1
|
David J, Jeřábek F, Procházka P, Černý M, Ciobanu CV, Průša S, Šikola T, Kodambaka S, Kolíbal M. Direct Observation of Structural Phase Transformations during Phosphorene Formation on Cu(111). ACS NANO 2025; 19:4289-4298. [PMID: 39843400 PMCID: PMC11803912 DOI: 10.1021/acsnano.4c11802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Blue phosphorene, a two-dimensional, hexagonal-structured, semiconducting phosphorus, has gained attention as it is considered easier to synthesize on metal surfaces than its allotrope, black phosphorene. Recent studies report different structures of phosphorene, for example, on Cu(111), but the underlying mechanisms of their formation are not known. Here, using a combination of in situ ultrahigh vacuum low-energy electron microscopy and in vacuo scanning tunneling microscopy, we determine the time evolution of the surface structure and morphology during the deposition of phosphorus on single-crystalline Cu(111). We find that during the early stages of deposition phosphorus intermixes with Cu, resulting in copper phosphide structures. With the increasing surface concentration of phosphorus, the phosphide phase disappears, and a blue phosphorene layer forms, followed by the self-assembly of highly ordered phosphorus clusters that eventually grow into multilayer islands. We attribute the unexpected transformation of stable phosphide to a phosphorene layer to the presence of a large concentration of P2 dimers on the surface. Our results constitute direct evidence for a growth mode leading to a flat phosphorene layer via an intermediary phase, which could underpin the growth of other 2D materials on strongly interacting substrates.
Collapse
Affiliation(s)
- Jiří David
- Institute
of Physical Engineering, Brno University
of Technology, Technická 2, 616 69 Brno, Czech Republic
| | - František Jeřábek
- Institute
of Physical Engineering, Brno University
of Technology, Technická 2, 616 69 Brno, Czech Republic
| | - Pavel Procházka
- Institute
of Physical Engineering, Brno University
of Technology, Technická 2, 616 69 Brno, Czech Republic
- CEITEC
BUT, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Miroslav Černý
- Institute
of Physical Engineering, Brno University
of Technology, Technická 2, 616 69 Brno, Czech Republic
- CEITEC
BUT, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Cristian V. Ciobanu
- Department
of Mechanical Engineering, Materials Science Program, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Stanislav Průša
- Institute
of Physical Engineering, Brno University
of Technology, Technická 2, 616 69 Brno, Czech Republic
- CEITEC
BUT, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Tomáš Šikola
- Institute
of Physical Engineering, Brno University
of Technology, Technická 2, 616 69 Brno, Czech Republic
- CEITEC
BUT, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Suneel Kodambaka
- Department
of Materials Science and Engineering, Virginia
Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Miroslav Kolíbal
- Institute
of Physical Engineering, Brno University
of Technology, Technická 2, 616 69 Brno, Czech Republic
- CEITEC
BUT, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| |
Collapse
|
2
|
Su KA, Li S, Wen WC, Yamamoto Y, Arnold MS. Chemical vapor deposition of hexagonal boron nitride on germanium from borazine. RSC Adv 2024; 14:25378-25384. [PMID: 39139247 PMCID: PMC11321208 DOI: 10.1039/d4ra03704a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
The growth of hexagonal boron nitride (hBN) directly onto semiconducting substrates, like Ge and Ge on Si, promises to advance the integration of hBN into microelectronics. However, a detailed understanding of the growth and characteristics of hBN islands and monolayers on these substrates is lacking. Here, we present the growth of hBN on Ge and Ge epilayers on Si via high-vacuum chemical vapor deposition from borazine and study the effects of Ge sublimation, surface orientation, and vicinality on the shape and alignment of hBN islands. We find that suppressing Ge sublimation is essential for growing high quality hBN and that the Ge surface orientation and vicinality strongly affect hBN alignment. Interestingly, 95% of hBN islands are unidirectionally aligned on Ge(111), which may be a path toward metal- and transfer-free, single-crystalline hBN. Finally, we extend the growth time and borazine partial pressure to grow monolayer hBN on Ge and Ge epilayers on Si. These findings provide new insights into the growth of high-quality hBN on semiconducting substrates.
Collapse
Affiliation(s)
- Katherine A Su
- Department of Materials Science and Engineering, University of Wisconsin-Madison Madison Wisconsin 53706 USA
| | - Songying Li
- Department of Materials Science and Engineering, University of Wisconsin-Madison Madison Wisconsin 53706 USA
| | - Wei-Chen Wen
- IHP-Leibniz-Institut für Innovative Mikroelektronik Im Technologiepark 25 15236 Frankfurt (Oder) Germany
| | - Yuji Yamamoto
- IHP-Leibniz-Institut für Innovative Mikroelektronik Im Technologiepark 25 15236 Frankfurt (Oder) Germany
| | - Michael S Arnold
- Department of Materials Science and Engineering, University of Wisconsin-Madison Madison Wisconsin 53706 USA
| |
Collapse
|
3
|
Óvári L, Farkas AP, Palotás K, Vári G, Szenti I, Berkó A, Kiss J, Kónya Z. Hexagonal boron nitride on metal surfaces as a support and template. SURFACE SCIENCE REPORTS 2024; 79:100637. [DOI: 10.1016/j.surfrep.2024.100637] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
|
4
|
Liu C, Liu T, Zhang Z, Sun Z, Zhang G, Wang E, Liu K. Understanding epitaxial growth of two-dimensional materials and their homostructures. NATURE NANOTECHNOLOGY 2024; 19:907-918. [PMID: 38987649 DOI: 10.1038/s41565-024-01704-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/22/2024] [Indexed: 07/12/2024]
Abstract
The exceptional physical properties of two-dimensional (2D) van der Waals (vdW) materials have been extensively researched, driving advances in material synthesis. Epitaxial growth, a prominent synthesis strategy, enables the production of large-area, high-quality 2D films compatible with advanced integrated circuits. Typical 2D single crystals, such as graphene, transition metal dichalcogenides and hexagonal boron nitride, have been epitaxially grown at a wafer scale. A systematic summary is required to offer strategic guidance for the epitaxy of emerging 2D materials. Here we focus on the epitaxy methodologies for 2D vdW materials in two directions: the growth of in-plane single-crystal monolayers and the fabrication of out-of-plane homostructures. We first discuss nucleation control of a single domain and orientation control over multiple domains to achieve large-scale single-crystal monolayers. We analyse the defect levels and measures of crystalline quality of typical 2D vdW materials with various epitaxial growth techniques. We then outline technical routes for the growth of homogeneous multilayers and twisted homostructures. We further summarize the current strategies to guide future efforts in optimizing on-demand fabrication of 2D vdW materials, as well as subsequent device manufacturing for their industrial applications.
Collapse
Affiliation(s)
- Can Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing, China
| | - Tianyao Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Zhibin Zhang
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Zhipei Sun
- Department of Electronics and Nanoengineering, Quantum Technology Finland Centre of Excellence, Aalto University, Espoo, Finland
| | - Guangyu Zhang
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Enge Wang
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, China
- International Center for Quantum Materials, Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China.
- Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan, China.
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, China.
| |
Collapse
|
5
|
Wang H, Zhu X, Zhao Z, Wang X, Qian Z, Jiao L, Wang K, Li Y, Qi JJ, Asif M, Zheng Q, Xie L. In Situ Imaging of Two-Dimensional Crystal Growth Using a Heat-Resistant Optical Microscope. NANO LETTERS 2024; 24:5498-5505. [PMID: 38619556 DOI: 10.1021/acs.nanolett.4c00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Revealing low-dimensional material growth dynamics is critical for crystal growth engineering. However, in a practical high-temperature growth system, the crystal growth process is a black box because of the lack of heat-resistant imaging tools. Here, we develop a heat-resistant optical microscope and embed it in a chemical vapor deposition (CVD) system to investigate two-dimensional (2D) crystal growth dynamics. This in situ optical imaging CVD system can tolerate temperatures of ≤900 °C with a spatial resolution of ∼1 μm. The growth of monolayer MoS2 crystals was studied as a model for 2D crystal growth. The nucleation and growth process have been imaged. Model analysis and simulation have revealed the growth rate, diffusion coefficient, and spatial distribution of the precursor. More importantly, a new vertex-kink-ledge model has been suggested for monolayer crystal growth. This work provides a new technique for in situ microscopic imaging at high temperatures and fundamental insight into 2D crystal growth.
Collapse
Affiliation(s)
- Honggang Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiaokai Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoyang Zhao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinsheng Wang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Ziyue Qian
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Liying Jiao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Kangkang Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - You Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun-Jie Qi
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Muhammad Asif
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Zheng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liming Xie
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Tanaka K, Zaid H, Aoki T, Deshpande A, Hojo K, Ciobanu CV, Kodambaka S. Growth of Highly Oriented (VNbMoTaW)S 2 Layers. NANO LETTERS 2024; 24:493-500. [PMID: 38148179 DOI: 10.1021/acs.nanolett.3c04521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Compositional tunability, an indispensable parameter for modifying the properties of materials, can open up new applications for van der Waals (vdW) layered materials such as transition-metal dichalcogenides (TMDCs). To date, multielement alloy TMDC layers are obtained via exfoliation from bulk polycrystalline powders. Here, we demonstrate direct deposition of high-entropy alloy disulfide, (VNbMoTaW)S2, layers with controllable thicknesses on free-standing graphene membranes and on bare and hBN-covered Al2O3(0001) substrates via ultra-high-vacuum reactive dc magnetron sputtering of the VNbMoTaW target in Kr and H2S gas mixtures. Using a combination of density functional theory calculations, Raman spectroscopy, X-ray diffraction, scanning transmission electron microscopy coupled with energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy, we determine that the as-deposited layers are single-phase, 2H-structured, and 0001-oriented (V0.10Nb0.16Mo0.19Ta0.28W0.27)S2.44. Our synthesis route is general and applicable for heteroepitaxial growth of a wide variety of TMDC alloys and potentially other multielement alloy vdW compounds with the desired compositions.
Collapse
Affiliation(s)
- Koichi Tanaka
- Department of Materials Science and Engineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Hicham Zaid
- Department of Materials Science and Engineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Toshihiro Aoki
- Irvine Materials Research Institute (IMRI), University of California, Irvine, 644 Engineering Tower, Irvine, California 92697, United States
| | - Aditya Deshpande
- Department of Materials Science and Engineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Koki Hojo
- Graduate Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Furo-cho, Nagoya 464-8601, Japan
| | - Cristian V Ciobanu
- Department of Mechanical Engineering and Materials Science Program, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Suneel Kodambaka
- Department of Materials Science and Engineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
7
|
Zhu X, Wang H, Wang K, Xie L. Progress on the in situ imaging of growth dynamics of two-dimensional materials. NANOSCALE 2023; 15:11746-11758. [PMID: 37366323 DOI: 10.1039/d3nr01475d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
One key issue to promote the industrialization of two-dimensional (2D) materials is to grow high-quality and large-scale 2D materials. Investigations of the growth mechanism and growth dynamics are of fundamental importance for the growth of 2D material, in which in situ imaging is highly needed. By applying different in situ imaging techniques, details for growth process, including nucleation and morphology evolution, can be obtained. This review summarizes the recent progress on the in situ imaging of 2D material growth, in which the growth rate, kink dynamics, domain coalescence, growth across the substrate steps, single-atom catalysis, and intermediates have been revealed.
Collapse
Affiliation(s)
- Xiaokai Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Honggang Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Kangkang Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Liming Xie
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
8
|
Tanaka K, Arias P, Hojo K, Watanabe T, Liao ME, Aleman A, Zaid H, Goorsky MS, Kodambaka SK. Borazine Promoted Growth of Highly Oriented Thin Films. NANO LETTERS 2023; 23:4304-4310. [PMID: 37130244 DOI: 10.1021/acs.nanolett.3c00514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We report on a phenomenon, where thin films sputter-deposited on single-crystalline Al2O3(0001) substrates exposed to borazine─a precursor commonly used for the synthesis of hexagonal boron nitride layers─are more highly oriented than those grown on bare Al2O3(0001) under the same conditions. We observed this phenomenon in face-centered cubic Pd, body-centered cubic Mo, and trigonal Ta2C thin films grown on Al2O3(0001). Interestingly, intermittent exposure to borazine during the growth of Ta2C thin films on Ta2C yields better crystallinity than direct deposition of monolithic Ta2C. We attribute these rather unusual results to a combination of both enhanced adatom mobilities on, and epitaxial registry with, surfaces exposed to borazine during the deposition. We expect that our approach can potentially help improve the crystalline quality of thin films deposited on a variety of substrates.
Collapse
Affiliation(s)
- Koichi Tanaka
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Pedro Arias
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Koki Hojo
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
- Graduate Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Furo-cho, Nagoya, Aichi 464-8601, Japan
| | - Tomoyasu Watanabe
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
- Graduate Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Furo-cho, Nagoya, Aichi 464-8601, Japan
| | - Michael E Liao
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Angel Aleman
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Hicham Zaid
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Mark S Goorsky
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Suneel Kumar Kodambaka
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
9
|
Roy S, Zhang X, Puthirath AB, Meiyazhagan A, Bhattacharyya S, Rahman MM, Babu G, Susarla S, Saju SK, Tran MK, Sassi LM, Saadi MASR, Lai J, Sahin O, Sajadi SM, Dharmarajan B, Salpekar D, Chakingal N, Baburaj A, Shuai X, Adumbumkulath A, Miller KA, Gayle JM, Ajnsztajn A, Prasankumar T, Harikrishnan VVJ, Ojha V, Kannan H, Khater AZ, Zhu Z, Iyengar SA, Autreto PADS, Oliveira EF, Gao G, Birdwell AG, Neupane MR, Ivanov TG, Taha-Tijerina J, Yadav RM, Arepalli S, Vajtai R, Ajayan PM. Structure, Properties and Applications of Two-Dimensional Hexagonal Boron Nitride. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101589. [PMID: 34561916 DOI: 10.1002/adma.202101589] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/24/2021] [Indexed: 05/09/2023]
Abstract
Hexagonal boron nitride (h-BN) has emerged as a strong candidate for two-dimensional (2D) material owing to its exciting optoelectrical properties combined with mechanical robustness, thermal stability, and chemical inertness. Super-thin h-BN layers have gained significant attention from the scientific community for many applications, including nanoelectronics, photonics, biomedical, anti-corrosion, and catalysis, among others. This review provides a systematic elaboration of the structural, electrical, mechanical, optical, and thermal properties of h-BN followed by a comprehensive account of state-of-the-art synthesis strategies for 2D h-BN, including chemical exfoliation, chemical, and physical vapor deposition, and other methods that have been successfully developed in recent years. It further elaborates a wide variety of processing routes developed for doping, substitution, functionalization, and combination with other materials to form heterostructures. Based on the extraordinary properties and thermal-mechanical-chemical stability of 2D h-BN, various potential applications of these structures are described.
Collapse
Affiliation(s)
- Soumyabrata Roy
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Xiang Zhang
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Anand B Puthirath
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Ashokkumar Meiyazhagan
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Sohini Bhattacharyya
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Muhammad M Rahman
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Ganguli Babu
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Sandhya Susarla
- Materials Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Sreehari K Saju
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Mai Kim Tran
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Lucas M Sassi
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - M A S R Saadi
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Jiawei Lai
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Onur Sahin
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Seyed Mohammad Sajadi
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Bhuvaneswari Dharmarajan
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Devashish Salpekar
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Nithya Chakingal
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Abhijit Baburaj
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Xinting Shuai
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Aparna Adumbumkulath
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Kristen A Miller
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Jessica M Gayle
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Alec Ajnsztajn
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Thibeorchews Prasankumar
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | | | - Ved Ojha
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Harikishan Kannan
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Ali Zein Khater
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Zhenwei Zhu
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Sathvik Ajay Iyengar
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Pedro Alves da Silva Autreto
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Av. Dos Estados, 5001-Bangú, Santo André - SP, Santo André, 09210-580, Brazil
| | - Eliezer Fernando Oliveira
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
- Applied Physics Department, State University of Campinas - UNICAMP, Campinas, São Paulo, 13083-859, Brazil
- Center for Computational Engineering and Sciences (CCES), State University of Campinas - UNICAMP, Campinas, São Paulo, 13083-859, Brazil
| | - Guanhui Gao
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - A Glen Birdwell
- Combat Capabilities Development Command, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD, 20783, USA
| | - Mahesh R Neupane
- Combat Capabilities Development Command, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD, 20783, USA
| | - Tony G Ivanov
- Combat Capabilities Development Command, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD, 20783, USA
| | - Jaime Taha-Tijerina
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
- Engineering Department, Universidad de Monterrey, Av. Ignacio Morones Prieto 4500 Pte., San Pedro Garza Garcí, Monterrey, Nuevo Leon, 66238, Mexico
- Department of Manufacturing and Industrial Engineering, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Ram Manohar Yadav
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
- Department of Physics, VSSD College, Kanpur, Uttar Pradesh, 208002, India
| | - Sivaram Arepalli
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Robert Vajtai
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77005, USA
| |
Collapse
|
10
|
Liu H, You CY, Li J, Galligan PR, You J, Liu Z, Cai Y, Luo Z. Synthesis of hexagonal boron nitrides by chemical vapor deposition and their use as single photon emitters. NANO MATERIALS SCIENCE 2021. [DOI: 10.1016/j.nanoms.2021.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Molaei MJ. Two-dimensional (2D) materials beyond graphene in cancer drug delivery, photothermal and photodynamic therapy, recent advances and challenges ahead: A review. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.101830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|