1
|
Farkas DJ, Cooper ZD, Heydari LN, Hughes AC, Rawls SM, Ward SJ. Kratom Alkaloids, Cannabinoids, and Chronic Pain: Basis of Potential Utility and Role in Therapy. Cannabis Cannabinoid Res 2025; 10:187-199. [PMID: 37466474 DOI: 10.1089/can.2023.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Introduction: Chronic neuropathic pain is as a severe detriment to overall quality of life for millions of Americans. Current pharmacological treatment options for chronic neuropathic pain are generally limited in efficacy and may pose serious adverse effects such as risk of abuse, nausea, dizziness, and cardiovascular events. Therefore, many individuals have resorted to methods of pharmacological self-treatment. This narrative review summarizes the existing literature on the utilization of two novel approaches for the treatment of chronic pain, cannabinoid constituents of Cannabis sativa and alkaloid constituents of Mitragyna speciosa (kratom), and speculates on the potential therapeutic benefits of co-administration of these two classes of compounds. Methods: We conducted a narrative review summarizing the primary motivations for use of both kratom and cannabis products based on epidemiological data and summarize the pre-clinical evidence supporting the application of both kratom alkaloids and cannabinoids for the treatment of chronic pain. Data collection was performed using the PubMed electronic database. The following word combinations were used: kratom and cannabis, kratom and pain, cannabis and pain, kratom and chronic pain, and cannabis and chronic pain. Results: Epidemiological evidence reports that the self-treatment of pain is a primary motivator for use of both kratom and cannabinoid products among adult Americans. Further evidence shows that use of cannabinoid products may precede kratom use, and that a subset of individuals concurrently uses both kratom and cannabinoid products. Despite its growing popularity as a form of self-treatment of pain, there remains an immense gap in knowledge of the therapeutic efficacy of kratom alkaloids for chronic pain in comparison to that of cannabis-based products, with only three pre-clinical studies having been conducted to date. Conclusion: There is sufficient epidemiological evidence to suggest that both kratom and cannabis products are used to self-treat pain, and that some individuals actively use both drugs, which may produce potential additive or synergistic therapeutic benefits that have not yet been characterized. Given the lack of pre-clinical investigation into the potential therapeutic benefits of kratom alkaloids against forms of chronic pain, further research is warranted to better understand its application as a treatment alternative.
Collapse
Affiliation(s)
- Daniel J Farkas
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Ziva D Cooper
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California, USA
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California, USA
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, California, USA
| | - Laila N Heydari
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Amanda C Hughes
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Scott M Rawls
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Sara Jane Ward
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Chiang YH, Kanumuri SRR, Kuntz MA, Senetra AS, Berthold EC, Kamble SH, Mukhopadhyay S, Hampson AJ, McCurdy CR, Sharma A. In Vitro and In Vivo Pharmacokinetic Characterization of 7-Hydroxymitragynine, an Active Metabolite of Mitragynine, in Sprague-Dawley Rats. Eur J Drug Metab Pharmacokinet 2025:10.1007/s13318-025-00939-2. [PMID: 40119246 DOI: 10.1007/s13318-025-00939-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2025] [Indexed: 03/24/2025]
Abstract
BACKGROUND AND OBJECTIVES Kratom, a Southeast Asian tree, has been researched for its potential as a therapeutic for substance use disorders. The most abundant alkaloid in kratom, mitragynine, is being investigated individually for opioid use disorder. However, the active metabolite of mitragynine,7-hydroxymitragynine (7-HMG) has raised concerns because of its high binding affinity to μ-opioid receptors and abuse potential. This study examines various pharmacokinetic parameters of 7-HMG in both in vitro and in vivo models. METHODS In vitro pharmacokinetic properties were investigated using human colorectal adenocarcinoma cell monolayers (Caco-2 cells), rat plasma, rat liver microsomes, and rat hepatocytes to determine the permeability, plasma protein binding, and microsomal and hepatocyte stability of 7-HMG, respectively. Oral and intravenous (IV) pharmacokinetic studies of 7-HMG were performed in male Sprague-Dawley rats. RESULTS 7-HMG exhibits high permeability across Caco-2 cells (19.7 ± 1.0 × 10-6 cm/s), with a relatively low plasma protein binding of 73.1 ± 0.6% to mitragynine. The hepatic extraction ratio was 0.3 and 0.6 in rat liver microsomes and hepatocytes, respectively, indicating that 7-HMG is an intermediate hepatic extraction compound. Oral and IV pharmacokinetic studies were performed in male rats. The volume of distribution was 2.7 ± 0.4 l/kg and the clearance was 4.0 ± 0.3 l/h/kg after IV administration. After oral dosing (5 mg/kg), a Cmax of 28.5 ± 5.0 ng/ml and Tmax of 0.3 ± 0.1 h were observed. However, the oral bioavailability of 7-HMG was only 2.7 ± 0.3%. The results demonstrate 7-HMG is rapidly absorbed but has low oral bioavailability. Mitragynine pseudoindoxyl (MGPI) is a metabolite of 7-HMG that is a more potent µ-opioid agonist than 7-HMG. The parent-to-metabolite ratio for MGPI following IV 7-HMG administration was 0.5 ± 0.1%, indicating very limited systemic exposure to MGPI. CONCLUSIONS This study reports the pharmacokinetic parameters of 7-HMG to help with the development of mitragynine, as a therapeutic.
Collapse
Affiliation(s)
- Yi-Hua Chiang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, 1345 Center Drive Medical Sciences Building MSB P3-20B, Gainesville, FL, 32610, USA
| | - Siva Rama Raju Kanumuri
- Department of Pharmaceutics, College of Pharmacy, University of Florida, 1345 Center Drive Medical Sciences Building MSB P3-20B, Gainesville, FL, 32610, USA
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
| | - Michelle A Kuntz
- Department of Pharmaceutics, College of Pharmacy, University of Florida, 1345 Center Drive Medical Sciences Building MSB P3-20B, Gainesville, FL, 32610, USA
| | - Alexandria S Senetra
- Department of Pharmaceutics, College of Pharmacy, University of Florida, 1345 Center Drive Medical Sciences Building MSB P3-20B, Gainesville, FL, 32610, USA
| | - Erin C Berthold
- Department of Pharmaceutics, College of Pharmacy, University of Florida, 1345 Center Drive Medical Sciences Building MSB P3-20B, Gainesville, FL, 32610, USA
| | - Shyam H Kamble
- Department of Pharmaceutics, College of Pharmacy, University of Florida, 1345 Center Drive Medical Sciences Building MSB P3-20B, Gainesville, FL, 32610, USA
| | - Sushobhan Mukhopadhyay
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Aidan J Hampson
- Division of Therapeutics and Medical Consequences, National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Christopher R McCurdy
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, 1345 Center Drive Medical Sciences Building MSB P3-20B, Gainesville, FL, 32610, USA.
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
3
|
Suhaimi FW, Khari NHM, Hassan Z, Müller CP. Exploring the cognitive effects of kratom: A review. Behav Brain Res 2025; 480:115387. [PMID: 39643045 DOI: 10.1016/j.bbr.2024.115387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Despite the strict kratom regulation in some regions, the demand for kratom products is still increasing worldwide. Kratom products are commonly consumed for their pain-relieving effect or as a self-treatment for opioid use disorder. Kratom is also taken as a recreational drug among youth and adults. Since substance abuse can cause cognitive impairment, many studies investigated the effects of kratom on cognition. The interaction of some kratom alkaloids with various receptors such as opioid, serotonergic, and adrenergic receptors further sparks the interest to investigate the effects of kratom on cognitive function. Hence, this review aims to provide an overview of the effects of kratom on cognitive behaviours and their underlying changes in neurobiological mechanisms. In conclusion, kratom, particularly its main alkaloid, mitragynine may adversely affect cognitive performances that may be attributed to the disruption in synaptic plasticity, brain activity as well as various proteins involved in synaptic transmission. The impact of kratom on cognitive functions could also shed light on its safety profile, which is essential for the therapeutic development of kratom, including its potential use in opioid substitution therapy.
Collapse
Affiliation(s)
| | | | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, Erlangen, Germany; Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
4
|
Chiang YH, Chear NJY, Berthold EC, Kuntz MA, Kanumuri SRR, Senetra AS, Ramanathan S, McCurdy CR, Sharma A. Preclinical pharmacokinetic studies of villocarine A, an active Uncaria alkaloid. Drug Test Anal 2025; 17:329-341. [PMID: 38747129 DOI: 10.1002/dta.3703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 03/21/2025]
Abstract
Villocarine A is a bioactive indole alkaloid isolated from the Uncaria genus. It has demonstrated vasorelaxation activity and potential to protect the central nervous system. To identify the pharmacokinetic properties of villocarine A, a series of in vitro and in vivo studies have been performed. Villocarine A was found to be highly permeable (15.6 ± 1.6*10-6 cm/s) across human colorectal adenocarcinoma cell monolayer with high protein binding (>91%) in both rat and human plasma. Hepatic extraction ratio of villocarine A was 0.1 in pooled rat liver and 0.2 in human liver microsomes and was found stable in rat plasma at 37°C. Due to the high permeability and low rate of metabolism properties, villocarine A was initially considered suitable for preclinical development and an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for quantification (linearity: 1-150 ng/ml) in rat plasma was developed and validated for in vivo studies. Essential pharmacokinetic parameters included the volume of distribution and clearance of villocarine A, which were found to be 100.3 ± 15.6 L/kg and 8.2 ± 1.1 L/h/kg, respectively, after intravenous administration in rats. Following oral dosing, villocarine A exhibited rapid absorption as the maximum plasma concentration (53.2 ± 10.4 ng/ml) occurred at 0.3 ± 0.1 h, post-dose. The absolute oral bioavailability of villocarine A was 16.8 ± 0.1%. To our knowledge, this was the first pharmacokinetic study of villocarine A, which demonstrated the essential pharmacokinetic properties of villocarine A: large volume distribution, high clearance, and low oral bioavailability in rats.
Collapse
Affiliation(s)
- Yi-Hua Chiang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | | | - Erin C Berthold
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Michelle A Kuntz
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Siva Rama Raju Kanumuri
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, Florida, USA
| | - Alexandria S Senetra
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Surash Ramanathan
- Centre for Drug Research, Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| | - Christopher R McCurdy
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, Florida, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Manus JP, Crenshaw RC, Ringer LC, Towers SA, Paige NB, Leon F, McCurdy CR, Lester DB. Effects of kratom alkaloids on mesolimbic dopamine release. Neurosci Lett 2025; 850:138153. [PMID: 39923979 DOI: 10.1016/j.neulet.2025.138153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Kratom is derived from the leaves of a plant (Mitragyna speciosa) native to Southeast Asia that has been consumed for its complex stimulant-like effects at low doses, opiate-like effects at high doses, to treat mood related issues like anxiety or depression, or to help ameliorate opioid withdrawal symptoms. However, the neural mechanisms of its major psychoactive alkaloids, mitragynine (MG) and 7-hydroxymitragynine (7-HMG), are still not clear. Given that the effects of kratom are often compared to drugs with abuse liabilities, the current study examined the effects of MG and 7-HMG on reward-related neurotransmission. Fixed potential amperometry was used to quantify stimulation-evoked phasic dopamine release in the nucleus accumbens (NAc) of anesthetized male and female mice before and after MG (1, 15, or 30 mg/kg i.p.), 7-HMG (0.5, 1, or 2 mg/kg i.p.), or vehicle. MG reduced dopamine release over the recording period (90 min) in a dose dependent manner, and the low dose of MG significantly increased dopamine autoreceptor functioning in males. Both sexes responded similarly to 7-HMG with the low dose of 7-HMG increasing dopamine release while the high dose decreased dopamine release. 7-HMG did not alter dopamine autoreceptor functioning for either sex. Neither MG nor 7-HMG altered the clearance rate of stimulation-evoked dopamine. Findings suggest that these kratom alkaloids do alter dopamine functioning, although potentially not in a way consistent with classic drugs of abuse. Further investigation of the neural mechanisms of kratom's alkaloids will provide crucial and urgent insight into their therapeutic uses or potential abuse liability.
Collapse
Affiliation(s)
| | | | | | | | - Nick B Paige
- Department of Psychology University of Memphis USA
| | - Francisco Leon
- Department of Medicinal Chemistry University of Florida USA
| | | | | |
Collapse
|
6
|
Alford AS, Moreno HL, Benjamin MM, Dickinson CF, Hamann MT. Exploring the Therapeutic Potential of Mitragynine and Corynoxeine: Kratom-Derived Indole and Oxindole Alkaloids for Pain Management. Pharmaceuticals (Basel) 2025; 18:222. [PMID: 40006036 PMCID: PMC11858930 DOI: 10.3390/ph18020222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
The search for effective pain management solutions remains a critical challenge, especially amidst growing concerns over the use of conventional opioids. In the US, opioid-related mortality rates have surged to as many as 80 deaths per 100,000 people in some states, with an estimated economic burden of USD 1.5 trillion annually-exceeding the gross domestic product (GDP) of most US industrial sectors. A remarkable breakthrough lies in the discovery that indole and oxindole alkaloids, produced by several genera within the plant Tribe Naucleeae, act on opioid receptors without activating the beta-arrestin-2 pathway, the primary driver of respiratory depression and overdose deaths. This systematic review explores the pharmacological properties, mechanisms of action, dosing considerations, interactions, and long-term effects of mitragynine and corynoxeine, alkaloids from the Southeast Asian plant Mitragyna speciosa (kratom) and others in the Tribe Naucleeae. Mitragynine, a partial opioid receptor agonist, and corynoxeine, known for its anti-inflammatory and neuroprotective effects, demonstrate significant therapeutic potential for managing diverse pain types-including neuropathic, inflammatory, nociceptive, visceral, and central pain syndromes-with a focus on cancer pain. Unlike traditional opioids, these compounds do not recruit beta-arrestin-2, avoiding key adverse effects such as respiratory depression, severe constipation, and rapid tolerance development. Their distinct pharmacological profiles make them innovative candidates for safer, non-lethal pain relief. However, challenges persist, including the unregulated nature of kratom products, inconsistencies in potency due to crude extract variability, potential for misuse, and adverse drug interactions. Addressing these issues requires establishing standardized quality control protocols, such as Good Manufacturing Practices (GMP), to ensure consistent potency and purity. Clear labeling requirements with dosage guidelines and warnings should be mandated to ensure safe use and prevent misuse. Furthermore, the implementation of regulatory oversight to monitor product quality and enforce compliance is essential. This review emphasizes the urgency of focused research to optimize dosing regimens, characterize the pharmacodynamic profiles of these alkaloids, and evaluate long-term safety. By addressing these gaps, the mitragynine- and corynoxeine-related drug classes can transition from promising plant-derived molecules to validated pharmacotherapeutic agents, potentially revolutionizing the field of pain management.
Collapse
Affiliation(s)
- Ahmed S. Alford
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, 70 President St., Charleston, SC 29425, USA (M.T.H.)
| | | | | | | | | |
Collapse
|
7
|
Green M, Veltri CA, Prozialeck WC, Grundmann O. The neuropharmacology of kratom, a novel psychoactive natural product. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111215. [PMID: 39662722 DOI: 10.1016/j.pnpbp.2024.111215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Kratom (Mitragyna speciosa, Korth.) is a tropical tree that is indigenous to Southeast Asia. When ingested, kratom leaves or decoctions from the leaves have been reported to produce complex stimulant and opioid-like effects. For generations native populations in Southeast Asia have used kratom products to stave off fatigue, improve mood, alleviate pain and manage symptoms of opioid withdrawal. Over the past 15-20 years, kratom use has spread to Western nations including the United States, where many individuals are using kratom products for the self-management of pain, opioid use disorder, anxiety and depression. The increased use of kratom has triggered a surge in research into the biochemistry, pharmacology and behavioral effects of kratom and its active constituents, especially mitragynine and 7-hydroxymitragynine. In this review, we highlight some of the recent animal studies showing that kratom and its constituent compounds have potential beneficial effects in animal models of pain, anxiety, depression and opioid dependence. We also highlight studies showing that kratom can modulate the functioning of opioid, noradrenergic, serotonergic and dopaminergic systems. The highlighted studies strongly suggest that kratom and its constituents may form the basis for the development of novel therapeutic agents.
Collapse
Affiliation(s)
- MeShell Green
- College of Pharmacy, Department of Pharmaceutical Sciences, Midwestern University, Glendale, AZ, United States
| | - Charles A Veltri
- College of Pharmacy, Department of Pharmaceutical Sciences, Midwestern University, Glendale, AZ, United States
| | - Walter C Prozialeck
- Department of Pharmacology, Midwestern University, Downers Grove, IL, United States
| | - Oliver Grundmann
- College of Pharmacy, Department of Pharmaceutical Sciences, Midwestern University, Glendale, AZ, United States; College of Pharmacy, Department of Medicinal Chemistry, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
8
|
Mun CJ, Panlilio LV, Dunn KE, Thrul J, McCurdy CR, Epstein DH, Smith KE. Kratom (Mitragyna speciosa) use for self-management of pain: Insights from cross-sectional and ecological momentary assessment data. THE JOURNAL OF PAIN 2025; 26:104726. [PMID: 39505119 PMCID: PMC11781972 DOI: 10.1016/j.jpain.2024.104726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/10/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Kratom (Mitragyna speciosa) is increasingly used in the US for self-management of pain, despite limited research on its efficacy and safety. To better understand how and why people use kratom for pain self-management, we analyzed baseline survey data (N = 395) and 15-day ecological momentary assessment (EMA) data (N = 357) from kratom consumers across the US. Although we recruited participants based on their kratom use, not on whether they used it for pain management, nearly half (49.1 %) met criteria for chronic pain, with many reporting substantial pain relief and high effectiveness of kratom in managing pain. A majority (69.2 %) reported difficulties in obtaining adequate pain treatment, and most indicated that these challenges impacted their decision to try kratom. Most participants did not report concerns about overuse or significant side effects. EMA data showed that, regardless of chronic-pain status, pain relief was the most frequently endorsed primary motivation for daily kratom use. There were no significant association between daily pain levels and kratom use frequency, and no difference in the daily kratom use between those with vs. without chronic pain. Recent kratom use was associated with lower current pain levels. Stronger subjective effects of kratom were associated with lower pain levels. This effect was significantly moderated by chronic-pain status: those with chronic pain showed a stronger link between subjective kratom effects and pain reduction. These findings underscore the urgent need for systematic, rigorous research on long-term implications, efficacy, and safety of kratom in pain management to guide informed clinical practices and regulatory policies. PERSPECTIVE: This study reveals that chronic pain is common among kratom consumers, who frequently use it for pain self-management and report significant relief, as shown by ecological momentary assessment. There is an urgent need for research into kratom's safety, efficacy, and mechanisms to guide clinical practice and inform policies.
Collapse
Affiliation(s)
- Chung Jung Mun
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leigh V Panlilio
- Real-World Assessment, Prediction, and Treatment Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Kelly E Dunn
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Johannes Thrul
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA; Centre for Alcohol Policy Research, La Trobe University, Melbourne, Australia
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - David H Epstein
- Real-World Assessment, Prediction, and Treatment Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Kirsten E Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Prevete E, Theunissen EL, Kuypers KPC, Paci R, Reckweg JT, Cavarra M, Toennes SW, Ritscher S, Bersani G, Corazza O, Pasquini M, Ramaekers JG. An exploratory study of the safety profile and neurocognitive function after single doses of mitragynine in humans. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06734-2. [PMID: 39724441 DOI: 10.1007/s00213-024-06734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
RATIONALE Despite the growing scientific interest on mitragynine, the primary alkaloid in kratom (Mitragyna Speciosa), there is a lack of clinical trials in humans. OBJECTIVES This phase 1 study aimed to evaluate mitragynine's safety profile and acute effects on subjective drug experience, neurocognition, and pain tolerance. METHODS A placebo-controlled, single-blind, within-subjects study was conducted in two parts. In part A, eight healthy human volunteers received placebo and three doses of mitragynine (5, 10, and 20 mg) in a sequential dosing scheme, on separate days. In part B, a second group of seven volunteers received placebo and 40 mg of mitragynine. Vital signs, subjective drug experience, neurocognitive function, and pain tolerance were measured at regular intervals for 7 h after administration. RESULTS Overall, mitragynine did not affect most of the outcome measures at any dose. Yet, the lowest dose (5 mg) of mitragynine increased subjective ratings of arousal and attention, accuracy in a sustained attention task, and motor inhibition. The highest dose (40 mg) of mitragynine increased subjective ratings of amnesia and produced mild psychopathological symptoms. Mitragynine did not significantly affect vital signs, and only mild, transient side effects were reported. CONCLUSION The present study suggests that low doses (5-10 mg) of mitragynine may cause subjective feelings of stimulation and enhance attention, while the highest dose (40 mg) may cause inhibitory feelings of amnesia and distress. Mitragynine doses up to 40 mg were well tolerated in this group.
Collapse
Affiliation(s)
- Elisabeth Prevete
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy
| | - Eef L Theunissen
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Kim P C Kuypers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Riccardo Paci
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Johannes T Reckweg
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Mauro Cavarra
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Stefan W Toennes
- Institute of Legal Medicine, University Hospital, Goethe University, Frankfurt/Main, Germany
| | - Sabrina Ritscher
- Institute of Legal Medicine, University Hospital, Goethe University, Frankfurt/Main, Germany
| | - Giuseppe Bersani
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, Latina, 04100, Italy
| | - Ornella Corazza
- Department of Clinical, Pharmacological and Biological Sciences, College Lane, University of Hertfordshire, Hatfield, AL10 9AB, UK
- Department of Psychology and Cognitive Science, University of Trento, Corso Bettini, 84, Rovereto, 38068, Italy
| | - Massimo Pasquini
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy
| | - Johannes G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands.
| |
Collapse
|
10
|
Das J. Kratom Alkaloids for the Treatment of Alcohol Use Disorder. ACS Chem Neurosci 2024; 15:4352-4359. [PMID: 39611792 DOI: 10.1021/acschemneuro.4c00675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024] Open
Abstract
Alcohol use disorder (AUD) accounts for nearly 4.7% of all deaths and imposes a huge economic burden on society. Despite the magnitude of the problem, only a few Food and Drug Administration (FDA)/European Medicines Agency (EMA)-approved drugs are currently available for AUD treatment. Despite being efficacious, these drugs are not without problems, adverse effects being a major issue. That combined with medication adherence and compliance problems, the discovery of new drugs is imperative. Kratom (Mitragyna speciosa) alkaloids and some of their semisynthetic derivatives reduce alcohol intake and alcohol-induced withdrawal symptoms in animal models. These compounds act as G-protein-biased ligands at the μ-, δ-, and κ-opioid receptors, and their effect in reducing alcohol intake is mediated through the δ-opioid receptor. This article provides a critical overview of recent preclinical studies involving kratom alkaloids for AUD treatment, with a particular focus on the pharmacology and medicinal chemistry of these alkaloids. FDA/EMA approved drugs, repurposed drugs, and plant-based compounds for the treatment of AUD are briefly mentioned. Finally, important caveats and future research directions on this topic are discussed.
Collapse
Affiliation(s)
- Joydip Das
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
11
|
McDonald A, Nakamura Y, Schotte C, Lau K, Alam R, Lopes AA, Buell CR, O'Connor S. Enzymatic epimerization of monoterpene indole alkaloids in Kratom. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628308. [PMID: 39713415 PMCID: PMC11661350 DOI: 10.1101/2024.12.13.628308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Monoterpene indole alkaloids (MIAs) are a large, structurally diverse class of bioactive natural products. These compounds are biosynthetically derived from a stereoselective Pictet-Spengler condensation that generates a tetrahydro-β-carboline scaffold characterized by a 3 S stereocenter. However, a subset of MIAs contain a non-canonical 3 R stereocenter. Herein, we report the basis for 3 R -MIA biosynthesis in Mitragyna speciosa (Kratom). We discover the presence of the iminium species, 20 S -3-dehydrocorynantheidine, which led us to hypothesize that isomerization of 3 S to 3 R occurs by oxidation and stereoselective reduction downstream of the initial Pictet-Spengler condensation. Isotopologue feeding experiments implicated young leaves and stems as the sites for pathway biosynthesis, facilitating the identification of an oxidase/reductase pair that catalyzes this epimerization. This enzyme pair has broad substrate specificity, suggesting that the oxidase and reductase may be responsible for the formation of many 3 R -MIAs and downstream spirooxindole alkaloids in Kratom. These enzymes allow biocatalytic access to a range of previously inaccessible pharmacologically active compounds.
Collapse
|
12
|
Zuarth Gonzalez JD, Mottinelli M, McCurdy CR, de Lartigue G, McMahon LR, Wilkerson JL. Mitragynine and morphine produce dose-dependent bimodal action on food but not water intake in rats. Am J Physiol Regul Integr Comp Physiol 2024; 327:R568-R579. [PMID: 39250542 PMCID: PMC11687856 DOI: 10.1152/ajpregu.00128.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/08/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024]
Abstract
Kratom (Mitragyna speciosa), containing the primary alkaloid mitragynine, has emerged as an alternative self-treatment for opioid use disorder. Mitragynine binds numerous receptor types, including opioid receptors, which are known to modulate food consumption. However, the ability of acute mitragynine to modulate food consumption remains unknown. The current study assessed the effects of acute mitragynine or morphine administration on unconditioned food and water intake in 16 Sprague-Dawley rats. Food and water intake changes were monitored in response to morphine, mitragynine (1.78-56 mg/kg ip), saline, or vehicle controls for 12 h, starting at the onset of the dark cycle. Naltrexone pretreatment was used to examine pharmacological specificity. Both morphine and mitragynine demonstrated a biphasic food intake dose-effect, with low doses (5.6 mg/kg) increasing and high doses (56 mg/kg) decreasing food intake. All morphine doses reduced water intake; however, only the highest dose of mitragynine (56 mg/kg) reduced water intake. Naltrexone attenuated both stimulatory and inhibitory effects of morphine on food intake, but only the stimulatory effect of mitragynine. In conclusion, low doses of mitragynine stimulate food intake via opioid-related pathways, while high doses likely recruit other targets.NEW & NOTEWORTHY This study reveals that morphine and the kratom alkaloid mitragynine produce dose-dependent effects on feeding in rats. Low doses stimulate food intake via opioid pathways, while high doses decrease consumption through nonopioid mechanisms. Morphine potently suppresses water intake at all doses, whereas only high doses of mitragynine reduce drinking. These findings provide novel insights into the complex opioid and nonopioid mechanisms underlying the effects of mitragynine on ingestive behaviors.
Collapse
Affiliation(s)
- Julio D Zuarth Gonzalez
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida, United States
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, United States
| | - Marco Mottinelli
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, United States
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, Massachusetts, United States
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, United States
| | - Guillaume de Lartigue
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida, United States
- Monell Chemical Senses Center and Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida, United States
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, United States
| | - Jenny L Wilkerson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida, United States
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, United States
| |
Collapse
|
13
|
Bakar KA, Lam SD, Feroz SR. Binding characteristics of the major kratom alkaloid, mitragynine, towards serum albumin: Spectroscopic, calorimetric, microscopic, and computational investigations. Chem Biol Interact 2024; 404:111264. [PMID: 39393752 DOI: 10.1016/j.cbi.2024.111264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Mitragynine (MTG) is a prominent indole alkaloid that is present abundantly in Mitragyna speciosa, commonly referred to as kratom. MTG has garnered significant attention due to its selective agonistic characteristics towards opioid receptors and related analgesic effects. In the circulatory system, the in vivo efficacy of MTG is dictated by its interaction with plasma proteins, primarily human serum albumin (HSA). In the present study, we utilized a broad methodology that included spectroscopic, calorimetric, microscopic, and in silico approaches to characterize the interaction between MTG and HSA. Alterations in the UV absorption spectrum of HSA by the presence of MTG demonstrated a ground-state complexation between the protein and the ligand. The Ka values obtained for the MTG-HSA interaction were in the range 103-104 M-1 based on analysis of fluorescence and ITC data, respectively, indicating an intermediate binding affinity. The binding reaction was thermodynamically favorable as revealed by ΔH, ΔS, and ΔG values of -16.42 kJ mol-1, 39.97 J mol-1 K-1, and -28.34 kJ mol-1, respectively. Furthermore, CD spectroscopy results suggested MTG binding induced minimal effects on the structural integrity of HSA, supported by computational methods. Changes in the dimensions of HSA particles due to aggregation, as observed using atomic force microscopy in the presence of MTG. Competitive drug displacement results seemingly suggested site III of HSA located at subdomain IB as the preferred binding site of MTG, but were in inconclusive. However, docking results showed the clear preference of MTG to bind to site III, facilitated by hydrophobic (alkyl and pi-alkyl) and van der Waals forces, together with carbon hydrogen bonds. Additionally, the MTG-HSA complexation was demonstrated to be stable based on molecular dynamics analysis. The outcomes of this study shed light on the therapeutic potential of MTG and can help in the design of more effective derivatives of the compound.
Collapse
Affiliation(s)
- Khairul Azreena Bakar
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Su Datt Lam
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; Structural Biology and Protein Engineering Group, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Shevin Rizal Feroz
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; Structural Biology and Protein Engineering Group, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
14
|
Melchert PW, Zhang Q, Markowitz JS. An in vitro evaluation on metabolism of mitragynine to 9-O-demethylmitragynine. Chem Biol Interact 2024; 403:111247. [PMID: 39299374 DOI: 10.1016/j.cbi.2024.111247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/30/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Kratom (Mitragyna Speciosa Korth.) is an indigenous tree native to Southeast Asia whose leaves have been traditionally ingested as a tea and has seen its popularity increase in the United States. Although kratom and its constituents presently have no approved uses by the Food and Drug Administration, its major alkaloids (e.g., mitragynine) have psychoactive properties that may hold promise for the treatment of opioid cessation, pain management, and other indications. 9-O-demethylmitragynine is a major metabolite formed from mitragynine metabolism (36 % total metabolism) and displays similar pharmacologic activity. Cytochrome P450 (CYP) 3A4 has been identified as a major enzyme involved in mitragynine metabolism; however, the in vitro metabolism parameters of 9-O-demethylmitragynine formation are not well defined and a risk of potential drug interactions exists. Using human liver S9 fractions, 9-O-demethylmitragynine formation was generally linear for enzyme concentrations of 0-0.25 mg/mL and incubation times of 5-20 min. 9-O-demethylmitragynine displayed a Km 1.37 μM and Vmax of 0.0931 nmol/min/mg protein. Known CYP inhibitors and compounds that might be concomitantly used with kratom were assessed for inhibition of 9-O-demethylmitragynine formation. Ketoconazole, a CYP3A index inhibitor, demonstrated a significant effect on 9-O-demethylmitragynine formation, further implicating CYP3A4 as a major metabolic pathway. Major cannabinoids (10 μg/mL) displayed minor inhibition of 9-O-demethylmitragynine formation, while all other compounds had minimal effects. Mixtures of physiological achievable cannabinoid concentrations also displayed minor effects on 9-O-demethylmitragynine formation, making a metabolic drug interaction unlikely; however, further in vitro, in vivo, and clinical studies are necessary to fully exclude any risk.
Collapse
Affiliation(s)
- Philip W Melchert
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL, USA.
| | - Qingchen Zhang
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL, USA
| | - John S Markowitz
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL, USA
| |
Collapse
|
15
|
Obeng S, Crowley ML, Mottinelli M, León F, Zuarth Gonzalez JD, Chen Y, Gamez-Jimenez LR, Restrepo LF, Ho NP, Patel A, Martins Rocha J, Alvarez MA, Thadisetti AM, Park CR, Pallares VLC, Milner MJ, Canal CE, Hampson AJ, McCurdy CR, McMahon LR, Wilkerson JL, Hiranita T. The Mitragyna speciosa (kratom) alkaloid mitragynine: Analysis of adrenergic α 2 receptor activity in vitro and in vivo. Eur J Pharmacol 2024; 980:176863. [PMID: 39068978 PMCID: PMC11556301 DOI: 10.1016/j.ejphar.2024.176863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Mitragynine, an alkaloid present in the leaves of Mitragyna speciosa (kratom), has a complex pharmacology that includes low efficacy agonism at μ-opioid receptors (MORs). This study examined the activity of mitragynine at adrenergic α2 receptors (Aα2Rs) in vitro and in vivo. Mitragynine displaced a radiolabeled Aα2R antagonist ([3H]RX821002) from human Aα2ARs in vitro with lower affinity (Ki = 1260 nM) than the agonists (-)-epinephrine (Ki = 263 nM) or lofexidine (Ki = 7.42 nM). Mitragynine did not significantly stimulate [35S]GTPγS binding at Aα2ARs in vitro, but in rats trained to discriminate 32 mg/kg mitragynine from vehicle (intraperitoneally administered; i.p.), mitragynine exerted an Aα2R agonist-like effect. Both α2R antagonists (atipamezole and yohimbine) and MOR antagonists (naloxone and naltrexone) produced rightward shifts in mitragynine discrimination dose-effect function and Aα2R agonists lofexidine and clonidine produced leftward shifts. In the mitragynine trained rats, Aα2R agonists also produced leftward shifts in discrimination dose-effect functions for morphine and fentanyl. In a separate rat cohort trained to discriminate 3.2 mg/kg i.p. morphine from vehicle, naltrexone produced a rightward shift, but neither an Aα2R agonist or antagonist affected morphine discrimination. In a hypothermia assay, both lofexidine and clonidine produced marked effects antagonized by yohimbine. Mitragynine did not produce hypothermia. Together, these data demonstrate that mitragynine acts in vivo like an Aα2R agonist, although its failure to induce hypothermia or stimulate [35S]GTPγS binding in vitro, suggests that mitragynine maybe a low efficacy Aα2R agonist.
Collapse
Affiliation(s)
- Samuel Obeng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA; Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Morgan L Crowley
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Marco Mottinelli
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Francisco León
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Julio D Zuarth Gonzalez
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Yiming Chen
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Atlanta, GA, 30341, USA
| | - Lea R Gamez-Jimenez
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Luis F Restrepo
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Nicholas P Ho
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Avi Patel
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Joelma Martins Rocha
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Manuel A Alvarez
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Amsha M Thadisetti
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Chai R Park
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Victoria L C Pallares
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Megan J Milner
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Clinton E Canal
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Atlanta, GA, 30341, USA
| | - Aidan J Hampson
- Division of Therapeutics and Medical Consequences, National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA; Department of Pharmaceutics, University of Florida, Gainesville, FL 32610, USA; Translational Drug Development Core, Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Jenny L Wilkerson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
| | - Takato Hiranita
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
16
|
Heywood J, Smallets S, Paustenbach D. Beneficial and adverse health effects of kratom (Mitragyna speciosa): A critical review of the literature. Food Chem Toxicol 2024; 192:114913. [PMID: 39134135 DOI: 10.1016/j.fct.2024.114913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 08/25/2024]
Abstract
Used in Southeast Asia for generations, kratom gained popularity in the United States and elsewhere over the past several decades. Derived from Mitragyna speciosa, kratom preparations including leaves, teas, powders, capsules, and extracts may yield stimulant, analgesic, and opioid-like effects that occur dose-dependently based on concentrations of kratom's key alkaloids, mitragynine and 7-hydroxymitragynine. Such effects are responsible for kratom's potential as a reduced-harm alternative to opiates and as a withdrawal treatment. But these properties are also associated with tolerance development and addictive potential. Given mitragynine and 7-hydroxymitragynine activity on cytochrome P450 isoforms and opioid receptors, adverse effects among polysubstance users are a concern. Current literature on the toxicology of kratom is reviewed, including product alkaloid concentrations, in vitro and in vivo data, epidemiological evidence, and human case data. The potential harms and benefits of kratom products are discussed within an exposure assessment framework, and recommendations for industry are presented. Current evidence indicates that kratom may have therapeutic potential in some persons and that products present few risks with typical, non-polysubstance use. However, few studies identified alkaloid doses at which adverse effects were expected in humans or animals. Such research is needed to inform future assessments of kratom's risks and benefits.
Collapse
Affiliation(s)
- J Heywood
- Paustenbach and Associates, 1550 Wewatta Street, Suite 200, Denver, CO, USA.
| | - S Smallets
- Paustenbach and Associates, 1550 Wewatta Street, Suite 200, Denver, CO, USA
| | - D Paustenbach
- Paustenbach and Associates, 970 West Broadway, Suite E, Jackson, WY, USA
| |
Collapse
|
17
|
Chiang YH, Berthold EC, Kuntz MA, Kanumuri SRR, Senetra AS, Mukhopadhyay S, Hampson AJ, McCurdy CR, Sharma A. Multiple-Dose Pharmacokinetics and Safety of Mitragynine, the Major Alkaloid of Kratom, in Rats. ACS Pharmacol Transl Sci 2024; 7:2452-2464. [PMID: 39144552 PMCID: PMC11320740 DOI: 10.1021/acsptsci.4c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
This study reports the steady-state pharmacokinetic parameters for mitragynine and characterizes its elimination in male and female rats. Four male and female rats were dosed q12h with 40 mg/kg, and orally administered mitragynine for 5 and 6 days, respectively. Using a validated ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method, the plasma concentrations of mitragynine, its metabolites (7-hydroxymitragynine, 9-hydroxycorynantheidine, and mitragynine acid), and a non-CYP oxidation product (3-dehydromitragynine) were determined at various time points. Sex differences in pharmacokinetics were observed, with females demonstrating significantly higher systemic exposure of mitragynine than males. The mitragynine area under the curve normalized by the dose interval (AUC/τ) was 6741.6 ± 869.5 h*ng/mL in female rats and 1808.9 ± 191.3 h*ng/mL in males (p < 0.05). Both sexes produced similar metabolite profiles; the major metabolites were mitragynine acid and 9-hydroxycorynantheidine. 7-Hydroxymitragynine was a minor metabolite. However, higher exposure (AUCs) and the maximum plasma concentrations (C max) of active metabolites, 7-hydroxymitragynine and 9-hydroxycorynantheidine, were observed in female rats and exhibited substantial sex differences. Renal clearance of mitragynine (CLr) was low (0.64 ± 0.3 mL/h in males and 0.98 ± 0.4 mL/h in females), and unchanged mitragynine accounted for <1% of the dose excreted in feces (both sexes). The clinical chemistry, complete blood count, and hematological test results reported no abnormal hematological findings after multiple dosing in either sex.
Collapse
Affiliation(s)
- Yi-Hua Chiang
- Department
of Pharmaceutics, College of Pharmacy, University
of Florida, Gainesville, Florida 32610, United States
| | - Erin C. Berthold
- Department
of Pharmaceutics, College of Pharmacy, University
of Florida, Gainesville, Florida 32610, United States
| | - Michelle A. Kuntz
- Department
of Pharmaceutics, College of Pharmacy, University
of Florida, Gainesville, Florida 32610, United States
| | - Siva Rama Raju Kanumuri
- Department
of Pharmaceutics, College of Pharmacy, University
of Florida, Gainesville, Florida 32610, United States
- Translational
Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, Florida 32610, United States
| | - Alexandria S. Senetra
- Department
of Pharmaceutics, College of Pharmacy, University
of Florida, Gainesville, Florida 32610, United States
| | - Sushobhan Mukhopadhyay
- Department
of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Aidan J. Hampson
- Division
of Therapeutics and Medical Consequences, National Institute on Drug
Abuse, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Christopher R. McCurdy
- Translational
Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, Florida 32610, United States
- Department
of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Abhisheak Sharma
- Department
of Pharmaceutics, College of Pharmacy, University
of Florida, Gainesville, Florida 32610, United States
- Translational
Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
18
|
Yang R, Xue Z, Li X, Xu T, Zhong Y, Hu S, Qin S, Guo Y. Novel natural osthole-inspired amphiphiles as membrane targeting antibacterials against methicillin-resistant Staphylococcus aureus (MRSA). Eur J Med Chem 2024; 271:116449. [PMID: 38691893 DOI: 10.1016/j.ejmech.2024.116449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a widespread pathogen causing clinical infections and is multi-resistant to many antibiotics, making it urgent need to develop novel antibacterials to combat MRSA. Herein, we designed and prepared a series of novel osthole amphiphiles 6a-6ad by mimicking the structures and function of antimicrobial peptides (AMPs). Antibacterial assays showed that osthole amphiphile 6aa strongly inhibited S. aureus and 10 clinical MRSA isolates with MIC values of 1-2 μg/mL, comparable to that of the commercial antibiotic vancomycin. Additionally, 6aa had the advantages of rapid bacteria killing without readily developing drug resistance, low toxicity, good membrane selectivity, and good plasma stability. Mechanistic studies indicated that 6aa possesses good membrane-targeting ability to bind to phosphatidylglycerol (PG) on the bacterial cell membranes, thereby disrupting the cell membranes and causing an increase in intracellular ROS as well as leakage of proteins and DNA, and accelerating bacterial death. Notably, in vivo activity results revealed that 6aa exhibits strong anti-MRSA efficacy than vancomycin as well as a substantial reduction in MRSA-induced proinflammatory cytokines, including TNF-α and IL-6. Given the impressive in vitro and in vivo anti-MRSA efficacy of 6aa, which makes it a potential candidate against MRSA infections.
Collapse
Affiliation(s)
- Ruige Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China.
| | - Zihan Xue
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Xinhui Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Ting Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, China
| | - Yan Zhong
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, China
| | - Songlin Hu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Yong Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China.
| |
Collapse
|
19
|
Zamarripa A, Spindle TR, Panlilio LV, Strickland JC, Feldman JD, Novak MD, Epstein DH, Dunn KE, McCurdy CR, Sharma A, Kuntz MA, Mukhopadhyay S, Raju KSR, Rogers JM, Smith KE. Effects of kratom on driving: Results from a cross-sectional survey, ecological momentary assessment, and pilot simulated driving Study. TRAFFIC INJURY PREVENTION 2024; 25:594-603. [PMID: 38497810 PMCID: PMC11149710 DOI: 10.1080/15389588.2024.2327827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024]
Abstract
OBJECTIVES Despite widespread kratom use, there is a lack of knowledge regarding its effects on driving. We evaluated the self-reported driving behaviors of kratom consumers and assessed their simulated-driving performance after self-administering kratom products. METHODS We present results from: 1) a remote, national study of US adults who regularly use kratom, and 2) an in-person substudy from which we re-recruited participants. In the national study (N = 357), participants completed a detailed survey and a 15-day ecological momentary assessment (EMA) that monitored naturalistic kratom use. For the remote study, outcomes were self-reported general and risky driving behaviors, perceived impairment, and driving confidence following kratom administration. For the in-person substudy, 10 adults consumed their typical kratom products and their driving performance on a high-fidelity driving simulator pre- and post-kratom administration was evaluated. RESULTS Over 90% of participants surveyed self-reported driving under the influence of kratom. Most reported low rates of risky driving behavior and expressed high confidence in their driving ability after taking kratom. This was consistent with EMA findings: participants reported feeling confident in their driving ability and perceived little impairment within 15-180 min after using kratom. In the in-person substudy, there were no significant changes in simulated driving performance after taking kratom. CONCLUSIONS Using kratom before driving appears routine, however, self-reported and simulated driving findings suggest kratom effects at self-selected doses among regular kratom consumers do not produce significant changes in subjective and objective measures of driving impairment. Research is needed to objectively characterize kratom's impact on driving in regular and infrequent consumers.
Collapse
Affiliation(s)
- Austin Zamarripa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tory R. Spindle
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Leigh V. Panlilio
- Real-World Assessment, Prediction, and Treatment Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, United States
| | - Justin C. Strickland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jeffrey D. Feldman
- Real-World Assessment, Prediction, and Treatment Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, United States
| | - Matthew D. Novak
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David H. Epstein
- Real-World Assessment, Prediction, and Treatment Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, United States
| | - Kelly E. Dunn
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Christopher R. McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Michelle A. Kuntz
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Sushobhan Mukhopadhyay
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Kanumuri Sava Rama Raju
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Jeffrey M. Rogers
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
| | - Kirsten E. Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
20
|
Huestis MA, Brett MA, Bothmer J, Atallah R. Human Mitragynine and 7-Hydroxymitragynine Pharmacokinetics after Single and Multiple Daily Doses of Oral Encapsulated Dried Kratom Leaf Powder. Molecules 2024; 29:984. [PMID: 38474495 DOI: 10.3390/molecules29050984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 03/14/2024] Open
Abstract
Kratom leaves, consumed by millions worldwide as tea or ground leaf powder, contain multiple alkaloids, with mitragynine being the most abundant and responsible for most effects. Mitragynine is a partial µ-opioid receptor agonist and competitive antagonist at κ- and δ-opioid receptors; however, unlike morphine, it does not activate the β-arrestin-2 respiratory depression pathway. Due to few human mitragynine data, the largest randomized, between-subject, double-blind, placebo-controlled, dose-escalation study of 500-4000 mg dried kratom leaf powder (6.65-53.2 mg mitragynine) was conducted. LC-MS/MS mitragynine and 7-hydroxymitragynine plasma concentrations were obtained after single and 15 daily doses. Mitragynine and 7-hydroxymitragynine Cmax increased dose proportionally, and AUC was slightly more than dose proportional. The median mitragynine Tmax was 1.0-1.3 h after single and 1.0-1.7 h after multiple doses; for 7-hydroxymitragynine Tmax, it was 1.2-1.8 h and 1.3-2.0 h. Steady-state mitragynine concentrations were reached in 8-9 days and 7-hydroxymitragynine within 7 days. The highest mean mitragynine T1/2 was 43.4 h after one and 67.9 h after multiple doses, and, for 7-hydroxymitragynine, it was 4.7 and 24.7 h. The mean 7-hydroxy-mitragynine/mitragynine concentration ratios were 0.20-0.31 after a single dose and decreased (0.15-0.21) after multiple doses. These mitragynine and 7-hydroxymitragynine data provide guidance for future clinical kratom dosing studies and an interpretation of clinical and forensic mitragynine and 7-hydroxymitragynine concentrations.
Collapse
Affiliation(s)
- Marilyn A Huestis
- Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | - John Bothmer
- JB Pharma Consulting, 6418PR Heerlen, The Netherlands
| | | |
Collapse
|
21
|
Anish RJ, Nair A, Saraswathy V, Kalpana VNS, Shyma RL. In silico, anti-inflammatory and acute toxicological evaluation of an indigenous medicinal plant Pterospermum rubiginosum using Sprague-Dawley rats. Lab Anim Res 2024; 40:2. [PMID: 38326913 PMCID: PMC10848399 DOI: 10.1186/s42826-024-00191-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Pterospermum rubiginosum has been traditionally used by the tribal inhabitants of Southern India for treating bone fractures and as a local anti-inflammatory agent; however, experimental evidence to support this traditional usage is lacking. The present study aimed to investigate the phytochemical characterization, in silico and in vitro anti-inflammatory evaluation, followed by in vivo toxicological screening of P. rubiginosum methanolic bark extract (PRME). RESULTS The LCMS evaluation revealed the presence of 80 significant peaks; nearly 50 molecules were identified using the LCMS database. In silico analysis showed notable interactions with inducible nitric oxide synthase (iNOS) and interleukin-6 (IL-6). In vitro gene expression study supported the docking results with significant down-regulation of iNOS, IL-6, and IL-10. PRME was administered orally to the SD rats and was found to be non-toxic up to 1000 mg/kg body weight for 14 days. The antioxidant enzymes catalase and sodium dismutase exhibited an increased value in PRME-administered groups, possibly due to the diverse phytochemical combinations in bark extract. CONCLUSIONS PRME administration significantly downregulated the gene expression of inflammatory markers, such as iNOS, IL-6, and IL-10. The molecular docking analysis of iNOS and IL-6 supports the in vitro study. In vivo toxicological study of PRME in SD rats was found to be non-toxic up to a concentration of 1000 mg/kg body weight for 14 days.
Collapse
Affiliation(s)
- Rajamohanan Jalaja Anish
- Department of Biochemistry, University of Kerala, Kariyavattom Campus, Thiruvananthapuram, Kerala, 695581, India.
| | - Aswathy Nair
- Department of Biochemistry, University of Kerala, Kariyavattom Campus, Thiruvananthapuram, Kerala, 695581, India
- Kerala State Palmyrah Products Development and Workers' Welfare Corporation Limited, Trivandrum, India
| | - V Saraswathy
- Department of Computational Biology and Bioinformatics, University of Kerala, Trivandrum, Kerala, India
| | - Velappan Nair S Kalpana
- Department of Biochemistry, University of Kerala, Kariyavattom Campus, Thiruvananthapuram, Kerala, 695581, India
| | - Rajendran L Shyma
- Department of Biochemistry, University of Kerala, Kariyavattom Campus, Thiruvananthapuram, Kerala, 695581, India
| |
Collapse
|
22
|
Annuar NAK, Azlan UK, Mediani A, Tong X, Han R, Al-Olayan E, Baharum SN, Bunawan H, Sarian MN, Hamezah HS, Jantan I. An insight review on the neuropharmacological effects, mechanisms of action, pharmacokinetics and toxicity of mitragynine. Biomed Pharmacother 2024; 171:116134. [PMID: 38219389 DOI: 10.1016/j.biopha.2024.116134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024] Open
Abstract
Mitragynine is one of the main psychoactive alkaloids in Mitragyna speciosa Korth. (kratom). It has opium-like effects by acting on μ-, δ-, and κ-opioid receptors in the brain. The compound also interacts with other receptors, such as adrenergic and serotonergic receptors and neuronal Ca2+ channels in the central nervous system to have its neuropharmacological effects. Mitragynine has the potential to treat diseases related to neurodegeneration such as Alzheimer's disease and Parkinson's disease, as its modulation on the opioid receptors has been reported extensively. This review aimed to provide an up-to-date and critical overview on the neuropharmacological effects, mechanisms of action, pharmacokinetics and safety of mitragynine as a prospective psychotropic agent. Its multiple neuropharmacological effects on the brain include antinociceptive, anti-inflammatory, antidepressant, sedative, stimulant, cognitive, and anxiolytic activities. The potential of mitragynine to manage opioid withdrawal symptoms related to opioid dependence, its pharmacokinetics and toxic effects were also discussed. The interaction of mitragynine with various receptors in the brain produce diverse neuropharmacological effects, which have beneficial properties in neurological disorders. However, further studies need to be carried out on mitragynine to uncover its complex mechanisms of action, pharmacokinetics, pharmacodynamic profiles, addictive potential, and safe dosage to prevent harmful side effects.
Collapse
Affiliation(s)
- Nur Aisyah Khairul Annuar
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Ummi Kalthum Azlan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Ahmed Mediani
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Xiaohui Tong
- School of Life Sciences, Anhui University of Chinese Medicine, Hefei, China
| | - Rongchun Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ebtesam Al-Olayan
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Syarul Nataqain Baharum
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Hamidun Bunawan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Murni Nazira Sarian
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Hamizah Shahirah Hamezah
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Ibrahim Jantan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
23
|
Smith KE, Panlilio LV, Feldman JD, Grundmann O, Dunn KE, McCurdy CR, Garcia-Romeu A, Epstein DH. Ecological Momentary Assessment of Self-Reported Kratom Use, Effects, and Motivations Among US Adults. JAMA Netw Open 2024; 7:e2353401. [PMID: 38277146 PMCID: PMC10818224 DOI: 10.1001/jamanetworkopen.2023.53401] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024] Open
Abstract
Importance Kratom products, which are sold legally in most of the US, contain alkaloids with opioidergic, adrenergic, and serotonergic activity. Millions of people use kratom to relieve pain, improve mood, or self-manage substance use disorders (SUDs). Kratom use has primarily been examined via surveys, in which recall biases among satisfied users may lead to minimization of transient negative outcomes. Further prospective study of kratom use, such as with ecological momentary assessment (EMA), is needed. Objective To characterize proximal motivators, effects, and patterns of kratom use and to assess whether use frequency is associated with motivations, effects, past-year criteria for SUD for kratom (KUD), or other substance use. Design, Setting, and Participants For this prospective cross-sectional study, an intensive longitudinal smartphone-based EMA in which participants' current behaviors and experiences were repeatedly sampled in real time was conducted between July 1 and October 31, 2022. Participants comprised a convenience sample of US adults who used kratom at least 3 days per week for at least 4 weeks at the time of online screening. Criteria for past-year KUD were based on the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. Data analysis was performed between November 2022 and November 2023. Exposure The exposure was 13 401 kratom-use events across 15 days. Main Outcomes and Measures A baseline survey covering demographics, health, kratom attitudes and behaviors, use motivations, other substance use, and KUD was administered before EMA. Data for the following EMA entries were then collected: event-contingent entries for kratom use (product, dose, and proximal motivations), follow-up entries (short-term effects and consequences of use events), random-prompt entries (mood), beginning-of-day entries (effects of kratom on sleep), and end-of-day entries (daily subjective descriptions of kratom effects). Bayesian regression was used to estimate means and credible intervals. Results A total of 357 participants completed the EMA. Their mean (SD) age was 38.0 (11.1) years; more than half were men (198 [55.5%]). Participants reported overall motivators of use on the baseline survey that involved managing psychiatric and SUD problems, but proximal motivators evaluated during the EMA involved situation-specific needs such as increasing energy and productivity and decreasing pain. Acute effects were considered congruent with daily obligations. Use patterns, despite having some distinguishing features, were generally similar in their motivators and effects; participants used kratom predominantly during the daytime and seemed to find use frequencies that suited their needs. Higher use patterns were associated with symptoms of physical dependence (eg, withdrawal or tolerance). Co-used substances included caffeine, nicotine, vitamins, and cannabis. Conclusions and Relevance Most participants in this study reported using kratom in a seemingly nonproblematic way. When such use appeared problematic, the key element was usually that withdrawal avoidance became a proximal motivator. Longitudinal studies examining changes in kratom use patterns and effects over time are needed.
Collapse
Affiliation(s)
- Kirsten E. Smith
- Real-World Assessment, Prediction, and Treatment Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Leigh V. Panlilio
- Real-World Assessment, Prediction, and Treatment Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland
| | - Jeffrey D. Feldman
- Real-World Assessment, Prediction, and Treatment Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Oliver Grundmann
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville
| | - Kelly E. Dunn
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher R. McCurdy
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Albert Garcia-Romeu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David H. Epstein
- Real-World Assessment, Prediction, and Treatment Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland
| |
Collapse
|
24
|
McCurdy CR, Sharma A, Smith KE, Veltri CA, Weiss ST, White CM, Grundmann O. An update on the clinical pharmacology of kratom: uses, abuse potential, and future considerations. Expert Rev Clin Pharmacol 2024; 17:131-142. [PMID: 38217374 PMCID: PMC10846393 DOI: 10.1080/17512433.2024.2305798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/11/2024] [Indexed: 01/15/2024]
Abstract
INTRODUCTION Kratom (Mitragyna speciosa) has generated substantial clinical and scientific interest as a complex natural product. Its predominant alkaloid mitragynine and several stereoisomers have been studied for activity in opioid, adrenergic, and serotonin receptors. While awaiting clinical trial results, the pre-clinical evidence suggests a range of potential therapeutic applications for kratom with careful consideration of potential adverse effects. AREAS COVERED The focus of this review is on the pharmacology, pharmacokinetics, and potential drug-drug interactions of kratom and its individual alkaloids. A discussion on the clinical pharmacology and toxicology of kratom is followed by a summary of user surveys and the evolving concepts of tolerance, dependence, and withdrawal associated with kratom use disorder. EXPERT OPINION With the increasing use of kratom in clinical practice, clinicians should be aware of the potential benefits and adverse effects associated with kratom. While many patients may benefit from kratom use with few or no reported adverse effects, escalating dose and increased use frequency raise the risk for toxic events in the setting of polysubstance use or development of a use disorder.
Collapse
Affiliation(s)
- Christopher R McCurdy
- College of Pharmacy, Department of Pharmaceutics, University of Florida, FL, 32610, U.S.A
- College of Pharmacy, Department of Medicinal Chemistry, University of Florida, FL, 32610, U.S.A
| | - Abhisheak Sharma
- College of Pharmacy, Department of Pharmaceutics, University of Florida, FL, 32610, U.S.A
| | - Kirsten E. Smith
- School of Medicine, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, MD, 21205, U.S.A
| | - Charles A. Veltri
- Midwestern University, College of Pharmacy, Department of Pharmaceutical Sciences, Glendale, AZ, 85308, U.S.A
| | - Stephanie T. Weiss
- Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, U.S.A
| | - Charles M. White
- University of Connecticut School of Pharmacy, Storrs, CT, and Department of Pharmacy, Hartford Hospital, Hartford, CT, U.S.A
| | - Oliver Grundmann
- College of Pharmacy, Department of Medicinal Chemistry, University of Florida, FL, 32610, U.S.A
- Midwestern University, College of Pharmacy, Department of Pharmaceutical Sciences, Glendale, AZ, 85308, U.S.A
| |
Collapse
|
25
|
Rehrauer KJ, Cunningham CW. IUPHAR Review - Bivalent and bifunctional opioid receptor ligands as novel analgesics. Pharmacol Res 2023; 197:106966. [PMID: 37865129 DOI: 10.1016/j.phrs.2023.106966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Though efficacious in managing chronic, severe pain, opioid analgesics are accompanied by significant adverse effects including constipation, tolerance, dependence, and respiratory depression. The life-threatening risks associated with µ opioid receptor agonist-based analgesics challenges their use in clinic. A rational approach to combatting these adverse effects is to develop agents that incorporate activity at a second pharmacologic target in addition to µ opioid receptor activation. The promise of such bivalent or bifunctional ligands is the development of an analgesic with an improved side effect profile. In this review, we highlight ongoing efforts in the development of bivalent and bifunctional analgesics that combine µ agonism with efficacy at κ and δ opioid receptors, the nociceptin opioid peptide (NOP) receptor, σ receptors, and cannabinoid receptors. Several examples of bifunctional analgesics in preclinical and clinical development are highlighted, as are strategies being employed toward the rational design of novel agents.
Collapse
Affiliation(s)
- Kyle J Rehrauer
- Department of Pharmaceutical and Administrative Sciences, Concordia University Wisconsin School of Pharmacy, 12800 N. Lake Shore Drive, Mequon, WI 53092, USA
| | - Christopher W Cunningham
- Department of Pharmaceutical and Administrative Sciences, Concordia University Wisconsin School of Pharmacy, 12800 N. Lake Shore Drive, Mequon, WI 53092, USA; CUW Center for Structure-Based Drug Discovery and Development, Concordia University Wisconsin School of Pharmacy, 12800 N. Lake Shore Drive, Mequon, WI 53092, USA.
| |
Collapse
|
26
|
Hossain R, Sultana A, Nuinoon M, Noonong K, Tangpong J, Hossain KH, Rahman MA. A Critical Review of the Neuropharmacological Effects of Kratom: An Insight from the Functional Array of Identified Natural Compounds. Molecules 2023; 28:7372. [PMID: 37959790 PMCID: PMC10648626 DOI: 10.3390/molecules28217372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Kratom (Mitragyna speciosa Korth. Havil) has been considered a narcotic drug for years, barred by the law in many parts of the world, while extensive research over the past few decades proves its several beneficial effects, some of which are still in ambiguity. In many countries, including Thailand, the indiscriminate use and abuse of kratom have led to the loss of life. Nonetheless, researchers have isolated almost fifty pure compounds from kratom, most of which are alkaloids. The most prevalent compounds, mitragynine and 7-hydroxy mitragynine, are reported to display agonist morphine-like effects on human μ-opioid receptors and antagonists at κ- and δ-opioid receptors with multimodal effects at other central receptors. Mitragynine is also credited to be one of the modulatory molecules for the Keap1-Nrf2 pathway and SOD, CAT, GST, and associated genes' upregulatory cascades, leading it to play a pivotal role in neuroprotective actions while evidently causing neuronal disorders at high doses. Additionally, its anti-inflammatory, antioxidative, antibacterial, and gastroprotective effects are well-cited. In this context, this review focuses on the research gap to resolve ambiguities about the neuronal effects of kratom and demonstrate its prospects as a therapeutic target for neurological disorders associated with other pharmacological effects.
Collapse
Affiliation(s)
- Rahni Hossain
- School of Allied Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; (R.H.); (M.N.); (K.N.)
- Research Excellence Center for Innovation and Health Product (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Abida Sultana
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh;
| | - Manit Nuinoon
- School of Allied Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; (R.H.); (M.N.); (K.N.)
- Hematology and Transfusion Science Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Kunwadee Noonong
- School of Allied Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; (R.H.); (M.N.); (K.N.)
- Research Excellence Center for Innovation and Health Product (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Jitbanjong Tangpong
- School of Allied Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; (R.H.); (M.N.); (K.N.)
- Research Excellence Center for Innovation and Health Product (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Kazi Helal Hossain
- Angiogenesis and Brain Development Laboratory, Department of Neurosciences, Huntington Medical Research Institutes (HMRI), Pasadena, CA 91105, USA;
| | - Md Atiar Rahman
- School of Allied Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; (R.H.); (M.N.); (K.N.)
- Department of Biochemistry & Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh;
- Research Excellence Center for Innovation and Health Product (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
27
|
Japarin RA, Harun N, Hassan Z, Müller CP. The dopamine D1 receptor antagonist SCH-23390 blocks the acquisition, but not expression of mitragynine-induced conditioned place preference in rats. Behav Brain Res 2023; 453:114638. [PMID: 37619769 DOI: 10.1016/j.bbr.2023.114638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Mitragynine (MG) is the primary active constituent of Mitragyna speciosa Korth (kratom), a psychoactive Southeast Asian plant with potential therapeutic use. Numerous studies support roles of dopaminergic system in drug reward. However, the involvement of the dopaminergic system in mediating MG reward and drug-seeking is poorly understood. Using conditioned place preference (CPP) paradigm, the present study aims to evaluate the roles of the dopamine (DA) D1 receptor in the acquisition and expression of MG-induced CPP in rats. The effects of SCH-23390, a selective DA D1 receptor antagonist, on the acquisition of MG-induced CPP were first investigated. Rats were pre-treated systemically with SCH-23390 (0, 0.1 and 0.3 mg/kg, i.p.) prior to MG (10 mg/kg) conditioning sessions. Next, we tested the effects of the DA D1 receptor antagonist on the expression of MG-induced CPP. Furthermore, the effects of a MG-priming dose (5 mg/kg) on the reinstatement of extinguished CPP were tested. The results showed that SCH-23390 dose-dependently suppressed the acquisition of a MG-induced CPP. In contrast, SCH-23390 had no effect on the expression of a MG-induced CPP. The findings of this study suggested a crucial role of the DA D1 receptor in the acquisition, but not the expression of the rewarding effects of MG in a CPP test. Furthermore, blockade of the D1-like receptor during conditioning did not prevent MG priming effects on CPP reinstatement test, suggesting no role for the DA D1 receptor in reinstatement sensitivity.
Collapse
Affiliation(s)
- Rima Atria Japarin
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia
| | - Norsyifa Harun
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia.
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia
| | - Christian P Müller
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia; Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany
| |
Collapse
|
28
|
Hassan Z, Singh D, Suhaimi FW, Chear NJY, Harun N, See CP, Kaur G, Mat NH, Bakar SNS, Yusof NSM, Kasinather VB, Chawarski MC, Murugaiyah V, Ramanathan S. Evaluation of toxicity profile of kratom (Mitragyna speciosa Korth) decoction in rats. Regul Toxicol Pharmacol 2023; 143:105466. [PMID: 37536550 DOI: 10.1016/j.yrtph.2023.105466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Mitragyna speciosa Korth also known as kratom, is an herbal drug preparation for its therapeutic properties and opioid-replacement therapy. Kratom is consumed in a brewed decoction form in Malaysia and to date, no studies have characterized its chemical and toxicity profile. Thus, this study aims to evaluate kratom decoction's safety and toxicity profile after 28 days of treatment. Mitragynine content was quantified in kratom decoction and used as a marker to determine the concentration. Male and female Sprague Dawley rats were orally treated with vehicle or kratom decoction (10, 50 or 150 mg/kg) and two satellite groups were treated with vehicle and kratom decoction (150 mg/kg). Blood and organs were collected for hematology, biochemical and histopathology analysis at the end of treatment. No mortality was found after 28 days of treatment and no significant changes in body weight and hematology profile, except for low platelet count. High amounts of uric acid, AST, ALT and alkaline phosphatase were found in the biochemical analysis. Histological investigation of the heart and lungs detected no alterations except for the kidney, liver and brain tissues. In conclusion, repeated administration of kratom decoction provided some evidence of toxicity in the kidney and liver with no occurrence of mortality.
Collapse
Affiliation(s)
- Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| | - Darshan Singh
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | | | | | - Norsyifa Harun
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Cheah Pike See
- Department of Human Anatomy, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Gurjeet Kaur
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
| | - Noorul Hamizah Mat
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | | | | | | | - Marek C Chawarski
- Departments of Psychiatry and Emergency Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Vikneswaran Murugaiyah
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Malaysia; Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Surash Ramanathan
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Penang, Malaysia
| |
Collapse
|
29
|
Farkas DJ, Inan S, Heydari LN, Johnson CT, Zhao P, Bradshaw HB, Ward SJ, Rawls SM. Cannabinoid mechanisms contribute to the therapeutic efficacy of the kratom alkaloid mitragynine against neuropathic, but not inflammatory pain. Life Sci 2023; 328:121878. [PMID: 37392779 PMCID: PMC10527577 DOI: 10.1016/j.lfs.2023.121878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
AIMS Mitragynine (MG) is an alkaloid found in Mitragyna speciosa (kratom), a plant used to self-treat symptoms of opioid withdrawal and pain. Kratom products are commonly used in combination with cannabis, with the self-treatment of pain being a primary motivator of use. Both cannabinoids and kratom alkaloids have been characterized to alleviate symptoms in preclinical models of neuropathic pain such as chemotherapy-induced peripheral neuropathy (CIPN). However, the potential involvement of cannabinoid mechanisms in MG's efficacy in a rodent model of CIPN have yet to be explored. MAIN METHODS Prevention of oxaliplatin-induced mechanical hypersensitivity and formalin-induced nociception were assessed following intraperitoneal administration of MG and CB1, CB2, or TRPV1 antagonists in wildtype and cannabinoid receptor knockout mice. The effects of oxaliplatin and MG exposure on the spinal cord endocannabinoid lipidome was assessed by HPLC-MS/MS. KEY FINDINGS The efficacy of MG on oxaliplatin-induced mechanical hypersensitivity was partially attenuated upon genetic deletion of cannabinoid receptors, and completely blocked upon pharmacological inhibition of CB1, CB2, and TRPV1 channels. This cannabinoid involvement was found to be selective to a model of neuropathic pain, with minimal effects on MG-induced antinociception in a model of formalin-induced pain. Oxaliplatin was found to selectively disrupt the endocannabinoid lipidome in the spinal cord, which was prevented by repeated MG exposure. SIGNIFICANCE Our findings suggest that cannabinoid mechanisms contribute to the therapeutic efficacy of the kratom alkaloid MG in a model of CIPN, which may result in increased therapeutic efficacy when co-administered with cannabinoids.
Collapse
Affiliation(s)
- Daniel J Farkas
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, USA.
| | - Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, USA
| | - Laila N Heydari
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, USA
| | - Clare T Johnson
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Pingwei Zhao
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, USA
| | - Heather B Bradshaw
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Sara Jane Ward
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, USA; Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, USA
| | - Scott M Rawls
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, USA; Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA, USA
| |
Collapse
|
30
|
Angyal P, Hegedüs K, Mészáros BB, Daru J, Dudás Á, Galambos AR, Essmat N, Al-Khrasani M, Varga S, Soós T. Total Synthesis and Structural Plasticity of Kratom Pseudoindoxyl Metabolites. Angew Chem Int Ed Engl 2023; 62:e202303700. [PMID: 37332089 DOI: 10.1002/anie.202303700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Mitragynine pseudoindoxyl, a kratom metabolite, has attracted increasing attention due to its favorable side effect profile as compared to conventional opioids. Herein, we describe the first enantioselective and scalable total synthesis of this natural product and its epimeric congener, speciogynine pseudoindoxyl. The characteristic spiro-5-5-6-tricyclic system of these alkaloids was formed through a protecting-group-free cascade relay process in which oxidized tryptamine and secologanin analogues were used. Furthermore, we discovered that mitragynine pseudoindoxyl acts not as a single molecular entity but as a dynamic ensemble of stereoisomers in protic environments; thus, it exhibits structural plasticity in biological systems. Accordingly, these synthetic, structural, and biological studies provide a basis for the planned design of mitragynine pseudoindoxyl analogues, which can guide the development of next-generation analgesics.
Collapse
Affiliation(s)
- Péter Angyal
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - Kristóf Hegedüs
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - Bence Balázs Mészáros
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - János Daru
- Department of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - Ádám Dudás
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary
| | - Anna Rita Galambos
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Nariman Essmat
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Szilárd Varga
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Tibor Soós
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| |
Collapse
|
31
|
Ortiz YT, Bilbrey JA, Felix JS, Kienegger EA, Mottinelli M, Mukhopadhyay S, McCurdy CR, McMahon LR, Wilkerson JL. Cannabidiol and mitragynine exhibit differential interactive effects in the attenuation of paclitaxel-induced mechanical allodynia, acute antinociception, and schedule-controlled responding in mice. Pharmacol Rep 2023; 75:937-950. [PMID: 37243887 DOI: 10.1007/s43440-023-00498-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND For many chemotherapy patients peripheral neuropathy is a debilitating side effect. Mitragyna speciosa (kratom) contains the alkaloid mitragynine (MG), which produces analgesia in multiple preclinical pain models. In humans, anecdotal reports suggest cannabidiol (CBD) may enhance kratom-related analgesia. We examined the interactive activity of MG and CBD in a mouse chemotherapy-induced peripheral neuropathy (CIPN) model. We also examined MG + CBD in acute antinociception and schedule-controlled responding assays, as well as examined underlying receptor mechanisms. METHODS Male and female C57BL/6J mice received a cycle of intraperitoneal (ip) paclitaxel injections (cumulative dose 32 mg/kg). The von Frey assay was utilized to assess CIPN allodynia. In paclitaxel-naïve mice, schedule-controlled responding for food was conducted under a fixed ratio (FR)-10, and hot plate antinociception was examined. RESULTS MG dose-relatedly attenuated CIPN allodynia (ED50 102.96 mg/kg, ip), reduced schedule-controlled responding (ED50 46.04 mg/kg, ip), and produced antinociception (ED50 68.83 mg/kg, ip). CBD attenuated allodynia (ED50 85.14 mg/kg, ip) but did not decrease schedule-controlled responding or produce antinociception. Isobolographic analysis revealed 1:1, 3:1 MG + CBD mixture ratios additively attenuated CIPN allodynia. All combinations decreased schedule-controlled responding and produced antinociception. WAY-100635 (serotonin 5-HT1A receptor antagonist) pretreatment (0.01 mg/kg, ip) antagonized CBD anti-allodynia. Naltrexone (pan opioid receptor antagonist) pretreatment (0.032 mg/kg, ip) antagonized MG anti-allodynia and acute antinociception but produced no change in MG-induced decreased schedule-controlled behavior. Yohimbine (α2 receptor antagonist) pretreatment (3.2 mg/kg, ip) antagonized MG anti-allodynia and produced no change in MG-induced acute antinociception or decreased schedule-controlled behavior. CONCLUSIONS Although more optimization is needed, these data suggest CBD combined with MG may be useful as a novel CIPN therapeutic.
Collapse
Affiliation(s)
- Yuma T Ortiz
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1406 S. Coulter., Amarillo, TX, 79106, USA
| | - Joshua A Bilbrey
- College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Jasmine S Felix
- College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Erik A Kienegger
- College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Marco Mottinelli
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, MA, USA
| | - Sushobhan Mukhopadhyay
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1406 S. Coulter., Amarillo, TX, 79106, USA
| | - Jenny L Wilkerson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1406 S. Coulter., Amarillo, TX, 79106, USA.
| |
Collapse
|
32
|
Tanna RS, Cech NB, Oberlies NH, Rettie AE, Thummel KE, Paine MF. Translating Kratom-Drug Interactions: From Bedside to Bench and Back. Drug Metab Dispos 2023; 51:923-935. [PMID: 37286363 PMCID: PMC10353077 DOI: 10.1124/dmd.122.001005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 05/01/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Kratom is a botanical natural product belonging to the coffee family, with stimulant effects at low doses and opioid-like effects at higher doses. During the last two decades, kratom has been purported as a safer alternative to pharmaceutical and illicit drugs to self-manage pain and opioid withdrawal symptoms. Kratom alkaloids, typically mitragynine, have been detected in biologic samples from overdose deaths. These deaths are often observed in combination with other drugs and are suspected to result from polyintoxications. This review focuses on the potential for kratom to precipitate pharmacokinetic interactions with object drugs involved in these reported polyintoxications. The legal status, chemistry, pharmacology, and toxicology are also summarized. The aggregate in vitro and clinical data identified kratom and select kratom alkaloids as modulators of cytochrome P450 (P450) enzyme activity, notably as inhibitors of CYP2D6 and CYP3A, as well as P-glycoprotein-mediated efflux activity. These inhibitory effects could increase the systemic exposure to co-consumed object drugs, which may lead to adverse effects. Collectively, the evidence to date warrants further evaluation of potential kratom-drug interactions using an iterative approach involving additional mechanistic in vitro studies, well designed clinical studies, and physiologically based pharmacokinetic modeling and simulation. This critical information is needed to fill knowledge gaps regarding the safe and effective use of kratom, thereby addressing ongoing public health concerns. SIGNIFICANCE STATEMENT: The botanical kratom is increasingly used to self-manage pain and opioid withdrawal symptoms due to having opioid-like effects. The legal status, chemistry, pharmacology, toxicology, and drug interaction potential of kratom are reviewed. Kratom-associated polyintoxications and in vitro-in vivo extrapolations suggest that kratom can precipitate pharmacokinetic drug interactions by inhibiting CYP2D6, CYP3A, and P-glycoprotein. An iterative approach that includes clinical studies and physiologically based pharmacokinetic modeling and simulation is recommended for further evaluation of potential unwanted kratom-drug interactions.
Collapse
Affiliation(s)
- Rakshit S Tanna
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (R.S.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.B.C., N.H.O.); Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., A.E.R., K.E.T., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington
| | - Nadja B Cech
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (R.S.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.B.C., N.H.O.); Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., A.E.R., K.E.T., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington
| | - Nicholas H Oberlies
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (R.S.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.B.C., N.H.O.); Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., A.E.R., K.E.T., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington
| | - Allan E Rettie
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (R.S.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.B.C., N.H.O.); Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., A.E.R., K.E.T., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington
| | - Kenneth E Thummel
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (R.S.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.B.C., N.H.O.); Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., A.E.R., K.E.T., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington
| | - Mary F Paine
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (R.S.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.B.C., N.H.O.); Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., A.E.R., K.E.T., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington
| |
Collapse
|
33
|
Kamble SH, Obeng S, León F, Restrepo LF, King TI, Berthold EC, Kanumuri SRR, Gamez-Jimenez LR, Pallares VLC, Patel A, Ho NP, Hampson A, McCurdy CR, McMahon LR, Wilkerson JL, Sharma A, Hiranita T. Pharmacokinetic and Pharmacodynamic Consequences of Cytochrome P450 3A Inhibition on Mitragynine Metabolism in Rats. J Pharmacol Exp Ther 2023; 385:180-192. [PMID: 37019472 PMCID: PMC10201580 DOI: 10.1124/jpet.122.001525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/11/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Mitragynine, an opioidergic alkaloid present in Mitragyna speciosa (kratom), is metabolized by cytochrome P450 3A (CYP3A) to 7-hydroxymitragynine, a more potent opioid receptor agonist. The extent to which conversion to 7-hydroxymitragynine mediates the in vivo effects of mitragynine is unclear. The current study examined how CYP3A inhibition (ketoconazole) modifies the pharmacokinetics of mitragynine in rat liver microsomes in vitro. The study further examined how ketoconazole modifies the discriminative stimulus and antinociceptive effects of mitragynine in rats. Ketoconazole [30 mg/kg, oral gavage (o.g.)] increased systemic exposure to mitragynine (13.3 mg/kg, o.g.) by 120% and 7-hydroxymitragynine exposure by 130%. The unexpected increase in exposure to 7-hydroxymitragynine suggested that ketoconazole inhibits metabolism of both mitragynine and 7-hydroxymitragynine, a finding confirmed in rat liver microsomes. In rats discriminating 3.2 mg/kg morphine from vehicle under a fixed-ratio schedule of food delivery, ketoconazole pretreatment increased the potency of both mitragynine (4.7-fold) and 7-hydroxymitragynine (9.7-fold). Ketoconazole did not affect morphine's potency. Ketoconazole increased the antinociceptive potency of 7-hydroxymitragynine by 4.1-fold. Mitragynine (up to 56 mg/kg, i.p.) lacked antinociceptive effects both in the presence and absence of ketoconazole. These results suggest that both mitragynine and 7-hydroxymitragynine are cleared via CYP3A and that 7-hydroxymitragynine is formed as a metabolite of mitragynine by other routes. These results have implications for kratom use in combination with numerous medications and citrus juices that inhibit CYP3A. SIGNIFICANCE STATEMENT: Mitragynine is an abundant kratom alkaloid that exhibits low efficacy at the μ-opioid receptor (MOR). Its metabolite, 7-hydroxymitragynine, is also an MOR agonist but with higher affinity and efficacy than mitragynine. Our results in rats demonstrate that cytochrome P450 3A (CYP3A) inhibition can increase the systematic exposure of both mitragynine and 7-hydroxymitragynine and their potency to produce MOR-mediated behavioral effects. These data highlight potential interactions between kratom and CYP3A inhibitors, which include numerous medications and citrus juices.
Collapse
Affiliation(s)
- Shyam H Kamble
- Departments of Pharmaceutics (S.H.K., T.I.K., E.C.B., S.R.R.K., C.R.M., A.S.), Translational Drug Development Core (S.H.K., S.R.R.K., C.R.M., A.S.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmacodynamics (S.O., L.F.R., L.R.G.-J., V.L.C.P., A.P., N.P.H., L.R.M., J.L.W., T.H.), College of Pharmacy, University of Florida, Gainesville, Florida; Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Division of Therapeutics and Medical Consequences, National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland (A.H.); and Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center at Amarillo, Amarillo, Texas (L.R.M., J.L.W., T.H.)
| | - Samuel Obeng
- Departments of Pharmaceutics (S.H.K., T.I.K., E.C.B., S.R.R.K., C.R.M., A.S.), Translational Drug Development Core (S.H.K., S.R.R.K., C.R.M., A.S.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmacodynamics (S.O., L.F.R., L.R.G.-J., V.L.C.P., A.P., N.P.H., L.R.M., J.L.W., T.H.), College of Pharmacy, University of Florida, Gainesville, Florida; Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Division of Therapeutics and Medical Consequences, National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland (A.H.); and Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center at Amarillo, Amarillo, Texas (L.R.M., J.L.W., T.H.)
| | - Francisco León
- Departments of Pharmaceutics (S.H.K., T.I.K., E.C.B., S.R.R.K., C.R.M., A.S.), Translational Drug Development Core (S.H.K., S.R.R.K., C.R.M., A.S.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmacodynamics (S.O., L.F.R., L.R.G.-J., V.L.C.P., A.P., N.P.H., L.R.M., J.L.W., T.H.), College of Pharmacy, University of Florida, Gainesville, Florida; Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Division of Therapeutics and Medical Consequences, National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland (A.H.); and Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center at Amarillo, Amarillo, Texas (L.R.M., J.L.W., T.H.)
| | - Luis F Restrepo
- Departments of Pharmaceutics (S.H.K., T.I.K., E.C.B., S.R.R.K., C.R.M., A.S.), Translational Drug Development Core (S.H.K., S.R.R.K., C.R.M., A.S.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmacodynamics (S.O., L.F.R., L.R.G.-J., V.L.C.P., A.P., N.P.H., L.R.M., J.L.W., T.H.), College of Pharmacy, University of Florida, Gainesville, Florida; Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Division of Therapeutics and Medical Consequences, National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland (A.H.); and Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center at Amarillo, Amarillo, Texas (L.R.M., J.L.W., T.H.)
| | - Tamara I King
- Departments of Pharmaceutics (S.H.K., T.I.K., E.C.B., S.R.R.K., C.R.M., A.S.), Translational Drug Development Core (S.H.K., S.R.R.K., C.R.M., A.S.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmacodynamics (S.O., L.F.R., L.R.G.-J., V.L.C.P., A.P., N.P.H., L.R.M., J.L.W., T.H.), College of Pharmacy, University of Florida, Gainesville, Florida; Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Division of Therapeutics and Medical Consequences, National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland (A.H.); and Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center at Amarillo, Amarillo, Texas (L.R.M., J.L.W., T.H.)
| | - Erin C Berthold
- Departments of Pharmaceutics (S.H.K., T.I.K., E.C.B., S.R.R.K., C.R.M., A.S.), Translational Drug Development Core (S.H.K., S.R.R.K., C.R.M., A.S.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmacodynamics (S.O., L.F.R., L.R.G.-J., V.L.C.P., A.P., N.P.H., L.R.M., J.L.W., T.H.), College of Pharmacy, University of Florida, Gainesville, Florida; Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Division of Therapeutics and Medical Consequences, National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland (A.H.); and Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center at Amarillo, Amarillo, Texas (L.R.M., J.L.W., T.H.)
| | - Siva Rama Raju Kanumuri
- Departments of Pharmaceutics (S.H.K., T.I.K., E.C.B., S.R.R.K., C.R.M., A.S.), Translational Drug Development Core (S.H.K., S.R.R.K., C.R.M., A.S.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmacodynamics (S.O., L.F.R., L.R.G.-J., V.L.C.P., A.P., N.P.H., L.R.M., J.L.W., T.H.), College of Pharmacy, University of Florida, Gainesville, Florida; Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Division of Therapeutics and Medical Consequences, National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland (A.H.); and Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center at Amarillo, Amarillo, Texas (L.R.M., J.L.W., T.H.)
| | - Lea R Gamez-Jimenez
- Departments of Pharmaceutics (S.H.K., T.I.K., E.C.B., S.R.R.K., C.R.M., A.S.), Translational Drug Development Core (S.H.K., S.R.R.K., C.R.M., A.S.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmacodynamics (S.O., L.F.R., L.R.G.-J., V.L.C.P., A.P., N.P.H., L.R.M., J.L.W., T.H.), College of Pharmacy, University of Florida, Gainesville, Florida; Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Division of Therapeutics and Medical Consequences, National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland (A.H.); and Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center at Amarillo, Amarillo, Texas (L.R.M., J.L.W., T.H.)
| | - Victoria L C Pallares
- Departments of Pharmaceutics (S.H.K., T.I.K., E.C.B., S.R.R.K., C.R.M., A.S.), Translational Drug Development Core (S.H.K., S.R.R.K., C.R.M., A.S.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmacodynamics (S.O., L.F.R., L.R.G.-J., V.L.C.P., A.P., N.P.H., L.R.M., J.L.W., T.H.), College of Pharmacy, University of Florida, Gainesville, Florida; Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Division of Therapeutics and Medical Consequences, National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland (A.H.); and Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center at Amarillo, Amarillo, Texas (L.R.M., J.L.W., T.H.)
| | - Avi Patel
- Departments of Pharmaceutics (S.H.K., T.I.K., E.C.B., S.R.R.K., C.R.M., A.S.), Translational Drug Development Core (S.H.K., S.R.R.K., C.R.M., A.S.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmacodynamics (S.O., L.F.R., L.R.G.-J., V.L.C.P., A.P., N.P.H., L.R.M., J.L.W., T.H.), College of Pharmacy, University of Florida, Gainesville, Florida; Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Division of Therapeutics and Medical Consequences, National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland (A.H.); and Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center at Amarillo, Amarillo, Texas (L.R.M., J.L.W., T.H.)
| | - Nicholas P Ho
- Departments of Pharmaceutics (S.H.K., T.I.K., E.C.B., S.R.R.K., C.R.M., A.S.), Translational Drug Development Core (S.H.K., S.R.R.K., C.R.M., A.S.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmacodynamics (S.O., L.F.R., L.R.G.-J., V.L.C.P., A.P., N.P.H., L.R.M., J.L.W., T.H.), College of Pharmacy, University of Florida, Gainesville, Florida; Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Division of Therapeutics and Medical Consequences, National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland (A.H.); and Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center at Amarillo, Amarillo, Texas (L.R.M., J.L.W., T.H.)
| | - Aidan Hampson
- Departments of Pharmaceutics (S.H.K., T.I.K., E.C.B., S.R.R.K., C.R.M., A.S.), Translational Drug Development Core (S.H.K., S.R.R.K., C.R.M., A.S.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmacodynamics (S.O., L.F.R., L.R.G.-J., V.L.C.P., A.P., N.P.H., L.R.M., J.L.W., T.H.), College of Pharmacy, University of Florida, Gainesville, Florida; Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Division of Therapeutics and Medical Consequences, National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland (A.H.); and Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center at Amarillo, Amarillo, Texas (L.R.M., J.L.W., T.H.)
| | - Christopher R McCurdy
- Departments of Pharmaceutics (S.H.K., T.I.K., E.C.B., S.R.R.K., C.R.M., A.S.), Translational Drug Development Core (S.H.K., S.R.R.K., C.R.M., A.S.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmacodynamics (S.O., L.F.R., L.R.G.-J., V.L.C.P., A.P., N.P.H., L.R.M., J.L.W., T.H.), College of Pharmacy, University of Florida, Gainesville, Florida; Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Division of Therapeutics and Medical Consequences, National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland (A.H.); and Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center at Amarillo, Amarillo, Texas (L.R.M., J.L.W., T.H.)
| | - Lance R McMahon
- Departments of Pharmaceutics (S.H.K., T.I.K., E.C.B., S.R.R.K., C.R.M., A.S.), Translational Drug Development Core (S.H.K., S.R.R.K., C.R.M., A.S.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmacodynamics (S.O., L.F.R., L.R.G.-J., V.L.C.P., A.P., N.P.H., L.R.M., J.L.W., T.H.), College of Pharmacy, University of Florida, Gainesville, Florida; Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Division of Therapeutics and Medical Consequences, National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland (A.H.); and Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center at Amarillo, Amarillo, Texas (L.R.M., J.L.W., T.H.)
| | - Jenny L Wilkerson
- Departments of Pharmaceutics (S.H.K., T.I.K., E.C.B., S.R.R.K., C.R.M., A.S.), Translational Drug Development Core (S.H.K., S.R.R.K., C.R.M., A.S.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmacodynamics (S.O., L.F.R., L.R.G.-J., V.L.C.P., A.P., N.P.H., L.R.M., J.L.W., T.H.), College of Pharmacy, University of Florida, Gainesville, Florida; Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Division of Therapeutics and Medical Consequences, National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland (A.H.); and Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center at Amarillo, Amarillo, Texas (L.R.M., J.L.W., T.H.)
| | - Abhisheak Sharma
- Departments of Pharmaceutics (S.H.K., T.I.K., E.C.B., S.R.R.K., C.R.M., A.S.), Translational Drug Development Core (S.H.K., S.R.R.K., C.R.M., A.S.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmacodynamics (S.O., L.F.R., L.R.G.-J., V.L.C.P., A.P., N.P.H., L.R.M., J.L.W., T.H.), College of Pharmacy, University of Florida, Gainesville, Florida; Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Division of Therapeutics and Medical Consequences, National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland (A.H.); and Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center at Amarillo, Amarillo, Texas (L.R.M., J.L.W., T.H.)
| | - Takato Hiranita
- Departments of Pharmaceutics (S.H.K., T.I.K., E.C.B., S.R.R.K., C.R.M., A.S.), Translational Drug Development Core (S.H.K., S.R.R.K., C.R.M., A.S.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmacodynamics (S.O., L.F.R., L.R.G.-J., V.L.C.P., A.P., N.P.H., L.R.M., J.L.W., T.H.), College of Pharmacy, University of Florida, Gainesville, Florida; Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Division of Therapeutics and Medical Consequences, National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland (A.H.); and Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center at Amarillo, Amarillo, Texas (L.R.M., J.L.W., T.H.)
| |
Collapse
|
34
|
Henningfield JE, Chawarski MC, Garcia-Romeu A, Grundmann O, Harun N, Hassan Z, McCurdy CR, McMahon LR, Sharma A, Shoaib M, Singh D, Smith KE, Swogger MT, Vicknasingam B, Walsh Z, Wang DW, Huestis MA. Kratom withdrawal: Discussions and conclusions of a scientific expert forum. DRUG AND ALCOHOL DEPENDENCE REPORTS 2023; 7:100142. [PMID: 37397437 PMCID: PMC10311168 DOI: 10.1016/j.dadr.2023.100142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 07/04/2023]
Affiliation(s)
- Jack E. Henningfield
- PinneyAssociates, Bethesda, MD 20814, United States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Marek C. Chawarski
- Departments of Psychiatry and Emergency Medicine, Yale School of Medicine, New Haven, CT 06519, United States
| | - Albert Garcia-Romeu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Oliver Grundmann
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Norsyifa Harun
- Centre for Drug Research, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Christopher R. McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States
- Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL 32610, United States
| | - Lance R. McMahon
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States
- Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL 32610, United States
| | - Mohammed Shoaib
- Institute of Neuroscience, Medical School, Newcastle University, Newcastle Upon Tyne NE2 4HH, United Kingdom
| | - Darshan Singh
- Centre for Drug Research, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Kirsten E. Smith
- Real-World Assessment, Prediction, and Treatment Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, United States
| | - Marc T. Swogger
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY 14642, United States
| | | | - Zachary Walsh
- Department of Psychology, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | | | - Marilyn A. Huestis
- PinneyAssociates, Bethesda, MD 20814, United States
- Thomas Jefferson University, Philadelphia, PA 19144, United States
| |
Collapse
|
35
|
Jarka C, Gregoire K. Precipitated withdrawal with kratom use following naltrexone administration. Ment Health Clin 2023; 13:155-158. [PMID: 37448827 PMCID: PMC10337879 DOI: 10.9740/mhc.2023.06.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/12/2023] [Indexed: 07/15/2023] Open
Abstract
Kratom is an herbal supplement with reports of use for natural pain relief or treatment of opioid withdrawal symptoms. Kratom has metabolites that bind to and agonize mu-opioid receptors similar to opiate medications. There have been reports of serious adverse reactions, with a potential for dependence with long-term use and withdrawal that may occur upon discontinuation. Naltrexone can result in abrupt withdrawal symptoms when used with opioids or opioid-like supplements such as kratom. This case report describes withdrawal precipitated by naltrexone administration in a patient with undisclosed chronic kratom use. This case highlights the importance of thorough assessment of all self-administered herbal and over-the-counter supplements as they may have serious interactions with other prescribed medications and affect therapeutic outcomes.
Collapse
Affiliation(s)
- Courtney Jarka
- Clinical Pharmacy Specialist Critical Care, Catholic Health System, Kenmore Mercy Hospital, Kenmore, New York
| | - Kelsey Gregoire
- Clinical Pharmacy Specialist Critical Care, Catholic Health System, Kenmore Mercy Hospital, Kenmore, New York
| |
Collapse
|
36
|
Grundmann O, Hendrickson RG, Greenberg MI. Kratom: History, pharmacology, current user trends, adverse health effects and potential benefits. Dis Mon 2023; 69:101442. [PMID: 35732553 DOI: 10.1016/j.disamonth.2022.101442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Kratom (Mitragyna speciosa Korth.) is a tree native to Southeast Asia with dose-dependent stimulant and opioid-like effects. Dried, powdered leaf material is among the kratom products most commonly consumed in the US and Europe, but other formulations also exist including enriched extracts, resins, tinctures, and edibles. Its prevalence in the US remains debated and the use pattern includes self-treatment of mood disorders, pain, and substance use disorders. Most of the adverse effects of kratom and its alkaloid mitragynine have been reported in the literature as case reports or part of surveys necessitating confirmation by clinical trials. Toxicities associated with kratom consumption have focused on hepatic, cardiac, and CNS effects with the potential to cause fatalities primarily as part of polydrug exposures. Kratom may also present with drug-drug interactions primarily through CYP 3A4 and 2D6 inhibition, although the clinical significance remains unknown to date. The variability in composition of commercially available kratom products complicates generalization of findings and requires further investigation by employing clinical trials. Healthcare professionals should remain cautious in counseling patients on the use of kratom in a therapeutic setting.
Collapse
Affiliation(s)
- Oliver Grundmann
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1345 Center Drive, Room P3-20, Gainesville, FL 32611, United States.
| | | | | |
Collapse
|
37
|
Smith KE, Feldman JD, Dunn KE, McCurdy CR, Weiss ST, Grundmann O, Garcia-Romeu A, Nichels J, Epstein DH. Examining the paradoxical effects of kratom: a narrative inquiry. Front Pharmacol 2023; 14:1174139. [PMID: 37214465 PMCID: PMC10196254 DOI: 10.3389/fphar.2023.1174139] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction: Surveys and case reports have documented kratom use in the United States (US) for over a decade. However, those reports have generally not examined in depth the role kratom plays in the lives of those who use it regularly for sustained periods. Until there are controlled studies of the pharmacology and subjective effects of kratom alkaloids in humans, one of the best sources of insight on kratom-product use remains qualitative data with nuanced descriptions of kratom effects from those who use it regularly. Method: We conducted semistructured qualitative interviews with adults who regularly use kratom products, as part of a laboratory study of kratom-product self-administration. This qualitative component of the study was conducted as a narrative case-report series (n = 10). Results: Despite some differences among participants, all experienced acute combination effects that were largely, even simultaneously, analgesic and stimulatory. Most participants had decreased their dosages over time, and one planned to quit. Five of the 10 participants met DSM-5-based criteria for kratom-use disorder (3 mild, 1 moderate, 1 severe, by symptoms counts). When kratom was inadvertently taken in larger than intended doses, participants described a constellation of symptoms that they called "the wobbles" (a jittery feeling accompanied by what seemed to be nystagmus); this was rare, but could be of scientific and clinical interest as a possible manifestation of serotonin syndrome. Most participants described tolerance but considered kratom generally safe at low-moderate doses, providing perceived benefits with less potential risk for adverse effects compared to pharmaceuticals or illicit drugs. Discussion: In-depth interview data like these help confirm and clarify findings from larger survey studies and clinician-driven case reports. They are needed to inform the policy practice regarding kratom and may also help inform future experimental designs.
Collapse
Affiliation(s)
- Kirsten E. Smith
- Real-World Assessment, Prediction, and Treatment Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, United States
| | - Jeffrey D. Feldman
- Real-World Assessment, Prediction, and Treatment Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, United States
| | - Kelly E. Dunn
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Christopher R. McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Stephanie T. Weiss
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Oliver Grundmann
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Albert Garcia-Romeu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Janeen Nichels
- Real-World Assessment, Prediction, and Treatment Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, United States
| | - David H. Epstein
- Real-World Assessment, Prediction, and Treatment Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, United States
| |
Collapse
|
38
|
Laforest LC, Kuntz MA, Kanumuri SRR, Mukhopadhyay S, Sharma A, O'Connor SE, McCurdy CR, Nadakuduti SS. Metabolite and Molecular Characterization of Mitragyna speciosa Identifies Developmental and Genotypic Effects on Monoterpene Indole and Oxindole Alkaloid Composition. JOURNAL OF NATURAL PRODUCTS 2023; 86:1042-1052. [PMID: 36913648 DOI: 10.1021/acs.jnatprod.3c00092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The monoterpene indole alkaloid (MIA) mitragynine has garnered attention as a potential treatment for pain, opioid use disorder, and opioid withdrawal because of its combined pharmacology at opioid and adrenergic receptors in humans. This alkaloid is unique to Mitragyna speciosa (kratom), which accumulates over 50 MIAs and oxindole alkaloids in its leaves. Quantification of 10 targeted alkaloids from several tissue types and cultivars of M. speciosa revealed that mitragynine accumulation was highest in leaves, followed by stipules and stems, but was absent, along with other alkaloids, in roots. While mitragynine is the predominant alkaloid in mature leaves, juvenile leaves accumulate higher amounts of corynantheidine and speciociliatine. Interestingly, corynantheidine has an inverse relationship with mitragynine accumulation throughout leaf development. Characterization of various cultivars of M. speciosa indicated altered alkaloidal profiles ranging from undetectable to high levels of mitragynine. DNA barcoding and phylogenetic analysis using ribosomal ITS sequences revealed polymorphisms leading M. speciosa cultivars having lower mitragynine content to group with other mitragyna species, suggesting interspecific hybridization events. Root transcriptome analysis of low- and high-mitragynine-producing cultivars indicated significant differences in gene expression and revealed allelic variation, further supporting that hybridization events may have impacted the alkaloid profile of M. speciosa.
Collapse
Affiliation(s)
- Larissa C Laforest
- Plant Molecular and Cell Biology Program, University of Florida, Gainesville, Florida 32611, United States
| | - Michelle A Kuntz
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32611, United States
| | - Siva Rama Raju Kanumuri
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32611, United States
| | - Sushobhan Mukhopadhyay
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32611, United States
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32611, United States
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32611, United States
| | - Satya Swathi Nadakuduti
- Plant Molecular and Cell Biology Program, University of Florida, Gainesville, Florida 32611, United States
- Department of Environmental Horticulture, University of Florida, Gainesville, Florida 32606, United States
| |
Collapse
|
39
|
Mukhopadhyay S, Gupta S, Wilkerson JL, Sharma A, McMahon LR, McCurdy CR. Receptor Selectivity and Therapeutic Potential of Kratom in Substance Use Disorders. CURRENT ADDICTION REPORTS 2023. [DOI: 10.1007/s40429-023-00472-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
40
|
Schotte C, Jiang Y, Grzech D, Dang TTT, Laforest LC, León F, Mottinelli M, Nadakuduti SS, McCurdy CR, O’Connor SE. Directed Biosynthesis of Mitragynine Stereoisomers. J Am Chem Soc 2023; 145:4957-4963. [PMID: 36883326 PMCID: PMC9999412 DOI: 10.1021/jacs.2c13644] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Indexed: 02/24/2023]
Abstract
Mitragyna speciosa ("kratom") is used as a natural remedy for pain and management of opioid dependence. The pharmacological properties of kratom have been linked to a complex mixture of monoterpene indole alkaloids, most notably mitragynine. Here, we report the central biosynthetic steps responsible for the scaffold formation of mitragynine and related corynanthe-type alkaloids. We illuminate the mechanistic basis by which the key stereogenic center of this scaffold is formed. These discoveries were leveraged for the enzymatic production of mitragynine, the C-20 epimer speciogynine, and fluorinated analogues.
Collapse
Affiliation(s)
- Carsten Schotte
- Department
of Natural Product Biosynthesis, Max Planck
Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Yindi Jiang
- Department
of Natural Product Biosynthesis, Max Planck
Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Dagny Grzech
- Department
of Natural Product Biosynthesis, Max Planck
Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Thu-Thuy T. Dang
- Department
of Natural Product Biosynthesis, Max Planck
Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Larissa C. Laforest
- Plant
Molecular and Cell Biology Program, University
of Florida, Gainesville, Florida 32606, United States
| | - Francisco León
- Department
of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Marco Mottinelli
- Department
of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Satya Swathi Nadakuduti
- Plant
Molecular and Cell Biology Program, University
of Florida, Gainesville, Florida 32606, United States
- Department
of Environmental Horticulture, University
of Florida, Gainesville, Florida 32606, United
States
| | - Christopher R. McCurdy
- Department
of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Sarah E. O’Connor
- Department
of Natural Product Biosynthesis, Max Planck
Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| |
Collapse
|
41
|
Suhaimi FW, Aznal ANZ, Nor Hazalin NAM, Teh LK, Hassan Z, Salleh MZ. Kratom (M. speciosa) exposure during adolescence caused long-lasting cognitive behavioural deficits associated with perturbated brain metabolism pathways in adult rats. Behav Brain Res 2023; 446:114411. [PMID: 36997094 DOI: 10.1016/j.bbr.2023.114411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Kratom (M. speciosa Korth) is an herbal plant native to Southeast Asia. The leaves have been widely used to alleviate pain and opioid withdrawal symptoms. However, the increasing trend of recreational use of kratom among youth is concerning because substance abuse may render the adolescent brain more susceptible to neuropathological processes, causing dramatic consequences that persist into adulthood. Therefore, the present study aimed to investigate the long-term effects of mitragynine, the main alkaloid and lyophilized kratom decoction (LKD) exposure during adolescence on cognitive behaviours and brain metabolite profiles in adult rats. Adolescent male Sprague-Dawley rats were given mitragynine (3, 10 or 30mg/kg) or LKD orally for 15 consecutive days during postnatal days 31-45 (PND31-45). Behavioural testing was performed during adulthood (PND70-84) and the brains were subjected to metabolomic analysis. The results show that a high dose of mitragynine impaired long-term object recognition memory. Social behaviour and spatial learning were not affected, but both mitragynine and LKD impaired reference memory. Brain metabolomic study revealed several altered metabolic pathways that may be involved in the cognitive behavioural effects of LKD and mitragynine exposure. These pathways include arachidonic acid, taurine and hypotaurine, pantothenate and CoA biosynthesis, and tryptophan metabolism, while the N-isovalerylglycine was identified as the potential biomarker. In summary, adolescent kratom exposure can cause long-lasting cognitive behavioural deficits and alter brain metabolite profiles that are still evident in adulthood. This finding also indicates that the adolescent brain is vulnerable to the impact of early kratom use.
Collapse
|
42
|
Li M, Stevens DL, Arriaga M, Townsend EA, Mendez RE, Blajkevch NA, Selley DE, Banks ML, Negus SS, Dewey WL, Zhang Y. Characterization of a Potential KOR/DOR Dual Agonist with No Apparent Abuse Liability via a Complementary Structure-Activity Relationship Study on Nalfurafine Analogues. ACS Chem Neurosci 2022; 13:3608-3628. [PMID: 36449691 PMCID: PMC10243363 DOI: 10.1021/acschemneuro.2c00526] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Discovery of analgesics void of abuse liability is critical to battle the opioid crisis in the United States. Among many strategies to achieve this goal, targeting more than one opioid receptor seems promising to minimize this unwanted side effect while achieving a reasonable therapeutic profile. In the process of understanding the structure-activity relationship of nalfurafine, we identified a potential analgesic agent, NMF, as a dual kappa opioid receptor/delta opioid receptor agonist with minimum abuse liability. Further characterizations, including primary in vitro ADMET studies (hERG toxicity, plasma protein binding, permeability, and hepatic metabolism), and in vivo pharmacodynamic and toxicity profiling (time course, abuse liability, tolerance, withdrawal, respiratory depression, body weight, and locomotor activity) further confirmed NMF as a promising drug candidate for future development.
Collapse
Affiliation(s)
- Mengchu Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298
| | - David L. Stevens
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Michelle Arriaga
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - E. Andrew Townsend
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Rolando E. Mendez
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Nadejda A. Blajkevch
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Dana E. Selley
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Matthew L. Banks
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - S. Stevens Negus
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - William L. Dewey
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298
- Institute for Drug and Alcohol Studies, 203 East Cary Street, Virginia Commonwealth University, Richmond, VA 23298
| |
Collapse
|
43
|
Obeng S, Leon F, Patel A, Zuarth Gonzalez JD, Chaves Da Silva L, Restrepo LF, Gamez-Jimenez LR, Ho NP, Guerrero Calvache MP, Pallares VLC, Helmes JA, Shiomitsu SK, Soto PL, McCurdy CR, McMahon LR, Wilkerson JL, Hiranita T. Interactive Effects of µ-Opioid and Adrenergic- α 2 Receptor Agonists in Rats: Pharmacological Investigation of the Primary Kratom Alkaloid Mitragynine and Its Metabolite 7-Hydroxymitragynine. J Pharmacol Exp Ther 2022; 383:182-198. [PMID: 36153006 PMCID: PMC9667981 DOI: 10.1124/jpet.122.001192] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/09/2022] [Indexed: 01/07/2023] Open
Abstract
The primary kratom alkaloid mitragynine is proposed to act through multiple mechanisms, including actions at µ-opioid receptors (MORs) and adrenergic-α 2 receptors (Aα 2Rs), as well as conversion in vivo to a MOR agonist metabolite (i.e., 7-hydroxymitragynine). Aα 2R and MOR agonists can produce antinociceptive synergism. Here, contributions of both receptors to produce mitragynine-related effects were assessed by measuring receptor binding in cell membranes and, in rats, pharmacological behavioral effect antagonism studies. Mitragynine displayed binding affinity at both receptors, whereas 7-hydroxymitragynine only displayed MOR binding affinity. Compounds were tested for their capacity to decrease food-maintained responding and rectal temperature and to produce antinociception in a hotplate test. Prototypical MOR agonists and 7-hydroxymitragynine, but not mitragynine, produced antinociception. MOR agonist and 7-hydroxymitragynine rate-deceasing and antinociceptive effects were antagonized by the opioid antagonist naltrexone but not by the Aα 2R antagonist yohimbine. Hypothermia only resulted from reference Aα 2R agonists. The rate-deceasing and hypothermic effects of reference Aα 2R agonists were antagonized by yohimbine but not naltrexone. Neither naltrexone nor yohimbine antagonized the rate-decreasing effects of mitragynine. Mitragynine and 7-hydroxymitragynine increased the potency of the antinociceptive effects of Aα 2R but not MOR reference agonists. Only mitragynine produced hypothermic effects. Isobolographic analyses for the rate-decreasing effects of the reference Aα 2R and MOR agonists were also conducted. These results suggest mitragynine and 7-hydroxymitragynine may produce antinociceptive synergism with Aα 2R and MOR agonists. When combined with Aα 2R agonists, mitragynine could also produce hypothermic synergism. SIGNIFICANCE STATEMENT: Mitragynine is proposed to target the µ-opioid receptor (MOR) and adrenergic-α2 receptor (Aα2R) and to produce behavioral effects through conversion to its MOR agonist metabolite 7-hydroxymitragynine. Isobolographic analyses indicated supra-additivity in some dose ratio combinations. This study suggests mitragynine and 7-hydroxymitragynine may produce antinociceptive synergism with Aα2R and MOR agonists. When combined with Aα2R agonists, mitragynine could also produce hypothermic synergism.
Collapse
Affiliation(s)
- Samuel Obeng
- Departments of Pharmacodynamics (S.O., A.P., J.D.Z.G., L.C.D.S., L.F.R., L.R.G-J., N.P.H., M.P.G.C., V.L.C.P., J.A.H., S.K.S., L.R.M., J.L.W., T.H.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmaceutics (C.R.M.), and Translational Drug Development Core (C.R.M.), Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.), Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Amarillo, Texas (L.R.M., J.L.W., T.H.); Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas (T.H.)
| | - Francisco Leon
- Departments of Pharmacodynamics (S.O., A.P., J.D.Z.G., L.C.D.S., L.F.R., L.R.G-J., N.P.H., M.P.G.C., V.L.C.P., J.A.H., S.K.S., L.R.M., J.L.W., T.H.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmaceutics (C.R.M.), and Translational Drug Development Core (C.R.M.), Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.), Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Amarillo, Texas (L.R.M., J.L.W., T.H.); Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas (T.H.)
| | - Avi Patel
- Departments of Pharmacodynamics (S.O., A.P., J.D.Z.G., L.C.D.S., L.F.R., L.R.G-J., N.P.H., M.P.G.C., V.L.C.P., J.A.H., S.K.S., L.R.M., J.L.W., T.H.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmaceutics (C.R.M.), and Translational Drug Development Core (C.R.M.), Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.), Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Amarillo, Texas (L.R.M., J.L.W., T.H.); Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas (T.H.)
| | - Julio D Zuarth Gonzalez
- Departments of Pharmacodynamics (S.O., A.P., J.D.Z.G., L.C.D.S., L.F.R., L.R.G-J., N.P.H., M.P.G.C., V.L.C.P., J.A.H., S.K.S., L.R.M., J.L.W., T.H.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmaceutics (C.R.M.), and Translational Drug Development Core (C.R.M.), Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.), Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Amarillo, Texas (L.R.M., J.L.W., T.H.); Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas (T.H.)
| | - Lucas Chaves Da Silva
- Departments of Pharmacodynamics (S.O., A.P., J.D.Z.G., L.C.D.S., L.F.R., L.R.G-J., N.P.H., M.P.G.C., V.L.C.P., J.A.H., S.K.S., L.R.M., J.L.W., T.H.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmaceutics (C.R.M.), and Translational Drug Development Core (C.R.M.), Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.), Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Amarillo, Texas (L.R.M., J.L.W., T.H.); Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas (T.H.)
| | - Luis F Restrepo
- Departments of Pharmacodynamics (S.O., A.P., J.D.Z.G., L.C.D.S., L.F.R., L.R.G-J., N.P.H., M.P.G.C., V.L.C.P., J.A.H., S.K.S., L.R.M., J.L.W., T.H.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmaceutics (C.R.M.), and Translational Drug Development Core (C.R.M.), Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.), Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Amarillo, Texas (L.R.M., J.L.W., T.H.); Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas (T.H.)
| | - Lea R Gamez-Jimenez
- Departments of Pharmacodynamics (S.O., A.P., J.D.Z.G., L.C.D.S., L.F.R., L.R.G-J., N.P.H., M.P.G.C., V.L.C.P., J.A.H., S.K.S., L.R.M., J.L.W., T.H.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmaceutics (C.R.M.), and Translational Drug Development Core (C.R.M.), Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.), Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Amarillo, Texas (L.R.M., J.L.W., T.H.); Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas (T.H.)
| | - Nicholas P Ho
- Departments of Pharmacodynamics (S.O., A.P., J.D.Z.G., L.C.D.S., L.F.R., L.R.G-J., N.P.H., M.P.G.C., V.L.C.P., J.A.H., S.K.S., L.R.M., J.L.W., T.H.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmaceutics (C.R.M.), and Translational Drug Development Core (C.R.M.), Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.), Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Amarillo, Texas (L.R.M., J.L.W., T.H.); Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas (T.H.)
| | - Maria P Guerrero Calvache
- Departments of Pharmacodynamics (S.O., A.P., J.D.Z.G., L.C.D.S., L.F.R., L.R.G-J., N.P.H., M.P.G.C., V.L.C.P., J.A.H., S.K.S., L.R.M., J.L.W., T.H.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmaceutics (C.R.M.), and Translational Drug Development Core (C.R.M.), Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.), Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Amarillo, Texas (L.R.M., J.L.W., T.H.); Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas (T.H.)
| | - Victoria L C Pallares
- Departments of Pharmacodynamics (S.O., A.P., J.D.Z.G., L.C.D.S., L.F.R., L.R.G-J., N.P.H., M.P.G.C., V.L.C.P., J.A.H., S.K.S., L.R.M., J.L.W., T.H.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmaceutics (C.R.M.), and Translational Drug Development Core (C.R.M.), Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.), Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Amarillo, Texas (L.R.M., J.L.W., T.H.); Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas (T.H.)
| | - Justin A Helmes
- Departments of Pharmacodynamics (S.O., A.P., J.D.Z.G., L.C.D.S., L.F.R., L.R.G-J., N.P.H., M.P.G.C., V.L.C.P., J.A.H., S.K.S., L.R.M., J.L.W., T.H.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmaceutics (C.R.M.), and Translational Drug Development Core (C.R.M.), Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.), Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Amarillo, Texas (L.R.M., J.L.W., T.H.); Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas (T.H.)
| | - Sakura K Shiomitsu
- Departments of Pharmacodynamics (S.O., A.P., J.D.Z.G., L.C.D.S., L.F.R., L.R.G-J., N.P.H., M.P.G.C., V.L.C.P., J.A.H., S.K.S., L.R.M., J.L.W., T.H.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmaceutics (C.R.M.), and Translational Drug Development Core (C.R.M.), Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.), Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Amarillo, Texas (L.R.M., J.L.W., T.H.); Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas (T.H.)
| | - Paul L Soto
- Departments of Pharmacodynamics (S.O., A.P., J.D.Z.G., L.C.D.S., L.F.R., L.R.G-J., N.P.H., M.P.G.C., V.L.C.P., J.A.H., S.K.S., L.R.M., J.L.W., T.H.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmaceutics (C.R.M.), and Translational Drug Development Core (C.R.M.), Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.), Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Amarillo, Texas (L.R.M., J.L.W., T.H.); Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas (T.H.)
| | - Christopher R McCurdy
- Departments of Pharmacodynamics (S.O., A.P., J.D.Z.G., L.C.D.S., L.F.R., L.R.G-J., N.P.H., M.P.G.C., V.L.C.P., J.A.H., S.K.S., L.R.M., J.L.W., T.H.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmaceutics (C.R.M.), and Translational Drug Development Core (C.R.M.), Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.), Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Amarillo, Texas (L.R.M., J.L.W., T.H.); Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas (T.H.)
| | - Lance R McMahon
- Departments of Pharmacodynamics (S.O., A.P., J.D.Z.G., L.C.D.S., L.F.R., L.R.G-J., N.P.H., M.P.G.C., V.L.C.P., J.A.H., S.K.S., L.R.M., J.L.W., T.H.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmaceutics (C.R.M.), and Translational Drug Development Core (C.R.M.), Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.), Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Amarillo, Texas (L.R.M., J.L.W., T.H.); Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas (T.H.)
| | - Jenny L Wilkerson
- Departments of Pharmacodynamics (S.O., A.P., J.D.Z.G., L.C.D.S., L.F.R., L.R.G-J., N.P.H., M.P.G.C., V.L.C.P., J.A.H., S.K.S., L.R.M., J.L.W., T.H.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmaceutics (C.R.M.), and Translational Drug Development Core (C.R.M.), Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.), Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Amarillo, Texas (L.R.M., J.L.W., T.H.); Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas (T.H.)
| | - Takato Hiranita
- Departments of Pharmacodynamics (S.O., A.P., J.D.Z.G., L.C.D.S., L.F.R., L.R.G-J., N.P.H., M.P.G.C., V.L.C.P., J.A.H., S.K.S., L.R.M., J.L.W., T.H.), Medicinal Chemistry (S.O., F.L., C.R.M.), and Pharmaceutics (C.R.M.), and Translational Drug Development Core (C.R.M.), Clinical and Translational Sciences Institute, College of Pharmacy, University of Florida, Gainesville, Florida; Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina (F.L.); Department of Psychology, Louisiana State University, Baton Rouge, Louisiana (P.L.S.), Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Jerry H. Hodge School of Pharmacy, Amarillo, Texas (L.R.M., J.L.W., T.H.); Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama (S.O.); Department of Pharmacology, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas (T.H.)
| |
Collapse
|
44
|
Zul Aznal AN, Mohamad Nor Hazalin NA, Hassan Z, Mat NH, Chear NJY, Teh LK, Salleh MZ, Suhaimi FW. Adolescent kratom exposure affects cognitive behaviours and brain metabolite profiles in Sprague-Dawley rats. Front Pharmacol 2022; 13:1057423. [PMID: 36518677 PMCID: PMC9744228 DOI: 10.3389/fphar.2022.1057423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/17/2022] [Indexed: 08/05/2023] Open
Abstract
Adolescence is a critical developmental period during which exposure to psychoactive substances like kratom (Mitragyna speciosa) can cause long-lasting deleterious effects. Here, we evaluated the effects of mitragynine, the main alkaloid of kratom, and lyophilised kratom decoction (LKD) on cognitive behaviours and brain metabolite profiles in adolescent rats. Male Sprague-Dawley rats (Postnatal day, PND31) were given vehicle, morphine (5 mg/kg), mitragynine (3, 10, or 30 mg/kg), or LKD (equivalent dose of 30 mg/kg mitragynine) for 15 consecutive days. Later, a battery of behavioural testing was conducted, brain was extracted and metabolomic analysis was performed using LCMS-QTOF. The results showed that mitragynine did not affect the recognition memory in the novel object recognition task. In the social interaction task, morphine, mitragynine, and LKD caused a marked deficit in social behaviour, while in Morris water maze task, mitragynine and LKD only affected reference memory. Metabolomic analysis revealed distinct metabolite profiles of animals with different treatments. Several pathways that may be involved in the effects of kratom exposure include arachidonic acid, pantothenate and CoA, and tryptophan pathways, with several potential biomarkers identified. These findings suggest that adolescent kratom exposure can cause cognitive behavioural deficits that may be associated with changes in the brain metabolite profiles.
Collapse
Affiliation(s)
| | - Nurul Aqmar Mohamad Nor Hazalin
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Cawangan Selangor, Kampus Puncak Alam, Puncak Alam, Malaysia
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Noorul Hamizah Mat
- Centre for Drug Research, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | | | - Lay Kek Teh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Cawangan Selangor, Kampus Puncak Alam, Puncak Alam, Malaysia
| | - Mohd Zaki Salleh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Cawangan Selangor, Kampus Puncak Alam, Puncak Alam, Malaysia
| | | |
Collapse
|
45
|
Sakamoto J, Kitajima M, Ishikawa H. Asymmetric Total Syntheses of Mitragynine, Speciogynine, and 7-Hydroxymitragynine. Chem Pharm Bull (Tokyo) 2022; 70:662-668. [DOI: 10.1248/cpb.c22-00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jukiya Sakamoto
- Graduate School of Pharmaceutical Sciences, Chiba University
| | - Mariko Kitajima
- Graduate School of Pharmaceutical Sciences, Chiba University
| | - Hayato Ishikawa
- Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
46
|
Abstract
Kratom is the common term for Mitragyna speciosa and its products. Its major active compounds are mitragynine and 7-hydroxymitragynine. An estimated 2.1 million US residents used kratom in 2020, as a "legal high" and self-medication for pain, opioid withdrawal, and other conditions. Up to 20% of US kratom users report symptoms consistent with kratom use disorder. Kratom use is associated with medical toxicity and death. Causality is difficult to prove as almost all cases involve other psychoactive substances. Daily, high-dose use may result in kratom use disorder and opioid-like withdrawal on cessation of use. These are best treated with buprenorphine.
Collapse
Affiliation(s)
- David A Gorelick
- Department of Psychiatry, University of Maryland School of Medicine, PO Box 21247, MPRC-Tawes Building, Baltimore, MD 21228, USA.
| |
Collapse
|
47
|
Farkas DJ, Foss JD, Ward SJ, Rawls SM. Kratom alkaloid mitragynine: Inhibition of chemotherapy-induced peripheral neuropathy in mice is dependent on sex and active adrenergic and opioid receptors. IBRO Neurosci Rep 2022; 13:198-206. [PMID: 36093282 PMCID: PMC9459671 DOI: 10.1016/j.ibneur.2022.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/26/2022] [Indexed: 11/06/2022] Open
Abstract
Mitragynine (MG) is an alkaloid found in Mitragyna speciosa (kratom) that is used as an herbal remedy for pain relief and opioid withdrawal. MG acts at μ-opioid and α-adrenergic receptors in vitro, but the physiological relevance of this activity in the context of neuropathic pain remains unknown. The purpose of the present study was to characterize the effects of MG in a mouse model of chemotherapy-induced peripheral neuropathy (CIPN), and to investigate the potential impact of sex on MG's therapeutic efficacy. Inhibition of oxaliplatin-induced mechanical hypersensitivity was measured following intraperitoneal administration of MG. Both male and female C57BL/6J mice were used to characterize potential sex-differences in MG's therapeutic efficacy. Pharmacological mechanisms of MG were characterized through pretreatment with the opioid and adrenergic antagonists naltrexone, prazosin, yohimbine, and propranolol (1, 2.5, 5 mg/kg). Oxaliplatin produced significant mechanical allodynia of equal magnitude in both male and females, which was dose-dependently attenuated by repeated MG exposure. MG was more potent in males vs females, and the highest dose of MG (10 mg/kg) exhibited greater anti-allodynic efficacy in males. Mechanistically, activity at µ-opioid, α1- and α2-adrenergic receptors, but not β-adrenergic receptors contributed to the effects of MG against oxaliplatin-induced mechanical hypersensitivity. Repeated MG exposure significantly attenuated oxaliplatin-induced mechanical hypersensitivity with greater potency and efficacy in males, which has crucial implications in the context of individualized pain management. The opioid and adrenergic components of MG indicate that it shares pharmacological properties with clinical neuropathic pain treatments.
Collapse
Affiliation(s)
- Daniel J. Farkas
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA,Corresponding author.
| | - Jeffery D. Foss
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Sara Jane Ward
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Scott M. Rawls
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| |
Collapse
|
48
|
Manwill PK, Flores-Bocanegra L, Khin M, Raja HA, Cech NB, Oberlies NH, Todd DA. Kratom (Mitragyna speciosa) Validation: Quantitative Analysis of Indole and Oxindole Alkaloids Reveals Chemotypes of Plants and Products. PLANTA MEDICA 2022; 88:838-857. [PMID: 35468648 PMCID: PMC9343938 DOI: 10.1055/a-1795-5876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Many consumers are turning to kratom (Mitragyna speciosa) to self-manage pain and opioid addiction. In the United States, an array of capsules, powders, and loose-leaf kratom products are readily available. Additionally, several online sites supply live kratom plants. A prerequisite to establishing quality control and quality assurance standards for the kratom industry, or understanding how alkaloid levels effect clinical outcomes, is the identification and quantitation of major and minor alkaloid constituents within available products and preparations. To this end, an ultra-high performance liquid chromatography-high resolution mass spectrometry method was developed for the analysis of 8 indole alkaloids (7-hydroxymitragynine, ajmalicine, paynantheine, mitragynine, speciogynine, isopaynantheine, speciociliatine, and mitraciliatine) and 6 oxindole alkaloids (isomitraphylline, isospeciofoleine, speciofoline, corynoxine A, corynoxeine, and rhynchophylline) in US-grown kratom plants and commercial products. These commercial products shared a qualitatively similar alkaloid profile, with 12 - 13 detected alkaloids and high levels of the indole alkaloid mitragynine (13.9 ± 1.1 - 270 ± 24 mg/g). The levels of the other major alkaloids (paynantheine, speciociliatine, speciogynine, mitraciliatine, and isopaynantheine) and the minor alkaloids varied in concentration from product to product. The alkaloid profile of US-grown M. speciosa "Rifat" showed high levels of the indole alkaloid speciogynine (7.94 ± 0.83 - 11.55 ± 0.18 mg/g) and quantifiable levels of isomitraphylline (0.943 ± 0.033 - 1.47 ± 0.18 mg/g). Notably, the alkaloid profile of a US-grown M. speciosa seedling was comparable to the commercial products with a high level of mitragynine (15.01 ± 0.20 mg/g). This work suggests that there are several M. speciosa chemotypes.
Collapse
Affiliation(s)
- Preston K. Manwill
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Laura Flores-Bocanegra
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Manead Khin
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Nadja B. Cech
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
- Dr. Nicholas H. Oberlies University of North Carolina at GreensboroDepartment of Chemistry and
Biochemistry301 McIver St. – Sullivan Science Building27402 Greensboro
NCUSA+ 1 33 63 34 54 74+ 1 33 63 34 54 02
| | - Daniel A. Todd
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
- Correspondence Dr. Daniel A Todd University of North Carolina at GreensboroDepartment of Chemistry and
Biochemistry301 McIver St. – Sullivan Science Building27402 Greensboro
NCUSA+ 1 33 63 34 47 68+ 1 33 63 34 54 02
| |
Collapse
|
49
|
Public Health Implications and Possible Sources of Lead (Pb) as a Contaminant of Poorly Regulated Kratom Products in the United States. TOXICS 2022; 10:toxics10070398. [PMID: 35878303 PMCID: PMC9320411 DOI: 10.3390/toxics10070398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 02/04/2023]
Abstract
Kratom (Mitragyna speciosa) is a tropical tree that is indigenous to Southeast Asia. Kratom leaf products have been used in traditional folk medicine for their unique combination of stimulant and opioid-like effects. Kratom is being increasingly used in the West for its reputed benefits in the treatment of pain, depression, and opioid use disorder (OUD). Recent studies from the United States Food and Drug Administration (FDA, Silver Spring, MD, USA) and our laboratory have shown that many kratom products being sold in the United States are contaminated with potentially hazardous levels of lead (Pb). In this commentary, we discuss the public health implications of the presence of Pb in kratom products, particularly as they relate to the predicted levels of Pb exposure among kratom users. We also considered the specific toxic effects of Pb and how they might relate to the known physiologic and toxicologic effects of kratom. Finally, we consider the possible sources of Pb in kratom products and suggest several areas for research on this issue.
Collapse
|
50
|
Kamble SH, Berthold EC, Kanumuri SRR, King TI, Kuntz MA, León F, Mottinelli M, McMahon LR, McCurdy CR, Sharma A. Metabolism of Speciociliatine, an Overlooked Kratom Alkaloid for its Potential Pharmacological Effects. AAPS J 2022; 24:86. [PMID: 35854066 PMCID: PMC9932950 DOI: 10.1208/s12248-022-00736-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/05/2022] [Indexed: 01/21/2023] Open
Abstract
Speciociliatine, a diastereomer of mitragynine, is an indole-based alkaloid found in kratom (Mitragyna speciosa). Kratom has been widely used for the mitigation of pain and opioid dependence, as a mood enhancer, and/or as an energy booster. Speciociliatine is a partial µ-opioid agonist with a 3-fold higher binding affinity than mitragynine. Speciociliatine has been found to be a major circulating alkaloid in humans following oral administration of a kratom product. In this report, we have characterized the metabolism of speciociliatine in human and preclinical species (mouse, rat, dog, and cynomolgus monkey) liver microsomes and hepatocytes. Speciociliatine metabolized rapidly in monkey, rat, and mouse hepatocytes (in vitro half-life was 6.6 ± 0.2, 8.3 ± 1.1, 11.2 ± 0.7 min, respectively), while a slower metabolism was observed in human and dog hepatocytes (91.7 ± 12.8 and > 120 min, respectively). Speciociliatine underwent extensive metabolism, primarily through monooxidation and O-demethylation metabolic pathways in liver microsomes and hepatocytes across species. No human-specific or disproportionate metabolites of speciociliatine were found in human liver microsomes. The metabolism of speciociliatine was predominantly mediated by CYP3A4 with minor contributions by CYP2D6.
Collapse
Affiliation(s)
- Shyam H. Kamble
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA,Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL, USA
| | - Erin C. Berthold
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Siva Rama Raju Kanumuri
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA,Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL, USA
| | - Tamara I. King
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA,Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL, USA
| | - Michelle A. Kuntz
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA,Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL, USA
| | - Francisco León
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Marco Mottinelli
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | | | - Christopher R. McCurdy
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA,Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL, USA,Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA,Corresponding Author Abhisheak Sharma, M. Pharm., Ph.D., UF CTSI, Translational Drug Development Core, Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA. , Phone: 352-294-8690, Christopher R. McCurdy, Ph.D., FAAPS, UF CTSI, Translational Drug Development Core, Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA. , Phone: 352-294-8691
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA. .,Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|