1
|
Nie HJ, Fu YJ, Long S, Wang JY, Zhao WS, Zhai LH, Yang YL, Tan MJ, Hu H, Chen XH. Chemoproteomics reveals proteome-wide covalent and non-covalent targets of withaferin A. Acta Pharmacol Sin 2025; 46:1782-1793. [PMID: 39900821 PMCID: PMC12098870 DOI: 10.1038/s41401-024-01468-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/22/2024] [Indexed: 02/05/2025]
Abstract
Withaferin A (WA), a natural product used in traditional medicine, has recently garnered attention because of its diverse pharmacological effects. However, the direct targets responsible for these effects remain elusive. The discovery of targets is usually serendipitous and research has predominantly concentrated on covalent interactions, overlooking non-covalent targets. The unbiased and proteome-wide mapping of WA-interacting proteins in living cells remains largely unexplored. We have developed a chemical proteomics platform that enabled profiling of the covalent/non-covalent interactome and target occupancy in disease-related cells, which was used to reveal the landscape of the targets of WA in triple-negative breast cancer (TNBC) cells. Analysis of the discovered high-occupancy targets suggested that WA was substantially involved in the RNA metabolism pathway, in addition to other biological processes. Moreover, we biochemically validated a selection of previously unknown high-occupancy targets from various important biological pathways, including the non-covalent target MVK and covalent targets HNRNPF and CKAP4, which all play critical roles in TNBC. Collectively, these findings provided a target map for comprehensive understanding of the anti-TNBC activity of WA, and present WA-targetable proteins as new avenues for pharmacological intervention in TNBC. We anticipate that this platform will be applicable for the unbiased profiling of the targets of WA in various other disease-related cell models, as well as for other bioactive electrophilic natural products in different pathophysiological systems.
Collapse
Affiliation(s)
- Hui-Jun Nie
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ying-Jie Fu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Shang Long
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jia-Yu Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wen-Si Zhao
- School of Medicine, Tongji University, Shanghai, 200433, China
| | - Lin-Hui Zhai
- School of Medicine, Tongji University, Shanghai, 200433, China
| | - Yin-Long Yang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Min-Jia Tan
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Hu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Xiao-Hua Chen
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Dantas Rocha KA, Silveira ER, de Freitas Paulo T, Ayala AP, Soares BM, Sant'Anna Maranhão S, Pessoa CDÓ, Paz IA, Barroso Rodrigues ML, Falcão do Nascimento NR, Canuto KM, Loiola Pessoa OD. Bioactive withanolides from the leaves of Athenaea velutina (Sendtn.) D'Arcy. PHYTOCHEMISTRY 2025; 238:114549. [PMID: 40414446 DOI: 10.1016/j.phytochem.2025.114549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 05/11/2025] [Accepted: 05/18/2025] [Indexed: 05/27/2025]
Abstract
Withanolides are a substantial bio-diverse group of naturally occurring steroidal lactones. Herein, ten still undescribed withanolides (1-10), along with the knowns withaferin A (11), 2,3-dihidrowithaferin A (12), and two other non-withanolides, vomifoliol (13) and the N-trans-p-coumaroyltyramine (14), were isolated from the hexane/EtOAc 1:1 leaf extract of Athenaea velutina (Sendtn.) D'Arcy (Solanaceae). The structures of the undescribed withanolides were elucidated by an extensive analysis of their spectroscopic data: 1D and 2D NMR, HRESIMS, single-crystal X-ray diffraction, and ECD calculations. The antiproliferative properties of the withanolides were evaluated against the human cancer cell lines: central nervous system (SNB-19), prostate (PC-3), colon (HCT-116), and leukemia (HL-60), and a murine fibroblast-like cell (L-929). Withanolides 15-17, isolated from the same plant in a previous work, were included for the pharmacological tests. Compounds 15 and 16 exhibited cytotoxic activity for all cancer cells, while 2 was selectively more cytotoxic to HL-60 cells. In addition, the withanolides were evaluated in guinea pig cardiac tissues. Compounds 15 and 16 showed cardiotonic activity, devoid of a positive chronotropic effect which is a good pharmacological profile for an inotrope agent.
Collapse
Affiliation(s)
- Késya Amanda Dantas Rocha
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, 60021-970, Fortaleza, CE, Brazil
| | - Edilberto Rocha Silveira
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, 60021-970, Fortaleza, CE, Brazil
| | - Tércio de Freitas Paulo
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, 60021-970, Fortaleza, CE, Brazil
| | - Alejandro Pedro Ayala
- Departamento de Física, Centro de Ciências, Universidade Federal do Ceará, 60440-900, Fortaleza, CE, Brazil
| | - Bruno Marques Soares
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, 60430-270, Fortaleza, CE, Brazil
| | - Sarah Sant'Anna Maranhão
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, 60430-270, Fortaleza, CE, Brazil
| | - Cláudia do Ó Pessoa
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Faculdade de Medicina, Universidade Federal do Ceará, 60430-270, Fortaleza, CE, Brazil
| | - Iury Araújo Paz
- Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, 60714-903, Fortaleza, Ceará, Brazil
| | | | | | | | - Otília Deusdenia Loiola Pessoa
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, 60021-970, Fortaleza, CE, Brazil.
| |
Collapse
|
3
|
Singh SK, Rashid M, Chaturvedi S, Agarwal A, Chauhan D, Gayen JR, Wahajuddin M. Preclinical pharmacokinetics, absolute bioavailability and dose proportionality evaluation of bioactive phytochemical Withanone in rats. Bioorg Chem 2025; 155:108128. [PMID: 39793220 DOI: 10.1016/j.bioorg.2025.108128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/24/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
Withanone (WN), a bioactive phytochemical isolated from the medicinal herb Withania somnifera, has shown multiple pharmacological and therapeutic successes, including neuroprotective and anti-cancer activities. However, detailed pharmacokinetic (PK) properties of pure WN were not well defined. Pharmacokinetic (PK) characteristics, dose proportionality, and absolute bioavailability of pure WN were explored in rats using an efficient, reliable, and sensitive LC-MS/MS assay to address this gap. The method shows excellent linearity over 0.5-500 ng/mL (r2 ≥ 0.99), is accurate, and requires less analysis time. A dose proportionality and absolute bioavailability of pure WN were determined in Sprague-Dawley (SD) rats through three ascending oral (10, 20, and 40 mg/kg) and single intravenous (5 mg/kg) PK studies. The peak concentration (Cmax) of WN was 60.53 ± 20.33, 116.30 ± 16.89, and 91.62 ± 6.20 ng/mL, corresponding to oral dosage of 10, 20, and 40 mg/kg, respectively. WN shows poor systemic exposure upon oral administration, leading to low oral bioavailability (<15 %). Additionally, the dose proportionality studies of WN revealed its saturable bioavailability and non-proportional systemic exposure over the dosage range of 10-40 mg/kg in rats. The obtained PK findings of this study would be valuable for better understanding the pharmacological effects of WN, dose regimen optimization for future studies, and relevance for clinical reference to support its future development as a potential therapeutic molecule.
Collapse
Affiliation(s)
- Sandeep K Singh
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mamunur Rashid
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Swati Chaturvedi
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arun Agarwal
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Drug Metabolism and Pharmacokinetics, Aragen Life Sciences Limited, Hyderabad 500078, Telangana, India
| | - Divya Chauhan
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jiaur R Gayen
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muhammad Wahajuddin
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, United Kingdom.
| |
Collapse
|
4
|
Sharma KB, Subramani C, Ganesh K, Sharma A, Basu B, Balyan S, Sharma G, KA S, Deb A, Srivastava M, Chugh S, Sehrawat S, Bharadwaj K, Rout A, Sahoo PK, Saurav S, Motiani RK, Singh R, Jain D, Asthana S, Wadhwa R, Vrati S. Withaferin A inhibits Chikungunya virus nsP2 protease and shows antiviral activity in the cell culture and mouse model of virus infection. PLoS Pathog 2024; 20:e1012816. [PMID: 39775571 PMCID: PMC11723598 DOI: 10.1371/journal.ppat.1012816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 01/10/2025] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus causing fever, myalgia, and debilitating joint swelling and pain, which in many patients becomes chronic. The frequent epidemics of CHIKV across the world pose a significant public health burden necessitating the development of effective antiviral therapeutics. A cellular imaging-based high-content screening of natural compounds identified withaferin A (WFA), a steroidal lactone isolated from the plant Withania somnifera, as a potent antiviral against CHIKV. In the ERMS cells, WFA inhibited CHIKV replication early during the life cycle by binding the CHIKV non-structural protein nsP2 and inhibiting its protease activity. This inhibited the viral polyprotein processing and the minus-sense viral RNA synthesis. WFA mounted the nsP2 protease inhibitory activity through its oxidising property as the reducing agents N-acetylcysteine and Glutathione-monoethyl ester effectively reversed the WFA-mediated protease inhibition in vitro and abolished the WFA-mediated antiviral activity in cultured cells. WFA inhibited CHIKV replication in the C57BL/6 mouse model of chikungunya disease, resulting in significantly lower viremia. Importantly, CHIKV-infected mice showed significant joint swelling which was not seen in WFA-treated mice. These data demonstrate the potential of WFA as a novel CHIKV antiviral.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shouri KA
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Mitul Srivastava
- Translational Health Science and Technology Institute, Faridabad, India
| | - Saurabh Chugh
- Translational Health Science and Technology Institute, Faridabad, India
| | | | | | - Archana Rout
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Suman Saurav
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Ramandeep Singh
- Translational Health Science and Technology Institute, Faridabad, India
| | - Deepti Jain
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Renu Wadhwa
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | | |
Collapse
|
5
|
Ba A, Roumy V, Al Ibrahim M, Hughes K, Hennebelle T, Samaillie J, Sahpaz S, Beniddir MA, Hérent MF, Séron K, Leclercq JQ, Seck M, Rivière C. Antileishmanial, antitrypanosomal and anti-coronavirus activities of benzophenanthridine alkaloids and other specialized metabolites isolated from the root bark of Zanthoxylum zanthoxyloides (Lam.) B.Zepernick & Timler. Fitoterapia 2024; 179:106232. [PMID: 39326796 DOI: 10.1016/j.fitote.2024.106232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/23/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Strong antileishmanial and antitrypanosomal activities were highlighted for the crude methanolic extract (IC50 = 0.61 and 2.15 μg/mL, respectively) of Zanthoxylum zanthoxyloides (Lam.) B.Zepernick & Timler root bark, as well as for its apolar partitions (cyclohexane: IC50 = 0.66 and 5.17 μg/mL, respectively and dichloromethane: IC50 = 0.07 and 0.22 μg/mL, respectively), with a good selectivity index (SI) towards WI-38 cells. In addition, cyclohexane and dichloromethane extracts exhibited a dose-dependent inhibition of human coronavirus HCoV-229E infection in hepatoma Huh-7 cells expressing or not the cellular protease TMPRSS2 (IC50 values of 5.29 μg/mL and 4.87 μg/mL, respectively). Fractionation of these active extracts led to the isolation of a new racemic benzophenanthridine alkaloid named zanthoxyloithrine (1), together with 13 known compounds. Their structures were elucidated by spectroscopic techniques including IR, UV, HR-MS, 1D and 2D NMR and electronic circular dichroism. In parallel, HR-ESI-MS/MS based dereplication and molecular networking analysis were performed to identify unpurified compounds in cyclohexane and dichloromethane extracts. Zanthoxyloithrine (1) showed strong antileishmanial (IC50 = 0.14 μM, SI = 52.0) and antitrypanosomal (IC50 = 0.36 μM, SI = 20.8) activities. In addition, compound (1) demonstrated a high antiviral activity against HCoV-229E with IC50 value of 6.70 μM in presence of TMPRRS2 and without significant toxicity on Huh-7 cells. Other purified benzo[c]phenanthridine alkaloids also showed anti-coronavirus and antiparasitic activities.
Collapse
Affiliation(s)
- Abda Ba
- Joint Research Unit 1158 BioEcoAgro, Univ. Lille, Junia, INRAE, Univ. Liège, UPJV, Univ. Artois, ULCO, F-59650 Villeneuve d'Ascq, France; Laboratoire de Chimie Organique et Thérapeutique, Faculté de Médecine, de Pharmacie et d'Odontologie de l'Université Cheikh Anta Diop de Dakar, BP 5005 Dakar-Fann, Sénégal
| | - Vincent Roumy
- Joint Research Unit 1158 BioEcoAgro, Univ. Lille, Junia, INRAE, Univ. Liège, UPJV, Univ. Artois, ULCO, F-59650 Villeneuve d'Ascq, France
| | - Malak Al Ibrahim
- Joint Research Unit 1158 BioEcoAgro, Univ. Lille, Junia, INRAE, Univ. Liège, UPJV, Univ. Artois, ULCO, F-59650 Villeneuve d'Ascq, France; Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - Center for Infection and Immunity of Lille (CIIL), F-59000 Lille, France
| | - Kristelle Hughes
- Pharmacognosy Research Group, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Avenue E. Mounier, 72, B B01.72.03-1200 Brussels, Belgium
| | - Thierry Hennebelle
- Joint Research Unit 1158 BioEcoAgro, Univ. Lille, Junia, INRAE, Univ. Liège, UPJV, Univ. Artois, ULCO, F-59650 Villeneuve d'Ascq, France
| | - Jennifer Samaillie
- Joint Research Unit 1158 BioEcoAgro, Univ. Lille, Junia, INRAE, Univ. Liège, UPJV, Univ. Artois, ULCO, F-59650 Villeneuve d'Ascq, France
| | - Sevser Sahpaz
- Joint Research Unit 1158 BioEcoAgro, Univ. Lille, Junia, INRAE, Univ. Liège, UPJV, Univ. Artois, ULCO, F-59650 Villeneuve d'Ascq, France
| | - Mehdi A Beniddir
- Equipe Chimie des Substances Naturelles, BioCIS, CNRS, Université Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France
| | - Marie-France Hérent
- Pharmacognosy Research Group, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Avenue E. Mounier, 72, B B01.72.03-1200 Brussels, Belgium
| | - Karin Séron
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - Center for Infection and Immunity of Lille (CIIL), F-59000 Lille, France
| | - Joëlle Quetin Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Avenue E. Mounier, 72, B B01.72.03-1200 Brussels, Belgium
| | - Matar Seck
- Laboratoire de Chimie Organique et Thérapeutique, Faculté de Médecine, de Pharmacie et d'Odontologie de l'Université Cheikh Anta Diop de Dakar, BP 5005 Dakar-Fann, Sénégal
| | - Céline Rivière
- Joint Research Unit 1158 BioEcoAgro, Univ. Lille, Junia, INRAE, Univ. Liège, UPJV, Univ. Artois, ULCO, F-59650 Villeneuve d'Ascq, France.
| |
Collapse
|
6
|
Liu ZQ. How many organic small molecules might be used to treat COVID-19? From natural products to synthetic agents. Eur J Med Chem 2024; 278:116788. [PMID: 39236494 DOI: 10.1016/j.ejmech.2024.116788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
A large scale of pandemic coronavirus disease (COVID-19) in the past five years motivates a great deal of endeavors donating to the exploration on therapeutic drugs against COVID-19 as well as other diseases caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein is an overview on the organic small molecules that are potentially employed to treat COVID-19 and other SARS-CoV-2-related diseases. These organic small molecules are accessed from both natural resources and synthetic strategies. Notably, typical natural products presented herein consist of polyphenols, lignans, alkaloids, terpenoids, and peptides, which exert an advantage for the further discovery of novel anti-COVID-19 drugs from plant herbs. On the other hand, synthetic prodrugs are composed of a series of inhibitors towards RNA-dependent RNA polymerase (RdRp), main protease (Mpro), 3-chymotrypsin-like cysteine protease (3CLpro), spike protein, papain-like protease (PLpro) of the SARS-CoV-2 as well as the angiotensin-converting enzyme 2 (ACE2) in the host cells. Synthetic strategies are worth taken into consideration because they are beneficial for designing novel anti-COVID-19 drugs in the coming investigations. Although examples collected herein are just a drop in the bucket, developments of organic small molecules against coronavirus infections are believed to pave a promising way for the discovery of multi-targeted therapeutic drugs against not only COVID-19 but also other virus-mediated diseases.
Collapse
Affiliation(s)
- Zai-Qun Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, No.2519 Jiefang Road, Changchun, 130021, People's Republic of China.
| |
Collapse
|
7
|
Yang Y, Luo YD, Zhang CB, Xiang Y, Bai XY, Zhang D, Fu ZY, Hao RB, Liu XL. Progress in Research on Inhibitors Targeting SARS-CoV-2 Main Protease (M pro). ACS OMEGA 2024; 9:34196-34219. [PMID: 39157135 PMCID: PMC11325518 DOI: 10.1021/acsomega.4c03023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024]
Abstract
Since 2019, the novel coronavirus (SARS-CoV-2) has caused significant morbidity and millions of deaths worldwide. The Coronavirus Disease 2019 (COVID-19), caused by SARS-CoV-2 and its variants, has further highlighted the urgent need for the development of effective therapeutic agents. Currently, the highly conserved and broad-spectrum nature of main proteases (Mpro) renders them of great importance in the field of inhibitor study. In this study, we categorize inhibitors targeting Mpro into three major groups: mimetic, nonmimetic, and natural inhibitors. We then present the research progress of these inhibitors in detail, including their mechanism of action, antiviral activity, pharmacokinetic properties, animal experiments, and clinical studies. This review aims to provide valuable insights and potential avenues for the development of more effective antiviral drugs against SARS-CoV-2.
Collapse
Affiliation(s)
- Yue Yang
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Yi-Dan Luo
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Chen-Bo Zhang
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Yang Xiang
- School
of Medicine, Yan’an University, Yan’an 716000, China
- College
of Physical Education, Yan’an University, Yan’an 716000, China
| | - Xin-Yue Bai
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Die Zhang
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Zhao-Ying Fu
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Ruo-Bing Hao
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Xiao-Long Liu
- School
of Medicine, Yan’an University, Yan’an 716000, China
| |
Collapse
|
8
|
Bailly C. Covalent binding of withanolides to cysteines of protein targets. Biochem Pharmacol 2024; 226:116405. [PMID: 38969301 DOI: 10.1016/j.bcp.2024.116405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/26/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Withanolides represent an important category of natural products with a steroidal lactone core. Many of them contain an α,β-unsaturated carbonyl moiety with a high reactivity toward sulfhydryl groups, including protein cysteine thiols. Different withanolides endowed with marked antitumor and anti-inflammatory have been shown to form stable covalent complexes with exposed cysteines present in the active site of oncogenic kinases (BTK, IKKβ, Zap70), metabolism enzymes (Prdx-1/6, Pin1, PHGDH), transcription factors (Nrf2, NFκB, C/EBPβ) and other structural and signaling molecules (GFAP, β-tubulin, p97, Hsp90, vimentin, Mpro, IPO5, NEMO, …). The present review analyzed the covalent complexes formed through Michael addition alkylation reactions between six major withanolides (withaferin A, physalin A, withangulatin A, 4β-hydroxywithanolide E, withanone and tubocapsanolide A) and key cysteine residues of about 20 proteins and the resulting biological effects. The covalent conjugation of the α,β-unsaturated carbonyl system of withanolides with reactive protein thiols can occur with a large set of soluble and membrane proteins. It points to a general mechanism, well described with the leading natural product withaferin A, but likely valid for most withanolides harboring a reactive (electrophilic) enone moiety susceptible to react covalently with cysteinyl residues of proteins. The multiplicity of reactive proteins should be taken into account when studying the mechanism of action of new withanolides. Proteomic and network analyses shall be implemented to capture and compare the cysteine covalent-binding map for the major withanolides, so as to identify the protein targets at the origin of their activity and/or unwanted effects. Screening of the cysteinome will help understanding the mechanism of action and designing cysteine-reactive electrophilic drug candidates.
Collapse
Affiliation(s)
- Christian Bailly
- CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institute, University of Lille, F-59000 Lille, France; Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, F-59006 Lille, France; OncoWitan, Scientific Consulting Office, F-59290 Lille, France.
| |
Collapse
|
9
|
Che W, Wojitas L, Shan C, Lopchuk JM. Divergent synthesis of complex withanolides enabled by a scalable route and late-stage functionalization. SCIENCE ADVANCES 2024; 10:eadp9375. [PMID: 38941454 PMCID: PMC11212736 DOI: 10.1126/sciadv.adp9375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/24/2024] [Indexed: 06/30/2024]
Abstract
Withanolides are a group of naturally occurring C28 steroids based on an ergostane skeleton. They have a high degree of polyoxygenation, and the abundance of O-functional groups has enabled various natural alterations to both the carbocyclic skeleton and the side chain. Consequently, these molecules have intricate structural features that lead to their highly varied display of biological activities including anticancer, anti-inflammatory, and immunomodulating properties. Despite being intriguing leads for further discovery research, synthetic access to the withanolides remains highly challenging-compounds for current biological research are mainly isolated from plants, often inefficiently. Here, we report the divergent synthesis of 11 withanolides in 12 to 20 steps, enabled by a gram-scale route and a series of late-stage functionalizations, most notably a bioinspired photooxygenation-allylic hydroperoxide rearrangement sequence. This approach enables further biological research disconnected from a reliance on minute quantities of the parent natural products or their simple derivatives.
Collapse
Affiliation(s)
- Wen Che
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Lukasz Wojitas
- Department of Chemistry, University of South Florida; Tampa, FL 33620, USA
| | - Chuan Shan
- Department of Chemistry, University of South Florida; Tampa, FL 33620, USA
| | - Justin M. Lopchuk
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
- Department of Chemistry, University of South Florida; Tampa, FL 33620, USA
- Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
10
|
Micucci M, Gioacchini S, Baggieri M, Fioravanti R, Bucci P, Giuseppetti R, Saleem SS, Maulud SQ, Abdullah FO, Ismael BQ, Ahmed JQ, D'Ugo E, Marchi A, Okeke UJ, Magurano F. Review from host and guest approach to new frontiers nutraceuticals in the era of COVID-19. FUTURE FOODS 2024; 9:100303. [DOI: 10.1016/j.fufo.2024.100303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
11
|
Choudhary S, Nehul S, Singh A, Panda PK, Kumar P, Sharma GK, Tomar S. Unraveling antiviral efficacy of multifunctional immunomodulatory triterpenoids against SARS-COV-2 targeting main protease and papain-like protease. IUBMB Life 2024; 76:228-241. [PMID: 38059400 DOI: 10.1002/iub.2793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/20/2023] [Indexed: 12/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may be over, but its variants continue to emerge, and patients with mild symptoms having long COVID is still under investigation. SARS-CoV-2 infection leading to elevated cytokine levels and suppressed immune responses set off cytokine storm, fatal systemic inflammation, tissue damage, and multi-organ failure. Thus, drug molecules targeting the SARS-CoV-2 virus-specific proteins or capable of suppressing the host inflammatory responses to viral infection would provide an effective antiviral therapy against emerging variants of concern. Evolutionarily conserved papain-like protease (PLpro) and main protease (Mpro) play an indispensable role in the virus life cycle and immune evasion. Direct-acting antivirals targeting both these viral proteases represent an attractive antiviral strategy that is also expected to reduce viral inflammation. The present study has evaluated the antiviral and anti-inflammatory potential of natural triterpenoids: azadirachtin, withanolide_A, and isoginkgetin. These molecules inhibit the Mpro and PLpro proteolytic activities with half-maximal inhibitory concentrations (IC50) values ranging from 1.42 to 32.7 μM. Isothermal titration calorimetry (ITC) analysis validated the binding of these compounds to Mpro and PLpro. As expected, the two compounds, withanolide_A and azadirachtin, exhibit potent anti-SARS-CoV-2 activity in cell-based assays, with half-maximum effective concentration (EC50) values of 21.73 and 31.19 μM, respectively. The anti-inflammatory roles of azadirachtin and withanolide_A when assessed using HEK293T cells, were found to significantly reduce the levels of CXCL10, TNFα, IL6, and IL8 cytokines, which are elevated in severe cases of COVID-19. Interestingly, azadirachtin and withanolide_A were also found to rescue the decreased type-I interferon response (IFN-α1). The results of this study clearly highlight the role of triterpenoids as effective antiviral molecules that target SARS-CoV-2-specific enzymes and also host immune pathways involved in virus-mediated inflammation.
Collapse
Affiliation(s)
- Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Sanketkumar Nehul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ankur Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Prasan Kumar Panda
- Department of Internal Medicine (Division of Infectious diseases), All India Institute of Medical Sciences (AIIMS), Rishikesh, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Gaurav Kumar Sharma
- Centre for Animal Disease Research and Diagnosis (CADRAD), Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
12
|
Choudhary S, Nehul S, Singh A, Panda PK, Kumar P, Sharma GK, Tomar S. Unraveling antiviral efficacy of multifunctional immunomodulatory triterpenoids against SARS‐COV‐2 targeting main protease and papain‐like protease. IUBMB Life 2024; 76:228-241. [DOI: 10.1002/iub.2793 | pmid: 38059400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/20/2023] [Indexed: 05/15/2025]
Abstract
AbstractThe coronavirus disease 2019 (COVID‐19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) may be over, but its variants continue to emerge, and patients with mild symptoms having long COVID is still under investigation. SARS‐CoV‐2 infection leading to elevated cytokine levels and suppressed immune responses set off cytokine storm, fatal systemic inflammation, tissue damage, and multi‐organ failure. Thus, drug molecules targeting the SARS‐CoV‐2 virus‐specific proteins or capable of suppressing the host inflammatory responses to viral infection would provide an effective antiviral therapy against emerging variants of concern. Evolutionarily conserved papain‐like protease (PLpro) and main protease (Mpro) play an indispensable role in the virus life cycle and immune evasion. Direct‐acting antivirals targeting both these viral proteases represent an attractive antiviral strategy that is also expected to reduce viral inflammation. The present study has evaluated the antiviral and anti‐inflammatory potential of natural triterpenoids: azadirachtin, withanolide_A, and isoginkgetin. These molecules inhibit the Mpro and PLpro proteolytic activities with half‐maximal inhibitory concentrations (IC50) values ranging from 1.42 to 32.7 μM. Isothermal titration calorimetry (ITC) analysis validated the binding of these compounds to Mpro and PLpro. As expected, the two compounds, withanolide_A and azadirachtin, exhibit potent anti‐SARS‐CoV‐2 activity in cell‐based assays, with half‐maximum effective concentration (EC50) values of 21.73 and 31.19 μM, respectively. The anti‐inflammatory roles of azadirachtin and withanolide_A when assessed using HEK293T cells, were found to significantly reduce the levels of CXCL10, TNFα, IL6, and IL8 cytokines, which are elevated in severe cases of COVID‐19. Interestingly, azadirachtin and withanolide_A were also found to rescue the decreased type‐I interferon response (IFN‐α1). The results of this study clearly highlight the role of triterpenoids as effective antiviral molecules that target SARS‐CoV‐2‐specific enzymes and also host immune pathways involved in virus‐mediated inflammation.
Collapse
Affiliation(s)
- Shweta Choudhary
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| | - Sanketkumar Nehul
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| | - Ankur Singh
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| | - Prasan Kumar Panda
- Department of Internal Medicine (Division of Infectious diseases) All India Institute of Medical Sciences (AIIMS) Rishikesh India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| | - Gaurav Kumar Sharma
- Centre for Animal Disease Research and Diagnosis (CADRAD) Indian Veterinary Research Institute Bareilly Uttar Pradesh India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| |
Collapse
|
13
|
Jin X, Zhang M, Fu B, Li M, Yang J, Zhang Z, Li C, Zhang H, Wu H, Xue W, Liu Y. Structure-Based Discovery of the SARS-CoV-2 Main Protease Noncovalent Inhibitors from Traditional Chinese Medicine. J Chem Inf Model 2024; 64:1319-1330. [PMID: 38346323 DOI: 10.1021/acs.jcim.3c01327] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Traditional Chinese medicine (TCM) has been extensively employed for the treatment of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, there is demand for discovering more SARS-CoV-2 Mpro inhibitors with diverse scaffolds to optimize anti-SARS-CoV-2 lead compounds. In this study, comprehensive in silico and in vitro assays were utilized to determine the potential inhibitors from TCM compounds against SARS-CoV-2 Mpro, which is an important therapeutic target for SARS-CoV-2. The ensemble docking analysis of 18263 TCM compounds against 15 SARS-CoV-2 Mpro conformations identified 19 TCM compounds as promising candidates. Further in vitro testing validated three compounds as inhibitors of SARS-CoV-2 Mpro and showed IC50 values of 4.64 ± 0.11, 7.56 ± 0.78, and 11.16 ± 0.26 μM, with EC50 values of 12.25 ± 1.68, 15.58 ± 0.77, and 29.32 ± 1.25 μM, respectively. Molecular dynamics (MD) simulations indicated that the three complexes remained stable over the last 100 ns of production run. An analysis of the binding mode revealed that the active compounds occupy different subsites (S1, S2, S3, and S4) of the active site of SARS-CoV-2 Mpro via specific poses through noncovalent interactions with key amino acids (e.g., HIS 41, ASN 142, GLY 143, MET 165, GLU 166, or GLN 189). Overall, this study provides evidence indicating that the three natural products obtained from TCM could be further used for anti-COVID-19 research, justifying the investigation of Chinese herbal medicinal ingredients as bioactive constituents for therapeutic targets.
Collapse
Affiliation(s)
- Xiaojie Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Min Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Beibei Fu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Mi Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Jingyi Yang
- School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, China
| | - Zhiming Zhang
- Gansu Provincial Hospital of TCM, Lanzhou 730000, China
| | - Chenghao Li
- Medical College, Yangzhou University, Yangzhou 225000, China
| | - Huijuan Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, China
| | - Yongqi Liu
- Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou 730000, China
| |
Collapse
|
14
|
Wasilewicz A, Bojkova D, Beniddir MA, Cinatl J, Rabenau HF, Grienke U, Rollinger JM, Kirchweger B. Molecular networking unveils anti-SARS-CoV-2 constituents from traditionally used remedies. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117206. [PMID: 37783406 DOI: 10.1016/j.jep.2023.117206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants and fungi have a long tradition in ethnopharmacology for the treatment of infectious diseases including viruses. Many of these natural products have also been used to combat SARS-CoV-2 infections or symptoms of the post- and long-COVID form, owing to the scarcity of clinically approved therapeutics. AIM OF THE STUDY The ongoing threat posed by SARS-CoV-2, along with the rapidly evolving new variants, requires the development of new antiviral compounds. The aim of this study was to identify anti-SARS-CoV-2 herbal and fungal extracts used in traditional medicine against acute respiratory infection, inflammation, and related symptoms. Additionally, we sought to characterize their bioactive constituents. MATERIALS AND METHODS The antiviral activity and cell cytotoxicity of 179 herbal and fungal extracts were evaluated using two SARS-CoV-2 infection assays in Caco-2 cells. 19 plant extracts with and without anti-SARS-CoV-2 activity underwent detailed dereplication using molecular networking. RESULTS Extracts from Angelica sinensis (Oliv.) Diels roots, Annona squamosa L. seeds, Azadirachta indica A. Juss. fruits, Buddleja officinalis Maxim. flowers, Burkea africana Hook. bark and Clinopodium menthifolium (Host) Stace aerial parts showed a potent anti SARS-CoV-2 activity (IC50 < 5 μg/ml) with only moderate cytotoxicity (CC50 > 60 μg/ml, Caco-2). By performing the dereplication with a bioactivity-featured molecular network (MN) on the extract library level, rather than on the level of individual extracts, we could pinpoint compounds characteristic for active extracts. Thus, a straight-forward identification of potential anti-SARS-CoV-2 natural compounds was achieved prior to any fractionation or isolation efforts. CONCLUSIONS A sophisticated hyphenation of empirical knowledge with MS-based bioinformatics and automated compound annotation was applied to decipher the chemical space of the investigated extracts. The correlation with experimentally assessed anti-SARS-CoV-2 activities helped in predicting compound classes and structural elements relevant for the antiviral activities. Consequently, this accelerated the identification of constituents from the investigated mixtures with inhibitory effects against SARS-CoV-2.
Collapse
Affiliation(s)
- Andreas Wasilewicz
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria; Vienna Doctoral School of Pharmaceutical, and Sport Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
| | - Denisa Bojkova
- Institute of Medical Virology, University Hospital Frankfurt, Paul-Ehrlich-Straβe 40, 60596, Frankfurt am Main, Germany.
| | - Mehdi A Beniddir
- Équipe Chimie des Substances Naturelles, BioCIS, CNRS, Université Paris-Saclay, 17 Avenue des Sciences, 91400, Orsay, France.
| | - Jindrich Cinatl
- Institute of Medical Virology, University Hospital Frankfurt, Paul-Ehrlich-Straβe 40, 60596, Frankfurt am Main, Germany.
| | - Holger F Rabenau
- Institute of Medical Virology, University Hospital Frankfurt, Paul-Ehrlich-Straβe 40, 60596, Frankfurt am Main, Germany.
| | - Ulrike Grienke
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
| | - Judith M Rollinger
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
| | - Benjamin Kirchweger
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
| |
Collapse
|
15
|
Zhou X, Wu D, Zhu L, Li R, Yu H, Li W. Withaferin A Inhibits Liver Cancer Tumorigenesis by Suppressing Aerobic Glycolysis through the p53/IDH1/HIF-1α Signaling Axis. Curr Cancer Drug Targets 2024; 24:534-545. [PMID: 38804345 DOI: 10.2174/0115680096262915231026050602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/22/2023] [Accepted: 10/03/2023] [Indexed: 05/29/2024]
Abstract
BACKGROUND The energy supply of certain cancer cells depends on aerobic glycolysis rather than oxidative phosphorylation. Our previous studies have shown that withaferin A (WA), a lactone compound derived from Withania somnifera, suppresses skin carcinogenesis at least partially by stabilizing IDH1 and promoting oxidative phosphorylation. Here, we have extended our studies to evaluate the anti-tumor effect of WA in liver cancer. METHODS Differential expression of glycolysis-related genes between liver cancer tissues and normal tissues and prognosis were verified using an online database. Glycolysis-related protein expression was detected using western blot after overexpression and knockdown of IDH1 and mitochondrial membrane potential assay based on JC-1, and mitochondrial complex I activity was also detected. The inhibitory effect of WA on the biological functions of HepG2 cells was detected along with cell viability using MTT assay, scratch assay, clone formation assay, glucose consumption and lactate production assay. Western blot and qRT-PCR were used to detect the expression of proteins and genes related to IDH1, p53 and HIF1α signaling pathways. RESULTS We first identified that IDH1 expression was downregulated in human liver cancer cells compared to normal liver cells. Next, we found that treatment of HepG2 cells with WA resulted in significantly increased protein levels of IDH1, accompanied by decreased levels of several glycolytic enzymes. Furthermore, we found that WA stabilized IDH1 proteins by inhibiting the degradation by the proteasome. The tumor suppressor p53 was also upregulated by WA treatment, which played a critical role in the upregulation of IDH1 and downregulation of the glycolysis-related genes. Under hypoxic conditions, glycolysis-related genes were induced, which was suppressed by WA treatment, and IDH1 expression was still maintained at higher levels under hypoxia. CONCLUSION Taken together, our results indicated that WA suppresses liver cancer tumorigenesis by p53-mediated IDH1 upregulation, which promotes mitochondrial respiration, thereby inhibiting the HIF-1α pathway and blocking aerobic glycolysis.
Collapse
Affiliation(s)
- Xiangyang Zhou
- College of Basic Medicine, Hebei University, Baoding, Hebei, 071000, China
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Hebei University, Baoding, Hebei, 071000, China
| | - Di Wu
- College of Basic Medicine, Hebei University, Baoding, Hebei, 071000, China
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Hebei University, Baoding, Hebei, 071000, China
| | - Linmiao Zhu
- College of Basic Medicine, Hebei University, Baoding, Hebei, 071000, China
| | - Ruohan Li
- College of Basic Medicine, Hebei University, Baoding, Hebei, 071000, China
| | - Haitao Yu
- Department of Biology Genetics, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Wenjuan Li
- College of Basic Medicine, Hebei University, Baoding, Hebei, 071000, China
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Hebei University, Baoding, Hebei, 071000, China
| |
Collapse
|
16
|
Wiciński M, Fajkiel-Madajczyk A, Kurant Z, Kurant D, Gryczka K, Falkowski M, Wiśniewska M, Słupski M, Ohla J, Zabrzyński J. Can Ashwagandha Benefit the Endocrine System?-A Review. Int J Mol Sci 2023; 24:16513. [PMID: 38003702 PMCID: PMC10671406 DOI: 10.3390/ijms242216513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Withania somnifera, also known as Ashwagandha, has been used in traditional medicine for thousands of years. Due to the wide range of its activities, there has been interest in its possible beneficial effects on the human body. It is proved that, among others, Ashwagandha has anti-stress, anti-inflammatory, antimicrobial, anti-cancer, anti-diabetic, anti-obesity, cardioprotective, and hypolipidemic properties. Particularly interesting are its properties reported in the field of psychiatry and neurology: in Alzheimer's disease, Parkinson's disease, multiple sclerosis, depression, bipolar disorder, insomnia, anxiety disorders and many others. The aim of this review is to find and summarize the effect that Ashwagandha root extract has on the endocrine system and hormones. The multitude of active substances and the wide hormonal problems faced by modern society sparked our interest in the topic of Ashwagandha's impact on this system. In this work, we also attempted to draw conclusions as to whether W. somnifera can help normalize the functions of the human endocrine system in the future. The search mainly included research published in the years 2010-2023. The results of the research show that Ashwagandha can have a positive effect on the functioning of the endocrine system, including improving the secretory function of the thyroid gland, normalizing adrenal activity, and multidirectional improvement on functioning of the reproductive system. The main mechanism of action in the latter appears to be based on the hypothalamus-pituitary-adrenal (HPA) axis, as a decrease in cortisol levels and an increase in hormones such as luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in men were found, which results in stress level reduction and improvement in fertility. In turn, other studies prove that active substances from W. somnifera, acting on the body, cause an increase in the secretion of triiodothyronine (T3) and thyroxine (T4) by the thyroid gland and a subsequent decrease in the level of thyroid-stimulating hormone (TSH) in accordance with the hypothalamus-pituitary-thyroid (HPT) axis. In light of these findings, it is clear that Ashwagandha holds significant promise as a natural remedy for various health concerns, especially those related to the endocrine system. Future research may provide new insights into its mechanisms of action and expand its applications in both traditional and modern medicine. The safety and toxicity of Ashwagandha also remain important issues, which may affect its potential use in specific patient groups.
Collapse
Affiliation(s)
- Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (A.F.-M.); (Z.K.); (D.K.); (K.G.)
| | - Anna Fajkiel-Madajczyk
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (A.F.-M.); (Z.K.); (D.K.); (K.G.)
| | - Zuzanna Kurant
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (A.F.-M.); (Z.K.); (D.K.); (K.G.)
| | - Dominik Kurant
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (A.F.-M.); (Z.K.); (D.K.); (K.G.)
| | - Karol Gryczka
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (A.F.-M.); (Z.K.); (D.K.); (K.G.)
| | - Michal Falkowski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland;
| | - Magdalena Wiśniewska
- Department of Oncology and Brachytherapy, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Dr I. Romanowskiej 2, 85-796 Bydgoszcz, Poland;
- Department of Clinical Oncology, Professor Franciszek Lukaszczyk Oncology Center, Dr I. Romanowskiej 2, 85-796 Bydgoszcz, Poland
| | - Maciej Słupski
- Department of Hepatobiliary and General Surgery, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland;
| | - Jakub Ohla
- Department of Orthopedics and Traumatology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (J.O.); (J.Z.)
| | - Jan Zabrzyński
- Department of Orthopedics and Traumatology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (J.O.); (J.Z.)
| |
Collapse
|
17
|
Ojha D, Jessop F, Bosio CM, Peterson KE. Effective inhibition of HCoV-OC43 and SARS-CoV-2 by phytochemicals in vitro and in vivo. Int J Antimicrob Agents 2023; 62:106893. [PMID: 37339711 PMCID: PMC10277159 DOI: 10.1016/j.ijantimicag.2023.106893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/26/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023]
Abstract
OBJECTIVE Several coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human coronavirus OC43 (HCoV-OC43), can cause respiratory infections in humans. To address the need for reliable anti-coronavirus therapeutics, we screened 16 active phytochemicals selected from medicinal plants used in traditional applications for respiratory-related illnesses. METHODS An initial screen was completed using HCoV-OC43 to identify compounds that inhibit virus-induced cytopathic effect (CPE) and cell death inhibition. Then the top hits were validated in vitro against both HCoV-OC43 and SARS-CoV-2 by determining virus titer in cell supernatant and virus-induced cell death. Finally, the most active phytochemical was validated in vivo in the SARS-CoV-2-infected B6.Cg-Tg(K18-ACE2)2Prlmn/J mouse model. RESULTS The phytochemicals lycorine (LYC), capsaicin, rottlerin (RTL), piperine and chebulinic acid (CHU) inhibited HCoV-OC43-induced cytopathic effect and reduced viral titres by up to 4 log. LYC, RTL and CHU also suppressed virus replication and cell death following SARS-CoV-2 infection. In vivo, RTL significantly reduced SARS-CoV-2-induced mortality by ∼40% in human angiotensin-converting enzyme 2 (ACE2)-expressing K18 mice. CONCLUSION Collectively, these studies indicate that RTL and other phytochemicals have therapeutic potential to reduce SARS-CoV-2 and HCoV-OC43 infections.
Collapse
Affiliation(s)
- Durbadal Ojha
- Neuroimmunology Section, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S. 4th St., Hamilton, MT, USA.
| | - Forrest Jessop
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S. 4th St., Hamilton, MT, USA
| | - Catharine M Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S. 4th St., Hamilton, MT, USA
| | - Karin E Peterson
- Neuroimmunology Section, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S. 4th St., Hamilton, MT, USA.
| |
Collapse
|
18
|
Sharma PK, Kumar L, Goswami Y, Pujani M, Dikshit M, Tandon R. The aqueous root extract of Withania somnifera ameliorates LPS-induced inflammatory changes in the in vitro cell-based and mice models of inflammation. Front Pharmacol 2023; 14:1139654. [PMID: 37377934 PMCID: PMC10291246 DOI: 10.3389/fphar.2023.1139654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction: Most critically ill COVID-19 patients have bronchitis, pneumonia, and acute respiratory distress syndrome (ARDS) due to excessive inflammatory conditions. Corticosteroids have largely been prescribed for the management of inflammation in these patients. However, long-term use of corticosteroids in patients with comorbidities such as metabolic, cardiovascular, and other inflammatory disorders is ideally not recommended due to safety issues. A potential and safer anti-inflammatory therapy is therefore the need of the hour. Withania somnifera (WS), a well-known herbal medicine used during the pandemic in India to prevent SARS-CoV2 infection, also possesses anti-inflammatory properties. Methods: In the present study, we, therefore, evaluated the effect of the aqueous extract of the roots of W. somnifera in the cell-based assays and in the experimental animal models of LPS-induced inflammation. Results: In the NCI-H460, A549 cells and human peripheral blood mononuclear cells (PBMCs) pre-treatment with W. somnifera reduced the LPS-induced expression of the pro-inflammatory cytokines. In addition, W. somnifera extract also showed potent anti-inflammatory activity in the lung tissues of BALB/c mice challenged intranasally with LPS. We observed a marked reduction in the neutrophil counts in the broncho-alveolar lavage (BAL) fluid, inflammatory cytokines, and fibrosis in the mice lungs pre-treated with W. somnifera. Results obtained thus suggest the potential utility of W. somnifera extract in reducing airway inflammation and recommend the clinical evaluation of W. somnifera extract in COVID-19 patients with a high propensity for lung inflammation.
Collapse
Affiliation(s)
| | - Lokesh Kumar
- Translational Health Science and Technology Institute, Faridabad, India
| | - Yamini Goswami
- Translational Health Science and Technology Institute, Faridabad, India
| | - Mukta Pujani
- ESIC Medical College and Hospital, Faridabad, India
| | - Madhu Dikshit
- Translational Health Science and Technology Institute, Faridabad, India
- Pharmacology Division, Central Drug Research Institute, Lucknow, India
| | - Ruchi Tandon
- Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
19
|
Ramli S, Wu YS, Batumalaie K, Guad RM, Choy KW, Kumar A, Gopinath SCB, Rahman Sarker MM, Subramaniyan V, Sekar M, Fuloria NK, Fuloria S, Chinni SV, Ramachawolran G. Phytochemicals of Withania somnifera as a Future Promising Drug against SARS-CoV-2: Pharmacological Role, Molecular Mechanism, Molecular Docking Evaluation, and Efficient Delivery. Microorganisms 2023; 11:1000. [PMID: 37110423 PMCID: PMC10142625 DOI: 10.3390/microorganisms11041000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Coronavirus disease (COVID-19) has killed millions of people since first reported in Wuhan, China, in December 2019. Intriguingly, Withania somnifera (WS) has shown promising antiviral effects against numerous viral infections, including SARS-CoV and SARS-CoV-2, which are contributed by its phytochemicals. This review focused on the updated testing of therapeutic efficacy and associated molecular mechanisms of WS extracts and their phytochemicals against SARS-CoV-2 infection in preclinical and clinical studies with the aim to develop a long-term solution against COVID-19. It also deciphered the current use of the in silico molecular docking approach in developing potential inhibitors from WS targeting SARS-CoV-2 and host cell receptors that may aid the development of targeted therapy against SARS-CoV-2 ranging from prior to viral entry until acute respiratory distress syndrome (ARDS). This review also discussed nanoformulations or nanocarriers in achieving effective WS delivery to enhance its bioavailability and therapeutic efficacy, consequently preventing the emergence of drug resistance, and eventually therapeutic failure.
Collapse
Affiliation(s)
- Suaidah Ramli
- Department of Pharmacy, Hospital Sultanah Nur Zahirah, Kuala Terengganu 20400, Malaysia;
| | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia
| | - Kalaivani Batumalaie
- Department of Biomedical Sciences, Faculty of Health Sciences, Asia Metropolitan University, Johor Bahru 81750, Malaysia;
| | - Rhanye Mac Guad
- Department of Biomedical Science and Therapeutics, Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
| | - Ker Woon Choy
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Malaysia;
| | - Ashok Kumar
- Department of Internal Medicine, Division of Pulmonary, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA;
| | - Subash C. B. Gopinath
- Centre of Excellence (CoE), Faculty of Chemical Engineering & Technology & Micro System Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia;
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar 01000, Malaysia
| | - Md. Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
- Health Med Science Research Network, 3/1, Block F, Lalmatia, Dhaka 1207, Bangladesh
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, MONASH University, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia;
- Department of Pharmacology, School of Medicine, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Subang Jaya 42610, Malaysia
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia;
| | - Neeraj Kumar Fuloria
- Centre of Excellence for Biomaterials Engineering & Faculty of Pharmacy, AIMST University, Bedong 08100, Malaysia;
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, India
| | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Malaysia;
| | - Suresh V. Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jenjarom 42610, Malaysia;
- Department of Periodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Chennai 600077, India
| | - Gobinath Ramachawolran
- Department of Foundation, RCSI & UCD Malaysia Campus, No 4, Jalan Sepoy Lines, Georgetown 10450, Malaysia
| |
Collapse
|
20
|
Alanazi HH, Elfaki E. The immunomodulatory role of withania somnifera (L.) dunal in inflammatory diseases. Front Pharmacol 2023; 14:1084757. [PMID: 36909188 PMCID: PMC9992553 DOI: 10.3389/fphar.2023.1084757] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Withania somnifera (L.) Dunal (Solanaceae) (also known as Ashwagandha) is a botanical drug that has been used for centuries to treat many chronic diseases like high blood pressure, arthritis, diabetes, Alzheimer's disease, and depression. As many botanical drugs, w. Somnifera possesses anti-inflammatory, antioxidant, anticarinogenic, anti-diabetic, and anti-asthmatic properties. W. somnifera is often compared to the ginseng plant due to its ability to reduce stress, improve cognitive functions (e.g., memory), and promote a healthy immune system. It promotes immunomodulatory effects whose function is to balance the humoral and cellular responses of the adaptive immune system. The therapeutic effect of w. Somnifera is attributed to active ingredients like alkaloids, steroidal lactones (such as withanolides, withaferins), and steroidal saponins. Although w. Somnifera is safe and highly recommended for treating various diseases, the current knowledge and understanding of its operational mechanisms are limited. One of the proposed mechanisms states that w. Somnifera promotes cellular-mediated immunity or initiates chemical interactions that contribute to therapeutic effects. Withania somnifera has been shown to play a significant role in immunological diseases by modulating several cytokines, increasing T-cell proliferation and enhancing macrophages functions. In this review, we will discuss the latest therapeutic effects of w. Somnifera on a number of diseases through modulating immunological markers and which specific components of w. Somnifera induce these therapeutic activities. We will also focus on the chemical properties in w. Somnifera components and their immunomodulatory role in type 2 allergic diseases where type 2 inflammation is highly imbalanced.
Collapse
Affiliation(s)
- Hamad H Alanazi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Al Jouf, Saudi Arabia
| | - Elyasa Elfaki
- Department of Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Al Jouf, Saudi Arabia
| |
Collapse
|