarks of aging, with a particularly high number of animal research studies indicating counteraction of nutrient-sensing dysregulations, mitochondrial dysfunction, chronic inflammation, and dysbiosis. On this background, validation in human clinical trials is still insufficient or is entirely missing, with the exception of some studies indicating positive effects on deregulated nutrient-sensing, chronic inflammation, and dysbiosis. Thus, the existing body of literature clearly supports the potential of ginger to be further studied in clinical trials as a supplement for the promotion of both lifespan and health span.
Collapse
Affiliation(s)
- Maima Matin
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Bhimtal, Kumaun University, Nainital 263002, India;
| | - Dongdong Wang
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada;
| | - Nikolay T. Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Farhan Bin Matin
- Department of Pharmacy, East West University, Aftabnagar, Dhaka 1212, Bangladesh;
| | - Agnieszka Wierzbicka
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Artur Jóźwik
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Jarosław Olav Horbańczuk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| |
Collapse
|
5
|
Suryaningtyas IT, Lee DS, Je JY. Brown Algae Ecklonia cava Extract Modulates Adipogenesis and Browning in 3T3-L1 Preadipocytes through HO-1/Nrf2 Signaling. Mar Drugs 2024; 22:330. [PMID: 39195446 PMCID: PMC11355876 DOI: 10.3390/md22080330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
This study explores the anti-obesity effects of the ethyl acetate extract of Ecklonia cava (EC-ETAC) on 3T3-L1 preadipocytes, focusing on its impact on adipogenesis, lipolysis, and adipose browning via the HO-1/Nrf2 pathway. Western blot analysis revealed that EC-ETAC significantly inhibited adipogenic transcription factors (PPARγ, C/EBPα, SREBP-1) and lipogenesis-related proteins (FAS, LPL). Concurrently, EC-ETAC enhanced lipolytic markers (p-AMPK, p-HSL) and adipose browning-related proteins (UCP-1, PGC-1α), indicating its role in promoting lipolysis and adipose browning. The inhibition of HO-1 by zinc protoporphyrin (ZnPP) significantly reversed these effects, underscoring the critical role of HO-1 in mediating the anti-obesity properties of EC-ETAC. Additionally, fluorescence measurements and Oil Red O staining confirmed the reduction of lipid accumulation and oxidative stress upon EC-ETAC treatment. These findings suggest that EC-ETAC exerts its anti-obesity effects by modulating the HO-1/Nrf2 pathway, which is crucial for regulating adipogenesis, lipolysis, and adipose browning. This study highlights the potential of EC-ETAC as a natural therapeutic agent for obesity management and supports further research into its clinical applications. By targeting the HO-1/Nrf2 pathway, EC-ETAC could offer a novel approach to enhancing energy expenditure and reducing fat mass, thereby improving metabolic health.
Collapse
Affiliation(s)
- Indyaswan T. Suryaningtyas
- Department of Food and Nutrition, Pukyong National University, Busan 48513, Republic of Korea;
- Research Center for Food Technology and Processing, National Research and Innovation Agency, Yogyakarta 55861, Indonesia
| | - Dae-Sung Lee
- National Marine Biodiversity Institute of Korea (MABIK), Seochun 33662, Republic of Korea;
| | - Jae-Young Je
- Major of Human Bioconvergence, Division of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
6
|
Takahashi H, Morikawa M, Ozaki E, Numasaki M, Morimoto H, Tanaka M, Inoue H, Goto T, Kawada T, Eguchi F, Uehara M, Takahashi N. A modified system using macrophage-conditioned medium revealed that the indirect effects of anti-inflammatory food-derived compounds improve inflammation-induced suppression of UCP-1 mRNA expression in 10T1/2 adipocytes. Biosci Biotechnol Biochem 2024; 88:679-688. [PMID: 38499443 DOI: 10.1093/bbb/zbae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/08/2024] [Indexed: 03/20/2024]
Abstract
Recently, it has been suggested that brown and beige adipocytes may ameliorate obesity because these adipocytes express uncoupling protein-1 (UCP-1), which generates heat by consuming lipid. However, obesity-induced inflammation suppresses the expression of UCP-1. To improve such conditions, food components with anti-inflammatory properties are attracting attention. In this study, we developed a modified system to evaluate only the indirect effects of anti-inflammatory food-derived compounds by optimizing the conventional experimental system using conditioned medium. We validated this new system using 6-shogaol and 6-gingerol, which have been reported to show the anti-inflammatory effects and to increase the basal expression of UCP-1 mRNA. In addition, we found that the acetone extract of Sarcodon aspratus, an edible mushroom, showed anti-inflammatory effects and rescued the inflammation-induced suppression of UCP-1 mRNA expression. These findings indicate that the system with conditioned medium is valuable for evaluation of food-derived compounds with anti-inflammatory effects on the inflammation-induced thermogenic adipocyte dysfunction.
Collapse
Affiliation(s)
- Hisako Takahashi
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Miori Morikawa
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Emi Ozaki
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Minami Numasaki
- Department of Forest Science, Faculty of Regional Environment Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Hiromu Morimoto
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Miori Tanaka
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Hirofumi Inoue
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Teruo Kawada
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Fumio Eguchi
- Department of Forest Science, Faculty of Regional Environment Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Mariko Uehara
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Nobuyuki Takahashi
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
7
|
Zhao XY, Wang JQ, Neely GG, Shi YC, Wang QP. Natural compounds as obesity pharmacotherapies. Phytother Res 2024; 38:797-838. [PMID: 38083970 DOI: 10.1002/ptr.8083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 02/15/2024]
Abstract
Obesity has become a serious global public health problem, affecting over 988 million people worldwide. Nevertheless, current pharmacotherapies have proven inadequate. Natural compounds have garnered significant attention due to their potential antiobesity effects. Over the past three decades, ca. 50 natural compounds have been evaluated for the preventive and/or therapeutic effects on obesity in animals and humans. However, variations in the antiobesity efficacies among these natural compounds have been substantial, owing to differences in experimental designs, including variations in animal models, dosages, treatment durations, and administration methods. The feasibility of employing these natural compounds as pharmacotherapies for obesity remained uncertain. In this review, we systematically summarized the antiobesity efficacy and mechanisms of action of each natural compound in animal models. This comprehensive review furnishes valuable insights for the development of antiobesity medications based on natural compounds.
Collapse
Affiliation(s)
- Xin-Yuan Zhao
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ji-Qiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - G Gregory Neely
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Yan-Chuan Shi
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Qiao-Ping Wang
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Xia Q, Lu F, Chen Y, Li J, Huang Z, Fang K, Hu M, Guo Y, Dong H, Xu L, Gong J. 6-Gingerol regulates triglyceride and cholesterol biosynthesis to improve hepatic steatosis in MAFLD by activating the AMPK-SREBPs signaling pathway. Biomed Pharmacother 2024; 170:116060. [PMID: 38147735 DOI: 10.1016/j.biopha.2023.116060] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 12/28/2023] Open
Abstract
Excessive synthesis of triglycerides and cholesterol accelerates the progression of hepatic steatosis in metabolic-associated fatty liver disease (MAFLD). However, the precise mechanism by which 6-gingerol mitigates hepatic steatosis in MAFLD model mice has yet to be fully understood. The present study observed that 6-gingerol administration exhibited significant protective effects against obesity, insulin resistance, and hepatic steatosis in mice subjected to a high-fat diet (HFD), and mitigated lipid accumulation in HepG2 cells treated with palmitate (PA). Following the hepatic lipidomic analysis, we confirmed that the AMPK-SREBPs signaling pathway as the underlying molecular mechanism by which 6-gingerol inhibited triglyceride and cholesterol biosynthesis, both in vivo and in vitro, through Western blot and immunofluorescence assay. Additionally, the application of an AMPK agonist/inhibitor further validated that 6-gingerol promoted AMPK activation by increasing the phosphorylation level of AMPK in vitro. Notably, the inhibitory effect of 6-gingerol on cholesterol biosynthesis, rather than triglyceride biosynthesis, was significantly diminished after silencing SREBP2 using a lentiviral plasmid shRNA in HepG2 cells. Our study demonstrates that 6-gingerol mitigates hepatic triglyceride and cholesterol biosynthesis to alleviate hepatic steatosis by activating the AMPK-SREBPs signaling pathway, indicating that 6-gingerol may be a potential candidate in the therapy of MAFLD.
Collapse
Affiliation(s)
- Qingsong Xia
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China; Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Fuer Lu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yu Chen
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Jingbin Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhaoyi Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Ke Fang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Meilin Hu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yujin Guo
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Lijun Xu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Jing Gong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
9
|
Preciado-Ortiz ME, Martinez-Lopez E, Rodriguez-Echevarría R, Perez-Robles M, Gembe-Olivarez G, Rivera-Valdés JJ. 10‑Gingerol, a novel ginger compound, exhibits antiadipogenic effects without compromising cell viability in 3T3‑L1 cells. Biomed Rep 2023; 19:105. [PMID: 38025831 PMCID: PMC10646760 DOI: 10.3892/br.2023.1687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Obesity is defined as excessive fat accumulation that can be detrimental to health and currently affects a large part of the global population. Obesity arises from excessive energy intake along with a sedentary lifestyle and leads to adipocytes with aggravated hypertrophy. Strategies have been designed to prevent and treat obesity. Nutrigenomics may serve a role in prevention of obesity using bioactive compounds present in certain foods with anti-obesogenic effects. Ginger (Zingiber officinale Roscoe) contains gingerols, key bioactive compounds that inhibit hypertrophy and hyperplasia of adipocytes. The present study aimed to evaluate the antiadipogenic activity of 10-gingerol (10-G) in the 3T3-L1 cell line. Three study groups were formed: Negative (3T3-L1 preadipocytes) and positive control (mature 3T3-L1 adipocytes) and 10-G (3T3-L1 preadipocytes stimulated with 10-G during adipogenic differentiation). Cell viability and lipid content were evaluated by MTT assay and Oil Red O staining, respectively. mRNA expression of CCAAT enhancer-binding protein α (C/ebpα), peroxisome proliferator-activated receptor γ (Pparγ), mechanistic target of rapamycin complex (Mtor), sterol regulatory element binding transcription factor 1 (Srebf1), acetyl-coenzyme A carboxylase (Acaca), fatty acid binding protein 4 (Fabp4), and 18S rRNA (Rn18s), was quantified by quantitative PCR. The protein expression of C/EPBα was analyzed by western blot. In the 10-G group, lipid content was decreased by 28.83% (P<0.0001) compared with the positive control; notably, cell viability was not affected (P=0.336). The mRNA expression in the 10-G group was higher for C/ebpα (P<0.001) and lower for Acaca (P<0.001), Fabp4 (P<0.001), Mtor (P<0.0001) and Srebf1 (P<0.0001) compared with the positive control group, while gene expression of Pparγ did not present significant changes. The presence of 10-G notably decreased C/EBPα protein levels in 3T3-L1 adipocytes. In summary, the antiadipogenic effect of 10-G during the differentiation of 3T3-L1 cells into adipocytes may be explained by mRNA downregulation of adipogenic transcriptional factors and lipid metabolism-associated genes.
Collapse
Affiliation(s)
- María Elizabeth Preciado-Ortiz
- Institute of Translational Nutrigenetics and Nutrigenomics, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
- PhD Program in Translational Nutrition Sciences, Department of Human Reproduction and Child Growth and Development, University Center of Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Erika Martinez-Lopez
- Institute of Translational Nutrigenetics and Nutrigenomics, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Roberto Rodriguez-Echevarría
- Institute of Translational Nutrigenetics and Nutrigenomics, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Mariana Perez-Robles
- Institute of Translational Nutrigenetics and Nutrigenomics, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Gildardo Gembe-Olivarez
- Institute of Translational Nutrigenetics and Nutrigenomics, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
- Bachelor's Nutrition Program, Department of Human Reproduction and Child Growth and Development, University Center of Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| | - Juan José Rivera-Valdés
- Institute of Translational Nutrigenetics and Nutrigenomics, Department of Molecular Biology and Genomics, University Center of Health Sciences, University of Guadalajara, Guadalajara, Jalisco 44340, Mexico
| |
Collapse
|
10
|
Shaukat MN, Nazir A, Fallico B. Ginger Bioactives: A Comprehensive Review of Health Benefits and Potential Food Applications. Antioxidants (Basel) 2023; 12:2015. [PMID: 38001868 PMCID: PMC10669910 DOI: 10.3390/antiox12112015] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Ginger is an herbaceous and flowering plant renowned for its rhizome, which is widely employed as both a spice and an herb. Since ancient times, ginger has been consumed in folk medicine and traditional cuisines for its favorable health effects. Different in vitro and in vivo studies have disclosed the advantageous physiological aspects of ginger, primarily due to its antioxidant, anti-inflammatory, antimicrobial, and anti-carcinogenic properties. These health-promoting features are linked to the variety of bioactive compounds that are present in ginger. Following the advancement in consumer awareness and the industrial demand for organic antioxidants and functional ingredients, the application of ginger and its derivatives has been broadly investigated in a wide range of food products. The prominent features transmitted by ginger into different food areas are antioxidant and nutraceutical values (bakery); flavor, acceptability, and techno-functional characteristics (dairy); hedonic and antimicrobial properties (beverages); oxidative stability, tenderization, and sensorial attributes (meat); and shelf life and sensorial properties (film, coating, and packaging). This review is focused on providing a comprehensive overview of the tendencies in the application of ginger and its derivatives in the food industry and concurrently briefly discusses the beneficial aspects and processing of ginger.
Collapse
Affiliation(s)
- Muhammad Nouman Shaukat
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia 100, 95123 Catania, Italy;
| | - Akmal Nazir
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Biagio Fallico
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia 100, 95123 Catania, Italy;
| |
Collapse
|
11
|
Cheng L, Shi L, He C, Wang C, Lv Y, Li H, An Y, Duan Y, Dai H, Zhang H, Huang Y, Fu W, Sun W, Zhao B. Mulberry leaf flavonoids activate BAT and induce browning of WAT to improve type 2 diabetes via regulating the AMPK/SIRT1/PGC-1α signaling pathway. Chin J Nat Med 2023; 21:812-829. [PMID: 38035937 DOI: 10.1016/s1875-5364(23)60481-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Indexed: 12/02/2023]
Abstract
Mulberry (Morus alba L.) leaf is a well-established traditional Chinese botanical and culinary resource. It has found widespread application in the management of diabetes. The bioactive constituents of mulberry leaf, specifically mulberry leaf flavonoids (MLFs), exhibit pronounced potential in the amelioration of type 2 diabetes (T2D). This potential is attributed to their ability to safeguard pancreatic β cells, enhance insulin resistance, and inhibit α-glucosidase activity. Our antecedent research findings underscore the substantial therapeutic efficacy of MLFs in treating T2D. However, the precise mechanistic underpinnings of MLF's anti-T2D effects remain the subject of inquiry. Activation of brown/beige adipocytes is a novel and promising strategy for T2D treatment. In the present study, our primary objective was to elucidate the impact of MLFs on adipose tissue browning in db/db mice and 3T3-L1 cells and elucidate its underlying mechanism. The results manifested that MLFs reduced body weight and food intake, alleviated hepatic steatosis, improved insulin sensitivity, and increased lipolysis and thermogenesis in db/db mice. Moreover, MLFs activated brown adipose tissue (BAT) and induced the browning of inguinal white adipose tissue (IWAT) and 3T3-L1 adipocytes by increasing the expressions of brown adipocyte marker genes and proteins such as uncoupling protein 1 (UCP1) and beige adipocyte marker genes such as transmembrane protein 26 (Tmem26), thereby promoting mitochondrial biogenesis. Mechanistically, MLFs facilitated the activation of BAT and the induction of WAT browning to ameliorate T2D primarily through the activation of AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) signaling pathway. These findings highlight the unique capacity of MLF to counteract T2D by enhancing BAT activation and inducing browning of IWAT, thereby ameliorating glucose and lipid metabolism disorders. As such, MLFs emerge as a prospective and innovative browning agent for the treatment of T2D.
Collapse
Affiliation(s)
- Long Cheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Lu Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Changhao He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Chen Wang
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yinglan Lv
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huimin Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yongcheng An
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuhui Duan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hongyu Dai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huilin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yan Huang
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wanxin Fu
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Weiguang Sun
- GuangZhou Baiyunshan Xingqun Pharmaceutical Co., Ltd., Guangzhou 510288, China.
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
12
|
Li A, Zhao M, Yang Z, Fang Z, Qi W, Zhang C, Zhou M, Guo J, Li S, Wang X, Zhang M. 6-Gingerol alleviates placental injury in preeclampsia by inhibiting oxidative stress via BNIP3/LC3 signaling-mediated trophoblast mitophagy. Front Pharmacol 2023; 14:1243734. [PMID: 37900164 PMCID: PMC10611501 DOI: 10.3389/fphar.2023.1243734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Background and aims: Preeclampsia (PE) is the leading cause of maternal and fetal morbidity and mortality worldwide. Apoptosis of trophoblast cells induced by oxidative stress is a principal reason of placental injury in PE. 6-Gingerol, an antioxidant from ginger, plays an important role in many disease models, but its effect on obstetric diseases has not been elucidated. In this study, we investigated the protective effect of 6-gingerol against placental injury. Methods: In vitro hypoxia/reoxygenation (H/R) model of HTR8/Svneo cells and preeclamptic mice model were established to simulate PE. The effects of 6-Gingerol on PE were evaluated by morphological detection, biochemical analysis, and Western blot. Results: We found that H/R treatment induced cell apoptosis, increased the production of reactive oxygen species, malondialdehyde and lactate dehydrogenase, and decreased superoxide dismutase in trophoblast. In addition, the polarization of mitochondrial membrane potential and the cellular calcium flux were also destroyed under H/R condition, which also activated BCL2-interacting protein 3 (BNIP3) and provoked excessive mitophagy. Importantly, 6-Gingerol reversed these corrosive effects. Furthermore, the placenta damage in PE-like mouse caused by the cell apoptosis, oxidative stress and mitophagy was mitigated by 6-Gingerol. Conclusion: These findings suggest that 6-Gingerol exerts a protective effect against placental injury in PE by reducing oxidative stress and inhibiting excessive mitophagy caused by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Anna Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Man Zhao
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Zexin Yang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Zhenya Fang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Weiyi Qi
- Department of Clinical Medicine, Shandong First Medical University, Jinan, China
| | - Changqing Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Meijuan Zhou
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Junjun Guo
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Shuxian Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Xietong Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meihua Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| |
Collapse
|
13
|
Crichton M, Marshall S, Marx W, Isenring E, Lohning A. Therapeutic health effects of ginger (Zingiber officinale): updated narrative review exploring the mechanisms of action. Nutr Rev 2023; 81:1213-1224. [PMID: 36688554 DOI: 10.1093/nutrit/nuac115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ginger (Zingiber officinale) has been investigated for its potentially therapeutic effect on a range of chronic conditions and symptoms in humans. However, a simplified and easily understandable examination of the mechanisms behind these effects is lacking and, in turn, hinders interpretation and translation to practice, and contributes to overall clinical heterogeneity confounding the results. Therefore, drawing on data from nonhuman trials, the objective for this narrative review was to comprehensively describe the current knowledge on the proposed mechanisms of action of ginger on conferring therapeutic health effects in humans. Mechanistic studies support the findings from human clinical trials that ginger may assist in improving symptoms and biomarkers of pain, metabolic chronic disease, and gastrointestinal conditions. Bioactive ginger compounds reduce inflammation, which contributes to pain; promote vasodilation, which lowers blood pressure; obstruct cholesterol production, which regulates blood lipid profile; translocate glucose transporter type 4 molecules to plasma membranes to assist in glycemic control; stimulate fatty acid breakdown to aid weight management; and inhibit serotonin, muscarinic, and histaminergic receptor activation to reduce nausea and vomiting. Additional human trials are required to confirm the antimicrobial, neuroprotective, antineoplastic, and liver- and kidney-protecting effects of ginger. Interpretation of the mechanisms of action will help clinicians and researchers better understand how and for whom ginger may render therapeutic effects and highlight priority areas for future research.
Collapse
Affiliation(s)
- Megan Crichton
- Faculty of Health Science & Medicine, Bond University Nutrition and Dietetics Research Group, Bond University, Robina, Queensland, Australia
- Cancer and Palliative Care Outcomes Centre, Centre for Healthcare Transformation, School of Nursing, Faculty of Health, Kelvin Grove, Queensland, Australia
| | - Skye Marshall
- Faculty of Health Science & Medicine, Bond University Nutrition and Dietetics Research Group, Bond University, Robina, Queensland, Australia
- Department of Science, Nutrition Research Australia, Sydney, New South Wales, Australia
| | - Wolfgang Marx
- Faculty of Health Science & Medicine, Bond University Nutrition and Dietetics Research Group, Bond University, Robina, Queensland, Australia
- Impact (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Deakin University, Geelong, Australia
| | - Elizabeth Isenring
- Faculty of Health Science & Medicine, Bond University Nutrition and Dietetics Research Group, Bond University, Robina, Queensland, Australia
| | - Anna Lohning
- Faculty of Health Science & Medicine, Bond University Nutrition and Dietetics Research Group, Bond University, Robina, Queensland, Australia
| |
Collapse
|
14
|
Flori L, Piragine E, Spezzini J, Citi V, Calderone V, Martelli A. Influence of Polyphenols on Adipose Tissue: Sirtuins as Pivotal Players in the Browning Process. Int J Mol Sci 2023; 24:ijms24119276. [PMID: 37298226 DOI: 10.3390/ijms24119276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Adipose tissue (AT) can be classified into two different types: (i) white adipose tissue (WAT), which represents the largest amount of total AT, and has the main function of storing fatty acids for energy needs and (ii) brown adipose tissue (BAT), rich in mitochondria and specialized in thermogenesis. Many exogenous stimuli, e.g., cold, exercise or pharmacological/nutraceutical tools, promote the phenotypic change of WAT to a beige phenotype (BeAT), with intermediate characteristics between BAT and WAT; this process is called "browning". The modulation of AT differentiation towards WAT or BAT, and the phenotypic switch to BeAT, seem to be crucial steps to limit weight gain. Polyphenols are emerging as compounds able to induce browning and thermogenesis processes, potentially via activation of sirtuins. SIRT1 (the most investigated sirtuin) activates a factor involved in mitochondrial biogenesis, peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), which, through peroxisome proliferator-activated receptor γ (PPAR-γ) modulation, induces typical genes of BAT and inhibits genes of WAT during the transdifferentiation process in white adipocytes. This review article aims to summarize the current evidence, from pre-clinical studies to clinical trials, on the ability of polyphenols to promote the browning process, with a specific focus on the potential role of sirtuins in the pharmacological/nutraceutical effects of natural compounds.
Collapse
Affiliation(s)
- Lorenzo Flori
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | - Jacopo Spezzini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center "Nutrafood: Nutraceutica e Alimentazione per la Salute", University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, 56126 Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center "Nutrafood: Nutraceutica e Alimentazione per la Salute", University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
15
|
Zhang W, Kong L, Zhong Z, Lin L, Li J, Zheng G. Short chain fatty acids increase fat oxidation and promote browning through β3-adrenergic receptor/AMP-activated protein kinase α signaling pathway in 3T3-L1 adipocytes. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
|
16
|
Chen F, Wu S, Li D, Dong J, Huang X. Leaf Extract of Perilla frutescens (L.) Britt Promotes Adipocyte Browning via the p38 MAPK Pathway and PI3K-AKT Pathway. Nutrients 2023; 15:nu15061487. [PMID: 36986217 PMCID: PMC10054491 DOI: 10.3390/nu15061487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The leaf of Perilla frutescens (L.) Britt (PF) has been reported to negatively affect adipocyte formation, inhibit body-fat formation, and lower body weight. However, its effect on adipocyte browning remains unknown. Thus, the mechanism of PF in promoting adipocyte browning was investigated. The ingredients of PF were acquired from the online database and filtered with oral bioavailability and drug-likeness criteria. The browning-related target genes were obtained from the Gene Card database. A Venn diagram was employed to obtain the overlapped genes that may play a part in PF promoting adipocyte browning, and an enrichment was analysis conducted based on these overlapped genes. A total of 17 active ingredients of PF were filtered, which may regulate intracellular receptor-signaling pathways, the activation of protein kinase activity, and other pathways through 56 targets. In vitro validation showed that PF promotes mitochondrial biogenesis and upregulates brite adipocyte-related gene expression. The browning effect of PF can be mediated by the p38 MAPK pathway as well as PI3K-AKT pathway. The study revealed that PF could promote adipocyte browning through multitargets and multipathways. An in vitro study validated that the browning effect of PF can be mediated by both the P38 MAPK pathway and the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Fancheng Chen
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Orthopaedics & Rehabilitation, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Silin Wu
- Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 200120, China
| | - Jian Dong
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaowei Huang
- Facutly of Medicine, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
17
|
Transcriptomics and metabolomics revealed the pulmonary protective mechanism of Xixin-Ganjiang Herb Pair for warming the lungs to dissolve phlegm in COPD rats. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1224:123665. [DOI: 10.1016/j.jchromb.2023.123665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/28/2023] [Accepted: 03/05/2023] [Indexed: 03/16/2023]
|
18
|
Liu Z, Meng L, Wang M, Wang L, Liu Y, Hou G, Li S, Kang W. New iridoids from Patrinia scabiosaefolia and their hypoglycemic effects by activating PI3K/Akt signaling pathway. Fitoterapia 2023; 165:105423. [PMID: 36608711 DOI: 10.1016/j.fitote.2022.105423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023]
Abstract
Growing in regions of Asia and North America, Patrinia scabiosaefolia is a wild vegetable and herb that has demonstrated health-promoting properties. Iridoids are one of the most bioactive phytochemicals in P. scabiosaefolia but the in-depth study is scarce. Herein we reported the separation and characterization of nine iridoids (compounds 1-9) from P. scabiosaefolia, and two compounds (2 and 6) were new. All the structures of the nine iridoids were characterized and confirmed with NMR (1D & 2D), HRMS, IR and UV. Compound 2 is a five-member ring iridoid, reminiscent of a broken C-1 and C-2 bond. Compound 6 has a typical monoene valerian iridoid, but the 5-deoxyglucose moiety at C-11 position is uncommon in this genus. The anti-diabetic evaluation of the isolated compounds revealed that compounds 1, 2, and 9 significantly increased the glucose absorption in 3 T3-L1 cells (P < 0.01). Further mechanism investigations have demonstrated that compound 1 promoted glucose uptake in dexamethasone-treated 3 T3-L1 adipocytes by activating PI3K/Akt signaling pathway. The expression of GLUT4 mRNA and protein was also upregulated. These results provide scientific references for the potential use of P. scabiosaefolia as a functional food to manage hyperglycemia.
Collapse
Affiliation(s)
- Zhenhua Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Lijun Meng
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Functional Food Engineering Technology Research Center, Kaifeng 475004, China
| | - Mengke Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Functional Food Engineering Technology Research Center, Kaifeng 475004, China
| | - Li Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, China
| | - Yuhang Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, China
| | - Gaixia Hou
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; College of Physical Education, Henan University, Kaifeng 475004, China.
| | - Shiming Li
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Shenzhen Research Institute of Henan University, Shenzhen 518000, China; Functional Food Engineering Technology Research Center, Kaifeng 475004, China.
| |
Collapse
|
19
|
The Positive Effect of 6-Gingerol on High-Fat Diet and Streptozotocin-Induced Prediabetic Mice: Potential Pathways and Underlying Mechanisms. Nutrients 2023; 15:nu15040824. [PMID: 36839182 PMCID: PMC9968036 DOI: 10.3390/nu15040824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/22/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
The purposes of the present work are to assess how 6-gingerol (6G) positively influences serum glucose regulation in mice with prediabetes triggered by streptozotocin (STZ) plus a high-fat diet (HFD) and to clarify its underlying mechanisms. An analysis of prediabetic symptoms and biochemical characteristics found that 6G intervention was significantly associated with reduced fasting glucose levels, alleviated insulin resistance, better glucose tolerance, hepatic and pancreatic impairment, and dyslipidemia. For the recognition of the target gut microbiota and the pathways linked to 6G's hypoglycemic function, a combination of hepatic RNA and 16S rRNA sequencing was employed. Specifically, 6G significantly improved the dysbiosis of the gut microbiota and elevated the relative abundances of Alistipes, Alloprevotella, and Ruminococcus_1. Furthermore, 6G supplementation inhibited gluconeogenesis and stimulated glycolysis by activating the PI3K/AKT axis, which also repressed the oxidative stress through Nrf2/Keap1-axis initiation. In addition, Spearman's correlation analyses reveal a complex interdependency set among the gut microbiota, metabolic variables, and signaling axes. Taken together, the hypoglycemic effect of 6G is partially mediated by altered gut microbiota, as well as by activated Nrf2/Keap1 and PI3K/AKT axes. Thus, 6G may be used as a candidate dietary supplement for relieving prediabetes.
Collapse
|
20
|
Tian J, He X, Lan X, Liang X, Zhong Z, Zhu L, Chen K, Chang Q, Xu W. One-Pot Controllable Assembly of a Baicalin-Condensed Aptamer Nanodrug for Synergistic Anti-Obesity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205933. [PMID: 36461678 DOI: 10.1002/smll.202205933] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/11/2022] [Indexed: 06/17/2023]
Abstract
The rapid, simple and low-cost preparation of DNA micro-nano-architectures remain challenging in biosensing and therapy. Polymerase chain reaction (PCR)-driven DNA micro-nano-flowers are used to construct a nanosized baicalin-compressed-aptamer-nanodrug (bcaND) via one-pot assembly for targeted and synergistic anti-obesity. In the design, the tailored Adipo-8 (tAdi-8) overhang in the PCR amplicon displays anti-obesity targeting activity, while the baicalin loaded in the bcaND by embedding the amplicon plays a three-fold role as a lipid-lowering factor, bcaND size compressor, and uncoupling protein-1 (UCP1)-raised thermogenic activator. The ingenious bcaND represents an advanced multifunctional nanomaterial capable of adjusting the morphology at an optimal 400/1 molar ratio of Mg2+ to phosphate groups, compressing the size from 2.699 µm to 214.76 nm using 1 mg/mL baicalin at a temperature of 70 °C, an effective payload with amplicons of up to 98.94%, and a maximum baicalin load of 86.21 g/g DNA. Responsive release in acidic conditions (pH 5.0) occurs within 72 h, accelerating thermogenesis via UCP1 up-regulation by 2.5-fold in 3T3-L1-preadipocytes and 13.7-fold in the white-adipose-tissue (WAT) of mice, targeting adipocytes and visceral white adipose tissue. It plays an efficient synergistic role in obesity therapy in vitro and in vivo, providing a new direction for DNA self-assembly nanotechnology.
Collapse
Affiliation(s)
- Jingjing Tian
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyun He
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xinyue Lan
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xingxing Liang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhaobin Zhong
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Longjiao Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Keren Chen
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Qiaoying Chang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Wentao Xu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
21
|
Ji A, Chen W, Zhang T, Shi R, Wang X, Wang Y, Xu H, Li D. Whey protein and soy protein prevent obesity by upregulating uncoupling protein 1 to activate brown adipose tissue and promote white adipose tissue browning in high-fat diet-fed mice. Food Funct 2022; 13:12836-12851. [PMID: 36440964 DOI: 10.1039/d2fo01935c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There are inconsistent conclusions regarding the effect of whey protein and soy protein supplementation on obesity, and the underlying mechanisms of a high-protein diet for reducing weight gain remain to be elucidated. The aim of the present study was to investigate the preventive effect of whey protein and soy protein on obesity and its possible mechanism. Eighty-four male C57BL/6J mice were randomly divided into seven dietary groups: control group (10% fat) and 6 groups fed with a high-fat diet (HFD): 10% whey protein isolate (WPI), 20% WPI, 30% WPI, 10% soy protein isolate (SPI), 20% SPI and 30% SPI for 12 weeks. Compared with the 20% SPI group, the 20% WPI group had a significantly lower body weight, serum levels of insulin, total cholesterol and leptin, weight of inguinal white adipose tissue (iWAT), and size of adipocytes in iWAT and epididymal white adipose tissue (eWAT). The body mass index (BMI) and the Lee index were significantly lower in the WPI groups than those in the SPI groups at the same protein level. The body weight, body weight gain and BMI were significantly lower with the decreasing ratio of protein to carbohydrate (P/C). Compared with the 20% SPI group, the expressions of browning-related genes such as UCP1 (uncoupling protein 1), PGC-1α, AMPKα and Cidea and the protein expression of UCP1 were significantly higher in brown adipose tissue (BAT) and iWAT in the 20% WPI group. Moreover, the expressions of lipogenesis-related genes such as SREBP1c, PPARγ, LPL and DGAT1 in BAT, iWAT and eWAT in the 10% WPI group were significantly lower compared with the 10% SPI group. In conclusion, whey protein was more effective than soy protein in preventing obesity in mice, probably by suppressing lipogenesis in adipose tissues, activating BAT and promoting the browning of iWAT. In addition, lowering the P/C ratio was beneficial for combating obesity in the context of a HFD.
Collapse
Affiliation(s)
- Andong Ji
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao 266071, China.
| | - Wei Chen
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences-Peking Union Medical College, Peking Union Medical College Hospital, Beijing 100730, China
| | - Tianyu Zhang
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao 266071, China.
| | - Runjia Shi
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao 266071, China.
| | - Xinqi Wang
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao 266071, China.
| | - Yan Wang
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao 266071, China.
| | - Huina Xu
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao 266071, China.
| | - Duo Li
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao 266071, China. .,Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.,Department of Nutrition, Dietetics and Food, Monash University, Melbourne, VIC 3168, Australia
| |
Collapse
|
22
|
Kong L, Zhang W, Liu S, Zhong Z, Zheng G. Quercetin, Engelitin and Caffeic Acid of Smilax china L. Polyphenols, Stimulate 3T3-L1 Adipocytes to Brown-like Adipocytes Via β3-AR/AMPK Signaling Pathway. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:529-537. [PMID: 35986845 DOI: 10.1007/s11130-022-00996-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The aim of the present study was to investigate the browning effects mechanism of Smilax china L. polyphenols (SCLP) and its monomer. In this study, polyphenols (SCLP, engeletin, quercetin and caffeic acid) markedly suppressed lipid accumulation. Polyphenols significantly up-graded the expression of protein kinase A (PKA), adipose triglyceride lipase (ATGL), peroxisome proliferators-activated receptors alpha (PPARα), carnitine palmitoyl transferase (CPT) and acyl-CoA oxidase (ACO) to promote lipolysis and β-oxidation. Moreover, polyphenols greatly enhanced mitochondrial biogenesis in adipocytes, as demonstrated by the expression of Nrf1 and Tfam were up-regulated. Furthermore, polyphenols treatment greatly up-regulated the browning program in adipocytes by increased brown-specific genes and proteins uncoupling protein 1 (UCP-1), peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) and PR domain containing 16 (PRDM16), as well as beige-specific genes (Tmem26, Tbx1, CD137, Cited1), especially engeletin. Further research found that the brown-specific markers were decreased by antagonist treatment of AMPK or β3-AR, but polyphenols treatment reversed the effect of antagonists and improved the expression of UCP-1, PRDM16 and PGC-1α. In conclusion, these results indicated that polyphenols stimulate browning in adipocytes via activation of the β3-AR/AMPK signaling pathway, and SCLP and its monomer may be worth investigating to prevent obesity.
Collapse
Affiliation(s)
- Li Kong
- Jiangxi Key Laboratory of Natural Product and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, 330045, Nanchang, Jiangxi Province, P.R. China
| | - Wenkai Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, 330045, Nanchang, Jiangxi Province, P.R. China
| | - Shanshan Liu
- Jiangxi Key Laboratory of Natural Product and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, 330045, Nanchang, Jiangxi Province, P.R. China
| | - Zhen Zhong
- Jiangxi Key Laboratory of Natural Product and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, 330045, Nanchang, Jiangxi Province, P.R. China
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, 330045, Nanchang, Jiangxi Province, P.R. China.
| |
Collapse
|
23
|
Nutraceuticals and the Network of Obesity Modulators. Nutrients 2022; 14:nu14235099. [PMID: 36501129 PMCID: PMC9739360 DOI: 10.3390/nu14235099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Obesity is considered an increasingly widespread disease in the world population, regardless of age and gender. Genetic but also lifestyle-dependent causes have been identified. Nutrition and physical exercise play an important role, especially in non-genetic obesity. In a three-compartment model, the body is divided into fat mass, fat-free mass and water, and obesity can be considered a condition in which the percentage of total fat mass is in excess. People with a high BMI index or overweight use self-medications, such as food supplements or teas, with the aim to prevent or treat their problem. Unfortunately, there are several obesity modulators that act both on the pathways that promote adipogenesis and those that inhibit lipolysis. Moreover, these pathways involve different tissues and organs, so it is very difficult to identify anti-obesity substances. A network of factors and cells contributes to the accumulation of fat in completely different body districts. The identification of natural anti-obesity agents should consider this network, which we would like to call "obesosome". The nutrigenomic, nutrigenetic and epigenetic contribute to making the identification of active compounds very difficult. This narrative review aims to highlight nutraceuticals that, in vitro or in vivo, showed an anti-obesity activity or were found to be useful in the control of dysfunctions which are secondary to obesity. The results suggest that it is not possible to use a single compound to treat obesity, but that the studies have to be addressed towards the identification of mixtures of nutraceuticals.
Collapse
|
24
|
Abdul Khaliq H, Alhouayek M, Quetin-Leclercq J, Muccioli GG. 5'AMP-activated protein kinase: an emerging target of phytochemicals to treat chronic inflammatory diseases. Crit Rev Food Sci Nutr 2022; 64:4763-4788. [PMID: 36450301 DOI: 10.1080/10408398.2022.2145264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Inflammation is a defensive response of the organism to traumatic, infectious, toxic, ischemic, and autoimmune injury. Inflammatory mediators are released to effectively eliminate the inflammatory trigger and restore homeostasis. However, failure of these processes can lead to chronic inflammatory conditions and diseases such as inflammatory bowel diseases, rheumatoid arthritis, inflammatory lung diseases, atherosclerosis, and neurodegenerative diseases. The cure of chronic inflammatory diseases remains challenging as current therapies have various limitations, such as pronounced side effects, progressive loss of efficacy, and high cost especially for biologics. In this context, phytochemicals (such as alkaloids, flavonoids, lignans, phenolic acids, saponins, terpenoids, and other classes) are considered as an interesting alternative approach. Among the numerous targets of phytochemicals, AMP-activated protein kinase (AMPK) can be considered as an interesting target in the context of inflammation. AMPK regulates inflammatory response by inhibiting inflammatory pathways (NF-κB, JAK/STAT, and MAPK) and regulating several other processes of the inflammatory response (oxidative stress, autophagy, and apoptosis). In this review, we summarize and discuss the studies focusing on phytochemicals that showed beneficial effects by blocking different inflammatory pathways implicating AMPK activation in chronic inflammatory disease models. We also highlight elements to consider when investigating AMPK in the context of phytochemicals.
Collapse
Affiliation(s)
- Hafiz Abdul Khaliq
- Pharmacognosy Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
- Department of Pharmacognosy, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| |
Collapse
|
25
|
Health benefits of bioactive components in pungent spices mediated via the involvement of TRPV1 channel. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Zhang N, Wang Q, Lin F, Zheng B, Huang Y, Yang Y, Xue C, Xiao M, Ye J. Neoagarotetraose alleviates high fat diet induced obesity via white adipocytes browning and regulation of gut microbiota. Carbohydr Polym 2022; 296:119903. [DOI: 10.1016/j.carbpol.2022.119903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/08/2022] [Accepted: 07/17/2022] [Indexed: 11/02/2022]
|
27
|
Wang R, Santos JM, Dufour JM, Stephens ER, Miranda JM, Washburn RL, Hibler T, Kaur G, Lin D, Shen CL. Ginger Root Extract Improves GI Health in Diabetic Rats by Improving Intestinal Integrity and Mitochondrial Function. Nutrients 2022; 14:4384. [PMID: 36297069 PMCID: PMC9611027 DOI: 10.3390/nu14204384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 12/06/2022] Open
Abstract
Background Emerging research suggests hyperglycemia can increase intestinal permeability. Ginger and its bioactive compounds have been reported to benefit diabetic animals due to their anti-inflammatory and antioxidant properties. In this study, we revealed the beneficial effect of gingerol-enriched ginger (GEG) on intestinal health (i.e., barrier function, mitochondrial function, and anti-inflammation) in diabetic rats. Methods Thirty-three male Sprague Dawley rats were assigned to three groups: low-fat diet (control group), high-fat-diet (HFD) + streptozotocin (single low dose 35 mg/kg body weight (BW) after 2 weeks of HFD feeding) (DM group), and HFD + streptozotocin + 0.75% GEG in diet (GEG group) for 42 days. Glucose tolerance tests (GTT) and insulin tolerance tests (ITT) were conducted at baseline and prior to sample collection. Total pancreatic insulin content was determined by ELISA. Total RNA of intestinal tissues was extracted for mRNA expression using qRT-PCR. Results Compared to the DM group, the GEG group had improved glucose tolerance and increased pancreatic insulin content. Compared to those without GEG (DM group), GEG supplementation (GEG group) increased the gene expression of tight junction (Claudin-3) and antioxidant capacity (SOD1), while it decreased the gene expression for mitochondrial fusion (MFN1), fission (FIS1), biogenesis (PGC-1α, TFAM), mitophagy (LC3B, P62, PINK1), and inflammation (NF-κB). Conclusions Ginger root extract improved glucose homeostasis in diabetic rats, in part, via improving intestinal integrity and mitochondrial dysfunction of GI health.
Collapse
Affiliation(s)
- Rui Wang
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Julianna Maria Santos
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jannette M. Dufour
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79401, USA
| | - Emily R. Stephens
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jonathan M. Miranda
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Rachel L. Washburn
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Taylor Hibler
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Gurvinder Kaur
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79401, USA
| | - Dingbo Lin
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79401, USA
| |
Collapse
|
28
|
Li T, Bai H, Fang H, Yang L, Yan P. Growth hormone inhibits adipogenic differentiation and induces browning in bovine subcutaneous adipocytes. Growth Horm IGF Res 2022; 66:101498. [PMID: 36007464 DOI: 10.1016/j.ghir.2022.101498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE It is well established that growth hormone (GH) has the ability to stimulate lipolysis. The effects of GH on adipocyte differentiation and browning have not been clearly described. Therefore, the present study aimed to elucidate the role of GH in the differentiation and browning of bovine subcutaneous adipocytes as well as its underlying molecular mechanisms. METHODS We first treated bovine subcutaneous preadipocytes with different concentrations (0, 10, 100, and 500 ng/mL) of GH for 8 days and measured lipid accumulation and gene expression. Afterward, we treated preadipocytes and mature adipocytes with 500 ng/mL GH and determined differentiation and browning-related indicators. Finally, we investigated the expression of STAT5B in both preadipocytes and mature adipocytes after GH treatment. RESULTS We demonstrated that GH inhibited lipid accumulation and decreased the expression levels of adipogenic key genes (SCD1, SREBP1, PPARγ, and CEBPα) during adipocyte differentiation. Moreover, we observed that the inhibitory effect of GH on the early stage of adipocyte differentiation (0-2 days) was stronger than that on the later stage of adipocyte differentiation (2-8 days). We also found that GH promoted the expression levels of browning-related genes such as uncoupling protein 1 (UCP1) in mature adipocytes. Concurrently, GH promoted mitochondrial biogenesis and increased the expression levels of mitochondrial biogenesis-related genes. In addition, GH promoted phosphorylation of signal transducers and activator of transcription 5 b (STAT5B) and contributed to translocation of STAT5B to nucleus. After blocking the expression of STAT5B protein, GH weakened the inhibition of adipogenic key genes and reduced the promotion of browning-related genes in bovine subcutaneous adipocytes. CONCLUSIONS GH can inhibit adipocyte differentiation and promote adipocyte browning by regulating STAT5B in bovine subcutaneous adipocytes.
Collapse
Affiliation(s)
- Tingting Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Bai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Haoyuan Fang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Peishi Yan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
29
|
Peanut Shell Extract and Luteolin Regulate Lipid Metabolism and Induce Browning in 3T3-L1 Adipocytes. Foods 2022; 11:foods11172696. [PMID: 36076880 PMCID: PMC9455591 DOI: 10.3390/foods11172696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022] Open
Abstract
Peanut shells are agricultural waste products that require utilization. The freeze-dried ethanolic peanut shell extract (PSE) contained 10.01 ± 0.55 mg/g of luteolin (LUT) with a total polyphenol content of 18.11 ± 0.88 mg GAE/g. Thus, LUT is one of the major polyphenolic components in PSE. Although PSE displays antibacterial and neurotrophic activities, minimal research is available addressing its potential role in lipid metabolism. This study investigated the role of PSE in terms of inhibiting adipogenesis, accelerating lipolysis, and promoting lipid browning using the 3T3-L1 cell line. Without affecting cell viability, high concentrations of PSE and LUT prevented adipogenesis by reducing the mRNA levels of C/EBPα, PPARγ, and SREBP1-c, and increasing the protein levels of pACC and pAMPK. Moreover, PSE and LUT induced lipolysis by activating lipolytic proteins, and enhanced the protein expressions of the brown adipocyte-specific markers, UCP1, PGC-1α, and SIRT1 in fully differentiated 3T3-L1 adipocytes. Increased mitochondrial biosynthesis provided additional evidence in favor of these findings. Due to their anti-obesity properties, it is proposed that PSE and LUT could be used as potential dietary supplements.
Collapse
|
30
|
Zhang N, Liu J, Wang M, Guo X, Fan B, Wang F. Potato protease inhibitor II prevents obesity by inducing browning of white adipose tissue in mice via β 3 adrenergic receptor signaling pathway. Phytother Res 2022; 36:3885-3899. [PMID: 36017979 DOI: 10.1002/ptr.7451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 11/09/2022]
Abstract
There are currently few effective and safe pharmacologic means for inducing beige adipogenesis in humans. This study highlights the role of potato protease inhibitor II (PPI II) in regulating the browning of adipose tissue. The in vitro results showed that PPI II increased the expression of the uncoupling protein 1 (UCP1) protein and gene and beige-specific genes, including Cd137, Cited1, Tbx1, and Tmem26 in vitro. PPI II treatment for three months in diet-induced obesity mice increased the levels of the UCP1 protein in white adipose tissue, causing elevated energy expenditure, thus preventing obesity and improving glucose tolerance. Mechanistic studies further revealed that PPI II regulated the abundance and activity of β3 adrenergic receptor (β3 -AR) in white adipocytes. Chemical-inhibition experiments revealed the crucial role of β3 -AR-dependent protein kinase A (PKA)-p38 kinase (p38)/extracellular signal-related kinase1/2 (ERK1/2) signaling in PPI II-mediated browning program of white adipose tissues. In summary, our findings highlight the role of PPI II in beige adipocyte differentiation and thermogenesis and provide new insights into its use in preventing obesity.
Collapse
Affiliation(s)
- Nana Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianlin Liu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Minjie Wang
- School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Xinxin Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bei Fan
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
31
|
Liu K, Liu X, Deng Y, Li Z, Tang A. CircRNA-mediated regulation of brown adipose tissue adipogenesis. Front Nutr 2022; 9:926024. [PMID: 35967789 PMCID: PMC9372764 DOI: 10.3389/fnut.2022.926024] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022] Open
Abstract
Adipose tissue represents a candidate target for the treatment of metabolic illnesses, such as obesity. Brown adipose tissue (BAT), an important heat source within the body, promotes metabolic health through fat consumption. Therefore, the induction of white fat browning may improve lipid metabolism. Currently, the specific roles of circRNA in BAT and white adipose tissue (WAT) remain elusive. Herein, we conducted circRNA expression profiling of mouse BAT and WAT using RNA-seq. We identified a total of 12,183 circRNAs, including 165 upregulated and 79 downregulated circRNAs between BAT and WAT. Differentially expressed (DE) circRNAs were associated with the mitochondrion, mitochondrial part, mitochondrial inner membrane, mitochondrial envelope, therefore, these circRNAs may affect the thermogenesis and lipid metabolism of BAT. Moreover, DE circRNAs were enriched in browning- and thermogenesis-related pathways, including AMPK and HIF-1 signaling. In addition, a novel circRNA, circOgdh, was found to be highly expressed in BAT, formed by back-splicing of the third and fourth exons of the Ogdh gene, and exhibited higher stability than linear Ogdh. circOgdh was mainly distributed in the cytoplasm and could sponge miR-34a-5p, upregulating the expression of Atgl, a key lipolysis gene, which enhanced brown adipocyte lipolysis and suppressed lipid droplet accumulation. Our findings offer in-depth knowledge of the modulatory functions of circRNAs in BAT adipogenesis.
Collapse
Affiliation(s)
- Kaiqing Liu
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Xin Liu
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Affiliated Shenzhen Eye Hospital of Jinan University, Shenzhen, China
| | - Yaqin Deng
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Aifa Tang
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| |
Collapse
|
32
|
Baptista BG, Ribeiro M, Cardozo LF, Leal VDO, Regis B, Mafra D. Nutritional benefits of ginger for patients with non-communicable diseases. Clin Nutr ESPEN 2022; 49:1-16. [PMID: 35623800 DOI: 10.1016/j.clnesp.2022.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/18/2022] [Indexed: 01/10/2023]
Abstract
Ginger (Zingiber officinale) is a famous dietary spice rich in bioactive components like gingerols, and it has been used for a long time as food and medicine. Indeed, clinical studies have confirmed the anti-inflammatory and antioxidant properties of ginger. Thus, ginger seems to be an excellent complementary nutritional strategy for non-communicable diseases (NCD) such as obesity, diabetes, cardiovascular disease and chronic kidney disease. This narrative review aims to discuss the possible effects of ginger on the mitigation of common complications such as inflammation, oxidative stress, and gut dysbiosis in NCD.
Collapse
Affiliation(s)
- Beatriz G Baptista
- Graduate Program in Medical Sciences, Federal Fluminense University, Niteroi-Rio de Janeiro, (RJ), Brazil
| | - Marcia Ribeiro
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
| | - Ludmila Fmf Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Viviane de O Leal
- Division of Nutrition, Pedro Ernesto University Hospital, State of Rio de Janeiro University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Bruna Regis
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Denise Mafra
- Graduate Program in Medical Sciences, Federal Fluminense University, Niteroi-Rio de Janeiro, (RJ), Brazil; Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil.
| |
Collapse
|
33
|
Kong L, Xu M, Yang L, Liu S, Zheng G. Smilax china Polyphenols Stimulate Browning via [Formula: see text]3-Adrenergic Receptor/AMP-Activated Protein Kinase [Formula: see text] Signaling Pathway in 3T3-L1 Adipocytes. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1315-1329. [PMID: 35642460 DOI: 10.1142/s0192415x22500550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The aim of this study is to investigate the molecular mechanism of Smilax china L. polyphenols (SCLPs) in enhancing lipid metabolism and stimulating browning to reduce lipid accumulation in 3T3-L1 adipocytes. SCLP treatment obviously decreased lipid content in a dose-dependent manner (10-40 μg/mL) in adipocytes. SCLP treatment cooperated with noradrenalin to increase lipolysis. SCLPs reduced the gene expressions of C/EBP[Formula: see text] and Ap2 and enhanced the expressions of ACO, CPT, pHSL/HSL, ATGL, and PKA in adipocytes. Furthermore, SCLPs increased mRNA and protein expressions of brown adipocyte-specific factors (UCP-1, PRDM16, PGC-1α, and PPARγ) and mRNA expressions of beige adipocyte-specific markers (CD137, Tbx1, and Tmem26) in 3T3-L1 adipocytes, as well as mitochondrial biogenesis genes (Nrf1 and Tfam). In addition, according to the immunofluorescence staining, the mitochondria number was increased by SCLP. Moreover, β3-AR or AMPK agonist synergistic SCLPs enhanced the expressions of UCP-1, PRDM16, and PGC-1α. While β3-AR or AMPK antagonist significantly decreased the expressions of these brown adipocyte-specific factors, SCLP treatment inhibited the effect of antagonist to improve the expression of UCP-1, PRDM16, and PGC-1α. These results indicated that SCLPs may regulate lipid metabolism and stimulate browning via the β3-AR/AMPKα signaling pathway. Thus, SCLPs likely have potential therapeutic effects on obesity.
Collapse
Affiliation(s)
- Li Kong
- Jiangxi Key Laboratory of Natural Products and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Meng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Licong Yang
- School of Biological Science and Engineering, Fuzhou University, 2 North Wulongjiang Avenue, Fuzhou, Fujian 350108, P. R. China
| | - Shanshan Liu
- Jiangxi Key Laboratory of Natural Products and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Products and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| |
Collapse
|
34
|
Yang D, He Z, Wang Z, Fang Q, Oz F, Chen J, Zeng M. Processing stage-guided effects of spices on the formation and accumulation of heterocyclic amines in smoked and cooked sausages. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
HAYASHI M, KUDO M, GAO M. Plasmalogen Inhibits Body Weight Gain by Activating Brown Adipose Tissue and Improving White Adipose Tissue Metabolism. J Nutr Sci Vitaminol (Tokyo) 2022; 68:140-147. [DOI: 10.3177/jnsv.68.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Misa HAYASHI
- School of Pharmaceutical Sciences, Mukogawa Women’s University
| | - Maya KUDO
- School of Pharmaceutical Sciences, Mukogawa Women’s University
| | - Ming GAO
- Institute for Biosciences, Mukogawa Women’s University
| |
Collapse
|
36
|
Natural bioactive constituents from herbs and nutraceuticals promote browning of white adipose tissue. Pharmacol Res 2022; 178:106175. [DOI: 10.1016/j.phrs.2022.106175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022]
|
37
|
Iglesias DE, Cremonini E, Oteiza PI, Fraga CG. Curcumin Mitigates TNFα-Induced Caco-2 Cell Monolayer Permeabilization Through modulation of NF-κB, ERK1/2 and JNK Pathways. Mol Nutr Food Res 2022; 66:e2101033. [PMID: 35182412 DOI: 10.1002/mnfr.202101033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/02/2022] [Indexed: 11/09/2022]
Abstract
SCOPE This work studied the capacity of curcumin to inhibit TNFα-induced inflammation, oxidative stress, and loss of intestinal barrier integrity, characterizing the underlying mechanisms. METHODS AND RESULTS Caco-2 cell monolayers were incubated with TNFα (10 ng/ml), in the absence or presence of curcumin. TNFα caused an increase in interleukin (IL)-6 and IL-8 release which was inhibited by curcumin in a dose-dependent manner (IC50 = 3.4 μM for IL-6). Moreover, TNFα led to: i) increased ICAM-1 and NLRP3 expression; ii) increased cell monolayer permeability and decreased levels of tight junction proteins; iii) increased cellular and mitochondrial oxidant production; iv) decreased mitochondrial membrane potential and complex I-III activity; v) activation of redox-sensitive pathways, i.e., NF-κB, ERK1/2 and JNK; and vi) increased MLCK expression and phosphorylation levels of MLC. Curcumin (2-8 μM) inhibited all these TNFα-triggered undesirable outcomes, mostly showing dose-dependent effects. CONCLUSION The inhibition of NF-κB, ERK1/2 and JNK activation could be in part involved in the capacity of curcumin to mitigate intestinal inflammation, oxidant production, activation of redox-sensitive pathways, and prevention of monolayer permeabilization. These results support an action of dietary curcumin in sustaining gastrointestinal tract physiology. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dario E Iglesias
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
| | - Eleonora Cremonini
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
| | - Patricia I Oteiza
- Departments of Nutrition and Environmental Toxicology, University of California, Davis, CA, USA
| | - Cesar G Fraga
- Physical Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina.,IBIMOL, University of Buenos Aires-CONICET, Buenos Aires, Argentina
| |
Collapse
|
38
|
Chen X, He X, Gao R, Lan X, Zhu L, Chen K, Hu Y, Huang K, Xu W. Aptamer-Functionalized Binary-Drug Delivery System for Synergetic Obesity Therapy. ACS NANO 2022; 16:1036-1050. [PMID: 34967620 DOI: 10.1021/acsnano.1c08690] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The targeted delivery of phytochemicals that promote energy expenditure for obesity therapy remains a challenge. This study assembled a functionalized adipo-8 aptamer loaded with allicin using isothermal rolling-circle techniques to form a synergistic adipocyte-targeted binary-drug delivery system for treating obesity. The functionalized adipo-8 aptamer efficiently protected allicin from adsorption, showing significant potential to encapsulate, transport, and release molecular cargos into white adipose tissue. Introducing the negatively charged allicin, a phytochemical able to induce adipose tissue browning, reduced the diameters of DNA-nanoflower from 770 to 380 nm and increased cellular uptake efficiency up to 118.7%. The intracellular distribution observed via confocal microscopy confirmed the successful receptor recognition mediated by aptamers in the DNA-nanoflower-allicin (NFA) framework as well as its excellent stability to escape from lysosomes. In vivo results demonstrated that subcutaneous administration of NFA effectively promoted adipocyte browning and systematic energy expenditure with minimal side effects. Furthermore, the G-quadruplex in the mitochondrial uncoupling protein-1 promoter was found to be an interactive allicin target for regulating thermogenesis to combat obesity.
Collapse
Affiliation(s)
- Xu Chen
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ruxin Gao
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xinyue Lan
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Keren Chen
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanzhou Hu
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
39
|
Integrated network pharmacology and cellular assay for the investigation of an anti-obesity effect of 6-shogaol. Food Chem 2021; 374:131755. [PMID: 34883426 DOI: 10.1016/j.foodchem.2021.131755] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/11/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022]
Abstract
This study explored the anti-obesity effect of 6-shogaol and the underlying mechanisms by using Network pharmacology for the prediction and verification of molecular targets and pathways of 6-shogaol against obesity. Furthermore, the results were verified by molecular docking and cell experiments. A total of 86 core targets of 6-shogaol towards obesity were identified. Among them, AKT1 and PIK3CA were confirmed by using the molecular docking. In 3T3-L1 preadipocyte model, 6-shogaol significantly inhibited proliferation and differentiation, reducing the accumulation of lipid droplets. Compared with the control group, the inhibition rates of 6-shogaol on TG and TC were 90.8% and 40.0%, respectively. Additionally, 6-shogaol down-regulated the expression of PPAR-γ and C/EBP-α, while it decreased the phosphorylation of IRS-1, PI3K and AKT. This study, for the first time, confirmed the effect of 6-shogaol on improving obesity through PI3K/AKT pathway. An anti-obesity bioactivity study was further recommended for the development of novel anti-obesity products.
Collapse
|
40
|
Lee GH, Peng C, Jeong SY, Park SA, Lee HY, Hoang TH, Kim J, Chae HJ. Ginger extract controls mTOR-SREBP1-ER stress-mitochondria dysfunction through AMPK activation in obesity model. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
41
|
Liu X, Gao YP, Shen ZX, Qu YY, Liu WW, Yao D, Xing B, Xu ZH, Li X, Zhao QC. Study on the experimental verification and regulatory mechanism of Rougui-Ganjiang herb-pair for the actions of thermogenesis in brown adipose tissue based on network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114378. [PMID: 34192599 DOI: 10.1016/j.jep.2021.114378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cinnamomum cassia Presl (Rougui) has character of xin、gan、wen, belongs to Jing of heart、lung、bladder, and has the effect of dispersing cold and relieving pain. It is widely used to resolve the exterior and dissipate cold in Treatise on Febrile Diseases (Shang Han Lun), such as Chaihu Guizhi Ganjiang Tang and Guizhi Renshen Tang. Both these two prescriptions contain Cinnamomum cassia Presl and Zingiber officinale Rosc (Ganjiang). Rougui-Ganjiang herb-pair (RGHP) can warm viscera and remove cold, which is widely used in Shang Han Lun. And in modern times, recent studies have showed that cinnamon and ginger also have the effect of thermogenesis and regulating the body temperature, respectively. AIM OF THE STUDY To maintain the body thermal homeostasis and prevent cold invasion of main organs, in this study, we assessed the underlying physiological changes induced by RGHP in mice exposed to -20 °C and explored the mechanisms for the thermogenic actions of RGHP in brown adipose tissue (BAT) by network pharmacology and molecular docking. MATERIALS AND METHODS Male Kunming (KM) mice were fed normal diet with orally administration of distilled water or ethanol RGHP extract (three doses: 375,750 and 1500 mg/kg) for 21 days, once per day and then exposed to -20 °C for 2 h. The core temperature, activity ability and the degree of frostbite in mice, morphological and ATP content of adipocytes were measured. In addition, the network pharmacology was employed to predict the targets of RGHP' s thermogenesis effect on BAT. Pathway analysis and biological process with key genes was carried out through KEGG and GO analysis, respectively. Furthermore, the core ingredients and targets obtained by network pharmacology were verified by molecular docking and Western blot assays. RESULTS RGHP can significantly increase the core body temperature, reduce the degree of frostbite and enhance the activity ability of mice after cold exposure. Meanwhile, it can also improve the lipid morphology and decrease ATP production in BAT. A network pharmacology-based analysis identified 246 ingredients from RGHP (two herbs), which related to 222 target genes. There were 8 common genes between 222 compounds target genes and 62 thermogenesis associated target genes, which linked to 49 potential compounds. There are 24 ingredients which degree are greater than the average. Among them, we found that oleic acid, EIC, 6-gingerol, eugenol, isohomogenol and sitogluside could be detected in mice plasma. The cAMP-PPAR signaling pathway was enriched for thermogenesis after KEGG analysis with 8 genes. Molecular docking analysis and Western blot assay further confirmed that oleic acid, 6-gingerol, eugenol and isohomogenol were potential active ingredients for RGHP's heat production effect. And UCP1, PGC-1α, PPARα and PPARγ are key thermogenesis proteins. CONCLUSIONS RGHP treatment can significantly maintain the rectal temperature of mice by enhancing the BAT heat production. RGHP exhibited the heat production effect, which might be mainly attributed to increasing thermogenesis through the cAMP-PPAR signaling pathway in cold exposure mice. Oleic acid, 6-gingerol, eugenol and isohomogenol might be considered the potential therapeutic ingredients which affect the key targets of thermogenesis effect.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, 110016, China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, China
| | - Ya-Ping Gao
- School of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ze-Xu Shen
- School of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ying-Ying Qu
- School of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wen-Wu Liu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dong Yao
- College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China
| | - Bo Xing
- School of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zi-Hua Xu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, China
| | - Xiang Li
- School of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, 110016, China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, China.
| | - Qing-Chun Zhao
- School of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, 110016, China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, China.
| |
Collapse
|
42
|
Stromsnes K, Lagzdina R, Olaso-Gonzalez G, Gimeno-Mallench L, Gambini J. Pharmacological Properties of Polyphenols: Bioavailability, Mechanisms of Action, and Biological Effects in In Vitro Studies, Animal Models, and Humans. Biomedicines 2021; 9:1074. [PMID: 34440278 PMCID: PMC8392236 DOI: 10.3390/biomedicines9081074] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022] Open
Abstract
Drugs are bioactive compounds originally discovered from chemical structures present in both the plant and animal kingdoms. These have the ability to interact with molecules found in our body, blocking them, activating them, or increasing or decreasing their levels. Their actions have allowed us to cure diseases and improve our state of health, which has led us to increase the longevity of our species. Among the molecules with pharmacological activity produced by plants are the polyphenols. These, due to their molecular structure, as drugs, also have the ability to interact with molecules in our body, presenting various pharmacological properties. In addition, these compounds are found in multiple foods in our diet. In this review, we focused on discussing the bioavailability of these compounds when we ingested them through diet and the specific mechanisms of action of polyphenols, focusing on studies carried out in vitro, in animals and in humans over the last five years. Knowing which foods have these pharmacological activities could allow us to prevent and aid as concomitant treatment against various pathologies.
Collapse
Affiliation(s)
- Kristine Stromsnes
- Freshage Research Group, Department of Physiology, Faculty of Medicine, Institute of Health Research-INCLIVA, University of Valencia and CIBERFES, Avda. Blasco Ibañez, 15, 46010 Valencia, Spain; (K.S.); (G.O.-G.)
| | - Rudite Lagzdina
- Faculty of Medicine, Department of Human Physiology and Biochemistry, Riga Stradins University, LV-1007 Riga, Latvia;
| | - Gloria Olaso-Gonzalez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, Institute of Health Research-INCLIVA, University of Valencia and CIBERFES, Avda. Blasco Ibañez, 15, 46010 Valencia, Spain; (K.S.); (G.O.-G.)
| | - Lucia Gimeno-Mallench
- Department of Biomedical Sciences, Faculty of Health Sciences, Cardenal Herrera CEU University, 46115 Valencia, Spain;
| | - Juan Gambini
- Freshage Research Group, Department of Physiology, Faculty of Medicine, Institute of Health Research-INCLIVA, University of Valencia and CIBERFES, Avda. Blasco Ibañez, 15, 46010 Valencia, Spain; (K.S.); (G.O.-G.)
| |
Collapse
|
43
|
Therapeutic efficacy of 6-Gingerol and 6-Shogaol in promoting browning of white adipocytes vis-à-vis enhanced thermogenesis portrayed in high fat milieu. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Zhao B, Liu M, Liu H, Xie J, Yan J, Hou X, Liu J. Zeaxanthin promotes browning by enhancing mitochondrial biogenesis through the PKA pathway in 3T3-L1 adipocytes. Food Funct 2021; 12:6283-6293. [PMID: 34047728 DOI: 10.1039/d1fo00524c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Obesity is closely associated with maintaining mitochondrial homeostasis, and mitochondrial dysfunction can lead to systemic lipid metabolism disorders. Zeaxanthin (ZEA) is a kind of carotenoid with potent antioxidant activity and has been reported to promote mitochondrial biogenesis. Nevertheless, the molecular mechanism has not been explained. In this study, we first discovered that ZEA stimulated 3T3-L1 adipocyte browning by increasing the expression of specific markers (Cd137, Tbx1, Sirt1, Cidea, Ucp1, Tmem26, and Cited1), thereby reducing lipid accumulation. Besides, ZEA promoted mitochondrial biogenesis by increasing the expression of PRDM16, UCP1, NRF2, PGC-1α, and SIRT1. Moreover, the uncoupled oxygen consumption rate (OCR) of protons leaked in 3T3-L1 adipocytes was rapidly increased by ZEA treatment, which improved mitochondrial respiration and energy metabolism. Furthermore, we found that ZEA promotes browning by enhancing mitochondrial biogenesis partly through the protein kinase A (PKA) pathway. This study provided new insight into the promotion of browning and mitochondrial biogenesis by ZEA, suggesting that ZEA probably has potential therapeutic effects on obesity.
Collapse
Affiliation(s)
- Bailing Zhao
- National Engineering Laboratory for Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | | | | | | | | | | | | |
Collapse
|
45
|
Niu W, Wang H, Wang B, Mao X, Du M. Resveratrol improves muscle regeneration in obese mice through enhancing mitochondrial biogenesis. J Nutr Biochem 2021; 98:108804. [PMID: 34171502 DOI: 10.1016/j.jnutbio.2021.108804] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/09/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
Obesity is increasing rapidly worldwide and is accompanied by many complications, including impaired muscle regeneration. Obesity is known to inhibit AMP-activated protein kinase (AMPK) activity, which impedes mitochondrial biogenesis, myogenic differentiation and muscle regeneration. Resveratrol has an effective anti-obesity effect, but its effect on regeneration of muscle in obese mice remains to be tested. We hypothesized that resveratrol activates AMPK and mitochondrial biogenesis to improve muscle regeneration. Male C57BL/6J mice were fed a control diet or a 60% high-fat diet with or without resveratrol supplementation for 8 weeks and, then, the tibialis anterior muscle was subjected to cardiotoxin-induced muscle injury. Muscle tissue was collected at 3 and 7 d after injury. We found that resveratrol enhanced both proliferation and differentiation of satellite cells following injury in obese mice. Markers of mitochondrial biogenesis were upregulated in resveratrol-treated mice. In C2C12 myogenic cells, resveratrol activated AMPK and stimulated the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha, which were associated with enhanced myogenic differentiation. Such effects of resveratrol were abolished by AMPKα1 ablation, showing the mediatory roles of AMPK. In summary, dietary resveratrol activates AMPK/ proliferator-activated receptor gamma coactivator 1-alpha axis to facilitate mitochondrial biogenesis and muscle regeneration impaired due to obesity.
Collapse
Affiliation(s)
- Wenjing Niu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China; College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Haibo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, China
| | - Bo Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xueying Mao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, USA.
| |
Collapse
|
46
|
Kong L, Xu M, Qiu Y, Liao M, Zhang Q, Yang L, Zheng G. Chlorogenic acid and caffeine combination attenuates adipogenesis by regulating fat metabolism and inhibiting adipocyte differentiation in 3T3-L1 cells. J Food Biochem 2021; 45:e13795. [PMID: 34036605 DOI: 10.1111/jfbc.13795] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 12/14/2022]
Abstract
Obesity is a complex disease spreading in the world. In our previous studies, chlorogenic acid (CGA) and caffeine had ever been reported to reduce the body weight gain and fat accumulation in mice. This study investigated the anti-obesity effect of CGA and caffeine on 3T3-L1 cells. According to triglyceride (TG) assay and Oil-Red O staining, 40 μg/ml CGA and 160 μg/ml caffeine reduced TG content. Moreover, CGA + caffeine inhibited the mRNA expression of major adipogenic markers, PPAR-γ2, and C/EBPα in the metaphase and anaphase stages of differentiation induction (Day 2 and 4). CGA + caffeine improved P-AMPK/AMPK accompanied by decreasing the expression of GPDH and FAS to depress the lipid synthesis, increasing the mRNA expression of ACO and CAT to promote fatty acid oxidation and up-regulated the expression of hydrolysis-related enzyme adipose TG lipase (ATGL) and P-HSL/HSL. Furthermore, CGA + caffeine improved the expression of Glut4 which promoted the glucose transport. Taken together, these data demonstrated CGA + caffeine inhibited 3T3-L1 cells differentiation in the middle and late stages and reduced the fat accumulation through AMPK pathway by regulating the fat metabolism-related enzyme in 3T3-L1 cells to attenuates adipogenesis. PRACTICAL APPLICATIONS: The aim of this study was to elucidate the potential role of chlorogenic acid and caffeine in the treatment of obesity.
Collapse
Affiliation(s)
- Li Kong
- Jiangxi Key Laboratory of Natural Product and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Meng Xu
- Jiangxi Key Laboratory of Natural Product and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Yangyang Qiu
- Jiangxi Key Laboratory of Natural Product and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Mingfu Liao
- Jiangxi Key Laboratory of Natural Product and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Qingfeng Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Licong Yang
- Jiangxi Key Laboratory of Natural Product and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, P.R. China
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, School of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, P.R. China
| |
Collapse
|
47
|
Mulberry leaf activates brown adipose tissue and induces browning of inguinal white adipose tissue in type 2 diabetic rats through regulating AMP-activated protein kinase signalling pathway. Br J Nutr 2021; 127:810-822. [PMID: 33971987 DOI: 10.1017/s0007114521001537] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The current epidemic of type 2 diabetes mellitus (T2DM) significantly affects human health worldwide. Activation of brown adipocytes and browning of white adipocytes are considered as a promising molecular target for T2DM treatment. Mulberry leaf, a traditional Chinese medicine, has been demonstrated to have multi-biological activities, including anti-diabetic and anti-inflammatory effects. Our experimental results showed that mulberry leaf significantly alleviated the disorder of glucose and lipid metabolism in T2DM rats. In addition, mulberry leaf induced browning of inguinal white adipose tissue (IWAT) by enhancing the expressions of brown-mark genes as well as beige-specific genes, including uncoupling protein-1 (UCP1), peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), peroxisome proliferator-activated receptor alpha (PPARα), PRD1-BF-1-RIZ1 homologous domain containing protein 16 (PRDM16), cell death inducing DFFA-like effector A (Cidea), CD137 and transmembrane protein 26 (TMEM26). Mulberry leaf also activated brown adipose tissue (BAT) by increasing the expressions of brown-mark genes including UCP1, PGC-1α, PPARα, PRDM16 and Cidea. Moreover, mulberry leaf enhanced the expression of nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM) genes that are responsible for mitochondrial biogenesis in IWAT and BAT. Importantly, mulberry leaf also increased the expression of UCP1 and carnitine palmitoyl transferase 1 (CPT-1) proteins in both IWAT and BAT via a mechanism involving AMP-activated protein kinase (AMPK) and PGC-1α pathway. In conclusion, our findings identify the role of mulberry leaf in inducing adipose browning, indicating that mulberry leaf may be used as a candidate browning agent for the treatment of T2DM.
Collapse
|
48
|
Shekhawat RS, Mandal CC. Anti-obesity Medications in Cancer Therapy: A Comprehensive Insight. Curr Cancer Drug Targets 2021; 21:476-494. [PMID: 34225630 DOI: 10.2174/1568009621666210322122829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/29/2020] [Accepted: 12/10/2020] [Indexed: 11/22/2022]
Abstract
The interplay between cancer and obesity is multifactorial and complex with the increased risk of cancer development in obese individuals posing a significant threat. Obesity leads to the upregulation or hyperactivation of several oncogenic pathways in cancer cells, which drives them towards a deleterious phenotype. The cross-talk between cancer and obesity is considered a large contributing factor in the development of chemotherapeutic drug resistance and the resistance to radiotherapy. The link between obesity and the development of cancer is so strong that a medication that demonstrates effectiveness against both conditions would serve as an essential step. In this context, anti-obesity medications provide a worthy list of candidates based on their chemo-preventive potential and chemotherapeutic properties. The current study focuses on exploring the potential of anti-obesity medicines as dual anticancer drugs. These medications target several key signaling pathways (e.g., AMPK, PI3K/Akt/mTOR, MAPK, NF-κB, JNK/ERK), which prove to be crucial for both cancer growth and metastases. Some of these drugs also play an important role in attenuating the signaling and cellular events which incite cancer-obesity cross-talk and demonstrate efficient counteraction of neoplastic transformation. Thus, this review highlights a comprehensive view of the potential use of anti-obesity medicines to treat both cancer and obesity for patients exhibiting both comorbities.
Collapse
Affiliation(s)
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, India
| |
Collapse
|
49
|
Liu X, Zhang Y, Chu Y, Zhao X, Mao L, Zhao S, Lin S, Hui X, Gu P, Xu Y, Loomes K, Tang S, Nie T, Wu D. The natural compound rutaecarpine promotes white adipocyte browning through activation of the AMPK-PRDM16 axis. Biochem Biophys Res Commun 2021; 545:189-194. [PMID: 33561654 DOI: 10.1016/j.bbrc.2021.01.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 12/21/2022]
Abstract
The prevalence of obesity is increasing globally and is associated with many metabolic disorders, such as type 2 diabetes and cardiovascular diseases. In recent years, a number of studies suggest that promotion of white adipose browning represents a promising strategy to combat obesity and its related metabolic disorders. The aim of this study was to identify compounds that induce adipocyte browning and elucidate their mechanism of action. Among the 500 natural compounds screened, a small molecule named Rutaecarpine, was identified as a positive regulator of adipocyte browning both in vitro and in vivo. KEGG pathway analysis from RNA-seq data suggested that the AMPK signaling pathway was regulated by Rutaecarpine, which was validated by Western blot analysis. Furthermore, inhibition of AMPK signaling mitigated the browning effect of Rutaecaripine. The effect of Rutaecaripine on adipocyte browning was also abolished upon deletion of Prdm16, a downstream target of AMPK pathway. In collusion, Rutaecarpine is a potent chemical agent to induce adipocyte browning and may serve as a potential drug candidate to treat obesity.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Adipocytes, Beige/cytology
- Adipocytes, Beige/drug effects
- Adipocytes, Beige/metabolism
- Adipocytes, White/cytology
- Adipocytes, White/drug effects
- Adipocytes, White/metabolism
- Animals
- Biological Products/pharmacology
- DNA-Binding Proteins/metabolism
- Disease Models, Animal
- Drug Evaluation, Preclinical
- In Vitro Techniques
- Indole Alkaloids/pharmacology
- Male
- Mice
- Mice, Transgenic
- Models, Biological
- Obesity/drug therapy
- Obesity/genetics
- Obesity/metabolism
- Oxygen Consumption/drug effects
- Quinazolines/pharmacology
- Signal Transduction/drug effects
- Thermogenesis/drug effects
- Thermogenesis/genetics
- Thermogenesis/physiology
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Xiaomin Liu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yuwei Zhang
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yi Chu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xuemei Zhao
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Liufeng Mao
- Clinical Department of Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Shiting Zhao
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shaoqiang Lin
- Clinical Department of Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoyan Hui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, China
| | - Ping Gu
- Department of Endocrinology, Jinling Hospital, Nanjing University, School of Medicine, Nanjing, China
| | - Yong Xu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Kerry Loomes
- School of Biological Sciences and Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - Shibing Tang
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.
| | - Tao Nie
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.
| | - Donghai Wu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, China.
| |
Collapse
|
50
|
Reguero M, Gómez de Cedrón M, Wagner S, Reglero G, Quintela JC, Ramírez de Molina A. Precision Nutrition to Activate Thermogenesis as a Complementary Approach to Target Obesity and Associated-Metabolic-Disorders. Cancers (Basel) 2021; 13:cancers13040866. [PMID: 33670730 PMCID: PMC7922953 DOI: 10.3390/cancers13040866] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Regarding the pandemic of obesity and chronic diseases associated to metabolic alterations that occur nowadays worldwide, here, we review the most recent studies related to bioactive compounds and diet derived ingredients with potential effects to augment the systemic energy expenditure. We specifically focus in two processes: the activation of thermogenesis in adipose tissue and the enhancement of the mitochondrial oxidative phosphorylation capacity in muscles. This may provide relevant information to develop diets and supplements to conduct nutritional intervention studies with the objective to ameliorate the metabolic and chronic inflammation in the course of obesity and related disorders. Abstract Obesity is associated to increased incidence and poorer prognosis in multiple cancers, contributing to up to 20% of cancer related deaths. These associations are mainly driven by metabolic and inflammatory changes in the adipose tissue during obesity, which disrupt the physiologic metabolic homeostasis. The association between obesity and hypercholesterolemia, hypertension, cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM) is well known. Importantly, the retrospective analysis of more than 1000 epidemiological studies have also shown the positive correlation between the excess of fatness with the risk of cancer. In addition, more important than weight, it is the dysfunctional adipose tissue the main driver of insulin resistance, metabolic syndrome and all cause of mortality and cancer deaths, which also explains why normal weight individuals may behave as “metabolically unhealthy obese” individuals. Adipocytes also have direct effects on tumor cells through paracrine signaling. Downregulation of adiponectin and upregulation of leptin in serum correlate with markers of chronic inflammation, and crown like structures (CLS) associated to the adipose tissue disfunction. Nevertheless, obesity is a preventable risk factor in cancer. Lifestyle interventions might contribute to reduce the adverse effects of obesity. Thus, Mediterranean diet interventional studies have been shown to reduce to circulation inflammatory factors, insulin sensitivity and cardiovascular function, with durable responses of up to 2 years in obese patients. Mediterranean diet supplemented with extra-virgin olive oil reduced the incidence of breast cancer compared with a control diet. Physical activity is another important lifestyle factor which may also contribute to reduced systemic biomarkers of metabolic syndrome associated to obesity. In this scenario, precision nutrition may provide complementary approaches to target the metabolic inflammation associated to “unhealthy obesity”. Herein, we first describe the different types of adipose tissue -thermogenic active brown adipose tissue (BAT) versus the energy storing white adipose tissue (WAT). We then move on precision nutrition based strategies, by mean of natural extracts derived from plants and/or diet derived ingredients, which may be useful to normalize the metabolic inflammation associated to “unhealthy obesity”. More specifically, we focus on two axis: (1) the activation of thermogenesis in BAT and browning of WAT; (2) and the potential of augmenting the oxidative capacity of muscles to dissipate energy. These strategies may be particularly relevant as complementary approaches to alleviate obesity associated effects on chronic inflammation, immunosuppression, angiogenesis and chemotherapy resistance in cancer. Finally, we summarize main studies where plant derived extracts, mainly, polyphenols and flavonoids, have been applied to increase the energy expenditure.
Collapse
Affiliation(s)
- Marina Reguero
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (M.R.); (S.W.)
- NATAC BIOTECH, Electronica 7, Alcorcón, 28923 Madrid, Spain;
| | - Marta Gómez de Cedrón
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (M.R.); (S.W.)
- Correspondence: (M.G.d.C.); (A.R.d.M.)
| | - Sonia Wagner
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (M.R.); (S.W.)
- Medicinal Gardens SL, Marqués de Urquijo 47, 28008 Madrid, Spain
| | - Guillermo Reglero
- Production and Characterization of Novel Foods Department, Institute of Food Science Research CIAL, CEI UAM + CSIC, 28049 Madrid, Spain;
| | | | - Ana Ramírez de Molina
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (M.R.); (S.W.)
- Correspondence: (M.G.d.C.); (A.R.d.M.)
| |
Collapse
|