1
|
Li S, Zhang B, Tian X, Zhao Z, Li B, Ali Z, Meng Z, Zhao W, Peng L, Hou Y. Controllable Synthesis of Out-of-Plane Grown Bi 2TeO 5 with High-κ and Anisotropy for High-Performance Field-Effect Transistors. NANO LETTERS 2025; 25:8390-8398. [PMID: 40340361 DOI: 10.1021/acs.nanolett.5c01677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Two-dimensional (2D) van der Waals (vdW) dielectrics with high-κ and anisotropy are crucial for advanced field-effect transistors (FETs) and other anisotropic electronic devices. Here, we demonstrate a 2D vdW dielectric, Bi2TeO5, that uniquely combines high-κ with pronounced anisotropy. By adjusting the precursor mass during chemical vapor deposition, we can controllably synthesize Bi2TeO5 with orientations ranging from in-plane to out-of-plane. As a dielectric in MoS2 top-gate FETs, Bi2TeO5 achieves Ion/Ioff exceeding 107, a subthreshold swing of 65.2 mV dec-1, a small hysteresis of 15 mV, and ultralow leakage current density below 10-5 A cm-2, attributed to its large effective electron mass (m* = 27.4 m0). The FET shows stable performance over 1000 cycles. Additionally, Bi2TeO5 with in-plane anisotropy induces gate-tunable electrical anisotropic behaviors in monolayer MoS2 through interface coupling. Our findings introduce a high-performance dielectric for next-generation FETs and demonstrate its potential applications in anisotropic electronics.
Collapse
Affiliation(s)
- Shibo Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, Peking University, Beijing 100871, China
| | - Biao Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, Peking University, Beijing 100871, China
| | - Xiaoting Tian
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, Peking University, Beijing 100871, China
| | - Zijing Zhao
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Bailing Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, Peking University, Beijing 100871, China
| | - Zeeshan Ali
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, Peking University, Beijing 100871, China
| | - Ziyu Meng
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Wanting Zhao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, Peking University, Beijing 100871, China
| | - Licong Peng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, Peking University, Beijing 100871, China
| | - Yanglong Hou
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, Peking University, Beijing 100871, China
- School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou 510275, China
| |
Collapse
|
2
|
Jia Z, Zhao M, Chen Q, Tian Y, Liu L, Zhang F, Zhang D, Ji Y, Camargo B, Ye K, Sun R, Wang Z, Jiang Y. Spintronic Devices upon 2D Magnetic Materials and Heterojunctions. ACS NANO 2025; 19:9452-9483. [PMID: 40053908 PMCID: PMC11924334 DOI: 10.1021/acsnano.4c14168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
In spintronics, there has been increasing interest in two-dimensional (2D) magnetic materials. The well-defined layered crystalline structure, interface conditions, and van der Waals stacking of these materials offer advantages for the development of high-performance spintronic devices. Spin-orbit torque (SOT) devices and the tunneling magnetoresistance (TMR) effect based on these materials have emerged as prominent research areas. SOT devices utilizing 2D magnetic materials can efficiently achieve SOT-driven magnetization switching by modulating the interaction between spin and orbital degrees of freedom. Notably, crystal structure symmetry breaking in 2D magnetic heterojunctions leads to field-free perpendicular magnetization switching and an extremely low SOT-driven magnetization switching current density of down to 106 A/cm2. This review provides a comprehensive overview of the construction, measurement, and mechanisms of 2D SOT heterojunctions. The TMR effect observed in 2D materials also exhibits significant potential for various applications. Specifically, the spin-filter effect in layered A-type antiferromagnets has led to giant TMR ratios approaching 19,000%. Here, we review the physical mechanisms underlying the TMR effect, along with the design of high-performance devices such as magnetic tunnel junctions (MTJ) and spin valves. This review summarizes different structural types of 2D heterojunctions and key factors that enhance TMR values. These advanced devices show promising prospects in fields such as magnetic storage. We highlight significant advancements in the integration of 2D materials in SOT, MTJ, and spin valve devices, which offer advantages such as high-density storage capability, low-power computing, and fast data transmission rates for Magnetic Random Access Memory and logic integrated circuits. These advancements are expected to revolutionize future developments in information technology.
Collapse
Affiliation(s)
- Zhiyan Jia
- Institute of Quantum Materials and Devices, School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Mengfan Zhao
- Institute of Quantum Materials and Devices, School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Qian Chen
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Yuxin Tian
- Institute of Quantum Materials and Devices, School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Lixuan Liu
- Institute of Quantum Materials and Devices, School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Fang Zhang
- Institute of Quantum Materials and Devices, School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Delin Zhang
- Institute of Quantum Materials and Devices, School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Yue Ji
- Institute of Quantum Materials and Devices, School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Bruno Camargo
- Institute of Experimental Physics, University of Warsaw, Faculty of Physics, Pasteura 5, 02-093 Warsaw, Poland
| | - Kun Ye
- Institute of Quantum Materials and Devices, School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Rong Sun
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, Cádiz 11510, Spain
| | - Zhongchang Wang
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Yong Jiang
- Institute of Quantum Materials and Devices, School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| |
Collapse
|
3
|
Cheng Y, Quan W, Wang J, Peng Y, Zhou T, Ding H, Zhang Y. Controllable Syntheses, Structure Identifications, and Property Explorations of Self-Intercalated 2D Transition Metal Chalcogenides. SMALL METHODS 2025:e2402196. [PMID: 39901363 DOI: 10.1002/smtd.202402196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/15/2025] [Indexed: 02/05/2025]
Abstract
2D transition metal dichalcogenides (2D TMDCs) have attracted intensive interest in physics and materials science-related fields, due to their exotic properties (e.g., superconductivity, charge density wave (CDW) phase transition, magnetism, electrocatalytic property). Intercalation of native metal atoms in the layered 2D TMDCs (e.g., from VS2 to V5S8 by V intercalation) can afford new stoichiometric ratios, phase states, and thus rich properties. This review hereby summarizes the recent progress in the controllable syntheses, structure characterizations, and property explorations of self-intercalated 2D transition metal chalcogenides (TMCs), with the metal elements focusing on group-V, VI, and VIII metals. The self-intercalation-related synthetic strategies will be introduced via chemical vapor deposition (CVD) and molecule beam epitaxy (MBE), especially by tuning the chemical potentials of intercalated metal elements, growth promoters, substrates, etc. Additionally, the structure/phase identifications of the self-intercalated 2D TMCs through various characterization techniques will be overviewed. More significantly, the intriguing properties in such 2D TMCs will be thoroughly discussed, such as the thickness- or composition-dependent magnetism, CDW phase transition, electrocatalytic property, etc. Finally, challenges and prospects are proposed for developing new self-intercalated 2D materials and their heterostructures and exploring their unique properties and applications.
Collapse
Affiliation(s)
- Yujin Cheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Wenzhi Quan
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Jialong Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - You Peng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Tong Zhou
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Haoxuan Ding
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yanfeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
4
|
Jian C, Yuan J, Hong W, Ju Q, Cai Q, Liu W. Dielectric Regulation in Quasi-vdW Europium Oxysulfur Compounds by Compositional Engineering for 2D Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2418328. [PMID: 39895164 DOI: 10.1002/adma.202418328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/10/2025] [Indexed: 02/04/2025]
Abstract
Advancing next-generation electronics necessitates precise control of dielectric properties in 2D materials. Here, the first synthesis of novel 2D quasi-van der Waals (vdW) europium oxysulfur (Eu2SOx) compounds, comprising hexagonal Eu₂SO₂ and tetragonal Eu₂SO₆ phases, with composition-tunable dielectric properties, is presented. Using a homodiffusive-controlled epitaxial growth method, materials are achieved with complementary characteristics: the hexagonal Eu₂SO₂ phase exhibits a high dielectric constant (≈30) paired with a moderate bandgap (≈4.56 eV), while the tetragonal Eu₂SO₆ phase offers a wider bandgap (≈5.62 eV) but a lower dielectric constant (≈20). The potential of these materials is demonstrated by integrating ultrathin Eu₂SO₂ nanoplates with molybdenum disulfide (MoS₂) field-effect transistors (FETs) via vdW forces. The resulting devices achieve a near-ideal Ion/Ioff ratio (≈10⁸), minimal hysteresis (≈5.3 mV), a low subthreshold slope (≈63.5 mV dec⁻¹), and ultralow leakage current (≈10⁻¹⁴ A). These results highlight the capacity of europium oxysulfur compounds to address the trade-off between dielectric constant and bandgap, offering tailored solutions for diverse 2D electronic applications. This work underscores the potential of composition engineering to expand the family of rare-earth oxysulfur compounds for nanoelectronics, paving the way for innovative gate dielectrics in next-generation devices.
Collapse
Affiliation(s)
- Chuanyong Jian
- State Key Laboratory of Functional Crystals and Devices, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian, 350002, China
| | - Jiashuai Yuan
- State Key Laboratory of Functional Crystals and Devices, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian, 350002, China
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Wenting Hong
- State Key Laboratory of Functional Crystals and Devices, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian, 350002, China
| | - Qiankun Ju
- State Key Laboratory of Functional Crystals and Devices, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian, 350002, China
| | - Qian Cai
- State Key Laboratory of Functional Crystals and Devices, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian, 350002, China
| | - Wei Liu
- State Key Laboratory of Functional Crystals and Devices, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
5
|
Zhao Z, Han X, Zhu S, Fang Z, Han Z, Liang Z, Li B, Zhang B, Li W, Luo Z, Peng L, Zhao X, Li X, Zhou J, Gao S, Wang C, Kläui M, Hou Y. The evolution of chemical ordering and property in Fe 1+x Se 2 upon intercalation ratios. Natl Sci Rev 2025; 12:nwae430. [PMID: 39830402 PMCID: PMC11737390 DOI: 10.1093/nsr/nwae430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/26/2024] [Accepted: 11/01/2024] [Indexed: 01/22/2025] Open
Abstract
Intercalation has been considered as an effective method to explore innovative two-dimensional (2D) materials and modify their properties. However, the relationship between intercalation concentration, structure, and property remains a largely uncharted territory, and the controllable synthesis of desired intercalated phases faces challenges. Here, a general intercalated rule for the effect of self-intercalation ratio on atomic arrangements is revealed. Then, the controllable synthesis of a series of Fe-intercalated 2D materials is realized. Scanning transmission electron microscopy illustrates that their intercalation structures undergo disordered/ordered/half-ordered/ordered transformation, which confirms the intercalated rule and proposes a new structure termed half-ordered intercalation. Notably, their magnetic and electrical properties can be significantly modulated by intercalation. Orderly intercalated nanoflakes possess room-temperature magnetism with composition-regulated magnetic domains. Moreover, Fe1.5Se2 and Fe1.6Se2 are scarce half-metallic materials showing different magneto-resistance behaviors. This work would guide the design and synthesis of new intercalated materials, and deepen the understanding of the relationship between structure and properties.
Collapse
Affiliation(s)
- Zijing Zhao
- School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Peking University, Beijing 100871, China
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiaocang Han
- School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Peking University, Beijing 100871, China
| | - Shengcai Zhu
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Zhi Fang
- School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Peking University, Beijing 100871, China
| | - Ziyi Han
- School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Peking University, Beijing 100871, China
| | - Zhongyu Liang
- State Key Laboratory for Artificial Microstructure & Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Bailing Li
- School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Peking University, Beijing 100871, China
| | - Biao Zhang
- School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Peking University, Beijing 100871, China
| | - Wei Li
- School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Peking University, Beijing 100871, China
| | - Zhaochu Luo
- State Key Laboratory for Artificial Microstructure & Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Licong Peng
- School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Peking University, Beijing 100871, China
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Peking University, Beijing 100871, China
| | - Xiangguo Li
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Jiadong Zhou
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Song Gao
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Chengxin Wang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Mathias Kläui
- Institute of Physics, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| | - Yanglong Hou
- School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Peking University, Beijing 100871, China
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
6
|
Zhong C, Zhou W, Luo X, Li T, Huang F, Hu J, Jiang Z, Hu C, Lei W, Yuan C. In Situ Manipulation of Surface Spin Configurations for Enhanced Performance in Oxygen Evolution Reactions. NANO LETTERS 2025; 25:1550-1557. [PMID: 39804581 DOI: 10.1021/acs.nanolett.4c05609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
In situ studies of the relationship between surface spin configurations and spin-related electrocatalytic reactions are crucial for understanding how magnetic catalysts enhance oxygen evolution reaction (OER) performance under magnetic fields. In this work, 2D Fe7Se8 nanosheets with rich surface spin configurations are synthesized via chemical vapor deposition. In situ magnetic force microscopy and Raman spectroscopy reveal that a 200 mT magnetic field eliminates spin-disordered domain walls, forming a spin-ordered single-domain structure, which lowers the OER energy barrier, as confirmed by theoretical calculations. Electrochemical tests show that under a 200 mT magnetic field, the OER overpotential of multidomain Fe7Se8 nanosheets at 10 mA cm-2 decreases from 346 mV to 259 mV, while the magnetic field has minimal effect on single-domain nanosheets. These findings highlight the critical role of spin configurations in enhancing electrocatalytic performance, offering new insights into the design of magnetic catalysts for industrial applications.
Collapse
Affiliation(s)
- Chao Zhong
- Jiangxi Provincial Key Laboratory of Green Hydrogen and Advanced Catalysis, College of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
| | - Wenda Zhou
- Jiangxi Provincial Key Laboratory of Green Hydrogen and Advanced Catalysis, College of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
- College of Chemistry and Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
| | - Xingfang Luo
- Jiangxi Provincial Key Laboratory of Green Hydrogen and Advanced Catalysis, College of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
| | - Tingfeng Li
- Jiangxi Provincial Key Laboratory of Green Hydrogen and Advanced Catalysis, College of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
| | - Fujin Huang
- Jiangxi Provincial Key Laboratory of Green Hydrogen and Advanced Catalysis, College of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
| | - Jiayong Hu
- Jiangxi Provincial Key Laboratory of Green Hydrogen and Advanced Catalysis, College of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
| | - Zhenzhen Jiang
- Jiangxi Provincial Key Laboratory of Green Hydrogen and Advanced Catalysis, College of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
| | - Ce Hu
- Jiangxi Provincial Key Laboratory of Green Hydrogen and Advanced Catalysis, College of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
| | - Wen Lei
- Department of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Australia
| | - Cailei Yuan
- Jiangxi Provincial Key Laboratory of Green Hydrogen and Advanced Catalysis, College of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
- College of Chemistry and Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China
| |
Collapse
|
7
|
Xue W, Wang T, Yang H, Zhang H, Dai G, Zhang S, Yang R, Quan Z, Li RW, Tang J, Song C, Xu X. Stable antivortices in multiferroic ε-Fe 2O 3 with the coalescence of misaligned grains. Nat Commun 2025; 16:440. [PMID: 39762273 PMCID: PMC11704318 DOI: 10.1038/s41467-025-55841-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
Antivortices have potential applications in future nano-functional devices, yet the formation of isolated antivortices traditionally requires nanoscale dimensions and near-zero magnetocrystalline anisotropy, limiting their broader application. Here, we propose an approach to forming antivortices in multiferroic ε-Fe2O3 with the coalescence of misaligned grains. By leveraging misaligned crystal domains, the large magnetocrystalline anisotropy energy is counterbalanced, thereby stabilizing the ground state of the antivortex. This method overcomes the traditional difficulty of observing isolated antivortices in micron-sized samples. Stable isolated antivortices were observed in truncated triangular multiferroic ε-Fe2O3 polycrystals ranging from 2.9 to 16.7 µm. Furthermore, the unpredictability of the polarity of the core was utilized as a source of entropy for designing physically unclonable functions. Our findings expand the range of antivortex materials into the multiferroic perovskite oxides and provide a potential opportunity for ferroelectric polarization control of antivortices.
Collapse
Affiliation(s)
- Wuhong Xue
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, Taiyuan, China.
| | - Tao Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, Taiyuan, China
| | - Huali Yang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Huanhuan Zhang
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei, China
| | - Guohong Dai
- School of Physics and Materials Science & Institute of Space Science and Technology, Nanchang University, Nanchang, China
| | - Sheng Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, Taiyuan, China
| | - Ruilong Yang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, Taiyuan, China
| | - Zhiyong Quan
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, Taiyuan, China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Jin Tang
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei, China.
| | - Cheng Song
- School of Materials Science and Engineering, Tsinghua University, Beijing, China.
| | - Xiaohong Xu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science of Shanxi Normal University, Taiyuan, China.
| |
Collapse
|
8
|
Jia Z, Zhao M, Chen Q, Sun R, Cao L, Ye K, Zhu T, Liu L, Tian Y, Wang Y, Du J, Zhang F, Lv W, Ling F, Zhai Y, Jiang Y, Wang Z. Spin Transport Modulation of 2D Fe 3O 4 Nanosheets Driven by Verwey Phase Transition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405945. [PMID: 39229956 PMCID: PMC11538658 DOI: 10.1002/advs.202405945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/06/2024] [Indexed: 09/05/2024]
Abstract
Realizing spin transport between heavy metal and two-dimensional (2D) magnetic materials at high Curie temperature (TC) is crucial to advanced spintronic information storage technology. Here, environmentally stable 2D nonlayered Fe3O4 nanosheets are successfully synthesized using a reproducible process and found that they exhibit vortex magnetic domains at room temperature. A Verwey phase transition temperature (TV) of ≈110 K is identified for ≈3 nm thick nanosheet through Raman characterization and spin Hall device measurement of the Pt/Fe3O4 bilayer. The anisotropic magnetoresistance ratio decreases near TV, while both the spin Hall magnetoresistance ratio and spin mixing conductance (Gr) increase at TV. As the temperature approaches 112 K, the anomalous Hall effect ratio tends to become zero. The maximum Gr reaches ≈5 × 1015 Ω-1m-2 due to the clean and flat interface between Pt and 2D nanosheet. The observed spin transport behavior in Pt/Fe3O4 spin Hall devices indicates that 2D Fe3O4 nanosheets possess potential for high-power micro spintronic storage devices applications.
Collapse
Affiliation(s)
- Zhiyan Jia
- Institute of Quantum Materials and DevicesSchool of Materials Science and EngineeringTiangong UniversityTianjin300387China
- International Iberian Nanotechnology Laboratory (INL)Braga4715‐330Portugal
| | - Mengfan Zhao
- Institute of Quantum Materials and DevicesSchool of Materials Science and EngineeringTiangong UniversityTianjin300387China
| | - Qian Chen
- Key Laboratory of Quantum Materials and Devices of Ministry of EducationSchool of PhysicsSoutheast UniversityNanjing211189China
- Key Laboratory of Nanodevices and Applications Suzhou Institute of Nano‐Tech and Nano‐Bionics CASSuzhou215123China
| | - Rong Sun
- International Iberian Nanotechnology Laboratory (INL)Braga4715‐330Portugal
| | - Lulu Cao
- Key Laboratory of Quantum Materials and Devices of Ministry of EducationSchool of PhysicsSoutheast UniversityNanjing211189China
| | - Kun Ye
- Institute of Quantum Materials and DevicesSchool of Materials Science and EngineeringTiangong UniversityTianjin300387China
| | - Tao Zhu
- Institute of Quantum Materials and DevicesSchool of Materials Science and EngineeringTiangong UniversityTianjin300387China
| | - Lixuan Liu
- Institute of Quantum Materials and DevicesSchool of Materials Science and EngineeringTiangong UniversityTianjin300387China
| | - Yuxin Tian
- Institute of Quantum Materials and DevicesSchool of Materials Science and EngineeringTiangong UniversityTianjin300387China
| | - Yi Wang
- Institute of Quantum Materials and DevicesSchool of Materials Science and EngineeringTiangong UniversityTianjin300387China
| | - Jie Du
- Institute of Quantum Materials and DevicesSchool of Materials Science and EngineeringTiangong UniversityTianjin300387China
| | - Fang Zhang
- Institute of Quantum Materials and DevicesSchool of Materials Science and EngineeringTiangong UniversityTianjin300387China
| | - Weiming Lv
- Key Laboratory of Nanodevices and Applications Suzhou Institute of Nano‐Tech and Nano‐Bionics CASSuzhou215123China
| | - FeiFei Ling
- School of Electrical and Information EngineeringTianjin UniversityTianjin300072China
- Hebei Technology Innovation Center of Phase Change Thermal Management of Data CenterHebei University of Water Resources and Electric EngineeringCangzhou061001China
| | - Ya Zhai
- Key Laboratory of Quantum Materials and Devices of Ministry of EducationSchool of PhysicsSoutheast UniversityNanjing211189China
| | - Yong Jiang
- Institute of Quantum Materials and DevicesSchool of Materials Science and EngineeringTiangong UniversityTianjin300387China
| | - Zhongchang Wang
- International Iberian Nanotechnology Laboratory (INL)Braga4715‐330Portugal
- School of ChemistryBeihang UniversityBeijing100191China
| |
Collapse
|
9
|
Xiao Y, Miao Y, Gong F, Zhang T, Zhou L, Yu Q, Hu S, Chen S. Strain Self-Adaptive Iron Selenides Toward Stable Na +-Ion Batteries with Impressive Initial Coulombic Efficiency. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311703. [PMID: 38459649 DOI: 10.1002/smll.202311703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/08/2024] [Indexed: 03/10/2024]
Abstract
High tap density electrodes play a vital role in developing rechargeable batteries with high volumetric capacities, however, developing advanced electrodes with satisfied capacity, excellent structural stability, and achieving the resulted batteries with a high initial Coulombic efficiency (ICE) and good rate capability with long lifespan simultaneously, are still an intractable challenge. Herein, an ultrahigh ICE of 94.1% and stable cycling of carbon-free iron selenides anode is enabled with a high tap density of 2.57 g cm-3 up to 4000 cycles at 5 A g-1 through strain-modulating by constructing a homologous heterostructure. Systematical characterization and theoretical calculation show that the self-adaptive homologous heterointerface alleviates the stress of the iron selenide anodes during cycling processes and subsequently improves the stability of the assembled batteries. Additionally, the well-formed homologous heterostructure also contributes to the rapid Na+ diffusion kinetic, increased charge transfer, and good reversibility of the transformation reactions, endowing the appealing rate capability of carbon-free iron selenides. The proposed design strategy provides new insight and inspiration to aid in the ongoing quest for advanced electrode materials with high tap densities and excellent stability.
Collapse
Affiliation(s)
- Ying Xiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yue Miao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fenglian Gong
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tonghui Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Luoyuan Zhou
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qingtao Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shilin Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shimou Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
10
|
Jia Z, Chen Q, Wang W, Sun R, Li Z, Hübner R, Zhou S, Cai M, Lv W, Yu Z, Zhang F, Zhao M, Tian S, Liu L, Zeng Z, Jiang Y, Wang Z. Multi-Level Switching of Spin-Torque Ferromagnetic Resonance in 2D Magnetite. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401944. [PMID: 38704733 PMCID: PMC11234467 DOI: 10.1002/advs.202401944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/08/2024] [Indexed: 05/07/2024]
Abstract
2D magnetic materials hold substantial promise in information storage and neuromorphic device applications. However, achieving a 2D material with high Curie temperature (TC), environmental stability, and multi-level magnetic states remains a challenge. This is particularly relevant for spintronic devices, which require multi-level resistance states to enhance memory density and fulfil low power consumption and multi-functionality. Here, the synthesis of 2D non-layered triangular and hexagonal magnetite (Fe3O4) nanosheets are proposed with high TC and environmental stability, and demonstrate that the ultrathin triangular nanosheets show broad antiphase boundaries (bAPBs) and sharp antiphase boundaries (sAPBs), which induce multiple spin precession modes and multi-level resistance. Conversely, the hexagonal nanosheets display slip bands with sAPBs associated with pinning effects, resulting in magnetic-field-driven spin texture reversal reminiscent of "0" and "1" switching signals. In support of the micromagnetic simulation, direct explanation is offer to the variation in multi-level resistance under a microwave field, which is ascribed to the multi-spin texture magnetization structure and the randomly distributed APBs within the material. These novel 2D magnetite nanosheets with unique spin textures and spin dynamics provide an exciting platform for constructing real multi-level storage devices catering to emerging information storage and neuromorphic computing requirements.
Collapse
Affiliation(s)
- Zhiyan Jia
- Institute of Quantum Materials and DevicesSchool of Materials Science and EngineeringTiangong UniversityTianjin300387China
- International Iberian Nanotechnology Laboratory (INL)Braga4715‐330Portugal
| | - Qian Chen
- Key Laboratory of Quantum Materials and Devices of Ministry of EducationSchool of PhysicsSoutheast UniversityNanjing211189China
- Key Laboratory of Nanodevices and Applications Suzhou Institute of Nano‐Tech and Nano‐Bionics CASSuzhou215123China
| | - Wenjie Wang
- International Iberian Nanotechnology Laboratory (INL)Braga4715‐330Portugal
- College of ScienceChina Agricultural UniversityBeijing100083China
| | - Rong Sun
- International Iberian Nanotechnology Laboratory (INL)Braga4715‐330Portugal
| | - Zichao Li
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐RossendorfBautzner Landstrasse 400D‐01328DresdenGermany
| | - René Hübner
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐RossendorfBautzner Landstrasse 400D‐01328DresdenGermany
| | - Shengqiang Zhou
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐RossendorfBautzner Landstrasse 400D‐01328DresdenGermany
| | - Miming Cai
- Department of PhysicsBeijing Normal UniversityBeijing100875China
| | - Weiming Lv
- Key Laboratory of Nanodevices and Applications Suzhou Institute of Nano‐Tech and Nano‐Bionics CASSuzhou215123China
| | - Zhipeng Yu
- Key Laboratory of Nanodevices and Applications Suzhou Institute of Nano‐Tech and Nano‐Bionics CASSuzhou215123China
| | - Fang Zhang
- Institute of Quantum Materials and DevicesSchool of Materials Science and EngineeringTiangong UniversityTianjin300387China
| | - Mengfan Zhao
- Institute of Quantum Materials and DevicesSchool of Materials Science and EngineeringTiangong UniversityTianjin300387China
| | - Sen Tian
- Institute of Quantum Materials and DevicesSchool of Materials Science and EngineeringTiangong UniversityTianjin300387China
| | - Lixuan Liu
- Institute of Quantum Materials and DevicesSchool of Materials Science and EngineeringTiangong UniversityTianjin300387China
| | - Zhongming Zeng
- Key Laboratory of Nanodevices and Applications Suzhou Institute of Nano‐Tech and Nano‐Bionics CASSuzhou215123China
| | - Yong Jiang
- Institute of Quantum Materials and DevicesSchool of Materials Science and EngineeringTiangong UniversityTianjin300387China
| | - Zhongchang Wang
- International Iberian Nanotechnology Laboratory (INL)Braga4715‐330Portugal
- School of ChemistryBeihang UniversityBeijing100191China
| |
Collapse
|
11
|
Liu L, Yu Q, Xia J, Shi W, Wang D, Wu J, Xie L, Chen Y, Jiao L. 2D Air-Stable Nonlayered Ferrimagnetic FeCr 2S 4 Crystals Synthesized via Chemical Vapor Deposition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401338. [PMID: 38506613 DOI: 10.1002/adma.202401338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/11/2024] [Indexed: 03/21/2024]
Abstract
The discovery of intrinsic 2D magnetic materials has opened up new opportunities for exploring magnetic properties at atomic layer thicknesses, presenting potential applications in spintronic devices. Here a new 2D ferrimagnetic crystal of nonlayered FeCr2S4 is synthesized with high phase purity using chemical vapor deposition. The obtained 2D FeCr2S4 exhibits perpendicular magnetic anisotropy, as evidenced by the out-of-plane/in-plane Hall effect and anisotropic magnetoresistance. Theoretical calculations further elucidate that the observed magnetic anisotropy can be attributed to its surface termination structure. By combining temperature-dependent magneto-transport and polarized Raman spectroscopy characterizations, it is discovered that both the measured Curie temperature and the critical temperature at which a low energy magnon peak disappeared remains constant, regardless of its thickness. Magnetic force microscopy measurements show the flipping process of magnetic domains. The exceptional air-stability of the 2D FeCr2S4 is also confirmed via Raman spectroscopy and Hall hysteresis loops. The robust anisotropic ferrimagnetism, the thickness-independent of Curie temperature, coupled with excellent air-stability, make 2D FeCr2S4 crystals highly attractive for future spintronic devices.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qin Yu
- Research Institute of Petroleum Processing, SINOPEC, Beijing, 100083, China
| | - Jing Xia
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Centre of Material Science and Optoelectronic Engineering, University of Chinese Academy of Science, Beijing, 100049, China
| | - Wenxiao Shi
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Juanxia Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liming Xie
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuansha Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liying Jiao
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
12
|
Cheng D, Liu J, Wei B. Growth of Quasi-Two-Dimensional CrTe Nanoflakes and CrTe/Transition Metal Dichalcogenide Heterostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:868. [PMID: 38786824 PMCID: PMC11123775 DOI: 10.3390/nano14100868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Two-dimensional (2D) van der Waals layered materials have been explored in depth. They can be vertically stacked into a 2D heterostructure and represent a fundamental way to explore new physical properties and fabricate high-performance nanodevices. However, the controllable and scaled growth of non-layered quasi-2D materials and their heterostructures is still a great challenge. Here, we report a selective two-step growth method for high-quality single crystalline CrTe/WSe2 and CrTe/MoS2 heterostructures by adopting a universal CVD strategy with the assistance of molten salt and mass control. Quasi-2D metallic CrTe was grown on pre-deposited 2D transition metal dichalcogenides (TMDC) under relatively low temperatures. A 2D CrTe/TMDC heterostructure was established to explore the interface's structure using scanning transmission electron microscopy (STEM), and also demonstrate ferromagnetism in a metal-semiconductor CrTe/TMDC heterostructure.
Collapse
Affiliation(s)
| | | | - Bin Wei
- School of Materials, Sun Yat-sen University, Shenzhen 518107, China; (D.C.); (J.L.)
| |
Collapse
|
13
|
Zhang J, Xiao Y, Li K, Chen Y, Liu S, Luo W, Liu X, Liu S, Wang Y, Li SY, Pan A. Microscopy aided detection of the self-intercalation mechanism and in situ electronic properties in chromium selenide. NANOSCALE 2024; 16:8028-8035. [PMID: 38546273 DOI: 10.1039/d4nr00048j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Two-dimensional (2D) chromium-based self-intercalated materials Cr1+nX2 (0 ≤ n ≤ 1, X = S, Se, Te) have attracted much attention because of their tunable magnetism with good environmental stability. Intriguingly, the magnetic and electrical properties of the materials can be effectively tuned by altering the coverage and spatial arrangement of the intercalated Cr (ic-Cr) within the van der Waals gap, contributing to different stoichiometries. Several different Cr1+nX2 systems have been widely investigated recently; however, those with the same stoichiometric ratio (such as Cr1.25Te2) were reported to exhibit disparate magnetic properties, which still lacks explanation. Therefore, a systematic in situ study of the mechanisms with microscopy techniques is in high demand to look into the origin of these discrepancies. Herein, 2D self-intercalated Cr1+nSe2 nanoflakes were synthesized as a platform to conduct the characterization. Combining scanning transmission electron microscopy (STEM) and scanning tunneling microscopy (STM), we studied in depth the microscopic structure and local electronic properties of the Cr1+nSe2 nanoflakes. The self-intercalation mechanism of ic-Cr and local stoichiometric-ratio variation in a Cr1+nSe2 ultrathin nanoflake is clearly detected at the nanometer scale. Scanning tunneling spectroscopy (STS) measurements indicate that Cr1.5Se2/Cr2Se2 and Cr1.25Se2 exhibit conductive and semiconductive behaviors, respectively. The STM tip manipulation method is further applied to manipulate the microstructure of Cr1+nSe2, which successfully produces clean zigzag-type boundaries. Our systematic microscopy study paves the way for the in-depth study of the magnetic mechanism of 2D self-intercalated magnets at the nano/micro scale and the development of new magnetic and spintronic devices.
Collapse
Affiliation(s)
- Jinding Zhang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration and College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China.
| | - Yulong Xiao
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration and College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China.
| | - Kaihui Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration and College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China.
| | - Ying Chen
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration and College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China.
| | - Songlong Liu
- School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Wenjie Luo
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration and College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China.
| | - Xueying Liu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration and College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China.
| | - Shiying Liu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration and College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China.
| | - Yiliu Wang
- School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Si-Yu Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration and College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China.
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, People's Republic of China
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration and College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China.
- School of Physics and Electronics, Hunan Normal University, Changsha 410081, People's Republic of China.
| |
Collapse
|
14
|
Liu J, Wan S, Li B, Li B, Liang J, Lu P, Zhang Z, Li W, Li X, Huangfu Y, Wu R, Song R, Yang X, Liu C, Hong R, Duan X, Li J, Duan X. Highly Robust Room-Temperature Interfacial Ferromagnetism in Ultrathin Co 2Si Nanoplates. NANO LETTERS 2024; 24:3768-3776. [PMID: 38477579 DOI: 10.1021/acs.nanolett.4c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The reduced dimensionality and interfacial effects in magnetic nanostructures open the feasibility to tailor magnetic ordering. Here, we report the synthesis of ultrathin metallic Co2Si nanoplates with a total thickness that is tunable to 2.2 nm. The interfacial magnetism coupled with the highly anisotropic nanoplate geometry leads to strong perpendicular magnetic anisotropy and robust hard ferromagnetism at room temperature, with a Curie temperature (TC) exceeding 950 K and a coercive field (HC) > 4.0 T at 3 K and 8750 Oe at 300 K. Theoretical calculations suggest that ferromagnetism originates from symmetry breaking and undercoordinated Co atoms at the Co2Si and SiO2 interface. With protection by the self-limiting intrinsic oxide, the interfacial ferromagnetism of the Co2Si nanoplates exhibits excellent environmental stability. The controllable growth of ambient stable Co2Si nanoplates as 2D hard ferromagnets could open exciting opportunities for fundamental studies and applications in Si-based spintronic devices.
Collapse
Affiliation(s)
- Jialing Liu
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Si Wan
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bo Li
- College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Bailing Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jingyi Liang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ping Lu
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zucheng Zhang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Wei Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xin Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ying Huangfu
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ruixia Wu
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Rong Song
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiangdong Yang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Zhejiang Institute of Tianjin University, Ningbo 315211, China
| | - Chang Liu
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Ruohao Hong
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jia Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xidong Duan
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
15
|
Cui F, He K, Wu S, Zhang H, Lu Y, Li Z, Hu J, Pan S, Zhu L, Huan Y, Li B, Duan X, Ji Q, Zhao X, Zhang Y. Stoichiometry-Tunable Synthesis and Magnetic Property Exploration of Two-Dimensional Chromium Selenides. ACS NANO 2024; 18:6276-6285. [PMID: 38354364 DOI: 10.1021/acsnano.3c10609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Emerging 2D chromium-based dichalcogenides (CrXn (X = S, Se, Te; 0 < n ≤ 2)) have provoked enormous interests due to their abundant structures, intriguing electronic and magnetic properties, excellent environmental stability, and great application potentials in next generation electronics and spintronics devices. Achieving stoichiometry-controlled synthesis of 2D CrXn is of paramount significance for such envisioned investigations. Herein, we report the stoichiometry-controlled syntheses of 2D chromium selenide (CrxSey) materials (rhombohedral Cr2Se3 and monoclinic Cr3Se4) via a Cr-self-intercalation route by designing two typical chemical vapor deposition (CVD) strategies. We have also clarified the different growth mechanisms, distinct chemical compositions, and crystal structures of the two type materials. Intriguingly, we reveal that the ultrathin Cr2Se3 nanosheets exhibit a metallic feature, while the Cr3Se4 nanosheets present a transition from p-type semiconductor to metal upon increasing the flake thickness. Moreover, we have also uncovered the ferromagnetic properties of 2D Cr2Se3 and Cr3Se4 below ∼70 K and ∼270 K, respectively. Briefly, this research should promote the stoichiometric-ratio controllable syntheses of 2D magnetic materials, and the property explorations toward next generation spintronics and magneto-optoelectronics related applications.
Collapse
Affiliation(s)
- Fangfang Cui
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Kun He
- College of Semiconductors (College of Integrated Circuits), School of Physics and Electronics, Hunan University, Changsha 410082, P. R. China
| | - Shengqiang Wu
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Hongmei Zhang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yue Lu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Zhenzhu Li
- Department of Materials, Imperial College London, London SW7 2AZ, U.K
| | - Jingyi Hu
- Academy for Advanced Interdisciplinary Studies and School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Shuangyuan Pan
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Lijie Zhu
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Yahuan Huan
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Bo Li
- College of Semiconductors (College of Integrated Circuits), School of Physics and Electronics, Hunan University, Changsha 410082, P. R. China
| | - Xidong Duan
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Qingqing Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Yanfeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
16
|
Han Z, Han X, Wu S, Zhang Q, Hu W, Meng Y, Liang Y, Hu J, Li L, Zhang Q, Zhang Y, Zhao X, Geng D, Hu W. Phase and Composition Engineering of Self-Intercalated 2D Metallic Tantalum Sulfide for Second-Harmonic Generation. ACS NANO 2024; 18:6256-6265. [PMID: 38354399 DOI: 10.1021/acsnano.3c10383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Self-intercalation in two-dimensional (2D) materials is significant, as it offers a versatile approach to modify material properties, enabling the creation of interesting functional materials, which is essential in advancing applications across various fields. Here, we define ic-2D materials as covalently bonded compounds that result from the self-intercalation of a metal into layered 2D compounds. However, precisely growing ic-2D materials with controllable phases and self-intercalation concentrations to fully exploit the applications in the ic-2D family remains a great challenge. Herein, we demonstrated the controlled synthesis of self-intercalated H-phase and T-phase Ta1+xS2 via a temperature-driven chemical vapor deposition (CVD) approach with a viable intercalation concentration spanning from 10% to 58%. Atomic-resolution scanning transmission electron microscopy-annular dark field imaging demonstrated that the self-intercalated Ta atoms occupy the octahedral vacancies located at the van der Waals gap. The nonperiodic Ta atoms break the centrosymmetry structure and Fermi surface properties of intrinsic TaS2. Therefore, ic-2D T-phase Ta1+xS2 consistently exhibit a spontaneous nonlinear optical (NLO) effect regardless of the sample thickness and self-intercalation concentrations. Our results propose an approach to activate the NLO response of centrosymmetric 2D materials, achieving the modulation of a wide range of optoelectronic properties via nonperiodic self-intercalation in the ic-2D family.
Collapse
Affiliation(s)
- Ziyi Han
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Xiaocang Han
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shengqiang Wu
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Qing Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Wenchao Hu
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yuan Meng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yin Liang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Jingyi Hu
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lin Li
- Tianjin Normal University, Tianjin 300387, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Qing Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yanfeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- AI for Science Institute, Beijing 100084, China
| | - Dechao Geng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
17
|
Hu Y, Rogée L, Wang W, Zhuang L, Shi F, Dong H, Cai S, Tay BK, Lau SP. Extendable piezo/ferroelectricity in nonstoichiometric 2D transition metal dichalcogenides. Nat Commun 2023; 14:8470. [PMID: 38123543 PMCID: PMC10733392 DOI: 10.1038/s41467-023-44298-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Engineering piezo/ferroelectricity in two-dimensional materials holds significant implications for advancing the manufacture of state-of-the-art multifunctional materials. The inborn nonstoichiometric propensity of two-dimensional transition metal dichalcogenides provides a spiffy ready-available solution for breaking inversion centrosymmetry, thereby conducing to circumvent size effect challenges in conventional perovskite oxide ferroelectrics. Here, we show the extendable and ubiquitous piezo/ferroelectricity within nonstoichiometric two-dimensional transition metal dichalcogenides that are predominantly centrosymmetric during standard stoichiometric cases. The emerged piezo/ferroelectric traits are aroused from the sliding of van der Waals layers and displacement of interlayer metal atoms triggered by the Frankel defects of heterogeneous interlayer native metal atom intercalation. We demonstrate two-dimensional chromium selenides nanogenerator and iron tellurides ferroelectric multilevel memristors as two representative applications. This innovative approach to engineering piezo/ferroelectricity in ultrathin transition metal dichalcogenides may provide a potential avenue to consolidate piezo/ferroelectricity with featured two-dimensional materials to fabricate multifunctional materials and distinguished multiferroic.
Collapse
Affiliation(s)
- Yi Hu
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
- Centre for Micro- and Nano-Electronics (CMNE), School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 638798, Singapore
| | - Lukas Rogée
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Weizhen Wang
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Lyuchao Zhuang
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Fangyi Shi
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Hui Dong
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Songhua Cai
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Beng Kang Tay
- Centre for Micro- and Nano-Electronics (CMNE), School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 638798, Singapore
- IRL 3288 CINTRA (CNRS-NTU-THALES Research Alliances), Nanyang Technological University, Singapore, 637553, Singapore
| | - Shu Ping Lau
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China.
| |
Collapse
|
18
|
Lee JJ, Chu YH, Yen ZL, Muthu J, Ting CC, Huang SY, Hofmann M, Hsieh YP. Vacancy-plane-mediated exfoliation of sub-monolayer 2D pyrrhotite. NANOSCALE ADVANCES 2023; 5:4074-4079. [PMID: 37560415 PMCID: PMC10408576 DOI: 10.1039/d3na00263b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/06/2023] [Indexed: 08/11/2023]
Abstract
Conventional exfoliation exploits the anisotropy in bonding or compositional character to delaminate 2D materials with large lateral size and atomic thickness. This approach, however, limits the choice to layered host crystals with a specific composition. Here, we demonstrate the exfoliation of a crystal along planes of ordered vacancies as a novel route toward previously unattainable 2D crystal structures. Pyrrhotite, a non-stoichiometric iron sulfide, was utilized as a prototype system due to its complex vacancy superstructure. Bulk pyrrhotite crystals were synthesized by gas-assisted bulk conversion, and their diffraction pattern revealed a 4C superstructure with 3 vacancy interfaces within the unit cell. Electrochemical intercalation and subsequent delamination yield ultrathin 2D flakes with a large lateral extent. Atomic force microscopy confirms that exfoliation occurs at all three supercell interfaces, resulting in the isolation of 2D structures with sub-unit cell thicknesses of 1/2 and 1/4 monolayers. The impact of controlling the morphology of 2D materials below the monolayer limit on 2D magnetic properties was investigated. Bulk pyrrhotite was shown to exhibit ferrimagnetic ordering that agrees with theoretical predictions and that is retained after exfoliation. A complex magnetic domain structure and an enhanced impact of vacancy planes on magnetization emphasize the potential of our synthesis approach as a powerful platform for modulating magnetic properties in future electronics and spintronics.
Collapse
Affiliation(s)
- Jian-Jhang Lee
- Department of Physics, National Taiwan University Taipei Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica Taipei Taiwan
| | - Yi-Hung Chu
- Institute of Atomic and Molecular Sciences, Academia Sinica Taipei Taiwan
- Graduate Institute of Opto-Mechatronics, National Chung Cheng University Chiayi Taiwan
| | - Zhi-Long Yen
- Department of Physics, National Taiwan University Taipei Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica Taipei Taiwan
| | - Jeyavelan Muthu
- Department of Physics, National Taiwan University Taipei Taiwan
| | - Chu-Chi Ting
- Graduate Institute of Opto-Mechatronics, National Chung Cheng University Chiayi Taiwan
| | - Ssu-Yen Huang
- Department of Physics, National Taiwan University Taipei Taiwan
| | - Mario Hofmann
- Department of Physics, National Taiwan University Taipei Taiwan
| | - Ya-Ping Hsieh
- Institute of Atomic and Molecular Sciences, Academia Sinica Taipei Taiwan
- Graduate Institute of Opto-Mechatronics, National Chung Cheng University Chiayi Taiwan
| |
Collapse
|
19
|
Wang B, Yao Y, Hong W, Hong Z, He X, Wang T, Jian C, Ju Q, Cai Q, Sun Z, Liu W. The Controllable Synthesis of High-Quality Two-Dimensional Iron Sulfide with Specific Phases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207325. [PMID: 36919484 DOI: 10.1002/smll.202207325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/20/2023] [Indexed: 06/08/2023]
Abstract
2D Fe-chalcogenides have drawn significant attention due to their unique structural phases and distinct properties in exploring magnetism and superconductivity. However, it remains a significant challenge to synthesize 2D Fe-chalcogenides with specific phases in a controllable manner since Fe-chalcogenides have multiple phases. Herein, a molecular sieve-assisted strategy is reported for synthesizing ultrathin 2D iron sulfide on substrates via the chemical vapor deposition method. Using a molecular sieve and tuning growth temperatures to control the partial pressures of precursor concentrations, hexagonal FeS, tetragonal FeS, and non-stoichiometric Fe7 S8 nanoflakes can be precisely synthesized. The 2D h-FeS, t-FeS, and Fe7 S8 have high conductivities of 5.4 × 105 S m-1 , 5.8 × 105 S m-1 , and 1.9 × 106 S m-1 . 2D tetragonal FeS shows a superconducting transition at 4 K. The spin reorientation at ≈30 K on the non-stoichiometric Fe7 S8 nanoflakes with ferrimagnetism up to room temperature has also been observed. The controllable synthesis of various phases of 2D iron sulfide may provide a route for synthesizing other 2D compounds with various phases.
Collapse
Affiliation(s)
- Bicheng Wang
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Yu Yao
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Wenting Hong
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Zhaoan Hong
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Xu He
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Taiku Wang
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Chuanyong Jian
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Qiankun Ju
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Qian Cai
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Zhihua Sun
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Wei Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
20
|
Wu H, Guo J, Zhaxi S, Xu H, Mi S, Wang L, Chen S, Xu R, Ji W, Pang F, Cheng Z. Controllable CVD Growth of 2D Cr 5Te 8 Nanosheets with Thickness-Dependent Magnetic Domains. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37205739 DOI: 10.1021/acsami.3c02446] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
As a unique 2D magnetic material with self-intercalated structure, Cr5Te8 exhibits many intriguing magnetic properties. While its ferromagnetism of Cr5Te8 has been previously reported, the research on its magnetic domain remains unexplored. Herein, we have successfully fabricated 2D Cr5Te8 nanosheets with controlled thickness and lateral size by chemical vapor deposition (CVD). Then magnetic property measurement system revealed Cr5Te8 nanosheets exhibiting intense out-of-plane ferromagnetism with a Curie temperature (TC) of 176 K. Significantly, we reported for the first time two magnetic domains: magnetic bubbles and thickness-dependent maze-like magnetic domains in our Cr5Te8 nanosheets by cryogenic magnetic force microscopy (MFM). The domain width of the maze-like magnetic domains increases rapidly with decreasing sample thickness; meanwhile, the domain contrast decreases. This indicates the dominant role of ferromagnetism shifts from dipolar interactions to magnetic anisotropy. Our research not only establishes a pathway for the controllable growth of 2D magnetic materials but also points toward novel avenues for regulating magnetic phases and methodically tuning domain characteristics.
Collapse
Affiliation(s)
- Hanxiang Wu
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China
| | - Jianfeng Guo
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China
| | - Suonan Zhaxi
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China
| | - Hua Xu
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China
| | - Shuo Mi
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China
| | - Le Wang
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China
| | - Shanshan Chen
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China
| | - Rui Xu
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China
| | - Wei Ji
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China
| | - Fei Pang
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China
| | - Zhihai Cheng
- Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China
| |
Collapse
|
21
|
Liu C, Li Z, Hu J, Duan H, Wang C, Cai L, Feng S, Wang Y, Liu R, Hou D, Liu C, Zhang R, Zhu L, Niu Y, Zakharov AA, Sheng Z, Yan W. Probing the Néel-Type Antiferromagnetic Order and Coherent Magnon-Exciton Coupling in Van Der Waals VPS 3. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300247. [PMID: 37071057 DOI: 10.1002/adma.202300247] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/01/2023] [Indexed: 06/13/2023]
Abstract
2D van der Waals (vdW) antiferromagnets have received intensive attention due to their terahertz resonance, multilevel magnetic-order states, and ultrafast spin dynamics. However, accurately identifying their magnetic configuration still remains a challenge owing to the lack of net magnetization and insensitivity to external fields. In this work, the Néel-type antiferromagnetic (AFM) order in 2D antiferromagnet VPS3 with the out-of-plane anisotropy, which is demonstrated by the temperature-dependent spin-phonon coupling and second-harmonic generation (SHG), is experimentally probed. This long-range AFM order even persists at the ultrathin limit. Furthermore, strong interlayer exciton-magnon coupling (EMC) upon the Néel-type AFM order is detected based on the monolayer WSe2 /VPS3 heterostructure, which induces an enhanced excitonic state and further certifies the Néel-type AFM order of VPS3 . The discovery provides optical routes as the novel platform to study 2D antiferromagnets and promotes their potential applications in magneto-optics and opto-spintronic devices.
Collapse
Affiliation(s)
- Chaocheng Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Zhi Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Jiyu Hu
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Hengli Duan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Liang Cai
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Sihua Feng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Yao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Ruiqi Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - De Hou
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China
| | - Caixing Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China
| | - Ranran Zhang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China
| | - Lin Zhu
- MAX IV Laboratory, Lund University, Lund, 22100, Sweden
| | - Yuran Niu
- MAX IV Laboratory, Lund University, Lund, 22100, Sweden
| | | | - Zhigao Sheng
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
22
|
Yang Y, Jia L, Wang D, Zhou J. Advanced Strategies in Synthesis of Two-Dimensional Materials with Different Compositions and Phases. SMALL METHODS 2023; 7:e2201585. [PMID: 36739597 DOI: 10.1002/smtd.202201585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Indexed: 06/18/2023]
Abstract
In recent years, 2D materials-Ma Xb with different compositions and phases have attracted tremendous attention due to their diverse structures and electronic features. The common thermodynamically stable 2H and metastable 1T phases have been extensively studied, however, there are many unusual compositions and phases with novel physical properties that have yet to be explored. Therefore, summarization of the synthesis strategies, atomic structures, and the unique physical properties of 2D materials with different compositions and phases is very important for their development. In this review, the strategies including chemical vapor deposition, intercalation, atomic layer deposition, chemical vapor transport, and electrostatic gating for synthesizing various 2D materials with different phases and compositions are first summarized. Specially, the intercalation strategies including heterogeneous- and self-intercalation for controllable phases and compositions fabrication are mainly discussed. Then, the novel atomic structures of 2D materials are analyzed, followed by the fascinating physical properties including ferroelectricity, ferromagnetism, superconductivity, and so on. Finally, the conclusion and outlook are offered including the challenges and future prospects of 2D materials with different compositions and phases.
Collapse
Affiliation(s)
- Yang Yang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Lin Jia
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Dainan Wang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiadong Zhou
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
- MIIT Key Laboratory of Complex-field Intelligent Exploration, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
23
|
Wang P, Ge J, Luo J, Wang H, Song L, Li Z, Yang J, Wang Y, Du R, Feng W, Wang J, He J, Shi J. Interisland-Distance-Mediated Growth of Centimeter-Scale Two-Dimensional Magnetic Fe 3O 4 Arrays with Unidirectional Domain Orientations. NANO LETTERS 2023; 23:1758-1766. [PMID: 36790274 DOI: 10.1021/acs.nanolett.2c04535] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Two-dimensional (2D) nanosheet arrays with unidirectional orientations are of great significance for synthesizing wafer-scale single crystals. Although great efforts have been devoted, the growth of atomically thin magnetic nanosheet arrays and single crystals is still unaddressed. Here we design an interisland-distance-mediated chemical vapor deposition strategy to synthesize centimeter-scale atomically thin Fe3O4 arrays with unidirectional orientations on mica. The unidirectional alignment of nearly all the Fe3O4 nanosheets is driven by a dual-coupling-guided growth mechanism. The Fe3O4/mica interlayer interaction induces two preferred antiparallel orientations, whereas the interisland interaction of Fe3O4 breaks the energy degeneracy of antiparallel orientations. The room-temperature long-range ferrimagnetic order and thickness-tunable magnetic domain evolution are uncovered in atomically thin Fe3O4. This strategy to tune the orientations of nanosheets through the an interisland interaction can guide the synthesis of other 2D transition-metal oxides, thereby laying a solid foundation for future spintronic device applications at the integration level.
Collapse
Affiliation(s)
- Peng Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, People's Republic of China
| | - Jun Ge
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Jiawei Luo
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Hao Wang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Luying Song
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, People's Republic of China
| | - Zhongwei Li
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Junbo Yang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yuzhu Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, People's Republic of China
| | - Ruofan Du
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, People's Republic of China
| | - Wang Feng
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, People's Republic of China
| | - Jian Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, People's Republic of China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, People's Republic of China
| | - Jun He
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Jianping Shi
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
24
|
Zhao Z, Fang Z, Han X, Yang S, Zhou C, Zeng Y, Zhang B, Li W, Wang Z, Zhang Y, Zhou J, Zhou J, Ye Y, Hou X, Zhao X, Gao S, Hou Y. A general thermodynamics-triggered competitive growth model to guide the synthesis of two-dimensional nonlayered materials. Nat Commun 2023; 14:958. [PMID: 36810290 PMCID: PMC9944324 DOI: 10.1038/s41467-023-36619-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/08/2023] [Indexed: 02/23/2023] Open
Abstract
Two-dimensional (2D) nonlayered materials have recently provoked a surge of interest due to their abundant species and attractive properties with promising applications in catalysis, nanoelectronics, and spintronics. However, their 2D anisotropic growth still faces considerable challenges and lacks systematic theoretical guidance. Here, we propose a general thermodynamics-triggered competitive growth (TTCG) model providing a multivariate quantitative criterion to predict and guide 2D nonlayered materials growth. Based on this model, we design a universal hydrate-assisted chemical vapor deposition strategy for the controllable synthesis of various 2D nonlayered transition metal oxides. Four unique phases of iron oxides with distinct topological structures have also been selectively grown. More importantly, ultra-thin oxides display high-temperature magnetic ordering and large coercivity. MnxFeyCo3-x-yO4 alloy is also demonstrated to be a promising room-temperature magnetic semiconductor. Our work sheds light on the synthesis of 2D nonlayered materials and promotes their application for room-temperature spintronic devices.
Collapse
Affiliation(s)
- Zijing Zhao
- grid.11135.370000 0001 2256 9319School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871 China ,grid.11135.370000 0001 2256 9319Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871 China
| | - Zhi Fang
- grid.11135.370000 0001 2256 9319School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871 China
| | - Xiaocang Han
- grid.11135.370000 0001 2256 9319School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871 China
| | - Shiqi Yang
- grid.11135.370000 0001 2256 9319State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, 100871 China
| | - Cong Zhou
- grid.43169.390000 0001 0599 1243Center for Alloy Innovation and Design, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Yi Zeng
- grid.11135.370000 0001 2256 9319School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871 China
| | - Biao Zhang
- grid.11135.370000 0001 2256 9319School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871 China
| | - Wei Li
- grid.11135.370000 0001 2256 9319School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871 China
| | - Zhan Wang
- grid.9227.e0000000119573309Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
| | - Ying Zhang
- grid.9227.e0000000119573309Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
| | - Jian Zhou
- grid.43169.390000 0001 0599 1243Center for Alloy Innovation and Design, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Jiadong Zhou
- grid.43555.320000 0000 8841 6246Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, School of Physics, Beijing Institute of Technology, Beijing, 100081 China
| | - Yu Ye
- grid.11135.370000 0001 2256 9319State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, 100871 China
| | - Xinmei Hou
- grid.69775.3a0000 0004 0369 0705Innovation Research Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing, 100083 China
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871, China.
| | - Song Gao
- grid.79703.3a0000 0004 1764 3838Institute of Spin-X Science and Technology, South China University of Technology, Guangzhou, 510641 China
| | - Yanglong Hou
- School of Materials Science and Engineering, Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871, China. .,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| |
Collapse
|
25
|
Jiang S, Wang G, Deng H, Liu K, Yang Q, Zhao E, Zhu L, Guo W, Yang J, Zhang C, Wang H, Zhang X, Dai JF, Luo G, Zhao Y, Lin J. General Synthesis of 2D Magnetic Transition Metal Dihalides via Trihalide Reduction. ACS NANO 2023; 17:363-371. [PMID: 36576433 DOI: 10.1021/acsnano.2c08693] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Two-dimensional (2D) transition metal dihalides (TMDHs) have been receiving extensive attention due to their diversified magnetic properties and promising applications in spintronics. However, controlled growth of 2D TMDHs remains challenging owing to their extreme sensitivity to atmospheric moisture. Herein, using a home-built nitrogen-filled interconnected glovebox system, a universal chemical vapor deposition synthesis route of high-quality 2D TMDH flakes (1T-FeCl2, FeBr2, VCl2, and VBr2) by reduction of their trihalide counterparts is developed. Representatively, ultrathin (∼8.6 nm) FeCl2 flakes are synthesized on SiO2/Si, while on graphene/Cu foil the thickness can be down to monolayer (1L). Reflective magnetic circular dichroism spectroscopy shows an interlayer antiferromagnetic ordering of FeCl2 with a Neel temperature at ∼17 K. Scanning tunneling microscopy and spectroscopy further identify the atomic-scale structures and band features of 1L and bilayer FeCl2 on graphene/Cu foil.
Collapse
Affiliation(s)
- Shaolong Jiang
- Department of Physics, Southern University of Science and Technology, Shenzhen518055, China
- Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen518055, China
| | - Gang Wang
- Department of Physics, Southern University of Science and Technology, Shenzhen518055, China
- Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen518055, China
| | - Hanbing Deng
- Department of Physics, Southern University of Science and Technology, Shenzhen518055, China
| | - Kai Liu
- Department of Materials Science and Engineering and Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen518055, China
| | - Qishuo Yang
- Department of Physics, Southern University of Science and Technology, Shenzhen518055, China
- Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen518055, China
| | - Erding Zhao
- Department of Physics, Southern University of Science and Technology, Shenzhen518055, China
- Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen518055, China
| | - Liang Zhu
- Department of Physics, Southern University of Science and Technology, Shenzhen518055, China
- Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen518055, China
| | - Weiteng Guo
- Department of Physics, Southern University of Science and Technology, Shenzhen518055, China
- Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen518055, China
| | - Jing Yang
- Department of Physics, Southern University of Science and Technology, Shenzhen518055, China
- Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen518055, China
| | - Cheng Zhang
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Heshen Wang
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Xi Zhang
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Jun-Feng Dai
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Guangfu Luo
- Department of Materials Science and Engineering and Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen518055, China
| | - Yue Zhao
- Department of Physics, Southern University of Science and Technology, Shenzhen518055, China
| | - Junhao Lin
- Department of Physics, Southern University of Science and Technology, Shenzhen518055, China
- Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen518055, China
| |
Collapse
|
26
|
Huan Y, Luo T, Han X, Ge J, Cui F, Zhu L, Hu J, Zheng F, Zhao X, Wang L, Wang J, Zhang Y. Composition-Controllable Syntheses and Property Modulations from 2D Ferromagnetic Fe 5 Se 8 to Metallic Fe 3 Se 4 Nanosheets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207276. [PMID: 36263871 DOI: 10.1002/adma.202207276] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Exploring new-type 2D magnetic materials with high magnetic transition temperature and robust air stability has attracted wide attention for developing innovative spintronic devices. Recently, intercalation of native metal atoms into the van der Waals gaps of 2D layered transition metal dichalcogenides (TMDs) has been developed to form 2D non-layered magnetic TMDs, while only succeeded in limited systems (e.g., Cr2 S3 , Cr5 Te8 ). Herein, composition-controllable syntheses of 2D non-layered iron selenide nanosheets (25% Fe-intercalated triclinic Fe5 Se8 and 50% Fe-intercalated monoclinic Fe3 Se4 ) are firstly reported, via a robust chemical vapor deposition strategy. Specifically, the 2D Fe5 Se8 exhibits intrinsic room-temperature ferromagnetic property, which is explained by the change of electron spin states from layered 1T'-FeSe2 to non-layered Fe-intercalated Fe5 Se8 based on density functional theory calculations. In contrast, the ultrathin Fe3 Se4 presents novel metallic features comparable with that of metallic TMDs. This work hereby sheds light on the composition-controllable synthesis and fundamental property exploration of 2D self-intercalation induced novel TMDs compounds, by propelling their application explorations in nanoelectronics and spintronics-related fields.
Collapse
Affiliation(s)
- Yahuan Huan
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Tiantian Luo
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, 510632, P. R. China
| | - Xiaocang Han
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jun Ge
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, P. R. China
| | - Fangfang Cui
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lijie Zhu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jingyi Hu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Feipeng Zheng
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, 510632, P. R. China
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lili Wang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, P. R. China
| | - Jian Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, P. R. China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100871, P. R. China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, P. R. China
| | - Yanfeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
27
|
Zhao Y, Liu Q, Zhang F, Jiang X, Gao W, Zhao J. Multiferroicity in a Two-Dimensional Non-van der Waals Crystal of AgCr 2X 4 (X = S or Se). J Phys Chem Lett 2022; 13:11346-11353. [PMID: 36454027 DOI: 10.1021/acs.jpclett.2c03160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Two-dimensional (2D) intrinsic multiferroics have long been pursued not only for their potential technological applications but also as model systems for studying emergent quantum phenomena and coupling mechanisms between various order parameters in low-dimensional space. However, the realization of 2D multiferroics is still a challenge. In this paper, we reveal that 2D AgCr2X4 (X = S or Se) crystals, which have been synthesized from the non-van der Waals (non-vdW) AgCrX2 bulk phase, are type I half-metallic/metallic multiferroics in which ferroelectricity and ferromagnetism coexist. The off-centering displacement of the Ag ion introduces out-of-plane polarization, and the magnetism originates from the interactions between Cr atoms. Remarkably, AgCr2Se4 shows topologically nontrivial spin textures, such as Meron pairs and Néel-type skyrmions, under suitable temperatures and magnetic fields. Our findings demonstrate that 2D multiferroics can be achieved from non-vdW materials and in turn open a new avenue for 2D multiferroics.
Collapse
Affiliation(s)
- Ying Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), Dalian University of Technology, Dalian116024, China
| | - Qinxi Liu
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), Dalian University of Technology, Dalian116024, China
| | - Fan Zhang
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), Dalian University of Technology, Dalian116024, China
| | - Xue Jiang
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), Dalian University of Technology, Dalian116024, China
| | - Weiwei Gao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), Dalian University of Technology, Dalian116024, China
| | - Jijun Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), Dalian University of Technology, Dalian116024, China
| |
Collapse
|