1
|
Leung JG, Frazee NC, Brace A, Bogetti AT, Ramanathan A, Chong LT. Unsupervised Learning of Progress Coordinates during Weighted Ensemble Simulations: Application to NTL9 Protein Folding. J Chem Theory Comput 2025; 21:3691-3699. [PMID: 40105797 PMCID: PMC11983707 DOI: 10.1021/acs.jctc.4c01136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
A major challenge for many rare-event sampling strategies is the identification of progress coordinates that capture the slowest relevant motions. Machine-learning methods that can identify progress coordinates in an unsupervised manner have therefore been of great interest to the simulation community. Here, we developed a general method for identifying progress coordinates "on-the-fly" during weighted ensemble (WE) rare-event sampling via deep learning (DL) of outliers among sampled conformations. Our method identifies outliers in a latent space model of the system's sampled conformations that is periodically trained using a convolutional variational autoencoder. As a proof of principle, we applied our DL-enhanced WE method to simulate the NTL9 protein folding process. To enable rapid tests, our simulations propagated discrete-state synthetic molecular dynamics trajectories using a generative, fine-grained Markov state model. Results revealed that our on-the-fly DL of outliers enhanced the efficiency of WE by >3-fold in estimating the folding rate constant. Our efforts are a significant step forward in the unsupervised learning of slow coordinates during rare event sampling.
Collapse
Affiliation(s)
- Jeremy
M. G. Leung
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Nicolas C. Frazee
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Brace
- Data
Science and Learning Division, Argonne National
Laboratory, Lemont, Illinois 60439, United States
- Department
of Computer Science, University of Chicago, Chicago, Illinois 60637, United States
| | - Anthony T. Bogetti
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Arvind Ramanathan
- Data
Science and Learning Division, Argonne National
Laboratory, Lemont, Illinois 60439, United States
- Department
of Computer Science, University of Chicago, Chicago, Illinois 60637, United States
| | - Lillian T. Chong
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
2
|
Evans D, Sheraz S, Lau AY. SARS-CoV-2 Mpro Dihedral Angles Reveal Allosteric Signaling. Proteins 2025. [PMID: 40026279 DOI: 10.1002/prot.26814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/22/2025] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
In allosteric proteins, identifying the pathways that signals take from allosteric ligand-binding sites to enzyme active sites or binding pockets and interfaces remains challenging. This avenue of research is motivated by the goals of understanding particular macromolecular systems of interest and creating general methods for their study. An especially important protein that is the subject of many investigations in allostery is the SARS-CoV-2 main protease (Mpro), which is necessary for coronaviral replication. It is both an attractive drug target and, due to intense interest in it for the development of pharmaceutical compounds, a gauge of the state of the art approaches in studying protein inhibition. Here we develop a computational method for characterizing protein allostery and use it to study Mpro. We propose a role of the protein's C-terminal tail in allosteric modulation and warn of unintuitive traps that can plague studies of the role of protein dihedral angles in transmitting allosteric signals.
Collapse
Affiliation(s)
- Daniel Evans
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Samreen Sheraz
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Albert Y Lau
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Wang X, Chen L, Chang X, Yi X, Yu W, Wang R. Investigating the inhibition of benzimidazole derivatives on SARS-CoV-2 M pro by enzyme activity inhibition, spectroscopy, and molecular docking. J Biomol Struct Dyn 2025:1-16. [PMID: 39967567 DOI: 10.1080/07391102.2025.2466697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/07/2024] [Indexed: 02/20/2025]
Abstract
The inhibition of twenty-five 1,2-fused/disubstituted benzimidazoles on the SARS-CoV-2 Mpro were investigated in this work. It was found that four compounds (1i, 1k, 1l, and 1m) showed obvious inhibitory effect on Mpro. The inhibitory effect of 1k (IC50 46.86 μM) was the best. UV-vis, fluorescence, CD and molecular docking methods were used to reveal the mechanisms of interaction between these compounds and Mpro. Results indicated that static quenching was the main type of quenching. 1i, 1k, 1l, and 1m may alter the conformation and microenvironment of Mpro. The dominant forces between 1i (or 1l) and Mpro were hydrogen bonds or van der Waals forces. The dominant forces between 1k (or 1m) and Mpro were electrostatic or hydrophobic forces, which was consistent with the results of molecular docking. The influence of molecular structure on the binding was investigated. Chlorine atom groups were favorable for the 1,2-fused/disubstituted benzimidazoles derivative inhibitors of Mpro. This work confirmed the changes in the micro-environment of Mpro by 1k, and provided clues for the design of potential Mpro inhibitors.
Collapse
Affiliation(s)
- Xueyuan Wang
- College of Chemistry, Pingyuan Laboratory (Zhengzhou University), Zhengzhou University, Zhengzhou, China
| | - Leyao Chen
- College of Chemistry, Pingyuan Laboratory (Zhengzhou University), Zhengzhou University, Zhengzhou, China
| | - Xiaoyu Chang
- College of Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Xiaofei Yi
- College of Chemistry, Pingyuan Laboratory (Zhengzhou University), Zhengzhou University, Zhengzhou, China
| | - Wenquan Yu
- College of Chemistry, Pingyuan Laboratory (Zhengzhou University), Zhengzhou University, Zhengzhou, China
| | - Ruiyong Wang
- College of Chemistry, Pingyuan Laboratory (Zhengzhou University), Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Shen X, Zhang H, Zhang P, Zhao X, Liu C, Ju J, Liu A, Wang S. Decoding SARS-CoV-2 Inhibition: Insights From Molecular Dynamics Simulation of Condensed Amino Thiourea Scaffold Small Molecules. J Cell Biochem 2025; 126:e70005. [PMID: 39987526 DOI: 10.1002/jcb.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/10/2025] [Accepted: 01/29/2025] [Indexed: 02/25/2025]
Abstract
The main protease (Mpro) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) plays a crucial role in viral replication. In this study, the binding modes and inhibitory mechanisms of eight condensed amino thiourea scaffold inhibitors of Mpro in proteins were investigated using a combination of molecular docking, molecular dynamics simulations, and MM/PBSA binding free energy calculations. The results indicated that the para-hydroxyl group on the benzene ring at the head of the inhibitor has a decisive influence on the initial docking pose and binding free energy strength of the inhibitor. Additionally, the position and length of the hydrophobic side chain on the tail six-membered ring significantly impacted the final binding pose of the inhibitor. The presence of a long hydrophobic side chain in the ortho position of this ring, through its interaction with the P4 hydrophobic pocket, led to an opposite binding mode in the protein compared with when it was present with or without the para-side chain. Different lengths of para-substituted side chains affected the positioning of the inhibitors in the enzyme. These different binding modes led to variations in the binding free energy between the inhibitor and the protein, which in turn gave rise to differences in inhibitory capability.
Collapse
Affiliation(s)
- Xiaoli Shen
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Hao Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Pengyin Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Xuerui Zhao
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Chang Liu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Jianan Ju
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Aijun Liu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Song Wang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, China
| |
Collapse
|
5
|
Lee E, Rauscher S. The Conformational Space of the SARS-CoV-2 Main Protease Active Site Loops Is Determined by Ligand Binding and Interprotomer Allostery. Biochemistry 2025; 64:32-46. [PMID: 39513739 DOI: 10.1021/acs.biochem.4c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The main protease (Mpro) of SARS-CoV-2 is essential for viral replication and is, therefore, an important drug target. Here, we investigate two flexible loops in Mpro that play a role in catalysis. Using all-atom molecular dynamics simulations, we analyze the structural ensemble of Mpro in an apo state and substrate-bound state. We find that the flexible loops can adopt open, intermediate (partly open), and closed conformations in solution, which differs from the partially closed state observed in crystal structures of Mpro. When the loops are in closed or intermediate states, the catalytic residues are more likely to be in close proximity, which is crucial for catalysis. Additionally, we find that substrate binding to one protomer of the homodimer increases the frequency of intermediate states in the bound protomer while also affecting the structural propensity of the apo protomer's flexible loops. Using dynamic network analysis, we identify multiple allosteric pathways connecting the two active sites of the homodimer. Common to these pathways is an allosteric hotspot involving the N-terminus, a critical region that comprises part of the binding pocket. Taken together, the results of our simulation study provide detailed insight into the relationships between the flexible loops and substrate binding in a prime drug target for COVID-19.
Collapse
Affiliation(s)
- Ethan Lee
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H8, Canada
| | - Sarah Rauscher
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H8, Canada
- Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada
| |
Collapse
|
6
|
da Silva Santos I, Magalhaes LO, Marra RKF, da Silva Lima CH, Hamerski L, Albuquerque MG, da Silva BV. Natural and Synthetic Coumarins as Potential Drug Candidates against SARS-CoV-2/COVID-19. Curr Med Chem 2025; 32:539-562. [PMID: 38243979 DOI: 10.2174/0109298673285609231220111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024]
Abstract
COVID-19, an airborne disease caused by a betacoronavirus named SARS-- CoV-2, was officially declared a pandemic in early 2020, resulting in more than 770 million confirmed cases and over 6.9 million deaths by September 2023. Although the introduction of vaccines in late 2020 helped reduce the number of deaths, the global effort to fight COVID-19 is far from over. While significant progress has been made in a short period, the fight against SARS-CoV-2/COVID-19 and other potential pandemic threats continues. Like AIDS and hepatitis C epidemics, controlling the spread of COVID-19 will require the development of multiple drugs to weaken the virus's resistance to different drug treatments. Therefore, it is essential to continue developing new drug candidates derived from natural or synthetic small molecules. Coumarins are a promising drug design and development scaffold due to their synthetic versatility and unique physicochemical properties. Numerous examples reported in scientific literature, mainly by in silico prospection, demonstrate their potential contribution to the rapid development of drugs against SARS-CoV-2/COVID-19 and other emergent and reemergent viruses.
Collapse
Affiliation(s)
- Iara da Silva Santos
- Department of Organic Chemistry, Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leticia Oliveira Magalhaes
- Department of Organic Chemistry, Universidade Federal do Rio de Janeiro, Instituto de Química, Rio de Janeiro, Brazil
| | - Roberta Katlen Fusco Marra
- Department of Organic Chemistry, Universidade Federal do Rio de Janeiro, Instituto de Química, Rio de Janeiro, Brazil
| | - Camilo Henrique da Silva Lima
- Department of Organic Chemistry, Universidade Federal do Rio de Janeiro, Instituto de Química, Rio de Janeiro, Brazil
| | - Lidilhone Hamerski
- Department of Organic Chemistry, Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Magaly Girao Albuquerque
- Department of Organic Chemistry, Universidade Federal do Rio de Janeiro, Instituto de Química, Rio de Janeiro, Brazil
| | - Barbara Vasconcellos da Silva
- Department of Organic Chemistry, Universidade Federal do Rio de Janeiro, Instituto de Química, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Shawky AM, Almalki FA, Alzahrani HA, Abdalla AN, Youssif BGM, Ibrahim NA, Gamal M, El-Sherief HAM, Abdel-Fattah MM, Hefny AA, Abdelazeem AH, Gouda AM. Covalent small-molecule inhibitors of SARS-CoV-2 Mpro: Insights into their design, classification, biological activity, and binding interactions. Eur J Med Chem 2024; 277:116704. [PMID: 39121741 DOI: 10.1016/j.ejmech.2024.116704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
Since 2020, many compounds have been investigated for their potential use in the treatment of SARS-CoV-2 infection. Among these agents, a huge number of natural products and FDA-approved drugs have been evaluated as potential therapeutics for SARS-CoV-2 using virtual screening and docking studies. However, the identification of the molecular targets involved in viral replication led to the development of rationally designed anti-SARS-CoV-2 agents. Among these targets, the main protease (Mpro) is one of the key enzymes needed in the replication of the virus. The data gleaned from the crystal structures of SARS-CoV-2 Mpro complexes with small-molecule covalent inhibitors has been used in the design and discovery of many highly potent and broad-spectrum Mpro inhibitors. The current review focuses mainly on the covalent type of SARS-CoV-2 Mpro inhibitors. The design, chemistry, and classification of these inhibitors were also in focus. The biological activity of these inhibitors, including their inhibitory activities against Mpro, their antiviral activities, and the SAR studies, were discussed. The review also describes the potential mechanism of the interaction between these inhibitors and the catalytic Cys145 residue in Mpro. Moreover, the binding modes and key binding interactions of these covalent inhibitors were also illustrated. The covalent inhibitors discussed in this review were of diverse chemical nature and origin. Their antiviral activity was mediated mainly by the inhibition of SARS-CoV-2 Mpro, with IC50 values in the micromolar to the nanomolar range. Many of these inhibitors exhibited broad-spectrum inhibitory activity against the Mpro enzymes of other coronaviruses (SARS-CoV-1 and MERS-CoV). The dual inhibition of the Mpro and PLpro enzymes of SARS-CoV-2 could also provide higher therapeutic benefits than Mpro inhibition. Despite the approval of nirmatrelvir by the FDA, many mutations in the Mpro enzyme of SARS-CoV-2 have been reported. Although some of these mutations did not affect the potency of nirmatrelvir, there is an urgent need to develop a second generation of Mpro inhibitors. We hope that the data summarized in this review could help researchers in the design of a new potent generation of SARS-CoV-2 Mpro inhibitors.
Collapse
Affiliation(s)
- Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Faisal A Almalki
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Hayat Ali Alzahrani
- Applied Medical Science College, Medical Laboratory Technology Department, Northern Border University, Arar, Saudi Arabia
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia; Department of Pharmacology and Toxicology, Medicinal And Aromatic Plants Research Institute, National Center for Research, Khartoum, 2404, Sudan
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| | - Nashwa A Ibrahim
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Mohammed Gamal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Hany A M El-Sherief
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ahmed A Hefny
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt; School of Pharmacy, University of Waterloo, Kitchener, Ontario, N2G 1C5, Canada
| | - Ahmed H Abdelazeem
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt; Pharmacy Department, College of Pharmacy, Nursing and Medical Sciences, Riyadh Elm University, Riyadh, 11681, Saudi Arabia
| | - Ahmed M Gouda
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
8
|
Al Adem K, Ferreira J, Villanueva A, Fadl S, El-Sadaany F, Masmoudi I, Gidiya Y, Gurudza T, Cardoso T, Saksena N, Rabeh W. 3-chymotrypsin-like protease in SARS-CoV-2. Biosci Rep 2024; 44:BSR20231395. [PMID: 39036877 PMCID: PMC11300678 DOI: 10.1042/bsr20231395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024] Open
Abstract
Coronaviruses constitute a significant threat to the human population. Severe acute respiratory syndrome coronavirus-2, SARS-CoV-2, is a highly pathogenic human coronavirus that has caused the coronavirus disease 2019 (COVID-19) pandemic. It has led to a global viral outbreak with an exceptional spread and a high death toll, highlighting the need for effective antiviral strategies. 3-Chymotrypsin-like protease (3CLpro), the main protease in SARS-CoV-2, plays an indispensable role in the SARS-CoV-2 viral life cycle by cleaving the viral polyprotein to produce 11 individual non-structural proteins necessary for viral replication. 3CLpro is one of two proteases that function to produce new viral particles. It is a highly conserved cysteine protease with identical structural folds in all known human coronaviruses. Inhibitors binding with high affinity to 3CLpro will prevent the cleavage of viral polyproteins, thus impeding viral replication. Multiple strategies have been implemented to screen for inhibitors against 3CLpro, including peptide-like and small molecule inhibitors that covalently and non-covalently bind the active site, respectively. In addition, allosteric sites of 3CLpro have been identified to screen for small molecules that could make non-competitive inhibitors of 3CLpro. In essence, this review serves as a comprehensive guide to understanding the structural intricacies and functional dynamics of 3CLpro, emphasizing key findings that elucidate its role as the main protease of SARS-CoV-2. Notably, the review is a critical resource in recognizing the advancements in identifying and developing 3CLpro inhibitors as effective antiviral strategies against COVID-19, some of which are already approved for clinical use in COVID-19 patients.
Collapse
Affiliation(s)
- Kenana Al Adem
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Juliana C. Ferreira
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Adrian J. Villanueva
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Samar Fadl
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Farah El-Sadaany
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Imen Masmoudi
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Yugmee Gidiya
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Tariro Gurudza
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Thyago H.S. Cardoso
- OMICS Centre of Excellence, G42 Healthcare, Masdar City, Abu Dhabi, United Arab Emirates
| | - Nitin K. Saksena
- Victoria University, Footscray Campus, Melbourne, VIC. Australia
| | - Wael M. Rabeh
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
9
|
Yaghi R, Andrews CL, Wylie DC, Iverson BL. High-Resolution Substrate Specificity Profiling of SARS-CoV-2 M pro; Comparison to SARS-CoV M pro. ACS Chem Biol 2024; 19:1474-1483. [PMID: 38865301 PMCID: PMC11267570 DOI: 10.1021/acschembio.4c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/14/2024]
Abstract
The SARS-CoV-2 Mpro protease from COVID-19 cleaves the pp1a and pp2b polyproteins at 11 sites during viral maturation and is the target of Nirmatrelvir, one of the two components of the frontline treatment sold as Paxlovid. We used the YESS 2.0 platform, combining protease and substrate expression in the yeast endoplasmic reticulum with fluorescence-activated cell sorting and next-generation sequencing, to carry out the high-resolution substrate specificity profiling of SARS-CoV-2 Mpro as well as the related SARS-CoV Mpro from SARS 2003. Even at such a high level of resolution, the substrate specificity profiles of both enzymes are essentially identical. The population of cleaved substrates isolated in our sorts is so deep, the relative catalytic efficiencies of the different cleavage sites on the SARS-CoV-2 polyproteins pp1a and pp2b are qualitatively predicted. These results not only demonstrated the precise and reproducible nature of the YESS 2.0/NGS approach to protease substrate specificity profiling but also should be useful in the design of next generation SARS-CoV-2 Mpro inhibitors, and by analogy, SARS-CoV Mpro inhibitors as well.
Collapse
Affiliation(s)
- Rasha
M. Yaghi
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
of America
| | - Collin L. Andrews
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
of America
| | - Dennis C. Wylie
- Center
of Biomedical Research Support, University
of Texas at Austin, Austin, Texas 78712, United States of America
| | - Brent L. Iverson
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
of America
| |
Collapse
|
10
|
Castillo F, Ramírez D, Ramos MC, Martinez-Arribas B, Domingo-Contreras E, Mackenzie TA, Peña-Varas C, Lindemann S, Montero F, Annang F, Vicente F, Genilloud O, González-Pacanowska D, Fernandez-Godino R. Repurposing the Open Global Health Library for the discovery of novel Mpro destabilizers with scope as broad-spectrum antivirals. Front Pharmacol 2024; 15:1390705. [PMID: 39050758 PMCID: PMC11267763 DOI: 10.3389/fphar.2024.1390705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/29/2024] [Indexed: 07/27/2024] Open
Abstract
The SARS coronavirus 2 (SARS-CoV-2) epidemic remains globally active. The emergence of new variants of interest and variants of concern (VoCs), which are potentially more vaccine-resistant and less sensitive to existing treatments, is evident due to their high prevalence. The prospective spread of such variants and other coronaviruses with epidemic potential demands preparedness that can be met by developing fast-track workflows to find new candidates that target viral proteins with a clear in vitro and in vivo phenotype. Mpro (or 3CLpro) is directly involved in the viral replication cycle and the production and function of viral polyproteins, which makes it an ideal target. The biological relevance of Mpro is highly conserved among betacoronaviruses like HCoV-OC43 and SARS-CoV-2, which makes the identification of new chemical scaffolds targeting them a good starting point for designing broad-spectrum antivirals. We report an optimized methodology based on orthogonal cell-free assays to identify small molecules that inhibit the binding pockets of both SARS-CoV-2-Mpro and HCoV-OC43-Mpro; this blockade correlates with antiviral activities in HCoV-OC43 cellular models. By using such a fast-tracking approach against the Open Global Health Library (Merck KGaA), we have found evidence of the antiviral activity of compound OGHL98. In silico studies dissecting intermolecular interactions between OGHL98 and both proteases and comprising docking and molecular dynamics simulations (MDSs) concluded that the binding mode was primarily governed by conserved H-bonds with their C-terminal amino acids and that the rational design of OGHL98 has potential against VoCs proteases resistant to current therapeutics.
Collapse
Affiliation(s)
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | | | - Blanca Martinez-Arribas
- Instituto de Parasitología y Biomedicina Lopez-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | | | - Carlos Peña-Varas
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Doctorado en Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Sven Lindemann
- Strategic Innovation, Merck Healthcare KGaA, Darmstadt, Germany
| | - Fernando Montero
- Fundación MEDINA, Granada, Spain
- Department of Physical Chemistry and Institute of Biotechnology, Universidad de Granada, Granada, Spain
| | | | | | | | - Dolores González-Pacanowska
- Instituto de Parasitología y Biomedicina Lopez-Neyra, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | |
Collapse
|
11
|
Evans D, Sheraz S, Lau A. SARS-CoV-2 3CLPro Dihedral Angles Reveal Allosteric Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595309. [PMID: 38826232 PMCID: PMC11142162 DOI: 10.1101/2024.05.22.595309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
In allosteric proteins, identifying the pathways that signals take from allosteric ligand-binding sites to enzyme active sites or binding pockets and interfaces remains challenging. This avenue of research is motivated by the goals of understanding particular macromolecular systems of interest and creating general methods for their study. An especially important protein that is the subject of many investigations in allostery is the SARS-CoV-2 main protease (Mpro), which is necessary for coronaviral replication. It is both an attractive drug target and, due to intense interest in it for the development of pharmaceutical compounds, a gauge of the state-of-the-art approaches in studying protein inhibition. Here we develop a computational method for characterizing protein allostery and use it to study Mpro. We propose a role of the protein's C-terminal tail in allosteric modulation and warn of unintuitive traps that can plague studies of the role of protein dihedrals angles in transmitting allosteric signals.
Collapse
Affiliation(s)
- Daniel Evans
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Samreen Sheraz
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Albert Lau
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
12
|
Zhu Y, Gu J, Zhao Z, Chan AWE, Mojica MF, Hujer AM, Bonomo RA, Haider S. Deciphering the Coevolutionary Dynamics of L2 β-Lactamases via Deep Learning. J Chem Inf Model 2024; 64:3706-3717. [PMID: 38687957 PMCID: PMC11094718 DOI: 10.1021/acs.jcim.4c00189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/10/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
L2 β-lactamases, serine-based class A β-lactamases expressed by Stenotrophomonas maltophilia, play a pivotal role in antimicrobial resistance (AMR). However, limited studies have been conducted on these important enzymes. To understand the coevolutionary dynamics of L2 β-lactamase, innovative computational methodologies, including adaptive sampling molecular dynamics simulations, and deep learning methods (convolutional variational autoencoders and BindSiteS-CNN) explored conformational changes and correlations within the L2 β-lactamase family together with other representative class A enzymes including SME-1 and KPC-2. This work also investigated the potential role of hydrophobic nodes and binding site residues in facilitating the functional mechanisms. The convergence of analytical approaches utilized in this effort yielded comprehensive insights into the dynamic behavior of the β-lactamases, specifically from an evolutionary standpoint. In addition, this analysis presents a promising approach for understanding how the class A β-lactamases evolve in response to environmental pressure and establishes a theoretical foundation for forthcoming endeavors in drug development aimed at combating AMR.
Collapse
Affiliation(s)
- Yu Zhu
- Pharmaceutical
and Biological Chemistry, UCL School of
Pharmacy, London WC1N 1AX, U.K.
| | - Jing Gu
- Pharmaceutical
and Biological Chemistry, UCL School of
Pharmacy, London WC1N 1AX, U.K.
| | - Zhuoran Zhao
- Pharmaceutical
and Biological Chemistry, UCL School of
Pharmacy, London WC1N 1AX, U.K.
| | - A. W. Edith Chan
- Division
of Medicine, UCL School of Pharmacy, London WC1E 6BT, U.K.
| | - Maria F. Mojica
- Department
of Molecular Biology and Microbiology, Case
Western Reserve University School of Medicine, Cleveland, Ohio 44106-5029, United
States
- Research
Service, Department of Veterans Affairs Medical Center, Louis Stokes Cleveland, Cleveland, Ohio 44106-1702, United States
- CWRU-Cleveland
VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA
CARES), Cleveland, Ohio 44106-5029, United States
| | - Andrea M. Hujer
- Research
Service, Department of Veterans Affairs Medical Center, Louis Stokes Cleveland, Cleveland, Ohio 44106-1702, United States
- Department
of Medicine, Case Western Reserve University
School of Medicine, Cleveland, Ohio 44106-5029, United States
| | - Robert A. Bonomo
- Research
Service, Department of Veterans Affairs Medical Center, Louis Stokes Cleveland, Cleveland, Ohio 44106-1702, United States
- CWRU-Cleveland
VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA
CARES), Cleveland, Ohio 44106-5029, United States
- Clinician
Scientist Investigator, Department of Veterans Affairs Medical Center, Louis Stokes Cleveland, Cleveland, Ohio 44106-1702, United States
- Departments
of Pharmacology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-5029, United
States
- Departments
of Molecular Biology and Microbiology, Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-5029, United
States
| | - Shozeb Haider
- Pharmaceutical
and Biological Chemistry, UCL School of
Pharmacy, London WC1N 1AX, U.K.
- UCL
Centre for Advanced Research in Computing, University College London, London WC1H 9RL, U.K.
| |
Collapse
|
13
|
Bhattacharya P, Mandal A. Identification of amentoflavone as a potent SARS-CoV-2 M pro inhibitor: a combination of computational studies and in vitro biological evaluation. J Biomol Struct Dyn 2024:1-19. [PMID: 38263736 DOI: 10.1080/07391102.2024.2304676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/07/2024] [Indexed: 01/25/2024]
Abstract
Small-molecule inhibitors of SARS-CoV-2 Mpro that block the active site pocket of the viral main protease have been considered potential therapeutics for the development of drugs against SARS-CoV-2. Here, we report the identification of amentoflavone (a biflavonoid) through docking-based virtual screening of a library comprised of 231 compounds consisting of flavonoids and isoflavonoids. The docking results were further substantiated through extensive analysis of the data obtained from all-atom 150 ns MD simulation. End-state effective free energy calculations using MM-PBSA calculations further suggested that (Ra)-amentoflavone (C3'-C8''-atropisomer) may show a greater binding affinity towards the Mpro than (Sa)-amentoflavone. In vitro cytotoxicity assay established that amentoflavone showed a high CC50 value indicating much lower toxicity. Further, potent inhibition of the Mpro by amentoflavone was established by studying the effect on HEK293T cells treated with SARS-CoV-2 Mpro expressing plasmid.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Anirban Mandal
- Department of Microbiology, Mrinalini Datta Mahavidyapith, Kolkata, India
| |
Collapse
|
14
|
Tian L, Qiang T, Yang X, Gao Y, Zhai X, Kang K, Du C, Lu Q, Gao H, Zhang D, Xie X, Liang C. Development of de-novo coronavirus 3-chymotrypsin-like protease (3CL pro) inhibitors since COVID-19 outbreak: A strategy to tackle challenges of persistent virus infection. Eur J Med Chem 2024; 264:115979. [PMID: 38048696 DOI: 10.1016/j.ejmech.2023.115979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/30/2023] [Accepted: 11/18/2023] [Indexed: 12/06/2023]
Abstract
Although no longer a public health emergency of international concern, COVID-19 remains a persistent and critical health concern. The development of effective antiviral drugs could serve as the ultimate piece of the puzzle to curbing this global crisis. 3-chymotrypsin-like protease (3CLpro), with its substrate specificity mirroring that of the main picornavirus 3C protease and conserved across various coronaviruses, emerges as an ideal candidate for broad-spectrum antiviral drug development. Moreover, it holds the potential as a reliable contingency option to combat emerging SARS-CoV-2 variants. In this light, the approved drugs, promising candidates, and de-novo small molecule therapeutics targeting 3CLpro since the COVID-19 outbreak in 2020 are discussed. Emphasizing the significance of diverse structural characteristics in inhibitors, be they peptidomimetic or nonpeptidic, with a shared mission to minimize the risk of cross-resistance. Moreover, the authors propose an innovative optimization strategy for 3CLpro reversible covalent PROTACs, optimizing pharmacodynamics and pharmacokinetics to better prepare for potential future viral outbreaks.
Collapse
Affiliation(s)
- Lei Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Taotao Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Xiuding Yang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Yue Gao
- College of Pharmacy, Jinan University, Guangzhou, 511436, PR China
| | - Xiaopei Zhai
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, PR China
| | - Kairui Kang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Cong Du
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Qi Lu
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Hong Gao
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Shaanxi Pioneer Biotech Co., Ltd., Xi'an, 710021, PR China
| | - Dezhu Zhang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, PR China
| | - Xiaolin Xie
- Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, PR China
| | - Chengyuan Liang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| |
Collapse
|
15
|
Mao L, Shaabani N, Zhang X, Jin C, Xu W, Argent C, Kushnareva Y, Powers C, Stegman K, Liu J, Xie H, Xu C, Bao Y, Xu L, Zhang Y, Yang H, Qian S, Hu Y, Shao J, Zhang C, Li T, Li Y, Liu N, Lin Z, Wang S, Wang C, Shen W, Lin Y, Shu D, Zhu Z, Kotoi O, Kerwin L, Han Q, Chumakova L, Teijaro J, Royal M, Brunswick M, Allen R, Ji H, Lu H, Xu X. Olgotrelvir, a dual inhibitor of SARS-CoV-2 M pro and cathepsin L, as a standalone antiviral oral intervention candidate for COVID-19. MED 2024; 5:42-61.e23. [PMID: 38181791 DOI: 10.1016/j.medj.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/18/2023] [Accepted: 12/03/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Oral antiviral drugs with improved antiviral potency and safety are needed to address current challenges in clinical practice for treatment of COVID-19, including the risks of rebound, drug-drug interactions, and emerging resistance. METHODS Olgotrelvir (STI-1558) is designed as a next-generation antiviral targeting the SARS-CoV-2 main protease (Mpro), an essential enzyme for SARS-CoV-2 replication, and human cathepsin L (CTSL), a key enzyme for SARS-CoV-2 entry into host cells. FINDINGS Olgotrelvir is a highly bioavailable oral prodrug that is converted in plasma to its active form, AC1115. The dual mechanism of action of olgotrelvir and AC1115 was confirmed by enzyme activity inhibition assays and co-crystal structures of AC1115 with SARS-CoV-2 Mpro and human CTSL. AC1115 displayed antiviral activity by inhibiting replication of all tested SARS-CoV-2 variants in cell culture systems. Olgotrelvir also inhibited viral entry into cells using SARS-CoV-2 Spike-mediated pseudotypes by inhibition of host CTSL. In the K18-hACE2 transgenic mouse model of SARS-CoV-2-mediated disease, olgotrelvir significantly reduced the virus load in the lungs, prevented body weight loss, and reduced cytokine release and lung pathologies. Olgotrelvir demonstrated potent activity against the nirmatrelvir-resistant Mpro E166 mutants. Olgotrelvir showed enhanced oral bioavailability in animal models and in humans with significant plasma exposure without ritonavir. In phase I studies (ClinicalTrials.gov: NCT05364840 and NCT05523739), olgotrelvir demonstrated a favorable safety profile and antiviral activity. CONCLUSIONS Olgotrelvir is an oral inhibitor targeting Mpro and CTSL with high antiviral activity and plasma exposure and is a standalone treatment candidate for COVID-19. FUNDING Funded by Sorrento Therapeutics.
Collapse
Affiliation(s)
- Long Mao
- ACEA Therapeutics, Inc., San Diego, CA 92121, USA
| | | | - Xiaoying Zhang
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, P.R. China
| | - Can Jin
- ACEA Therapeutics, Inc., San Diego, CA 92121, USA
| | - Wanhong Xu
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, P.R. China
| | | | | | - Colin Powers
- Sorrento Therapeutics, Inc., San Diego, CA 92121, USA
| | - Karen Stegman
- Sorrento Therapeutics, Inc., San Diego, CA 92121, USA
| | - Jia Liu
- ACEA Therapeutics, Inc., San Diego, CA 92121, USA
| | - Hui Xie
- Sorrento Therapeutics, Inc., San Diego, CA 92121, USA
| | - Changxu Xu
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, P.R. China
| | - Yimei Bao
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, P.R. China
| | - Lijun Xu
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, P.R. China
| | - Yuren Zhang
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, P.R. China
| | - Haigang Yang
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, P.R. China
| | - Shengdian Qian
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, P.R. China
| | - Yong Hu
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, P.R. China
| | - Jianping Shao
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, P.R. China
| | - Can Zhang
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, P.R. China
| | - Tingting Li
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, P.R. China
| | - Yi Li
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, P.R. China
| | - Na Liu
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, P.R. China
| | - Zhenhao Lin
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, P.R. China
| | - Shanbo Wang
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, P.R. China
| | - Chao Wang
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, P.R. China
| | - Wei Shen
- ACEA Pharmaceutical Co., Ltd., Hangzhou, Zhejiang, P.R. China
| | - Yuanlong Lin
- Shenzhen Third People's Hospital, SUSTech, Shenzhen, P.R. China
| | - Dan Shu
- Shenzhen Third People's Hospital, SUSTech, Shenzhen, P.R. China
| | - Zhenhong Zhu
- ACEA Therapeutics, Inc., San Diego, CA 92121, USA
| | - Olivia Kotoi
- ACEA Therapeutics, Inc., San Diego, CA 92121, USA
| | - Lisa Kerwin
- Sorrento Therapeutics, Inc., San Diego, CA 92121, USA
| | - Qing Han
- Structure Based Design, Inc., San Diego, CA 92121, USA
| | | | - John Teijaro
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mike Royal
- Sorrento Therapeutics, Inc., San Diego, CA 92121, USA
| | | | - Robert Allen
- Sorrento Therapeutics, Inc., San Diego, CA 92121, USA
| | - Henry Ji
- Sorrento Therapeutics, Inc., San Diego, CA 92121, USA
| | - Hongzhou Lu
- Shenzhen Third People's Hospital, SUSTech, Shenzhen, P.R. China.
| | - Xiao Xu
- ACEA Therapeutics, Inc., San Diego, CA 92121, USA.
| |
Collapse
|
16
|
Kaboudi N, Krüger N, Hamzeh-Mivehroud M. Development of novel ligands against SARS-CoV-2 M pro enzyme: an in silico and in vitro Study. Mol Inform 2023; 42:e202300120. [PMID: 37590494 DOI: 10.1002/minf.202300120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/22/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Despite tremendous efforts made by scientific community during the outbreak of COVID-19 pandemic, this disease still remains as a public health concern. Although different types of vaccines were globally used to reduce the mortality, emergence of new variants of SARS-CoV-2 is a challenging issue in COVID-19 pharmacotherapy. In this context, target therapy of SARS-CoV-2 by small ligands is a promising strategy. METHODS In this investigation, we applied ligand-based virtual screening for finding novel molecules based on nirmatrelvir structure. Various criteria including drug-likeness, ADME, and toxicity properties were applied for filtering the compounds. The selected candidate molecules were subjected to molecular docking and dynamics simulation for predicting the binding mode and binding free energy, respectively. Then the molecules were experimentally evaluated in terms of antiviral activity against SARS-CoV-2 and toxicity assessment. RESULTS The results demonstrated that the identified compounds showed inhibitory activity towards SARS-CoV-2 Mpro . CONCLUSION In summary, the introduced compounds may provide novel scaffold for further structural modification and optimization with improved anti SARS-CoV-2 Mpro activity.
Collapse
Affiliation(s)
- Navid Kaboudi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nadine Krüger
- Platform Infection Models, German Primate Center-Leibniz Institute for Primate Research, 37077, Göttingen, Germany
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Xu L, Chen R, Liu J, Patterson TA, Hong H. Analyzing 3D structures of the SARS-CoV-2 main protease reveals structural features of ligand binding for COVID-19 drug discovery. Drug Discov Today 2023; 28:103727. [PMID: 37516343 DOI: 10.1016/j.drudis.2023.103727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
The severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) main protease has an essential role in viral replication and has become a major target for coronavirus 2019 (COVID-19) drug development. Various inhibitors have been discovered or designed to bind to the main protease. The availability of more than 550 3D structures of the main protease provides a wealth of structural details on the main protease in both ligand-free and ligand-bound states. Therefore, we examined these structures to ascertain the structural features for the role of the main protease in the cleavage of polyproteins, the alternative conformations during main protease maturation, and ligand interactions in the main protease. The structural features unearthed could promote the development of COVID-19 drugs targeting the SARS-CoV-2 main protease.
Collapse
Affiliation(s)
- Liang Xu
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Ru Chen
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jie Liu
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Tucker A Patterson
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | - Huixiao Hong
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA.
| |
Collapse
|
18
|
Chan HT, Oliveira ASF, Schofield CJ, Mulholland AJ, Duarte F. Dynamical Nonequilibrium Molecular Dynamics Simulations Identify Allosteric Sites and Positions Associated with Drug Resistance in the SARS-CoV-2 Main Protease. JACS AU 2023; 3:1767-1774. [PMID: 37384148 PMCID: PMC10262681 DOI: 10.1021/jacsau.3c00185] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/30/2023]
Abstract
The SARS-CoV-2 main protease (Mpro) plays an essential role in the coronavirus lifecycle by catalyzing hydrolysis of the viral polyproteins at specific sites. Mpro is the target of drugs, such as nirmatrelvir, though resistant mutants have emerged that threaten drug efficacy. Despite its importance, questions remain on the mechanism of how Mpro binds its substrates. Here, we apply dynamical nonequilibrium molecular dynamics (D-NEMD) simulations to evaluate structural and dynamical responses of Mpro to the presence and absence of a substrate. The results highlight communication between the Mpro dimer subunits and identify networks, including some far from the active site, that link the active site with a known allosteric inhibition site, or which are associated with nirmatrelvir resistance. They imply that some mutations enable resistance by altering the allosteric behavior of Mpro. More generally, the results show the utility of the D-NEMD technique for identifying functionally relevant allosteric sites and networks including those relevant to resistance.
Collapse
Affiliation(s)
- H. T.
Henry Chan
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - A. Sofia F. Oliveira
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
- School
of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Christopher J. Schofield
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Adrian J. Mulholland
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Fernanda Duarte
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
19
|
Blanchard AE, Bhowmik D, Fox Z, Gounley J, Glaser J, Akpa BS, Irle S. Adaptive language model training for molecular design. J Cheminform 2023; 15:59. [PMID: 37291633 PMCID: PMC10249556 DOI: 10.1186/s13321-023-00719-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 04/03/2023] [Indexed: 06/10/2023] Open
Abstract
The vast size of chemical space necessitates computational approaches to automate and accelerate the design of molecular sequences to guide experimental efforts for drug discovery. Genetic algorithms provide a useful framework to incrementally generate molecules by applying mutations to known chemical structures. Recently, masked language models have been applied to automate the mutation process by leveraging large compound libraries to learn commonly occurring chemical sequences (i.e., using tokenization) and predict rearrangements (i.e., using mask prediction). Here, we consider how language models can be adapted to improve molecule generation for different optimization tasks. We use two different generation strategies for comparison, fixed and adaptive. The fixed strategy uses a pre-trained model to generate mutations; the adaptive strategy trains the language model on each new generation of molecules selected for target properties during optimization. Our results show that the adaptive strategy allows the language model to more closely fit the distribution of molecules in the population. Therefore, for enhanced fitness optimization, we suggest the use of the fixed strategy during an initial phase followed by the use of the adaptive strategy. We demonstrate the impact of adaptive training by searching for molecules that optimize both heuristic metrics, drug-likeness and synthesizability, as well as predicted protein binding affinity from a surrogate model. Our results show that the adaptive strategy provides a significant improvement in fitness optimization compared to the fixed pre-trained model, empowering the application of language models to molecular design tasks.
Collapse
Affiliation(s)
- Andrew E Blanchard
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Debsindhu Bhowmik
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Zachary Fox
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - John Gounley
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Jens Glaser
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Belinda S Akpa
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Stephan Irle
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
20
|
Bono A, Lauria A, La Monica G, Alamia F, Mingoia F, Martorana A. In Silico Design of New Dual Inhibitors of SARS-CoV-2 M PRO through Ligand- and Structure-Based Methods. Int J Mol Sci 2023; 24:ijms24098377. [PMID: 37176082 PMCID: PMC10179319 DOI: 10.3390/ijms24098377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
The viral main protease is one of the most attractive targets among all key enzymes involved in the life cycle of SARS-CoV-2. Considering its mechanism of action, both the catalytic and dimerization regions could represent crucial sites for modulating its activity. Dual-binding the SARS-CoV-2 main protease inhibitors could arrest the replication process of the virus by simultaneously preventing dimerization and proteolytic activity. To this aim, in the present work, we identified two series' of small molecules with a significant affinity for SARS-CoV-2 MPRO, by a hybrid virtual screening protocol, combining ligand- and structure-based approaches with multivariate statistical analysis. The Biotarget Predictor Tool was used to filter a large in-house structural database and select a set of benzo[b]thiophene and benzo[b]furan derivatives. ADME properties were investigated, and induced fit docking studies were performed to confirm the DRUDIT prediction. Principal component analysis and docking protocol at the SARS-CoV-2 MPRO dimerization site enable the identification of compounds 1b,c,i,l and 2i,l as promising drug molecules, showing favorable dual binding site affinity on SARS-CoV-2 MPRO.
Collapse
Affiliation(s)
- Alessia Bono
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche "STEBICEF", University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Antonino Lauria
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche "STEBICEF", University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Gabriele La Monica
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche "STEBICEF", University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Federica Alamia
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche "STEBICEF", University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Francesco Mingoia
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Consiglio Nazionale delle Ricerche (CNR), Via Ugo La Malfa, 153, 90146 Palermo, Italy
| | - Annamaria Martorana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche "STEBICEF", University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| |
Collapse
|
21
|
Noske GD, Song Y, Fernandes RS, Chalk R, Elmassoudi H, Koekemoer L, Owen CD, El-Baba TJ, Robinson CV, Oliva G, Godoy AS. An in-solution snapshot of SARS-COV-2 main protease maturation process and inhibition. Nat Commun 2023; 14:1545. [PMID: 36941262 PMCID: PMC10027274 DOI: 10.1038/s41467-023-37035-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
The main protease from SARS-CoV-2 (Mpro) is responsible for cleavage of the viral polyprotein. Mpro self-processing is called maturation, and it is crucial for enzyme dimerization and activity. Here we use C145S Mpro to study the structure and dynamics of N-terminal cleavage in solution. Native mass spectroscopy analysis shows that mixed oligomeric states are composed of cleaved and uncleaved particles, indicating that N-terminal processing is not critical for dimerization. A 3.5 Å cryo-EM structure provides details of Mpro N-terminal cleavage outside the constrains of crystal environment. We show that different classes of inhibitors shift the balance between oligomeric states. While non-covalent inhibitor MAT-POS-e194df51-1 prevents dimerization, the covalent inhibitor nirmatrelvir induces the conversion of monomers into dimers, even with intact N-termini. Our data indicates that the Mpro dimerization is triggered by induced fit due to covalent linkage during substrate processing rather than the N-terminal processing.
Collapse
Affiliation(s)
- Gabriela Dias Noske
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, 13563-120, Brazil
| | - Yun Song
- Electron Bio-imaging Centre, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
| | - Rafaela Sachetto Fernandes
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, 13563-120, Brazil
| | - Rod Chalk
- Centre for Medicines Discovery, Oxford University, OX1 3QU, Oxford, UK
| | - Haitem Elmassoudi
- Centre for Medicines Discovery, Oxford University, OX1 3QU, Oxford, UK
| | - Lizbé Koekemoer
- Centre for Medicines Discovery, Oxford University, OX1 3QU, Oxford, UK
| | - C David Owen
- Electron Bio-imaging Centre, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
| | - Tarick J El-Baba
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OX1 3TA, Oxford, UK
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks Road, OX1 3QU, Oxford, UK
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OX1 3TA, Oxford, UK
- The Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, South Parks Road, OX1 3QU, Oxford, UK
| | - Glaucius Oliva
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, 13563-120, Brazil
| | - Andre Schutzer Godoy
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, 13563-120, Brazil.
| |
Collapse
|
22
|
Portilla-Martínez A, Ortiz-Flores M, Hidalgo I, Gonzalez-Ruiz C, Meaney E, Ceballos G, Nájera N. In silico evaluation of flavonoids as potential inhibitors of SARS-CoV-2 main nonstructural proteins (Nsps)—amentoflavone as a multitarget candidate. J Mol Model 2022; 28:404. [PMCID: PMC9707096 DOI: 10.1007/s00894-022-05391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Andrés Portilla-Martínez
- Sección de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col Santo Tomás, 11340 Mexico City, Mexico
| | - Miguel Ortiz-Flores
- Sección de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col Santo Tomás, 11340 Mexico City, Mexico
| | - Isabel Hidalgo
- Laboratorio de Investigación en Inmunología Y Salud Pública, Facultad de Estudios Superiores Cuautitlán, Unidad de Investigación Multidisciplinaria Universidad Nacional Autónoma de México, Estado de México, Mexico City, Mexico
| | - Cristian Gonzalez-Ruiz
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eduardo Meaney
- Sección de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col Santo Tomás, 11340 Mexico City, Mexico
| | - Guillermo Ceballos
- Sección de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col Santo Tomás, 11340 Mexico City, Mexico
| | - Nayelli Nájera
- Sección de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis Y Diaz Mirón S/N, Col Santo Tomás, 11340 Mexico City, Mexico
| |
Collapse
|
23
|
Bajrai LH, Faizo AA, Alkhaldy AA, Dwivedi VD, Azhar EI. Repositioning of anti-dengue compounds against SARS-CoV-2 as viral polyprotein processing inhibitor. PLoS One 2022; 17:e0277328. [PMID: 36383621 PMCID: PMC9668197 DOI: 10.1371/journal.pone.0277328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
A therapy for COVID-19 (Coronavirus Disease 19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) remains elusive due to the lack of an effective antiviral therapeutic molecule. The SARS-CoV-2 main protease (Mpro), which plays a vital role in the viral life cycle, is one of the most studied and validated drug targets. In Several prior studies, numerous possible chemical entities were proposed as potential Mpro inhibitors; however, most failed at various stages of drug discovery. Repositioning of existing antiviral compounds accelerates the discovery and development of potent therapeutic molecules. Hence, this study examines the applicability of anti-dengue compounds against the substrate binding site of Mpro for disrupting its polyprotein processing mechanism. An in-silico structure-based virtual screening approach is applied to screen 330 experimentally validated anti-dengue compounds to determine their affinity to the substrate binding site of Mpro. This study identified the top five compounds (CHEMBL1940602, CHEMBL2036486, CHEMBL3628485, CHEMBL200972, CHEMBL2036488) that showed a high affinity to Mpro with a docking score > -10.0 kcal/mol. The best-docked pose of these compounds with Mpro was subjected to 100 ns molecular dynamic (MD) simulation followed by MM/GBSA binding energy. This showed the maximum stability and comparable ΔG binding energy against the reference compound (X77 inhibitor). Overall, we repurposed the reported anti-dengue compounds against SARS-CoV-2-Mpro to impede its polyprotein processing for inhibiting SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Leena H. Bajrai
- Special Infectious Agents Unit – BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arwa A. Faizo
- Special Infectious Agents Unit – BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Areej A. Alkhaldy
- Special Infectious Agents Unit – BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vivek Dhar Dwivedi
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
- Bioinformatics Research Division, Quanta Calculus, Greater Noida, India
| | - Esam I. Azhar
- Special Infectious Agents Unit – BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
24
|
La Monica G, Bono A, Lauria A, Martorana A. Targeting SARS-CoV-2 Main Protease for Treatment of COVID-19: Covalent Inhibitors Structure-Activity Relationship Insights and Evolution Perspectives. J Med Chem 2022; 65:12500-12534. [PMID: 36169610 PMCID: PMC9528073 DOI: 10.1021/acs.jmedchem.2c01005] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Indexed: 02/07/2023]
Abstract
The viral main protease is one of the most attractive targets among all key enzymes involved in the SARS-CoV-2 life cycle. Covalent inhibition of the cysteine145 of SARS-CoV-2 MPRO with selective antiviral drugs will arrest the replication process of the virus without affecting human catalytic pathways. In this Perspective, we analyzed the in silico, in vitro, and in vivo data of the most representative examples of covalent SARS-CoV-2 MPRO inhibitors reported in the literature to date. In particular, the studied molecules were classified into eight different categories according to their reactive electrophilic warheads, highlighting the differences between their reversible/irreversible mechanism of inhibition. Furthermore, the analyses of the most recurrent pharmacophoric moieties and stereochemistry of chiral carbons were reported. The analyses of noncovalent and covalent in silico protocols, provided in this Perspective, would be useful for the scientific community to discover new and more efficient covalent SARS-CoV-2 MPRO inhibitors.
Collapse
Affiliation(s)
| | | | - Antonino Lauria
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy
| | - Annamaria Martorana
- Dipartimento di Scienze e
Tecnologie Biologiche Chimiche e Farmaceutiche, University of Palermo, Viale delle Scienze, Ed. 17, I-90128 Palermo, Italy
| |
Collapse
|
25
|
Iketani S, Hong SJ, Sheng J, Bahari F, Culbertson B, Atanaki FF, Aditham AK, Kratz AF, Luck MI, Tian R, Goff SP, Montazeri H, Sabo Y, Ho DD, Chavez A. Functional map of SARS-CoV-2 3CL protease reveals tolerant and immutable sites. Cell Host Microbe 2022; 30:1354-1362.e6. [PMID: 36029764 PMCID: PMC9365866 DOI: 10.1016/j.chom.2022.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/20/2022] [Accepted: 08/05/2022] [Indexed: 01/03/2023]
Abstract
The SARS-CoV-2 3CL protease (3CLpro) is an attractive therapeutic target, as it is essential to the virus and highly conserved among coronaviruses. However, our current understanding of its tolerance to mutations is limited. Here, we develop a yeast-based deep mutational scanning approach to systematically profile the activity of all possible single mutants of the 3CLpro and validate a subset of our results within authentic viruses. We reveal that the 3CLpro is highly malleable and is capable of tolerating mutations throughout the protein. Yet, we also identify specific residues that appear immutable, suggesting that these may be targets for future 3CLpro inhibitors. Finally, we utilize our screening as a basis to identify E166V as a resistance-conferring mutation against the clinically used 3CLpro inhibitor, nirmatrelvir. Collectively, the functional map presented herein may serve as a guide to better understand the biological properties of the 3CLpro and for drug development against coronaviruses.
Collapse
Affiliation(s)
- Sho Iketani
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Seo Jung Hong
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Jenny Sheng
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Irving Medical Center, New York, NY, USA
| | - Farideh Bahari
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Bruce Culbertson
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Irving Medical Center, New York, NY, USA; Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY, USA
| | - Fereshteh Fallah Atanaki
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Arjun K Aditham
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Alexander F Kratz
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Irving Medical Center, New York, NY, USA
| | - Maria I Luck
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Ruxiao Tian
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Stephen P Goff
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Hesam Montazeri
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Yosef Sabo
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Alejandro Chavez
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
26
|
Melo-Filho CC, Bobrowski T, Martin HJ, Sessions Z, Popov KI, Moorman NJ, Baric RS, Muratov EN, Tropsha A. Conserved coronavirus proteins as targets of broad-spectrum antivirals. Antiviral Res 2022; 204:105360. [PMID: 35691424 PMCID: PMC9183392 DOI: 10.1016/j.antiviral.2022.105360] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022]
Abstract
Coronaviruses are a class of single-stranded, positive-sense RNA viruses that have caused three major outbreaks over the past two decades: Middle East respiratory syndrome-related coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). All outbreaks have been associated with significant morbidity and mortality. In this study, we have identified and explored conserved binding sites in the key coronavirus proteins for the development of broad-spectrum direct acting anti-coronaviral compounds and validated the significance of this conservation for drug discovery with existing experimental data. We have identified four coronaviral proteins with highly conserved binding site sequence and 3D structure similarity: PLpro, Mpro, nsp10-nsp16 complex(methyltransferase), and nsp15 endoribonuclease. We have compiled all available experimental data for known antiviral medications inhibiting these targets and identified compounds active against multiple coronaviruses. The identified compounds representing potential broad-spectrum antivirals include: GC376, which is active against six viral Mpro (out of six tested, as described in research literature); mycophenolic acid, which is active against four viral PLpro (out of four); and emetine, which is active against four viral RdRp (out of four). The approach described in this study for coronaviruses, which combines the assessment of sequence and structure conservation across a viral family with the analysis of accessible chemical structure - antiviral activity data, can be explored for the development of broad-spectrum drugs for multiple viral families.
Collapse
Affiliation(s)
- Cleber C Melo-Filho
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Tesia Bobrowski
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Holli-Joi Martin
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Zoe Sessions
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Konstantin I Popov
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Nathaniel J Moorman
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Ralph S Baric
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Eugene N Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Alexander Tropsha
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
27
|
Weinreich DM. Developing evolution-resistant drugs for COVID-19. eLife 2022; 11:81334. [PMID: 35880850 PMCID: PMC9322998 DOI: 10.7554/elife.81334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Analyzing how mutations affect the main protease of SARS-CoV-2 may help researchers develop drugs that are effective against current and future variants of the virus.
Collapse
Affiliation(s)
- Daniel M Weinreich
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, United States.,Center for Computational Molecular Biology, Brown University, Providence, United States
| |
Collapse
|
28
|
Genetic Surveillance of SARS-CoV-2 M
pro
Reveals High Sequence and Structural Conservation Prior to the Introduction of Protease Inhibitor Paxlovid. mBio 2022; 13:e0086922. [PMID: 35862764 PMCID: PMC9426535 DOI: 10.1128/mbio.00869-22] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to represent a global health emergency as a highly transmissible, airborne virus. An important coronaviral drug target for treatment of COVID-19 is the conserved main protease (Mpro). Nirmatrelvir is a potent Mpro inhibitor and the antiviral component of Paxlovid. The significant viral sequencing effort during the ongoing COVID-19 pandemic represented a unique opportunity to assess potential nirmatrelvir escape mutations from emerging variants of SARS-CoV-2. To establish the baseline mutational landscape of Mpro prior to the introduction of Mpro inhibitors, Mpro sequences and its cleavage junction regions were retrieved from ~4,892,000 high-quality SARS-CoV-2 genomes in the open-access Global Initiative on Sharing Avian Influenza Data (GISAID) database. Any mutations identified from comparison to the reference sequence (Wuhan-Hu-1) were catalogued and analyzed. Mutations at sites key to nirmatrelvir binding and protease functionality (e.g., dimerization sites) were still rare. Structural comparison of Mpro also showed conservation of key nirmatrelvir contact residues across the extended Coronaviridae family (α-, β-, and γ-coronaviruses). Additionally, we showed that over time, the SARS-CoV-2 Mpro enzyme remained under purifying selection and was highly conserved relative to the spike protein. Now, with the emergency use authorization (EUA) of Paxlovid and its expected widespread use across the globe, it is essential to continue large-scale genomic surveillance of SARS-CoV-2 Mpro evolution. This study establishes a robust analysis framework for monitoring emergent mutations in millions of virus isolates, with the goal of identifying potential resistance to present and future SARS-CoV-2 antivirals.
Collapse
|
29
|
Iketani S, Hong SJ, Sheng J, Bahari F, Culbertson B, Atanaki FF, Aditham AK, Kratz AF, Luck MI, Tian R, Goff SP, Montazeri H, Sabo Y, Ho DD, Chavez A. The Functional Landscape of SARS-CoV-2 3CL Protease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.06.23.497404. [PMID: 35860222 PMCID: PMC9298129 DOI: 10.1101/2022.06.23.497404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) as the etiologic agent of COVID-19 (coronavirus disease 2019) has drastically altered life globally. Numerous efforts have been placed on the development of therapeutics to treat SARS-CoV-2 infection. One particular target is the 3CL protease (3CL pro ), which holds promise as it is essential to the virus and highly conserved among coronaviruses, suggesting that it may be possible to find broad inhibitors that treat not just SARS-CoV-2 but other coronavirus infections as well. While the 3CL protease has been studied by many groups for SARS-CoV-2 and other coronaviruses, our understanding of its tolerance to mutations is limited, knowledge which is particularly important as 3CL protease inhibitors become utilized clinically. Here, we develop a yeast-based deep mutational scanning approach to systematically profile the activity of all possible single mutants of the SARS-CoV-2 3CL pro , and validate our results both in yeast and in authentic viruses. We reveal that the 3CL pro is highly malleable and is capable of tolerating mutations throughout the protein, including within the substrate binding pocket. Yet, we also identify specific residues that appear immutable for function of the protease, suggesting that these interactions may be novel targets for the design of future 3CL pro inhibitors. Finally, we utilize our screening results as a basis to identify E166V as a resistance-conferring mutation against the therapeutic 3CL pro inhibitor, nirmatrelvir, in clinical use. Collectively, the functional map presented herein may serve as a guide for further understanding of the biological properties of the 3CL protease and for drug development for current and future coronavirus pandemics.
Collapse
|
30
|
Xu YS, Chigan JZ, Li JQ, Ding HH, Sun LY, Liu L, Hu Z, Yang KW. Hydroxamate and thiosemicarbazone: Two highly promising scaffolds for the development of SARS-CoV-2 antivirals. Bioorg Chem 2022; 124:105799. [PMID: 35462235 PMCID: PMC9014651 DOI: 10.1016/j.bioorg.2022.105799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 01/09/2023]
Abstract
The emerging COVID-19 pandemic generated by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has severely threatened human health. The main protease (Mpro) of SARS-CoV-2 is promising target for antiviral drugs, which plays a vital role for viral duplication. Development of the inhibitor against Mpro is an ideal strategy to combat COVID-19. In this work, twenty-three hydroxamates 1a-i and thiosemicarbazones 2a-n were identified by FRET screening to be the potent inhibitors of Mpro, which exhibited more than 94% (except 1c) and more than 69% inhibition, and an IC50 value in the range of 0.12-31.51 and 2.43-34.22 μM, respectively. 1a and 2b were found to be the most effective inhibitors in the hydroxamates and thiosemicarbazones, with an IC50 of 0.12 and 2.43 μM, respectively. Enzyme kinetics, jump dilution and thermal shift assays revealed that 2b is a competitive inhibitor of Mpro, while 1a is a time-dependently inhibitor; 2b reversibly but 1a irreversibly bound to the target; the binding of 2b increased but 1a decreased stability of the target, and DTT assays indicate that 1a is the promiscuous cysteine protease inhibitor. Cytotoxicity assays showed that 1a has low, but 2b has certain cytotoxicity on the mouse fibroblast cells (L929). Docking studies revealed that the benzyloxycarbonyl carbon of 1a formed thioester with Cys145, while the phenolic hydroxyl oxygen of 2b formed H-bonds with Cys145 and Asn142. This work provided two promising scaffolds for the development of Mpro inhibitors to combat COVID-19.
Collapse
Affiliation(s)
- Yin-Sui Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Jia-Zhu Chigan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Jia-Qi Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Huan-Huan Ding
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Le-Yun Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Lu Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Zhenxin Hu
- Suzhou Genevide Biotechnology Co., Ltd, Suzhou 215123, PR China
| | - Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China.
| |
Collapse
|
31
|
Flynn JM, Samant N, Schneider-Nachum G, Barkan DT, Yilmaz NK, Schiffer CA, Moquin SA, Dovala D, Bolon DNA. Comprehensive fitness landscape of SARS-CoV-2 M pro reveals insights into viral resistance mechanisms. eLife 2022; 11:e77433. [PMID: 35723575 PMCID: PMC9323007 DOI: 10.7554/elife.77433] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
With the continual evolution of new strains of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that are more virulent, transmissible, and able to evade current vaccines, there is an urgent need for effective anti-viral drugs. The SARS-CoV-2 main protease (Mpro) is a leading target for drug design due to its conserved and indispensable role in the viral life cycle. Drugs targeting Mpro appear promising but will elicit selection pressure for resistance. To understand resistance potential in Mpro, we performed a comprehensive mutational scan of the protease that analyzed the function of all possible single amino acid changes. We developed three separate high throughput assays of Mpro function in yeast, based on either the ability of Mpro variants to cleave at a defined cut-site or on the toxicity of their expression to yeast. We used deep sequencing to quantify the functional effects of each variant in each screen. The protein fitness landscapes from all three screens were strongly correlated, indicating that they captured the biophysical properties critical to Mpro function. The fitness landscapes revealed a non-active site location on the surface that is extremely sensitive to mutation, making it a favorable location to target with inhibitors. In addition, we found a network of critical amino acids that physically bridge the two active sites of the Mpro dimer. The clinical variants of Mpro were predominantly functional in our screens, indicating that Mpro is under strong selection pressure in the human population. Our results provide predictions of mutations that will be readily accessible to Mpro evolution and that are likely to contribute to drug resistance. This complete mutational guide of Mpro can be used in the design of inhibitors with reduced potential of evolving viral resistance.
Collapse
Affiliation(s)
- Julia M Flynn
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Neha Samant
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Gily Schneider-Nachum
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - David T Barkan
- Novartis Institutes for Biomedical ResearchEmeryvilleUnited States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| | | | - Dustin Dovala
- Novartis Institutes for Biomedical ResearchEmeryvilleUnited States
| | - Daniel NA Bolon
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical SchoolWorcesterUnited States
| |
Collapse
|
32
|
Firouzi R, Ashouri M, Karimi‐Jafari MH. Structural insights into the substrate‐binding site of main protease for the structure‐based COVID‐19 drug discovery. Proteins 2022; 90:1090-1101. [DOI: 10.1002/prot.26318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Rohoullah Firouzi
- Department of Physical Chemistry Chemistry and Chemical Engineering Research Center of Iran Tehran Iran
| | - Mitra Ashouri
- Department of Physical Chemistry, School of Chemistry, College of Science University of Tehran Tehran Iran
| | | |
Collapse
|
33
|
Wan S, Bhati AP, Wade AD, Alfè D, Coveney PV. Thermodynamic and structural insights into the repurposing of drugs that bind to SARS-CoV-2 main protease. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2022; 7:123-131. [PMID: 35223088 PMCID: PMC8820189 DOI: 10.1039/d1me00124h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Although researchers have been working tirelessly since the COVID-19 outbreak, so far only three drugs - remdesivir, ronapreve and molnupiravir - have been approved for use in some countries which directly target the SARS-CoV-2 virus. Given the slow pace and substantial costs of new drug discovery and development, together with the urgency of the matter, repurposing of existing drugs for the ongoing disease is an attractive proposition. In a recent study, a high-throughput X-ray crystallographic screen was performed for a selection of drugs which have been approved or are in clinical trials. Thirty-seven compounds have been identified from drug libraries all of which bind to the SARS-CoV-2 main protease (3CLpro). In the current study, we use molecular dynamics simulation and an ensemble-based free energy approach, namely, enhanced sampling of molecular dynamics with approximation of continuum solvent (ESMACS), to investigate a subset of the aforementioned compounds. The drugs studied here are highly diverse, interacting with different binding sites and/or subsites of 3CLpro. The predicted free energies are compared with experimental results wherever they are available and they are found to be in excellent agreement. Our study also provides detailed energetic insights into the nature of the associated drug-protein binding, in turn shedding light on the design and discovery of potential drugs.
Collapse
Affiliation(s)
- Shunzhou Wan
- Centre for Computational Science, Department of Chemistry, University College London UK
| | - Agastya P Bhati
- Centre for Computational Science, Department of Chemistry, University College London UK
| | - Alexander D Wade
- Centre for Computational Science, Department of Chemistry, University College London UK
| | - Dario Alfè
- Department of Earth Sciences, London Centre for Nanotechnology and Thomas Young Centre at University College London, University College London UK
- Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II Italy
| | - Peter V Coveney
- Centre for Computational Science, Department of Chemistry, University College London UK
- Institute for Informatics, Faculty of Science, University of Amsterdam The Netherlands
| |
Collapse
|
34
|
DasGupta D, Chan WKB, Carlson HA. Computational Identification of Possible Allosteric Sites and Modulators of the SARS-CoV-2 Main Protease. J Chem Inf Model 2022; 62:618-626. [PMID: 35107014 DOI: 10.1021/acs.jcim.1c01223] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this study, we target the main protease (Mpro) of the SARS-CoV-2 virus as it is a crucial enzyme for viral replication. Herein, we report three plausible allosteric sites on Mpro that can expand structure-based drug discovery efforts for new Mpro inhibitors. To find these sites, we used mixed-solvent molecular dynamics (MixMD) simulations, an efficient computational protocol that finds binding hotspots through mapping the surface of unbound proteins with 5% cosolvents in water. We have used normal mode analysis to support our claim of allosteric control for these sites. Further, we have performed virtual screening against the sites with 361 hits from Mpro screenings available through the National Center for Advancing Translational Sciences (NCATS). We have identified the NCATS inhibitors that bind to the remote sites better than the active site of Mpro, and we propose these molecules may be allosteric regulators of the system. After identifying our sites, new X-ray crystal structures were released that show fragment molecules in the sites we found, supporting the notion that these sites are accurate and druggable.
Collapse
Affiliation(s)
- Debarati DasGupta
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, United States
| | - Wallace K B Chan
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109-5632, United States
| | - Heather A Carlson
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, United States
| |
Collapse
|
35
|
Bucinsky L, Bortňák D, Gall M, Matúška J, Milata V, Pitoňák M, Štekláč M, Végh D, Zajaček D. Machine learning prediction of 3CLpro SARS-CoV-2 docking scores. Comput Biol Chem 2022; 98:107656. [PMID: 35288359 PMCID: PMC8881816 DOI: 10.1016/j.compbiolchem.2022.107656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022]
Abstract
Molecular docking results of two training sets containing 866 and 8,696 compounds were used to train three different machine learning (ML) approaches. Neural network approaches according to Keras and TensorFlow libraries and the gradient boosted decision trees approach of XGBoost were used with DScribe’s Smooth Overlap of Atomic Positions molecular descriptors. In addition, neural networks using the SchNetPack library and descriptors were used. The ML performance was tested on three different sets, including compounds for future organic synthesis. The final evaluation of the ML predicted docking scores was based on the ZINC in vivo set, from which 1,200 compounds were randomly selected with respect to their size. The results obtained showed a consistent ML prediction capability of docking scores, and even though compounds with more than 60 atoms were found slightly overestimated they remain valid for a subsequent evaluation of their drug repurposing suitability.
Collapse
|
36
|
Chan HTH, Moesser MA, Walters RK, Malla TR, Twidale RM, John T, Deeks HM, Johnston-Wood T, Mikhailov V, Sessions RB, Dawson W, Salah E, Lukacik P, Strain-Damerell C, Owen CD, Nakajima T, Świderek K, Lodola A, Moliner V, Glowacki DR, Spencer J, Walsh MA, Schofield CJ, Genovese L, Shoemark DK, Mulholland AJ, Duarte F, Morris GM. Discovery of SARS-CoV-2 M pro peptide inhibitors from modelling substrate and ligand binding. Chem Sci 2021; 12:13686-13703. [PMID: 34760153 PMCID: PMC8549791 DOI: 10.1039/d1sc03628a] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/05/2021] [Indexed: 12/22/2022] Open
Abstract
The main protease (Mpro) of SARS-CoV-2 is central to viral maturation and is a promising drug target, but little is known about structural aspects of how it binds to its 11 natural cleavage sites. We used biophysical and crystallographic data and an array of biomolecular simulation techniques, including automated docking, molecular dynamics (MD) and interactive MD in virtual reality, QM/MM, and linear-scaling DFT, to investigate the molecular features underlying recognition of the natural Mpro substrates. We extensively analysed the subsite interactions of modelled 11-residue cleavage site peptides, crystallographic ligands, and docked COVID Moonshot-designed covalent inhibitors. Our modelling studies reveal remarkable consistency in the hydrogen bonding patterns of the natural Mpro substrates, particularly on the N-terminal side of the scissile bond. They highlight the critical role of interactions beyond the immediate active site in recognition and catalysis, in particular plasticity at the S2 site. Building on our initial Mpro-substrate models, we used predictive saturation variation scanning (PreSaVS) to design peptides with improved affinity. Non-denaturing mass spectrometry and other biophysical analyses confirm these new and effective 'peptibitors' inhibit Mpro competitively. Our combined results provide new insights and highlight opportunities for the development of Mpro inhibitors as anti-COVID-19 drugs.
Collapse
Affiliation(s)
- H T Henry Chan
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research 12 Mansfield Road Oxford OX1 3TA UK
| | - Marc A Moesser
- Department of Statistics, University of Oxford 24-29 St Giles' Oxford OX1 3LB UK
| | - Rebecca K Walters
- Centre for Computational Chemistry, School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- Intangible Realities Laboratory, School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Tika R Malla
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research 12 Mansfield Road Oxford OX1 3TA UK
| | - Rebecca M Twidale
- Centre for Computational Chemistry, School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Tobias John
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research 12 Mansfield Road Oxford OX1 3TA UK
| | - Helen M Deeks
- Centre for Computational Chemistry, School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- Intangible Realities Laboratory, School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Tristan Johnston-Wood
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research 12 Mansfield Road Oxford OX1 3TA UK
| | - Victor Mikhailov
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research 12 Mansfield Road Oxford OX1 3TA UK
| | - Richard B Sessions
- School of Biochemistry, University of Bristol, Medical Sciences Building University Walk Bristol BS8 1TD UK
| | - William Dawson
- RIKEN Center for Computational Science 7-1-26 Minatojima-minami-machi, Chuo-ku Kobe Hyogo 650-0047 Japan
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research 12 Mansfield Road Oxford OX1 3TA UK
| | - Petra Lukacik
- Diamond Light Source Ltd, Harwell Science and Innovation Campus Didcot OX11 0DE UK
- Research Complex at Harwell, Harwell Science and Innovation Campus Didcot OX11 0FA UK
| | - Claire Strain-Damerell
- Diamond Light Source Ltd, Harwell Science and Innovation Campus Didcot OX11 0DE UK
- Research Complex at Harwell, Harwell Science and Innovation Campus Didcot OX11 0FA UK
| | - C David Owen
- Diamond Light Source Ltd, Harwell Science and Innovation Campus Didcot OX11 0DE UK
- Research Complex at Harwell, Harwell Science and Innovation Campus Didcot OX11 0FA UK
| | - Takahito Nakajima
- RIKEN Center for Computational Science 7-1-26 Minatojima-minami-machi, Chuo-ku Kobe Hyogo 650-0047 Japan
| | - Katarzyna Świderek
- Biocomp Group, Institute of Advanced Materials (INAM), Universitat Jaume I 12071 Castello Spain
| | - Alessio Lodola
- Food and Drug Department, University of Parma Parco Area delle Scienze, 27/A 43124 Parma Italy
| | - Vicent Moliner
- Biocomp Group, Institute of Advanced Materials (INAM), Universitat Jaume I 12071 Castello Spain
| | - David R Glowacki
- Intangible Realities Laboratory, School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - James Spencer
- Intangible Realities Laboratory, School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Martin A Walsh
- Diamond Light Source Ltd, Harwell Science and Innovation Campus Didcot OX11 0DE UK
- Research Complex at Harwell, Harwell Science and Innovation Campus Didcot OX11 0FA UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research 12 Mansfield Road Oxford OX1 3TA UK
| | - Luigi Genovese
- Univ. Grenoble Alpes, CEA, IRIG-MEM-L_Sim 38000 Grenoble France
| | - Deborah K Shoemark
- School of Biochemistry, University of Bristol, Medical Sciences Building University Walk Bristol BS8 1TD UK
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Fernanda Duarte
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research 12 Mansfield Road Oxford OX1 3TA UK
| | - Garrett M Morris
- Department of Statistics, University of Oxford 24-29 St Giles' Oxford OX1 3LB UK
| |
Collapse
|
37
|
Bux K, Shen X, Tariq M, Yin J, Moin ST, Bhowmik D, Haider S. Inter-Subunit Dynamics Controls Tunnel Formation During the Oxygenation Process in Hemocyanin Hexamers. Front Mol Biosci 2021; 8:710623. [PMID: 34604302 PMCID: PMC8479113 DOI: 10.3389/fmolb.2021.710623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Hemocyanin from horseshoe crab in its active form is a homo-hexameric protein. It exists in open and closed conformations when transitioning between deoxygenated and oxygenated states. Here, we present a detailed dynamic atomistic investigation of the oxygenated and deoxygenated states of the hexameric hemocyanin using explicit solvent molecular dynamics simulations. We focus on the variation in solvent cavities and the formation of tunnels in the two conformational states. By employing principal component analysis and CVAE-based deep learning, we are able to differentiate between the dynamics of the deoxy- and oxygenated states of hemocyanin. Finally, our results identify the deoxygenated open conformation, which adopts a stable, closed conformation after the oxygenation process.
Collapse
Affiliation(s)
- Khair Bux
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Xiayu Shen
- UCL School of Pharmacy, London, United Kingdom
| | - Muhammad Tariq
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Junqi Yin
- Oak Ridge National Laboratory, Center for Computational Sciences, Oak Ridge, TN, United States
| | - Syed Tarique Moin
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Debsindhu Bhowmik
- Oak Ridge National Laboratory, Computer Sciences and Engineering Division, Oak Ridge, TN, United States
| | | |
Collapse
|
38
|
Olehnovics E, Yin J, Pérez A, De Fabritiis G, Bonomo RA, Bhowmik D, Haider S. The Role of Hydrophobic Nodes in the Dynamics of Class A β-Lactamases. Front Microbiol 2021; 12:720991. [PMID: 34621251 PMCID: PMC8490755 DOI: 10.3389/fmicb.2021.720991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022] Open
Abstract
Class A β-lactamases are known for being able to rapidly gain broad spectrum catalytic efficiency against most β-lactamase inhibitor combinations as a result of elusively minor point mutations. The evolution in class A β-lactamases occurs through optimisation of their dynamic phenotypes at different timescales. At long-timescales, certain conformations are more catalytically permissive than others while at the short timescales, fine-grained optimisation of free energy barriers can improve efficiency in ligand processing by the active site. Free energy barriers, which define all coordinated movements, depend on the flexibility of the secondary structural elements. The most highly conserved residues in class A β-lactamases are hydrophobic nodes that stabilize the core. To assess how the stable hydrophobic core is linked to the structural dynamics of the active site, we carried out adaptively sampled molecular dynamics (MD) simulations in four representative class A β-lactamases (KPC-2, SME-1, TEM-1, and SHV-1). Using Markov State Models (MSM) and unsupervised deep learning, we show that the dynamics of the hydrophobic nodes is used as a metastable relay of kinetic information within the core and is coupled with the catalytically permissive conformation of the active site environment. Our results collectively demonstrate that the class A enzymes described here, share several important dynamic similarities and the hydrophobic nodes comprise of an informative set of dynamic variables in representative class A β-lactamases.
Collapse
Affiliation(s)
- Edgar Olehnovics
- Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London, United Kingdom
| | - Junqi Yin
- Oak Ridge National Laboratory, National Center for Computational Sciences, Oak Ridge, TN, United States
| | - Adrià Pérez
- Computational Science Laboratory, Barcelona Biomedical Research Park, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gianni De Fabritiis
- Computational Science Laboratory, Barcelona Biomedical Research Park, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Robert A. Bonomo
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, United States
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, United States
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
- Department of Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, United States
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, United States
- Veterans Affairs Northeast Ohio Healthcare System, Research Service, Cleveland, OH, United States
| | - Debsindhu Bhowmik
- Computer Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Shozeb Haider
- Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London, United Kingdom
| |
Collapse
|