1
|
Li L, Wang C, Yang X, Chi Y, Cheng X, Zou Y, Yang D. Stable C-Se-Co interface of CoSe 2@N-doped carbon aerogels for efficient sodium storage. J Colloid Interface Sci 2025; 689:137217. [PMID: 40056668 DOI: 10.1016/j.jcis.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/21/2025] [Accepted: 03/01/2025] [Indexed: 03/10/2025]
Abstract
The storage characteristics of sodium ions in CoSe2 are intricately linked to the doping species and concentrations of heteroatoms within the carbon matrix. However, a systematic study of the impact of heteroatom doping on the interfacial forces between the carbon matrix and CoSe2 has not been systematically investigated. In this work, CoSe2 nanoparticles coated with different heteroatom doping (N/S) carbon aerogels derived from sodium alginate (SA) were constructed to investigate the influence of dopant atoms on the interfacial forces at the C matrix and CoSe2 interface. The confinement effect of Co-SA-NH2 junction zones facilitates the formation of stable C-Se-Co interface. The higher pyridinic nitrogen can promote the reinforced interfacial connection of CSe bond, further decreasing the interface distance between CoSe2 and N-doped carbon aerogels (NCA) to 3.00 Å, alleviating the interfacial volume expansion to 15 %, thus increasing the sodium ion migration rate and cycling stability. However, the addition of sulfur inhibits the transformation of other nitrogen species into pyridinic nitrogen. Furthermore, sulfur shares the same valence electron configuration as selenium, it replaces selenium in the CSe bond position, thereby reducing the conductivity and stability of the interface. As a consequence, CoSe2@N-doped carbon aerogels (CoSe2@NCA) exhibits the lowest sodium diffusion barrier (1.10 eV) and the highest sodium ion negative adsorption energy (-2.21 eV). As expected, CoSe2@NCA delivers superior long-term cycling performance (519 mAh g-1 at 1.0 A g-1 after 800 cycles) and excellent reversible capacity at high current density (474 mAh g-1 at 5.0 A g-1).
Collapse
Affiliation(s)
- Longwei Li
- School of Environmental and Geography, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China
| | - Chuanhui Wang
- School of Environmental and Geography, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China
| | - Xianfeng Yang
- Analytical and Testing Centre, South China University of Technology, Guangzhou 510640, PR China
| | - Yulong Chi
- School of Environmental and Geography, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China
| | - Xueyan Cheng
- School of Environmental and Geography, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China
| | - Yihui Zou
- School of Environmental and Geography, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China.
| | - Dongjiang Yang
- School of Environmental and Geography, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China; Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211 Zhejiang, PR China.
| |
Collapse
|
2
|
Fang Z, Fan S, Yan Z, Tang D, Gao X, Huang X, Zheng H, Wang B, Jiang Q, Han J, Lin J, Xie Q, Peng DL, Wei Q. Root-Growth-Inspired Self-Morphology-Evolution of Microsized Bismuth Surrounded by Microsized Hard Carbon for Stabilized Sodium-Ion Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412636. [PMID: 39618154 DOI: 10.1002/adma.202412636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/19/2024] [Indexed: 01/24/2025]
Abstract
Alloy-type materials are desirable for high-energy sodium-ion batteries. Different from nanoengineering with pre-reserving void space and confined carbon coatings, microsized particles promise high specific/volumetric capacities, easy manufacturing, and low cost but are prone to rapid capacity loss. Herein, inspired by the process of "root growth in soil", microsized Bi particles (µm-Bi, as "seeds") surrounded by microsized hard carbon particles (µm-HC, as "soil") are ingeniously dispersed through a simple mixing approach. This design utilizes the morphological self-evolution of µm-Bi into Bi-nanonetworks between dispersed µm-HC during repeated (de)sodiations, leading to a stable capacity retention of 99.8% for 2000 cycles, higher than that of the µm-Bi electrode (7.2%) at a high mass loading of 5.5 mg cm-2. The interconnected Bi-nanonetworks and µm-HC particles provide continuous electron pathways and facilitate electrolyte infiltration, which effectively boosts electrical contact, stable cycling, and high-rate capability. Especially, the hybrid Bi40HC60 (optimized weight ratio) thick-film electrode shows boosted comprehensive electrochemical performance, superior to HC and µm-Bi electrodes. The Bi40HC60||Na3V2(PO4)3 full cell, assembled without any pre-treatment, delivers 4500 stable cycles. This nature-inspired strategy provides a simple yet practical approach for employing the electrochemically driven evolution of micro-sized active materials and realizing high specific/volumetric capacities, fast kinetics, and long-term cycling stability.
Collapse
Affiliation(s)
- Ziyi Fang
- Department of Materials Science and Engineering, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Xiamen Key Laboratory of High Performance Metals and Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Sicheng Fan
- Department of Materials Science and Engineering, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Xiamen Key Laboratory of High Performance Metals and Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Zerui Yan
- Department of Materials Science and Engineering, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Xiamen Key Laboratory of High Performance Metals and Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Dafu Tang
- Department of Materials Science and Engineering, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Xiamen Key Laboratory of High Performance Metals and Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Xiang Gao
- Department of Materials Science and Engineering, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Xiamen Key Laboratory of High Performance Metals and Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Xiaojuan Huang
- Department of Materials Science and Engineering, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Xiamen Key Laboratory of High Performance Metals and Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Hongfei Zheng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Binhao Wang
- Department of Materials Science and Engineering, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Xiamen Key Laboratory of High Performance Metals and Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Qinyao Jiang
- Department of Materials Science and Engineering, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Xiamen Key Laboratory of High Performance Metals and Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Jiuhui Han
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jie Lin
- Department of Materials Science and Engineering, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Xiamen Key Laboratory of High Performance Metals and Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Qingshui Xie
- Department of Materials Science and Engineering, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Xiamen Key Laboratory of High Performance Metals and Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Dong-Liang Peng
- Department of Materials Science and Engineering, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Xiamen Key Laboratory of High Performance Metals and Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Qiulong Wei
- Department of Materials Science and Engineering, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Xiamen Key Laboratory of High Performance Metals and Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
3
|
Wang Y, Kuang Y, Cui J, Xu X, Li F, Wu Y, Sun Z, Fan W, Wu Y, Zhao J, Zeng Z, Liu J, Huo Y. Self-Template Construction of Hierarchical Bi@C Microspheres as Competitive Wide Temperature-Operating Anodes for Superior Sodium-Ion Batteries. NANO LETTERS 2024. [PMID: 39561289 DOI: 10.1021/acs.nanolett.4c03453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Huge volume changes of bismuth (Bi) anode leading to rapid capacity hindered its practical application in sodium-ion batteries (SIBs). Herein, porous Bi@C (P-Bi@C) microspheres consisting of self-assembled Bi nanosheets and carbon shells were constructed via a hydrothermal method combined with a carbothermic reduction. The optimized P-Bi@C-700 (annealed at 700 °C) demonstrates 359.8 mAh g-1 after 1500 cycles at 1 A g-1. In situ/ex situ characterization and density functional theory calculations verified that this P-Bi@C-700 relieves the volume expansion, facilitates Na+/electron transport, and possesses an alloying-type storage mechanism. Notably, P-Bi@C-700 also achieved 360.8 and 370.3 mAh g-1 at 0.05 A g-1 under 0 and 60 °C conditions, respectively. Na3V2(PO4)3//P-Bi@C-700 exhibits a capacity of 359.7 mAh g-1 after 260 cycles at 1 A g-1. These hierarchical microspheres effectively moderate the volume fluctuation, preserving structural reversibility, thereby achieving superior Na+ storage performance. This self-template strategy provides insight into designing high-volumetric capacity alloy-based anodes for SIBs.
Collapse
Affiliation(s)
- Yan Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yongxin Kuang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jie Cui
- Analytical and Testing Centre, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xijun Xu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Fangkun Li
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yiwen Wu
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhaoyu Sun
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Weizhen Fan
- Research and Development Center, Guangzhou Tinci Materials Technology Co., Ltd., Guangzhou 510765, China
| | - Yanxue Wu
- Analytical&Testing Center, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Jingwei Zhao
- Research and Development Center, Guangzhou Tinci Materials Technology Co., Ltd., Guangzhou 510765, China
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Jun Liu
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
- Analytical&Testing Center, Guangdong University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
4
|
Bao Y, Zhou K, Ma J, Li Q, Deng L, Jin D, Qiu H. Efficient Synthesis of Flower-Ball Structured CuFeS 2 as Advanced Anode Material for Lithium-Ion Batteries Across Wide Temperature Ranges. J Phys Chem Lett 2024; 15:10592-10601. [PMID: 39404713 DOI: 10.1021/acs.jpclett.4c02524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Transition metal sulfides stand as potential anode candidates for lithium-ion batteries offering high capacity, redox reversibility, and safety. However, cycling-induced volume variations and slow kinetics hinder their application. Here, CuFeS2 with a flower-ball nanosheet structure is synthesized via a hydrothermal method, enhancing electrolyte infiltration, Li+ transport, and cycle life. CuFeS2 exhibits a large initial discharge specific capacity of 532.4 mAh g-1 at 500 mA g-1 with 95.7% initial Coulombic efficiency, retaining an impressive 90.5% (481.6 mAh g-1) of its initial capacity after 300 cycles. Remarkably, at 2000 mA g-1 for 700 cycles, it maintains a high specific capacity of 487.1 mAh g-1 with an 89.4% capacity retention rate. Moreover, it maintains excellent reversibility at both high temperature (60 °C) and low temperature (-25 °C) and demonstrates excellent electrochemical performance even under high loading conditions. Consequently, CuFeS2 holds immense promise as a lithium-ion battery anode material, offering fast charging, safety, high capacity, and long life.
Collapse
Affiliation(s)
- Yuying Bao
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Kai Zhou
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Jun Ma
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Qingtian Li
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Lei Deng
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Di Jin
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Hailong Qiu
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| |
Collapse
|
5
|
Jia JH, Bai J, Yang CC, Jiang Q. Scale Construction of "Breathing" Bi/N-CNSs Quasi-Array Structure with Hierarchical Bi Distribution for Sodium-Ion Battery. NANO LETTERS 2024; 24:11393-11402. [PMID: 39230971 DOI: 10.1021/acs.nanolett.4c01958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Sodium ion batteries (SIBs) are promising postlithium battery technologies with high safety and low cost. However, their development is hampered by complicated electrode material preparation and unsatisfactory sodium storage performance. Here, a bismuth/N-doped carbon nanosheets (Bi/N-CNSs) composite featuring a quasi-array structure (alternated porous Bi layers and N-CNSs) with hierarchical Bi distribution (large particles of ∼35 nm in Bi layers and ultrafine Bi of ∼8 nm on N-CNSs) is prepared. Bi/N-CNSs delivers an ultralong-lifespan of 26000 cycles at 5 A g-1 and prominent rate capability of 91.5% capacity retention at 100 A g-1. Even at -40 °C, it exhibits a high rate capability of 161 mAh g-1 at 5 A g-1. Notably, the involved preparation method is characterized by a high yield of 14.53 g in a single laboratory batch, which can be further scaled up, and such a method can also be extended to synthesize other metallic-based materials.
Collapse
Affiliation(s)
- Jian Hui Jia
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Jie Bai
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Chun Cheng Yang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| |
Collapse
|
6
|
Zhu H, Peng L, Kang F, Zhi C, Yang C. Bismuth: An Epitaxy-like Conversion Mechanism Enabled by Intercalation-Conversion Chemistry for Stable Aqueous Chloride-Ion Storage. J Am Chem Soc 2024; 146:23786-23796. [PMID: 38959288 DOI: 10.1021/jacs.4c05337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The exploitation of new anion battery systems based on high-abundance oceanic elements (e.g., F-, Cl-, and Br-) is a strong supplement to the current metal cation (e.g., Li+, Na+) battery technologies. Bismuth (Bi), the rare anion-specific anode species nearest to practical application for chloride ion storage, is plagued by volume expansion and structure collapse due to limited control of its conversion behavior. Here, we reveal that a unique epitaxy-like conversion mechanism in the monocrystalline Bi nanospheres (R3m group) can drastically inhibit grain pulverization and capacity fading, which is enabled by Cl- intercalation in their interlayer space. The Bi nanosphere anode can self-evolve and transform into a rigid BiOCl nanosheet-interlaced structure after the initial conversion reaction. With this epitaxy-like conversion mechanism, the Bi anode exhibits a record-high capacity of 249 mAh g-1 (∼1.2 mAh cm-2) at 0.25 C and sustains more than 1400 h with 20% capacity loss. Pairing this anode with a Prussian blue cathode, the full battery can deliver an ultrahigh desalination capacity of 127.1 m gCl gBi-1. Our study milestones the understanding of conversion-type anode structures, which is an essential step toward the commercialization of aqueous batteries.
Collapse
Affiliation(s)
- Haojie Zhu
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Lu Peng
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Feiyu Kang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Cheng Yang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
7
|
Hu L, Liu C, Zhang F, Wang H, Wang B. Vacancy-Defect Ternary Topological Insulators Bi 2Se 2Te Encapsulated in Mesoporous Carbon Spheres for High Performance Sodium Ion Batteries and Hybrid Capacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311079. [PMID: 38733224 DOI: 10.1002/smll.202311079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/19/2024] [Indexed: 05/13/2024]
Abstract
Ternary topological insulators have attracted worldwide attention because of their broad application prospects in fields such as magnetism, optics, electronics, and quantum computing. However, their potential and electrochemical mechanisms in sodium ion batteries (SIBs) and hybrid capacitors (SIHCs) have not been fully studied. Herein, a composite material comprising vacancy-defects ternary topological insulator Bi2Se2Te encapsulated in mesoporous carbon spheres (Bi2Se2Te@C) is designed. Bi2Se2Te with ample vacancy-defects has a wide interlayer spacing to enable frequent insertion/extraction of Na+ and boost reaction kinetics within the electrode. Meanwhile, the Bi2Se2Te@C with optimized yolk-shell structure can buffer the volume variation without breaking the outer protective carbon shell, ensuring structural stability and integrity. As expected, the Bi2Se2Te@C electrode delivers high reversible capacity and excellent rate capability in half SIB cells. Various electrochemical analyses and theoretical calculations manifest that Bi2Se2Te@C anode confirms the synergistic effect of ternary chalcogenide systems and suitable void space yolk-shell structure. Consequently, the full cells of SIB and SIHC coupled with Bi2Se2Te@C anode exhibit good performance and high energy/power density, indicating its widespread practical applications. This design is expected to offer a reliable strategy for further exploring advanced topological insulators in Na+-based storage systems.
Collapse
Affiliation(s)
- Lijuan Hu
- College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Changyu Liu
- College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Fan Zhang
- College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Hui Wang
- College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Beibei Wang
- Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, P. R. China
| |
Collapse
|
8
|
Long H, Wang J, Zhao S, Zou B, Yan L, Huang Q, Zhao Y. Enable the Domino-Like Structural Recovering in Bismuth Anode to Achieve Fast and Durable Na/K Storages. Angew Chem Int Ed Engl 2024; 63:e202406513. [PMID: 38679573 DOI: 10.1002/anie.202406513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/01/2024]
Abstract
Alloying-type anodes show capacity and density advantages for sodium/potassium-ion batteries (SIBs/PIBs), but they encounter serious structural degradation upon cycling, which cannot be resolved through conventional nanostructuring techniques. Herein, we present an in-depth study to reveal the intrinsic reason for the pulverization of bismuth (Bi) materials upon (de)alloying, and report a novel particle-in-bulk architecture with Bi nanospheres inlaid in the bulk carbon (BiNC) to achieve durable Na/K storage. We simulate the volume-expansion-resistant mechanism of Bi during the (de)alloying reaction, and unveil that the irreversible phase transition upon (de)alloying underlies the fundamental origin for the structural degradation of Bi anode, while a proper compressive stress (~10 %) raised by the bulk carbon can trigger a "domino-like" Bi crystal recovering. Consequently, the as obtained BiNC exhibits a record high volumetric capacity (823.1 mAh cm-3 for SIBs, 848.1 mAh cm-3 for PIBs) and initial coulombic efficiency (95.3 % for SIBs, 96.4 % for PIBs), and unprecedented cycling stability (15000 cycles for SIBs with only 0.0015 % degradation per cycle), outperforming the state-of-the-art literature. This work provides new insights on the undesirable structural evolution, and proposes basic guidelines for design of the anti-degradation structure for alloy-type electrode materials.
Collapse
Affiliation(s)
- Hongli Long
- College of Science & Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| | - Jing Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao, 066004, China
| | - Shengyu Zhao
- College of Science & Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| | - Bobo Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Liuming Yan
- College of Science & Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| | - Qiuan Huang
- College of Science & Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| | - Yufeng Zhao
- College of Science & Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
9
|
Liu B, Li Y, Zhang H, Wang S, Song H, Yuan C, Yin X, Lu Z, Hu J, Xie J, Cao Y. Structure and Defect Engineering of V 3S 4-xSe x Quantum Dots Confined in a Nitrogen-Doped Carbon Framework for High-Performance Sodium-Ion Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307771. [PMID: 38155151 DOI: 10.1002/smll.202307771] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/11/2023] [Indexed: 12/30/2023]
Abstract
Constructing quantum dot-scale metal sulfides with defects and strongly coupled with carbon is significant for advanced sodium-ion batteries (SIBs). Herein, Se substituted V3S4 quantum dots with anionic defects confined in nitrogen-doped carbon matrix (V3S4-xSex/NC) are fabricated. Introducing element Se into V3S4 crystal expands the interlayer distance of V3S4, and triggers anionic defects, which can facilitate Na+ diffusions and act as active sites for Na+ storage. Meanwhile, the quantum dots tightly encapsulated by conductive carbon framework improve the stability and conductivity of the electrode. Theoretical calculations also unveil that the presence of Se enhances the conductivity and Na+ adsorption ability of V3S4-xSex. These properties contribute to the V3S4-xSex/NC with high specific capacity of 447 mAh g-1 at 0.2 A g-1, and prominent rate and cyclic performance with 504 mAh g-1 after 1000 cycles at 10 A g-1. The sodium-ion hybrid capacitors (SIHCs) with V3S4-xSex/NC anode and activated carbon cathode can achieve high energy/power density (maximum 144 Wh kg-1/5960 W kg-1), capacity retention ratio of 71% after 4000 cycles at 2 A g-1. This work not only synthesizes V3S4-xSex/NC, but also provides a promising opportunity for designing quantum dots and utilizing defects to improve the electrochemical properties.
Collapse
Affiliation(s)
- Baolin Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Yizhao Li
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001, P. R. China
| | - Hongyu Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Shiqiang Wang
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, Liaoning, 111003, P. R. China
| | - Huijun Song
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Chun Yuan
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Xinxin Yin
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Zhenjiang Lu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Jindou Hu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Jing Xie
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Yali Cao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| |
Collapse
|
10
|
Hu H, Zhong J, Jian B, Zheng C, Zeng Y, Kou C, Xiao Q, Luo Y, Wang H, Guo Z, Niu L. In-Situ Construction of Anti-Aggregation Tellurium Nanorods/Reduced Graphene Oxide Composite to Enable Fast Sodium Storage. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:118. [PMID: 38202573 PMCID: PMC10780675 DOI: 10.3390/nano14010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
Sodium-ion batteries (SIBs) as a replaceable energy storage technology have attracted extensive attention in recent years. The design and preparation of advanced anode materials with high capacity and excellent cycling performance for SIBs still face enormous challenges. Herein, a solution method is developed for in situ synthesis of anti-aggregation tellurium nanorods/reduced graphene oxide (Te NR/rGO) composite. The material working as the sodium-ion battery (SIB) anode achieves a high reversible capacity of 338 mAh g-1 at 5 A g-1 and exhibits up to 93.4% capacity retention after 500 cycles. This work demonstrates an effective preparation method of nano-Te-based composites for SIBs.
Collapse
Affiliation(s)
- Haiguo Hu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China; (H.H.); (Y.Z.); (H.W.)
| | - Jiarui Zhong
- Material and Energy School, Guangdong University of Technology, Guangzhou 510006, China; (J.Z.); (B.J.)
| | - Bangquan Jian
- Material and Energy School, Guangdong University of Technology, Guangzhou 510006, China; (J.Z.); (B.J.)
| | - Cheng Zheng
- Material and Energy School, Guangdong University of Technology, Guangzhou 510006, China; (J.Z.); (B.J.)
| | - Yonghong Zeng
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China; (H.H.); (Y.Z.); (H.W.)
| | - Cuiyun Kou
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (C.K.); (Y.L.)
| | - Quanlan Xiao
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China; (H.H.); (Y.Z.); (H.W.)
| | - Yiyu Luo
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (C.K.); (Y.L.)
| | - Huide Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China; (H.H.); (Y.Z.); (H.W.)
| | - Zhinan Guo
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (C.K.); (Y.L.)
| | - Li Niu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
11
|
Qin C, Jiang ZJ, Maiyalagan T, Jiang Z. Rational Design of Hollow Structural Materials for Sodium-Ion Battery Anodes. CHEM REC 2024; 24:e202300206. [PMID: 37736673 DOI: 10.1002/tcr.202300206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/31/2023] [Indexed: 09/23/2023]
Abstract
The development of sodium-ion battery (SIB) anodes is still hindered by their rapid capacity decay and poor rate capabilities. Although there have been some new materials that can be used to fabricate stable anodes, SIBs are still far from wide applications. Strategies like nanostructure construction and material modification have been used to prepare more robust SIB anodes. Among all the design strategies, the hollow structure design is a promising method in the development of advanced anode materials. In the past decade, research efforts have been devoted to modifying the synthetic route, the type of templates, and the interior structure of hollow structures with high capacity and stability. A brief introduction is made to the main material systems and classifications of hollow structural materials first. Then different morphologies of hollow structural materials for SIB anodes from the latest reports are discussed, including nanoboxes, nanospheres, yolk shells, nanotubes, and other more complex shapes. The most used templates for the synthesis of hollow structrual materials are covered and the perspectives are highlighted at the end. This review offers a comprehensive discussion of the synthesis of hollow structural materials for SIB anodes, which could be potentially of use to research areas involving hollow materials design for batteries.
Collapse
Affiliation(s)
- Chu Qin
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, P. R. China
| | - Zhong-Jie Jiang
- Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy Materials & Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, P. R. China
| | - Thandavarayan Maiyalagan
- Electrochemical Energy Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamilnadu, India
| | - Zhongqing Jiang
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, P. R. China
| |
Collapse
|
12
|
Rajan R, Asok A, Lekshmi A, Appukuttan S, George G, Wilson R, Joseph K. Heterostructures based on zero-dimensional carbon–based nanostructures. ZERO-DIMENSIONAL CARBON NANOMATERIALS 2024:385-409. [DOI: 10.1016/b978-0-323-99535-1.00013-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Cheng X, Li D, Jiang Y, Huang F, Li S. Advances in Electrochemical Energy Storage over Metallic Bismuth-Based Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 17:21. [PMID: 38203875 PMCID: PMC10780295 DOI: 10.3390/ma17010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Bismuth (Bi) has been prompted many investigations into the development of next-generation energy storage systems on account of its unique physicochemical properties. Although there are still some challenges, the application of metallic Bi-based materials in the field of energy storage still has good prospects. Herein, we systematically review the application and development of metallic Bi-based anode in lithium ion batteries and beyond-lithium ion batteries. The reaction mechanism, modification methodologies and their relationship with electrochemical performance are discussed in detail. Additionally, owing to the unique physicochemical properties of Bi and Bi-based alloys, some innovative investigations of metallic Bi-based materials in alkali metal anode modification and sulfur cathodes are systematically summarized for the first time. Following the obtained insights, the main unsolved challenges and research directions are pointed out on the research trend and potential applications of the Bi-based materials in various energy storage fields in the future.
Collapse
Affiliation(s)
- Xiaolong Cheng
- School of Material Science and Engineering, Anhui University, Hefei 230601, China; (X.C.); (F.H.)
| | - Dongjun Li
- Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei 230026, China;
| | - Yu Jiang
- School of Material Science and Engineering, Anhui University, Hefei 230601, China; (X.C.); (F.H.)
| | - Fangzhi Huang
- School of Material Science and Engineering, Anhui University, Hefei 230601, China; (X.C.); (F.H.)
| | - Shikuo Li
- School of Material Science and Engineering, Anhui University, Hefei 230601, China; (X.C.); (F.H.)
| |
Collapse
|
14
|
Liu T, Wang X, Han Y, Wu Y, Zhang L, Yu J. Fabrication of NiMn 2O 4/C hollow spheres with a trilaminar shell structure as an anode material for sodium-ion batteries. Chem Commun (Camb) 2023. [PMID: 37999930 DOI: 10.1039/d3cc05218d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
NiMn2O4/C hollow spheres with sandwich-structured shells were fabricated by a hydrothermal method. Leveraging the mesoporous design of the carbon hollow spheres, NiMn2O4 nanosheets were evenly dispersed on both the inner and outer surfaces of the carbon shells. NiMn2O4/C demonstrated excellent rate capability and prolonged cycling durability for sodium ion storage.
Collapse
Affiliation(s)
- Tao Liu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, P. R. China.
| | - Xuejie Wang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, P. R. China.
| | - Yang Han
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, P. R. China.
| | - Yingqi Wu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, P. R. China.
| | - Liuyang Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, P. R. China.
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, P. R. China.
| |
Collapse
|
15
|
Hou J, Song Z, Odziomek M, Tarakina NV. Probing Sodium Storage Mechanism in Hollow Carbon Nanospheres Using Liquid Phase Transmission Electron Microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301415. [PMID: 37287411 DOI: 10.1002/smll.202301415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/11/2023] [Indexed: 06/09/2023]
Abstract
Carbonaceous materials are promising sodium-ion battery anodes. Improving their performance requires a detailed understanding of the ion transport in these materials, some important aspects of which are still under debate. In this work, nitrogen-doped porous hollow carbon spheres (N-PHCSs) are employed as a model system for operando analysis of sodium storage behavior in a commercial liquid electrolyte at the nanoscale. By combining the ex situ characterization at different states of charge with operando transmission electron microscopy experiments, it is found that a solvated ionic layer forms on the surface of N-PHCSs at the beginning of sodiation, followed by the irreversible shell expansion due to the solid-electrolyte interphase (SEI) formation and subsequent storage of Na(0) within the porous carbon shell. This shows that binding between Na(0) and C creates a Schottky junction making Na deposition inside the spheres more energetically favorable at low current densities. During sodiation, the SEI fills the gap between N-PHCSs, binding spheres together and facilitating the sodium ions' transport toward the current collector and subsequent plating underneath the electrode. The N-PHCSs layer acts as a protective layer between the electrolyte and the current collector, suppressing the possible growth of dendrites at the anode.
Collapse
Affiliation(s)
- Jing Hou
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Zihan Song
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Mateusz Odziomek
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Nadezda V Tarakina
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
16
|
Liu G, Sun Z, Shi X, Wang X, Shao L, Liang Y, Lu X, Liu J, Guo Z. 2D-Layer-Structure Bi to Quasi-1D-Structure NiBi 3 : Structural Dimensionality Reduction to Superior Sodium and Potassium Ion Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305551. [PMID: 37549373 DOI: 10.1002/adma.202305551] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/27/2023] [Indexed: 08/09/2023]
Abstract
Layer-structured bismuth (Bi) is an attractive anode for Na-ion and K-ion batteries due to its large volumetric capacity and suitable redox potentials. However, the cycling stability and rate capability of the Bi anode are restricted by the large volume expansion and sluggish Na/K-storage kinetics. Herein, a structural dimensionality reduction strategy is proposed and developed by converting 2D-layer-structured Bi into a quasi-1D structured NiBi3 with enhanced reaction kinetics and reversibility to realize high-rate and stable cycling performance for Na/K-ion storage. As a proof of concept, the quasi-1D intermetallic NiBi3 with low formation energy, metallic conductivity, and 3D Na/K-ion diffusion pathways delivers outstanding capacity retention of 94.1% (332 mAh g-1 ) after 15 000 cycles for Na-ion storage, and high initial coulombic efficiency of 93.4% with improved capacity retention for K-ion storage. Moreover, investigations on the highly reversible Na/K-storage reaction mechanisms and cycling-driven morphology reconstruction further reveal the origins of the high reversibility and the accommodation to volume expansion. The finding of this work provides a new strategy for high-performance anode design by structural dimensionality manipulation and cycling-driven morphology reconstruction.
Collapse
Affiliation(s)
- Guoping Liu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhipeng Sun
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaoyan Shi
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xinying Wang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Lianyi Shao
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yaohua Liang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaoyi Lu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jianwen Liu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Zaiping Guo
- School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, South Australia, 5005, Australia
| |
Collapse
|
17
|
Chen Z, Yu Z, Wang L, Huang Y, Huang H, Xia Y, Zeng S, Xu R, Yang Y, He S, Pan H, Wu X, Rui X, Yang H, Yu Y. Oxygen Defect Engineering toward Zero-Strain V 2O 2.8@Porous Reticular Carbon for Ultrastable Potassium Storage. ACS NANO 2023; 17:16478-16490. [PMID: 37589462 DOI: 10.1021/acsnano.3c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Potassium-ion batteries (KIBs) are promising candidates for large-scale energy storage devices due to their high energy density and low cost. However, the large potassium-ion radius leads to its sluggish diffusion kinetics during intercalation into the lattice of the electrode material, resulting in electrode pulverization and poor cycle stability. Herein, vanadium trioxide anodes with different oxygen vacancy concentrations (V2O2.9, V2O2.8, and V2O2.7 determined by the neutron diffraction) are developed for KIBs. The V2O2.8 anode is optimal and exhibits excellent potassium storage performance due to the realization of expanded interlayer spacing and efficient ion/electron transport. In situ X-ray diffraction indicates that V2O2.8 is a zero-strain anode with a volumetric strain of 0.28% during the charge/discharge process. Density functional theory calculations show that the impacts of oxygen defects are embodied in reducing the band gap, increasing electron transfer ability, and lowering the diffusion energy barriers for potassium ions. As a result, the electrode of nanosized V2O2.8 embedded in porous reticular carbon (V2O2.8@PRC) delivers high reversible capacity (362 mAh g-1 at 0.05 A g-1), ultralong cycling stability (98.8% capacity retention after 3000 cycles at 2 A g-1), and superior pouch-type full-cell performance (221 mAh g-1 at 0.05 A g-1). This work presents an oxygen defect engineering strategy for ultrastable KIBs.
Collapse
Affiliation(s)
- Zhihao Chen
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zuxi Yu
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lifeng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yingshan Huang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huijuan Huang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuanhua Xia
- Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621999, China
| | - Sifan Zeng
- Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621999, China
| | - Rui Xu
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Shengnan He
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Xiaojun Wu
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xianhong Rui
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hai Yang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
- National Synchrotron Radiation Laboratory, Hefei, Anhui 230026, China
| |
Collapse
|
18
|
Hu K, Chen Y, Zheng C, Du X, Wang M, Yao Q, Wang H, Fan K, Wang W, Yan X, Wang N, Bai Z, Dou S. Molten salt-assisted synthesis of bismuth nanosheets with long-term cyclability at high rates for sodium-ion batteries. RSC Adv 2023; 13:25552-25560. [PMID: 37636507 PMCID: PMC10450392 DOI: 10.1039/d3ra03767c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023] Open
Abstract
Bismuth is a promising anode material for sodium-ion batteries (SIBs) due to its high capacity and suitable working potential. However, the large volume change during alloying/dealloying would lead to poor cycling performance. Herein, we have constructed a 3D hierarchical structure assembled by bismuth nanosheets, addressing the challenges of fast kinetics, and providing efficient stress and strain relief room. The uniform bismuth nanosheets are prepared via a molten salt-assisted aluminum thermal reduction method. Compared with the commercial bismuth powder, the bismuth nanosheets present a larger specific surface area and interlayer spacing, which is beneficial for sodium ion insertion and release. As a result, the bismuth nanosheet anode presents excellent sodium storage properties with an ultralong cycle life of 6500 cycles at a high current density of 10 A g-1, and an excellent capacity retention of 87% at an ultrahigh current rate of 30 A g-1. Moreover, the full SIBs that paired with the Na3V2(PO4)3/rGO cathode exhibited excellent performance. This work not only presents a novel strategy for preparing bismuth nanosheets with significantly increased interlayer spacing but also offers a straightforward synthesis method utilizing low-cost precursors. Furthermore, the outstanding performance demonstrated by these nanosheets indicates their potential for various practical applications.
Collapse
Affiliation(s)
- Kunkun Hu
- College of Mechanical and Electronic Engineering Shandong University of Science and Technology Qingdao 266590 P. R. China
| | - Yuan Chen
- College of Mechanical and Electronic Engineering Shandong University of Science and Technology Qingdao 266590 P. R. China
| | - Cheng Zheng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan P. R. China
| | - Xinyu Du
- Soochow Institute for Energy and Materials Innovations & Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University Suzhou 215006 China
| | - Mingyue Wang
- Institute for Superconducting and Electronic Materials University of Wollongong Wollongong Australia
| | - Qian Yao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan P. R. China
| | - Han Wang
- College of Mechanical and Electronic Engineering Shandong University of Science and Technology Qingdao 266590 P. R. China
| | - Kai Fan
- Institute for Superconducting and Electronic Materials University of Wollongong Wollongong Australia
| | - Wensheng Wang
- College of Mechanical and Electronic Engineering Shandong University of Science and Technology Qingdao 266590 P. R. China
| | - Xiangshun Yan
- College of Mechanical and Electronic Engineering Shandong University of Science and Technology Qingdao 266590 P. R. China
| | - Nana Wang
- Institute for Superconducting and Electronic Materials University of Wollongong Wollongong Australia
| | - Zhongchao Bai
- College of Mechanical and Electronic Engineering Shandong University of Science and Technology Qingdao 266590 P. R. China
| | - Shixue Dou
- Institute for Superconducting and Electronic Materials University of Wollongong Wollongong Australia
| |
Collapse
|
19
|
Zhang X, Qiu X, Lin J, Lin Z, Sun S, Yin J, Alshareef HN, Zhang W. Structure and Interface Engineering of Ultrahigh-Rate 3D Bismuth Anodes for Sodium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302071. [PMID: 37104851 DOI: 10.1002/smll.202302071] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Indexed: 05/17/2023]
Abstract
Sodium-ion batteries (SIBs) have attracted tremendous attention as promising low-cost energy storage devices in future grid-scale energy management applications. Bismuth is a promising anode for SIBs due to its high theoretical capacity (386 mAh g-1 ). Nevertheless, the huge volume variation of Bi anode during (de)sodiation processes can cause the pulverization of Bi particulates and rupture of solid electrolyte interphase (SEI), resulting in quick capacity decay. It is demonstrated that rigid carbon framework and robust SEI are two essentials for stable Bi anodes. A lignin-derived carbonlayer wrapped tightly around the bismuth nanospheres provides a stable conductive pathway, while the delicate selection of linear and cyclic ether-based electrolytes enable robust and stable SEI films. These two merits enable the long-term cycling process of the LC-Bi anode. The LC-Bi composite delivers outstanding sodium-ion storage performance with an ultra-long cycle life of 10 000 cycles at a high current density of 5 A g-1 and an excellent rate capability of 94% capacity retention at an ultrahigh current density of 100 A g-1 . Herein, the underlying origins of performance improvement of Bi anode are elucidated, which provides a rational design strategy for Bi anodes in practical SIBs.
Collapse
Affiliation(s)
- Xiaoshan Zhang
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, China
| | - Xueqing Qiu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, China
| | - Jinxin Lin
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, China
| | - Zehua Lin
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, China
| | - Shirong Sun
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang, 515200, China
| | - Jian Yin
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Husam N Alshareef
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Wenli Zhang
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang, 515200, China
- School of Advanced Manufacturing, Guangdong University of Technology (GDUT), Jieyang, 522000, China
| |
Collapse
|
20
|
Xie M, Li C, Zhang S, Zhang Z, Li Y, Chen XB, Shi Z, Feng S. Topological Insulator Bi 2 Se 3 -Assisted Heterostructure for Ultrafast Charging Sodium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301436. [PMID: 37078904 DOI: 10.1002/smll.202301436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/27/2023] [Indexed: 05/03/2023]
Abstract
The development of fast charging materials offers a viable solution for large-scale and sustainable energy storage needs. However, it remains a critical challenge to improve the electrical and ionic conductivity for better performance. Topological insulator (TI), a topological quantum material that has attracted worldwide attention, hosts unusual metallic surface states and consequent high carrier mobility. Nevertheless, its potential in promising high-rate charging capability has not been fully realized and explored. Herein, a novel Bi2 Se3 -ZnSe heterostructure as excellent fast charging material for Na+ storage is reported. Ultrathin Bi2 Se3 nanoplates with rich TI metallic surfaces are introduced as an electronic platform inside the material, which greatly reduces the charge transfer resistance and improves the overall electrical conductivity. Meanwhile, the abundant crystalline interfaces between these two selenides promote Na+ migration and provide additional active sites as well. As expected, the composite delivers the excellent high-rate performance of 360.5 mAh g-1 at 20 A g-1 and maintains its electrochemical stability of 318.4 mAh g-1 after 3000 long cycles, which is the record high for all reported selenide-based anodes. This work is anticipated to provide alternative strategies for further exploration of topological insulators and advanced heterostructures.
Collapse
Affiliation(s)
- Minggang Xie
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Chunguang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Siqi Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zhe Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yuxin Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiao-Bo Chen
- School of Engineering, RMIT University, Carlton, VIC, 3053, Australia
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
21
|
Yu J, Zhao D, Ma C, Feng L, Zhang Y, Zhang L, Liu Y, Guo S. Vapor-phase derived ultra-fine Bismuth nanoparticles embedded in carbon nanotube networks as anodes for sodium and potassium ion batteries. J Colloid Interface Sci 2023; 643:409-419. [PMID: 37084621 DOI: 10.1016/j.jcis.2023.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
Bismuth (Bi) is a promising material as the anode for sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) due to its characteristics such as reasonable price and high theoretical volumetric capacity (3800 mAh cm-3). Nevertheless, considerable drawbacks have hindered the practical applications of Bi, including its relatively low electrical conductivity and inevitable volumetric change during the alloying/dealloying processes. To solve these problems, we proposed a novel design:Bi nanoparticles were synthesized via a single-step low-pressure vapor-phase reaction and embedded onto the surfaces of multi-walled carbon nanotubes (MWCNTs). After being vaporized at 650℃ and 10-5 Pa, Bi nanoparticles less than 10 nm were uniformly distributed in the three-dimensional (3D) MWCNT networks to form a Bi/MWNTs composite. In this unique design, the nanostructured Bi can reduce the risk of structural rupture during cycling, and the structure of the MWCMT network is beneficial in shortening the electron/ion transport path. In addition, MWCNTs can improve the overall conductivity of the Bi/MWCNTs composite and prevent particle aggregation, thus improving the cycling stability and rate performance. As an anode material for SIB, the Bi/MWCNTs composite has demonstrated excellent fast charging performance with a reversible capacity of 254 mAh/g at 20 A/g. A capacity of 221mAhg-1 after cycling at 10 A/g for 8000 cycles has also been achieved for SIB. As an anode material for PIB, the Bi/MWCNTs composite has delivered excellent rate performances with a reversible capacity of 251 mAh/g at 20 A/g. A specific capacity of 270mAhg-1 after cycling at 1Ag-1 for 5000 cycles has also been achieved for PIB.
Collapse
Affiliation(s)
- Jian Yu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Dan Zhao
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Chuansheng Ma
- Instrumental Analysis Center of Xi'an Jiaotong University, Xi'an 710049, China
| | - Lan Feng
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yonghao Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lifeng Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yi Liu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shouwu Guo
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an 710021, China; Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
22
|
Wang Y, Ding Y, Gao J, Zhang X, Sun H, Wang G. Microwave-Regulated Bi Nanoparticles on Carbon Nanotube Networks as a Freestanding Electrode for Flexible Sodium-Ion Capacitors. J Colloid Interface Sci 2023; 643:420-427. [PMID: 37086531 DOI: 10.1016/j.jcis.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
High capacity, long cycle life, and fast kinetics are highly desired for alloying anodes in sodium ion capacitors (SICs). However, the huge repeatedly volume changes during the alloying/dealloying process cause electrode pulverization, seriously degrading the capacity and cycling stability. To address this issue, we developed a microwave irradiation technology for the in-situ growth of nano-sized Bi uniformly anchored on the surface of carbon nanotubes (CNTs). The as-synthesized freestanding electrode film effectively retards the pulverization of Bi nanoparticles, enabling fast sodium storage kinetics for high-power performance (278.1 mAh g-1 @ 30 A g-1), as well as high-capacity retention of 94% for over 3,500 cycles. The coin-cell type SICs of a Bi/CNTs anode paired with an activated carbon (AC)/CNTs cathode can deliver a maximum energy density of 128.5 Wh kg-1 and a high power density of 12.3 kW kg-1 with a remaining energy density of 85 Wh kg-1. Additionally, the flexible quasi-solid SICs using a gel electrolyte demonstrated a high volumetric energy density of 21 mWh cm-3 with good cycling stability (90%) for over 1500 cycles. These results show great promise for our developed SICs as the next-generation energy storage to bridge the performance gap between batteries and supercapacitors, as well as for flexible energy storage applications.
Collapse
|
23
|
Huang H, Wang Y, Li M, Yang H, Chen Z, Jiang Y, Ye S, Yang Y, He S, Pan H, Wu X, Yao Y, Gu M, Yu Y. Optimizing the Fermi Level of a 3D Current Collector with Ni 3 S 2 /Ni 3 P Heterostructure for Dendrite-Free Sodium-Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210826. [PMID: 36731534 DOI: 10.1002/adma.202210826] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/27/2023] [Indexed: 05/17/2023]
Abstract
Rechargeable sodium-metal batteries (RSMBs) with high energy density and low cost are attracting extensive attention as promising energy-storage technologies. However, the poor cyclability and safety issues caused by unstable solid electrolyte interphase (SEI) structure and dendrite issues limit their practical application. Herein, it is theoretically predicted that constructing the Ni3 S2 /Ni3 P heterostructure with high work function can lower the Fermi energy level, and therefore effectively suppressing continuous electrolyte decomposition derived from the electron-tunneling effect after long-term sodiation process. Furthermore, the Ni3 S2 /Ni3 P heterostructure on 3D porous nickel foam (Ni3 S2 /Ni3 P@NF) is experimentally fabricated as an advanced Na-anode current collector. The seamless Ni3 S2 /Ni3 P heterostructure not only offers abundant active sites to induce uniform Na+ deposition and enhance ion-transport kinetics, but also facilitates the formation of stable SEI for dendrite-free sodium anode, which are confirmed by cryogenic components transmission electron microscopy tests and in situ spectroscopy characterization. As a result, the Na-composite anode (Ni3 S2 /Ni3 P@NF@Na) delivers stable plating/stripping process of 5000 h and high average Coulombic efficiency of 99.7% over 2500 cycles. More impressively, the assembled sodium-ion full cell displays ultralong cycle life of 10 000 cycles at 20 C. The strategy of stabilizing the sodium-metal anode gives fundamental insight into the potential construction of advanced RSMBs.
Collapse
Affiliation(s)
- Huijuan Huang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yunlei Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, 230026, China
- Collaborative Innovation Center of Chemistry for Energy Materials, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Menghao Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hai Yang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhihao Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yang Jiang
- Jiujiang, DeFu Technology Co. Ltd., Jiujiang, Jiangxi, 332000, China
| | - Shufen Ye
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Shengnan He
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Xiaojun Wu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, 230026, China
- Collaborative Innovation Center of Chemistry for Energy Materials, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yu Yao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Meng Gu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yan Yu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, 230026, China
- National Synchrotron Radiation Laboratory, Hefei, Anhui, 230026, China
| |
Collapse
|
24
|
Zhu Q, Xu A, Chen H, Liu C, Yan Y, Wu S. CuSe 2 Nanocubes Enabling Efficient Sodium Storage. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12976-12985. [PMID: 36862658 DOI: 10.1021/acsami.2c20655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As the most promising candidate for lithium-ion batteries (LIBs), the electrochemical performance of sodium-ion batteries (SIBs) is highly dependent on the electrode materials. Copper selenides have established themselves as potential anode materials for SIBs due to their high theoretical capacity and good conductivity. However, the poor rate performance and fast capacity fading are the major challenges to their practical application in SIBs. Herein, single-crystalline CuSe2 nanocubes (CuSe2 NCs) are successfully synthesized via a solvothermal method. As an anode of SIBs, the CuSe2 NCs render an almost 100% initial Coulombic efficiency, an outstanding long cycle life, e.g., 380 mA h g-1 after 1700 cycles at 10 A g-1, and an unprecedented rate performance of 344 mA h g-1 at 50 A g-1. Ex situ X-ray diffraction (XRD) patterns reveal the crystalline transformation of energy-storage materials, and the density functional theory (DFT) conclusion suggests that fast and stable ion diffusion kinetics enhances their electrochemical performance upon sodiation/desodiaton. The investigation into the mechanism provides a theoretical basis for subsequent practical applications.
Collapse
Affiliation(s)
- Qi Zhu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Key Laboratory of Fuel Cell Technology, Guangzhou 510641, China
| | - Anding Xu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huaming Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Key Laboratory of Fuel Cell Technology, Guangzhou 510641, China
| | - Chenxi Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Key Laboratory of Fuel Cell Technology, Guangzhou 510641, China
| | - Yurong Yan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Songping Wu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Key Laboratory of Fuel Cell Technology, Guangzhou 510641, China
| |
Collapse
|
25
|
Ma W, Yu B, Tan F, Gao H, Zhang Z. Bismuth-Antimony Alloy Embedded in Carbon Matrix for Ultra-Stable Sodium Storage. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2189. [PMID: 36984069 PMCID: PMC10051522 DOI: 10.3390/ma16062189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Alloy-type anodes are the most promising candidates for sodium-ion batteries (SIBs) due to their impressive Na storage capacity and suitable voltage platform. However, the implementation of alloy-type anodes is significantly hindered by their huge volume expansion during the alloying/dealloying processes, which leads to their pulverization and detachment from current collectors for active materials and the unsatisfactory cycling performance. In this work, bimetallic Bi-Sb solid solutions in a porous carbon matrix are synthesized by a pyrolysis method as anode material for SIBs. Adjustable alloy composition, the introduction of porous carbon matrix, and nanosized bimetallic particles effectively suppress the volume change during cycling and accelerate the electrons/ions transport kinetics. The optimized Bi1Sb1@C electrode exhibits an excellent electrochemical performance with an ultralong cycle life (167.2 mAh g-1 at 1 A g-1 over 8000 cycles). In situ X-ray diffraction investigation is conducted to reveal the reversible and synchronous sodium storage pathway of the Bi1Sb1@C electrode: (Bi,Sb) Na(Bi,Sb) Na3(Bi,Sb). Furthermore, online electrochemical mass spectrometry unveils the evolution of gas products of the Bi1Sb1@C electrode during the cell operation.
Collapse
Affiliation(s)
| | | | | | - Hui Gao
- Correspondence: (H.G.); (Z.Z.)
| | | |
Collapse
|
26
|
Liu Y, Qing Y, Zhou B, Wang L, Pu B, Zhou X, Wang Y, Zhang M, Bai J, Tang Q, Yang W. Yolk-Shell Sb@Void@Graphdiyne Nanoboxes for High-Rate and Long Cycle Life Sodium-Ion Batteries. ACS NANO 2023; 17:2431-2439. [PMID: 36656264 DOI: 10.1021/acsnano.2c09679] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Antimony (Sb) has been pursued as a promising anode material for sodium-ion batteries (SIBs). However, it suffers from severe volume expansion during the sodiation-desodiation process. Encapsulating Sb into a carbon matrix can effectively buffer the volume change of Sb. However, the sluggish Na+ diffusion kinetics in traditional carbon shells is still a bottleneck for achieving high-rate performance in Sb/C composite materials. Here we design and synthesize a yolk-shell Sb@Void@graphdiyne (GDY) nanobox (Sb@Void@GDY NB) anode for high-rate and long cycle life SIBs. The intrinsic in-plane cavities in GDY shells offer three-dimensional Na+ transporting channels, enabling fast Na+ diffusion through the GDY shells. Electrochemical kinetics analyses show that the Sb@Void@GDY NBs exhibit faster Na+ transport kinetics than traditional Sb@C NBs. In situ transmission electron microscopy analysis reveals that the hollow structure and the void space between Sb and GDY successfully accommodate the volume change of Sb during cycling, and the plastic GDY shell maintains the structural integrity of NBs. Benefiting from the above structural merits, the Sb@Void@GDY NBs exhibit excellent rate capability and extraordinary cycling stability.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yue Qing
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Bin Zhou
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu610200, P. R. China
| | - Lida Wang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Ben Pu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xuefeng Zhou
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu610200, P. R. China
| | - Yongbin Wang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Mingzhe Zhang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Jia Bai
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Qi Tang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Weiqing Yang
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu610200, P. R. China
| |
Collapse
|
27
|
Pu B, Liu Y, Bai J, Chu X, Zhou X, Qing Y, Wang Y, Zhang M, Ma Q, Xu Z, Zhou B, Yang W. Iodine-Ion-Assisted Galvanic Replacement Synthesis of Bismuth Nanotubes for Ultrafast and Ultrastable Sodium Storage. ACS NANO 2022; 16:18746-18756. [PMID: 36343214 DOI: 10.1021/acsnano.2c07472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bismuth (Bi) has emerged as a promising anode material for fast-charging and long-cycling sodium-ion batteries (SIBs). However, its dramatically volumetric variations during cycling will undesirably cause the pulverization of active materials, severely limiting the electrochemical performance of Bi-based electrodes. Constructing hollow nanostructures is recognized as an effective way to resolve the volume expansion issues of alloy-type anodes but remains a great challenge for metallic bismuth. Here, we report a facile iodine-ion-assisted galvanic replacement approach for the synthesis of Bi nanotubes (NTs) for high-rate, long-term and high-capacity sodium storage. The hollow tubular structure effectively alleviates the structural strain during sodiation/desodiation processes, resulting in excellent structural stability; the thin wall and large surface area enable ultrafast sodium ion transport. Benefiting from the structural merits, the Bi NT electrode exhibits extraordinary rate capability (84% capacity retention at 150 A g-1) and outstanding cycling stability (74% capacity retention for 65,000 cycles at 50 A g-1), which represent the best rate performance and longest cycle life among all reported anodes for SIBs. Moreover, when coupled with the Na3(VOPO4)2F cathode in full cells, this electrode also demonstrates excellent cycling performance, showing the great promise of Bi NTs for practical application. A combination of advanced research techniques reveals that the excellent performance originates from the structural robustness of the Bi NTs and the fast electrochemical kinetics during cycling.
Collapse
Affiliation(s)
- Ben Pu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Yan Liu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Jia Bai
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Xiang Chu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Xuefeng Zhou
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu610200, PR China
| | - Yue Qing
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Yongbin Wang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Mingzhe Zhang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Qingshan Ma
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu610200, PR China
| | - Zhong Xu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Bin Zhou
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu610200, PR China
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| |
Collapse
|
28
|
Xu A, Zhu Q, Li G, Gong C, Li X, Chen H, Cui J, Wu S, Xu Z, Yan Y. 2D Bismuth@N-Doped Carbon Sheets for Ultrahigh Rate and Stable Potassium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203976. [PMID: 36089671 DOI: 10.1002/smll.202203976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Metallic Bi, as an alloying-type anode material, has demonstrated tremendous potential for practical application of potassium-ion batteries. However, the giant volume expansion, severe structure pulverization, and sluggish dynamics of Bi-based materials result in unsatisfied rate performance and unstable cycling stability. Here, 2D bismuth@N-doped carbon sheets with BiOC bond and internal void space (2D Bi@NOC) are successfully fabricated via a self-template strategy to address these issues, which own ultrafast electrochemical kinetics and impressive long-term cycling stability for delivering an admirable capacity of 341.7 mAh g-1 after 1000 cycles at 10 A g-1 and impressive rate capability of 220.6 mAh g-1 at 50 A g-1 . Particularly, the in situ transmission electron microscopy observations visualize the real-time alloying/dealloying process and reveal that plastic carbon shell and void space can availably relieve dramatic volume stress and powerfully maintain structural integrity. Density functional theory calculation and ultraviolet photoelectron spectroscopy test certify that the robust BiOC bond is thermodynamically and kinetically beneficial for adsorption/diffusion of K+ . This work will light on designing advanced high-performance energy materials and provide important evidence for understanding the energy storage mechanism of alloy-based materials.
Collapse
Affiliation(s)
- Anding Xu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Qi Zhu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Guilan Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Caihong Gong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Xue Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Huaming Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Jie Cui
- Analytical and Testing Centre, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Songping Wu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
- Guangdong Key Laboratory of Fuel Cell Technology, Guangzhou, 510641, P. R. China
| | - Zhiguang Xu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry & Environment, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yurong Yan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
- Key Lab of Guangdong High Property & Functional Polymer Materials, Guangzhou, 510640, P. R. China
| |
Collapse
|
29
|
Chen C, Huang H, Hu R, Bi R, Zhang L. Phase Separation Induced Binary Core-Shell Alloy Nanoparticles Embedded in Carbon Sheets for Magnesium Storage. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39965-39975. [PMID: 36000722 DOI: 10.1021/acsami.2c09187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Magnesium-ion batteries (MIBs) have aroused widespread interest in large-scale applications due to their low cost, high volumetric capacity, and safety. However, magnesium (Mg) metals are incompatible with conventional electrolytes, making it difficult to plate and strip reversibly. Therefore, developing novel Mg2+ host anodes remains a huge challenge. Herein, we present a rational design and fabrication of binary Bi@Sn alloy nanoparticles embedded in carbon sheets (Bi@Sn-C) as a superior anode for MIBs employing phase separation during the annealing of bimetallic MOFs. The Bi@Sn-C simultaneously integrates the nanostructure design and multi-element coordination strategies which is favorable to improve the overall structural stability and Mg2+ diffusion kinetics. Benefiting from the aforementioned features, the Bi@Sn-C electrodes deliver good cycling stability of 214 mA h g-1 at 100 mA g-1 after 100 cycles and rate capability with 200 mA h g-1 at 500 mA g-1. And when using all-phenyl complex with lithium chloride (LiCl-APC) dual-salt electrolyte, the electrochemical performance of Bi@Sn-C is further optimized and shows enhanced rate performance (238 mA h g-1 at 500 mA g-1) and reversible capacity (308 mA h g-1 at 100 mA g-1 after 100 cycles). This novel strategy holds great promise for designing efficient alloy electrode materials for MIBs.
Collapse
Affiliation(s)
- Chen Chen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510640, China
| | - Huawen Huang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510640, China
| | - Renzong Hu
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ran Bi
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510640, China
| | - Lei Zhang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
30
|
Kim YH, An JH, Kim SY, Li X, Song EJ, Park JH, Chung KY, Choi YS, Scanlon DO, Ahn HJ, Lee JC. Enabling 100C Fast-Charging Bulk Bi Anodes for Na-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201446. [PMID: 35524951 DOI: 10.1002/adma.202201446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/13/2022] [Indexed: 06/14/2023]
Abstract
It is challenging to develop alloying anodes with ultrafast charging and large energy storage using bulk anode materials because of the difficulty of carrier-ion diffusion and fragmentation of the active electrode material. Herein, a rational strategy is reported to design bulk Bi anodes for Na-ion batteries that feature ultrafast charging, long cyclability, and large energy storage without using expensive nanomaterials and surface modifications. It is found that bulk Bi particles gradually transform into a porous nanostructure during cycling in a glyme-based electrolyte, whereas the resultant structure stores Na ions by forming phases with high Na diffusivity. These features allow the anodes to exhibit unprecedented electrochemical properties; the developed Na-Bi half-cell delivers 379 mA h g-1 (97% of that measured at 1C) at 7.7 A g-1 (20C) during 3500 cycles. It also retained 94% and 93% of the capacity measured at 1C even at extremely fast-charging rates of 80C and 100C, respectively. The structural origins of the measured properties are verified by experiments and first-principles calculations. The findings of this study not only broaden understanding of the underlying mechanisms of fast-charging anodes, but also provide basic guidelines for searching battery anodes that simultaneously exhibit high capacities, fast kinetics, and long cycling stabilities.
Collapse
Affiliation(s)
- Young-Hoon Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, South Korea
| | - Jae-Hyun An
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, South Korea
| | - Sung-Yeob Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, South Korea
| | - Xiangmei Li
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, South Korea
| | - Eun-Ji Song
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju, 52828, South Korea
| | - Jae-Ho Park
- Energy Storage Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Kyung Yoon Chung
- Energy Storage Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- Division of Energy and Environment Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, South Korea
| | - Yong-Seok Choi
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
- Thomas Young Centre, University College London, Gower Street, London, WC1E 6BT, UK
| | - David O Scanlon
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
- Thomas Young Centre, University College London, Gower Street, London, WC1E 6BT, UK
| | - Hyo-Jun Ahn
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju, 52828, South Korea
| | - Jae-Chul Lee
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, South Korea
- Institute of Green Manufacturing Technology, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
31
|
Liang Y, Song N, Zhang Z, Chen W, Feng J, Xi B, Xiong S. Integrating Bi@C Nanospheres in Porous Hard Carbon Frameworks for Ultrafast Sodium Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202673. [PMID: 35514175 DOI: 10.1002/adma.202202673] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Sodium-ion batteries (SIBs) have emerged as an alternative technology because of their merits in abundance and cost. Realizing their real applications, however, remains a formidable challenge. One is that among the limitations of anode materials, the alloy-type candidates tolerate fast capacity fading during cycling. Here, a 3D framework superstructure assembled with carbon nanobelt arrays decorated with a metallic bismuth (Bi) nanospheres coated carbon layer by thermolysis of Bi-based metal-organic framework nanorods is synthesized as an anode material for SIBs. Due to the unique structural superiority, the anode design promotes excellent sodium-storage performance in terms of high capacity, excellent cycling stability, and ultrahigh rate capability up to 80 A g-1 with a capacity of 308.8 mAh g-1 . The unprecedented sodium-storage ability is not only attributed to the unique hybrid architecture, but also to the production of a homogeneous and thin solid electrolyte interface layer and the formation of uniform porous nanostructures during cycling in the ether-based electrolyte. Importantly, deeper understanding of the underlying cause of the performance improvement is illuminated, which is vital to provide the theoretical basis for application of SIBs.
Collapse
Affiliation(s)
- Yazhan Liang
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, P. R. China
- School of Chemistry and Chemical Engineering, and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Ning Song
- School of Chemistry and Chemical Engineering, and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Zhengchunyu Zhang
- School of Chemistry and Chemical Engineering, and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Weihua Chen
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jinkui Feng
- School of Materials Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Baojuan Xi
- School of Chemistry and Chemical Engineering, and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Shenglin Xiong
- School of Chemistry and Chemical Engineering, and State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
32
|
Wang Z, Wang J, Ni J, Li L. Structurally Durable Bimetallic Alloy Anodes Enabled by Compositional Gradients. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201209. [PMID: 35362272 PMCID: PMC9165509 DOI: 10.1002/advs.202201209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Metals such as Sb and Bi are important anode materials for sodium-ion batteries because they feature a large capacity and low reaction potential. However, the accumulation of stress and strain upon sodium storage leads to the formation of cracks and fractures, resulting in electrode failure upon extended cycling. In this work, the design and construction of Bix Sb1-x bimetallic alloy films with a compositional gradient to mitigate the intrinsic structural instability is reported. In the gradient film, the top is rich in Sb, contributing to the capacity, while the bottom is rich in Bi, helping to reduce the stress in the interphase between the film and the substrate. Significantly, this gradient film affords a high reversible capacity of ≈500 mAh g-1 and sustains 82% of the initial capacity after 1000 cycles at 2 C, drastically outperforming the solid-solution counterpart and many recently reported alloy anodes. Such a gradient design can open up the possibilities to engineering high-capacity anode materials that are structurally unstable due to the huge volume variation upon energy storage.
Collapse
Affiliation(s)
- Zhenzhu Wang
- School of Physical Science and TechnologyCenter for Energy Conversion Materials & Physics (CECMP)Jiangsu Key Laboratory of Thin FilmsSoochow UniversitySuzhou215006China
| | - Jie Wang
- School of Physical Science and TechnologyCenter for Energy Conversion Materials & Physics (CECMP)Jiangsu Key Laboratory of Thin FilmsSoochow UniversitySuzhou215006China
| | - Jiangfeng Ni
- School of Physical Science and TechnologyCenter for Energy Conversion Materials & Physics (CECMP)Jiangsu Key Laboratory of Thin FilmsSoochow UniversitySuzhou215006China
- Light Industry Institute of Electrochemical Power SourcesSuzhou215699China
| | - Liang Li
- School of Physical Science and TechnologyCenter for Energy Conversion Materials & Physics (CECMP)Jiangsu Key Laboratory of Thin FilmsSoochow UniversitySuzhou215006China
| |
Collapse
|
33
|
Fan L, Guo X, Li W, Hang X, Pang H. Rational design of Prussian blue analogue-derived manganese-iron oxides-based hybrids as high-performance Li-ion-battery anodes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Zhu R, Li L, Wang Z, Zhang S, Dang J, Liu X, Wang H. Adjustable Dimensionality of Microaggregates of Silicon in Hollow Carbon Nanospheres: An Efficient Pathway for High-Performance Lithium-Ion Batteries. ACS NANO 2022; 16:1119-1133. [PMID: 34936340 DOI: 10.1021/acsnano.1c08866] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Silicon, as an anode candidate with great promise for next-generation lithium-ion batteries (LIBs), has drawn massive attention. However, the deficiencyies of tremendous volume change and intrinsic low electron/ion conductivity will hinder its further development. To cope with these bottlenecks, from the aspect of dimension design concept, the diverse dimensionality of microaggregates derived from cogenetic Si/C nano-building blocks was explored rather than the conventional strategies such as morphology control, structure design, and composition adjustment of Si/C. Herein, constructing silicon-carbon hybrid materials considering component dimensional variation and dimensional hybridization is beneficial to enhance lithium storage performance. Initiating from 0D silicon nanodots evenly immersed in the interior and skeleton of a hollow carbon shell (SHC) nanosphere, the 1D SHC nanospheres interconnected with nitrogen doping carbon necklace fiber, a 2D SHC nanospheres directional arranged plane, and a 3D SHC nanospheres self-aggregated microsphere will be elaborately and favorably designed and composed. Then, three different as-prepared dimensional materials deliver their inherent superiority in chemical, physical, and electronic properties containing 1D high aspect ratio, 2D fast electron/ion diffusion kinetics, and 3D efficient conductive networks, yielding effectively enhanced electrochemical performance, respectively.
Collapse
Affiliation(s)
- Ruiyu Zhu
- Key Laboratory of Synthetic and Natural Functional Molecule (Ministry of Education), College of Chemistry & Materials Science, Shaanxi Joint Lab of Graphene (NWU), Northwest University, Xi'an 710127, People's Republic of China
| | - Lixiang Li
- Key Laboratory of Synthetic and Natural Functional Molecule (Ministry of Education), College of Chemistry & Materials Science, Shaanxi Joint Lab of Graphene (NWU), Northwest University, Xi'an 710127, People's Republic of China
| | - Zehua Wang
- Key Laboratory of Synthetic and Natural Functional Molecule (Ministry of Education), College of Chemistry & Materials Science, Shaanxi Joint Lab of Graphene (NWU), Northwest University, Xi'an 710127, People's Republic of China
| | - Shengqiang Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule (Ministry of Education), College of Chemistry & Materials Science, Shaanxi Joint Lab of Graphene (NWU), Northwest University, Xi'an 710127, People's Republic of China
| | - Jie Dang
- Key Laboratory of Synthetic and Natural Functional Molecule (Ministry of Education), College of Chemistry & Materials Science, Shaanxi Joint Lab of Graphene (NWU), Northwest University, Xi'an 710127, People's Republic of China
| | - Xiaojie Liu
- Key Laboratory of Synthetic and Natural Functional Molecule (Ministry of Education), College of Chemistry & Materials Science, Shaanxi Joint Lab of Graphene (NWU), Northwest University, Xi'an 710127, People's Republic of China
| | - Hui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule (Ministry of Education), College of Chemistry & Materials Science, Shaanxi Joint Lab of Graphene (NWU), Northwest University, Xi'an 710127, People's Republic of China
| |
Collapse
|
35
|
Colbin LOS, Nwafornso TE, Li Y, Younesi R. On the compatibility of high mass loading bismuth anodes for full-cell sodium-ion batteries. Dalton Trans 2022; 51:16852-16860. [DOI: 10.1039/d2dt02686d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rate capability and cyclability of high mass loading metallic bismuth anodes are studied in full-cell sodium-ion batteries, using Prussian white cathodes.
Collapse
Affiliation(s)
- Lars Olow Simon Colbin
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 538, SE-75121 Uppsala, Sweden
| | - Tochukwu E. Nwafornso
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 538, SE-75121 Uppsala, Sweden
| | - Yunjie Li
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 538, SE-75121 Uppsala, Sweden
| | - Reza Younesi
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 538, SE-75121 Uppsala, Sweden
| |
Collapse
|
36
|
Zhang F, Liu X, Wang B, Wang G, Wang H. Bi@C Nanospheres with the Unique Petaloid Core-Shell Structure Anchored on Porous Graphene Nanosheets as an Anode for Stable Sodium- and Potassium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59867-59881. [PMID: 34874168 DOI: 10.1021/acsami.1c16946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bismuth (Bi) has emerged as a prospective candidate as Na-ion and potassium-ion battery anodes because of its unique advantages of low cost, high theoretical gravimetric capacity (386 mAh g-1), and superior volumetric capacity (3800 mAh cm-3). However, the low electronic conductivity and the huge volume expansion of Bi during the alloying/dealloying reactions are extremely detrimental to cycling stability, which seriously hinder its practical application. To overcome these issues, we propose a rational design: Bi@C nanospheres with the unique petaloid core-shell structure are synthesized in one step for the first time and then combined with different contents of graphene (GR) nanosheets to form the composites Bi@C@GR. The Bi@C nanospheres with a core-shell structure are beneficial to shortening the transmission path of electrons/ions and reducing the risk from structural rupture of the particles during cycling. In addition, the combination of Bi@C nanospheres and porous GR could greatly improve the conductivity and prevent the aggregation of particles, which is conducive to better cycling stability and rate performance. Consequently, Bi@C@GR-2 presents a superior reversible capacity for sodium storage (300 mAh g-1 over 80 cycles) and potassium storage (200 mAh g-1 over 70 cycles) at 0.1 A g-1. Furthermore, in situ electrochemical impedance spectroscopy and ex situ transmission electron microscopy are carried out to analyze and reflect the kinetic reaction mechanism and the phase change of the Bi@C@GR-2 electrode during the charge/discharge processes.
Collapse
Affiliation(s)
- Fan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
- Shaanxi Joint Lab of Graphene (NWU), Xi'an 710127, P.R. China
| | - Xiaojie Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
- Shaanxi Joint Lab of Graphene (NWU), Xi'an 710127, P.R. China
| | - Beibei Wang
- State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, P.R. China
- Shaanxi Joint Lab of Graphene (NWU), Xi'an 710127, P.R. China
| | - Gang Wang
- State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, P.R. China
- Shaanxi Joint Lab of Graphene (NWU), Xi'an 710127, P.R. China
| | - Hui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
- Shaanxi Joint Lab of Graphene (NWU), Xi'an 710127, P.R. China
| |
Collapse
|
37
|
Qiu X, Wang X, He Y, Liang J, Liang K, Tardy BL, Richardson JJ, Hu M, Wu H, Zhang Y, Rojas OJ, Manners I, Guo J. Superstructured mesocrystals through multiple inherent molecular interactions for highly reversible sodium ion batteries. SCIENCE ADVANCES 2021; 7:eabh3482. [PMID: 34516887 PMCID: PMC8442931 DOI: 10.1126/sciadv.abh3482] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/20/2021] [Indexed: 05/22/2023]
Abstract
Soft structures in nature, such as supercoiled DNA and proteins, can organize into complex hierarchical architectures through multiple noncovalent molecular interactions. Identifying new classes of natural building blocks capable of facilitating long-range hierarchical structuring has remained an elusive goal. We report the bottom-up synthesis of a hierarchical metal-phenolic mesocrystal where self-assembly proceeds on different length scales in a spatiotemporally controlled manner. Phenolic-based coordination complexes organize into supramolecular threads that assemble into tertiary nanoscale filaments, lastly packing into quaternary mesocrystals. The hierarchically ordered structures are preserved after thermal conversion into a metal-carbon hybrid framework and can impart outstanding performance to sodium ion batteries, which affords a capability of 72.5 milliampere hours per gram at an ultrahigh rate of 200 amperes per gram and a 90% capacity retention over 15,000 cycles at a current density of 5.0 amperes per gram. This hierarchical structuring of natural polyphenols is expected to find widespread applications.
Collapse
Affiliation(s)
- Xiaoling Qiu
- BMI Center for Biomass Materials and Nanointerfaces,
College of Biomass Science and Engineering, College of Materials Science and
Engineering, Sichuan University, Chengdu Sichuan 610065, China
| | - Xiaoling Wang
- BMI Center for Biomass Materials and Nanointerfaces,
College of Biomass Science and Engineering, College of Materials Science and
Engineering, Sichuan University, Chengdu Sichuan 610065, China
- Harvard John A. Paulson School of Engineering and
Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Yunxiang He
- BMI Center for Biomass Materials and Nanointerfaces,
College of Biomass Science and Engineering, College of Materials Science and
Engineering, Sichuan University, Chengdu Sichuan 610065, China
| | - Jieying Liang
- School of Chemical Engineering, University of New
South Wales, Sydney, New South Wales 2052, Australia
| | - Kang Liang
- School of Chemical Engineering, University of New
South Wales, Sydney, New South Wales 2052, Australia
| | - Blaise L. Tardy
- Department of Bioproducts and Biosystems, School of
Chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Joseph J. Richardson
- Department of Materials Engineering, School of
Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Ming Hu
- School of Physics and Materials Science, East China
Normal University, Shanghai 200241, China
| | - Hao Wu
- BMI Center for Biomass Materials and Nanointerfaces,
College of Biomass Science and Engineering, College of Materials Science and
Engineering, Sichuan University, Chengdu Sichuan 610065, China
- Corresponding author. (H.W.); (Y.Z.); ,
(J.G.)
| | - Yun Zhang
- BMI Center for Biomass Materials and Nanointerfaces,
College of Biomass Science and Engineering, College of Materials Science and
Engineering, Sichuan University, Chengdu Sichuan 610065, China
- Corresponding author. (H.W.); (Y.Z.); ,
(J.G.)
| | - Orlando J. Rojas
- Bioproducts Institute, Departments of Chemical and
Biological Engineering, Chemistry, and Wood Science, The University of British
Columbia, Vancouver, BC, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria,
Victoria, BC V8W 3V6, Canada
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces,
College of Biomass Science and Engineering, College of Materials Science and
Engineering, Sichuan University, Chengdu Sichuan 610065, China
- Harvard John A. Paulson School of Engineering and
Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- State Key Laboratory of Polymer Materials
Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- Corresponding author. (H.W.); (Y.Z.); ,
(J.G.)
| |
Collapse
|
38
|
Zhu Y, Zhao J, Li L, Xu J, Zhao X, Mi Y, Jin J. Multi-core yolk-shell-structured Bi 2Se 3@C nanocomposite as an anode for high-performance lithium-ion batteries. Dalton Trans 2021; 50:10758-10764. [PMID: 34313287 DOI: 10.1039/d1dt01766g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Emerging Bi2Se3-based anode materials are attracting great interest for lithium storage because of their high theoretical capacity. Although quite attractive, Bi2Se3 still faces the problem of large volume expansion during lithiation/delithiation, leading to poor cycling stability. Herein, a multi-core yolk-shell Bi2Se3@C nanocomposite was designed and synthesized via a solvothermal method followed by heat treatment. The as-prepared yolk-shell nanocomposite consists of two parts: several Bi2Se3 nanospheres (diameter of approximately 100 nm) as a core, and carbon (thickness of approximately 16 nm) as the shell. Owing to its unique structural features, multi-core yolk-shell Bi2Se3@C nanocomposite demonstrates excellent cycling stability with a capacity of 392.2 mA h g-1 at 0.2 A g-1 after 100 cycles for lithium-ion batteries (LIBs). A reversible capacity of 416.9 mA h g-1 can be maintained even at a higher current density of 1 A g-1 after 1200 cycles. The reason for the superior electrochemical performance was further explored through electrochemical kinetic analysis and theoretical calculations. This work provides an effective strategy for the preparation of multi-core yolk-shell anode materials, and also affords a new method by which to prepare high-performance LIBs.
Collapse
Affiliation(s)
- Yaqin Zhu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Jiachang Zhao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Lanjie Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Jingli Xu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Xinxin Zhao
- School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Yiming Mi
- School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Jun Jin
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
| |
Collapse
|
39
|
Shi X, Gan Y, Zhang Q, Wang C, Zhao Y, Guan L, Huang W. A Partial Sulfuration Strategy Derived Multi-Yolk-Shell Structure for Ultra-Stable K/Na/Li-ion Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100837. [PMID: 34242441 DOI: 10.1002/adma.202100837] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/12/2021] [Indexed: 06/13/2023]
Abstract
Metal sulfides are attractive anodes for alkali metal ion batteries due to the high theoretical capacity, while their practical implementation is hampered by the inherent poor conductivity and vast volume variation during cycles. Approaching rational designed microstructures with good stability and fast charge transfer is of great importance in response to these issues. Herein, a partial sulfuration strategy for the rational construction of multi-yolk-shell (m-Y-S) structures, from which multiple Fe1- x S nanoparticles are confined within hollow carbon nanosheet with tunable interior void space is reported. As anode materials, the m-Y-S Fe1- x S@C composite can display high capacity and excellent rate capability (134, 365, and 447 mA h g-1 for K+ , Na+ , and Li+ storage at 20 A g-1 ). Remarkably, it exhibits ultra-stable potassium storage up to 1200, 6000, and 20 000 cycles under current densities of 0.1, 0.5, and 1 A g-1 , which is much superior to previous yolk-shell structures and metal-sulfide anodes. Based on comprehensive experimental analysis and theoretical calculations, the exceptional performance of m-Y-S structure can be ascribed to the optimized interior void space for good structure stability, as well as the multiple connection points and conductive carbon layer for superior electron/ion transportation.
Collapse
Affiliation(s)
- Xiuling Shi
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou, 350117, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350108, China
| | - Yanmei Gan
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou, 350117, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350108, China
| | - Qixin Zhang
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou, 350117, China
| | - Chaoying Wang
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou, 350117, China
| | - Yi Zhao
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou, 350117, China
| | - Lunhui Guan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350108, China
| | - Wei Huang
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou, 350117, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| |
Collapse
|
40
|
Hou T, Fan A, Sun X, Zhang X, Xu Z, Cai S, Zheng C. Improving cycling stability of Bi-encapsulated carbon fibers for lithium/sodium-ion batteries by Fe2O3 pinning. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
"Self-doping" defect engineering in SnP 3@gamma-irradiated hard carbon anode for rechargeable sodium storage. J Colloid Interface Sci 2021; 592:279-290. [PMID: 33676190 DOI: 10.1016/j.jcis.2021.02.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/05/2021] [Accepted: 02/13/2021] [Indexed: 02/02/2023]
Abstract
Reasonable design of defect engineering in the electrode materials for sodium-ion batteries (SIBs) can significantly optimize battery performance. Here, compared with the traditional "foreign-doping" defects method, we report an innovative gamma-irradiation technique to introduce the "self-doping" defects in the popcorn hard carbon (HC). Considering the advantages of adsorption-intercalation-alloying sodium storage mechanism, the defect-rich HC-coated alloy structure (SnP3@HC-γ) was integrated. Due to the high energy and strong penetrability of γ-rays, the constructed "self-doping" defect engineering effectively expands the interlayer structure of HC and forms the irregular ring structure. Simultaneously, the exposed large number of coordination unsaturated sites can accelerate the reaction kinetics on the surface. Based on the synergistic effect of the SnP3@HC-γ, the composites exhibit an excellent reversible capacity of 668 mAh g-1 at 0.1 A g-1 in SIBs. Even, after 400 cycles at 1.0 A g-1, an exceptional cyclability with 88% capacity retention (430 mAh g-1) can be maintained. We envision that the γ-irradiation technology used in this research not only overturns the general perception that "self-doping" defects will reduce performance, but also provides reliable technical support for large-scale construction of high-defect, high-capacity and stable sodium-ion anode materials.
Collapse
|
42
|
Gong D, Wei C, Liang Z, Tang Y. Recent Advances on Sodium‐Ion Batteries and Sodium Dual‐Ion Batteries: State‐of‐the‐Art Na
+
Host Anode Materials. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100014] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Decai Gong
- Functional Thin Films Research Center Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Chenyang Wei
- Functional Thin Films Research Center Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- Nano Science and Technology Institute University of Science and Technology of China Suzhou 215123 China
| | - Zhongwang Liang
- Functional Thin Films Research Center Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- Nano Science and Technology Institute University of Science and Technology of China Suzhou 215123 China
| | - Yongbing Tang
- Functional Thin Films Research Center Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
- Nano Science and Technology Institute University of Science and Technology of China Suzhou 215123 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
- Key Laboratory of Advanced Materials Processing and Mold Ministry of Education Zhengzhou University Zhengzhou 450002 China
| |
Collapse
|
43
|
Guo S, Feng Y, Wang L, Jiang Y, Yu Y, Hu X. Architectural Engineering Achieves High-Performance Alloying Anodes for Lithium and Sodium Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005248. [PMID: 33734598 DOI: 10.1002/smll.202005248] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/24/2020] [Indexed: 06/12/2023]
Abstract
Tremendous efforts have been dedicated to the development of high-performance electrochemical energy storage devices. The development of lithium- and sodium-ion batteries (LIBs and SIBs) with high energy densities is urgently needed to meet the growing demands for portable electronic devices, electric vehicles, and large-scale smart grids. Anode materials with high theoretical capacities that are based on alloying storage mechanisms are at the forefront of research geared towards high-energy-density LIBs or SIBs. However, they often suffer from severe pulverization and rapid capacity decay due to their huge volume change upon cycling. So far, a wide variety of advanced materials and electrode structures are developed to improve the long-term cyclability of alloying-type materials. This review provides fundamentals of anti-pulverization and cutting-edge concepts that aim to achieve high-performance alloying anodes for LIBs/SIBs from the viewpoint of architectural engineering. The recent progress on the effective strategies of nanostructuring, incorporation of carbon, intermetallics design, and binder engineering is systematically summarized. After that, the relationship between architectural design and electrochemical performance as well as the related charge-storage mechanisms is discussed. Finally, challenges and perspectives of alloying-type anode materials for further development in LIB/SIB applications are proposed.
Collapse
Affiliation(s)
- Songtao Guo
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuezhan Feng
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| | - Libin Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yingjun Jiang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yan Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, 230026, China
| | - Xianluo Hu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
44
|
Zhou L, Cao Z, Zhang J, Cheng H, Liu G, Park GT, Cavallo L, Wang L, Alshareef HN, Sun YK, Ming J. Electrolyte-Mediated Stabilization of High-Capacity Micro-Sized Antimony Anodes for Potassium-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005993. [PMID: 33470482 DOI: 10.1002/adma.202005993] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Alloying anodes exhibit very high capacity when used in potassium-ion batteries, but their severe capacity fading hinders their practical applications. The failure mechanism has traditionally been attributed to the large volumetric change and/or their fragile solid electrolyte interphase. Herein, it is reported that an antimony (Sb) alloying anode, even in bulk form, can be stabilized readily by electrolyte engineering. The Sb anode delivers an extremely high capacity of 628 and 305 mAh g-1 at current densities of 100 and 3000 mA g-1 , respectively, and remains stable for more than 200 cycles. Interestingly, there is no need to do nanostructural engineering and/or carbon modification to achieve this excellent performance. It is shown that the change in K+ solvation structure, which is tuned by electrolyte composition (i.e., anion, solvent, and concentration), is the main reason for achieving this excellent performance. Moreover, an interfacial model based on the K+ -solvent-anion complex behavior is presented. The electronegativity of the K+ -solvent-anion complex, which can be tuned by changing the solvent type and anion species, is used to predict and control electrode stability. The results shed new light on the failure mechanism of alloying anodes, and provide a new guideline for electrolyte design that stabilizes metal-ion batteries using alloying anodes.
Collapse
Affiliation(s)
- Lin Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Zhen Cao
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jiao Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Hraoran Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Gang Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Geon-Tae Park
- Department of Energy Engineering, Hanyang University, Seoul, 133-791, Republic of Korea
| | - Luigi Cavallo
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Limin Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Husam N Alshareef
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yang-Kook Sun
- Department of Energy Engineering, Hanyang University, Seoul, 133-791, Republic of Korea
| | - Jun Ming
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
45
|
Sandwich-structured dual carbon modified bismuth nanosphere composites as long-cycle and high-rate anode materials for sodium-ion batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137379] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Pan Q, Zhang M, Zhang L, Li Y, Li Y, Tan C, Zheng F, Huang Y, Wang H, Li Q. FeSe 2@C Microrods as a Superior Long-Life and High-Rate Anode for Sodium Ion Batteries. ACS NANO 2020; 14:17683-17692. [PMID: 33258364 DOI: 10.1021/acsnano.0c08818] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Transition-metal selenides have emerged as promising anode materials for sodium ion batteries (SIBs). Nevertheless, they suffer from volume expansion, polyselenide dissolution, and sluggish kinetics, which lead to inadequate conversion reaction toward sodium and poor reversibility during the desodiation process. Therefore, the transition-metal selenides are far from long cycling stability, outstanding rate performance, and high initial Coulombic efficiency, which are the major challenges for practical application in SIBs. Here, an efficient anode material including an FeSe2 core and N-doped carbon shell with inner void space as well as high conductivity is developed for outstanding rate performance and long cycle life SIBs. In the ingeniously designed FeSe2@NC microrods, the N-doped carbon shell can facilitate mass transport/electron transfer, protect the FeSe2 core from the electrolyte, and accommodate volume variation of FeSe2 with the help of the inner void of the core. Thus, the FeSe2@NC microrods can maintain strong structural integrity upon long cycling and ensure a good reversible conversion reaction of FeSe2 during the discharge/charge process. As a result, the as-prepared FeSe2@NC microrods exhibit excellent sodium storage performance and ultrahigh stability, achieving an excellent rate capability (411 mAh g-1 at 10.0 A g-1) and a long-term cycle performance (401.3 mAh g-1 after 2000 cycles at 5.0 A g-1).
Collapse
Affiliation(s)
- Qichang Pan
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, China
- Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin, 541004, China
| | - Man Zhang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, China
- Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin, 541004, China
| | - Lixuan Zhang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, China
- Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin, 541004, China
| | - Yahao Li
- State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yu Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, China
- Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin, 541004, China
| | - Chunlei Tan
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, China
- Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin, 541004, China
| | - Fenghua Zheng
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, China
- Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin, 541004, China
| | - Youguo Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, China
- Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin, 541004, China
| | - Hongqiang Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, China
- Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin, 541004, China
| | - Qingyu Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, China
- Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
47
|
Shi X, Zhang Y, Xu G, Guo S, Pan A, Zhou J, Liang S. Enlarged interlayer spacing and enhanced capacitive behavior of a carbon anode for superior potassium storage. Sci Bull (Beijing) 2020; 65:2014-2021. [PMID: 36659060 DOI: 10.1016/j.scib.2020.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 01/21/2023]
Abstract
Potassium-ion batteries (PIBs) hold great potential as an alternative to lithium-ion batteries due to the abundant reserves of potassium and similar redox potentials of K+/K and Li+/Li. Unfortunately, PIBs with carbonaceous electrodes present sluggish kinetics, resulting in unsatisfactory cycling stability and poor rate capability. Herein, we demonstrate that the synergistic effects of the enlarged interlayer spacing and enhanced capacitive behavior induced by the co-doping of nitrogen and sulfur atoms into a carbon structure (NSC) can improve its potassium storage capability. Based on the capacitive contribution calculations, electrochemical impedance spectroscopy, the galvanostatic intermittent titration technique, and density functional theory results, the NSC electrode is found to exhibit favorable electronic conductivity, enhanced capacitive adsorption behavior, and fast K+ ion diffusion kinetics. Additionally, a series of ex-situ characterizations demonstrate that NSC exhibits superior structural stability during the (de)potassiation process. As a result, NSC displays a high reversible capacity of 302.8 mAh g-1 at 0.1 A g-1 and a stable capacity of 105.2 mAh g-1 even at 2 A g-1 after 600 cycles. This work may offer new insight into the effects of the heteroatom doping of carbon materials on their potassium storage properties and facilitate their application in PIBs.
Collapse
Affiliation(s)
- Xiaodong Shi
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Yida Zhang
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei 230029, China
| | - Guofu Xu
- School of Materials Science and Engineering, Central South University, Changsha 410083, China; Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha 410083, China
| | - Shan Guo
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Anqiang Pan
- School of Materials Science and Engineering, Central South University, Changsha 410083, China; Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha 410083, China
| | - Jiang Zhou
- School of Materials Science and Engineering, Central South University, Changsha 410083, China; Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha 410083, China.
| | - Shuquan Liang
- School of Materials Science and Engineering, Central South University, Changsha 410083, China; Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha 410083, China.
| |
Collapse
|
48
|
Wang X, Wu Y, Huang P, Chen P, Wang Z, Xu X, Xie J, Yan J, Li S, Tu J, Ding YL. A multi-layered composite assembly of Bi nanospheres anchored on nitrogen-doped carbon nanosheets for ultrastable sodium storage. NANOSCALE 2020; 12:23682-23693. [PMID: 33225337 DOI: 10.1039/d0nr07230c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bismuth (Bi) is a promising anode candidate for sodium ion batteries (SIBs) with a high volumetric capacity (3765 mA h cm-3) and moderate working potential but suffers from large volume change (ca. 250%) during the sodiation/desodiation process, resulting in pulverization of the electrode, electrical contact loss, excessive accumulation of solid electrolyte interfaces, etc., devastating the cycling stability of the electrode seriously. Addressing this issue significantly relies on rational micro- and nano-structuring. Herein, we prepared a 3D multi-layered composite assembly of Bi/carbon heterojunctions with 0D bismuth nanospheres distributed and anchored on 2D nitrogen-doped carbon nanosheets (NCSs), using a preorganization strategy by taking full advantage of the strong complexation ability of Bi3+. The multi-layered composite assembly is periodic and close-packed, with Bi nanospheres <25 nm, carbon nanosheets ∼30 nm, and an average interlayer space of ∼75 nm. Such a specific architecture provides abundant electrochemically active surfaces and ion migration channels as the Bi nanospheres are attached to the 2D nitrogen-doped carbon nanosheets via a point-to-surface pattern. Moreover, the mono-layer Bi nanospheres oriented along the 2D-surface of NCSs are kinetically favorable for the recognition of Na+ by the active sites of Bi nanospheres as well as for avoiding the long distance migration of Na+ (external diffusion of Na+). Furthermore, thermodynamically, the small size and high surface energy of ultrasmall Bi nanospheres could contribute to high ion mobility (internal diffusion of Na+) and promote electrochemical reactions as well. The multi-layered composite assembly of Bi@NCSs (ML-Bi@NCSs) not only provides a robust 3D framework guaranteeing the whole structural stability but also ensures direct and full contact of each active nano-building block with electrolyte, thereby forming a high-throughput electron/ion transport system. When evaluated as the anode for SIBs, ML-Bi@NCSs deliver superior high-rate capability up to 30 A g-1 (specific capacity: 288 mA h g-1) and long-term cycling stability (capacity retention: 95.8% after 5000 cycles at 10 A g-1 and 90.6% after 10 000 cycles at 20 A g-1, respectively).
Collapse
Affiliation(s)
- Xinxin Wang
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wang A, Hong W, Yang L, Tian Y, Qiu X, Zou G, Hou H, Ji X. Bi-Based Electrode Materials for Alkali Metal-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004022. [PMID: 33155416 DOI: 10.1002/smll.202004022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Alkali metal (Li, Na, K) ion batteries with high energy density are urgently required for large-scale energy storage applications while the lack of advanced anode materials restricts their development. Recently, Bi-based materials have been recognized as promising electrode candidates for alkali metal-ion batteries due to their high volumetric capacity and suitable operating potential. Herein, the latest progress of Bi-based electrode materials for alkali metal-ion batteries is summarized, mainly focusing on synthesis strategies, structural features, storage mechanisms, and the corresponding electrochemical performance. Particularly, the optimization of electrode-electrolyte interphase is also discussed. In addition, the remaining challenges and further perspectives of Bi-based electrode materials are outlined. This review aims to provide comprehensive knowledge of Bi-based materials and offer a guideline toward more applications in high-performance batteries.
Collapse
Affiliation(s)
- Anni Wang
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Wanwan Hong
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Li Yang
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Ye Tian
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Xuejing Qiu
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Guoqiang Zou
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Hongshuai Hou
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Xiaobo Ji
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- College of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| |
Collapse
|
50
|
Xu X, Chao D, Chen B, Liang P, Li H, Xie F, Davey K, Qiao SZ. Revealing the Magnesium-Storage Mechanism in Mesoporous Bismuth via Spectroscopy and Ab-Initio Simulations. Angew Chem Int Ed Engl 2020; 59:21728-21735. [PMID: 32790112 DOI: 10.1002/anie.202009528] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/12/2020] [Indexed: 11/11/2022]
Abstract
We present mesoporous bismuth nanosheets as a model to study the charge-storage mechanism of Mg/Bi systems in magnesium-ion batteries (MIBs). Using a systematic spectroscopy investigation of combined synchrotron-based operando X-ray diffraction, near-edge X-ray absorption fine structure and Raman, we demonstrate a reversible two-step alloying reaction mechanism Bi↔MgBi↔Mg3 Bi2 . Ab-initio simulation methods disclose the formation of a MgBi intermediate and confirm its high electronic conductivity. This intermediate serves as a buffer for the significant volume expansion (204 %) and acts to regulate Mg storage kinetics. The mesoporous bismuth nanosheets, as an ideal material for the investigation of the Mg charge-storage mechanism, effectively alleviate volume expansion and enable significant electrochemical performance in a lithium-free electrolyte. These findings will benefit mechanistic understandings and advance material designs for MIBs.
Collapse
Affiliation(s)
- Xin Xu
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Dongliang Chao
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Biao Chen
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P. R. China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310038, P. R. China
| | - Huan Li
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Fangxi Xie
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Kenneth Davey
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|