1
|
Periferakis A, Periferakis AT, Troumpata L, Periferakis K, Georgatos-Garcia S, Touriki G, Dragosloveanu CDM, Caruntu A, Savulescu-Fiedler I, Dragosloveanu S, Scheau AE, Badarau IA, Caruntu C, Scheau C. Pinosylvin: A Multifunctional Stilbenoid with Antimicrobial, Antioxidant, and Anti-Inflammatory Potential. Curr Issues Mol Biol 2025; 47:204. [PMID: 40136458 PMCID: PMC11941527 DOI: 10.3390/cimb47030204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025] Open
Abstract
Stilbenoids are a category of plant compounds exhibiting notable health-related benefits. After resveratrol, perhaps the most well-known stilbenoid is pinosylvin, a major phytochemical constituent of most plants characterised by the pine spines among others. Pinosylvin and its derivatives have been found to exert potent antibacterial and antifungal effects, while their antiparasitic and antiviral properties are still a subject of ongoing research. The antioxidant properties of pinosylvin are mostly based on its scavenging of free radicals, inhibition of iNOS and protein kinase C, and promotion of HO-1 expression. Its anti-inflammatory properties are based on a variety of mechanisms, such as COX-2 inhibition, NF-κB and TRPA1 activation inhibition, and reduction in IL-6 levels. Its anticancer properties are partly associated with its antioxidant and anti-inflammatory potential, although a number of other mechanisms are described, such as apoptosis induction and matrix metalloproteinase inhibition. A couple of experiments have also suggested a neuroprotective potential. A multitude of ethnomedical and ethnobotanical effects of pinosylvin-containing plants are reported, like antimicrobial, antioxidant, anti-inflammatory, hepatoprotective, and prokinetic actions; many of these are corroborated by recent research. The advent of novel methods of artificial pinosylvin synthesis may facilitate its mass production and adoption as a medical compound. Finally, pinosylvin may be a tool in promoting environmentally friendly pesticide and insecticide policies and be used in land remediation schemes.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P.), 17236 Athens, Greece
| | - Spyrangelos Georgatos-Garcia
- Tilburg Institute for Law, Technology, and Society (TILT), Tilburg University, 5037 DE Tilburg, The Netherlands
- Corvers Greece IKE, 15124 Athens, Greece
| | - Georgia Touriki
- Faculty of Law, Democritus University of Thrace, 69100 Komotini, Greece
| | - Christiana Diana Maria Dragosloveanu
- Department of Ophthalmology, Faculty of Dentistry, The “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Ophthalmology, Clinical Hospital for Ophthalmological Emergencies, 010464 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics and Traumatology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Orthopaedics, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| |
Collapse
|
2
|
Cai Y, Yu F, Wu W, Chen W. Study on the mechanism of Dexmedetomidine's effect on postoperative cognitive dysfunction in elderly people. Front Physiol 2025; 16:1508661. [PMID: 40144543 PMCID: PMC11936804 DOI: 10.3389/fphys.2025.1508661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication among elderly patients following surgical procedures, significantly impairing postoperative recovery and quality of life. The selection and dosage of intraoperative anaesthetic drugs are frequently implicated as contributing factors in the development of POCD. In recent years, dexmedetomidine (DEX), a novel α2-adrenoceptor agonist, has been increasingly utilized in surgical anaesthesia for elderly patients, showing potential as both a preventive and therapeutic agent for POCD. This paper provides a comprehensive review of current research on the mechanisms by which DEX affects POCD in the elderly. Additionally, it explores DEX's mechanisms of action in the context of neuroprotection, anti-inflammation, antioxidative stress, and the regulation of apoptosis, autophagy, and analgesia. The objective is to provide reliable theoretical support and a reference point for the clinical application of DEX in POCD among the elderly, thereby promoting its broader use in clinical practice to improve outcomes and enhance quality of life.
Collapse
Affiliation(s)
- Yuanbin Cai
- Department of Anesthesiology, Putuo District Central Hospital, Shanghai, China
| | - Fan Yu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Wei Wu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Wurong Chen
- Department of Anesthesiology, Putuo District Central Hospital, Shanghai, China
| |
Collapse
|
3
|
Meng T, Wen Z, Cheng X, Li C, Zhang P, Xiao D, Xu Y. Unlocking Gut Health: The Potent Role of Stilbenoids in Intestinal Homeostasis. Animals (Basel) 2025; 15:417. [PMID: 39943187 PMCID: PMC11816141 DOI: 10.3390/ani15030417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Stilbenoids are a class of naturally occurring phenolic compounds found in various plant species, characterized by a stilbene backbone with diverse substituents that confer a range of biological activities. These compounds exhibit antioxidant, anti-inflammatory, and antimicrobial properties, making them promising candidates for improving intestinal health. The intestinal tract plays a critical role in nutrient digestion, absorption, and immune defense, and maintaining its integrity is vital for animal growth. Stilbenoids contribute to gut health by enhancing intestinal morphology, supporting mucosal immune responses, regulating gut microbiota composition, modulating metabolic pathways, and maintaining mitochondrial health. This review provides a comprehensive analysis of key stilbenoids, including resveratrol, pterostilbene, piceatannol, and oxyresveratrol, focusing on their biological effects and regulatory mechanisms. By highlighting their roles in mitigating intestinal inflammation and promoting gut function, this review provides a basis for the practical application of stilbenoids in animal health and husbandry.
Collapse
Affiliation(s)
- Tiantian Meng
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (T.M.); (Z.W.); (X.C.); (C.L.); (P.Z.)
| | - Ziwei Wen
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (T.M.); (Z.W.); (X.C.); (C.L.); (P.Z.)
| | - Xiaofang Cheng
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (T.M.); (Z.W.); (X.C.); (C.L.); (P.Z.)
| | - Cencen Li
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (T.M.); (Z.W.); (X.C.); (C.L.); (P.Z.)
| | - Pengpeng Zhang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (T.M.); (Z.W.); (X.C.); (C.L.); (P.Z.)
| | - Dingfu Xiao
- Yuelushan Laboratory, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yongjie Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (T.M.); (Z.W.); (X.C.); (C.L.); (P.Z.)
| |
Collapse
|
4
|
Tian G, Chen Z, Shi K, Wang X, Xie L, Yang F. The evolution of small-molecule Akt inhibitors from hit to clinical candidate. Eur J Med Chem 2024; 279:116906. [PMID: 39353238 DOI: 10.1016/j.ejmech.2024.116906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
Akt, a key regulator of cell survival, proliferation, and metabolism, has become a prominent target for treatment of cancer and inflammatory diseases. The journey of small-molecule Akt inhibitors from discovery to the clinic has faced numerous challenges, with a significant emphasis on optimization throughout the development process. Early discovery efforts identified various classes of inhibitors, including ATP-competitive and allosteric modulators. However, during preclinical and clinical development, several issues arose, including poor specificity, limited bioavailability, and toxicity. Optimization efforts have been central to overcoming these hurdles. Researchers focused on enhancing the selectivity of inhibitors to target Akt isoforms more precisely, reducing off-target effects, and improving pharmacokinetic properties to ensure better bioavailability and distribution. Structural modifications and the design of prodrugs have played a crucial role in refining the efficacy and safety profile of these inhibitors. Additionally, efforts have been made to optimize the therapeutic window, balancing effective dosing with minimal adverse effects. The review highlights how these optimization strategies have been key in advancing small-molecule Akt inhibitors toward clinical success and underscores the importance of continued refinement in their development.
Collapse
Affiliation(s)
- Gengren Tian
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhuo Chen
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Keqing Shi
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xinwai Wang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lijuan Xie
- Department of Vascularsurgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Fuwei Yang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
5
|
Feng X, Yin D, Fang T, Zhao C, Yue J, Zhu E, Cheng Z. Fowl adenovirus serotype 4 (FAdV-4) infection induces inflammatory responses in chicken embryonic cardiac fibroblasts via PI3K/Akt and IκBα/NF-κB signaling pathways. Res Vet Sci 2024; 176:105349. [PMID: 38968647 DOI: 10.1016/j.rvsc.2024.105349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 06/03/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Fowl adenovirus serotype 4 (FAdV-4) is the main pathogen of the acute infectious disease hepatitis-hydropericardium syndrome (HHS). Previous studies have focused on the mechanisms of FAdV-4 caused liver injury, while studies revealing potential mechanisms of inflammatory injury in FAdV-4-infected chicken cardiac cells remain scare. Here we found that FAdV-4 successfully infected chicken embryonic cardiac fibroblasts (CECF) cells in vitro and significantly upregulated production of inflammatory cytokines including IL-1β, IL-6, IL-8, and TNF-α, suggesting induction of a strong inflammatory response. Mechanistically, FAdV-4 infection increased expression of phosphorylated Akt in a time-dependent manner, while phosphorylation of Akt and production of pro-inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α were greatly reduced in FAdV-4-infected CECF cells after treatment with LY294002, a potent inhibitor of PI3K, indicating that the inflammatory response induced by FAdV-4 infection is mediated by the PI3K/Akt signaling pathway. Furthermore, FAdV-4 infection increased expression of phosphorylated IκBα, a recognized indicator of NF-κB activation, and treatment with the BAY11-7082, a selective IκBα phosphorylation and NF-κB inhibitor, significantly reduced IκBα phosphorylation and inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α) production in FAdV-4-infected CECF cells, suggesting a critical role of IκBα/NF-κB signaling in FAdV-4-induced inflammatory responses in CECF cells. Taken together, our results suggest that FAdV-4 infection induces inflammatory responses through activation of PI3K/Akt and IκBα/NF-κB signaling pathways in CECF cells. These results reveal potential mechanisms of inflammatory damage in chicken cardiac cells caused by FAdV-4 infection, which sheds new insight into clarification of the pathogenic mechanism of FAdV-4 infection and development of new strategies for HHS prevention and control.
Collapse
Affiliation(s)
- Xiaoao Feng
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, PR China
| | - Dejing Yin
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, PR China
| | - Tian Fang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, PR China
| | - Chao Zhao
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, PR China
| | - Jun Yue
- Animal Disease Prevention and Control Center of Guizhou Province, Guiyang 550001, PR China
| | - Erpeng Zhu
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, PR China.
| | - Zhentao Cheng
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
6
|
Hatem O, Steinbach A, Schneider G, Röckel F, Kőrösi L. Wild Vitis Species as Stilbenes Sources: Cane Extracts and Their Antibacterial Activity against Listeria monocytogenes. Molecules 2024; 29:3518. [PMID: 39124922 PMCID: PMC11314568 DOI: 10.3390/molecules29153518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Grapevines (Vitis spp.) produce several valuable polyphenol-type secondary metabolites including various stilbenoids. Although the potential application of stilbenes may offer alternative solutions to food safety or health challenges, only little information is available on their antibacterial activity against foodborne pathogens. In this work, high-performance liquid chromatography was used to analyze the stilbenoid profile of various wild Vitis species, including V. amurensis, V. davidii, V. pentagona, and V. romanetii, selected from the gene bank for grapes at the University of Pécs, Hungary. We found that the stilbene profile of cane extracts is strongly genotype-dependent, showing the predominant presence of ε-viniferin with a wide concentration range ≈ 320-3870 µg/g dry weight. A novel yet simple and efficient extraction procedure was developed and applied for the first time on grape canes, resulting in ε-viniferin-rich crude extracts that were tested against Listeria monocytogenes, an important foodborne pathogen. After 24 h exposure, V. pentagona and V. amurensis crude extracts completely eliminated the bacteria at a minimum bactericidal concentration of 42.3 µg/mL and 39.2 µg/mL of ε-viniferin, respectively. On the other hand, V. romanetii extract with 7.8 µg/mL of ε-viniferin resulted in 4 log reduction in the viable bacterial cells, while V. davidii extract with 1.4 µg/mL of ε-viniferin did not show significant antibacterial activity. These findings indicate that the ε-viniferin content was directly responsible for the antibacterial effect of cane extract. However, pure ε-viniferin (purity > 95%) required a higher concentration (188 µg/mL) to eradicate the bacteria under the same conditions, suggesting the presence of other antibacterial compounds in the cane extracts. Investigating the onset time of the bactericidal action was conducted through a kinetic experiment, and results showed that the reduction in living bacterial number started after 2 h; however, the bactericidal action demanded 24 h of exposure. Our results revealed that the canes of V. pentagona and V. amurensis species are a crucial bio-source of an important stilbene with antimicrobial activity and health benefits.
Collapse
Affiliation(s)
- Okba Hatem
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, H-7622 Pécs, Hungary;
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Anita Steinbach
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti Street 12, H-7624 Pécs, Hungary; (A.S.); (G.S.)
| | - György Schneider
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti Street 12, H-7624 Pécs, Hungary; (A.S.); (G.S.)
| | - Franco Röckel
- Julius Kühn Institute (JKI), Institute for Grapevine Breeding Geilweilerhof, 76833 Siebeldingen, Germany;
| | - László Kőrösi
- Research Institute for Viticulture and Oenology, University of Pécs, H-7634 Pécs, Hungary
| |
Collapse
|
7
|
Bernardette Martínez-Rizo A, Fosado-Rodríguez R, César Torres-Romero J, César Lara-Riegos J, Alberto Ramírez-Camacho M, Ly Arroyo Herrera A, Elizabeth Villa de la Torre F, Ceballos Góngora E, Ermilo Arana-Argáez V. Models in vivo and in vitro for the study of acute and chronic inflammatory activity: A comprehensive review. Int Immunopharmacol 2024; 135:112292. [PMID: 38788446 DOI: 10.1016/j.intimp.2024.112292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
Inflammatory conditions are among the principal causes of morbidity worldwide, and their treatment continues to be a challenge, given the restricted availability of effective and safe drugs. Thus, the identification of new compounds with biological activity that can be used for the treatment of inflammatory disorders is an essential field in medical and health research, in order to improve the health and quality of life of patients suffering from these diseases. Evaluation of the anti-inflammatory activity of drugs requires the implementation of models that accurately depict the biochemical and/or physiological responses that characterize human inflammation; for this reason, several in vitro and in vivo models have been developed, providing a platform for discovering novel or repurposed compounds. For this reason, in the present review we have selected twelve commonly used models for the evaluation of the anti-inflammatory effect, and extensively describes the difference between in vivo and in vitro models of inflammation, highlighting their advantages and limitations. On the other hand, the inflammatory mechanisms involved in them, the methods employed for their establishment, and the different parameters assessed to determine the anti-inflammatory activity of a given compound are extensively discussed. We expect to provide a comprehensive guide for the improved selection of a suitable model for the preclinical evaluation of plausible anti-inflammatory agents.
Collapse
Affiliation(s)
- Abril Bernardette Martínez-Rizo
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México; Laboratorio de Investigación Biomédica, Unidad Académica de Medicina, Universidad Autónoma de Nayarit, Nayarit, México
| | - Ricardo Fosado-Rodríguez
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Julio César Torres-Romero
- Laboratorio de Bioquímica y Genética Molecular, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Julio César Lara-Riegos
- Laboratorio de Bioquímica y Genética Molecular, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Mario Alberto Ramírez-Camacho
- Centro de Información de Medicamentos, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Ana Ly Arroyo Herrera
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | | | - Emanuel Ceballos Góngora
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Víctor Ermilo Arana-Argáez
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México.
| |
Collapse
|
8
|
Howaili F, Saadabadi A, Mäkilä E, Korotkova E, Eklund PC, Salo-Ahen OMH, Rosenholm JM. Investigating the Effectiveness of Different Porous Nanoparticles as Drug Carriers for Retaining the Photostability of Pinosylvin Derivative. Pharmaceutics 2024; 16:276. [PMID: 38399330 PMCID: PMC10892027 DOI: 10.3390/pharmaceutics16020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Pinosylvin monomethyl ether (PsMME) is a natural compound known for its valuable bioactive properties, including antioxidant and anti-inflammatory effects. However, PsMME's susceptibility to photodegradation upon exposure to ultraviolet (UV) radiation poses a significant limitation to its applications in the pharmaceutical field. This study, for the first time, introduces a strategy to enhance the photostability of PsMME by employing various nanoformulations. We utilized mesoporous silica nanoparticles (MSNs) coated with polydopamine via a poly(ethylene imine) layer (PDA-PEI-MSNs), thermally carbonized porous silicon nanoparticles (TCPSi), and pure mesoporous polydopamine nanoparticles (MPDA). All these nanocarriers exhibit unique characteristics, including the potential for shielding the drug from UV light, which makes them promising for enhancing the photostability of loaded drugs. Here, these three nanoparticles were synthesized and their morphological and physicochemical properties, including size and ζ-potential, were characterized. They were subsequently loaded with PsMME, and the release profiles and kinetics of all three nanoformulations were determined. To assess their photoprotection ability, we employed gas chromatography with a flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS) to assess the recovery percentage of loaded PsMME before and after UV exposure for each nanoformulation. Our findings reveal that MPDA exhibits the highest protection ability, with a remarkable 90% protection against UV light on average. This positions MPDA as an ideal carrier for PsMME, and by extension, potentially for other photolabile drugs as well. As a final confirmation of its suitability as a drug nanocarrier, we conducted cytotoxicity evaluations of PsMME-loaded MPDA, demonstrating dose-dependent drug toxicity for this formulation.
Collapse
Affiliation(s)
- Fadak Howaili
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (F.H.); (A.S.); (O.M.H.S.-A.)
| | - Atefeh Saadabadi
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (F.H.); (A.S.); (O.M.H.S.-A.)
- Laboratory of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland;
| | - Ermei Mäkilä
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, 20014 Turku, Finland;
| | - Ekaterina Korotkova
- Laboratory of Natural Materials Technology, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland;
| | - Patrik C. Eklund
- Laboratory of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland;
| | - Outi M. H. Salo-Ahen
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (F.H.); (A.S.); (O.M.H.S.-A.)
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland; (F.H.); (A.S.); (O.M.H.S.-A.)
| |
Collapse
|
9
|
Mendonça ELSS, Xavier JA, Fragoso MBT, Silva MO, Escodro PB, Oliveira ACM, Tucci P, Saso L, Goulart MOF. E-Stilbenes: General Chemical and Biological Aspects, Potential Pharmacological Activity Based on the Nrf2 Pathway. Pharmaceuticals (Basel) 2024; 17:232. [PMID: 38399446 PMCID: PMC10891666 DOI: 10.3390/ph17020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Stilbenes are phytoalexins, and their biosynthesis can occur through a natural route (shikimate precursor) or an alternative route (in microorganism cultures). The latter is a metabolic engineering strategy to enhance production due to stilbenes recognized pharmacological and medicinal potential. It is believed that in the human body, these potential activities can be modulated by the regulation of the nuclear factor erythroid derived 2 (Nrf2), which increases the expression of antioxidant enzymes. Given this, our review aims to critically analyze evidence regarding E-stilbenes in human metabolism and the Nrf2 activation pathway, with an emphasis on inflammatory and oxidative stress aspects related to the pathophysiology of chronic and metabolic diseases. In this comprehensive literature review, it can be observed that despite the broad number of stilbenes, those most frequently explored in clinical trials and preclinical studies (in vitro and in vivo) were resveratrol, piceatannol, pterostilbene, polydatin, stilbestrol, and pinosylvin. In some cases, depending on the dose/concentration and chemical nature of the stilbene, it was possible to identify activation of the Nrf2 pathway. Furthermore, the use of some experimental models presented a challenge in comparing results. In view of the above, it can be suggested that E-stilbenes have a relationship with the Nrf2 pathway, whether directly or indirectly, through different biological pathways, and in different diseases or conditions that are mainly related to inflammation and oxidative stress.
Collapse
Affiliation(s)
- Elaine L. S. S. Mendonça
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (E.L.S.S.M.); (M.O.S.)
| | - Jadriane A. Xavier
- Institute of Chemistry and Biotechnology, UFAL, Maceió 57072-900, Brazil; (J.A.X.); (M.B.T.F.)
| | - Marilene B. T. Fragoso
- Institute of Chemistry and Biotechnology, UFAL, Maceió 57072-900, Brazil; (J.A.X.); (M.B.T.F.)
| | - Messias O. Silva
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (E.L.S.S.M.); (M.O.S.)
| | | | | | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, 00185 Rome, Italy
| | - Marília O. F. Goulart
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (E.L.S.S.M.); (M.O.S.)
| |
Collapse
|
10
|
Józkowiak M, Kobylarek D, Bryja A, Gogola-Mruk J, Czajkowski M, Skupin-Mrugalska P, Kempisty B, Spaczyński RZ, Piotrowska-Kempisty H. Steroidogenic activity of liposomal methylated resveratrol analog 3,4,5,4'-tetramethoxystilbene (DMU-212) in human luteinized granulosa cells in a primary three-dimensional in vitro model. Endocrine 2023; 82:681-694. [PMID: 37572199 PMCID: PMC10618382 DOI: 10.1007/s12020-023-03458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/14/2023] [Indexed: 08/14/2023]
Abstract
PURPOSE Steroid hormone secretion is one of the key functions of granulosa cells (GCs). Resveratrol is a natural polyphenol, known for its beneficial health effects, such as improving reproductive health. However, its application is limited due to poor bioavailability. The methoxy derivative of resveratrol (DMU-212) was demonstrated to be more lipophilic, and therefore of greater bioavailability. However, since the addition of methoxy groups to the stilbene scaffold was found to make the molecule insoluble in water, DMU-212 was loaded into liposomes. This study aimed to evaluate how the liposomal formulation of DMU-212 (lipDMU-212) alters estradiol and progesterone secretion of human ovarian GCs in a primary three-dimensional cell culture model. METHODS DMU-212-loaded liposomes were prepared by thin film hydration followed by extrusion. Cell viability was measured after exposure of GCs spheroids to the liposomal formulation of DMU-212 using CellTiter-Glo® 3D Cell Viability Assay. The secretion of estradiol and progesterone was determined using commercial ELISA kits. RT-qPCR was conducted to analyze the expression of steroidogenesis-related genes. Finally, the western blot technique was used to analyze the effect of lipDMU-212 and FSH treatments on CYP11A1 and HSD3B1 protein levels. RESULTS lipDMU-212 was found to significantly increase estradiol and progesterone secretion in a dose-dependent manner by enhancing the expression of CYP11A1, HSD3B1, StAR, CYP17A1, CYP19A1, and HSD17B1 genes. We have also shown that lipDMU-212, used alone and in combination with FSH, significantly increased the expression of the HSD3B1 and CYP11A1 proteins in GCs. Furthermore, our study suggests that lipDMU-212 increases FSH activity. CONCLUSIONS This is the first study to describe the steroidogenic activity of liposomal formulation of DMU-212, possibly through increasing the StAR and CYP19A1 expression. These findings suggest that lipDMU-212 might have a beneficial effect in the treatment of disorders related to estrogen deficiency and hyperandrogenism, such as PCOS.
Collapse
Affiliation(s)
- Małgorzata Józkowiak
- Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
| | - Dominik Kobylarek
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Artur Bryja
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Justyna Gogola-Mruk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Mikołaj Czajkowski
- Department of Inorganic & Analytical Chemistry, Collegium Pharmaceuticum, Poznan University of Medical Sciences, Poznan, Poland
| | - Paulina Skupin-Mrugalska
- Department of Inorganic & Analytical Chemistry, Collegium Pharmaceuticum, Poznan University of Medical Sciences, Poznan, Poland
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Robert Z Spaczyński
- Center for Gynecology, Obstetrics and Infertility Treatment Pastelova, Poznan, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland.
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland.
| |
Collapse
|
11
|
Perri MR, Pellegrino M, Marrelli M, Aquaro S, Cavaliere F, Grande F, Occhiuzzi MA, Lupia C, Toma CC, Conforti F, Statti G. Identification of Pinosylvin in Pinus nigra subsp. laricio: A Naturally Occurring Stilbenoid Suppressing LPS-Induced Expression of Pro-Inflammatory Cytokines and Mediators and Inhibiting the JAK/STAT Signaling Pathway. Pharmaceuticals (Basel) 2023; 16:ph16050718. [PMID: 37242501 DOI: 10.3390/ph16050718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Stilbenoids, a group of phytoalexin polyphenols produced by plants as a defence mechanism in response to stress conditions, are known for their anti-inflammatory potential. Pinosylvin, a naturally occurring molecule traditionally found in pinus trees, was here identified in Pinus nigra subsp. laricio var. calabrica from Southern Italy through HPLC analysis. Both this molecule and its well-known analogue resveratrol, the most famous wine polyphenol, were compared for their in vitro potential anti-inflammatory activity. Pinosylvin significantly inhibited the release of pro-inflammatory cytokines (TNF-α and IL-6) and NO mediator in LPS-stimulated RAW 264.7 cells. Moreover, its ability to inhibit the JAK/STAT signaling pathway was assessed: Western blot analyses showed a downregulation of both phosphorylated JAK2 and STAT3 proteins. Finally, in order to verify whether this biological activity could be attributed to a direct interaction of pinosylvin with JAK2, a molecular docking study was performed, confirming the capability of pinosylvin to bind the active site of the protein.
Collapse
Affiliation(s)
- Maria Rosaria Perri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Fabiola Cavaliere
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | | | - Carmine Lupia
- Mediterranean Ethnobotanical Conservatory, 88054 Sersale, Italy
- National Ethnobotanical Conservatory, 85040 Castelluccio Superiore, Italy
| | - Claudia-Crina Toma
- Pharmacognosy Department, Faculty of Pharmacy, Vasile Goldis Western University of Arad, 87 L. Rebreanu Str., 310045 Arad, Romania
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Giancarlo Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
12
|
Liudvytska O, Ponczek MB, Ciesielski O, Krzyżanowska-Kowalczyk J, Kowalczyk M, Balcerczyk A, Kolodziejczyk-Czepas J. Rheum rhaponticum and Rheum rhabarbarum Extracts as Modulators of Endothelial Cell Inflammatory Response. Nutrients 2023; 15:949. [PMID: 36839307 PMCID: PMC9964395 DOI: 10.3390/nu15040949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/04/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Inflammation, endothelial dysfunction, and alterations in blood physiology are key factors contributing to atherosclerosis and other cardiovascular disorders. Hence, modulation of endothelial function and reducing its pro-inflammatory and pro-thrombotic activity is considered one of the most important cardioprotective strategies. This study aimed to evaluate the anti-inflammatory potential of rhubarb extracts isolated from petioles and underground organs of Rheum rhabarbarum L. (garden rhubarb) and R. rhaponticum L. (rhapontic rhubarb) as well as two stilbenoids, typically found in these plants, i.e., rhapontigenin (RHPG) and its glycoside, rhaponticin (RHPT). METHODS Analysis of the anti-inflammatory effects of the indicated rhubarb-derived substances involved different aspects of the endothelial cells' (HUVECs) response: release of the inflammatory mediators; cyclooxygenase (COX-2) and 5-lipoxygenase (5-LOX) expression as well as the recruitment of leukocytes to the activated HUVECs. The ability of the rhubarb-derived extracts to inhibit COX-2 and 5-LOX activities was examined as well. The study was supplemented with the in silico analysis of major components of the analyzed extracts' interactions with COX-2 and 5-LOX. RESULTS The obtained results indicated that the examined plant extracts and stilbenes possess anti-inflammatory properties and influence the inflammatory response of endothelial cells. Biochemical and in silico tests revealed significant inhibition of COX-2, with special importance of rhaponticin, as a compound abundant in both plant species. In addition to the reduction in COX-2 gene expression and enzyme activity, a decrease in the cytokine level and leukocyte influx was observed. Biochemical tests and computational analyses indicate that some components of rhubarb extracts may act as COX-2 inhibitors, with marginal inhibitory effect on 5-LOX.
Collapse
Affiliation(s)
- Oleksandra Liudvytska
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Michał B. Ponczek
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Oskar Ciesielski
- Department of Sociobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
- The Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Justyna Krzyżanowska-Kowalczyk
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Mariusz Kowalczyk
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Aneta Balcerczyk
- Department of Sociobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
13
|
Mäki-Opas I, Hämäläinen M, Moilanen E, Scotece M. TRPA1 as a potential factor and drug target in scleroderma: dermal fibrosis and alternative macrophage activation are attenuated in TRPA1-deficient mice in bleomycin-induced experimental model of scleroderma. Arthritis Res Ther 2023; 25:12. [PMID: 36698198 PMCID: PMC9875496 DOI: 10.1186/s13075-023-02994-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Systemic sclerosis is a rheumatoid disease best known for its fibrotic skin manifestations called scleroderma. Alternatively activated (M2-type) macrophages are normally involved in the resolution of inflammation and wound healing but also in fibrosing diseases such as scleroderma. TRPA1 is a non-selective cation channel, activation of which causes pain and neurogenic inflammation. In the present study, we investigated the role of TRPA1 in bleomycin-induced skin fibrosis mimicking scleroderma. METHODS Wild type and TRPA1-deficient mice were challenged with intradermal bleomycin injections to induce a scleroderma-mimicking disease. Macrophages were investigated in vitro to evaluate the underlying mechanisms. RESULTS Bleomycin induced dermal thickening and collagen accumulation in wild type mice and that was significantly attenuated in TRPA1-deficient animals. Accordingly, the expression of collagens 1A1, 1A2, and 3A1 as well as pro-fibrotic factors TGF-beta, CTGF, fibronectin-1 and YKL-40, and M2 macrophage markers Arg1 and MRC1 were lower in TRPA1-deficient than wild type mice. Furthermore, bleomycin was discovered to significantly enhance M2-marker expression particularly in the presence of IL-4 in wild type macrophages in vitro, but not in macrophages harvested from TRPA1-deficient mice. IL-4-induced PPARγ-expression in macrophages was increased by bleomycin, providing a possible mechanism behind the phenomenon. CONCLUSIONS In conclusion, the results indicate that interfering TRPA1 attenuates fibrotic and inflammatory responses in bleomycin-induced scleroderma. Therefore, TRPA1-blocking treatment could potentially alleviate M2 macrophage driven diseases like systemic sclerosis and scleroderma.
Collapse
Affiliation(s)
- Ilari Mäki-Opas
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014, Tampere, Finland.
| | - Mari Hämäläinen
- grid.412330.70000 0004 0628 2985The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland
| | - Eeva Moilanen
- grid.412330.70000 0004 0628 2985The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland
| | - Morena Scotece
- grid.412330.70000 0004 0628 2985The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland ,grid.428472.f0000 0004 1794 2467Current affiliation: Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-USAL, 37007 Salamanca, Spain
| |
Collapse
|
14
|
Tabakhiyan F, Mir A, Vahedian V. Potential tumor marker for hepatocellular carcinoma identification: PI3K and pro-inflammatory cytokines (TGF-β, IL-1, and IL-6). Horm Mol Biol Clin Investig 2022; 43:389-396. [PMID: 35709206 DOI: 10.1515/hmbci-2022-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/14/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Hepatocellular carcinoma (HCC), the most common form of liver cancer, is a leading cause of tumor-associated mortality worldwide. Diagnosis based upon non-invasive criteria is currently challenged by the need for molecular information that requires tissue or liquid biopsies. The progression of HCC is often associated with chronic inflammation, expression levels of inflammatory mediators, chemokine, and cytokines. In this study, we try to evaluate the PI3K and pro-inflammatory cytokines, TGF-β, IL-1, and IL-6 expression level in patients with liver cancer. MATERIALS AND METHODS The kupffer cells were isolated from patient's specimens. Real-time PCR was applied to evaluate the expression level of PI3K in cell lines or tumors. The concentrations of TGF-β, IL-1, and IL-6 were measured by the quantitative ELISA kit. RESULTS PI3K mRNA expression in cancer cells was increased markedly vs. normal cells. The ELISA results demonstrated over expression of TGF-β, IL-1, and IL-6 in patients and positive correlation between tumor size and stage. DISCUSSION This study suggests that targeting the expression level of PI3K and pro-inflammatory chemokine and cytokines, TGF-β, IL-1, and IL-6, may be a potential diagnostic strategy in HCC patients.
Collapse
Affiliation(s)
| | - Amirabbas Mir
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, Islamic Republic of Iran
| | - Vahid Vahedian
- Cancer Biology Research Group, Faculty of Medicine Institute of Biotechnology (FMB-IBTEC) Sao Paulo State University (UNESP), Sao Paulo, Brazil
| |
Collapse
|
15
|
Peng Y, Li Z, Hu J, Wu T. Palladium-Catalyzed Denitrative Mizoroki–Heck Reactions of Aryl or Alkyl Olefins with Nitrobenzenes. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022120168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
16
|
Izuegbuna OO. Polyphenols: Chemoprevention and therapeutic potentials in hematological malignancies. Front Nutr 2022; 9:1008893. [PMID: 36386899 PMCID: PMC9643866 DOI: 10.3389/fnut.2022.1008893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/02/2022] [Indexed: 01/25/2024] Open
Abstract
Polyphenols are one of the largest plant-derived natural product and they play an important role in plants' defense as well as in human health and disease. A number of them are pleiotropic molecules and have been shown to regulate signaling pathways, immune response and cell growth and proliferation which all play a role in cancer development. Hematological malignancies on the other hand, are cancers of the blood. While current therapies are efficacious, they are usually expensive and with unwanted side effects. Thus, the search for newer less toxic agents. Polyphenols have been reported to possess antineoplastic properties which include cell cycle arrest, and apoptosis via multiple mechanisms. They also have immunomodulatory activities where they enhance T cell activation and suppress regulatory T cells. They carry out these actions through such pathways as PI3K/Akt/mTOR and the kynurenine. They can also reverse cancer resistance to chemotherapy agents. In this review, i look at some of the molecular mechanism of action of polyphenols and their potential roles as therapeutic agents in hematological malignancies. Here i discuss their anti-proliferative and anti-neoplastic activities especially their abilities modulate signaling pathways as well as immune response in hematological malignancies. I also looked at clinical studies done mainly in the last 10-15 years on various polyphenol combination and how they enhance synergism. I recommend that further preclinical and clinical studies be carried out to ensure safety and efficacy before polyphenol therapies be officially moved to the clinics.
Collapse
Affiliation(s)
- Ogochukwu O. Izuegbuna
- Department of Haematology, Ladoke Akintola University of Technology (LAUTECH) Teaching Hospital, Ogbomoso, Nigeria
| |
Collapse
|
17
|
Luo JF, Zhou H, Lio CK. Akebia Saponin D Inhibits the Inflammatory Reaction by Inhibiting the IL-6-STAT3-DNMT3b Axis and Activating the Nrf2 Pathway. Molecules 2022; 27:molecules27196236. [PMID: 36234773 PMCID: PMC9614599 DOI: 10.3390/molecules27196236] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
Akebia saponin D (ASD) is derived from the Dipsacus asper Wall. ex Henry, which is a traditional Chinese medicine commonly used to treat rheumatic arthritis (RA). However, the in-depth mechanism of the anti-inflammatory effect of ASD is still unclear. This study aimed to preliminarily explore the anti-inflammatory effect of ASD and the underlying mechanisms from the perspective of DNA methylation and inflammation-related pathways. We found that ASD significantly reduced the production of multiple inflammatory mediators, including nitric oxide (NO) and prostaglandin E2 (PGE2), in LPS-induced RAW264.7 cells. The expression of DNA methyltransferase (DNMT) 3b and inducible nitric oxide synthase (iNOS) was also obviously inhibited by the ASD treatment. The protein and mRNA levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were also significantly inhibited by ASD. ASD inhibited the macrophage M1 phenotype, inhibited the high level of DNMT3b, and downregulated the signal transducer and activator of the transcription 3 (STAT3) pathway to exert its anti-inflammatory activity. Furthermore, DNMT3b siRNA and Nrf2 siRNA significantly promoted the anti-inflammatory effect of ASD. Our study demonstrates for the first time that ASD inhibits the IL-6-STAT3-DNMT3b axis and activates the nuclear factor-E2-related factor 2 (Nrf2) signaling pathway to achieve its inhibitory effect on inflammatory reactions.
Collapse
Affiliation(s)
- Jin-Fang Luo
- Basic Medical College, Guizhou University of Traditional Chinese Medicine, Guian District, Guiyang 550025, China
| | - Hua Zhou
- Faculty of Chinese Medicine, Macau University of Science and Technology and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China
- Correspondence:
| | - Chon-Kit Lio
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medcine and Immune Disease Research, Guangzhou 510006, China
| |
Collapse
|
18
|
Hu W, Yu H, Zhou X, Li M, Xiao L, Ruan Q, Huang X, Li L, Xie W, Guo X, Yao P. Topical administration of pterostilbene accelerates burn wound healing in diabetes through activation of the HIF1α signaling pathway. Burns 2022; 48:1452-1461. [PMID: 34903412 DOI: 10.1016/j.burns.2021.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/23/2021] [Accepted: 10/29/2021] [Indexed: 12/16/2022]
Abstract
Impaired wound healing is one of a variety of severe diabetic complications and involves many factors, including consistent oxidative stress, prolonged inflammation, impaired angiogenesis, and delayed re-epithelialization. Despite the severe negative impacts that impaired wound healing has on patients' lives, detailed mechanisms and effective therapies are still not fully developed. In this study, we aim to investigate the potential effects and mechanisms of topical administration of pterostilbene and resveratrol on burn wound healing in diabetes. Our in vitro experiments in human umbilical vein endothelial cells showed that long term exposure of hyperglycemia induces oxidative stress and suppression of hypoxia inducible factor1α (HIF1α) signaling pathway, and pterostilbene treatment completely, while resveratrol treatment partly, reversed this effect. Further in vivo experiments in diabetic rats showed that topical administration of pterostilbene exhibited stronger efficacy than resveratrol in normalizing oxidative stress, HIF1α activity, and accelerating burn wound healing in diabetes. We conclude that topical administration of pterostilbene accelerates burn wound healing in diabetes through activation of the HIF1α signaling pathway; thus, pterostilbene may be a potential candidate for clinical treatment of burn wound healing in diabetes.
Collapse
Affiliation(s)
- Weigang Hu
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, PR China
| | - Hong Yu
- Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan 528041, PR China
| | - Xueqing Zhou
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, PR China
| | - Min Li
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, PR China
| | - Li Xiao
- Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan 528041, PR China
| | - Qiongfang Ruan
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, PR China
| | - Xiaodong Huang
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, PR China
| | - Ling Li
- Hainan Women and Children's Medical Center, Haikou 570206, PR China
| | - Weiguo Xie
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, PR China.
| | - Xiaoling Guo
- Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan 528041, PR China.
| | - Paul Yao
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, PR China; Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan 528041, PR China.
| |
Collapse
|
19
|
Bakrim S, Machate H, Benali T, Sahib N, Jaouadi I, Omari NE, Aboulaghras S, Bangar SP, Lorenzo JM, Zengin G, Montesano D, Gallo M, Bouyahya A. Natural Sources and Pharmacological Properties of Pinosylvin. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11121541. [PMID: 35736692 PMCID: PMC9228742 DOI: 10.3390/plants11121541] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 05/13/2023]
Abstract
Pinosylvin (3,5-dihydroxy-trans-stilbene), a natural pre-infectious stilbenoid toxin, is a terpenoid polyphenol compound principally found in the Vitaceae family in the heartwood of Pinus spp. (e.g., Pinus sylvestris) and in pine leaf (Pinus densiflora). It provides defense mechanisms against pathogens and insects for many plants. Stilbenoids are mostly found in berries and fruits but can also be found in other types of plants, such as mosses and ferns. This review outlined prior research on pinosylvin, including its sources, the technologies used for its extraction, purification, identification, and characterization, its biological and pharmacological properties, and its toxicity. The collected data on pinosylvin was managed using different scientific research databases such as PubMed, SciFinder, SpringerLink, ScienceDirect, Wiley Online, Google Scholar, Web of Science, and Scopus. In this study, the findings focused on pinosylvin to understand its pharmacological and biological activities as well as its chemical characterization to explore its potential therapeutic approaches for the development of novel drugs. This analysis demonstrated that pinosylvin has beneficial effects for various therapeutic purposes such as antifungal, antibacterial, anticancer, anti-inflammatory, antioxidant, neuroprotective, anti-allergic, and other biological functions. It has shown numerous and diverse actions through its ability to block, interfere, and/or stimulate the major cellular targets responsible for several disorders.
Collapse
Affiliation(s)
- Saad Bakrim
- Molecular Engineering, Valorization and Environment Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir B.P. 32/S, Morocco;
| | - Hamza Machate
- Laboratory of Biotechnology, Environment, Agri-Food and Health (LBEAS), Faculty of Sciences, University Sidi Mohamed Ben Abdellah (USMBA), Fez B.P. 1796, Morocco;
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Sidi Bouzid B.P. 4162, Morocco;
| | - Nargis Sahib
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Mohammed Premier University, Oujda 60000, Morocco;
| | - Imane Jaouadi
- Laboratory of Organic Chemistry, Catalysis and Environment, Department of Chemistry, Faculty of Sciences, Ibn Tofail University, B.P.:133, Kenitra 14000, Morocco;
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco;
| | - Sara Aboulaghras
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research, Mohammed V University in Rabat, Rabat 10100, Morocco;
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA;
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Facultade de Ciencias, Universidade de Vigo, Área de Tecnoloxía dos Alimentos, 32004 Ourense, Spain
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy;
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini, 5, 80131 Naples, Italy
- Correspondence: (M.G.); (A.B.)
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10100, Morocco
- Correspondence: (M.G.); (A.B.)
| |
Collapse
|
20
|
Teka T, Zhang L, Ge X, Li Y, Han L, Yan X. Stilbenes: Source plants, chemistry, biosynthesis, pharmacology, application and problems related to their clinical Application-A comprehensive review. PHYTOCHEMISTRY 2022; 197:113128. [PMID: 35183567 DOI: 10.1016/j.phytochem.2022.113128] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Stilbenes are some of the important phenolic compounds originating from plant families like Vitaceae, Leguminaceae, Gnetaceae, and Dipterocarpaceae. Structurally, they have a C6-C2-C6 skeleton, usually with two isomeric forms. Stilbenes are biosynthesized due to biotic and abiotic stresses such as microbial infections, high temperatures, and oxidation. This review aims to provide a comprehensive overview of stilbenes' botanical sources, chemistry, biosynthetic pathways, pharmacology, and clinical applications and challenges based on up-to-date data. All included studies were collected from PubMed, ScienceDirect, Google Scholar, and CNKI, and the presented data from these indexed studies were analyzed and summarized. A total of 459 natural stilbene compounds from 45 plant families and 196 plant species were identified. Pharmacological studies also show that stilbenes have various activities such as anticancer, antimicrobial, antioxidant, anti-inflammatory, anti-degenerative diseases, anti-diabetic, neuroprotective, anti-aging, and cardioprotective effects. Stilbene synthase (STS) is the key enzyme involved in stilbene biosynthetic pathways. Studies on the therapeutic application of stilbenes pinpoint that challenges such as low bioavailability and isomerization are the major bottlenecks for their development as therapeutic drugs. Although the medicinal uses of several stilbenes have been demonstrated in vivo and in vitro, studies on the development of stilbenes deserve more attention in the future.
Collapse
Affiliation(s)
- Tekleab Teka
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China; Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, P. O. Box 1145, Dessie, Ethiopia
| | - Lele Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Xiaoyan Ge
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Yanjie Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China.
| | - Xiaohui Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China.
| |
Collapse
|
21
|
He Y, Sun MM, Zhang GG, Yang J, Chen KS, Xu WW, Li B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct Target Ther 2021; 6:425. [PMID: 34916492 PMCID: PMC8677728 DOI: 10.1038/s41392-021-00828-5] [Citation(s) in RCA: 785] [Impact Index Per Article: 196.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt pathway plays a crucial role in various cellular processes and is aberrantly activated in cancers, contributing to the occurrence and progression of tumors. Examining the upstream and downstream nodes of this pathway could allow full elucidation of its function. Based on accumulating evidence, strategies targeting major components of the pathway might provide new insights for cancer drug discovery. Researchers have explored the use of some inhibitors targeting this pathway to block survival pathways. However, because oncogenic PI3K pathway activation occurs through various mechanisms, the clinical efficacies of these inhibitors are limited. Moreover, pathway activation is accompanied by the development of therapeutic resistance. Therefore, strategies involving pathway inhibitors and other cancer treatments in combination might solve the therapeutic dilemma. In this review, we discuss the roles of the PI3K/Akt pathway in various cancer phenotypes, review the current statuses of different PI3K/Akt inhibitors, and introduce combination therapies consisting of signaling inhibitors and conventional cancer therapies. The information presented herein suggests that cascading inhibitors of the PI3K/Akt signaling pathway, either alone or in combination with other therapies, are the most effective treatment strategy for cancer.
Collapse
Affiliation(s)
- Yan He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Miao Miao Sun
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Tumor Pathology, Zhengzhou, China
| | - Guo Geng Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jing Yang
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Kui Sheng Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Tumor Pathology, Zhengzhou, China.
| | - Wen Wen Xu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Bin Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
22
|
Tamminen T, Koskela A, Toropainen E, Gurubaran IS, Winiarczyk M, Liukkonen M, Paterno JJ, Lackman P, Sadeghi A, Viiri J, Hyttinen JMT, Koskelainen A, Kaarniranta K. Pinosylvin Extract Retinari™ Sustains Electrophysiological Function, Prevents Thinning of Retina, and Enhances Cellular Response to Oxidative Stress in NFE2L2 Knockout Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8028427. [PMID: 34917233 PMCID: PMC8670936 DOI: 10.1155/2021/8028427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/02/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022]
Abstract
Chronic oxidative stress eventually leads to protein aggregation in combination with impaired autophagy, which has been observed in age-related macular degeneration. We have previously shown an effective age-related macular degeneration disease model in mice with nuclear factor-erythroid 2-related factor-2 (NFE2L2) knockout. We have also shown pinosylvin, a polyphenol abundant in bark waste, to increase human retinal pigment epithelium cell viability in vitro. In this work, the effects of commercial natural pinosylvin extract, Retinari™, were studied on the electroretinogram, optical coherence tomogram, autophagic activity, antioxidant capacity, and inflammation markers. Wild-type and NFE2L2 knockout mice were raised until the age of 14.8 ± 3.8 months. They were fed with either regular or Retinari™ chow (141 ± 17.0 mg/kg/day of pinosylvin) for 10 weeks before the assays. Retinari™ treatment preserved significant retinal function with significantly preserved a- and b-wave amplitudes in the electroretinogram responses. Additionally, the treatment prevented thinning of the retina in the NFE2L2 knockout mice. The NFE2L2 knockout mice showed reduced ubiquitin-tagged protein accumulation in addition to local upregulation of complement factor H and antioxidant enzymes superoxide dismutase 1 and catalase. Therefore, the treatment in the NFE2L2 KO disease model led to reduced chronic oxidative stress and sustained retinal function and morphology. Our results demonstrate that pinosylvin supplementation could potentially lower the risk of age-related macular degeneration onset and slow down its progression.
Collapse
Affiliation(s)
- Toni Tamminen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Ali Koskela
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Elisa Toropainen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Iswariyaraja Sridevi Gurubaran
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Mateusz Winiarczyk
- Department of Vitreoretinal Surgery, Medical University of Lublin, Poland
| | - Mikko Liukkonen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Jussi J. Paterno
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS Kuopio, Finland
| | | | - Amir Sadeghi
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Johanna Viiri
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Juha M. T. Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Ari Koskelainen
- Department of Neuroscience and Biomedical Engineering, Aalto University, FI-00067 Aalto, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS Kuopio, Finland
| |
Collapse
|
23
|
Beetch M, Boycott C, Harandi-Zadeh S, Yang T, Martin BJE, Dixon-McDougall T, Ren K, Gacad A, Dupuis JH, Ullmer M, Lubecka K, Yada RY, Brown CJ, Howe LJ, Stefanska B. Pterostilbene leads to DNMT3B-mediated DNA methylation and silencing of OCT1-targeted oncogenes in breast cancer cells. J Nutr Biochem 2021; 98:108815. [PMID: 34242723 PMCID: PMC8819711 DOI: 10.1016/j.jnutbio.2021.108815] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 06/06/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022]
Abstract
Transcription factor (TF)-mediated regulation of genes is often disrupted during carcinogenesis. The DNA methylation state of TF-binding sites may dictate transcriptional activity of corresponding genes. Stilbenoid polyphenols, such as pterostilbene (PTS), have been shown to exert anticancer action by remodeling DNA methylation and gene expression. However, the mechanisms behind these effects still remain unclear. Here, the dynamics between oncogenic TF OCT1 binding and de novo DNA methyltransferase DNMT3B binding in PTS-treated MCF10CA1a invasive breast cancer cells has been explored. Using chromatin immunoprecipitation (ChIP) followed by next generation sequencing, we determined 47 gene regulatory regions with decreased OCT1 binding and enriched DNMT3B binding in response to PTS. Most of those genes were found to have oncogenic functions. We selected three candidates, PRKCA, TNNT2, and DANT2, for further mechanistic investigation taking into account PRKCA functional and regulatory connection with numerous cancer-driving processes and pathways, and some of the highest increase in DNMT3B occupancy within TNNT2 and DANT2 enhancers. PTS led to DNMT3B recruitment within PRKCA, TNNT2, and DANT2 at loci that also displayed reduced OCT1 binding. Substantial decrease in OCT1 with increased DNMT3B binding was accompanied by PRKCA promoter and TNNT2 and DANT2 enhancer hypermethylation, and gene silencing. Interestingly, DNA hypermethylation of the genes was not detected in response to PTS in DNMT3B-CRISPR knockout MCF10CA1a breast cancer cells. It indicates DNMT3B-dependent methylation of PRKCA, TNNT2, and DANT2 upon PTS. Our findings provide a better understanding of mechanistic players and their gene targets that possibly contribute to the anticancer action of stilbenoid polyphenols.
Collapse
Affiliation(s)
- Megan Beetch
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cayla Boycott
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sadaf Harandi-Zadeh
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tony Yang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Benjamin J E Martin
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas Dixon-McDougall
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Ren
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Allison Gacad
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - John H Dupuis
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Melissa Ullmer
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Katarzyna Lubecka
- Department of Biomedical Chemistry, Medical University of Lodz, Lodz, Poland
| | - Rickey Y Yada
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carolyn J Brown
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - LeAnn J Howe
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Barbara Stefanska
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
24
|
Cheng X, Cao Z, Luo J, Hu R, Cao H, Guo X, Xing C, Yang F, Zhuang Y, Hu G. Baicalin ameliorates APEC-induced intestinal injury in chicks by inhibiting the PI3K/AKT-mediated NF-κB signaling pathway. Poult Sci 2021; 101:101572. [PMID: 34844111 PMCID: PMC8633683 DOI: 10.1016/j.psj.2021.101572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 12/23/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is the causative agent of avian colibacillosis. Baicalin (BA) possesses multiple pharmacological effects, but the mechanism underlying its activity in APEC-induced intestinal injury remains unknown. This study aims to investigate the protective effects and possible mechanism of BA against APEC-induced intestinal injury. Sixty 1-day-old chicks were randomly divided into 4 groups: the control group (basal diet), E. coli group (basal diet), BAI10 group (10 mg/kg BA), and BAI20 group (20 mg/kg BA). After pretreatment with BA for 15 d and subsequent induction of APEC infection by pectoralis injection, the ileum was collected and analyzed. The results showed that BA-pretreatment demonstrated an alleviation of chicks in diarrhea rate, mortality, and histopathological changes in intestinal tissues after APEC infection. Additionally, following APEC infection, BA improved the intestinal barrier by elevating zona occludens (ZO)s (ZO-1, 2, 3), Claudins (Claudin1, 2, 3), Occludin, avian β-defensin (AvBD)s (AvBD1, 2, 4), lysozyme (Lyz) mRNA levels and ZO-1, Claudin1, and Occludin protein levels. Besides, the activities of total superoxide dismutase (T-SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) and the SOD-1 and CAT mRNA levels and SOD-1 protein level were elevated by BA pretreatment. BA pretreatment also decreased the malondialdehyde (MDA) content, heme oxygenase-1 (HO-1) and NADH quinone oxidoreductase 1 (NQO1) mRNA levels, and HO-1 protein level after APEC infection. BA alleviated the APEC-induced inflammatory response, including downregulating the mRNA levels of proinflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin [IL]-1β, IL-6, IL-8) and upregulating the mRNA levels of anti-inflammatory cytokines (IL-4, IL-10, IL-13, transforming growth factor-β [TGF-β]). Furthermore, BA decreased the mRNA and protein levels of phosphatidylinositol 3 kinase (PI3K), protein kinase B (AKT), and nuclear factor kappa-B (NF-κB) as well as the expression of the phosphorylated forms of these proteins after APEC infection. Collectively, our findings indicate that BA exerts a protective effect against APEC-induced intestinal injury in chicks by inhibiting the PI3K/AKT-mediated NF-κB pathway, suggesting that BA may be a potential therapeutic approach for avian colibacillosis.
Collapse
Affiliation(s)
- Xinyi Cheng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Zhanyou Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Junrong Luo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China.
| |
Collapse
|
25
|
Coelho NR, Pimpão AB, Correia MJ, Rodrigues TC, Monteiro EC, Morello J, Pereira SA. Pharmacological blockage of the AHR-CYP1A1 axis: a call for in vivo evidence. J Mol Med (Berl) 2021; 100:215-243. [PMID: 34800164 PMCID: PMC8605459 DOI: 10.1007/s00109-021-02163-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 01/21/2023]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that can be activated by structurally diverse compounds arising from the environment and the microbiota and host metabolism. Expanding evidence has been shown that the modulation of the canonical pathway of AHR occurs during several chronic diseases and that its abrogation might be of clinical interest for metabolic and inflammatory pathological processes. However, most of the evidence on the pharmacological abrogation of the AHR-CYP1A1 axis has been reported in vitro, and therefore, guidance for in vivo studies is needed. In this review, we cover the state-of-the-art of the pharmacodynamic and pharmacokinetic properties of AHR antagonists and CYP1A1 inhibitors in different in vivo rodent (mouse or rat) models of disease. This review will serve as a road map for those researchers embracing this emerging therapeutic area targeting the AHR. Moreover, it is a timely opportunity as the first AHR antagonists have recently entered the clinical stage of drug development.
Collapse
Affiliation(s)
- N R Coelho
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
| | - A B Pimpão
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
| | - M J Correia
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
| | - T C Rodrigues
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
| | - E C Monteiro
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
| | - J Morello
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
| | - S A Pereira
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal.
| |
Collapse
|
26
|
Ryyti R, Pemmari A, Peltola R, Hämäläinen M, Moilanen E. Effects of Lingonberry ( Vaccinium vitis-idaea L.) Supplementation on Hepatic Gene Expression in High-Fat Diet Fed Mice. Nutrients 2021; 13:3693. [PMID: 34835949 PMCID: PMC8623941 DOI: 10.3390/nu13113693] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is growing worldwide in association with Western-style diet and increasing obesity. Lingonberry (Vaccinium vitis-idaea L.) is rich in polyphenols and has been shown to attenuate adverse metabolic changes in obese liver. This paper investigated the effects of lingonberry supplementation on hepatic gene expression in high-fat diet induced obesity in a mouse model. C57BL/6N male mice were fed for six weeks with either a high-fat (HF) or low-fat (LF) diet (46% and 10% energy from fat, respectively) or HF diet supplemented with air-dried lingonberry powder (HF + LGB). HF diet induced a major phenotypic change in the liver, predominantly affecting genes involved in inflammation and in glucose and lipid metabolism. Lingonberry supplementation prevented the effect of HF diet on an array of genes (in total on 263 genes) associated particularly with lipid or glucose metabolic process (such as Mogat1, Plin4, Igfbp2), inflammatory/immune response or cell migration (such as Lcn2, Saa1, Saa2, Cxcl14, Gcp1, S100a10) and cell cycle regulation (such as Cdkn1a, Tubb2a, Tubb6). The present results suggest that lingonberry supplementation prevents HF diet-induced adverse changes in the liver that are known to predispose the development of NAFLD and its comorbidities. The findings encourage carrying out human intervention trials to confirm the results, with the aim of recommending the use of lingonberries as a part of healthy diet against obesity and its hepatic and metabolic comorbidities.
Collapse
Affiliation(s)
- Riitta Ryyti
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland; (R.R.); (A.P.); (M.H.)
| | - Antti Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland; (R.R.); (A.P.); (M.H.)
| | - Rainer Peltola
- Natural Resources Institute Finland, Bioeconomy and Environment, 96200 Rovaniemi, Finland;
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland; (R.R.); (A.P.); (M.H.)
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland; (R.R.); (A.P.); (M.H.)
| |
Collapse
|
27
|
Liskova A, Koklesova L, Samec M, Abdellatif B, Zhai K, Siddiqui M, Šudomová M, Hassan ST, Kudela E, Biringer K, Giordano FA, Büsselberg D, Golubnitschaja O, Kubatka P. Targeting phytoprotection in the COVID-19-induced lung damage and associated systemic effects-the evidence-based 3PM proposition to mitigate individual risks. EPMA J 2021; 12:325-347. [PMID: 34367380 PMCID: PMC8329620 DOI: 10.1007/s13167-021-00249-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/03/2021] [Indexed: 02/06/2023]
Abstract
The risks related to the COVID-19 are multi-faceted including but by far not restricted to the following: direct health risks by poorly understood effects of COVID-19 infection, overloaded capacities of healthcare units, restricted and slowed down care of patients with non-communicable disorders such as cancer, neurologic and cardiovascular pathologies, among others; social risks-restricted and broken social contacts, isolation, professional disruption, explosion of aggression in the society, violence in the familial environment; mental risks-loneliness, helplessness, defenceless, depressions; and economic risks-slowed down industrial productivity, broken delivery chains, unemployment, bankrupted SMEs, inflation, decreased capacity of the state to perform socially important programs and to support socio-economically weak subgroups in the population. Directly or indirectly, the above listed risks will get reflected in a healthcare occupation and workload which is a tremendous long-term challenge for the healthcare capacity and robustness. The article does not pretend to provide solutions for all kind of health risks. However, it aims to present the scientific evidence of great clinical utility for primary, secondary, and tertiary care to protect affected individuals in a cost-effective manner. To this end, due to pronounced antimicrobial, antioxidant, anti-inflammatory, and antiviral properties, naturally occurring plant substances are capable to protect affected individuals against COVID-19-associated life-threatening complications such as lung damage. Furthermore, they can be highly effective, if being applied to secondary and tertiary care of noncommunicable diseases under pandemic condition. Thus, the stratification of patients evaluating specific health conditions such as sleep quality, periodontitis, smoking, chronic inflammation and diseases, metabolic disorders and obesity, vascular dysfunction, and cancers would enable effective managemenet of COVID-19-associated complications in primary, secondary, and tertiary care in the context of predictive, preventive, and personalized medicine (3PM).
Collapse
Affiliation(s)
- Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Lenka Koklesova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Basma Abdellatif
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, 24144 Qatar
| | - Kevin Zhai
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, 24144 Qatar
| | - Manaal Siddiqui
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, 24144 Qatar
| | - Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 66461, Rajhrad, Czech Republic
| | - Sherif T.S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Erik Kudela
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Kamil Biringer
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, 24144 Qatar
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
28
|
Pterostilbene Changes Epigenetic Marks at Enhancer Regions of Oncogenes in Breast Cancer Cells. Antioxidants (Basel) 2021; 10:antiox10081232. [PMID: 34439480 PMCID: PMC8388921 DOI: 10.3390/antiox10081232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetic aberrations are linked to sporadic breast cancer. Interestingly, certain dietary polyphenols with anti-cancer effects, such as pterostilbene (PTS), have been shown to regulate gene expression by altering epigenetic patterns. Our group has proposed the involvement of DNA methylation and DNA methyltransferase 3B (DNMT3B) as vital players in PTS-mediated suppression of candidate oncogenes and suggested a role of enhancers as target regions. In the present study, we assess a genome-wide impact of PTS on epigenetic marks at enhancers in highly invasive MCF10CA1a breast cancer cells. Following chromatin immunoprecipitation (ChIP)-sequencing in MCF10CA1a cells treated with 7 μM PTS for 9 days, we discovered that PTS leads to increased binding of DNMT3B at enhancers of 77 genes, and 17 of those genes display an overlapping decrease in the occupancy of trimethylation at lysine 36 of histone 3 (H3K36me3), a mark of active enhancers. We selected two genes, PITPNC1 and LINC00910, and found that their enhancers are hypermethylated in response to PTS. These changes coincided with the downregulation of gene expression. Of importance, we showed that 6 out of 17 target enhancers, including PITPNC1 and LINC00910, are bound by an oncogenic transcription factor OCT1 in MCF10CA1a cells. Indeed, the six enhancers corresponded to genes with established or putative cancer-driving functions. PTS led to a decrease in OCT1 binding at those enhancers, and OCT1 depletion resulted in PITPNC1 and LINC00910 downregulation, further demonstrating a role for OCT1 in transcriptional regulation. Our findings provide novel evidence for the epigenetic regulation of enhancer regions by dietary polyphenols in breast cancer cells.
Collapse
|
29
|
Neurocosmetics in Skincare—The Fascinating World of Skin–Brain Connection: A Review to Explore Ingredients, Commercial Products for Skin Aging, and Cosmetic Regulation. COSMETICS 2021. [DOI: 10.3390/cosmetics8030066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The “modern” cosmetology industry is focusing on research devoted to discovering novel neurocosmetic functional ingredients that could improve the interactions between the skin and the nervous system. Many cosmetic companies have started to formulate neurocosmetic products that exhibit their activity on the cutaneous nervous system by affecting the skin’s neuromediators through different mechanisms of action. This review aims to clarify the definition of neurocosmetics, and to describe the features of some functional ingredients and products available on the market, with a look at the regulatory aspect. The attention is devoted to neurocosmetic ingredients for combating skin stress, explaining the stress pathways, which are also correlated with skin aging. “Neuro-relaxing” anti-aging ingredients derived from plant extracts and neurocosmetic strategies to combat inflammatory responses related to skin stress are presented. Afterwards, the molecular basis of sensitive skin and the suitable neurocosmetic ingredients to improve this problem are discussed. With the aim of presenting the major application of Botox-like ingredients as the first neurocosmetics on the market, skin aging is also introduced, and its theory is presented. To confirm the efficacy of the cosmetic products on the market, the concept of cosmetic claims is discussed.
Collapse
|
30
|
The Potential Role of Polyphenols in Modulating Mitochondrial Bioenergetics within the Skeletal Muscle: A Systematic Review of Preclinical Models. Molecules 2021; 26:molecules26092791. [PMID: 34068459 PMCID: PMC8125960 DOI: 10.3390/molecules26092791] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 12/19/2022] Open
Abstract
Polyphenols are naturally derived compounds that are increasingly being explored for their various health benefits. In fact, foods that are rich in polyphenols have become an attractive source of nutrition and a potential therapeutic strategy to alleviate the untoward effects of metabolic disorders. The last decade has seen a rapid increase in studies reporting on the bioactive properties of polyphenols against metabolic complications, especially in preclinical models. Various experimental models involving cell cultures exposed to lipid overload and rodents on high fat diet have been used to investigate the ameliorative effects of various polyphenols against metabolic anomalies. Here, we systematically searched and included literature reporting on the impact of polyphenols against metabolic function, particularly through the modulation of mitochondrial bioenergetics within the skeletal muscle. This is of interest since the skeletal muscle is rich in mitochondria and remains one of the main sites of energy homeostasis. Notably, increased substrate availability is consistent with impaired mitochondrial function and enhanced oxidative stress in preclinical models of metabolic disease. This explains the general interest in exploring the antioxidant properties of polyphenols and their ability to improve mitochondrial function. The current review aimed at understanding how these compounds modulate mitochondrial bioenergetics to improve metabolic function in preclinical models on metabolic disease.
Collapse
|
31
|
Pontes VCB, Tavares JPTDM, Rosenstock TR, Rodrigues DS, Yudi MI, Soares JPM, Ribeiro SC, Sutti R, Torres LMB, de Melo FHM, Gamberini MT. Increased acute blood flow induced by the aqueous extract of Euterpe oleracea Mart. fruit pulp in rats in vivo is not related to the direct activation of endothelial cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113885. [PMID: 33539952 DOI: 10.1016/j.jep.2021.113885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scientific evidence supports the antioxidant, anti-inflammatory and anti-lipidemic properties of Euterpe oleracea Mart. (açaí), which all converge to reduce cardiovascular risks. Macerating the pulp of açaí fruit produces a viscous aqueous extract (AE) rich in flavonoids that is commonly used in food production. In addition to nutritional aspects, cardiovascular benefits are attributed to AE by traditional medicine. AIM OF THE STUDY Evaluation of AE impact on blood flow in vivo in rats and investigation of the mechanism underlying this response in vitro in rat endothelial cells (RECs). MATERIALS AND METHODS For the measurement of acute blood flow, a perivascular ultrasound probe was used in Wistar rats. The in vitro assays employed REC to evaluate: concentration (1-1000 μg/mL) and time response (2-180 min) of AE in MTT cell viability assays; nitric oxide (NO) levels measurement and intracellular calcium handling using DAF-2DA and Fluo-4-AM, respectively; cellular biopterin content by HPLC; activation of Akt pathway using western blot analysis. For the chemical analyses of AE, stock solutions of the standards (+)catechin and quercetin were used for obtaining linear calibration curves. Identification and quantification of flavonoids in AE were based on comparisons with the retention times, increase in peak area determine by co-injection of AE with standards, UV-Vis scan and standard curves of known spectra. Results were expressed as mean ± standard deviation and data were analyzed using ANOVA followed by Tukey's post-test (p < 0.05). RESULTS Although in vivo data have revealed the participation of NO in increasing of acute blood flow on abdominal aorta, in vitro analysis demonstrated that vasodilatation AE-induced is not related to its direct action on endothelial cells inducing eNOS activation. Besides, we demonstrated in isolated endothelial cells that highest concentrations of AE caused a reduction in NO levels, effect that could be partly justified by inhibition of Akt phosphorylation which, in turn, could decrease NOS activation. The involvement of cell transduction pathways involving variations in intracellular calcium and biopterins concentration were discarded. The participation of catechin and quercetin, identified in AE, was postulated to induce the responses of AE in REC. CONCLUSIONS Despite the responses in vitro, vasodilation prevailed in vivo, probably by activating intermediate pathways, validating a potential beneficial effect of AE in reducing cardiovascular risks.
Collapse
Affiliation(s)
- Victória Caroline Bottino Pontes
- Department of Physiological Sciences Santa Casa de Sao Paulo School of Medical Sciences - School of Medicine, São Paulo, SP, Brazil.
| | | | | | - Domingos Sávio Rodrigues
- Instituto de Botânica de São Paulo, Centro de Pesquisa Jardim Botânico e Reservas, São Paulo, SP, Brazil.
| | - Marcelo Icimoto Yudi
- Department of Biophysics, Federal University São Paulo (UNIFESP), São Paulo, SP, Brazil.
| | - Jaqueline Pereira Moura Soares
- Department of Physiological Sciences Santa Casa de Sao Paulo School of Medical Sciences - School of Medicine, São Paulo, SP, Brazil.
| | - Suzana Costa Ribeiro
- Department of Physiological Sciences Santa Casa de Sao Paulo School of Medical Sciences - School of Medicine, São Paulo, SP, Brazil.
| | - Rafael Sutti
- Department of Physiological Sciences Santa Casa de Sao Paulo School of Medical Sciences - School of Medicine, São Paulo, SP, Brazil.
| | - Luce Maria Brandão Torres
- Instituto de Botânica de São Paulo, Centro de Pesquisa Jardim Botânico e Reservas, São Paulo, SP, Brazil.
| | | | - Maria Thereza Gamberini
- Department of Physiological Sciences Santa Casa de Sao Paulo School of Medical Sciences - School of Medicine, São Paulo, SP, Brazil.
| |
Collapse
|
32
|
Pinosylvin Shifts Macrophage Polarization to Support Resolution of Inflammation. Molecules 2021; 26:molecules26092772. [PMID: 34066748 PMCID: PMC8125806 DOI: 10.3390/molecules26092772] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 11/17/2022] Open
Abstract
Pinosylvin is a natural stilbenoid found particularly in Scots pine. Stilbenoids are a group of phenolic compounds identified as protective agents against pathogens for many plants. Stilbenoids also possess health-promoting properties in humans; for instance, they are anti-inflammatory through their suppressing action on proinflammatory M1-type macrophage activation. Macrophages respond to environmental changes by polarizing towards proinflammatory M1 phenotype in infection and inflammatory diseases, or towards anti-inflammatory M2 phenotype, mediating resolution of inflammation and repair. In the present study, we investigated the effects of pinosylvin on M2-type macrophage activation, aiming to test the hypothesis that pinosylvin could polarize macrophages from M1 to M2 phenotype to support resolution of inflammation. We used lipopolysaccharide (LPS) to induce M1 phenotype and interleukin-4 (IL-4) to induce M2 phenotype in J774 murine and U937 human macrophages, and we measured expression of M1 and M2-markers. Interestingly, along with inhibiting the expression of M1-type markers, pinosylvin had an enhancing effect on the M2-type activation, shown as an increased expression of arginase-1 (Arg-1) and mannose receptor C type 1 (MRC1) in murine macrophages, and C-C motif chemokine ligands 17 and 26 (CCL17 and CCL26) in human macrophages. In IL-4-treated macrophages, pinosylvin enhanced PPAR-γ expression but had no effect on STAT6 phosphorylation. The results show, for the first time, that pinosylvin shifts macrophage polarization from the pro-inflammatory M1 phenotype towards M2 phenotype, supporting resolution of inflammation and repair.
Collapse
|
33
|
Wang X, Priya Veeraraghavan V, Krishna Mohan S, Lv F. Anticancer and immunomodulatory effect of rhaponticin on Benzo(a)Pyrene-induced lung carcinogenesis and induction of apoptosis in A549 cells. Saudi J Biol Sci 2021; 28:4522-4531. [PMID: 34354438 PMCID: PMC8324936 DOI: 10.1016/j.sjbs.2021.04.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/07/2021] [Accepted: 04/18/2021] [Indexed: 01/14/2023] Open
Abstract
In worldwide, one of the most important cancer-related death is lung cancer. Also has the highest mortality rate between various cancer types. The count of lung cancer occurrence is increasing with an increased frequency by smoking. Proficient chemoprevention approaches are needed to prevent the occurrence of lung cancer. Therefore, the aim of this exploration is to determine the therapeutic impact on the immune modulatory effect of rhaponticin on lung tumorigenesis in vivo and in vitro cytotoxicity effect in A549 cells of human lung cancer. Lung cancer tumorigenesis in mice was challenged with benzo(a)pyrene (BaP) with 50 mg/kg bodyweight (b.wt) as oral administration for 6 weeks (two times/week). Rhaponticin were given orally 30 mg/kg b.wt (two times/week) in BaP induced mice from 12 weeks to 18 weeks. After treatment completes, the body weight was measured and then blood, lung tissue was collected for various parameters detection. The results evidenced that BaP induced mice decreased the bodyweight, increased lung weight, increased tumor markers (AHH, CEA and LDH), and increased the proinflammatory cytokines. The enzyme catalase, superoxide dismutase activity was decreased and increased lipid peroxidation in immune comprising cells compared with the control cells. Moreover, rhaponticin treatment improves in chemical assays and also the histopathological alteration of lung tissues. The present findings provide evidence about the therapeutic potentials of rhaponticin against BaP triggered lung tumorigenesis.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Surapaneni Krishna Mohan
- Department of Biochemistry, Department of Clinical Skills & Simulation and Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600 123, India
| | - Feng Lv
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China
- Corresponding author.
| |
Collapse
|
34
|
Massimini M, Dalle Vedove E, Bachetti B, Di Pierro F, Ribecco C, D'Addario C, Pucci M. Polyphenols and Cannabidiol Modulate Transcriptional Regulation of Th1/Th2 Inflammatory Genes Related to Canine Atopic Dermatitis. Front Vet Sci 2021; 8:606197. [PMID: 33763461 PMCID: PMC7982812 DOI: 10.3389/fvets.2021.606197] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Canine atopic dermatitis (AD) is a multifactorial allergic disease associated with immune and abnormal skin barrier dysfunction and it is one of the primary causes of pruritus. Using a novel in vitro model of AD, here we tried to revert the alteration of transcriptional regulation of AD canine key genes testing a nutraceutical mixture containing flavonoids, stilbene, and cannabinoids, which are already well-known for their applications within dermatology diseases. The nutraceutical mixture induced in inflamed cells a significant downregulation (p < 0.05) of the gene expression of ccl2, ccl17, and tslp in keratinocytes and of ccl2, ccl17, and il31ra in monocytes. Consistent with the observed alterations of tslp, ccl2, ccl17, and il31ra messenger RNA (mRNA) levels, a significant increase (p < 0.05) of DNA methylation at specific CpG sites on the gene regulatory regions was found. These results lay the foundation for the use of these natural bioactives in veterinary medicine and provide a model for deeper understanding of their mechanisms of action, with potential translation to human research.
Collapse
Affiliation(s)
| | | | | | | | | | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Mariangela Pucci
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
35
|
Xie W, Zhou X, Hu W, Chu Z, Ruan Q, Zhang H, Li M, Zhang H, Huang X, Yao P. Pterostilbene accelerates wound healing by modulating diabetes-induced estrogen receptor β suppression in hematopoietic stem cells. BURNS & TRAUMA 2021; 9:tkaa045. [PMID: 33654697 PMCID: PMC7901710 DOI: 10.1093/burnst/tkaa045] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/07/2020] [Indexed: 02/06/2023]
Abstract
Background Delayed wound healing is one of the major complications of diabetes mellitus and is characterized by prolonged inflammation, delayed re-epithelialization and consistent oxidative stress, although the detailed mechanism remains unknown. In this study, we aimed to investigate the potential role and effect of pterostilbene (PTE) and hematopoietic stem cells (HSCs) on diabetic wound healing. Methods Diabetic rats were used to measure the epigenetic changes in both HSCs and peripheral blood mononuclear cells (PBMCs). A cutaneous burn injury was induced in the rats and PTE-treated diabetic HSCs were transplanted for evaluation of wound healing. In addition, several biomedical parameters, including gene expression, oxidative stress, mitochondrial function and inflammation in macrophages, were also measured. Results Our data showed that PTE had a much stronger effect than resveratrol on accelerating diabetic wound healing, likely because PTE can ameliorate diabetes-induced epigenetic changes to estrogen receptor β promoter in HSCs, while resveratrol cannot. Further investigation showed that bone marrow transplantation of PTE-treated diabetic HSCs restores diabetes-induced suppression of estrogen receptor β and its target genes, including nuclear respiratory factor-1 and superoxide dismutase 2, and protects against diabetes-induced oxidative stress, mitochondrial dysfunction and elevated pro-inflammatory cytokines in both PBMCs and macrophages, subsequently accelerating cutaneous wound healing. Conclusions HSC may play an important role in wound healing through transferring epigenetic modifications to subsequent PBMCs and macrophages by differentiation, while PTE accelerates diabetic wound healing by modulating diabetes-induced epigenetic changes in HSCs. Thus, PTE may be a novel therapeutic strategy for diabetic wound healing.
Collapse
Affiliation(s)
- Weiguo Xie
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Xueqing Zhou
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Weigang Hu
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Zhigang Chu
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Qiongfang Ruan
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Haimou Zhang
- State Key Lab of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Min Li
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Hongyu Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Xiaodong Huang
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Paul Yao
- Institute of Burns, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| |
Collapse
|
36
|
Yi Z, Wu Y, Zhang W, Wang T, Gong J, Cheng Y, Miao C. Activator-Mediated Pyruvate Kinase M2 Activation Contributes to Endotoxin Tolerance by Promoting Mitochondrial Biogenesis. Front Immunol 2021; 11:595316. [PMID: 33542713 PMCID: PMC7851049 DOI: 10.3389/fimmu.2020.595316] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/03/2020] [Indexed: 02/03/2023] Open
Abstract
Pyruvate kinase M2 (PKM2) is a key glycolysis enzyme, and its effect on macrophages has not been entirely elucidated. Here, we identified that the PKM2 small-molecule agonist TEPP-46 mediated PKM2 activation by inducing the formation of PKM2 tetramer and promoted macrophage endotoxin tolerance. Lipopolysaccharide (LPS)-tolerant mice had higher expression of the PKM2 tetramer, which was associated with a reduced in vivo immune response to LPS. Pretreatment of macrophages with TEPP-46 resulted in tolerance to LPS stimulation, as demonstrated by a significant reduction in the production of TNF-α and IL-6. We found that TEPP-46 induced mitochondrial biogenesis in macrophages. Inhibition of mitochondrial biogenesis by mtTFA knockdown effectively inhibited TEPP-46-mediated macrophage tolerance to endotoxins. We discovered that TEPP-46 promoted the expression of PGC-1α and that PGC-1α was the key regulator of mitochondrial biogenesis in macrophages induced by TEPP-46. PGC-1α was negatively regulated by the PI3K/Akt signaling pathway. Knockdown of PKM2 or PGC-1α uniformly inhibited TEPP-46-mediated endotoxin tolerance by inhibiting mitochondrial biogenesis. In addition, TEPP-46 protected mice from lethal endotoxemia and sepsis. Collectively, these findings reveal novel mechanisms for the metabolic control of inflammation and for the induction of endotoxin tolerance by promoting mitochondrial biogenesis. Targeting PKM2 appears to be a new therapeutic option for the treatment of sepsis and other inflammatory diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Yao Cheng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunmu Miao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
37
|
Leláková V, Béraud-Dufour S, Hošek J, Šmejkal K, Prachyawarakorn V, Pailee P, Widmann C, Václavík J, Coppola T, Mazella J, Blondeau N, Heurteaux C. Therapeutic potential of prenylated stilbenoid macasiamenene F through its anti-inflammatory and cytoprotective effects on LPS-challenged monocytes and microglia. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113147. [PMID: 32736058 DOI: 10.1016/j.jep.2020.113147] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Macaranga Thou. (Euphorbiaceae) is a large genus that comprises over 300 species distributed between Western Africa and the islands of the South Pacific. Plants of this genus have a long-standing history of use in traditional medicine for different purposes, including the treatment of inflammation. Fresh and dried leaves of certain Macaranga species (e.g. M. tanarius (L.) Müll.Arg.), have been used to treat cuts, bruises, boils, swellings, sores and covering of wounds in general. Several reports described Macaranga spp. being a rich source of polyphenols, such as prenylated stilbenoids and flavonoids, mostly responsible for its biological activity. Similarly, an abundant content of prenylated stilbenes was also described in M. siamensis S.J.Davies, species recently identified (2001) in Thailand. While the respective biological activity of the prenylated stilbenes from M. siamensis was poorly investigated to date, our recent study pointed out the interest as the natural source of several novel anti-inflammatory stilbenoids isolated from this species. AIM OF THE STUDY This work investigated the potential anti-inflammatory effects of the stilbenoid macasiamenene F (MF) isolated from M. siamensis S.J.Davies (Euphorbiaceae) on the lipopolysaccharide (LPS)-induced inflammation-like response of monocytes and microglia, major cells involved in the peripheral and central inflammatory response, respectively. MATERIALS AND METHODS LPS-induced stimulation of TLR4 signaling led to the activation of inflammatory pathways in in vitro models of THP-1 and THP-1-XBlue™-MD2-CD14 human monocytes, BV-2 mouse microglia, and an ex vivo model of brain-sorted mouse microglia. The ability of the stilbenoid MF to intervene in the IкB/NF-кB and MAPKs/AP-1 inflammatory cascade was investigated. The gene and protein expressions of the pro-inflammatory cytokines IL-1β and TNF-α were evaluated at the transcription and translation levels. The protective effect of MF against LPS-triggered microglial loss was assessed by cell counting and the LDH assay. RESULTS MF demonstrated beneficial effects, reducing both monocyte and microglial inflammation as assessed in vitro. It efficiently inhibited the degradation of IкBα, thereby reducing the NF-кB activity and TNF-α expression in human monocytes. Furthermore, the LPS-induced expression of IL-1β and TNF-α in microglia was dampened by pre-, co-, or post-treatment with MF. In addition to its anti-inflammatory effect, MF demonstrated a cytoprotective effect against the LPS-induced death of BV-2 microglia. CONCLUSION Our research into anti-inflammatory and protective effects of MF has shown that it is a promising candidate for further in vitro and in vivo investigations of MF interventions with respect to acute and chronic inflammation, including potentially beneficial effects on the inflammatory component of brain diseases such as stroke and Alzheimer's disease.
Collapse
Affiliation(s)
- Veronika Leláková
- Université Côte D'Azur, CNRS, IPMC, UMR7275, 660 Route des Lucioles, Sophia Antipolis, F-06560, Valbonne, France; Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, CZ-612 00, Brno, Czech Republic.
| | - Sophie Béraud-Dufour
- Université Côte D'Azur, CNRS, IPMC, UMR7275, 660 Route des Lucioles, Sophia Antipolis, F-06560, Valbonne, France.
| | - Jan Hošek
- Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, CZ-612 00, Brno, Czech Republic; Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic.
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, CZ-612 00, Brno, Czech Republic.
| | | | - Phanruethai Pailee
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, TH-10210, Bangkok, Thailand.
| | - Catherine Widmann
- Université Côte D'Azur, CNRS, IPMC, UMR7275, 660 Route des Lucioles, Sophia Antipolis, F-06560, Valbonne, France.
| | - Jiří Václavík
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, CZ-612 00, Brno, Czech Republic.
| | - Thierry Coppola
- Université Côte D'Azur, CNRS, IPMC, UMR7275, 660 Route des Lucioles, Sophia Antipolis, F-06560, Valbonne, France.
| | - Jean Mazella
- Université Côte D'Azur, CNRS, IPMC, UMR7275, 660 Route des Lucioles, Sophia Antipolis, F-06560, Valbonne, France.
| | - Nicolas Blondeau
- Université Côte D'Azur, CNRS, IPMC, UMR7275, 660 Route des Lucioles, Sophia Antipolis, F-06560, Valbonne, France.
| | - Catherine Heurteaux
- Université Côte D'Azur, CNRS, IPMC, UMR7275, 660 Route des Lucioles, Sophia Antipolis, F-06560, Valbonne, France.
| |
Collapse
|
38
|
Zhang J, Wang J, Fang H, Yu H, Zhao Y, Shen J, Zhou C, Jin Y. Pterostilbene inhibits deoxynivalenol-induced oxidative stress and inflammatory response in bovine mammary epithelial cells. Toxicon 2020; 189:10-18. [PMID: 33181164 DOI: 10.1016/j.toxicon.2020.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Accepted: 11/08/2020] [Indexed: 12/16/2022]
Abstract
More and more studies have showed that tricothecene mycotoxin, deoxynivalenol (DON) caused cytotoxicity in mammary alveolar cells-large T antigen cells (MAC-T). Therefore, research on reducing the cytotoxicity of DON has gradually attracted attention. In this study, we aim to explore the potential of pterostilbene (PTE) to protect MAC-T cells from DON-induced oxidative stress and inflammatory response. MAC-T cells were treated with 0.25 μg/mL DON or 2.0504 μg/mL PTE or 0.25 μg/mL DON and 2.0504 μg/mL PTE together, incubated for 9 h. PTE effectively improved cell viability, cell proliferation and total antioxidant capacity (T-AOC), reduced reactive oxygen species (ROS) production and malondialdehyde (MDA), and improved glutathione (GSH) depletion. Moreover, PTE effectively regulated the mRNA levels of nuclear factor erythroid-2-related factor 2 (Nrf2), kelch-like ech-associated protein 1 (Keap1), superoxide dismutase 1 (SOD1) and superoxide dismutase 2 (SOD2). PTE significantly inhibited nuclear factor kappa-B P65 (NF-κB P65), nuclear factor kappa-B P50 (NF-κB P50), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6) and monocyte chemotactic protein 1 (MCP-1) mRNA levels in DON-induced MAC-T cells. PTE also significantly reduced inducible nitric oxide synthase (iNOS) and nitric oxide (NO) levels in DON-induced MAC-T cells. Additionally, ELISA revealed that PTE inhibited the expression of tumor necrosis factor-α (TNF-α) and IL-6 proteins produced in DON-induced MAC-T cells. These findings together provided strong evidence to support that PTE can effectively alleviate the damage to cells caused by DON, and it may be used as an effective anti-inflammatory and antioxidant to prevent the damage of mycotoxins to the animal body.
Collapse
Affiliation(s)
- Jing Zhang
- College of Animal Sciences, Jilin University, Changchun, 130062, China; Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, 130062, China
| | - JunMei Wang
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - HengTong Fang
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Hao Yu
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Yun Zhao
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - JingLin Shen
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - ChangHai Zhou
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - YongCheng Jin
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| |
Collapse
|
39
|
Pecyna P, Wargula J, Murias M, Kucinska M. More Than Resveratrol: New Insights into Stilbene-Based Compounds. Biomolecules 2020; 10:E1111. [PMID: 32726968 PMCID: PMC7465418 DOI: 10.3390/biom10081111] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
The concept of a scaffold concerns many aspects at different steps on the drug development path. In medicinal chemistry, the choice of relevant "drug-likeness" scaffold is a starting point for the design of the structure dedicated to specific molecular targets. For many years, the chemical uniqueness of the stilbene structure has inspired scientists from different fields such as chemistry, biology, pharmacy, and medicine. In this review, we present the outstanding potential of the stilbene-based derivatives. Naturally occurring stilbenes, together with powerful synthetic chemistry possibilities, may offer an excellent approach for discovering new structures and identifying their therapeutic targets. With the development of scientific tools, sophisticated equipment, and a better understanding of the disease pathogenesis at the molecular level, the stilbene scaffold has moved innovation in science. This paper mainly focuses on the stilbene-based compounds beyond resveratrol, which are particularly attractive due to their biological activity. Given the "fresh outlook" about different stilbene-based compounds starting from stilbenoids with particular regard to isorhapontigenin and methoxy- and hydroxyl- analogues, the update about the combretastatins, and the very often overlooked and underestimated benzanilide analogues, we present a new story about this remarkable structure.
Collapse
Affiliation(s)
- Paulina Pecyna
- Department of Genetics and Pharmaceutical Microbiology, University of Medical Sciences, Swiecickiego 4 Street, 60-781 Poznan, Poland;
| | - Joanna Wargula
- Department of Organic Chemistry, University of Medical Sciences, Grunwaldzka 6 Street, 60-780 Poznan, Poland;
| | - Marek Murias
- Department of Toxicology, University of Medical Sciences, Dojazd 30 Street, 60-631 Poznan, Poland;
| | - Malgorzata Kucinska
- Department of Toxicology, University of Medical Sciences, Dojazd 30 Street, 60-631 Poznan, Poland;
| |
Collapse
|
40
|
Abstract
The concept of a scaffold concerns many aspects at different steps on the drug development path. In medicinal chemistry, the choice of relevant "drug-likeness" scaffold is a starting point for the design of the structure dedicated to specific molecular targets. For many years, the chemical uniqueness of the stilbene structure has inspired scientists from different fields such as chemistry, biology, pharmacy, and medicine. In this review, we present the outstanding potential of the stilbene-based derivatives. Naturally occurring stilbenes, together with powerful synthetic chemistry possibilities, may offer an excellent approach for discovering new structures and identifying their therapeutic targets. With the development of scientific tools, sophisticated equipment, and a better understanding of the disease pathogenesis at the molecular level, the stilbene scaffold has moved innovation in science. This paper mainly focuses on the stilbene-based compounds beyond resveratrol, which are particularly attractive due to their biological activity. Given the "fresh outlook" about different stilbene-based compounds starting from stilbenoids with particular regard to isorhapontigenin and methoxy- and hydroxyl- analogues, the update about the combretastatins, and the very often overlooked and underestimated benzanilide analogues, we present a new story about this remarkable structure.
Collapse
|
41
|
Chen D, Liu JR, Cheng Y, Cheng H, He P, Sun Y. Metabolism of Rhaponticin and Activities of its Metabolite, Rhapontigenin: A Review. Curr Med Chem 2020; 27:3168-3186. [DOI: 10.2174/0929867326666190121143252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/22/2018] [Accepted: 12/28/2018] [Indexed: 12/13/2022]
Abstract
Rhaponticin is a stilbenoid glucoside compound, found in medicinal plant of rhubarb
rhizomes. Rhapontigenin (RHAG), the stilbene aglycone metabolite of rhaponticin, has
shown various biological activities including anticancer activities to act a potential human cytochrome
P450 inhibitor, antihyperlipidemic effect, anti-allergic action, antioxidant and antibacterial
activities. Moreover, it was reported to scavenge intracellular Reactive Oxygen Species
(ROS), the 1,1-Diphenyl-2-Picrylliydrazyl (DPPH) radical, and Hydrogen Peroxide
(H2O2). Meanwhile, RHAG exhibited the inhibitory activity for the synthesis of DNA, RNA
and protein, and also presented the capacity of inducing morphological changes and apoptosis
of C. albicans. Here, the structure, pharmacokinetics, pharmacological effects as well as underlying
mechanisms of rhaponticin and its metabolite, RHAG, have been extensively reviewed.
This review will provide a certain reference value for developing the therapeutic drug
of rhaponticin or RHAG.
Collapse
Affiliation(s)
- Dan Chen
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Jing-Ru Liu
- School of Life Science, Northwest University, Xi’an, Shaanxi 710069, China
| | - Yanjin Cheng
- School of Mathematics and Statistics, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Hua Cheng
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Ping He
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Yang Sun
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| |
Collapse
|
42
|
Beneficial effects of lingonberry (Vaccinium vitis-idaea L.) supplementation on metabolic and inflammatory adverse effects induced by high-fat diet in a mouse model of obesity. PLoS One 2020; 15:e0232605. [PMID: 32379797 PMCID: PMC7205235 DOI: 10.1371/journal.pone.0232605] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/18/2020] [Indexed: 12/22/2022] Open
Abstract
Obesity is a constantly increasing health problem worldwide. It is associated with a systemic low-grade inflammation, which contributes to the development of metabolic disorders and comorbidities such as type 2 diabetes. Diet has an important role in the prevention of obesity and its adverse health effects; as a part of healthy diet, polyphenol-rich berries, such as lingonberry (Vaccinium vitis-idaea L.) have been proposed to have health-promoting effects. In the present study, we investigated the effects of lingonberry supplementation on high-fat diet induced metabolic and inflammatory changes in a mouse model of obesity. Thirty male C57BL/6N mice were divided into three groups (n = 10/group) to receive low-fat (LF), high-fat (HF) and lingonberry-supplemented high-fat (HF+LGB) diet for six weeks. Low-fat and high-fat diet contained 10% and 46% of energy from fat, respectively. Lingonberry supplementation prevented the high-fat diet induced adverse changes in blood cholesterol and glucose levels and had a moderate effect on the weight and visceral fat gain, which were 26% and 25% lower, respectively, in the lingonberry group than in the high-fat diet control group. Interestingly, lingonberry supplementation also restrained the high-fat diet induced increases in the circulating levels of the proinflammatory adipocytokine leptin (by 36%) and the inflammatory acute phase reactant serum amyloid A (SAA; by 85%). Similar beneficial effects were discovered in the hepatic expression of the inflammatory factors CXCL-14, S100A10 and SAA by lingonberry supplementation. In conclusion, the present results indicate that lingonberry supplementation significantly prevents high-fat diet induced metabolic and inflammatory changes in a murine model of obesity. The results encourage evaluation of lingonberries as a part of healthy diet against obesity and its comorbidities.
Collapse
|
43
|
Resveratrol Nanoparticles: A Promising Therapeutic Advancement over Native Resveratrol. Processes (Basel) 2020. [DOI: 10.3390/pr8040458] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The importance of fruit-derived resveratrol (RES) in the treatment of various diseases has been discussed in various research publications. Those research findings have indicated the ability of the molecule as therapeutic in the context of in vitro and in vivo conditions. Mostly, the application of RES in in vivo conditions, encapsulation processes have been carried out using various nanoparticles that are made of biocompatible biomaterials, which are easily digested or metabolized, and RES is absorbed effectively. These biomaterials are non-toxic and are safe to be used as components in the biotherapeutics. They are made from naturally available by-products of food materials like zein or corn or components of the physiological system as with lipids. The versatility of the RES nanoparticles in their different materials, working range sizes, specificity in their targeting in various human diseases, and the mechanisms associated with them are discussed in this review.
Collapse
|
44
|
Shaito A, Posadino AM, Younes N, Hasan H, Halabi S, Alhababi D, Al-Mohannadi A, Abdel-Rahman WM, Eid AH, Nasrallah GK, Pintus G. Potential Adverse Effects of Resveratrol: A Literature Review. Int J Mol Sci 2020; 21:2084. [PMID: 32197410 PMCID: PMC7139620 DOI: 10.3390/ijms21062084] [Citation(s) in RCA: 411] [Impact Index Per Article: 82.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 02/07/2023] Open
Abstract
Due to its health benefits, resveratrol (RE) is one of the most researched natural polyphenols. Resveratrol's health benefits were first highlighted in the early 1990s in the French paradox study, which opened extensive research activity into this compound. Ever since, several pharmacological activities including antioxidant, anti-aging, anti-inflammatory, anti-cancerous, anti-diabetic, cardioprotective, and neuroprotective properties, were attributed to RE. However, results from the available human clinical trials were controversial concerning the protective effects of RE against diseases and their sequelae. The reason for these conflicting findings is varied but differences in the characteristics of the enrolled patients, RE doses used, and duration of RE supplementation were proposed, at least in part, as possible causes. In particular, the optimal RE dosage capable of maximizing its health benefits without raising toxicity issues remains an area of extensive research. In this context, while there is a consistent body of literature on the protective effects of RE against diseases, there are relatively few reports investigating its possible toxicity. Indeed, toxicity and adverse effects were reported following consumption of RE; therefore, extensive future studies on the long-term effects, as well as the in vivo adverse effects, of RE supplementation in humans are needed. Furthermore, data on the interactions of RE when combined with other therapies are still lacking, as well as results related to its absorption and bioavailability in the human body. In this review, we collect and summarize the available literature about RE toxicity and side effects. In this process, we analyze in vitro and in vivo studies that have addressed this stilbenoid. These studies suggest that RE still has an unexplored side. Finally, we discuss the new delivery methods that are being employed to overcome the low bioavailability of RE.
Collapse
Affiliation(s)
- Abdullah Shaito
- Department of Biological and Chemical Sciences, Lebanese International University, 1105 Beirut, Lebanon;
| | - Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Nadin Younes
- Department of Biomedical Science, College of Health Sciences, and Biomedical Research Center Qatar University, P.O Box 2713 Doha, Qatar; (N.Y.); (D.A.); (A.A.-M.)
| | - Hiba Hasan
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, 35392 Giessen, Germany;
| | - Sarah Halabi
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, 1105 Beirut, Lebanon;
| | - Dalal Alhababi
- Department of Biomedical Science, College of Health Sciences, and Biomedical Research Center Qatar University, P.O Box 2713 Doha, Qatar; (N.Y.); (D.A.); (A.A.-M.)
| | - Anjud Al-Mohannadi
- Department of Biomedical Science, College of Health Sciences, and Biomedical Research Center Qatar University, P.O Box 2713 Doha, Qatar; (N.Y.); (D.A.); (A.A.-M.)
| | - Wael M Abdel-Rahman
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O Box: 27272, United Arab Emirates;
| | - Ali H. Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon
| | - Gheyath K. Nasrallah
- Department of Biomedical Science, College of Health Sciences, and Biomedical Research Center Qatar University, P.O Box 2713 Doha, Qatar; (N.Y.); (D.A.); (A.A.-M.)
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O Box: 27272, United Arab Emirates;
| |
Collapse
|
45
|
Beetch M, Harandi-Zadeh S, Shen K, Lubecka K, Kitts DD, O'Hagan HM, Stefanska B. Dietary antioxidants remodel DNA methylation patterns in chronic disease. Br J Pharmacol 2019; 177:1382-1408. [PMID: 31626338 DOI: 10.1111/bph.14888] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic diseases account for over 60% of all deaths worldwide according to the World Health Organization reports. Majority of cases are triggered by environmental exposures that lead to aberrant changes in the epigenome, specifically, the DNA methylation patterns. These changes result in altered expression of gene networks and activity of signalling pathways. Dietary antioxidants, including catechins, flavonoids, anthocyanins, stilbenes and carotenoids, demonstrate benefits in the prevention and/or support of therapy in chronic diseases. This review provides a comprehensive discussion of potential epigenetic mechanisms of antioxidant compounds in reversing altered patterns of DNA methylation in chronic disease. Antioxidants remodel the DNA methylation patterns through multiple mechanisms, including regulation of epigenetic enzymes and chromatin remodelling complexes. These effects can further contribute to antioxidant properties of the compounds. On the other hand, decrease in oxidative stress itself can impact DNA methylation delivering additional link between antioxidant mechanisms and epigenetic effects of the compounds. LINKED ARTICLES: This article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc.
Collapse
Affiliation(s)
- Megan Beetch
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Sadaf Harandi-Zadeh
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Kate Shen
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Katarzyna Lubecka
- Department of Biomedical Chemistry, Medical University of Lodz, Lodz, Poland
| | - David D Kitts
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Heather M O'Hagan
- Cell, Molecular and Cancer Biology, Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana, USA
| | - Barbara Stefanska
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
46
|
Wei LB, Gao JR, Gao YC, Liu XC, Jiang H, Qin XJ. Effect of the traditional Chinese medicine Qi Teng Xiao Zhuo granules on chronic glomerulonephritis rats studied by using long noncoding RNAs expression profiling. Gene 2019; 728:144279. [PMID: 31821871 DOI: 10.1016/j.gene.2019.144279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023]
Abstract
AIM OF THE STUDY Chronic glomerulonephritis (CGN) is the most common form of primary glomerular disease. Qi Teng Xiao Zhuo granules have been proposed as a prescription of traditional Chinese medicine (TCM) for treatment of CGN, however,the comprehensive molecular mechanism underlying this therapeutic effectremains unclear to date. Our study aimed to evaluate and analyze the possible roles and molecular mechanisms of Qi Teng Xiao Zhuo granule-mediated treatment of CGN induced by adriamycin in rats. MATERIALS AND METHODS RNA-sequencing and real-time polymerase chain reaction (RT-PCR) were applied to identify specifically expressed long noncoding RNAs (lncRNAs) in glomerular tissues of rats from the control group, adriamycin-induced group, and Qi Teng Xiao Zhuo granules group (n = 3). Differentially expressed lncRNAs and mRNAs (messengerRNAs) were screened out among the 3 groups. Gene ontology (GO) and pathway enrichment analyses were performed to analyze the biological functions and pathways for mRNAs. LncRNA-mRNA co-expression network was constructed to analyse for the genes. The protein-protein interaction (PPI) network was visualized. RESULTS A total of 473 significantly up and down-regulated lncRNAs, 753 up and down-regulated mRNAs were identified. Additionally, it is worth noting that TOP2a (topoisomerase (DNA) II alpha), with the highest connectivity degree in PPI network, was enriched in variouskinds of pathways. Coding-non-coding gene co-expression networks (CNC network) were drawn based on the correlation analysis between lncRNAs and mRNAs. Ten lncRNAs, NONRATT009275.2, NONRATT025409.2, NONRATT025419.2, MSTRG.7681.1, ENSRNOT00000084373, NONRATT000512.2, NONRATT006734.2, ENSRNOT00000084386, NONRATT021738.2, ENSRNOT00000084080, were selected to analyse the relationship between LncRNAs and Qi Teng Xiao Zhuo granules via the CNC network (Coding-non-coding gene co-expression networks) and GO analysis. Real-time PCR results confirmed that the six lncRNAs were specifically expressed in the Qi Teng Xiao Zhuo granules rats. CONCLUSIONS The ten lncRNAs might play important roles in the Qi Teng Xiao Zhuo granules treatment of CGN. Key genes, such as Ptprc (protein tyrosine phosphatase, receptor type, C), TOP2a, Fos (FBJ osteosarcoma oncogene), Myc (myelocytomatosis oncogene), etc, may be crucial biomarkers for Qi Teng Xiao Zhuo granules.
Collapse
Affiliation(s)
- Liang-Bing Wei
- Department of Pharmacy, The first affiliated hospital of Anhui university of Chinese medicine, 117 Meishan Road, Hefei, China.
| | - Jia-Rong Gao
- Department of Pharmacy, The first affiliated hospital of Anhui university of Chinese medicine, 117 Meishan Road, Hefei, China.
| | - Ya-Chen Gao
- Department of Nephrology, The first affiliated hospital of Anhui university of Chinese medicine, 117 Meishan Road, Hefei, China.
| | - Xiao-Chuang Liu
- Department of Pharmacy, The first affiliated hospital of Anhui university of Chinese medicine, 117 Meishan Road, Hefei, China.
| | - Hui Jiang
- Department of Pharmacy, The first affiliated hospital of Anhui university of Chinese medicine, 117 Meishan Road, Hefei, China.
| | - Xiu-Juan Qin
- Department of Pharmacy, The first affiliated hospital of Anhui university of Chinese medicine, 117 Meishan Road, Hefei, China.
| |
Collapse
|
47
|
Chaudhary Z, Subramaniam S, Khan GM, Abeer MM, Qu Z, Janjua T, Kumeria T, Batra J, Popat A. Encapsulation and Controlled Release of Resveratrol Within Functionalized Mesoporous Silica Nanoparticles for Prostate Cancer Therapy. Front Bioeng Biotechnol 2019; 7:225. [PMID: 31620434 PMCID: PMC6759778 DOI: 10.3389/fbioe.2019.00225] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/03/2019] [Indexed: 12/27/2022] Open
Abstract
Resveratrol (RES) is a naturally existing polyphenol which exhibits anti-oxidant, anti-inflammatory, and anti-cancer properties. In recent years, RES has attracted attention for its synergistic effect with other anti-cancer drugs for the treatment of drug resistant cancers. However, RES faces the issues of poor pharmacokinetics, stability and low solubility which limits its clinical application. In present study, RES has been loaded onto uniformly sized (~60 nm) mesoporous silica nanoparticles (MSNs) to improve its in vitro anti-proliferative activity and sensitization of Docatexal in hypoxia induced drug resistance in prostate cancer. RES was efficiently encapsulated within phosphonate (negatively charged) and amine (positively charged) modified MSNs. The effect of surface functionalization was studied on the loading, in vitro release, anti-proliferative and cytotoxic potential of RES using prostate cancer cell line. At pH 7.4 both free and NH2-MSNs loaded RES showed burst release which was plateaued with almost 90% of drug released in first 12 h. On the other hand, PO3-MSNs showed significantly slower release kinetics with only 50% drug release in first 12 h at pH 7.4. At pH 5.5, however, both the PO3-MSNs and NH2-MSNs showed significant control over release (around 40% less release compared with free RES in 24 h). Phosphonate modified MSNs significantly enhanced the anti-proliferative potential of RES with an IC50 of 7.15 μM as compared to 14.86 μM of free RES whereas amine modified MSNs didn't affect proliferation with an IC50 value higher than free RES (20.45 μM). Furthermore, RES loaded onto PO3-MSNs showed robust and dose dependent sensitization of Docatexal in hypoxic cell environment which was comparable to pure RES solution. This study provides an example of applicability of MSNs loaded with polyphenols such as RES as next generation anticancer formulations for treating drug resistant cancers such as prostate cancer.
Collapse
Affiliation(s)
- Zanib Chaudhary
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sugarniya Subramaniam
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Faculty of Health, Institute of Health and Biomedical Innovation, Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology, Brisbane, QLD, Australia
- Translational Research Institute, Woolloongabba, QLD, Australia
| | - Gul Majid Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Zhi Qu
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Taskeen Janjua
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Tushar Kumeria
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
- Translational Research Institute, Woolloongabba, QLD, Australia
- Mater Research Institute, Woolloongabba, QLD, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Faculty of Health, Institute of Health and Biomedical Innovation, Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology, Brisbane, QLD, Australia
- Translational Research Institute, Woolloongabba, QLD, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
- Translational Research Institute, Woolloongabba, QLD, Australia
- Mater Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
48
|
Screening of Inhibitory Effects of Polyphenols on Akt-Phosphorylation in Endothelial Cells and Determination of Structure-Activity Features. Biomolecules 2019; 9:biom9060219. [PMID: 31195734 PMCID: PMC6627700 DOI: 10.3390/biom9060219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022] Open
Abstract
Polyphenols exert beneficial effects in type 2 diabetes mellitus (T2DM). However, their mechanism of action remains largely unknown. Endothelial Akt-kinase plays a key role in the pathogenesis of cardiovascular complications in T2DM and therefore the modulation of its activity is of interest. This work aimed to characterize effects of structurally different polyphenols on Akt-phosphorylation (pAkt) in endothelial cells (Ea.hy926) and to describe structure-activity features. A comprehensive screening via ELISA quantified the effects of 44 polyphenols (10 µM) on pAkt Ser473. The most pronounced inhibitors were luteolin (44 ± 18%), quercetin (36 ± 8%), urolithin A (35 ± 12%), apigenin, fisetin, and resveratrol; (p < 0.01). The results were confirmed by Western blotting and complemented with corresponding experiments in HUVEC cells. A strong positive and statistically significant correlation between the mean inhibitory effects of the tested polyphenols on both Akt-residues Ser473 and Thr308 (r = 0.9478, p = 0.0003) was determined by immunoblotting. Interestingly, the structural characteristics favoring pAkt inhibition partially differed from structural features enhancing the compounds’ antioxidant activity. The present study is the first to quantitatively compare the influence of polyphenols from nine different structural subclasses on pAkt in endothelial cells. These effects might be advantageous in certain T2DM-complications involving over-activation of the Akt-pathway. The suggested molecular mode of action of polyphenols involving Akt-inhibition contributes to understanding their effects on the cellular level.
Collapse
|
49
|
Sharman MJ, Verdile G, Kirubakaran S, Parenti C, Singh A, Watt G, Karl T, Chang D, Li CG, Münch G. Targeting Inflammatory Pathways in Alzheimer's Disease: A Focus on Natural Products and Phytomedicines. CNS Drugs 2019; 33:457-480. [PMID: 30900203 DOI: 10.1007/s40263-019-00619-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Studies of the brains of Alzheimer's disease (AD) patients have revealed key neuropathological features, such as the deposition of aggregates of insoluble amyloid-β (Aβ) peptides and neurofibrillary tangles (NFTs). These pathological protein deposits, including Aβ peptides (which form senile plaques) and hyperphosphorylated tau (which aggregates into NFTs), have been assumed to be 'the cause of AD'. Aβ has been extensively targeted to develop an effective disease-modifying therapy, but with limited clinical success. Emerging therapies are also now targeting further pathological processes in AD, including neuroinflammation. This review focuses on the inflammatory and oxidative stress-related changes that occur in AD, and discusses some emerging anti-inflammatory natural products and phytomedicines. Many of the promising compounds are cytokine-suppressive anti-inflammatory drugs (CSAIDs), which target the proinflammatory AP1 and nuclear factor-κB signalling pathways and inhibit the expression of many proinflammatory cytokines, such as interleukin (IL)-1, IL-6, tumour necrosis factor-α, or nitric oxide produced by inducible nitric oxide synthase. However, many of these phytomedicines have not been tested in rigorous clinical trials in AD patients. It is not yet clear if the active compounds reach an effective concentration in the brain (due to limited bioavailability) or if they can slow down AD progression in long-term trials. The authors suggest that it is crucial for both the pharmacological and complementary medicine industries to conduct and fund those studies to significantly advance the field.
Collapse
Affiliation(s)
- Matthew J Sharman
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Locked Bag 1322, Launceston, TAS, 7250, Australia
| | - Giuseppe Verdile
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, 6102, Australia
| | - Shanmugam Kirubakaran
- Department of Pharmacology, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Cristina Parenti
- Department of Pharmacology, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Ahilya Singh
- Department of Pharmacology, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Georgina Watt
- Department of Behavioural Neuroscience, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Tim Karl
- Department of Behavioural Neuroscience, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Campbelltown, NSW, 2560, Australia.,School of Science and Health, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Gerald Münch
- Department of Pharmacology, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia. .,NICM Health Research Institute, Western Sydney University, Campbelltown, NSW, 2560, Australia. .,Pharmacology Unit, School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
50
|
Fan YH, Ye R, Xu HY, Feng XH, Ma CM. Structures and In Vitro Antihepatic Fibrosis Activities of Prenylated Dihydrostilbenes and Flavonoids from Glycyrrhiza uralensis Leaves. J Food Sci 2019; 84:1224-1230. [PMID: 30990886 DOI: 10.1111/1750-3841.14592] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/21/2019] [Accepted: 03/05/2019] [Indexed: 01/28/2023]
Abstract
Glycyrrhiza uralensis is the major plant source of licorice. This study was to identify bioactive compounds from the plant's leaves in order to make better use of its aerial part. An ethanol extract of the leaves was subjected to repeated chromatography to yield 15 compounds. The structures were determined to be three novel dihydrostilbenes, based on their various spectroscopic data-glycypytilbene A (1), glycydipytilbene (2), and glycypytilbene B (3)-and 12 known compounds, α,α'-dihydro-3,5,4'-trihydroxy-4,3'-diisopentenylstilbene (4), α,α'-dihydro-3,5,3',4'-tetrahydroxy-2,5'-diisopentenylstilbene (5), 6-prenyleriodictyol (6), 5'-prenyleriodictyol (7), 6-prenylquercetin-3-Me ether (8), 5'-prenylquercetin (9), 6-prenylquercetin (10), 6-prenylnaringenin (11), 3'-prenylnaringenin (12), sigmoidin C (13), 8-[(E)-3-hydroxymethyl-2- butenyl]-eriodictyol (14), and quercetin-3-Me ether (15). Most of these chemical constituents inhibited α-glucosidase activity, with the two prenylated quercetin derivatives (9 to 10) being the greatest active (IC50 < 4.0 µg/mL). Compounds 1, 3 to 4, 6 to 7, 9 to 12 impeded the growth of human hepatic stellate cells, with the prenylated flavonoids (6 to 7, 9 to 12) being more robust than their unprenylated counterparts. PRACTICAL APPLICATIONS: This study found that Glycyrrhiza uralensis leaves contain prenylated dihydrostilbenes and flavonoids with inhibiting effects on α-glucosidase and on the proliferation of human hepatic stellate cells, which should prompt the development of G. uralensis leaves for healthy products with anti-diabetic or liver fibrosis-preventing effects.
Collapse
Affiliation(s)
- Yu-Hong Fan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock; Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education; School of Life Sciences, Inner Mongolia University, Hohhot, P.R. China
| | - Rigui Ye
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock; Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education; School of Life Sciences, Inner Mongolia University, Hohhot, P.R. China
| | - Hai-Yan Xu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock; Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education; School of Life Sciences, Inner Mongolia University, Hohhot, P.R. China
| | - Xin-Hong Feng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock; Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education; School of Life Sciences, Inner Mongolia University, Hohhot, P.R. China
| | - Chao-Mei Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock; Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education; School of Life Sciences, Inner Mongolia University, Hohhot, P.R. China
| |
Collapse
|