1
|
Luganini A, Boschi D, Lolli ML, Gribaudo G. DHODH inhibitors: What will it take to get them into the clinic as antivirals? Antiviral Res 2025; 236:106099. [PMID: 39938808 DOI: 10.1016/j.antiviral.2025.106099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/19/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
The emergence of new human viruses with epidemic or pandemic potential has reaffirmed the urgency to develop effective broad-spectrum antivirals (BSAs) as part of a strategic framework for pandemic prevention and preparedness. To this end, the host nucleotide metabolic pathway has been subject to intense investigation in the search for host-targeting agents (HTAs) with potential BSA activity. In particular, human dihydroorotate dehydrogenase (hDHODH), a rate-limiting enzyme in the de novo pyrimidine biosynthetic pathway, has been identified as a preferential target of new HTAs. Viral replication in fact relies on cellular pyrimidine replenishment, making hDHODH an ideal HTA target. The depletion of the host pyrimidine pool that ensues the pharmacological inhibition of hDHODH activity elicits effective BSA activity through three distinct mechanisms: it blocks viral DNA and RNA synthesis; it activates effector mechanisms of the host innate antiviral response; and it mitigates the virus-induced inflammatory response. However, despite the spectacular results obtained in vitro, the hDHODH inhibitors examined as mono-drug therapies in animal models of human viral infections and in clinical trials have produced disappointing levels of overall antiviral efficacy. To overcome this inherent limitation, pharmacological strategies based on multi-drug combination treatments should be considered to enable efficacy of hDHODH-targeted antiviral therapies. Here, we review the state-of-the-art of antiviral applications of hDHODH inhibitors, discuss the challenges that have emerged from their testing in animal models and human clinical trials and consider how they might be addressed to advance the development of hDHODH inhibitors as BSA for the treatment of viral diseases.
Collapse
Affiliation(s)
- Anna Luganini
- Department of Life Sciences and Systems Biology, University of Turin, 10123, Turin, Italy
| | - Donatella Boschi
- Department of Drug Sciences and Technology, University of Turin, 10125, Turin, Italy
| | - Marco L Lolli
- Department of Drug Sciences and Technology, University of Turin, 10125, Turin, Italy
| | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Turin, 10123, Turin, Italy.
| |
Collapse
|
2
|
Alberti M, Poli G, Broggini L, Sainas S, Rizzi M, Boschi D, Ferraris DM, Martino E, Ricagno S, Tuccinardi T, Lolli ML, Miggiano R. An alternative conformation of the N-terminal loop of human dihydroorotate dehydrogenase drives binding to a potent antiproliferative agent. Acta Crystallogr D Struct Biol 2024; 80:386-396. [PMID: 38805244 DOI: 10.1107/s2059798324004066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
Over the years, human dihydroorotate dehydrogenase (hDHODH), which is a key player in the de novo pyrimidine-biosynthesis pathway, has been targeted in the treatment of several conditions, including autoimmune disorders and acute myelogenous leukaemia, as well as in host-targeted antiviral therapy. A molecular exploration of its inhibitor-binding behaviours yielded promising candidates for innovative drug design. A detailed description of the enzymatic pharmacophore drove the decoration of well-established inhibitory scaffolds, thus gaining further in vitro and in vivo efficacy. In the present work, using X-ray crystallography, an atypical rearrangement was identified in the binding pose of a potent inhibitor characterized by a polar pyridine-based moiety (compound 18). The crystal structure shows that upon binding compound 18 the dynamics of a protein loop involved in a gating mechanism at the cofactor-binding site is modulated by the presence of three water molecules, thus fine-tuning the polarity/hydrophobicity of the binding pocket. These solvent molecules are engaged in the formation of a hydrogen-bond mesh in which one of them establishes a direct contact with the pyridine moiety of compound 18, thus paving the way for a reappraisal of the inhibition of hDHODH. Using an integrated approach, the thermodynamics of such a modulation is described by means of isothermal titration calorimetry coupled with molecular modelling. These structural insights will guide future drug design to obtain a finer Kd/logD7.4 balance and identify membrane-permeable molecules with a drug-like profile in terms of water solubility.
Collapse
Affiliation(s)
- Marta Alberti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via G. Bovio 6, 28100 Novara, Italy
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Luca Broggini
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan, 20097 San Donato Milanese, Italy
| | - Stefano Sainas
- Department of Sciences and Drug Technology, University of Torino, Via P. Giuria 9, 10125 Torino, Italy
| | - Menico Rizzi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via G. Bovio 6, 28100 Novara, Italy
| | - Donatella Boschi
- Department of Sciences and Drug Technology, University of Torino, Via P. Giuria 9, 10125 Torino, Italy
| | - Davide M Ferraris
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via G. Bovio 6, 28100 Novara, Italy
| | - Elena Martino
- Department of Sciences and Drug Technology, University of Torino, Via P. Giuria 9, 10125 Torino, Italy
| | - Stefano Ricagno
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Piazza Malan, 20097 San Donato Milanese, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Marco L Lolli
- Department of Sciences and Drug Technology, University of Torino, Via P. Giuria 9, 10125 Torino, Italy
| | - Riccardo Miggiano
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via G. Bovio 6, 28100 Novara, Italy
| |
Collapse
|
3
|
Mousavi H, Rimaz M, Zeynizadeh B. Practical Three-Component Regioselective Synthesis of Drug-Like 3-Aryl(or heteroaryl)-5,6-dihydrobenzo[ h]cinnolines as Potential Non-Covalent Multi-Targeting Inhibitors To Combat Neurodegenerative Diseases. ACS Chem Neurosci 2024; 15:1828-1881. [PMID: 38647433 DOI: 10.1021/acschemneuro.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Neurodegenerative diseases (NDs) are one of the prominent health challenges facing contemporary society, and many efforts have been made to overcome and (or) control it. In this research paper, we described a practical one-pot two-step three-component reaction between 3,4-dihydronaphthalen-1(2H)-one (1), aryl(or heteroaryl)glyoxal monohydrates (2a-h), and hydrazine monohydrate (NH2NH2•H2O) for the regioselective preparation of some 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnoline derivatives (3a-h). After synthesis and characterization of the mentioned cinnolines (3a-h), the in silico multi-targeting inhibitory properties of these heterocyclic scaffolds have been investigated upon various Homo sapiens-type enzymes, including hMAO-A, hMAO-B, hAChE, hBChE, hBACE-1, hBACE-2, hNQO-1, hNQO-2, hnNOS, hiNOS, hPARP-1, hPARP-2, hLRRK-2(G2019S), hGSK-3β, hp38α MAPK, hJNK-3, hOGA, hNMDA receptor, hnSMase-2, hIDO-1, hCOMT, hLIMK-1, hLIMK-2, hRIPK-1, hUCH-L1, hPARK-7, and hDHODH, which have confirmed their functions and roles in the neurodegenerative diseases (NDs), based on molecular docking studies, and the obtained results were compared with a wide range of approved drugs and well-known (with IC50, EC50, etc.) compounds. In addition, in silico ADMET prediction analysis was performed to examine the prospective drug properties of the synthesized heterocyclic compounds (3a-h). The obtained results from the molecular docking studies and ADMET-related data demonstrated that these series of 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnolines (3a-h), especially hit ones, can really be turned into the potent core of new drugs for the treatment of neurodegenerative diseases (NDs), and/or due to the having some reactionable locations, they are able to have further organic reactions (such as cross-coupling reactions), and expansion of these compounds (for example, with using other types of aryl(or heteroaryl)glyoxal monohydrates) makes a new avenue for designing novel and efficient drugs for this purpose.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| | - Mehdi Rimaz
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran 19395-3697, Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| |
Collapse
|
4
|
Gehlot P, Vyas VK. A Patent Review of Human Dihydroorotate Dehydrogenase (hDHODH) Inhibitors as Anticancer Agents and their Other Therapeutic Applications (1999-2022). Recent Pat Anticancer Drug Discov 2024; 19:280-297. [PMID: 37070439 DOI: 10.2174/1574892818666230417094939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 04/19/2023]
Abstract
Highly proliferating cells, such as cancer cells, are in high demand of pyrimidine nucleotides for their proliferation, accomplished by de novo pyrimidine biosynthesis. The human dihydroorotate dehydrogenase (hDHODH) enzyme plays a vital role in the rate-limiting step of de novo pyrimidine biosynthesis. As a recognised therapeutic target, hDHODH plays a significant role in cancer and other illness. In the past two decades, small molecules as inhibitors hDHODH enzyme have drawn much attention as anticancer agents, and their role in rheumatoid arthritis (RA), and multiple sclerosis (MS). In this patent review, we have compiled patented hDHODH inhibitors published between 1999 and 2022 and discussed the development of hDHODH inhibitors as anticancer agents. Therapeutic potential of small molecules as hDHODH inhibitors for the treatment of various diseases, such as cancer, is very well recognised. Human DHODH inhibitors can rapidly cause intracellular uridine monophosphate (UMP) depletion to produce starvation of pyrimidine bases. Normal cells can better endure a brief period of starvation without the side effects of conventional cytotoxic medication and resume synthesis of nucleic acid and other cellular functions after inhibition of de novo pathway using an alternative salvage pathway. Highly proliferative cells such as cancer cells do not endure starvation because they are in high demand of nucleotides for cell differentiation, which is fulfilled by de novo pyrimidine biosynthesis. In addition, hDHODH inhibitors produce their desired activity at lower doses rather than a cytotoxic dose of other anticancer agents. Thus, inhibition of de novo pyrimidine biosynthesis will create new prospects for the development of novel targeted anticancer agents, which ongoing preclinical and clinical experiments define. Our work brings together a comprehensive patent review of the role of hDHODH in cancer, as well as various patents related to the hDHODH inhibitors and their anticancer and other therapeutic potential. This compiled work on patented DHODH inhibitors will guide researchers in pursuing the most promising drug discovery strategies against the hDHODH enzyme as anticancer agents.
Collapse
Affiliation(s)
- Pinky Gehlot
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujrat, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujrat, India
| |
Collapse
|
5
|
Zhou X, Gou K, Xu J, Jian L, Luo Y, Li C, Guan X, Qiu J, Zou J, Zhang Y, Zhong X, Zeng T, Zhou Y, Xiao Y, Yang X, Chen W, Gao P, Liu C, Zhou Y, Tao L, Liu X, Cen X, Chen Q, Sun Q, Luo Y, Zhao Y. Discovery and Optimization of Novel hDHODH Inhibitors for the Treatment of Inflammatory Bowel Disease. J Med Chem 2023; 66:14755-14786. [PMID: 37870434 DOI: 10.1021/acs.jmedchem.3c01365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
As a key rate-limiting enzyme in the de novo synthesis of pyrimidine nucleotides, human dihydroorotate dehydrogenase (hDHODH) is considered a known target for the treatment of autoimmune diseases, including inflammatory bowel disease (IBD). Herein, BAY 41-2272 with a 1H-pyrazolo[3,4-b]pyridine scaffold was identified as an hDHODH inhibitor by screening an active compound library containing 5091 molecules. Further optimization led to 2-(1-(2-chloro-6-fluorobenzyl)-1H-pyrrolo[2,3-b]pyridin-3-yl)-5-cyclopropylpyrimidin-4-amine (w2), which was found to be the most promising and drug-like compound with potent inhibitory activity against hDHODH (IC50 = 173.4 nM). Compound w2 demonstrated acceptable pharmacokinetic characteristics and alleviated the severity of acute ulcerative colitis induced by dextran sulfate sodium in a dose-dependent manner. Notably, w2 exerted better therapeutic effects on ulcerative colitis than hDHODH inhibitor vidofludimus and Janus kinase (JAK) inhibitor tofacitinib. Taken together, w2 is a promising hDHODH inhibitor for the treatment of IBD and deserves to be developed as a preclinical candidate.
Collapse
Affiliation(s)
- Xia Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Kun Gou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lunan Jian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuan Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chungen Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiao Zou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Zhang
- School of Medicine, Tibet University, Lhasa 850000, China
| | - Xi Zhong
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ting Zeng
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuzhou Xiao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Weijie Chen
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ping Gao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chunqi Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yang Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xingchen Liu
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingxiang Sun
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Youfu Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Luganini A, Sibille G, Pavan M, Mello Grand M, Sainas S, Boschi D, Lolli ML, Chiorino G, Gribaudo G. Mechanisms of antiviral activity of the new hDHODH inhibitor MEDS433 against respiratory syncytial virus replication. Antiviral Res 2023; 219:105734. [PMID: 37852322 DOI: 10.1016/j.antiviral.2023.105734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Human respiratory syncytial virus (RSV) is an important cause of acute lower respiratory infections, for which no effective drugs are currently available. The development of new effective anti-RSV agents is therefore an urgent priority, and Host-Targeting Antivirals (HTAs) can be considered to target RSV infections. As a contribution to this antiviral avenue, we have characterized the molecular mechanisms of the anti-RSV activity of MEDS433, a new inhibitor of human dihydroorotate dehydrogenase (hDHODH), a key cellular enzyme of de novo pyrimidine biosynthesis. MEDS433 was found to exert a potent antiviral activity against RSV-A and RSV-B in the one-digit nanomolar range. Analysis of the RSV replication cycle in MEDS433-treated cells, revealed that the hDHODH inhibitor suppressed the synthesis of viral genome, consistently with its ability to specifically target hDHODH enzymatic activity. Then, the capability of MEDS433 to induce the expression of antiviral proteins encoded by Interferon-Stimulated Genes (ISGs) was identified as a second mechanism of its antiviral activity against RSV. Indeed, MEDS433 stimulated secretion of IFN-β and IFN-λ1 that, in turn, induced the expression of some ISG antiviral proteins, such as IFI6, IFITM1 and IRF7. Singly expression of these ISG proteins reduced RSV-A replication, thus likely contributing to the overall anti-RSV activity of MEDS433. Lastly, MEDS433 proved to be effective against RSV-A replication even in a primary human small airway epithelial cell model. Taken as a whole, these observations provide new insights for further development of MEDS433, as a promising candidate to develop new strategies for treatment of RSV infections.
Collapse
Affiliation(s)
- Anna Luganini
- Department of Life Sciences and Systems Biology, University of Torino, 10123, Torino, Italy
| | - Giulia Sibille
- Department of Life Sciences and Systems Biology, University of Torino, 10123, Torino, Italy
| | - Marta Pavan
- Department of Life Sciences and Systems Biology, University of Torino, 10123, Torino, Italy
| | | | - Stefano Sainas
- Department of Drug Sciences and Technology, University of Torino, 10125, Torino, Italy
| | - Donatella Boschi
- Department of Drug Sciences and Technology, University of Torino, 10125, Torino, Italy
| | - Marco L Lolli
- Department of Drug Sciences and Technology, University of Torino, 10125, Torino, Italy
| | | | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Torino, 10123, Torino, Italy.
| |
Collapse
|
7
|
Sharma P, Borthakur G. Targeting metabolic vulnerabilities to overcome resistance to therapy in acute myeloid leukemia. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:567-589. [PMID: 37842232 PMCID: PMC10571063 DOI: 10.20517/cdr.2023.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/07/2023] [Accepted: 07/22/2023] [Indexed: 10/17/2023]
Abstract
Malignant hematopoietic cells gain metabolic plasticity, reorganize anabolic mechanisms to improve anabolic output and prevent oxidative damage, and bypass cell cycle checkpoints, eventually outcompeting normal hematopoietic cells. Current therapeutic strategies of acute myeloid leukemia (AML) are based on prognostic stratification that includes mutation profile as the closest surrogate to disease biology. Clinical efficacy of targeted therapies, e.g., agents targeting mutant FMS-like tyrosine kinase 3 (FLT3) and isocitrate dehydrogenase 1 or 2, are mostly limited to the presence of relevant mutations. Recent studies have not only demonstrated that specific mutations in AML create metabolic vulnerabilities but also highlighted the efficacy of targeting metabolic vulnerabilities in combination with inhibitors of these mutations. Therefore, delineating the functional relationships between genetic stratification, metabolic dependencies, and response to specific inhibitors of these vulnerabilities is crucial for identifying more effective therapeutic regimens, understanding resistance mechanisms, and identifying early response markers, ultimately improving the likelihood of cure. In addition, metabolic changes occurring in the tumor microenvironment have also been reported as therapeutic targets. The metabolic profiles of leukemia stem cells (LSCs) differ, and relapsed/refractory LSCs switch to alternative metabolic pathways, fueling oxidative phosphorylation (OXPHOS), rendering them therapeutically resistant. In this review, we discuss the role of cancer metabolic pathways that contribute to the metabolic plasticity of AML and confer resistance to standard therapy; we also highlight the latest promising developments in the field in translating these important findings to the clinic and discuss the tumor microenvironment that supports metabolic plasticity and interplay with AML cells.
Collapse
Affiliation(s)
| | - Gautam Borthakur
- Department of Leukemia, Section of Molecular Hematology and Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
8
|
Alberti M, Sainas S, Ronchi E, Lolli ML, Boschi D, Rizzi M, Ferraris DM, Miggiano R. Biochemical characterization of Mycobacterium tuberculosis dihydroorotate dehydrogenase and identification of a selective inhibitor. FEBS Lett 2023; 597:2119-2132. [PMID: 37278160 DOI: 10.1002/1873-3468.14680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/07/2023]
Abstract
Mycobacterium tuberculosis (MTB) is the etiologic agent of tuberculosis (TB), an ancient disease which causes 1.5 million deaths worldwide. Dihydroorotate dehydrogenase (DHODH) is a key enzyme of the MTB de novo pyrimidine biosynthesis pathway, and it is essential for MTB growth in vitro, hence representing a promising drug target. We present: (i) the biochemical characterization of the full-length MTB DHODH, including the analysis of the kinetic parameters, and (ii) the previously unreleased crystal structure of the protein that allowed us to rationally screen our in-house chemical library and identify the first selective inhibitor of mycobacterial DHODH. The inhibitor has fluorescence properties, potentially instrumental to in cellulo imaging studies, and exhibits an IC50 value of 43 μm, paving the way to hit-to-lead process.
Collapse
Affiliation(s)
- Marta Alberti
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Novara, Italy
| | - Stefano Sainas
- Department of Sciences and Drug Technology, University of Turin, Torino, Italy
| | - Erika Ronchi
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Novara, Italy
| | - Marco L Lolli
- Department of Sciences and Drug Technology, University of Turin, Torino, Italy
| | - Donatella Boschi
- Department of Sciences and Drug Technology, University of Turin, Torino, Italy
| | - Menico Rizzi
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Novara, Italy
| | - Davide M Ferraris
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Novara, Italy
| | - Riccardo Miggiano
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Novara, Italy
| |
Collapse
|
9
|
Vietor J, Gege C, Stiller T, Busch R, Schallmayer E, Kohlhof H, Höfner G, Pabel J, Marschner JA, Merk D. Development of a Potent Nurr1 Agonist Tool for In Vivo Applications. J Med Chem 2023; 66:6391-6402. [PMID: 37127285 PMCID: PMC10184128 DOI: 10.1021/acs.jmedchem.3c00415] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nuclear receptor related 1 (Nurr1) is a neuroprotective transcription factor and an emerging target in neurodegenerative diseases. Despite strong evidence for a role in Parkinson's and Alzheimer's disease, pharmacological control and validation of Nurr1 are hindered by a lack of suitable ligands. We have discovered considerable Nurr1 activation by the clinically studied dihydroorotate dehydrogenase (DHODH) inhibitor vidofludimus calcium and systematically optimized this scaffold to a Nurr1 agonist with nanomolar potency, strong activation efficacy, and pronounced preference over the highly related receptors Nur77 and NOR1. The optimized compound induced Nurr1-regulated gene expression in astrocytes and exhibited favorable pharmacokinetics in rats, thus emerging as a superior chemical tool to study Nurr1 activation in vitro and in vivo.
Collapse
Affiliation(s)
- Jan Vietor
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | | | - Tanja Stiller
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Romy Busch
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Espen Schallmayer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | | | - Georg Höfner
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Jörg Pabel
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Julian A Marschner
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Daniel Merk
- Department of Pharmacy, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| |
Collapse
|
10
|
Higashimura N, Hamada A, Banba S. Novel fungicide quinofumelin shows selectivity for fungal dihydroorotate dehydrogenase over the corresponding human enzyme. JOURNAL OF PESTICIDE SCIENCE 2023; 48:17-21. [PMID: 36874638 PMCID: PMC9978249 DOI: 10.1584/jpestics.d22-035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/23/2022] [Indexed: 06/18/2023]
Abstract
The species selectivity of class 2 dihydroorotate dehydrogenase (DHODH), a target enzyme for quinofumelin, was examined. The Homo sapiens DHODH (HsDHODH) assay system was developed to compare the selectivity of quinofumelin for fungi with that for mammals. The IC50 values of quinofumelin for Pyricularia oryzae DHODH (PoDHODH) and HsDHODH were 2.8 nM and >100 µM, respectively. Quinofumelin was highly selective for fungal over human DHODH. Additionally, we constructed recombinant P. oryzae mutants where PoDHODH (PoPYR4) or HsDHODH was inserted into the PoPYR4 disruption mutant. At quinofumelin concentration of 0.01-1 ppm, the PoPYR4 insertion mutants could not grow, but the HsDHODH gene-insertion mutants thrived. This indicates that HsDHODH is a substitute for PoDHODH, and quinofumelin could not inhibit HsDHODH as in the HsDHODH enzyme assay. Comparing the amino acid sequences of human and fungal DHODHs indicates that the significant difference at the ubiquinone-binding site contributes to the species selectivity of quinofumelin.
Collapse
Affiliation(s)
| | - Akira Hamada
- Agrochemicals Research Center, Mitsui Chemicals Agro, Inc
| | - Shinichi Banba
- Agrochemicals Research Center, Mitsui Chemicals Agro, Inc
| |
Collapse
|
11
|
Petrović MM, Roschger C, Lang K, Zierer A, Mladenović M, Trifunović S, Mandić B, Joksović MD. Synthesis and biological evaluation of new quinoline-4-carboxylic acid-chalcone hybrids as dihydroorotate dehydrogenase inhibitors. Arch Pharm (Weinheim) 2023; 356:e2200374. [PMID: 36372522 DOI: 10.1002/ardp.202200374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/02/2022] [Accepted: 10/07/2022] [Indexed: 11/15/2022]
Abstract
Fourteen novel quinoline-4-carboxylic acid-chalcone hybrids were obtained via Claisen-Schmidt condensation and evaluated as potential human dihydroorotate dehydrogenase (hDHODH) inhibitors. The ketone precursor 2 was synthesized by the Pfitzinger reaction and used for further derivatization at position 3 of the quinoline ring for the first time. Six compounds showed better hDHODH inhibitory activity than the reference drug leflunomide, with IC50 values ranging from 0.12 to 0.58 μM. The bioactive conformations of the compounds within hDHODH were resolved by means of molecular docking, revealing their tendency to occupy the narrow tunnel of hDHODH within the N-terminus and to prevent ubiquinone as the second cofactor from easily approaching the flavin mononucleotide as a cofactor for the redox reaction within the redox site. The results of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed that 4d and 4h demonstrated the highest cytotoxic activity against the A375 cell line, with IC50 values of 5.0 and 6.8 µM, respectively. The lipophilicity of the synthesized hybrids was obtained experimentally and expressed as logD7.4 values at physiologicalpH while the solubility assay was conducted to define physicochemical characteristics influencing the ADMET properties.
Collapse
Affiliation(s)
- Milena M Petrović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Cornelia Roschger
- Medical Faculty, Johannes Kepler University Linz, University Clinic for Cardiac-, Vascular- and Thoracic Surgery, Linz, Austria
| | - Kevin Lang
- Medical Faculty, Johannes Kepler University Linz, University Clinic for Cardiac-, Vascular- and Thoracic Surgery, Linz, Austria
| | - Andreas Zierer
- Medical Faculty, Johannes Kepler University Linz, University Clinic for Cardiac-, Vascular- and Thoracic Surgery, Linz, Austria
| | - Milan Mladenović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | | | - Boris Mandić
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Milan D Joksović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
12
|
Philippov I, Gatilov Y, Sonina A, Vorob’ev A. Oxidative [3+2]Cycloaddition of Alkynylphosphonates with Heterocyclic N-Imines: Synthesis of Pyrazolo[1,5- a]Pyridine-3-phosphonates. Molecules 2022; 27:molecules27227913. [PMID: 36432015 PMCID: PMC9694626 DOI: 10.3390/molecules27227913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022] Open
Abstract
A series of pyrazolo[1,5-a]pyridine-3-ylphosphonates were prepared with moderate to good yields by the oxidative [3+2]cycloaddition of 2-subtituted ethynylphosphonates with in situ generated pyridinium-N-imines and their annulated analogs. 2-Aliphatic and 2-Ph acetylenes demonstrate low activity, and the corresponding pyrazolopyridines were achieved with a moderate yield in the presence of 10 mol% Fe(NO3)3·9H2O. At the same time, tetraethyl ethynylbisphosphonate, diethyl 2-TMS- and 2-OPh-ethynylphosphonates possess much greater reactivity and the corresponding pyrazolo[1,5-a]pyridines, and their annulated derivatives were obtained with good to excellent yields without any catalyst. 2-Halogenated ethynylphosphonates also readily reacted with pyridinium-N-imines, forming complex mixtures containing poor amounts of 2-halogenated pyrazolopyridines.
Collapse
Affiliation(s)
- Igor Philippov
- Novosibirsk Institute of Organic Chemistry SB RAS, 9 Lavrentiev Avenue, 630090 Novosibirsk, Russia
| | - Yuriy Gatilov
- Novosibirsk Institute of Organic Chemistry SB RAS, 9 Lavrentiev Avenue, 630090 Novosibirsk, Russia
| | - Alina Sonina
- Novosibirsk Institute of Organic Chemistry SB RAS, 9 Lavrentiev Avenue, 630090 Novosibirsk, Russia
| | - Aleksey Vorob’ev
- Novosibirsk Institute of Organic Chemistry SB RAS, 9 Lavrentiev Avenue, 630090 Novosibirsk, Russia
- Department of Natural Science, Faculty of Organic Chemistry, Novosibirsk State University, 1 Pirogova Street, 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-952-9488714
| |
Collapse
|
13
|
Sibille G, Luganini A, Sainas S, Boschi D, Lolli ML, Gribaudo G. The Novel hDHODH Inhibitor MEDS433 Prevents Influenza Virus Replication by Blocking Pyrimidine Biosynthesis. Viruses 2022; 14:v14102281. [PMID: 36298835 PMCID: PMC9611833 DOI: 10.3390/v14102281] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2022] Open
Abstract
The pharmacological management of influenza virus (IV) infections still poses a series of challenges due to the limited anti-IV drug arsenal. Therefore, the development of new anti-influenza agents effective against antigenically different IVs is therefore an urgent priority. To meet this need, host-targeting antivirals (HTAs) can be evaluated as an alternative or complementary approach to current direct-acting agents (DAAs) for the therapy of IV infections. As a contribution to this antiviral strategy, in this study, we characterized the anti-IV activity of MEDS433, a novel small molecule inhibitor of the human dihydroorotate dehydrogenase (hDHODH), a key cellular enzyme of the de novo pyrimidine biosynthesis pathway. MEDS433 exhibited a potent antiviral activity against IAV and IBV replication, which was reversed by the addition of exogenous uridine and cytidine or the hDHODH product orotate, thus indicating that MEDS433 targets notably hDHODH activity in IV-infected cells. When MEDS433 was used in combination either with dipyridamole (DPY), an inhibitor of the pyrimidine salvage pathway, or with an anti-IV DAA, such as N4-hydroxycytidine (NHC), synergistic anti-IV activities were observed. As a whole, these results indicate MEDS433 as a potential HTA candidate to develop novel anti-IV intervention approaches, either as a single agent or in combination regimens with DAAs.
Collapse
Affiliation(s)
- Giulia Sibille
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
| | - Anna Luganini
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
| | - Stefano Sainas
- Department of Sciences and Drug Technology, University of Torino, 10125 Torino, Italy
| | - Donatella Boschi
- Department of Sciences and Drug Technology, University of Torino, 10125 Torino, Italy
| | - Marco Lucio Lolli
- Department of Sciences and Drug Technology, University of Torino, 10125 Torino, Italy
| | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
- Correspondence: ; Tel.: +39-011-6704648
| |
Collapse
|
14
|
Sainas S, Giorgis M, Circosta P, Poli G, Alberti M, Passoni A, Gaidano V, Pippione AC, Vitale N, Bonanni D, Rolando B, Cignetti A, Ramondetti C, Lanno A, Ferraris DM, Canepa B, Buccinnà B, Piccinini M, Rizzi M, Saglio G, Al-Karadaghi S, Boschi D, Miggiano R, Tuccinardi T, Lolli ML. Targeting Acute Myelogenous Leukemia Using Potent Human Dihydroorotate Dehydrogenase Inhibitors Based on the 2-Hydroxypyrazolo[1,5- a]pyridine Scaffold: SAR of the Aryloxyaryl Moiety. J Med Chem 2022; 65:12701-12724. [PMID: 36162075 PMCID: PMC9574863 DOI: 10.1021/acs.jmedchem.2c00496] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Indexed: 11/28/2022]
Abstract
In recent years, human dihydroorotate dehydrogenase inhibitors have been associated with acute myelogenous leukemia as well as studied as potent host targeting antivirals. Starting from MEDS433 (IC50 1.2 nM), we kept improving the structure-activity relationship of this class of compounds characterized by 2-hydroxypyrazolo[1,5-a]pyridine scaffold. Using an in silico/crystallography supported design, we identified compound 4 (IC50 7.2 nM), characterized by the presence of a decorated aryloxyaryl moiety that replaced the biphenyl scaffold, with potent inhibition and pro-differentiating abilities on AML THP1 cells (EC50 74 nM), superior to those of brequinar (EC50 249 nM) and boosted when in combination with dipyridamole. Finally, compound 4 has an extremely low cytotoxicity on non-AML cells as well as MEDS433; it has shown a significant antileukemic activity in vivo in a xenograft mouse model of AML.
Collapse
Affiliation(s)
- Stefano Sainas
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Marta Giorgis
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Paola Circosta
- Department
of Clinical and Biological Sciences, University
of Turin, Regione Gonzole 10, Orbassano, Turin 10043, Italy
- Molecular
Biotechnology Center, University of Turin, Via Nizza 52, Turin 10126, Italy
| | - Giulio Poli
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Marta Alberti
- Department
of Pharmaceutical Sciences, University of
Piemonte Orientale, Via
G. Bovio 6, Novara 28100, Italy
| | - Alice Passoni
- Laboratory
of Mass Spectrometry, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Valentina Gaidano
- Division
of Hematology and Cell Therapy, AO Ordine
Mauriziano, Largo Filippo
Turati, 62, Turin 10128, Italy
| | - Agnese C. Pippione
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Nicoletta Vitale
- Department
of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin 10126, Italy
| | - Davide Bonanni
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
- Life
Science Department, University of Modena, Via Università 4, Modena 41121, Italy
| | - Barbara Rolando
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Alessandro Cignetti
- Division
of Hematology and Cell Therapy, AO Ordine
Mauriziano, Largo Filippo
Turati, 62, Turin 10128, Italy
| | - Cristina Ramondetti
- Department
of Oncology, University of Turin, Via Michelangelo 27/B, Turin 10125, Italy
| | - Alessia Lanno
- Laboratory
of Mass Spectrometry, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milan 20156, Italy
| | - Davide M. Ferraris
- Department
of Pharmaceutical Sciences, University of
Piemonte Orientale, Via
G. Bovio 6, Novara 28100, Italy
| | - Barbara Canepa
- GEM FORLAB, Via Ing.
Comotto 36, Caluso, Turin, 10014, Italy
| | - Barbara Buccinnà
- Department
of Oncology, University of Turin, Via Michelangelo 27/B, Turin 10125, Italy
| | - Marco Piccinini
- Department
of Oncology, University of Turin, Via Michelangelo 27/B, Turin 10125, Italy
| | - Menico Rizzi
- Department
of Pharmaceutical Sciences, University of
Piemonte Orientale, Via
G. Bovio 6, Novara 28100, Italy
| | - Giuseppe Saglio
- Department
of Clinical and Biological Sciences, University
of Turin, Regione Gonzole 10, Orbassano, Turin 10043, Italy
- Division
of Hematology and Cell Therapy, AO Ordine
Mauriziano, Largo Filippo
Turati, 62, Turin 10128, Italy
| | - Salam Al-Karadaghi
- Department
of Biochemistry and Structural Biology, Lund University, Naturvetarvägen
14, Box 124, Lund 221 00, Sweden
| | - Donatella Boschi
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Riccardo Miggiano
- Department
of Pharmaceutical Sciences, University of
Piemonte Orientale, Via
G. Bovio 6, Novara 28100, Italy
| | - Tiziano Tuccinardi
- Molecular
Biotechnology Center, University of Turin, Via Nizza 52, Turin 10126, Italy
| | - Marco L. Lolli
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| |
Collapse
|
15
|
Li C, Zhou Y, Xu J, Zhou X, Liu S, Huang Z, Qiu Z, Zeng T, Gou K, Tao L, Zhong X, Yang X, Zhou Y, Su N, Chen Q, Zhao Y, Luo Y. Discovery of potent human dihydroorotate dehydrogenase inhibitors based on a benzophenone scaffold. Eur J Med Chem 2022; 243:114737. [PMID: 36115209 DOI: 10.1016/j.ejmech.2022.114737] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/20/2022] [Accepted: 08/29/2022] [Indexed: 12/26/2022]
Abstract
Blocking the de novo biosynthesis of pyrimidine by inhibiting human dihydroorotate dehydrogenase (hDHODH) is an effective way to suppress the proliferation of cancer cells and activated lymphocytes. Herein, eighteen teriflunomide derivatives and four ASLAN003 derivatives were designed and synthesized as novel hDHODH inhibitors based on a benzophenone scaffold. The optimal compound 7d showed a potent hDHODH inhibitory activity with an IC50 value of 10.9 nM, and displayed promising antiproliferative activities against multiple human cancer cells with IC50 values of 0.1-0.8 μM. Supplementation of exogenous uridine rescued the cell viability of 7d-treated Raji and HCT116 cells. Meanwhile, 7d significantly induced cell cycle S-phase arrest in Raji and HCT116 cells. Furthermore, 7d exhibited favorable safety profiles in mice and displayed effective antitumor activities with tumor growth inhibition (TGI) rates of 58.3% and 42.1% at an oral dosage of 30 mg/kg in Raji and HCT116 cells xenograft models, respectively. Taken together, these findings provide a promising hDHODH inhibitor 7d with potential activities against some tumors.
Collapse
Affiliation(s)
- Chungen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Yue Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Xia Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Song Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Zongkai Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Zhiqiang Qiu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Ting Zeng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Kun Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Xi Zhong
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xiaowei Yang
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yang Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Na Su
- Department of Pharmacy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Qiang Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China; Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
16
|
Sepúlveda CS, García CC, Damonte EB. Inhibitors of Nucleotide Biosynthesis as Candidates for a Wide Spectrum of Antiviral Chemotherapy. Microorganisms 2022; 10:1631. [PMID: 36014049 PMCID: PMC9413629 DOI: 10.3390/microorganisms10081631] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Emerging and re-emerging viruses have been a challenge in public health in recent decades. Host-targeted antivirals (HTA) directed at cellular molecules or pathways involved in virus multiplication represent an interesting strategy to combat viruses presently lacking effective chemotherapy. HTA could provide a wide range of agents with inhibitory activity against current and future viruses that share similar host requirements and reduce the possible selection of antiviral-resistant variants. Nucleotide metabolism is one of the more exploited host metabolic pathways as a potential antiviral target for several human viruses. This review focuses on the antiviral properties of the inhibitors of pyrimidine and purine nucleotide biosynthesis, with an emphasis on the rate-limiting enzymes dihydroorotate dehydrogenase (DHODH) and inosine monophosphate dehydrogenase (IMPDH) for which there are old and new drugs active against a broad spectrum of pathogenic viruses.
Collapse
Affiliation(s)
- Claudia Soledad Sepúlveda
- Laboratory of Virology, Biochemistry Department, School of Sciences, University of Buenos Aires (UBA), Ciudad Universitaria, Buenos Aires 1428, Argentina
- Institute of Biochemistry of the School of Sciences (IQUIBICEN), CONICET-UBA, Ciudad Universitaria, Buenos Aires 1428, Argentina
| | - Cybele Carina García
- Laboratory of Virology, Biochemistry Department, School of Sciences, University of Buenos Aires (UBA), Ciudad Universitaria, Buenos Aires 1428, Argentina
- Institute of Biochemistry of the School of Sciences (IQUIBICEN), CONICET-UBA, Ciudad Universitaria, Buenos Aires 1428, Argentina
| | - Elsa Beatriz Damonte
- Laboratory of Virology, Biochemistry Department, School of Sciences, University of Buenos Aires (UBA), Ciudad Universitaria, Buenos Aires 1428, Argentina
- Institute of Biochemistry of the School of Sciences (IQUIBICEN), CONICET-UBA, Ciudad Universitaria, Buenos Aires 1428, Argentina
| |
Collapse
|
17
|
Dihydroorotate dehydrogenase inhibition reveals metabolic vulnerability in chronic myeloid leukemia. Cell Death Dis 2022; 13:576. [PMID: 35773274 PMCID: PMC9247109 DOI: 10.1038/s41419-022-05028-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 01/21/2023]
Abstract
The development of different generations of BCR-ABL1 tyrosine kinase inhibitors (TKIs) has led to the high overall survival of chronic myeloid leukemia (CML) patients. However, there are CML patients who show resistance to TKI therapy and are prone to progress to more advanced phases of the disease. So, implementing an alternative approach for targeting TKIs insensitive cells would be of the essence. Dihydroorotate dehydrogenase (DHODH) is an enzyme in the de novo pyrimidine biosynthesis pathway that is located in the inner membrane of mitochondria. Here, we found that CML cells are vulnerable to DHODH inhibition mediated by Meds433, a new and potent DHODH inhibitor recently developed by our group. Meds433 significantly activates the apoptotic pathway and leads to the reduction of amino acids and induction of huge metabolic stress in CML CD34+ cells. Altogether, our study shows that DHODH inhibition is a promising approach for targeting CML stem/progenitor cells and may help more patients discontinue the therapy.
Collapse
|
18
|
Galati S, Sainas S, Giorgis M, Boschi D, Lolli ML, Ortore G, Poli G, Tuccinardi T. Identification of Human Dihydroorotate Dehydrogenase Inhibitor by a Pharmacophore-Based Virtual Screening Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123660. [PMID: 35744791 PMCID: PMC9228440 DOI: 10.3390/molecules27123660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022]
Abstract
Human dihydroorotate dehydrogenase (hDHODH) is an enzyme belonging to a flavin mononucleotide (FMN)-dependent family involved in de novo pyrimidine biosynthesis, a key biological pathway for highly proliferating cancer cells and pathogens. In fact, hDHODH proved to be a promising therapeutic target for the treatment of acute myelogenous leukemia, multiple myeloma, and viral and bacterial infections; therefore, the identification of novel hDHODH ligands represents a hot topic in medicinal chemistry. In this work, we reported a virtual screening study for the identification of new promising hDHODH inhibitors. A pharmacophore-based approach combined with a consensus docking analysis and molecular dynamics simulations was applied to screen a large database of commercial compounds. The whole virtual screening protocol allowed for the identification of a novel compound that is endowed with promising inhibitory activity against hDHODH and is structurally different from known ligands. These results validated the reliability of the in silico workflow and provided a valuable starting point for hit-to-lead and future lead optimization studies aimed at the development of new potent hDHODH inhibitors.
Collapse
Affiliation(s)
- Salvatore Galati
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (S.G.); (G.O.); (T.T.)
| | - Stefano Sainas
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (S.S.); (M.G.); (D.B.); (M.L.L.)
| | - Marta Giorgis
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (S.S.); (M.G.); (D.B.); (M.L.L.)
| | - Donatella Boschi
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (S.S.); (M.G.); (D.B.); (M.L.L.)
| | - Marco L. Lolli
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (S.S.); (M.G.); (D.B.); (M.L.L.)
| | - Gabriella Ortore
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (S.G.); (G.O.); (T.T.)
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (S.G.); (G.O.); (T.T.)
- Correspondence: ; Tel.: +39-050-221-9603
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (S.G.); (G.O.); (T.T.)
| |
Collapse
|
19
|
Zheng Y, Li S, Song K, Ye J, Li W, Zhong Y, Feng Z, Liang S, Cai Z, Xu K. A Broad Antiviral Strategy: Inhibitors of Human DHODH Pave the Way for Host-Targeting Antivirals against Emerging and Re-Emerging Viruses. Viruses 2022; 14:v14050928. [PMID: 35632670 PMCID: PMC9146014 DOI: 10.3390/v14050928] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 12/30/2022] Open
Abstract
New strategies to rapidly develop broad-spectrum antiviral therapies are urgently required for emerging and re-emerging viruses. Host-targeting antivirals (HTAs) that target the universal host factors necessary for viral replication are the most promising approach, with broad-spectrum, foresighted function, and low resistance. We and others recently identified that host dihydroorotate dehydrogenase (DHODH) is one of the universal host factors essential for the replication of many acute-infectious viruses. DHODH is a rate-limiting enzyme catalyzing the fourth step in de novo pyrimidine synthesis. Therefore, it has also been developed as a therapeutic target for many diseases relying on cellular pyrimidine resources, such as cancers, autoimmune diseases, and viral or bacterial infections. Significantly, the successful use of DHODH inhibitors (DHODHi) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection further supports the application prospects. This review focuses on the advantages of HTAs and the antiviral effects of DHODHi with clinical applications. The multiple functions of DHODHi in inhibiting viral replication, stimulating ISGs expression, and suppressing cytokine storms make DHODHi a potent strategy against viral infection.
Collapse
Affiliation(s)
- Yucheng Zheng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (Y.Z.); (K.S.); (J.Y.); (W.L.); (Y.Z.); (S.L.); (Z.C.)
| | - Shiliang Li
- State Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; (S.L.); (Z.F.)
| | - Kun Song
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (Y.Z.); (K.S.); (J.Y.); (W.L.); (Y.Z.); (S.L.); (Z.C.)
| | - Jiajie Ye
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (Y.Z.); (K.S.); (J.Y.); (W.L.); (Y.Z.); (S.L.); (Z.C.)
| | - Wenkang Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (Y.Z.); (K.S.); (J.Y.); (W.L.); (Y.Z.); (S.L.); (Z.C.)
| | - Yifan Zhong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (Y.Z.); (K.S.); (J.Y.); (W.L.); (Y.Z.); (S.L.); (Z.C.)
| | - Ziyan Feng
- State Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; (S.L.); (Z.F.)
| | - Simeng Liang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (Y.Z.); (K.S.); (J.Y.); (W.L.); (Y.Z.); (S.L.); (Z.C.)
| | - Zeng Cai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (Y.Z.); (K.S.); (J.Y.); (W.L.); (Y.Z.); (S.L.); (Z.C.)
- Institute for Vaccine Research, Animal Biosafety Level 3 Laboratory at Center for Animal Experiments, Wuhan University, Wuhan 430072, China
| | - Ke Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; (Y.Z.); (K.S.); (J.Y.); (W.L.); (Y.Z.); (S.L.); (Z.C.)
- Institute for Vaccine Research, Animal Biosafety Level 3 Laboratory at Center for Animal Experiments, Wuhan University, Wuhan 430072, China
- Correspondence: ; Tel.: +86-27-68756997; Fax: +86-27-68754592
| |
Collapse
|
20
|
Zhang L, Zhang J, Wang J, Ren C, Tang P, Ouyang L, Wang Y. Recent advances of human dihydroorotate dehydrogenase inhibitors for cancer therapy: Current development and future perspectives. Eur J Med Chem 2022; 232:114176. [DOI: 10.1016/j.ejmech.2022.114176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
|
21
|
Li C, Yang X, Luo Y, Liu H, Zhong X, Zhou X, Zeng T, Tao L, Zhou Y, Gou K, Yang X, Liu X, Chen Q, Zhao Y, Luo Y. Design, Synthesis, and Biological Evaluation of a Novel Series of Teriflunomide Derivatives as Potent Human Dihydroorotate Dehydrogenase Inhibitors for Malignancy Treatment. J Med Chem 2021; 64:18175-18192. [PMID: 34905371 DOI: 10.1021/acs.jmedchem.1c01711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human dihydroorotate dehydrogenase (hDHODH), as the fourth and rate-limiting enzyme of the de novo pyrimidine synthesis pathway, is regarded as an attractive target for malignancy therapy. In the present study, a novel series of teriflunomide derivatives were designed, synthesized, and evaluated as hDHODH inhibitors. 13t was the optimal compound with promising enzymatic activity (IC50 = 16.0 nM), potent antiproliferative activity against human lymphoma Raji cells (IC50 = 7.7 nM), and excellent aqueous solubility (20.1 mg/mL). Mechanistically, 13t directly inhibited hDHODH and induced cell cycle S-phase arrest in Raji cells. The acute toxicity assay indicated a favorable safety profile of 13t. Notably, 13t displayed significant tumor growth inhibition activity with a tumor growth inhibition (TGI) rate of 81.4% at 30 mg/kg in a Raji xenograft model. Together, 13t is a promising inhibitor of hDHODH and a preclinical candidate for antitumor therapy, especially for lymphoma.
Collapse
Affiliation(s)
- Chungen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Xiaowei Yang
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Huan Liu
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xi Zhong
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xia Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Ting Zeng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Lei Tao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Yue Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Kun Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Xinyu Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Xiaocong Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Qiang Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Yinglan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.,Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| |
Collapse
|
22
|
Luo X, Cai G, Guo Y, Gao C, Huang W, Zhang Z, Lu H, Liu K, Chen J, Xiong X, Lei J, Zhou X, Wang J, Liu Y. Exploring Marine-Derived Ascochlorins as Novel Human Dihydroorotate Dehydrogenase Inhibitors for Treatment of Triple-Negative Breast Cancer. J Med Chem 2021; 64:13918-13932. [PMID: 34516133 DOI: 10.1021/acs.jmedchem.1c01402] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human dihydroorotate dehydrogenase (hDHODH) is an attractive tumor target essential to de novo pyrimidine biosynthesis. Novel potent hDHODH inhibitors with low toxicity are urgently needed. Herein, we demonstrate the isolation of 25 ascochlorin (ASC) derivatives, including 13 new ones, from the coral-derived fungus Acremonium sclerotigenum, and several of them showed pronounced inhibitions against hDHODH and triple-negative breast cancer (TNBC) cell lines, MDA-MB-231/-468. Interestingly, we found that hDHODH is required for proliferation and survival of TNBC cells, and several ASCs significantly inhibited TNBC cell growth and induced their apoptosis via hDHODH inhibition. Furthermore, the novel and potent hDHODH inhibitors (1 and 21) efficiently suppressed tumor growth in patient-derived TNBC xenograft models without obvious body weight loss or overt toxicity in mice. Collectively, our findings offered a novel lead scaffold as the hDHODH inhibitor for further development of potent anticancer agents and a potential therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Xiaowei Luo
- Institute of Marine Drugs/Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, P.R. China
| | - Guodi Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Yinfeng Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Chenghai Gao
- Institute of Marine Drugs/Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, P.R. China
| | - Weifeng Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Zhenhua Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Humu Lu
- Institute of Marine Drugs/Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, P.R. China
| | - Kai Liu
- Institute of Marine Drugs/Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, P.R. China
| | - Jianghe Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Xiaofeng Xiong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Jinping Lei
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, P.R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, P.R. China
| | - Junjian Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Yonghong Liu
- Institute of Marine Drugs/Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, P.R. China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, P.R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, P.R. China
| |
Collapse
|
23
|
Calistri A, Luganini A, Mognetti B, Elder E, Sibille G, Conciatori V, Del Vecchio C, Sainas S, Boschi D, Montserrat N, Mirazimi A, Lolli ML, Gribaudo G, Parolin C. The New Generation hDHODH Inhibitor MEDS433 Hinders the In Vitro Replication of SARS-CoV-2 and Other Human Coronaviruses. Microorganisms 2021; 9:microorganisms9081731. [PMID: 34442810 PMCID: PMC8398173 DOI: 10.3390/microorganisms9081731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/22/2022] Open
Abstract
Although coronaviruses (CoVs) have long been predicted to cause zoonotic diseases and pandemics with high probability, the lack of effective anti-pan-CoVs drugs rapidly usable against the emerging SARS-CoV-2 actually prevented a promptly therapeutic intervention for COVID-19. Development of host-targeting antivirals could be an alternative strategy for the control of emerging CoVs infections, as they could be quickly repositioned from one pandemic event to another. To contribute to these pandemic preparedness efforts, here we report on the broad-spectrum CoVs antiviral activity of MEDS433, a new inhibitor of the human dihydroorotate dehydrogenase (hDHODH), a key cellular enzyme of the de novo pyrimidine biosynthesis pathway. MEDS433 inhibited the in vitro replication of hCoV-OC43 and hCoV-229E, as well as of SARS-CoV-2, at low nanomolar range. Notably, the anti-SARS-CoV-2 activity of MEDS433 against SARS-CoV-2 was also observed in kidney organoids generated from human embryonic stem cells. Then, the antiviral activity of MEDS433 was reversed by the addition of exogenous uridine or the product of hDHODH, the orotate, thus confirming hDHODH as the specific target of MEDS433 in hCoVs-infected cells. Taken together, these findings suggest MEDS433 as a potential candidate to develop novel drugs for COVID-19, as well as broad-spectrum antiviral agents exploitable for future CoVs threats.
Collapse
Affiliation(s)
- Arianna Calistri
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.C.); (V.C.); (C.D.V.); (C.P.)
| | - Anna Luganini
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (A.L.); (B.M.); (G.S.)
| | - Barbara Mognetti
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (A.L.); (B.M.); (G.S.)
| | - Elizabeth Elder
- Public Health Agency of Sweden, 17182 Solna, Sweden; (E.E.); (A.M.)
| | - Giulia Sibille
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (A.L.); (B.M.); (G.S.)
| | - Valeria Conciatori
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.C.); (V.C.); (C.D.V.); (C.P.)
| | - Claudia Del Vecchio
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.C.); (V.C.); (C.D.V.); (C.P.)
| | - Stefano Sainas
- Department of Sciences and Drug Technology, University of Turin, 10125 Turin, Italy; (S.S.); (D.B.); (M.L.L.)
| | - Donatella Boschi
- Department of Sciences and Drug Technology, University of Turin, 10125 Turin, Italy; (S.S.); (D.B.); (M.L.L.)
| | - Nuria Montserrat
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), 08028 Barcelona, Spain;
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain
| | - Ali Mirazimi
- Public Health Agency of Sweden, 17182 Solna, Sweden; (E.E.); (A.M.)
- Karolinska Institute and Karolinska University Hospital, Department of Laboratory Medicine, Unit of Clinical Microbiology, 17177 Stockholm, Sweden
- National Veterinary Institute, 75189 Uppsala, Sweden
| | - Marco Lucio Lolli
- Department of Sciences and Drug Technology, University of Turin, 10125 Turin, Italy; (S.S.); (D.B.); (M.L.L.)
| | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (A.L.); (B.M.); (G.S.)
- Correspondence: ; Tel.: +39-011-6704648
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy; (A.C.); (V.C.); (C.D.V.); (C.P.)
| |
Collapse
|
24
|
Sainas S, Giorgis M, Circosta P, Gaidano V, Bonanni D, Pippione AC, Bagnati R, Passoni A, Qiu Y, Cojocaru CF, Canepa B, Bona A, Rolando B, Mishina M, Ramondetti C, Buccinnà B, Piccinini M, Houshmand M, Cignetti A, Giraudo E, Al-Karadaghi S, Boschi D, Saglio G, Lolli ML. Targeting Acute Myelogenous Leukemia Using Potent Human Dihydroorotate Dehydrogenase Inhibitors Based on the 2-Hydroxypyrazolo[1,5- a]pyridine Scaffold: SAR of the Biphenyl Moiety. J Med Chem 2021; 64:5404-5428. [PMID: 33844533 PMCID: PMC8279415 DOI: 10.1021/acs.jmedchem.0c01549] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Indexed: 02/08/2023]
Abstract
The connection with acute myelogenous leukemia (AML) of dihydroorotate dehydrogenase (hDHODH), a key enzyme in pyrimidine biosynthesis, has attracted significant interest from pharma as a possible AML therapeutic target. We recently discovered compound 1, a potent hDHODH inhibitor (IC50 = 1.2 nM), able to induce myeloid differentiation in AML cell lines (THP1) in the low nM range (EC50 = 32.8 nM) superior to brequinar's phase I/II clinical trial (EC50 = 265 nM). Herein, we investigate the 1 drug-like properties observing good metabolic stability and no toxic profile when administered at doses of 10 and 25 mg/kg every 3 days for 5 weeks (Balb/c mice). Moreover, in order to identify a backup compound, we investigate the SAR of this class of compounds. Inside the series, 17 is characterized by higher potency in inducing myeloid differentiation (EC50 = 17.3 nM), strong proapoptotic properties (EC50 = 20.2 nM), and low cytotoxicity toward non-AML cells (EC30(Jurkat) > 100 μM).
Collapse
Affiliation(s)
- Stefano Sainas
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Marta Giorgis
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Paola Circosta
- Department
of Clinical and Biological Sciences, University
of Turin, Regione Gonzole 10, Orbassano, Turin 10043, Italy
- Molecular
Biotechnology Center, University of Turin, Via Nizza 52, Turin 10126, Italy
| | - Valentina Gaidano
- Department
of Clinical and Biological Sciences, University
of Turin, Regione Gonzole 10, Orbassano, Turin 10043, Italy
- Division
of Hematology, AO SS Antonio e Biagio e
Cesare Arrigo, Via Venezia
16, Alessandria 15121, Italy
| | - Davide Bonanni
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Agnese C. Pippione
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Renzo Bagnati
- Department
of Environmental Health Sciences, Istituto
di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milano 20156, Italy
| | - Alice Passoni
- Department
of Environmental Health Sciences, Istituto
di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milano 20156, Italy
| | - Yaqi Qiu
- Laboratory
of Tumor Microenvironment, Candiolo Cancer
Institute, FPO, IRCCS, Candiolo, Strada Provinciale, 142-KM 3.95, Candiolo, Turin 10060, Italy
- Higher
Education Mega Center, Institutes for Life Sciences, South China University of Technology, Guangzhou 510641, China
| | - Carina Florina Cojocaru
- Laboratory
of Tumor Microenvironment, Candiolo Cancer
Institute, FPO, IRCCS, Candiolo, Strada Provinciale, 142-KM 3.95, Candiolo, Turin 10060, Italy
| | - Barbara Canepa
- Gem
Forlab srl, Via Ribes,
5, Colleretto Giacosa, Turin 10010, Italy
| | - Alessandro Bona
- Gem
Chimica srl, Via Maestri
del Lavoro, 25, Busca, Cuneo 12022, Italy
| | - Barbara Rolando
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Mariia Mishina
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Cristina Ramondetti
- Department
of Oncology, University of Turin, Via Michelangelo 27/B, Turin 10125, Italy
| | - Barbara Buccinnà
- Department
of Oncology, University of Turin, Via Michelangelo 27/B, Turin 10125, Italy
| | - Marco Piccinini
- Department
of Oncology, University of Turin, Via Michelangelo 27/B, Turin 10125, Italy
| | - Mohammad Houshmand
- Department
of Clinical and Biological Sciences, University
of Turin, Regione Gonzole 10, Orbassano, Turin 10043, Italy
- Molecular
Biotechnology Center, University of Turin, Via Nizza 52, Turin 10126, Italy
| | - Alessandro Cignetti
- Division
of Hematology and Cell Therapy, AO Ordine
Mauriziano, Largo Filippo Turati, 62, Turin 10128, Italy
| | - Enrico Giraudo
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
- Laboratory
of Tumor Microenvironment, Candiolo Cancer
Institute, FPO, IRCCS, Candiolo, Strada Provinciale, 142-KM 3.95, Candiolo, Turin 10060, Italy
| | - Salam Al-Karadaghi
- Department
of Biochemistry and Structural Biology, Lund University, Naturvetarvägen 14, Box 124, Lund 221 00, Sweden
| | - Donatella Boschi
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| | - Giuseppe Saglio
- Department
of Clinical and Biological Sciences, University
of Turin, Regione Gonzole 10, Orbassano, Turin 10043, Italy
- Division
of Hematology and Cell Therapy, AO Ordine
Mauriziano, Largo Filippo Turati, 62, Turin 10128, Italy
| | - Marco L. Lolli
- Department
of Drug Science and Technology, University
of Turin, Via P. Giuria 9, Turin 10125, Italy
| |
Collapse
|
25
|
Zhou Y, Tao L, Zhou X, Zuo Z, Gong J, Liu X, Zhou Y, Liu C, Sang N, Liu H, Zou J, Gou K, Yang X, Zhao Y. DHODH and cancer: promising prospects to be explored. Cancer Metab 2021; 9:22. [PMID: 33971967 PMCID: PMC8107416 DOI: 10.1186/s40170-021-00250-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/10/2021] [Indexed: 02/08/2023] Open
Abstract
Human dihydroorotate dehydrogenase (DHODH) is a flavin-dependent mitochondrial enzyme catalyzing the fourth step in the de novo pyrimidine synthesis pathway. It is originally a target for the treatment of the non-neoplastic diseases involving in rheumatoid arthritis and multiple sclerosis, and is re-emerging as a validated therapeutic target for cancer therapy. In this review, we mainly unravel the biological function of DHODH in tumor progression, including its crucial role in de novo pyrimidine synthesis and mitochondrial respiratory chain in cancer cells. Moreover, various DHODH inhibitors developing in the past decades are also been displayed, and the specific mechanism between DHODH and its additional effects are illustrated. Collectively, we detailly discuss the association between DHODH and tumors in recent years here, and believe it will provide significant evidences and potential strategies for utilizing DHODH as a potential target in preclinical and clinical cancer therapies.
Collapse
Affiliation(s)
- Yue Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lei Tao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xia Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zeping Zuo
- The Laboratory of Anesthesiology and Critical Care Medicine, Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jin Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaocong Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yang Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Chunqi Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Sang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Huan Liu
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jiao Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kun Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaowei Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yinglan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China. .,West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
26
|
Ahmed SK, Haese NN, Cowan JT, Pathak V, Moukha-Chafiq O, Smith VJ, Rodzinak KJ, Ahmad F, Zhang S, Bonin KM, Streblow AD, Streblow CE, Kreklywich CN, Morrison C, Sarkar S, Moorman N, Sander W, Allen R, DeFilippis V, Tekwani BL, Wu M, Hirsch AJ, Smith JL, Tower NA, Rasmussen L, Bostwick R, Maddry JA, Ananthan S, Gerdes JM, Augelli-Szafran CE, Suto MJ, Morrison TE, Heise MT, Streblow DN, Pathak AK. Targeting Chikungunya Virus Replication by Benzoannulene Inhibitors. J Med Chem 2021; 64:4762-4786. [PMID: 33835811 PMCID: PMC9774970 DOI: 10.1021/acs.jmedchem.0c02183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A benzo[6]annulene, 4-(tert-butyl)-N-(3-methoxy-5,6,7,8-tetrahydronaphthalen-2-yl) benzamide (1a), was identified as an inhibitor against Chikungunya virus (CHIKV) with antiviral activity EC90 = 1.45 μM and viral titer reduction (VTR) of 2.5 log at 10 μM with no observed cytotoxicity (CC50 = 169 μM) in normal human dermal fibroblast cells. Chemistry efforts to improve potency, efficacy, and drug-like properties of 1a resulted in a novel lead compound 8q, which possessed excellent cellular antiviral activity (EC90 = 270 nM and VTR of 4.5 log at 10 μM) and improved liver microsomal stability. CHIKV resistance to an analog of 1a, compound 1c, tracked to a mutation in the nsP3 macrodomain. Further mechanism of action studies showed compounds working through inhibition of human dihydroorotate dehydrogenase in addition to CHIKV nsP3 macrodomain. Moderate efficacy was observed in an in vivo CHIKV challenge mouse model for compound 8q as viral replication was rescued from the pyrimidine salvage pathway.
Collapse
Affiliation(s)
| | | | - Jaden T. Cowan
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205, United States
| | - Vibha Pathak
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205, United States
| | - Omar Moukha-Chafiq
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205, United States
| | - Valerie J. Smith
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205, United States
| | - Kevin J. Rodzinak
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205, United States
| | - Fahim Ahmad
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205, United States
| | - Sixue Zhang
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205, United States
| | - Kiley M. Bonin
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon 97006, United States
| | - Aaron D. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon 97006, United States
| | - Cassilyn E. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon 97006, United States
| | - Craig N. Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon 97006, United States
| | - Clayton Morrison
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Sanjay Sarkar
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Nathaniel Moorman
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Wes Sander
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Robbie Allen
- Oregon Translational Research and Development Institute, Portland, Oregon 97239, United States
| | - Victor DeFilippis
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon 97006, United States
| | - Babu L. Tekwani
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205, United States
| | - Mousheng Wu
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205, United States
| | - Alec J. Hirsch
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon 97006, United States
| | - Jessica L. Smith
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon 97006, United States
| | - Nichole A. Tower
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205, United States
| | - Lynn Rasmussen
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205, United States
| | - Robert Bostwick
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205, United States
| | - Joseph A. Maddry
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205, United States
| | - Subramaniam Ananthan
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205, United States
| | - John M Gerdes
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205, United States
| | | | - Mark J. Suto
- Drug Discovery Division, Southern Research, Birmingham, Alabama 35205, United States
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Mark T. Heise
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon 97006, United States
| | - Ashish K. Pathak
- Drug Discovery Division, Southern, Research, Birmingham, Alabama 35205, United States
| |
Collapse
|
27
|
Effective deploying of a novel DHODH inhibitor against herpes simplex type 1 and type 2 replication. Antiviral Res 2021; 189:105057. [PMID: 33716051 DOI: 10.1016/j.antiviral.2021.105057] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/28/2021] [Accepted: 03/03/2021] [Indexed: 12/18/2022]
Abstract
Emergence of drug resistance and adverse effects often affect the efficacy of nucleoside analogues in the therapy of Herpes simplex type 1 (HSV-1) and type 2 (HSV-2) infections. Host-targeting antivirals could therefore be considered as an alternative or complementary strategy in the management of HSV infections. To contribute to this advancement, here we report on the ability of a new generation inhibitor of a key cellular enzyme of de novo pyrimidine biosynthesis, the dihydroorotate dehydrogenase (DHODH), to inhibit HSV-1 and HSV-2 in vitro replication, with a potency comparable to that of the reference drug acyclovir. Analysis of the HSV replication cycle in MEDS433-treated cells revealed that it prevented the accumulation of viral genomes and reduced late gene expression, thus suggesting an impairment at a stage prior to viral DNA replication consistent with the ability of MEDS433 to inhibit DHODH activity. In fact, the anti-HSV activity of MEDS433 was abrogated by the addition of exogenous uridine or of the product of DHODH, the orotate, thus confirming DHODH as the MEDS433 specific target in HSV-infected cells. A combination of MEDS433 with dipyridamole (DPY), an inhibitor of the pyrimidine salvage pathway, was then observed to be effective in inhibiting HSV replication even in the presence of exogenous uridine, thus mimicking in vivo conditions. Finally, when combined with acyclovir and DPY in checkerboard experiments, MEDS433 exhibited highly synergistic antiviral activity. Taken together, these findings suggest that MEDS433 is a promising candidate as either single agent or in combination regimens with existing direct-acting anti-HSV drugs to develop new strategies for treatment of HSV infections.
Collapse
|
28
|
Gaidano V, Houshmand M, Vitale N, Carrà G, Morotti A, Tenace V, Rapelli S, Sainas S, Pippione AC, Giorgis M, Boschi D, Lolli ML, Cilloni D, Cignetti A, Saglio G, Circosta P. The Synergism between DHODH Inhibitors and Dipyridamole Leads to Metabolic Lethality in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:1003. [PMID: 33670894 PMCID: PMC7957697 DOI: 10.3390/cancers13051003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Dihydroorotate Dehydrogenase (DHODH) is a key enzyme of the de novo pyrimidine biosynthesis, whose inhibition can induce differentiation and apoptosis in acute myeloid leukemia (AML). DHODH inhibitors had shown promising in vitro and in vivo activity on solid tumors, but their effectiveness was not confirmed in clinical trials, probably because cancer cells exploited the pyrimidine salvage pathway to survive. Here, we investigated the antileukemic activity of MEDS433, the DHODH inhibitor developed by our group, against AML. Learning from previous failures, we mimicked human conditions (performing experiments in the presence of physiological uridine plasma levels) and looked for synergic combinations to boost apoptosis, including classical antileukemic drugs and dipyridamole, a blocker of the pyrimidine salvage pathway. MEDS433 induced apoptosis in multiple AML cell lines, not only as a consequence of differentiation, but also directly. Its combination with antileukemic agents further increased the apoptotic rate, but when experiments were performed in the presence of physiological uridine concentrations, results were less impressive. Conversely, the combination of MEDS433 with dipyridamole induced metabolic lethality and differentiation in all AML cell lines; this extraordinary synergism was confirmed on AML primary cells with different genetic backgrounds and was unaffected by physiological uridine concentrations, predicting in human activity.
Collapse
Affiliation(s)
- Valentina Gaidano
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (M.H.); (G.C.); (A.M.); (D.C.); (G.S.); (P.C.)
- Division of Hematology, A.O. SS Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Mohammad Houshmand
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (M.H.); (G.C.); (A.M.); (D.C.); (G.S.); (P.C.)
- Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy;
| | - Nicoletta Vitale
- Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy;
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy
| | - Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (M.H.); (G.C.); (A.M.); (D.C.); (G.S.); (P.C.)
- Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy;
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (M.H.); (G.C.); (A.M.); (D.C.); (G.S.); (P.C.)
| | - Valerio Tenace
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA;
| | - Stefania Rapelli
- Department of Life Sciences and System Biology, University of Turin, 10124 Turin, Italy;
| | - Stefano Sainas
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy; (S.S.); (A.C.P.); (M.G.); (D.B.); (M.L.L.)
| | - Agnese Chiara Pippione
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy; (S.S.); (A.C.P.); (M.G.); (D.B.); (M.L.L.)
| | - Marta Giorgis
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy; (S.S.); (A.C.P.); (M.G.); (D.B.); (M.L.L.)
| | - Donatella Boschi
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy; (S.S.); (A.C.P.); (M.G.); (D.B.); (M.L.L.)
| | - Marco Lucio Lolli
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy; (S.S.); (A.C.P.); (M.G.); (D.B.); (M.L.L.)
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (M.H.); (G.C.); (A.M.); (D.C.); (G.S.); (P.C.)
- University Division of Hematology and Cell Therapy, A.O. Ordine Mauriziano, University of Turin, 10128 Turin, Italy;
| | - Alessandro Cignetti
- University Division of Hematology and Cell Therapy, A.O. Ordine Mauriziano, University of Turin, 10128 Turin, Italy;
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (M.H.); (G.C.); (A.M.); (D.C.); (G.S.); (P.C.)
- University Division of Hematology and Cell Therapy, A.O. Ordine Mauriziano, University of Turin, 10128 Turin, Italy;
| | - Paola Circosta
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (M.H.); (G.C.); (A.M.); (D.C.); (G.S.); (P.C.)
- Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy;
| |
Collapse
|
29
|
Kadir MFA, Othman S, Nellore K. Dihydroorotate Dehydrogenase Inhibitors Promote Cell Cycle Arrest and Disrupt Mitochondria Bioenergetics in Ramos Cells. Curr Pharm Biotechnol 2021; 21:1654-1665. [PMID: 32525770 DOI: 10.2174/1389201021666200611113734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/10/2020] [Accepted: 05/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The re-emerging of targeting Dihydroorotate Dehydrogenase (DHODH) in cancer treatment particularly Acute Myelogenous Leukemia (AML) has corroborated the substantial role of DHODH in cancer and received the attention of many pharmaceutical industries. OBJECTIVE The effects of Brequinar Sodium (BQR) and 4SC-101 on lymphoblastoid cell lines were investigated. METHODS DHODH expression and cell proliferation inhibition of lymphoblastoid and lymphoma cell lines were analyzed using Western blot analysis and XTT assay, respectively. JC-1 probe and ATP biochemiluminescence kit were used to evaluate the mitochondrial membrane potential and ATP generation in these cell lines. Furthermore, we explored the cell cycle progression using Muse™ Cell Cycle Kit. RESULTS Ramos, SUDHL-1 and RPMI-1788 cells are fast-growing cells with equal expression of DHODH enzyme and sensitivity to DHODH inhibitors that showed that the inhibition of DHODH was not cancer-specific. In ATP depletion assay, the non-cancerous RPMI-1788 cells showed only a minor ATP reduction compared to Ramos and SUDHL-1 (cancer) cells. In the mechanistic impact of DHODH inhibitors on non-cancerous vs cancerous cells, the mitochondrial membrane potential assay revealed that significant depolarization and cytochrome c release occurred with DHODH inhibitors treatment in Ramos but not in the RPMI-1788 cells, indicating a different mechanism of proliferation inhibition in normal cells. CONCLUSION The findings of this study provide evidence that DHODH inhibitors perturb the proliferation of non-cancerous cells via a distinct mechanism compared to cancerous cells. These results may lead to strategies for overcoming the impact on non-cancerous cells during treatment with DHODH inhibitors, leading to a better therapeutic window in patients.
Collapse
Affiliation(s)
- Mohamad F A Kadir
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Shatrah Othman
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kavitha Nellore
- Department of Cell and Molecular Biology, Aurigene Discovery Technologies Pte Ltd, Bangalore, Karnataka, India
| |
Collapse
|
30
|
Cuthbertson CR, Guo H, Kyani A, Madak JT, Arabzada Z, Neamati N. The Dihydroorotate Dehydrogenase Inhibitor Brequinar Is Synergistic with ENT1/2 Inhibitors. ACS Pharmacol Transl Sci 2020; 3:1242-1252. [PMID: 33344900 DOI: 10.1021/acsptsci.0c00124] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Indexed: 02/06/2023]
Abstract
The dihydroorotate dehydrogenase (DHODH) inhibitor brequinar failed all clinical trials for solid tumors. To investigate mechanisms to increase brequinar's efficacy, we employed a combination strategy to simultaneously inhibit the nucleotide salvage pathways. Brequinar is synergistic with the equilibrative nucleoside transporter (ENT) inhibitor dipyridamole, but not the concentrative nucleoside transporter inhibitor phlorizin. This synergy carries over to ENT1/2 inhibition, but not ENT4. Our previously described brequinar analogue 41 was also synergistic with dipyridamole as were the FDA-approved DHODH inhibitors leflunomide and teriflunomide but the latter required much higher concentrations than brequinar. Therefore, a combination of brequinar and ENT inhibitors presents a potential anti-cancer strategy in select tumors.
Collapse
Affiliation(s)
- Christine R Cuthbertson
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Hui Guo
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Armita Kyani
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Joseph T Madak
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Zahra Arabzada
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy and the Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
31
|
Petrović MM, Roschger C, Chaudary S, Zierer A, Mladenović M, Jakovljević K, Marković V, Botta B, Joksović MD. Potent human dihydroorotate dehydrogenase inhibitory activity of new quinoline-4-carboxylic acids derived from phenolic aldehydes: Synthesis, cytotoxicity, lipophilicity and molecular docking studies. Bioorg Chem 2020; 105:104373. [DOI: 10.1016/j.bioorg.2020.104373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/25/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022]
|
32
|
Serafini M, Cordero-Sanchez C, Di Paola R, Bhela IP, Aprile S, Purghè B, Fusco R, Cuzzocrea S, Genazzani AA, Riva B, Pirali T. Store-Operated Calcium Entry as a Therapeutic Target in Acute Pancreatitis: Discovery and Development of Drug-Like SOCE Inhibitors. J Med Chem 2020; 63:14761-14779. [PMID: 33253576 PMCID: PMC7735735 DOI: 10.1021/acs.jmedchem.0c01305] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Store-operated calcium entry (SOCE) is important in the maintenance of calcium homeostasis and alterations in this mechanism are responsible for several pathological conditions, including acute pancreatitis. Since the discovery of SOCE, many inhibitors have been identified and extensively used as chemical probes to better elucidate the role played by this cellular mechanism. Nevertheless, only a few have demonstrated drug-like properties so far. Here, we report a class of biphenyl triazoles among which stands out a lead compound, 34, that is endowed with an inhibitory activity at nanomolar concentrations, suitable pharmacokinetic properties, and in vivo efficacy in a mouse model of acute pancreatitis.
Collapse
Affiliation(s)
- Marta Serafini
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara 28100, Italy
| | - Celia Cordero-Sanchez
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara 28100, Italy
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Enviromental Sciences, Università di Messina, Messina 98166, Italy
| | - Irene P Bhela
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara 28100, Italy
| | - Silvio Aprile
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara 28100, Italy
| | - Beatrice Purghè
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara 28100, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Enviromental Sciences, Università di Messina, Messina 98166, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Enviromental Sciences, Università di Messina, Messina 98166, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara 28100, Italy
| | - Beatrice Riva
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara 28100, Italy.,ChemICare S.r.l., Enne3, Novara 28100, Italy
| | - Tracey Pirali
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara 28100, Italy.,ChemICare S.r.l., Enne3, Novara 28100, Italy
| |
Collapse
|
33
|
DeRatt LG, Christine Pietsch E, Tanner A, Shaffer P, Jacoby E, Wang W, Kazmi F, Zhang X, Attar RM, Edwards JP, Kuduk SD. A carboxylic acid isostere screen of the DHODH inhibitor Brequinar. Bioorg Med Chem Lett 2020; 30:127589. [PMID: 33007394 DOI: 10.1016/j.bmcl.2020.127589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
Dihydroorotate dehydrogenase (DHODH) enzymatic activity impacts many aspects critical to cell proliferation and survival. Recently, DHODH has been identified as a target for acute myeloid differentiation therapy. In preclinical models of AML, the DHODH inhibitor Brequinar (BRQ) demonstrated potent anti-leukemic activity. Herein we describe a carboxylic acid isostere study of Brequinar which revealed a more potent non-carboxylic acid derivative with improved cellular potency and good pharmacokinetic properties.
Collapse
Affiliation(s)
- Lindsey G DeRatt
- Discovery Chemistry, Janssen Pharmaceutical Research & Development, 1400 McKean Rd, Spring House, PA 19477, USA.
| | - E Christine Pietsch
- Oncology Discovery, Janssen Pharmaceutical Research & Development, 1400 McKean Rd, Spring House, PA 19477, USA
| | - Alexandra Tanner
- Discovery Technology and Molecular Pharmacology, Janssen Pharmaceutical Research & Development, Spring House, PA 19477, USA
| | - Paul Shaffer
- Structural and Protein Sciences, Janssen Pharmaceutical Research & Development, 1400 McKean Rd, Spring House, PA 19477, USA
| | - Edgar Jacoby
- Discovery Chemistry, Janssen Pharmaceutical Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Weixue Wang
- Discovery Technology and Molecular Pharmacology, Janssen Pharmaceutical Research & Development, Spring House, PA 19477, USA
| | - Faraz Kazmi
- Drug Metabolism and Pharmacokinetics, Janssen Pharmaceutical Research & Development, 1400 McKean Rd, Spring House, PA 19477, USA
| | - Xiaochun Zhang
- Oncology Discovery, Janssen Pharmaceutical Research & Development, 1400 McKean Rd, Spring House, PA 19477, USA
| | - Ricardo M Attar
- Oncology Discovery, Janssen Pharmaceutical Research & Development, 1400 McKean Rd, Spring House, PA 19477, USA
| | - James P Edwards
- Discovery Chemistry, Janssen Pharmaceutical Research & Development, 1400 McKean Rd, Spring House, PA 19477, USA
| | - Scott D Kuduk
- Discovery Chemistry, Janssen Pharmaceutical Research & Development, 1400 McKean Rd, Spring House, PA 19477, USA.
| |
Collapse
|
34
|
Dembitz V, Lalic H, Kodvanj I, Tomic B, Batinic J, Dubravcic K, Batinic D, Bedalov A, Visnjic D. 5-aminoimidazole-4-carboxamide ribonucleoside induces differentiation in a subset of primary acute myeloid leukemia blasts. BMC Cancer 2020; 20:1090. [PMID: 33176741 PMCID: PMC7657321 DOI: 10.1186/s12885-020-07533-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/15/2020] [Indexed: 01/11/2023] Open
Abstract
Background All-trans retinoic acid (ATRA)-based treatment of acute promyelocytic leukemia (APL) is the most successful pharmacological treatment of acute myeloid leukemia (AML). Recent development of inhibitors of mutated isocitrate dehydrogenase and dihydroorotate dehydrogenase (DHODH) has revived interest in differentiation therapy of non-APL AML. Our previous studies demonstrated that 5-aminoimidazole-4-carboxamide ribonucleoside (AICAr) induced differentiation of monocytic cell lines by activating the ATR/Chk1 via pyrimidine depletion. In the present study, the effects of AICAr on the viability and differentiation of primary AML blasts isolated from bone marrow of patients with non-APL AML were tested and compared with the effects of DHODH inhibitor brequinar and ATRA. Methods Bone marrow samples were obtained from 35 patients and leukemia blasts were cultured ex vivo. The cell viability was assessed by MTT assay and AML cell differentiation was determined by flow cytometry and morphological analyses. RNA sequencing and partial data analysis were conducted using ClusterProfiler package. Statistical analysis was performed using GraphPad Prism 6.0. Results AICAr is capable of triggering differentiation in samples of bone marrow blasts cultured ex vivo that were resistant to ATRA. AICAr-induced differentiation correlates with proliferation and sensitivity to DHODH inhibition. RNA-seq data obtained in primary AML blasts confirmed that AICAr treatment induced downregulation of pyrimidine metabolism pathways together with an upregulation of gene set involved in hematopoietic cell lineage. Conclusion AICAr induces differentiation in a subset of primary non-APL AML blasts, and these effects correlate with sensitivity to a well-known, potent DHODH inhibitor. Supplementary information Supplementary information accompanies this paper at 10.1186/s12885-020-07533-6.
Collapse
Affiliation(s)
- Vilma Dembitz
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10 000, Zagreb, Croatia.,Department of Physiology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Hrvoje Lalic
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10 000, Zagreb, Croatia.,Department of Physiology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivan Kodvanj
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10 000, Zagreb, Croatia.,Department of Physiology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Barbara Tomic
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10 000, Zagreb, Croatia.,Department of Physiology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Josip Batinic
- Division of Hematology, Department of Internal Medicine, University Hospital Center Zagreb, Zagreb, Croatia
| | - Klara Dubravcic
- Department of Laboratory Immunology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Drago Batinic
- Department of Physiology, University of Zagreb School of Medicine, Zagreb, Croatia.,Department of Laboratory Immunology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Antonio Bedalov
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Dora Visnjic
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10 000, Zagreb, Croatia. .,Department of Physiology, University of Zagreb School of Medicine, Zagreb, Croatia.
| |
Collapse
|
35
|
Zeng F, Li S, Yang G, Luo Y, Qi T, Liang Y, Yang T, Zhang L, Wang R, Zhu L, Li H, Xu X. Design, synthesis, molecular modeling, and biological evaluation of acrylamide derivatives as potent inhibitors of human dihydroorotate dehydrogenase for the treatment of rheumatoid arthritis. Acta Pharm Sin B 2020; 11:S2211-3835(20)30759-0. [PMID: 33078092 PMCID: PMC7558257 DOI: 10.1016/j.apsb.2020.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/17/2020] [Accepted: 09/28/2020] [Indexed: 01/15/2023] Open
Abstract
Human dihydroorotate dehydrogenase (DHODH) is a viable target for the development of therapeutics to treat cancer and immunological diseases, such as rheumatoid arthritis (RA), psoriasis and multiple sclerosis (MS). Herein, a series of acrylamide-based novel DHODH inhibitors as potential RA treatment agents were designed and synthesized. 2-Acrylamidobenzoic acid analog 11 was identified as the lead compound for structure-activity relationship (SAR) studies. The replacement of the phenyl group with naphthyl moieties improved inhibitory activity significantly to double-digit nanomolar range. Further structure optimization revealed that an acrylamide with small hydrophobic groups (Me, Cl or Br) at the 2-position was preferred. Moreover, adding a fluoro atom at the 5-position of the benzoic acid enhanced the potency. The optimization efforts led to potent compounds 42 and 53‒55 with IC50 values of 41, 44, 32, and 42 nmol/L, respectively. The most potent compound 54 also displayed favorable pharmacokinetic (PK) profiles and encouraging in vivo anti-arthritic effects in a dose-dependent manner.
Collapse
Key Words
- AML, acute myeloid leukemia
- Acrylamide derivatives
- BPO, benzoyl peroxide
- CIA, collagen-induced arthritis
- DCE, 1,2-dichloroethane
- DCM, dichloromethane
- DHODH
- DHODH inhibitors
- DHODH, dihydroorotate dehydrogenase
- DMAP, 4-dimethylaminopyridine
- DMARDs, disease-modifying antirheumatic drugs
- DMF, N,N-dimethylformamide
- DMSO, dimethyl sulfoxide
- De novo pyrimidine biosynthesis
- EA, ethyl acetate
- FMN, flavin mononucleotide
- HPLC, high performance liquid chromatography
- HRMS, high-resolution mass spectrometry
- IBD, inflammatory bowel disease
- LAH, lithium aluminium hydride
- LCMS, liquid chromatography mass spectrometry
- MS, multiple sclerosis
- MeOH, methanol
- NBS, N-bromosuccinimide
- NCS, N-chlorosuccinimide
- NSAIDs, non-steroidal anti-inflammatory drugs
- PDA, photodiode array detector
- PE, petroleum ether
- PK, pharmacokinetic
- PhMe, toluene
- RA, rheumatoid arthritis
- Rheumatoid arthritis
- SEL, systemic lupus erythematosus
- TEA, triethylamine
- TFA, trifluoroacetic acid
- THF, tetrahydrofuran
- TsCl, tosyl chloride
Collapse
Affiliation(s)
- Fanxun Zeng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| | - Guantian Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| | - Yating Luo
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| | - Tiantian Qi
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| | - Yingfan Liang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| | - Tingyuan Yang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| | - Letian Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| | - Lili Zhu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
36
|
Quantitation of uridine and L-dihydroorotic acid in human plasma by LC-MS/MS using a surrogate matrix approach. J Pharm Biomed Anal 2020; 192:113669. [PMID: 33120310 DOI: 10.1016/j.jpba.2020.113669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 11/22/2022]
Abstract
Uridine and L-dihydroorotate (DHO) are important intermediates of de novo as well as salvage pathways for the biosynthesis of pyrimidines, which are the building blocks of nucleic acids - DNA and RNA. These metabolites are known to be significant biomarkers of pyrimidine synthesis during the development of DHODH inhibitor drugs for treatment of several cancers and immunological disorders. Here we are reporting a validated LC-MS/MS assay for the quantitation of uridine and DHO in K2EDTA human plasma. Due to presence of endogenous uridine and DHO in the biological matrix, a surrogate matrix approach with bovine serum albumin (BSA) solution was used. Human plasma samples were spiked with stable isotope labeled internal standards, processed by protein precipitation, and analyzed using LC-MS/MS. Parallelism was successfully demonstrated between human plasma (the authentic matrix) and BSA (the surrogate matrix). The linear analytical ranges of the assay were set at 30.0-30,000 ng/mL for uridine and 3.00-3,000 ng/mL for DHO. This validated LC-MS/MS method demonstrated excellent accuracy and precision. The overall accuracy was between 91.9 % and 106 %, and the inter-assay precision (%CV) were less than 4.2 % for uridine in human plasma. The overall accuracy was between 92.8 % and 106 %, and the inter-assay precision (%CV) were less than 7.2 % for DHO in human plasma. Uridine and DHO were found to be stable in human plasma for at least 24 h at room temperature, 579 days when stored at -20 °C, 334 days when stored at -70 °C, and after five freeze/thaw cycles. The assay has been successfully applied to human plasma samples to support clinical studies. Novel Aspect: A surrogate matrix approach to quantify endogenous uridine and DHO concentrations in human plasma.
Collapse
|
37
|
Saxena K, Konopleva M. An expert overview of emerging therapies for acute myeloid leukemia: novel small molecules targeting apoptosis, p53, transcriptional regulation and metabolism. Expert Opin Investig Drugs 2020; 29:973-988. [PMID: 32746655 DOI: 10.1080/13543784.2020.1804856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is an aggressive malignancy of clonal myeloid precursor cells. Curative therapy has classically involved the use of intensive induction chemotherapy followed by consolidation with additional chemotherapy or allogeneic hematopoietic stem cell transplant. For many patients, such an approach is prohibitive because of high treatment-related toxicities. Advancements in the molecular understanding of AML have led to the introduction of new targeted therapies that are changing the treatment landscape for AML. AREAS COVERED We review emerging small molecule inhibitors that have shown preclinical efficacy for the treatment of AML. The compounds discussed affect apoptosis, p53-mediated interactions, transcriptional regulation, and cellular metabolism. We performed a literature search of PubMed and primarily included relevant sources published from 2000 to the present, though earlier sources are also referenced. EXPERT OPINION Most clinical trials for AML currently employ novel targeted therapies that demonstrate promising activity in preclinical models. We anticipate that new small molecule inhibitors will continue to enter the clinical realm and alter the treatment paradigm for AML. In a field where clinical advancement was comparatively slow for many years, it appears that we are now starting to see the rapid growth borne out of the deepening molecular understanding of AML.
Collapse
Affiliation(s)
- Kapil Saxena
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| |
Collapse
|
38
|
Zuo Z, Liu X, Qian X, Zeng T, Sang N, Liu H, Zhou Y, Tao L, Zhou X, Su N, Yu Y, Chen Q, Luo Y, Zhao Y. Bifunctional Naphtho[2,3-d][1,2,3]triazole-4,9-dione Compounds Exhibit Antitumor Effects In Vitro and In Vivo by Inhibiting Dihydroorotate Dehydrogenase and Inducing Reactive Oxygen Species Production. J Med Chem 2020; 63:7633-7652. [PMID: 32496056 DOI: 10.1021/acs.jmedchem.0c00512] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Zeping Zuo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xiaocong Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xinying Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ting Zeng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Na Sang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Huan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yue Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Lei Tao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xia Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Na Su
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yamei Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Qiang Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yinglan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
39
|
Popova G, Ladds MJGW, Johansson L, Saleh A, Larsson J, Sandberg L, Sahlberg SH, Qian W, Gullberg H, Garg N, Gustavsson AL, Haraldsson M, Lane D, Yngve U, Lain S. Optimization of Tetrahydroindazoles as Inhibitors of Human Dihydroorotate Dehydrogenase and Evaluation of Their Activity and In Vitro Metabolic Stability. J Med Chem 2020; 63:3915-3934. [PMID: 32212728 DOI: 10.1021/acs.jmedchem.9b01658] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human dihydroorotate dehydrogenase (DHODH), an enzyme in the de novo pyrimidine synthesis pathway, is a target for the treatment of rheumatoid arthritis and multiple sclerosis and is re-emerging as an attractive target for cancer therapy. Here we describe the optimization of recently identified tetrahydroindazoles (HZ) as DHODH inhibitors. Several of the HZ analogues synthesized in this study are highly potent inhibitors of DHODH in an enzymatic assay, while also inhibiting cancer cell growth and viability and activating p53-dependent transcription factor activity in a reporter cell assay. Furthermore, we demonstrate the specificity of the compounds toward the de novo pyrimidine synthesis pathway through supplementation with an excess of uridine. We also show that induction of the DNA damage marker γ-H2AX after DHODH inhibition is preventable by cotreatment with the pan-caspase inhibitor Z-VAD-FMK. Additional solubility and in vitro metabolic stability profiling revealed compound 51 as a favorable candidate for preclinical efficacy studies.
Collapse
Affiliation(s)
- Gergana Popova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, SE-171 65 Solna, Stockholm, Sweden
| | - Marcus J G W Ladds
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, SE-171 65 Solna, Stockholm, Sweden.,SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Tomtebodavägen 23, SE-171 21 Solna, Stockholm, Sweden
| | - Lars Johansson
- Chemical Biology Consortium Sweden, SciLifeLab, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 21 Stockholm, Sweden
| | - Aljona Saleh
- SciLifeLab, Drug Discovery and Development Platform, ADME of Therapeutics Facility, Department of Pharmacy, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
| | - Johanna Larsson
- SciLifeLab, Drug Discovery and Development Platform, Department of Medicinal Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| | - Lars Sandberg
- SciLifeLab, Drug Discovery and Development Platform, Department of Medicinal Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden.,SciLifeLab, Drug Discovery and Development Platform, Department of Organic Chemistry, Stockholm University, Box 1030, SE-171 21 Solna, Stockholm, Sweden
| | - Sara Häggblad Sahlberg
- SciLifeLab, Drug Discovery and Development Platform, Department of Biochemistry and Biophysics, Stockholm University, SE-171 21 Solna, Stockholm, Sweden
| | - Weixing Qian
- Chemical Biology Consortium Sweden, Laboratories for Chemical Biology Umeå, Umeå University, SE-901 87 Umeå, Sweden
| | - Hjalmar Gullberg
- SciLifeLab, Drug Discovery and Development Platform, Department of Biochemistry and Biophysics, Stockholm University, SE-171 21 Solna, Stockholm, Sweden
| | - Neeraj Garg
- SciLifeLab, Drug Discovery and Development Platform, Department of Medicinal Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| | - Anna-Lena Gustavsson
- Chemical Biology Consortium Sweden, SciLifeLab, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 21 Stockholm, Sweden
| | - Martin Haraldsson
- Chemical Biology Consortium Sweden, SciLifeLab, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 21 Stockholm, Sweden
| | - David Lane
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, SE-171 65 Solna, Stockholm, Sweden
| | - Ulrika Yngve
- SciLifeLab, Drug Discovery and Development Platform, Department of Medicinal Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| | - Sonia Lain
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, SE-171 65 Solna, Stockholm, Sweden.,SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Tomtebodavägen 23, SE-171 21 Solna, Stockholm, Sweden
| |
Collapse
|
40
|
Boukalova S, Hubackova S, Milosevic M, Ezrova Z, Neuzil J, Rohlena J. Dihydroorotate dehydrogenase in oxidative phosphorylation and cancer. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165759. [PMID: 32151633 DOI: 10.1016/j.bbadis.2020.165759] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/12/2022]
Abstract
Dihydroorotate dehydrogenase (DHODH) is an enzyme of the de novo pyrimidine synthesis pathway that provides nucleotides for RNA/DNA synthesis essential for proliferation. In mammalian cells, DHODH is localized in mitochondria, linked to the respiratory chain via the coenzyme Q pool. Here we discuss the role of DHODH in the oxidative phosphorylation system and in the initiation and progression of cancer. We summarize recent findings on DHODH biology, the progress made in the development of new, specific inhibitors of DHODH intended for cancer therapy, and the mechanistic insights into the consequences of DHODH inhibition.
Collapse
Affiliation(s)
- Stepana Boukalova
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, 252 50 Vestec, Prague-West, Czech Republic
| | - Sona Hubackova
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, 252 50 Vestec, Prague-West, Czech Republic
| | - Mirko Milosevic
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, 252 50 Vestec, Prague-West, Czech Republic
| | - Zuzana Ezrova
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, 252 50 Vestec, Prague-West, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, 252 50 Vestec, Prague-West, Czech Republic; School of Medical Science, Griffith University, Southport, 4222, Qld, Australia
| | - Jakub Rohlena
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, 252 50 Vestec, Prague-West, Czech Republic.
| |
Collapse
|
41
|
Abt ER, Rosser EW, Durst MA, Lok V, Poddar S, Le TM, Cho A, Kim W, Wei L, Song J, Capri JR, Xu S, Wu N, Slavik R, Jung ME, Damoiseaux R, Czernin J, Donahue TR, Lavie A, Radu CG. Metabolic Modifier Screen Reveals Secondary Targets of Protein Kinase Inhibitors within Nucleotide Metabolism. Cell Chem Biol 2020; 27:197-205.e6. [PMID: 31734178 PMCID: PMC7035983 DOI: 10.1016/j.chembiol.2019.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/30/2019] [Accepted: 10/25/2019] [Indexed: 01/02/2023]
Abstract
Biosynthesis of the pyrimidine nucleotide uridine monophosphate (UMP) is essential for cell proliferation and is achieved by the activity of convergent de novo and salvage metabolic pathways. Here we report the development and application of a cell-based metabolic modifier screening platform that leverages the redundancy in pyrimidine metabolism for the discovery of selective UMP biosynthesis modulators. In evaluating a library of protein kinase inhibitors, we identified multiple compounds that possess nucleotide metabolism modifying activity. The JNK inhibitor JNK-IN-8 was found to potently inhibit nucleoside transport and engage ENT1. The PDK1 inhibitor OSU-03012 (also known as AR-12) and the RAF inhibitor TAK-632 were shown to inhibit the therapeutically relevant de novo pathway enzyme DHODH and their affinities were unambiguously confirmed through in vitro assays and co-crystallization with human DHODH.
Collapse
Affiliation(s)
- Evan R Abt
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Ethan W Rosser
- Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA; Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Matthew A Durst
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA; The Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Vincent Lok
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Soumya Poddar
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Thuc M Le
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Arthur Cho
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Woosuk Kim
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Liu Wei
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Janet Song
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Joseph R Capri
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Shili Xu
- Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA; Department of Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Nanping Wu
- Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA; Department of Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Roger Slavik
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael E Jung
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Johannes Czernin
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA
| | - Timothy R Donahue
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA; Department of Surgery, University of California Los Angeles, Los Angeles, CA, USA; David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Arnon Lavie
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA; The Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Caius G Radu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; Ahmanson Translational Imaging Division, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
42
|
Hayek S, Pietrancosta N, Hovhannisyan AA, Alves de Sousa R, Bekaddour N, Ermellino L, Tramontano E, Arnould S, Sardet C, Dairou J, Diaz O, Lotteau V, Nisole S, Melikyan G, Herbeuval JP, Vidalain PO. Cerpegin-derived furo[3,4-c]pyridine-3,4(1H,5H)-diones enhance cellular response to interferons by de novo pyrimidine biosynthesis inhibition. Eur J Med Chem 2019; 186:111855. [PMID: 31740051 DOI: 10.1016/j.ejmech.2019.111855] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/22/2022]
Abstract
There is an increasing interest in the field of cancer therapy for small compounds targeting pyrimidine biosynthesis, and in particular dihydroorotate dehydrogenase (DHODH), the fourth enzyme of this metabolic pathway. Three available DHODH structures, featuring three different known inhibitors, were used as templates to screen in silico an original chemical library from Erevan University. This process led to the identification of P1788, a compound chemically related to the alkaloid cerpegin, as a new class of pyrimidine biosynthesis inhibitors. In line with previous reports, we investigated the effect of P1788 on the cellular innate immune response. Here we show that pyrimidine depletion by P1788 amplifies cellular response to both type-I and type II interferons, but also induces DNA damage as assessed by γH2AX staining. Moreover, the addition of inhibitors of the DNA damage response led to the suppression of the P1788 stimulatory effects on the interferon pathway. This demonstrates that components of the DNA damage response are bridging the inhibition of pyrimidine biosynthesis by P1788 to the interferon signaling pathway. Altogether, these results provide new insights on the mode of action of novel pyrimidine biosynthesis inhibitors and their development for cancer therapies.
Collapse
Affiliation(s)
- Simon Hayek
- Chimie et Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, CNRS UMR8601, Paris, France
| | - Nicolas Pietrancosta
- Chimie et Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, CNRS UMR8601, Paris, France
| | | | - Rodolphe Alves de Sousa
- Chimie et Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, CNRS UMR8601, Paris, France
| | - Nassima Bekaddour
- Chimie et Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, CNRS UMR8601, Paris, France
| | - Laura Ermellino
- Chimie et Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, CNRS UMR8601, Paris, France; Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Enzo Tramontano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Stéphanie Arnould
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Claude Sardet
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Julien Dairou
- Chimie Bio-inorganique des Dérivés Soufrés et Pharmacochimie (CBDSP), Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, CNRS UMR8601, Paris, France
| | - Olivier Diaz
- Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, Université Lyon 1, ENS de Lyon, Lyon, France
| | - Vincent Lotteau
- Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, Université Lyon 1, ENS de Lyon, Lyon, France
| | - Sébastien Nisole
- Institut de Recherche en Infectiologie de Montpellier, CNRS UMR9004, Université de Montpellier, Montpellier, France
| | - Gagik Melikyan
- Department of Organic Chemistry, Yerevan State University, Yerevan, Armenia.
| | - Jean-Philippe Herbeuval
- Chimie et Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, CNRS UMR8601, Paris, France
| | - Pierre-Olivier Vidalain
- Chimie et Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, CNRS UMR8601, Paris, France.
| |
Collapse
|
43
|
Dihydroorotate dehydrogenase inhibitors in anti-infective drug research. Eur J Med Chem 2019; 183:111681. [PMID: 31557612 DOI: 10.1016/j.ejmech.2019.111681] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/01/2019] [Accepted: 09/05/2019] [Indexed: 01/08/2023]
Abstract
Pyrimidines are essential for the cell survival and proliferation of living parasitic organisms, such as Helicobacter pylori, Plasmodium falciparum and Schistosoma mansoni, that are able to impact upon human health. Pyrimidine building blocks, in human cells, are synthesised via both de novo biosynthesis and salvage pathways, the latter of which is an effective way of recycling pre-existing nucleotides. As many parasitic organisms lack pyrimidine salvage pathways for pyrimidine nucleotides, blocking de novo biosynthesis is seen as an effective therapeutic means to selectively target the parasite without effecting the human host. Dihydroorotate dehydrogenase (DHODH), which is involved in the de novo biosynthesis of pyrimidines, is a validated target for anti-infective drug research. Recent advances in the DHODH microorganism field are discussed herein, as is the potential for the development of DHODH-targeted therapeutics.
Collapse
|
44
|
Zeng F, Quan L, Yang G, Qi T, Zhang L, Li S, Li H, Zhu L, Xu X. Structural Optimization and Structure-Activity Relationship of 4-Thiazolidinone Derivatives as Novel Inhibitors of Human Dihydroorotate Dehydrogenase. Molecules 2019; 24:molecules24152780. [PMID: 31370178 PMCID: PMC6696179 DOI: 10.3390/molecules24152780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 11/16/2022] Open
Abstract
Human dihydroorotate dehydrogenase (hDHODH), one of the attractive targets for the development of immunosuppressive drugs, is also a potential target of anticancer drugs and anti-leukemic drugs. The development of promising hDHODH inhibitors is in high demand. Based on the unique binding mode of our previous reported 4-thiazolidinone derivatives, via molecular docking method, three new series 4-thiazolidinone derivatives were designed and synthesized as hDHODH inhibitors. The preliminary structure–activity relationship was investigated. Compound 9 of biphenyl series and compound 37 of amide series displayed IC50 values of 1.32 μM and 1.45 μM, respectively. This research will provide valuable reference for the research of new structures of hDHODH inhibitors.
Collapse
Affiliation(s)
- Fanxun Zeng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lina Quan
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| | - Guantian Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Tiantian Qi
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| | - Letian Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China
| | - Lili Zhu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China.
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
45
|
Zeng T, Zuo Z, Luo Y, Zhao Y, Yu Y, Chen Q. A novel series of human dihydroorotate dehydrogenase inhibitors discovered by in vitro screening: inhibition activity and crystallographic binding mode. FEBS Open Bio 2019; 9:1348-1354. [PMID: 31087527 PMCID: PMC6668370 DOI: 10.1002/2211-5463.12658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 02/05/2023] Open
Abstract
Human dihydroorotate dehydrogenase (DHODH), the enzyme that catalyzes the rate‐limiting step in de novo pyrimidine biosynthesis, is considered to be an attractive target for potential treatment of autoimmune disease and cancer. Here, we present a novel class of human DHODH inhibitors with high inhibitory potency. The high‐resolution crystal structures of human DHODH complexed with various agents reveal the details of their interactions. Comparisons with the binding modes of teriflunomide and brequinar provide insights that may facilitate the development of new inhibitors targeting human DHODH.
Collapse
Affiliation(s)
- Ting Zeng
- Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Zeping Zuo
- Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Youfu Luo
- Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yinglan Zhao
- Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yamei Yu
- Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Qiang Chen
- Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
46
|
Sainas S, Temperini P, Farnsworth JC, Yi F, Møllerud S, Jensen AA, Nielsen B, Passoni A, Kastrup JS, Hansen KB, Boschi D, Pickering DS, Clausen RP, Lolli ML. Use of the 4-Hydroxytriazole Moiety as a Bioisosteric Tool in the Development of Ionotropic Glutamate Receptor Ligands. J Med Chem 2019; 62:4467-4482. [PMID: 30943028 DOI: 10.1021/acs.jmedchem.8b01986] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report a series of glutamate and aspartate analogues designed using the hydroxy-1,2,3-triazole moiety as a bioisostere for the distal carboxylic acid. Compound 6b showed unprecedented selectivity among ( S)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor subtypes, confirmed also by an unusual binding mode observed for the crystal structures in complex with the AMPA receptor GluA2 agonist-binding domain. Here, a methionine (Met729) was highly disordered compared to previous agonist-bound structures. This observation provides a possible explanation for the pharmacological profile. In the structure with 7a, an unusual organization of water molecules around the bioisostere arises compared to previous structures of ligands with other bioisosteres. Aspartate analogue 8 with the hydroxy-1,2,3-triazole moiety directly attached to glycine was unexpectedly able to activate both the glutamate and glycine agonist-binding sites of the N-methyl-d-aspartic acid receptor. These observations demonstrate novel features that arise when employing a hydroxytriazole moiety as a bioisostere for the distal carboxylic acid in glutamate receptor agonists.
Collapse
Affiliation(s)
- Stefano Sainas
- Department of Drug Science and Technology , University of Turin , via P.Giuria 9 , 10125 Turin , Italy
| | - Piero Temperini
- Department of Drug Design and Pharmacology , University of Copenhagen , 2100 Copenhagen , Denmark
| | - Jill C Farnsworth
- Department of Biomedical and Pharmaceutical Sciences, Center for Structural and Functional Neuroscience, and Center for Biomolecular Structure and Dynamics , University of Montana , Missoula , Montana 59812 , United States
| | - Feng Yi
- Department of Biomedical and Pharmaceutical Sciences, Center for Structural and Functional Neuroscience, and Center for Biomolecular Structure and Dynamics , University of Montana , Missoula , Montana 59812 , United States
| | - Stine Møllerud
- Department of Drug Design and Pharmacology , University of Copenhagen , 2100 Copenhagen , Denmark
| | - Anders A Jensen
- Department of Drug Design and Pharmacology , University of Copenhagen , 2100 Copenhagen , Denmark
| | - Birgitte Nielsen
- Department of Drug Design and Pharmacology , University of Copenhagen , 2100 Copenhagen , Denmark
| | - Alice Passoni
- Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS , via La Masa 19 , 20156 Milan , Italy
| | - Jette S Kastrup
- Department of Drug Design and Pharmacology , University of Copenhagen , 2100 Copenhagen , Denmark
| | - Kasper B Hansen
- Department of Biomedical and Pharmaceutical Sciences, Center for Structural and Functional Neuroscience, and Center for Biomolecular Structure and Dynamics , University of Montana , Missoula , Montana 59812 , United States
| | - Donatella Boschi
- Department of Drug Science and Technology , University of Turin , via P.Giuria 9 , 10125 Turin , Italy
| | - Darryl S Pickering
- Department of Drug Design and Pharmacology , University of Copenhagen , 2100 Copenhagen , Denmark
| | - Rasmus P Clausen
- Department of Drug Design and Pharmacology , University of Copenhagen , 2100 Copenhagen , Denmark
| | - Marco L Lolli
- Department of Drug Science and Technology , University of Turin , via P.Giuria 9 , 10125 Turin , Italy
| |
Collapse
|
47
|
Castelli G, Pelosi E, Testa U. Emerging Therapies for Acute Myelogenus Leukemia Patients Targeting Apoptosis and Mitochondrial Metabolism. Cancers (Basel) 2019; 11:E260. [PMID: 30813354 PMCID: PMC6406361 DOI: 10.3390/cancers11020260] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023] Open
Abstract
Acute Myelogenous Leukemia (AML) is a malignant disease of the hematopoietic cells, characterized by impaired differentiation and uncontrolled clonal expansion of myeloid progenitors/precursors, resulting in bone marrow failure and impaired normal hematopoiesis. AML comprises a heterogeneous group of malignancies, characterized by a combination of different somatic genetic abnormalities, some of which act as events driving leukemic development. Studies carried out in the last years have shown that AML cells invariably have abnormalities in one or more apoptotic pathways and have identified some components of the apoptotic pathway that can be targeted by specific drugs. Clinical results deriving from studies using B-cell lymphoma 2 (BCL-2) inhibitors in combination with standard AML agents, such as azacytidine, decitabine, low-dose cytarabine, provided promising results and strongly support the use of these agents in the treatment of AML patients, particularly of elderly patients. TNF-related apoptosis-inducing ligand (TRAIL) and its receptors are frequently deregulated in AML patients and their targeting may represent a promising strategy for development of new treatments. Altered mitochondrial metabolism is a common feature of AML cells, as supported through the discovery of mutations in the isocitrate dehydrogenase gene and in mitochondrial electron transport chain and of numerous abnormalities of oxidative metabolism existing in AML subgroups. Overall, these observations strongly support the view that the targeting of mitochondrial apoptotic or metabolic machinery is an appealing new therapeutic perspective in AML.
Collapse
Affiliation(s)
- Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
48
|
Hydroxyazole scaffold-based Plasmodium falciparum dihydroorotate dehydrogenase inhibitors: Synthesis, biological evaluation and X-ray structural studies. Eur J Med Chem 2019; 163:266-280. [DOI: 10.1016/j.ejmech.2018.11.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/16/2018] [Accepted: 11/18/2018] [Indexed: 11/23/2022]
|
49
|
Sainas S, Pippione AC, Giraudo A, Martina K, Bosca F, Rolando B, Barge A, Ducime A, Federico A, Grossert SJ, White RL, Boschi D, Lolli ML. Regioselective N‐Alkylation of Ethyl 4‐Benzyloxy‐1,2,3‐triazolecarboxylate: A Useful Tool for the Synthesis of Carboxylic Acid Bioisosteres. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Stefano Sainas
- Dipartimento di Scienza e Tecnologia del Farmaco (DSTF)Università degli Studi di Torino via Pietro Giuria 9 Turin 10125 Italy
| | - Agnese C. Pippione
- Dipartimento di Scienza e Tecnologia del Farmaco (DSTF)Università degli Studi di Torino via Pietro Giuria 9 Turin 10125 Italy
| | - Alessandro Giraudo
- Dipartimento di Scienza e Tecnologia del Farmaco (DSTF)Università degli Studi di Torino via Pietro Giuria 9 Turin 10125 Italy
| | - Katia Martina
- Dipartimento di Scienza e Tecnologia del Farmaco (DSTF)Università degli Studi di Torino via Pietro Giuria 9 Turin 10125 Italy
| | - Federica Bosca
- Dipartimento di Scienza e Tecnologia del Farmaco (DSTF)Università degli Studi di Torino via Pietro Giuria 9 Turin 10125 Italy
| | - Barbara Rolando
- Dipartimento di Scienza e Tecnologia del Farmaco (DSTF)Università degli Studi di Torino via Pietro Giuria 9 Turin 10125 Italy
| | - Alessandro Barge
- Dipartimento di Scienza e Tecnologia del Farmaco (DSTF)Università degli Studi di Torino via Pietro Giuria 9 Turin 10125 Italy
| | - Alex Ducime
- Dipartimento di Scienza e Tecnologia del Farmaco (DSTF)Università degli Studi di Torino via Pietro Giuria 9 Turin 10125 Italy
| | - Antonella Federico
- Dipartimento di Scienza e Tecnologia del Farmaco (DSTF)Università degli Studi di Torino via Pietro Giuria 9 Turin 10125 Italy
| | - Stuart J. Grossert
- Department of ChemistryDalhousie University 6274 Coburg Road Halifax Nova Scotia B3H 4R2 Canada
| | - Robert L. White
- Department of ChemistryDalhousie University 6274 Coburg Road Halifax Nova Scotia B3H 4R2 Canada
| | - Donatella Boschi
- Dipartimento di Scienza e Tecnologia del Farmaco (DSTF)Università degli Studi di Torino via Pietro Giuria 9 Turin 10125 Italy
| | - Marco L. Lolli
- Dipartimento di Scienza e Tecnologia del Farmaco (DSTF)Università degli Studi di Torino via Pietro Giuria 9 Turin 10125 Italy
| |
Collapse
|
50
|
Madak JT, Bankhead A, Cuthbertson CR, Showalter HD, Neamati N. Revisiting the role of dihydroorotate dehydrogenase as a therapeutic target for cancer. Pharmacol Ther 2018; 195:111-131. [PMID: 30347213 DOI: 10.1016/j.pharmthera.2018.10.012] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Identified as a hallmark of cancer, metabolic reprogramming allows cancer cells to rapidly proliferate, resist chemotherapies, invade, metastasize, and survive a nutrient-deprived microenvironment. Rapidly growing cells depend on sufficient concentrations of nucleotides to sustain proliferation. One enzyme essential for the de novo biosynthesis of pyrimidine-based nucleotides is dihydroorotate dehydrogenase (DHODH), a known therapeutic target for multiple diseases. Brequinar, leflunomide, and teriflunomide, all of which are potent DHODH inhibitors, have been clinically evaluated but failed to receive FDA approval for the treatment of cancer. Inhibition of DHODH depletes intracellular pyrimidine nucleotide pools and results in cell cycle arrest in S-phase, sensitization to current chemotherapies, and differentiation in neural crest cells and acute myeloid leukemia (AML). Furthermore, DHODH is a synthetic lethal susceptibility in several oncogenic backgrounds. Therefore, DHODH-targeted therapy has potential value as part of a combination therapy for the treatment of cancer. In this review, we focus on the de novo pyrimidine biosynthesis pathway as a target for cancer therapy, and in particular, DHODH. In the first part, we provide a comprehensive overview of this pathway and its regulation in cancer. We further describe the relevance of DHODH as a target for cancer therapy using bioinformatic analyses. We then explore the preclinical and clinical results of pharmacological strategies to target the de novo pyrimidine biosynthesis pathway, with an emphasis on DHODH. Finally, we discuss potential strategies to harness DHODH as a target for the treatment of cancer.
Collapse
Affiliation(s)
- Joseph T Madak
- Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Armand Bankhead
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Christine R Cuthbertson
- Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Hollis D Showalter
- Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Rogel Cancer Center, Ann Arbor, MI 48109, USA.
| | - Nouri Neamati
- Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Rogel Cancer Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|