1
|
Cameron RC, Berry D, Richardson AT, Stevenson LJ, Lukito Y, Styles KA, Nipper NSL, McLellan RM, Parker EJ. An overlooked cyclase plays a central role in the biosynthesis of indole diterpenes. Chem Sci 2025:d5sc02009c. [PMID: 40308950 PMCID: PMC12038925 DOI: 10.1039/d5sc02009c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025] Open
Abstract
Indole diterpenes (IDTs) are a large class of highly complex fungal natural products that possess a wide array of intriguing bioactivities. While IDTs are structurally diverse, the first four steps of IDT biosynthesis are highly conserved and result typically in the formation of a tetrahydropyran (THP)-ring containing structure, most commonly paspaline. The biosynthetic genes responsible for these steps are the most extensively studied of all IDT genes and collectively define the core biosynthetic pathway. Here we show that the fourth fundamental step, formation of the THP ring, is catalysed by a terpene cyclase encoded by an overlooked and uncharacterised fifth gene, idtA. All previously delineated biosynthetic routes have incorrectly attributed this step to the terpene cyclase IdtB, leading to imprecise pathway reconstructions and ignoring the fully evolved biosynthetic solution for core IDT generation. Moreover, while IdtA terpene cyclases are found in Eurotiomycetes fungi, in Sordariomycetes fungi this step is catalysed by the unrelated protein IdtS, demonstrating that two distinct solutions to this chemistry exist. All biosynthetic gene clusters known to specify production of THP-containing IDTs include an idtA or idtS gene. These findings reset the paradigm for core IDT biosynthesis and support accurate heterologous biosynthesis of these complex natural products.
Collapse
Affiliation(s)
- Rosannah C Cameron
- Ferrier Research Institute, Victoria University of Wellington, Maurice Wilkins Centre for Molecular Biodiscovery Wellington 6012 New Zealand
| | - Daniel Berry
- Ferrier Research Institute, Victoria University of Wellington, Maurice Wilkins Centre for Molecular Biodiscovery Wellington 6012 New Zealand
| | - Alistair T Richardson
- Ferrier Research Institute, Victoria University of Wellington, Maurice Wilkins Centre for Molecular Biodiscovery Wellington 6012 New Zealand
| | - Luke J Stevenson
- Ferrier Research Institute, Victoria University of Wellington, Maurice Wilkins Centre for Molecular Biodiscovery Wellington 6012 New Zealand
| | - Yonathan Lukito
- Ferrier Research Institute, Victoria University of Wellington, Maurice Wilkins Centre for Molecular Biodiscovery Wellington 6012 New Zealand
| | - Kelly A Styles
- Ferrier Research Institute, Victoria University of Wellington, Maurice Wilkins Centre for Molecular Biodiscovery Wellington 6012 New Zealand
| | - Natasha S L Nipper
- Ferrier Research Institute, Victoria University of Wellington, Maurice Wilkins Centre for Molecular Biodiscovery Wellington 6012 New Zealand
| | - Rose M McLellan
- Ferrier Research Institute, Victoria University of Wellington, Maurice Wilkins Centre for Molecular Biodiscovery Wellington 6012 New Zealand
| | - Emily J Parker
- Ferrier Research Institute, Victoria University of Wellington, Maurice Wilkins Centre for Molecular Biodiscovery Wellington 6012 New Zealand
| |
Collapse
|
2
|
Flatschacher D, Eschlböck A, Pierson S, Schreiner U, Stock V, Schiller A, Ruso D, Doppler M, Ruzsanyi V, Gründlinger M, Büschl C, Schuhmacher R, Zeilinger S. Linking a polyketide synthase gene cluster to 6-pentyl-alpha-pyrone, a Trichoderma metabolite with diverse bioactivities. Microb Cell Fact 2025; 24:89. [PMID: 40259335 PMCID: PMC12010586 DOI: 10.1186/s12934-025-02718-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/09/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND Members of the fungal genus Trichoderma are well-known for their mycoparasitic and plant protecting activities, rendering them important biocontrol agents. One of the most significant specialized metabolites (SMs) produced by various Trichoderma species is the unsaturated lactone 6-pentyl-alpha-pyrone (6-PP). Although first identified more than 50 years ago and having pronounced antifungal and plant growth-promoting properties, the biosynthetic pathway of 6-PP still remains unresolved. RESULTS Here, we demonstrate that 6-PP is biosynthesized via the polyketide biosynthesis pathway. We identified Pks1, an iterative type I polyketide synthase, as crucial for its biosynthesis in Trichoderma atroviride, a species recognized for its prominent 6-PP production abilities. Phylogenetic and comparative genomic analyses revealed that the pks1 gene is part of a biosynthetic gene cluster conserved in those Trichoderma species that are known to produce 6-PP. Deletion of pks1 caused a complete loss of 6-PP production in T. atroviride and a significant reduction in antifungal activity against Botrytis cinerea and Rhizoctonia solani. Surprisingly, the absence of pks1 led to enhanced lateral root formation in Arabidopsis thaliana during interaction with T. atroviride. Transcriptomic analysis revealed co-regulation of pks1 with adjacent genes, including candidates coding for a C3H1-type zinc finger protein and lytic polysaccharide monooxygenase, suggesting coordination between 6-PP biosynthesis and environmental response mechanisms. CONCLUSION Our findings establish pks1 as an essential gene for 6-PP biosynthesis in T. atroviride, providing novel insights into the production of one of the most significant compounds of this mycoparasite. These findings may pave the way for the development of improved biocontrol agents and the application of 6-PP as potent biopesticide contributing to an eco-friendly and sustainable way of plant disease management.
Collapse
Affiliation(s)
- Daniel Flatschacher
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Alexander Eschlböck
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Siebe Pierson
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Ulrike Schreiner
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Valentina Stock
- Institute for Breath Research, University of Innsbruck, Innsbruck, Austria
| | - Arne Schiller
- Institute for Breath Research, University of Innsbruck, Innsbruck, Austria
| | - David Ruso
- Core Facility Bioactive Molecules: Screening and Analysis, University of Natural Resources and Life Sciences, Tulln, Austria
| | - Maria Doppler
- Core Facility Bioactive Molecules: Screening and Analysis, University of Natural Resources and Life Sciences, Tulln, Austria
| | - Veronika Ruzsanyi
- Institute for Breath Research, University of Innsbruck, Innsbruck, Austria
| | - Mario Gründlinger
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Christoph Büschl
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Tulln, Austria
| | - Rainer Schuhmacher
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Tulln, Austria
| | - Susanne Zeilinger
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria.
| |
Collapse
|
3
|
Zhang H, Feng J, Wang D, Tang B, Xu C, Ye T. Total Synthesis and Stereochemical Assignment of Alternapyrone. Molecules 2025; 30:1597. [PMID: 40286202 PMCID: PMC11990127 DOI: 10.3390/molecules30071597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Alternapyrone, a bioactive polyketide produced by the fungal host Aspergillus oryzae, is biosynthesized by a polyketide synthase encoded by the alt1-5 gene cluster. Despite its known bioactivity, the stereochemical configuration of the three stereogenic centers in its polyketide backbone has remained unresolved. In this study, we determined the complete stereostructure of alternapyrone using an integrative approach that combines predictive, rule-based stereochemical analysis with experimental validation through total synthesis. The efficient total synthesis enabled the precise assignment of the hypothesized stereochemistry by matching the synthetic product to the natural compound. This comprehensive study conclusively established the absolute configuration of alternapyrone.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (H.Z.); (J.F.)
| | - Jiaxuan Feng
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (H.Z.); (J.F.)
| | - Di Wang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, The University of Nottingham Ningbo China, Ningbo 315100, China; (D.W.); (B.T.)
| | - Bencan Tang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, The University of Nottingham Ningbo China, Ningbo 315100, China; (D.W.); (B.T.)
| | - Chao Xu
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (H.Z.); (J.F.)
| | - Tao Ye
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (H.Z.); (J.F.)
| |
Collapse
|
4
|
Cheng S, Xu Y, Kang M, Zhu W, Wang L, Fu P. Aurovertins from a Marine-Derived Penicillium Species and Nonenzymatic Reactions in Their Formation. JOURNAL OF NATURAL PRODUCTS 2025; 88:554-562. [PMID: 39862218 DOI: 10.1021/acs.jnatprod.4c01436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Six new aurovertins (1-6) and a new citreoviridin derivative (7), together with six known analogues (8-13), were isolated from the marine-derived Penicillium sp. OUCMDZ-5930. Their structures were determined based on detailed spectroscopic analysis and ECD calculations. The putative nonenzymatic formation from citreoviridin to various aurovertins was presented, which was confirmed by chemical transformations. These results provide new insights into the formation mechanism of the 2,6-dioxabicyclo[3.2.1]octane ring system present in aurovertin-type natural products.
Collapse
Affiliation(s)
- Shan Cheng
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yanchao Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Meng Kang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Liping Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Peng Fu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
5
|
Garello M, Piombo E, Buonsenso F, Prencipe S, Valente S, Meloni GR, Marcet-Houben M, Gabaldón T, Spadaro D. Several secondary metabolite gene clusters in the genomes of ten Penicillium spp. raise the risk of multiple mycotoxin occurrence in chestnuts. Food Microbiol 2024; 122:104532. [PMID: 38839238 DOI: 10.1016/j.fm.2024.104532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 06/07/2024]
Abstract
Penicillium spp. produce a great variety of secondary metabolites, including several mycotoxins, on food substrates. Chestnuts represent a favorable substrate for Penicillium spp. development. In this study, the genomes of ten Penicillium species, virulent on chestnuts, were sequenced and annotated: P. bialowiezense. P. pancosmium, P. manginii, P. discolor, P. crustosum, P. palitans, P. viridicatum, P. glandicola, P. taurinense and P. terrarumae. Assembly size ranges from 27.5 to 36.8 Mb and the number of encoded genes ranges from 9,867 to 12,520. The total number of predicted biosynthetic gene clusters (BGCs) in the ten species is 551. The most represented families of BGCs are non ribosomal peptide synthase (191) and polyketide synthase (175), followed by terpene synthases (87). Genome-wide collections of gene phylogenies (phylomes) were reconstructed for each of the newly sequenced Penicillium species allowing for the prediction of orthologous relationships among our species, as well as other 20 annotated Penicillium species available in the public domain. We investigated in silico the presence of BGCs for 10 secondary metabolites, including 5 mycotoxins, whose production was validated in vivo through chemical analyses. Among the clusters present in this set of species we found andrastin A and its related cluster atlantinone A, mycophenolic acid, patulin, penitrem A and the cluster responsible for the synthesis of roquefortine C/glandicoline A/glandicoline B/meleagrin. We confirmed the presence of these clusters in several of the Penicillium species conforming our dataset and verified their capacity to synthesize them in a chestnut-based medium with chemical analysis. Interestingly, we identified mycotoxin clusters in some species for the first time, such as the andrastin A cluster in P. flavigenum and P. taurinense, and the roquefortine C cluster in P. nalgiovense and P. taurinense. Chestnuts proved to be an optimal substrate for species of Penicillium with different mycotoxigenic potential, opening the door to risks related to the occurrence of multiple mycotoxins in the same food matrix.
Collapse
Affiliation(s)
- Marco Garello
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy; AGROINNOVA - Interdepartmental Centre for the Innovation in the Agro-Environmental Sector, University of Torino, Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Edoardo Piombo
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Almas Allé 5, 75651, Uppsala, Sweden
| | - Fabio Buonsenso
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy; AGROINNOVA - Interdepartmental Centre for the Innovation in the Agro-Environmental Sector, University of Torino, Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Simona Prencipe
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Silvia Valente
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy; AGROINNOVA - Interdepartmental Centre for the Innovation in the Agro-Environmental Sector, University of Torino, Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Giovanna Roberta Meloni
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy; AGROINNOVA - Interdepartmental Centre for the Innovation in the Agro-Environmental Sector, University of Torino, Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Marina Marcet-Houben
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| | - Davide Spadaro
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy; AGROINNOVA - Interdepartmental Centre for the Innovation in the Agro-Environmental Sector, University of Torino, Largo Braccini 2, 10095, Grugliasco, TO, Italy.
| |
Collapse
|
6
|
Lin FL, Gao JL, Xu Q, Wang GQ, Xiao LY, Dong L, Tang W, Lv JM, Chen GD, Wang Y, Yin ZN, Lu LG, Hu D, Gao H. Absolute Configuration of Oxabornyl Polyenes Prugosenes A1-A3 and Structural Revision of Prugosene A2. JOURNAL OF NATURAL PRODUCTS 2024; 87:1338-1346. [PMID: 38447084 DOI: 10.1021/acs.jnatprod.3c01143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Oxabornyl polyenes represent a unique group of polyketides characterized by a central polyene core flanked by a conserved oxabornyl moiety and a structurally diverse oxygen heterocyclic ring. They are widely distributed in fungi and possess a variety of biological activities. Due to the significant spatial separation between the two stereogenic ring systems, it is difficult to establish their overall relative configurations. Here, we isolated three oxabornyl polyenes, prugosenes A1-A3 (1-3), from Talaromyces sp. JNU18266-01. Although these compounds were first reported from Penicillium rugulosum, their overall relative and absolute configurations remained unassigned. By employing ozonolysis in combination with ECD calculations, we were able to establish their absolute configurations, and additionally obtained seven new chemical derivatives (4-10). Notably, through NMR data analysis and quantum chemical calculations, we achieved the structural revision of prugosene A2. Furthermore, prugosenes A1-A3 exhibited potent antiviral activity against the respiratory syncytial virus, with compound 1 displaying an IC50 value of 6.3 μM. Our study thus provides a valuable reference for absolute configuration assignment of oxabornyl polyene compounds.
Collapse
Affiliation(s)
- Fu-Long Lin
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, Guangdong China
| | - Jia-Ling Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Qian Xu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Gao-Qian Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Liang-Yan Xiao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Lu Dong
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Wei Tang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jian-Ming Lv
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Guo-Dong Chen
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Ying Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Zhi-Nan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, Guangdong China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, China
| | - Li-Gong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, Guangdong China
| | - Dan Hu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| |
Collapse
|
7
|
Tang J, Matsuda Y. Discovery of fungal onoceroid triterpenoids through domainless enzyme-targeted global genome mining. Nat Commun 2024; 15:4312. [PMID: 38773118 PMCID: PMC11109268 DOI: 10.1038/s41467-024-48771-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/09/2024] [Indexed: 05/23/2024] Open
Abstract
Genomics-guided methodologies have revolutionized the discovery of natural products. However, a major challenge in the field of genome mining is determining how to selectively extract biosynthetic gene clusters (BGCs) for untapped natural products from numerous available genome sequences. In this study, we developed a fungal genome mining tool that extracts BGCs encoding enzymes that lack a detectable protein domain (i.e., domainless enzymes) and are not recognized as biosynthetic proteins by existing bioinformatic tools. We searched for BGCs encoding a homologue of Pyr4-family terpene cyclases, which are representative examples of apparently domainless enzymes, in approximately 2000 fungal genomes and discovered several BGCs with unique features. The subsequent characterization of selected BGCs led to the discovery of fungal onoceroid triterpenoids and unprecedented onoceroid synthases. Furthermore, in addition to the onoceroids, a previously unreported sesquiterpene hydroquinone, of which the biosynthesis involves a Pyr4-family terpene cyclase, was obtained. Our genome mining tool has broad applicability in fungal genome mining and can serve as a beneficial platform for accessing diverse, unexploited natural products.
Collapse
Affiliation(s)
- Jia Tang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
8
|
Abstract
Covering: up to July 2023Terpene cyclases (TCs) catalyze some of the most complicated reactions in nature and are responsible for creating the skeletons of more than 95 000 terpenoid natural products. The canonical TCs are divided into two classes according to their structures, functions, and mechanisms. The class II TCs mediate acid-base-initiated cyclization reactions of isoprenoid diphosphates, terpenes without diphosphates (e.g., squalene or oxidosqualene), and prenyl moieties on meroterpenes. The past twenty years witnessed the emergence of many class II TCs, their reactions and their roles in biosynthesis. Class II TCs often act as one of the first steps in the biosynthesis of biologically active natural products including the gibberellin family of phytohormones and fungal meroterpenoids. Due to their mechanisms and biocatalytic potential, TCs elicit fervent attention in the biosynthetic and organic communities and provide great enthusiasm for enzyme engineering to construct novel and bioactive molecules. To engineer and expand the structural diversities of terpenoids, it is imperative to fully understand how these enzymes generate, precisely control, and quench the reactive carbocation intermediates. In this review, we summarize class II TCs from nature, including sesquiterpene, diterpene, triterpene, and meroterpenoid cyclases as well as noncanonical class II TCs and inspect their sequences, structures, mechanisms, and structure-guided engineering studies.
Collapse
Affiliation(s)
- Xingming Pan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7011, USA.
| | - Liao-Bin Dong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
9
|
Wang Z, Liu C, Wei M, Zhu H, Zang Y, Zhu H. Undescribed α-pyrone-containing mycotoxins and an eremophilane-type sesquiterpenoid isolated from Aspergillus aureoterreus and their cytotoxicity. PHYTOCHEMISTRY 2024; 219:113989. [PMID: 38218305 DOI: 10.1016/j.phytochem.2024.113989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/15/2024]
Abstract
Four previously undescribed and highly oxygenated α-pyrone-containing mycotoxins designated citreoviridins (E‒H), and an unreported eremophilane-type sesquiterpenoid namely aureoterrolide N, were isolated from the culture broth of Aspergillus aureoterreus. Those isolates were inferred from extensive spectroscopic methods and theoretical computation, where their absolute configurations were unambiguously determined by coupling constants following an empirical rule for the acyclic vicinal diol, theoretical ECD calculation, and NMR computation using the GIAO method and DP4+ analysis. Among them, citreoviridins E‒H are four stereoisomers of a citreoviridin derivative, featuring a methylated α-pyrone, an oxidized polyene linker, and a tetrahydrofuran ring. Cytotoxicity assay of all isolates demonstrated that aureoterrolide N exhibited weak inhibitory effect against human cancer cell line HL-60 with an inhibition rate of 55.2% at 40.0 μM.
Collapse
Affiliation(s)
- Zhe Wang
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China; Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Changyu Liu
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Mengsha Wei
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Zang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
10
|
Dunbar KL, Perlatti B, Liu N, Cornelius A, Mummau D, Chiang YM, Hon L, Nimavat M, Pallas J, Kordes S, Ng HL, Harvey CJB. Resistance gene-guided genome mining reveals the roseopurpurins as inhibitors of cyclin-dependent kinases. Proc Natl Acad Sci U S A 2023; 120:e2310522120. [PMID: 37983497 PMCID: PMC10691236 DOI: 10.1073/pnas.2310522120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/09/2023] [Indexed: 11/22/2023] Open
Abstract
With the significant increase in the availability of microbial genome sequences in recent years, resistance gene-guided genome mining has emerged as a powerful approach for identifying natural products with specific bioactivities. Here, we present the use of this approach to reveal the roseopurpurins as potent inhibitors of cyclin-dependent kinases (CDKs), a class of cell cycle regulators implicated in multiple cancers. We identified a biosynthetic gene cluster (BGC) with a putative resistance gene with homology to human CDK2. Using targeted gene disruption and transcription factor overexpression in Aspergillus uvarum, and heterologous expression of the BGC in Aspergillus nidulans, we demonstrated that roseopurpurin C (1) is produced by this cluster and characterized its biosynthesis. We determined the potency, specificity, and mechanism of action of 1 as well as multiple intermediates and shunt products produced from the BGC. We show that 1 inhibits human CDK2 with a Kiapp of 44 nM, demonstrates selectivity for clinically relevant members of the CDK family, and induces G1 cell cycle arrest in HCT116 cells. Structural analysis of 1 complexed with CDK2 revealed the molecular basis of ATP-competitive inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sina Kordes
- Proteros Biostructures GmbH, PlaneggD-82152, Germany
| | | | | |
Collapse
|
11
|
Hu J, Wang ZX, Li PM, Qian PY, Liu LL. Structural identification of pyridinopyrone compounds with anti-neuroinflammatory activity from streptomyces sulphureus DSM 40104. Front Microbiol 2023; 14:1205118. [PMID: 37333649 PMCID: PMC10268602 DOI: 10.3389/fmicb.2023.1205118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
This study investigated the chemical composition and biosynthesis pathway of compounds produced by Streptomyces sulphureus DSM 40104. With the guild of molecular networking analysis, we isolated and identified six uncommon structural characteristics of compounds, including four newly discovered pyridinopyrones. Based on genomic analysis, we proposed a possible hybrid NRPS-PKS biosynthesis pathway for pyridinopyrones. Notably, this pathway starts with the use of nicotinic acid as the starting unit, which is a unique feature. Compounds 1-3 exhibited moderate anti-neuroinflammatory activity against LPS-induced BV-2 cell inflammation. Our study demonstrates the diversity of polyene pyrone compounds regarding their chemical structure and bioactivity while providing new insights into their biosynthesis pathway. These findings may lead to the development of new treatments for inflammation-related diseases.
Collapse
Affiliation(s)
- Juan Hu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Zi-Xuan Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Pei-Meng Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Ling-Li Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Yılmaz TM, Mungan MD, Berasategui A, Ziemert N. FunARTS, the Fungal bioActive compound Resistant Target Seeker, an exploration engine for target-directed genome mining in fungi. Nucleic Acids Res 2023:7173779. [PMID: 37207330 DOI: 10.1093/nar/gkad386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023] Open
Abstract
There is an urgent need to diversify the pipeline for discovering novel natural products due to the increase in multi-drug resistant infections. Like bacteria, fungi also produce secondary metabolites that have potent bioactivity and rich chemical diversity. To avoid self-toxicity, fungi encode resistance genes which are often present within the biosynthetic gene clusters (BGCs) of the corresponding bioactive compounds. Recent advances in genome mining tools have enabled the detection and prediction of BGCs responsible for the biosynthesis of secondary metabolites. The main challenge now is to prioritize the most promising BGCs that produce bioactive compounds with novel modes of action. With target-directed genome mining methods, it is possible to predict the mode of action of a compound encoded in an uncharacterized BGC based on the presence of resistant target genes. Here, we introduce the 'fungal bioactive compound resistant target seeker' (FunARTS) available at https://funarts.ziemertlab.com. This is a specific and efficient mining tool for the identification of fungal bioactive compounds with interesting and novel targets. FunARTS rapidly links housekeeping and known resistance genes to BGC proximity and duplication events, allowing for automated, target-directed mining of fungal genomes. Additionally, FunARTS generates gene cluster networking by comparing the similarity of BGCs from multi-genomes.
Collapse
Affiliation(s)
- Turgut Mesut Yılmaz
- Translational Genome Mining for Natural Products, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Mehmet Direnç Mungan
- Translational Genome Mining for Natural Products, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Aileen Berasategui
- University of Tübingen, Cluster of Excellence 'Controlling Microbes to Fight Infections', Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Nadine Ziemert
- Translational Genome Mining for Natural Products, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| |
Collapse
|
13
|
Sun CF, Guo Y, Kataria A, Annamalai S, Malik K, Cheng JT. Comprehensive investigation of long non-coding RNAs in an endophytic fungus Calcarisporium arbuscula NRRL 3705. Arch Microbiol 2023; 205:153. [PMID: 37000333 DOI: 10.1007/s00203-023-03494-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 03/15/2023] [Accepted: 03/19/2023] [Indexed: 04/01/2023]
Abstract
Long non-coding RNAs (lncRNAs) play an important role in eukaryotic cells. However, there is no report of lncRNAs in endophytic fungi Calcarisporium arbuscula. Here, in Calcarisporium arbuscula NRRL 3705, an endophytic fungus predominantly producing mycotoxins aurovertins, the genome-wide identification of lncRNAs was carried out based on RNA-Seq. Totally, 1332 lncRNAs were identified, including 1082 long intergenic noncoding RNAs, 64 long intronic noncoding RNAs and 186 long noncoding natural antisense transcripts. The average length of lncRNA and mRNA were 254 and 1102 bp, respectively. LncRNAs were shorter, with fewer exons and lower expression levels. Moreover, there were 39 up-regulated lncRNAs and 10 down-regulated lncRNAs in the ΔaurA mutant, which lacks the aurovertin biosynthetic enzyme AurA. Interestingly, expression of genes related to the metabolism of linoleic acid and methane were significantly down regulated in the ΔaurA mutant. This study enriches the endophytic fungal lncRNA database and provide a basis for further research.
Collapse
Affiliation(s)
- Chen-Fan Sun
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Yuliang Guo
- Dublin High School, 8151 Village Parkway, Dublin, CA, 94568, USA
| | - Anish Kataria
- Dublin High School, 8151 Village Parkway, Dublin, CA, 94568, USA
| | - Shivam Annamalai
- Dublin High School, 8151 Village Parkway, Dublin, CA, 94568, USA
| | - Krish Malik
- Dublin High School, 8151 Village Parkway, Dublin, CA, 94568, USA
| | - Jin-Tao Cheng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
14
|
Cao F, Ma LF, Hu LS, Xu CX, Chen X, Zhan ZJ, Zhao QW, Mao XM. Coordination of Polyketide Release and Multiple Detoxification Pathways for Tolerable Production of Fungal Mycotoxins. Angew Chem Int Ed Engl 2023; 62:e202214814. [PMID: 36461785 DOI: 10.1002/anie.202214814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/04/2022]
Abstract
Efficient biosynthesis of microbial bioactive natural products (NPs) is beneficial for the survival of producers, while self-protection is necessary to avoid self-harm resulting from over-accumulation of NPs. The underlying mechanisms for the effective but tolerable production of bioactive NPs are not well understood. Herein, in the biosynthesis of two fungal polyketide mycotoxins aurovertin E (1) and asteltoxin, we show that the cyclases in the gene clusters promote the release of the polyketide backbone, and reveal that a signal peptide is crucial for their subcellular localization and full activity. Meanwhile, the fungus adopts enzymatic acetylation as the major detoxification pathway of 1. If intermediates are over-produced, the non-enzymatic shunt pathways work as salvage pathways to avoid excessive accumulation of the toxic metabolites for self-protection. These findings provided new insight into the interplay of efficient backbone release and multiple detoxification strategies for the production of fungal bioactive NPs.
Collapse
Affiliation(s)
- Fei Cao
- Research Center for Clinical Pharmacy, The First Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Lie-Feng Ma
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Long-Shuang Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Chu-Xuan Xu
- Research Center for Clinical Pharmacy, The First Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xuepeng Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qing-Wei Zhao
- Research Center for Clinical Pharmacy, The First Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xu-Ming Mao
- Research Center for Clinical Pharmacy, The First Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
15
|
Zhong YJ, Cao F, Hu LS, Xu CX, Zhu YA, Chen X, Mao XM. Complex Interplay and Catalytic Versatility of Tailoring Enzymes for Efficient and Selective Biosynthesis of Fungal Mycotoxins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:311-319. [PMID: 36571252 DOI: 10.1021/acs.jafc.2c07681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Mycotoxins have substantial impacts on agricultural production and food preservation. Some have high similarities in bioactivity but subtle differences on structures from various fungal producers. Understanding of their complex cross-biosynthesis will provide new insights into enzyme functions and food safety. Here, based on structurally related mycotoxins, such as aurovertins, asteltoxin, and citreoviridin, we showed that methyltransferase (MT)-catalyzed methylation is required for efficient oxidation and polyketide stability. MTs have broad interactions with polyketide synthases and flavin-containing monooxygenases (FMOs), while MT AstB is required for FMO AstC functionality in vivo. FMOs have common catalysis on pyrone-polyene intermediates but different catalytic specificity and efficiency on oxidative intermediates for the selective production of more toxic and complex mycotoxins. Thus, the subtle protein interaction and elaborate versatile catalysis of biosynthetic enzymes contribute to the efficient and selective biosynthesis of these structure-related mycotoxins and provide the basis to re-evaluate and control mycotoxins for agricultural and food safety.
Collapse
Affiliation(s)
- Yong-Jun Zhong
- School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, Zhejiang Province, China
- Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Fei Cao
- Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Long-Shuang Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Chu-Xuan Xu
- Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yan-An Zhu
- School of Pharmaceutical Sciences, Taizhou University, Jiaojiang 318000, Zhejiang Province, China
- Taizhou Hospital, 150# Ximen Street, Linhai 317099, Zhejiang Province, China
| | - Xuepeng Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Xu-Ming Mao
- Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| |
Collapse
|
16
|
Chiang YM, Lin TS, Wang CCC. Total Heterologous Biosynthesis of Fungal Natural Products in Aspergillus nidulans. JOURNAL OF NATURAL PRODUCTS 2022; 85:2484-2518. [PMID: 36173392 PMCID: PMC9621686 DOI: 10.1021/acs.jnatprod.2c00487] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fungal natural products comprise a wide range of bioactive compounds including important drugs and agrochemicals. Intriguingly, bioinformatic analyses of fungal genomes have revealed that fungi have the potential to produce significantly more natural products than what have been discovered so far. It has thus become widely accepted that most biosynthesis pathways of fungal natural products are silent or expressed at very low levels under laboratory cultivation conditions. To tap into this vast chemical reservoir, the reconstitution of entire biosynthetic pathways in genetically tractable fungal hosts (total heterologous biosynthesis) has become increasingly employed in recent years. This review summarizes total heterologous biosynthesis of fungal natural products accomplished before 2020 using Aspergillus nidulans as heterologous hosts. We review here Aspergillus transformation, A. nidulans hosts, shuttle vectors for episomal expression, and chromosomal integration expression. These tools, collectively, not only facilitate the discovery of cryptic natural products but can also be used to generate high-yield strains with clean metabolite backgrounds. In comparison with total synthesis, total heterologous biosynthesis offers a simplified strategy to construct complex molecules and holds potential for commercial application.
Collapse
Affiliation(s)
- Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Tzu-Shyang Lin
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
17
|
Cheng X, Ma FP, Yan YM, Zhao WL, Shi J, Xiao W, Bi EG, Luo Q. Aspertaichunol A, an Immunomodulatory Polyketide with an Uncommon Scaffold from the Insect-Derived Endophytic Aspergillus taichungensis SMU01. Org Lett 2022; 24:7405-7409. [DOI: 10.1021/acs.orglett.2c02978] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xia Cheng
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Fo-Pei Ma
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yong-Ming Yan
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Wen-Li Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jin Shi
- Neurosurgery Department, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wei Xiao
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - En-Guang Bi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qi Luo
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
18
|
Phakeovilay J, Imaram W, Vuttipongchaikij S, Bunnak W, Lazarus CM, Wattana-Amorn P. C-Methylation controls the biosynthetic programming of alternapyrone. Org Biomol Chem 2022; 20:5050-5054. [PMID: 35695066 DOI: 10.1039/d2ob00947a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alternapyrone is a highly methylated polyene α-pyrone biosynthesised by a highly reducing polyketide synthase. Mutations of the catalytic dyad residues, H1578A/Q and E1604A, of the C-methyltransferase domain resulted in either significantly reduced or no production of alternapyrone, indicating the importance of C-methylation for alternapyrone biosynthesis.
Collapse
Affiliation(s)
- Jaiyfungkhong Phakeovilay
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, 10900, Thailand.
| | - Witcha Imaram
- Department of Chemistry, Special Research Unit for Advanced Magnetic Resonance and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | | | - Waraporn Bunnak
- Department of Chemistry, Special Research Unit for Advanced Magnetic Resonance and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Colin M Lazarus
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Pakorn Wattana-Amorn
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, 10900, Thailand. .,Department of Chemistry, Special Research Unit for Advanced Magnetic Resonance and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
19
|
Biosynthesis of Fungal Natural Products Involving Two Separate Pathway Crosstalk. J Fungi (Basel) 2022; 8:jof8030320. [PMID: 35330322 PMCID: PMC8948627 DOI: 10.3390/jof8030320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 01/21/2023] Open
Abstract
Fungal natural products (NPs) usually possess complicated structures, exhibit satisfactory bioactivities, and are an outstanding source of drug leads, such as the cholesterol-lowering drug lovastatin and the immunosuppressive drug mycophenolic acid. The fungal NPs biosynthetic genes are always arranged within one single biosynthetic gene cluster (BGC). However, a rare but fascinating phenomenon that a crosstalk between two separate BGCs is indispensable to some fungal dimeric NPs biosynthesis has attracted increasing attention. The hybridization of two separate BGCs not only increases the structural complexity and chemical diversity of fungal NPs, but also expands the scope of bioactivities. More importantly, the underlying mechanism for this hybridization process is poorly understood and needs further exploration, especially the determination of BGCs for each building block construction and the identification of enzyme(s) catalyzing the two biosynthetic precursors coupling processes such as Diels–Alder cycloaddition and Michael addition. In this review, we summarized the fungal NPs produced by functional crosstalk of two discrete BGCs, and highlighted their biosynthetic processes, which might shed new light on genome mining for fungal NPs with unprecedented frameworks, and provide valuable insights into the investigation of mysterious biosynthetic mechanisms of fungal dimeric NPs which are constructed by collaboration of two separate BGCs.
Collapse
|
20
|
Wei X, Wang WG, Matsuda Y. Branching and converging pathways in fungal natural product biosynthesis. Fungal Biol Biotechnol 2022; 9:6. [PMID: 35255990 PMCID: PMC8902786 DOI: 10.1186/s40694-022-00135-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/19/2022] [Indexed: 12/15/2022] Open
Abstract
AbstractIn nature, organic molecules with great structural diversity and complexity are synthesized by utilizing a relatively small number of starting materials. A synthetic strategy adopted by nature is pathway branching, in which a common biosynthetic intermediate is transformed into different end products. A natural product can also be synthesized by the fusion of two or more precursors generated from separate metabolic pathways. This review article summarizes several representative branching and converging pathways in fungal natural product biosynthesis to illuminate how fungi are capable of synthesizing a diverse array of natural products.
Collapse
|
21
|
Bowen JI, Wang L, Crump MP, Willis CL. Synthetic and biosynthetic methods for selective cyclisations of 4,5-epoxy alcohols to tetrahydropyrans. Org Biomol Chem 2022; 20:1150-1175. [PMID: 35029626 PMCID: PMC8827043 DOI: 10.1039/d1ob01905h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022]
Abstract
Tetrahydropyrans (THPs) are common structural motifs found in natural products and synthetic therapeutic molecules. In Nature these 6-membered oxygen heterocycles are often assembled via intramolecular reactions involving either oxy-Michael additions or ring opening of epoxy-alcohols. Indeed, the polyether natural products have been particularly widely studied due to their fascinating structures and important biological properties; these are commonly formed via endo-selective epoxide-opening cascades. In this review we outline synthetic approaches for endo-selective intramolecular epoxide ring opening (IERO) of 4,5-epoxy-alcohols and their applications in natural product synthesis. In addition, the biosynthesis of THP-containing natural products which utilise IERO reactions are reviewed.
Collapse
Affiliation(s)
- James I Bowen
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Luoyi Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Matthew P Crump
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Christine L Willis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
22
|
Cao F, Zhang MK, Yang X, Xu CX, Cheng JT, Zhao QW, Wu R, Sheng R, Mao XM. A target and efficient synthetic strategy for structural and bioactivity optimization of a fungal natural product. Eur J Med Chem 2022; 229:114067. [PMID: 34973507 DOI: 10.1016/j.ejmech.2021.114067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/29/2021] [Accepted: 12/19/2021] [Indexed: 02/08/2023]
Abstract
Drugs have been largely inspired from natural products, while enzymes underlying their biosynthesis have enabled complex structures and diverse bioactivities. Nevertheless, the high enzyme specificity and limited in vivo precursor types have restricted the natural product reservoir, but Nature has imprinted natural products with active sites, which can be readily modified by chemosynthesis with various functional groups for more favorable druggability. Here in the less exploited fungal natural products, we introduced CtvA, a polyketide synthase for a mycotoxin citreoviridin biosynthesis in Aspergillus, into an endophytic fungus Calcarisporium arbuscula to expand tetrahydrofuran (THF) into a dioxabicyclo-octane (DBO) ring moiety based on versatility and promiscuity of the aurovertin biosynthetic enzyme. Alternative acylations on the hydroxyl groups essential for cell toxicity by chemosynthesis produced compounds with improved anti-tumor activities and pharmacokinetics. Thus, we showed an effective strategic way to optimize the fungal natural product efficiently for more promising drug development.
Collapse
Affiliation(s)
- Fei Cao
- College of Pharmaceutical Sciences & Research Center for Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China
| | - Min-Kui Zhang
- College of Pharmaceutical Sciences & Research Center for Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xi Yang
- Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chu-Xuan Xu
- College of Pharmaceutical Sciences & Research Center for Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China
| | - Jin-Tao Cheng
- College of Pharmaceutical Sciences & Research Center for Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China
| | - Qing-Wei Zhao
- College of Pharmaceutical Sciences & Research Center for Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Rui Wu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Rong Sheng
- College of Pharmaceutical Sciences & Research Center for Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
| | - Xu-Ming Mao
- College of Pharmaceutical Sciences & Research Center for Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China.
| |
Collapse
|
23
|
Biosynthesis of rumbrins and inspiration for discovery of HIV inhibitors. Acta Pharm Sin B 2022; 12:4193-4203. [DOI: 10.1016/j.apsb.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 11/22/2022] Open
|
24
|
Exploring Verrucosidin Derivatives with Glucose-Uptake-Stimulatory Activity from Penicillium cellarum Using MS/MS-Based Molecular Networking. J Fungi (Basel) 2022; 8:jof8020143. [PMID: 35205896 PMCID: PMC8878765 DOI: 10.3390/jof8020143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 12/10/2022] Open
Abstract
Under the guidance of LC-MS/MS-based molecular networking, seven new verrucosidin derivatives, penicicellarusins A-G (3–9), were isolated together with three known analogues from the fungus Penicillium cellarum. The structures of the new compounds were determined by a combination of NMR, mass and electronic circular dichroism spectral data analysis. The absolute configuration of penicyrone A (10) was corrected based on X-ray diffraction analyses. Bioactivity screening indicated that compounds 1, 2, and 4 showed much stronger promising hypoglycemic activity than the positive drug (rosiglitazone) in the range of 25–100 μM, which represents a potential new class of hypoglycemic agents. Preliminary structure-activity relationship analysis indicates that the formation of epoxy ring on C6-C7 in the structures is important for the glucose uptake-stimulating activity. The gene cluster for the biosynthesis of 1–12 is identified by sequencing the genome of P. cellarum and similarity analysis with the gene cluster of verrucosidins in P. polonicum.
Collapse
|
25
|
Cao F, Tao WT, Yu Q, Xu CX, Cheng JT, Liu RX, Zhao QW, Jiang XH, Liu Y, Li YQ, Zhan ZJ, Shi T, Mao XM. Discovery of Semi-Pinacolases from the Epoxide Hydrolase Family during Efficient Assembly of a Fungal Polyketide. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Fei Cao
- Research Center for Clinical Pharmacy, The First Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Zhejiang University, Hangzhou 310058, China
| | - Wen-Tao Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Clinical Research Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qian Yu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chu-Xuan Xu
- Research Center for Clinical Pharmacy, The First Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jin-Tao Cheng
- Research Center for Clinical Pharmacy, The First Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ruo-Xi Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qing-Wei Zhao
- Research Center for Clinical Pharmacy, The First Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xin-Hang Jiang
- Equipment and Technology Service Platform, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Yu Liu
- Equipment and Technology Service Platform, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Yong-Quan Li
- Research Center for Clinical Pharmacy, The First Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu-Ming Mao
- Research Center for Clinical Pharmacy, The First Affiliated Hospital & Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
26
|
Meng X, Fang Y, Ding M, Zhang Y, Jia K, Li Z, Collemare J, Liu W. Developing fungal heterologous expression platforms to explore and improve the production of natural products from fungal biodiversity. Biotechnol Adv 2021; 54:107866. [PMID: 34780934 DOI: 10.1016/j.biotechadv.2021.107866] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/04/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022]
Abstract
Natural products from fungi represent an important source of biologically active metabolites notably for therapeutic agent development. Genome sequencing revealed that the number of biosynthetic gene clusters (BGCs) in fungi is much larger than expected. Unfortunately, most of them are silent or barely expressed under laboratory culture conditions. Moreover, many fungi in nature are uncultivable or cannot be genetically manipulated, restricting the extraction and identification of bioactive metabolites from these species. Rapid exploration of the tremendous number of cryptic fungal BGCs necessitates the development of heterologous expression platforms, which will facilitate the efficient production of natural products in fungal cell factories. Host selection, BGC assembly methods, promoters used for heterologous gene expression, metabolic engineering strategies and compartmentalization of biosynthetic pathways are key aspects for consideration to develop such a microbial platform. In the present review, we summarize current progress on the above challenges to promote research effort in the relevant fields.
Collapse
Affiliation(s)
- Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Yu Fang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Mingyang Ding
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Yanyu Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Kaili Jia
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Zhongye Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Jérôme Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China.
| |
Collapse
|
27
|
Lyu HN, Zhang J, Zhou S, Liu HW, Zhuang WY, Li SM, Yin WB. Heterologous expression of a single fungal HR-PKS leads to the formation of diverse 2-alkenyl-tetrahydropyrans in model fungi. Org Biomol Chem 2021; 19:8377-8383. [PMID: 34528986 DOI: 10.1039/d1ob01501j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2-Alkenyl-tetrahydropyrans belong to a rare class of natural products that exhibit broad antifungal activities. Their structural instability and rareness in nature have restrained their discovery and drug development. In this study, the heterologous expression of a single highly reducing polyketide synthase (HR-PKS, App1) from Trichoderma applanatum in Aspergillus nidulans leads to the formation of seven 2-alkenyl-tetrahydropyran derivatives including one known compound virensol C (1) and six new compounds (2-7). However, introducing App1 into Saccharomyces cerevisiae resulted in the identification of additional two 2-alkenyl-tetrahydropyrans lacking the hydroxyl or methoxyl group at the C-2 position (8 and 9). The structures of the isolated compounds were elucidated by extensive spectroscopic analysis using NMR and HR-ESI-MS.
Collapse
Affiliation(s)
- Hai-Ning Lyu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Jinyu Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Shuang Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
| | - Hong-Wei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
| | - Wen-Ying Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Marburg 35037, Germany
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| |
Collapse
|
28
|
Valente S, Piombo E, Schroeckh V, Meloni GR, Heinekamp T, Brakhage AA, Spadaro D. CRISPR-Cas9-Based Discovery of the Verrucosidin Biosynthesis Gene Cluster in Penicillium polonicum. Front Microbiol 2021; 12:660871. [PMID: 34093475 PMCID: PMC8176439 DOI: 10.3389/fmicb.2021.660871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/15/2021] [Indexed: 12/03/2022] Open
Abstract
Penicillium polonicum, commonly found on food matrices, is a mycotoxigenic species able to produce a neurotoxin called verrucosidin. This methylated α-pyrone polyketide inhibits oxidative phosphorylation in mitochondria and thereby causes neurological diseases. Despite the importance of verrucosidin as a toxin, its biosynthetic genes have not been characterized yet. By similarity analysis with the polyketide synthase (PKS) genes for the α-pyrones aurovertin (AurA) and citreoviridin (CtvA), 16 PKS genes for putative α-pyrones were identified in the P. polonicum genome. A single PKS gene, verA, was found to be transcribed under verrucosidin-producing growth conditions. The annotated functions of the genes neighboring verA correspond to those required for verrucosidin biosynthesis. To prove the involvement of verA in verrucosidin biosynthesis, the clustered regularly interspaced short palindrome repeats (CRISPR) technology was applied to P. polonicum. In vitro reconstituted CRISPR-Cas9 was used to induce targeted gene deletions in P. polonicum. This approach allowed identifying and characterizing the verrucosidin biosynthetic gene cluster. VerA deletion mutants were no longer able to produce verrucosidin, whereas they were displaying morphological characteristics comparable with the wild-type strain. The available CRISPR-Cas9 technology allows characterizing the biosynthetic potential of P. polonicum as a valuable source of novel compounds.
Collapse
Affiliation(s)
- Silvia Valente
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-Environmental Sector, Grugliasco, Italy.,Department of Agricultural, Forest and Food Sciences, Università degli Studi di Torino, Grugliasco, Italy
| | - Edoardo Piombo
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-Environmental Sector, Grugliasco, Italy.,Department of Agricultural, Forest and Food Sciences, Università degli Studi di Torino, Grugliasco, Italy
| | - Volker Schroeckh
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Giovanna Roberta Meloni
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-Environmental Sector, Grugliasco, Italy.,Department of Agricultural, Forest and Food Sciences, Università degli Studi di Torino, Grugliasco, Italy
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany.,Department of Microbiology and Molecular Biology, Institute for Microbiology, Friedrich Schiller University, Jena, Germany
| | - Davide Spadaro
- AGROINNOVA - Centre of Competence for the Innovation in the Agro-Environmental Sector, Grugliasco, Italy.,Department of Agricultural, Forest and Food Sciences, Università degli Studi di Torino, Grugliasco, Italy
| |
Collapse
|
29
|
Cheng JT, Yu JH, Sun CF, Cao F, Ying YM, Zhan ZJ, Li WJ, Chen XA, Zhao QW, Li YQ, Gan LS, Mao XM. A Cell Factory of a Fungicolous Fungus Calcarisporium arbuscula for Efficient Production of Natural Products. ACS Synth Biol 2021; 10:698-706. [PMID: 33720696 DOI: 10.1021/acssynbio.0c00371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fungal natural products are rich sources of clinical drugs. Particularly, the fungicolous fungi have a large number of biosynthetic gene clusters (BGCs) to produce numerous bioactive natural products, but most BGCs are silent in the laboratory. We have shown that a fungicolous fungus Calcarisporium arbuscula NRRL 3705 predominantly produces the highly reduced polyketide-type mycotoxins aurovertins. Here after evaluation of the aurovertin-null mutant ΔaurA as an efficient host, we further screened two strong promoters aurBp and A07068p based on RNA-Seq, and successfully activated an endogenous gene cluster from C. arbuscula as well as three additional exogenous BGCs from other fungi to produce polyketide-type natural products. Thus, we showed an efficient expression system from the fungicolous fungus C. arbuscula, which will be highly beneficial and complementary to the conventional Aspergillus and Penicillium fungal cell factories, and provides a useful toolkit for genome-wide mining of bioactive natural products from fungicolous fungi.
Collapse
Affiliation(s)
- Jin-Tao Cheng
- Institute of Pharmaceutical Biotechnology & Research Center for Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, P. R. China
| | - Jia-Hui Yu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Chen-Fan Sun
- Institute of Pharmaceutical Biotechnology & Research Center for Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, P. R. China
| | - Fei Cao
- Institute of Pharmaceutical Biotechnology & Research Center for Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, P. R. China
| | - You-Min Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Wen-Ju Li
- Jinan Samuel Pharmaceutical Co., Ltd of Shandong Province, Jinan, 250100, P. R. China
| | - Xin-Ai Chen
- Institute of Pharmaceutical Biotechnology & Research Center for Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, P. R. China
| | - Qing-Wei Zhao
- Institute of Pharmaceutical Biotechnology & Research Center for Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yong-Quan Li
- Institute of Pharmaceutical Biotechnology & Research Center for Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, P. R. China
| | - Li-She Gan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xu-Ming Mao
- Institute of Pharmaceutical Biotechnology & Research Center for Clinical Pharmacy, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, P. R. China
| |
Collapse
|
30
|
Huang X, Men P, Tang S, Lu X. Aspergillus terreus as an industrial filamentous fungus for pharmaceutical biotechnology. Curr Opin Biotechnol 2021; 69:273-280. [PMID: 33713917 DOI: 10.1016/j.copbio.2021.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022]
Abstract
Aspergillus terreus is an important Aspergillus species, which has been applied in the industrial production of the bio-based chemical itaconic acid and the lipid-lowering drug lovastatin. The excellent fermentation capability has been demonstrated in these industrial applications. The genomic information revealed that the outstanding capacity of natural product synthesis by A. terreus remains to be further explored. With advances of the genome mining strategy, the products of several cryptic biosynthetic gene clusters have been discovered recently. In addition, a series of metabolic engineering studies have been performed in the industrial strains of lovastatin and itaconic acid to further improve the production processes. This review presents the current progress and the future outlook in the field of A. terreus biotechnology.
Collapse
Affiliation(s)
- Xuenian Huang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; Shandong Energy Institute, No. 189 Songling Road, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, No. 189 Songling Road, Qingdao 266101, China
| | - Ping Men
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shen Tang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
| | - Xuefeng Lu
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; Shandong Energy Institute, No. 189 Songling Road, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, No. 189 Songling Road, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Marine Biology and Biotechnology Laboratory, Qingdao National Laboratory for Marine Science and Technology, Wenhai Rd 1, Aoshanwei, Qingdao, China.
| |
Collapse
|
31
|
Kahlert L, Schotte C, Cox RJ. Total Mycosynthesis: Rational Bioconstruction and Bioengineering of Fungal Natural Products. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1401-2716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractTotal biosynthesis in fungi is beginning to compete with traditional chemical total synthesis campaigns. Herein, the advantages, disadvantages and future opportunities are discussed within the scope of several recent examples.1 Introduction2 Synthetic Examples2.1 2-Pyridones2.2 Cytochalasans2.3 Sorbicillinoids2.4 Decalins: Solanapyrone2.5 α-Pyrone Polyenes: Citreoviridin and Aurovertin2.6 Anditomin and Related Meroterpenoids2.7 Tropolone Sesquiterpenoids3 Conclusion
Collapse
|
32
|
Xu X, Feng J, Zhang P, Fan J, Yin WB. A CRISPR/Cas9 Cleavage System for Capturing Fungal Secondary Metabolite Gene Clusters. J Microbiol Biotechnol 2021; 31:8-15. [PMID: 33144546 PMCID: PMC9705949 DOI: 10.4014/jmb.2008.08040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022]
Abstract
More and more available fungal genome sequence data reveal a large amount of secondary metabolite (SM) biosynthetic 'dark matter' to be discovered. Heterogeneous expression is one of the most effective approaches to exploit these novel natural products, but it is limited by having to clone entire biosynthetic gene clusters (BGCs) without errors. So far, few effective technologies have been developed to manipulate the specific large DNA fragments in filamentous fungi. Here, we developed a fungal BGC-capturing system based on CRISPR/Cas9 cleavage in vitro. In our system, Cas9 protein was purified and CRISPR guide sequences in combination with in vivo yeast assembly were rationally designed. Using targeted cleavages of plasmid DNAs with linear (8.5 kb) or circular (8.5 kb and 28 kb) states, we were able to cleave the plasmids precisely, demonstrating the high efficiency of this system. Furthermore, we successfully captured the entire Nrc gene cluster from the genomic DNA of Neosartorya fischeri. Our results provide an easy and efficient approach to manipulate fungal genomic DNA based on the in vitro application of Cas9 endonuclease. Our methodology will lay a foundation for capturing entire groups of BGCs in filamentous fungi and accelerate fungal SMs mining.
Collapse
Affiliation(s)
- Xinran Xu
- State Key Laboratory of Mycology and CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 000, P.R. China,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jin Feng
- State Key Laboratory of Mycology and CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 000, P.R. China
| | - Peng Zhang
- State Key Laboratory of Mycology and CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 000, P.R. China
| | - Jie Fan
- State Key Laboratory of Mycology and CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 000, P.R. China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology and CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 000, P.R. China,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, P.R. China,Corresponding author Phone: +86-10-64806170 E-mail:
| |
Collapse
|
33
|
Chiang YM, Lin TS, Chang SL, Ahn G, Wang CCC. An Aspergillus nidulans Platform for the Complete Cluster Refactoring and Total Biosynthesis of Fungal Natural Products. ACS Synth Biol 2021; 10:173-182. [PMID: 33375785 DOI: 10.1021/acssynbio.0c00536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fungal natural products (NPs) comprise a vast number of bioactive molecules with diverse activities, and among them are many important drugs. However, the yields of fungal NPs from native producers are usually low, and total synthesis of structurally complex NPs is challenging. As such, downstream derivatization and optimization of lead fungal NPs can be impeded by the high cost of obtaining sufficient starting material. In recent years, reconstitution of NP biosynthetic pathways in heterologous hosts has become an attractive alternative approach to produce complex NPs. Here, we present an efficient, cloning-free strategy for the cluster refactoring and total biosynthesis of fungal NPs in Aspergillus nidulans. Our platform places our genes of interest (GOIs) under the regulation of the robust asperfuranone afo biosynthesis gene machinery, allowing for their concerted activation upon induction. We demonstrated the utility of our system by creating strains that can synthesize high-value NPs, citreoviridin (1), mutilin (2), and pleuromutilin (3), with good to high yield and purity. This platform can be used not only for producing NPs of interests (i.e., total biosynthesis) but also for elucidating cryptic biosynthesis pathways.
Collapse
Affiliation(s)
- Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan, ROC
| | - Tzu-Shyang Lin
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Shu-Lin Chang
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan, ROC
| | - Green Ahn
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
34
|
Enzymology and biosynthesis of the orsellinic acid derived medicinal meroterpenoids. Curr Opin Biotechnol 2020; 69:52-59. [PMID: 33383296 DOI: 10.1016/j.copbio.2020.11.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/02/2020] [Accepted: 11/30/2020] [Indexed: 01/07/2023]
Abstract
The advent of synthetic biology has yielded fruitful studies on orsellinic acid-derived meroterpenoids, which reportedly possess important biological activities. Genomics and transcriptomics have significantly accelerated the discovery of the biosynthetic genes for orsellinic acid-derived fungal and plant meroterpenoids. Subsequently, a well-developed heterologous host provides a convenient platform to generate a supply of useful natural products. Furthermore, in vitro reconstitution and genome editing tools have been increasingly employed as efficient means to fully understand the enzyme reaction mechanisms. With the knowledge of the biosynthetic machinery, combinatorial and engineered biosyntheses have yielded novel molecules with improved bioactivities. These studies will lay the foundation for the production of meroterpenoids with novel medicinal properties.
Collapse
|
35
|
Caesar LK, Kelleher NL, Keller NP. In the fungus where it happens: History and future propelling Aspergillus nidulans as the archetype of natural products research. Fungal Genet Biol 2020; 144:103477. [PMID: 33035657 DOI: 10.1016/j.fgb.2020.103477] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/21/2020] [Accepted: 09/30/2020] [Indexed: 02/08/2023]
Abstract
In 1990 the first fungal secondary metabolite biosynthetic gene was cloned in Aspergillus nidulans. Thirty years later, >30 biosynthetic gene clusters (BGCs) have been linked to specific natural products in this one fungal species. While impressive, over half of the BGCs in A. nidulans remain uncharacterized and their compounds structurally and functionally unknown. Here, we provide a comprehensive review of past advances that have enabled A. nidulans to rise to its current status as a natural product powerhouse focusing on the discovery and annotation of secondary metabolite clusters. From genome sequencing, heterologous expression, and metabolomics to CRISPR and epigenetic manipulations, we present a guided tour through the evolution of technologies developed and utilized in the last 30 years. These insights provide perspective to future efforts to fully unlock the biosynthetic potential of A. nidulans and, by extension, the potential of other filamentous fungi.
Collapse
Affiliation(s)
- Lindsay K Caesar
- Department of Chemistry, Northwestern University, Evanston, IL, United States
| | - Neil L Kelleher
- Department of Chemistry, Northwestern University, Evanston, IL, United States; Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States; Proteomics Center of Excellence, Northwestern University, Evanston, IL, United States
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin- Madison, Madison, WI, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
36
|
Abstract
Covering: up to July 2020Fungal meroterpenoid cyclases are a recently discovered emerging family of membrane-integrated, non-canonical terpene cyclases. They catalyze the conversion of hybrid isoprenic precursors towards complex scaffolds and are therefore of great importance in the structure diversification in meroterpenoid biosynthesis. The products of these pathways exhibit intriguing molecular scaffolds and highly potent bioactivities, making them privileged structures from Nature and attractive candidates for drug development or industrial applications. This review will provide a comprehensive and comparative view on fungal meroterpenoid cyclases, their intriguing chemistries and importance for the scaffold formation step towards polycyclic meroterpenoid natural products.
Collapse
Affiliation(s)
- Lena Barra
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | |
Collapse
|
37
|
Yuan S, Gopal JV, Ren S, Chen L, Liu L, Gao Z. Anticancer fungal natural products: Mechanisms of action and biosynthesis. Eur J Med Chem 2020; 202:112502. [PMID: 32652407 DOI: 10.1016/j.ejmech.2020.112502] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 01/07/2023]
Abstract
Many fungal metabolites show promising anticancer properties both in vitro and in animal models, and some synthetic analogs of those metabolites have progressed into clinical trials. However, currently, there are still no fungi-derived agents approved as anticancer drugs. Two potential reasons could be envisioned: 1) lacking a clear understanding of their anticancer mechanism of action, 2) unable to supply enough materials to support the preclinical and clinic developments. In this review, we will summarize recent efforts on elucidating the anticancer mechanisms and biosynthetic pathways of several promising anticancer fungal natural products.
Collapse
Affiliation(s)
- Siwen Yuan
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jannu Vinay Gopal
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shuya Ren
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Litong Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Zhizeng Gao
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
38
|
Yan Y, Liu N, Tang Y. Recent developments in self-resistance gene directed natural product discovery. Nat Prod Rep 2020; 37:879-892. [PMID: 31912842 PMCID: PMC7340575 DOI: 10.1039/c9np00050j] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Covering: 2000 to 2019Natural products (NPs) are important sources of human therapeutic agents and pesticides. To prevent self-harm from bioactive NPs, some microbial producers employ self-resistance genes to protect themselves. One effective strategy is to employ a self-resistance enzyme (SRE), which is a slightly mutated version of the original metabolic enzyme, and is resistant to the toxic NP but is still functional. The presence of a SRE in a gene cluster can serve as a predictive window to the biological activity of the NPs synthesized by the pathway. In this highlight, we summarize representative examples of NP biosynthetic pathways that utilize self-resistance genes for protection. Recent discoveries based on self-resistance gene identification have helped in bridging the gap between activity-guided and genome-driven approaches for NP discovery and functional assignment.
Collapse
Affiliation(s)
- Yan Yan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
39
|
Okano T, Kobayashi N, Izawa K, Yoshinari T, Sugita-Konishi Y. Whole Genome Analysis Revealed the Genes Responsible for Citreoviridin Biosynthesis in Penicillium citreonigrum. Toxins (Basel) 2020; 12:toxins12020125. [PMID: 32075322 PMCID: PMC7077241 DOI: 10.3390/toxins12020125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 11/16/2022] Open
Abstract
Citreoviridin (CTV) is a mycotoxin that is produced by Aspergillus terreus, Eupenicillium ochrosalmoneum and Penicillium citreonigrum, and CTV has been detected in a wide range of cereal grains throughout the world. Furthermore, it is especially a serious problem in regions where rice is consumed as a staple food. Moreover, CTV is a well-known yellow rice toxin, and outbreaks of beriberi have occurred due to consumption of rice that is contaminated by CTV even in the recent years. Although CTV biosynthetic genes of A. terreus have been described, those of P. citreonigrum remain unclear, which is concerning since P. citreonigrum is the main cause of CTV contamination in rice. In the present study, we determined the draft genome of the P. citreonigrum strain IMI92228 and revealed the presence of all four genes that form a gene cluster and that are homologous to the CTV biosynthesis genes of A. terreus. The expression of these four homologous genes were highly correlated with CTV production, suggesting that they may play an important role in CTV biosynthesis in P. citreonigrum. We concluded that the gene cluster is a CTV biosynthesis cluster of P. citreonigrum. The findings will contribute to the understanding of the biosynthetic pathway of CTV and will ultimately lead to improvements in the CTV management of agricultural products.
Collapse
Affiliation(s)
- Takumi Okano
- Graduate School of Life and Environmental Sciences, Azabu University, Kanagawa 252-5201, Japan
| | - Naoki Kobayashi
- Graduate School of Life and Environmental Sciences, Azabu University, Kanagawa 252-5201, Japan
- Correspondence: ; Tel.: +81-42-769-1887
| | - Kazuki Izawa
- Department of Computer Science, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Tomoya Yoshinari
- Division of Microbiology, National Institute of Health and Sciences, Kanagawa 210-9501, Japan
| | - Yoshiko Sugita-Konishi
- Graduate School of Life and Environmental Sciences, Azabu University, Kanagawa 252-5201, Japan
| |
Collapse
|
40
|
Zhang JJ, Tang X, Moore BS. Genetic platforms for heterologous expression of microbial natural products. Nat Prod Rep 2019; 36:1313-1332. [PMID: 31197291 PMCID: PMC6750982 DOI: 10.1039/c9np00025a] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Covering: 2005 up to 2019Natural products are of paramount importance in human medicine. Not only are most antibacterial and anticancer drugs derived directly from or inspired by natural products, many other branches of medicine, such as immunology, neurology, and cardiology, have similarly benefited from natural product-based drugs. Typically, the genetic material required to synthesize a microbial specialized product is arranged in a multigene biosynthetic gene cluster (BGC), which codes for proteins associated with molecule construction, regulation, and transport. The ability to connect natural product compounds to BGCs and vice versa, along with ever-increasing knowledge of biosynthetic machineries, has spawned the field of genomics-guided natural product genome mining for the rational discovery of new chemical entities. One significant challenge in the field of natural product genome mining is how to rapidly link orphan biosynthetic genes to their associated chemical products. This review highlights state-of-the-art genetic platforms to identify, interrogate, and engineer BGCs from diverse microbial sources, which can be broken into three stages: (1) cloning and isolation of genomic loci, (2) heterologous expression in a host organism, and (3) genetic manipulation of cloned pathways. In the future, we envision natural product genome mining will be rapidly accelerated by de novo DNA synthesis and refactoring of whole biosynthetic pathways in combination with systematic heterologous expression methodologies.
Collapse
Affiliation(s)
- Jia Jia Zhang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA.
| | - Xiaoyu Tang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA.
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA. and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
41
|
Romsdahl J, Wang CCC. Recent advances in the genome mining of Aspergillus secondary metabolites (covering 2012-2018). MEDCHEMCOMM 2019; 10:840-866. [PMID: 31303983 PMCID: PMC6590338 DOI: 10.1039/c9md00054b] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/11/2019] [Indexed: 02/01/2023]
Abstract
Secondary metabolites (SMs) produced by filamentous fungi possess diverse bioactivities that make them excellent drug candidates. Whole genome sequencing has revealed that fungi have the capacity to produce a far greater number of SMs than have been isolated, since many of the genes involved in SM biosynthesis are either silent or expressed at very low levels in standard laboratory conditions. There has been significant effort to activate SM biosynthetic genes and link them to their downstream products, as the SMs produced by these "cryptic" pathways offer a promising source for new drug discovery. Further, an understanding of the genes involved in SM biosynthesis facilitates product yield optimization of first-generation molecules and genetic engineering of second-generation analogs. This review covers advances made in genome mining SMs produced by Aspergillus nidulans, Aspergillus fumigatus, Aspergillus niger, and Aspergillus terreus in the past six years (2012-2018). Genetic identification and molecular characterization of SM biosynthetic gene clusters, along with proposed biosynthetic pathways, will be discussed in depth.
Collapse
Affiliation(s)
- Jillian Romsdahl
- Department of Pharmacology and Pharmaceutical Sciences , School of Pharmacy , University of Southern California , 1985 Zonal Avenue , Los Angeles , CA 90089 , USA . ; Tel: (323) 442 1670
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences , School of Pharmacy , University of Southern California , 1985 Zonal Avenue , Los Angeles , CA 90089 , USA . ; Tel: (323) 442 1670
- Department of Chemistry , Dornsife College of Letters, Arts, and Sciences , University of Southern California , 3551 Trousdale Pkwy , Los Angeles , CA 90089 , USA
| |
Collapse
|
42
|
Araki Y, Awakawa T, Matsuzaki M, Cho R, Matsuda Y, Hoshino S, Shinohara Y, Yamamoto M, Kido Y, Inaoka DK, Nagamune K, Ito K, Abe I, Kita K. Complete biosynthetic pathways of ascofuranone and ascochlorin in Acremonium egyptiacum. Proc Natl Acad Sci U S A 2019; 116:8269-8274. [PMID: 30952781 PMCID: PMC6486709 DOI: 10.1073/pnas.1819254116] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ascofuranone (AF) and ascochlorin (AC) are meroterpenoids produced by various filamentous fungi, including Acremonium egyptiacum (synonym: Acremonium sclerotigenum), and exhibit diverse physiological activities. In particular, AF is a promising drug candidate against African trypanosomiasis and a potential anticancer lead compound. These compounds are supposedly biosynthesized through farnesylation of orsellinic acid, but the details have not been established. In this study, we present all of the reactions and responsible genes for AF and AC biosyntheses in A. egyptiacum, identified by heterologous expression, in vitro reconstruction, and gene deletion experiments with the aid of a genome-wide differential expression analysis. Both pathways share the common precursor, ilicicolin A epoxide, which is processed by the membrane-bound terpene cyclase (TPC) AscF in AC biosynthesis. AF biosynthesis branches from the precursor by hydroxylation at C-16 by the P450 monooxygenase AscH, followed by cyclization by a membrane-bound TPC AscI. All genes required for AC biosynthesis (ascABCDEFG) and a transcriptional factor (ascR) form a functional gene cluster, whereas those involved in the late steps of AF biosynthesis (ascHIJ) are present in another distantly located cluster. AF is therefore a rare example of fungal secondary metabolites requiring multilocus biosynthetic clusters, which are likely to be controlled by the single regulator, AscR. Finally, we achieved the selective production of AF in A. egyptiacum by genetically blocking the AC biosynthetic pathway; further manipulation of the strain will lead to the cost-effective mass production required for the clinical use of AF.
Collapse
Affiliation(s)
- Yasuko Araki
- Research and Development Division, Kikkoman Corporation, Noda City, Chiba 278-0037, Japan
| | - Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
| | - Motomichi Matsuzaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan;
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki City, Nagasaki 852-8523, Japan
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Rihe Cho
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yudai Matsuda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shotaro Hoshino
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yasutomo Shinohara
- Research and Development Division, Kikkoman Corporation, Noda City, Chiba 278-0037, Japan
| | - Masaichi Yamamoto
- Institute of Mitochondrial Science Company, Ltd., Tokyo 176-0025, Japan
| | - Yasutoshi Kido
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Institute of Mitochondrial Science Company, Ltd., Tokyo 176-0025, Japan
- Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
- Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Daniel Ken Inaoka
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki City, Nagasaki 852-8523, Japan
- Department of Host-Defense Biochemistry, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Kisaburo Nagamune
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Kotaro Ito
- Research and Development Division, Kikkoman Corporation, Noda City, Chiba 278-0037, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan;
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki City, Nagasaki 852-8523, Japan
- Department of Host-Defense Biochemistry, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
43
|
O'Neill EC, Schorn M, Larson CB, Millán-Aguiñaga N. Targeted antibiotic discovery through biosynthesis-associated resistance determinants: target directed genome mining. Crit Rev Microbiol 2019; 45:255-277. [PMID: 30985219 DOI: 10.1080/1040841x.2019.1590307] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Intense competition between microbes in the environment has directed the evolution of antibiotic production in bacteria. Humans have harnessed these natural molecules for medicinal purposes, magnifying them from environmental concentrations to industrial scale. This increased exposure to antibiotics has amplified antibiotic resistance across bacteria, spurring a global antimicrobial crisis and a search for antibiotics with new modes of action. Genetic insights into these antibiotic-producing microbes reveal that they have evolved several resistance strategies to avoid self-toxicity, including product modification, substrate transport and binding, and target duplication or modification. Of these mechanisms, target duplication or modification will be highlighted in this review, as it uniquely links an antibiotic to its mode of action. We will further discuss and propose a strategy to mine microbial genomes for these genes and their associated biosynthetic gene clusters to discover novel antibiotics using target directed genome mining.
Collapse
Affiliation(s)
- Ellis C O'Neill
- a Department of Plant Sciences, University of Oxford , Oxford , Oxfordshire , UK
| | - Michelle Schorn
- b Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California , San Diego , CA , USA
| | - Charles B Larson
- b Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California , San Diego , CA , USA
| | - Natalie Millán-Aguiñaga
- c Universidad Autónoma de Baja California, Facultad de Ciencias Marinas , Ensenada , Baja California , México
| |
Collapse
|
44
|
Lin TS, Chen B, Chiang YM, Wang CCC. Discovery and Elucidation of the Biosynthesis of Aspernidgulenes: Novel Polyenes from Aspergillus Nidulans by Using Serial Promoter Replacement. Chembiochem 2018; 20:329-334. [PMID: 30302871 DOI: 10.1002/cbic.201800486] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Indexed: 11/06/2022]
Abstract
Through serial promoter exchanges, we isolated several novel polyenes, the aspernidgulenes, from Aspergillus nidulans and uncovered their succinct biosynthetic pathway involving only four enzymes. An enoyl reductase (ER)-less highly reducing polyketide synthase (HR-PKS) putatively produces a 5,6-dihydro-α-pyrone polyene, which undergoes bisepoxidation, epoxide ring opening, cyclization, and hydrolytic cleavage by three tailoring enzymes to generate aspernidgulene A1 and A2. Our findings demonstrate the prowess of fungal-tailoring enzymes to transform a polyketide scaffold concisely and efficiently into complex structures. Moreover, comparison with citreoviridin and aurovertin biosynthesis suggests that methylation of the α-pyrone hydroxy group by methyltransferase (CtvB or AurB) is the branching point at which the biosynthesis of these two classes of compounds diverge. Therefore, scanning for the presence or absence of the gatekeeping α-pyrone methyltransferase gene in homologous clusters might be a potential way to classify the product bioinformatically as belonging to methylated α-pyrone polyenes or polyenes containing rings derived from the cyclization of the unmethylated 5,6-dihydro-α-pyrone, such as 2,3-dimethyl-γ-lactone and oxabicyclo[2.2.1]heptane.
Collapse
Affiliation(s)
- Tzu-Shyang Lin
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, 90089, USA
| | - Bethany Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, 90089, USA
| | - Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, 90089, USA.,Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, 71710, Taiwan
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, 90089, USA.,Department of Chemistry, College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
45
|
Strategies for Engineering Natural Product Biosynthesis in Fungi. Trends Biotechnol 2018; 37:416-427. [PMID: 30316556 DOI: 10.1016/j.tibtech.2018.09.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/02/2018] [Accepted: 09/12/2018] [Indexed: 01/22/2023]
Abstract
Fungi are a prolific source of bioactive compounds, some of which have been developed as essential medicines and life-enhancing drugs. Genome sequencing has revealed that fungi have the potential to produce considerably more natural products (NPs) than are typically observed in the laboratory. Recently, there have been significant advances in the identification, understanding, and engineering of fungal biosynthetic gene clusters (BGCs). This review briefly describes examples of the engineering of fungal NP biosynthesis at the global, pathway, and enzyme level using in vivo and in vitro approaches and refers to the range and scale of heterologous expression systems available, developments in combinatorial biosynthesis, progress in understanding how fungal BGCs are regulated, and the applications of these novel biosynthetic enzymes as biocatalysts.
Collapse
|
46
|
Li H, Hu J, Wei H, Solomon PS, Vuong D, Lacey E, Stubbs KA, Piggott AM, Chooi YH. Chemical Ecogenomics-Guided Discovery of Phytotoxic α-Pyrones from the Fungal Wheat Pathogen Parastagonospora nodorum. Org Lett 2018; 20:6148-6152. [DOI: 10.1021/acs.orglett.8b02617] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hang Li
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Jinyu Hu
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Haochen Wei
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Peter S. Solomon
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Daniel Vuong
- Microbial Screening Technologies Pty Ltd, Smithfield, NSW 2164, Australia
| | - Ernest Lacey
- Microbial Screening Technologies Pty Ltd, Smithfield, NSW 2164, Australia
| | - Keith A. Stubbs
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Andrew M. Piggott
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
47
|
Imaging mass spectrometry-guided fast identification of antifungal secondary metabolites from Penicillium polonicum. Appl Microbiol Biotechnol 2018; 102:8493-8500. [DOI: 10.1007/s00253-018-9218-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 01/27/2023]
|
48
|
Synthesis and production of the antitumor polyketide aurovertins and structurally related compounds. Appl Microbiol Biotechnol 2018; 102:6373-6381. [DOI: 10.1007/s00253-018-9123-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 12/19/2022]
|
49
|
He Y, Wang B, Chen W, Cox RJ, He J, Chen F. Recent advances in reconstructing microbial secondary metabolites biosynthesis in Aspergillus spp. Biotechnol Adv 2018; 36:739-783. [DOI: 10.1016/j.biotechadv.2018.02.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 11/28/2022]
|
50
|
Yin GP, Wu YR, Han C, Wang XB, Gao HL, Yin Y, Kong LY, Yang MH. Asperones A–E, five dimeric polyketides with new carbon skeletons from the fungus Aspergillus sp. AWG 1–15. Org Chem Front 2018. [DOI: 10.1039/c8qo00070k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five dimeric polyketides with two novel skeletons, generated by the crucial [3 + 2] and [3 + 3] cycloadditions, were isolated from Aspergillus sp.
Collapse
Affiliation(s)
- Guo-Ping Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Ya-Rong Wu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Chao Han
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Xiao-Bing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Hong-Liang Gao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Yong Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Ming-Hua Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| |
Collapse
|