1
|
Ur Rahman M, Hussain HR, Akram H, Sarfraz M, Nouman M, Khan JA, Ishtiaq M. Niosomes as a targeted drug delivery system in the treatment of breast cancer: preparation, classification and mechanisms of cellular uptake. J Drug Target 2025; 33:916-932. [PMID: 39964023 DOI: 10.1080/1061186x.2025.2468750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/24/2025] [Accepted: 02/13/2025] [Indexed: 03/04/2025]
Abstract
Breast cancer (BC) remains one of the significant health issues across the globe, being diagnosed in millions of women worldwide annually. Conventional therapeutic options have substantial adverse effects due to their non-specificity and limited drug bioavailability. Niosomes, being novel drug delivery systems formed from non-ionic surfactants, with or without cholesterol and charge-inducing agents, are used as therapeutic options in treating BC. Their formulation by various methods enhances the therapeutic efficacy and bioavailability and minimises side effects. Niosomal formulation of tamoxifen exhibits target drug delivery with enhanced stability, whereas docetaxel and methotrexate show sustained and controlled drug release, respectively. 5-Fluorouracil, doxorubicin, paclitaxel, cyclophosphamide and epirubicin show improved cytotoxic effects against BC when combined with other agents. Furthermore, repurposed niosomal formulations of anti-cancer drugs show improved penetration, reduced tumour volume and significantly enhanced anti-tumour effect. This review article focuses on the composition of niosomes and their application in BC treatment and then examines how niosomes could contribute to BC research.
Collapse
Affiliation(s)
| | | | - Habiba Akram
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sarfraz
- College of Pharmacy, Al-Ain University, Al-Ain, United Arab Emirates
| | - Muhammad Nouman
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Jawad Akbar Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Memona Ishtiaq
- Department of Pharmacy, Lahore Institute of Professional Studies, Lahore, Pakistan
| |
Collapse
|
2
|
Aparajay P, Madhyastha H, Altamimi MA, Dev A, Hussain A, Bhowmik S. Functionalized Niosomes for Co-Delivery of Curcumin and Imatinib Mesylate to Treat Breast Cancer: In Vitro and In Vivo Investigations. AAPS PharmSciTech 2025; 26:119. [PMID: 40301277 DOI: 10.1208/s12249-025-03102-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/29/2025] [Indexed: 05/01/2025] Open
Abstract
Breast cancer is notable for its aggressive mutations, high resistance, and delayed diagnosis. Traditional treatments often cause severe side effects, highlighting the need for targeted therapies. This study developed a targeted delivery system using folic acid and Arginylglycylaspartic acid (RGD)-modified niosomes to deliver hydrophilic imatinib mesylate (IM) and hydrophobic curcumin (C) to treat breast cancer. The formulations were prepared and characaterized for size, zet potential, polydispersity index, % entrapment efficiency, and morphology. Moreover, FTIR (Fourier Transform Infrared) study negated incompatibility. In vitro drug release study was carried out at two different pH. In vitro cytotoxicity (dose dependent and ROS activity) and in vivo bioavailability studies were conducted to generate a proof of concept. The dual drug-loaded niosomal vesicles (R-F-PL64oxNS@IM-C) were designed for effective delivery of IM and C having particle size (< 300 nm) with high zeta potential (- 18 mV). The formulation achieved high entrapment efficiency (>70%) for both drugs with sustained release over 36 h at the explored two pH. In vitro results using MCF- 7 cells revealed significant cell death by R-F-PL64oxNS@IM-C as compared to pure drugs (IM & C) through upregulation and downregulation of proapoptotic and antiapoptotic genes, respectively. In vivo studies showed approximately 1.9- and 5-fold higher biodistribution of C and IM, respectively using targeted niosomal systems as compared to pure drugs. The pharmacokinetic analysis revealed that Cmax and AUC of IM from R-F-PL64oxNS@IM and C from R-F-PL64oxNS@IM-C were significantly higher compared to pure IM and curcumin. Moreover, the Tmax had also increased for both IM (3 h) and C (3 h) using RGD and folic acid guided niosomal formulation suggesting its enhanced retention in systemic circulation leading to more bioavailability as compared to IM (0.5 h) and C (0.5 h). The targeted delivery also led to significant reduction in TNF-α levels, indicating improved therapeutic potential. The developed R-F-PL64oxNS@IM-C shown more precisely killing of breast cancer cell than pure IM and C.
Collapse
Affiliation(s)
- Priyadarshi Aparajay
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, 8891692, Japan
| | - Mohammad A Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Abhimanyu Dev
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| | - Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Shuvadip Bhowmik
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| |
Collapse
|
3
|
Islam SN, Naqvi SMA, Gorain M, Roy G, Kundu GC, Ahmad A. Sustainable Synthesis of Nitrogen-Embedded Cu 2S Quantum Dots for In Vitro and In Vivo Breast Cancer Management. ACS APPLIED BIO MATERIALS 2025; 8:410-419. [PMID: 39746121 DOI: 10.1021/acsabm.4c01378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The burgeoning field of nanomedicine is exploring quantum dots for cancer theranostics. In recent years, chemically engineered copper sulfide (Cu2S) quantum dots (QDs) have emerged as a multifunctional platform for fluorescence-based sensors with prominent applications in imaging and chemodynamic therapy of tumor cells. The present study demonstrates the sustainable synthesis of nitrogen-embedded copper sulfide (N@Cu2S) quantum dots for the first time and unveils their potential application in in vitro and in vivo breast cancer management. The N@Cu2S QDs were morphologically analyzed by using TEM, revealing an average particle size of 5.4 nm. Their crystalline phase, nitrogen embedding, and luminescence properties were further investigated with XRD, XPS, and PL spectrometers, respectively. The in vitro cytotoxicity studies revealed that N@Cu2S QDs effectively inhibited the proliferation of both human (MDA-MB-231) and mouse (4T1) breast cancer cells while not damaging normal mouse fibroblast (NIH/3T3) cells. Furthermore, the in vivo investigation showed a significant reduction in tumor volume with a tumor growth inhibition of 63.52% in QD-treated mice, which was further supported by bioluminescence and fluorescence tumor imaging. Additionally, the organ-specific histopathological analysis validated the safety profile of the N@Cu2S QDs. The robust anticancer properties and high biocompatibility of N@Cu2S QDs underscore their potential as a promising option for breast cancer therapy, paving the way for future clinical applications.
Collapse
Affiliation(s)
- Sk Najrul Islam
- Interdisciplinary Nanotechnology Centre (INC), Z. H. College of Engineering and Technology, Aligarh Muslim University, AMU, Aligarh 202002, Uttar Pradesh, India
| | - Syed Mohd Adnan Naqvi
- Interdisciplinary Nanotechnology Centre (INC), Z. H. College of Engineering and Technology, Aligarh Muslim University, AMU, Aligarh 202002, Uttar Pradesh, India
| | - Mahadeo Gorain
- National Centre for Cell Science, Pune 411007, Maharashtra, India
| | - Gaurab Roy
- National Centre for Cell Science, Pune 411007, Maharashtra, India
- Sahu Bio-Tech Services, Nandoshi Road, Kirkatwadi, Pune 411024, Maharashtra, India
| | - Gopal C Kundu
- National Centre for Cell Science, Pune 411007, Maharashtra, India
- School of Biotechnology and Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Institute of Eminence, Bhubaneswar 751024, Odisha, India
| | - Absar Ahmad
- Interdisciplinary Nanotechnology Centre (INC), Z. H. College of Engineering and Technology, Aligarh Muslim University, AMU, Aligarh 202002, Uttar Pradesh, India
| |
Collapse
|
4
|
Joni HA, Esmaeili F, Landi B, Bayat E, Bakhshandeh H, Talebkhan Y, Barkhordari F, Sadeghi S, Nematollahi L, Negahdari B. Formulation, Characterization, and Potential Therapeutic Implications of Encapsulated Recombinant Alpha-luffin in Niosomes. Curr Pharm Biotechnol 2025; 26:923-934. [PMID: 39185643 DOI: 10.2174/0113892010316435240806053230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/16/2024] [Accepted: 07/02/2024] [Indexed: 08/27/2024]
Abstract
OBJECTIVE The anticancer properties of recombinant α-luffin (LUF) are wellestablished. However, the cytotoxic effects of encapsulating LUF within niosomes on the SKBR3 breast cancer cell line have yet to be explored. Our study aimed to investigate whether this encapsulation strategy could improve cytotoxic effects. METHODS Alpha-luffin was expressed, purified, and refolded. Then, this protein was utilized to craft an optimal formulation, guided by experimental design. In this work, we have explored various physicochemical properties, including particle size, polydispersity index, zeta potential, morphology, entrapment efficiency, drug release and kinetics, storage stability, and FTIR spectroscopy. Additionally, we have assessed the cellular uptake and cytotoxic effect of the optimized niosome formulation on the SKBR3 breast cancer cell line. RESULTS The optimized niosome exhibited a mean diameter of 315±6.4 nm (DLS). Successful encapsulation of LUF into regularly shaped, spherical niosomes was achieved, with an encapsulation efficiency of 73.45±2.4%. Notably, Niosomal LUF (NLUF) exhibited significantly increased cytotoxicity against SKBR3 cells. CONCLUSION These findings suggest that niosomes loaded with LUF hold promise as a potential treatment strategy for breast cancer.
Collapse
Affiliation(s)
- Hajar Abedi Joni
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Esmaeili
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnaz Landi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Bayat
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Haleh Bakhshandeh
- Department of Nano Biotechnology, New Technology Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Yeganeh Talebkhan
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Somayeh Sadeghi
- Department of Nano Biotechnology, New Technology Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Leila Nematollahi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Kothadiya S, Cutshaw G, Uthaman S, Hassan N, Sahoo DK, Wickham H, Quam E, Allenspach K, Mochel JP, Bardhan R. Cisplatin-Induced Metabolic Responses Measured with Raman Spectroscopy in Cancer Cells, Spheroids, and Canine-Derived Organoids. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50267-50281. [PMID: 39284013 DOI: 10.1021/acsami.4c08629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Ex vivo assessment of drug response with conventional cell viability assays remains the standard practice for guiding initial therapeutic choices. However, such ensemble approaches fail to capture heterogeneities in treatment response and cannot identify early markers of response. Here, we leverage Raman spectroscopy (RS) as an accurate, low-cost, extraction-free, and label-free approach to track metabolic changes in cancer cells, spheroids, and organoids in response to cisplatin treatment. We identified 12 statistically significant metabolites in cells and 19 metabolites in spheroids and organoids as a function of depth. We show that the cisplatin treatment of 4T1 cells and spheroids results in a shift in metabolite levels; metabolites including nucleic acids such as DNA, 783 cm-1 with p = 0.00021 for cells; p = 0.02173 for spheroids, major amino acids such as threonine, 1338 cm-1 with p = 0.00045 for cells; p = 0.01022 for spheroids, proteins such as amide III, 1248 cm-1 with p = 0.00606 for cells; p = 0.00511 for spheroids serve as early predictors of response. Our RS findings were also applicable to canine-derived organoids, showing spatial variations in metabolic changes as a function of organoid depth in response to cisplatin. Further, the metabolic pathways such as tricarboxylic acid (TCA)/citric acid cycle and glyoxylate and dicarboxylate metabolism that drive drug response showed significant differences based on organoid depth, replicating the heterogeneous treatment response seen in solid tumors where there is a difference from the periphery to the tumor core. Our study showcases the versatility of RS as a predictive tool for treatment response applicable from cells to organotypic cultures, that has the potential to decrease animal burden and readout time for preclinical drug efficacy.
Collapse
Affiliation(s)
- Siddhant Kothadiya
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
| | - Gabriel Cutshaw
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
| | - Saji Uthaman
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
| | - Nora Hassan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Hannah Wickham
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Elizabeth Quam
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Karin Allenspach
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011, United States
- Department of Pathology, Precision One Health Initiative, University of Georgia, Athens, Georgia 30602, United States
| | - Jonathan P Mochel
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011, United States
- Department of Pathology, Precision One Health Initiative, University of Georgia, Athens, Georgia 30602, United States
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
| |
Collapse
|
6
|
Liu R, Hou W, Li J, Gou X, Gao M, Wang H, Zhang Y, Deng H, Yang X, Zhang W. Co-assembly of cisplatin and dasatinib in hyaluronan nanogel to combat triple negative breast cancer with reduced side effects. Int J Biol Macromol 2024; 269:132074. [PMID: 38705320 DOI: 10.1016/j.ijbiomac.2024.132074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/14/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Treatment for triple negative breast cancer (TNBC) remains a huge challenge due to the lack of targeted therapeutics and tumor heterogenicity. Cisplatin (Cis) have demonstrated favorable therapeutic response in TNBC and thus is used together with various kinase inhibitors to fight the heterogenicity of TNBC. The combination of Cis with SRC inhibitor dasatinib (DAS) has shown encouraging anti-TNBC efficacy although the additive toxicity was commonly observed. To overcome the severe side effects of this Cis involved therapy, here we co-encapsulated Cis and DAS into a self-assembled hyaluronan (HA) nanogel (designated as HA/Cis/DAS (HCD) nanogel) to afford the TNBC targeted delivery by using the 4T1 mouse model. The acquired HCD nanogel was around 181 nm in aqueous solution, demonstrating the pharmacological activities of both Cis and DAS. Taking advantages of HA's targeting capability towards CD44 that is overexpressed on many TNBC cells, the HCD could well maintain the anticancer efficacy of the Cis and DAS combination, significantly increase the maximum tolerated dose and relieve the renal toxicity in vivo. The current HCD nanogel provides a potent strategy to improve the therapeutic outcome of Cis and DAS combination and thus representing a new targeted treatment option for TNBC.
Collapse
Affiliation(s)
- Runmeng Liu
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Wei Hou
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Jiayi Li
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Xiaorong Gou
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Menghan Gao
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Huimin Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Yiyi Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Hong Deng
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Xue Yang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China.
| | - Weiqi Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China.
| |
Collapse
|
7
|
Ranasinghe R, Mathai M, Abdullah Alshawsh M, Zulli A. Nanocarrier-mediated cancer therapy with cisplatin: A meta-analysis with a promising new paradigm. Heliyon 2024; 10:e28171. [PMID: 39839154 PMCID: PMC11747978 DOI: 10.1016/j.heliyon.2024.e28171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 01/23/2025] Open
Abstract
Aims Cisplatin is a frontline chemotherapeutic utilized to attenuate multiple cancers in the clinic. Given its side-effects, a new cisplatin formulation which could prevent cytotoxicity, metabolic deficiencies and metastasis is much needed. This study investigates whether nanocarriers can provide a better mode of drug delivery in preclinical cancer models seeking a potent anticancer therapeutic agent. Materials and methods The PubMed database was searched, and 242 research articles were screened from which 94 articles qualified for selection from those published by December 31, 2023 and the data was synthesized using the Review Manager software. Key findings Cisplatin encapsulated as a nanomedicine confirmed the versatility of nanocarriers in significantly diminishing cancer cell viability, half maximal inhibitory concentration, tumour volume, biodistribution of platinum in tumours and kidney; at p < 0.00001 and a 95% confidence interval. Significance An estimated 19.3 million global cancer incidence is reported with 50% mortality worldwide for which nanocarrier-mediated cisplatin therapy is most promising. Our findings offer new vistas for future cancer treatment when combined with chemo-immunotherapy that utilizes the recently advanced nanozymes.
Collapse
Affiliation(s)
- Ranmali Ranasinghe
- Institute for Health and Sport, College of Health and Medicine, Victoria University, Melbourne, Victoria, Australia
| | - Michael Mathai
- Institute for Health and Sport, College of Health and Medicine, Victoria University, Melbourne, Victoria, Australia
| | - Mohammed Abdullah Alshawsh
- Department of Paediatrics, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Anthony Zulli
- Institute for Health and Sport, College of Health and Medicine, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Dutta RS, Elhassan GO, Devi TB, Bhattacharjee B, Singh M, Jana BK, Sahu S, Mazumder B, Sahu RK, Khan J. Enhanced efficacy of β-carotene loaded solid lipid nanoparticles optimized and developed via central composite design on breast cancer cell lines. Heliyon 2024; 10:e28457. [PMID: 38586388 PMCID: PMC10998123 DOI: 10.1016/j.heliyon.2024.e28457] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024] Open
Abstract
β-carotene is obtained from both plants and animals and has been the subject of intense research because of its provitamin-A, antioxidant, and anticancer effects. Its limited absorption and oxidative degradation significantly reduce its antitumor efficacy when taken orally. In our study, we utilize a central composite design to develop "bio-safe and highly bio-compatible" solid lipid nanoparticles (SLNs) by using only the combination of palmitic acid and poloxamer-407, a block co-polymer as a surfactant. The current research aim to develop and characterize SLNs loaded with β-carotene to improve their bioavailability and therapeutic efficacy. In addition, the improved cytotoxicity of solid lipid nanoparticles loaded with β-carotene was screened in-vitro in human breast cancer cell lines (MCF-7). The nanoparticles exhibits good stability, as indicated by their mean zeta potential of -26.3 ± 1.3 mV. The particles demonstrated high drug loading and entrapment capabilities. The fabricated nanoparticle's prolonged release potential was shown by the in-vitro release kinetics, which showed a first-order release pattern that adhered to the Higuchi model and showed a slow, linear, and steady release over 48 h. Moreover, a diffusion-type release mechanism was used to liberate β-carotene from the nanoparticles. For six months, the nanoparticles also showed a notable degree of physical stability. Lastly, using the MTT assay, the anti-cancer properties of β-carotene-loaded solid lipid nanoparticles were compared with intact β-carotene on MCF-7 cell lines. The cytotoxicity tests have shown that the encapsulation of β-carotene in the lipid bilayers of the optimized formulation does not interfere with the anti-cancer activity of the drug. When compared to standard β-carotene, β-carotene loaded SLNs showed enhanced anticancer efficacy and it is a plausible therapeutic candidate for enhancing the solubility of water-insoluble and degradation-sensitive biotherapeutics like β-carotene.
Collapse
Affiliation(s)
- Rajat Subhra Dutta
- School of Pharmaceutical Sciences, Girijananda Chowdhury University-Tezpur Campus, 784501, Assam, India
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Gamal Osman Elhassan
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah, 52571, Saudi Arabia
| | | | - Bedanta Bhattacharjee
- School of Pharmaceutical Sciences, Girijananda Chowdhury University-Tezpur Campus, 784501, Assam, India
| | - Mohini Singh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Bani Kumar Jana
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Supriya Sahu
- School of Pharmaceutical Sciences, Girijananda Chowdhury University-Tezpur Campus, 784501, Assam, India
| | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal, Uttarakhand, India
| | - Jiyauddin Khan
- School of Pharmacy, Management and Science University, 40100, Shah Alam, Selangor, Malaysia
| |
Collapse
|
9
|
Kumari NU, Pardhi E, Chary PS, Mehra NK. Exploring contemporary breakthroughs in utilizing vesicular nanocarriers for breast cancer therapy. Ther Deliv 2024; 15:279-303. [PMID: 38374774 DOI: 10.4155/tde-2023-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
Breast cancer (BC) is a heterogeneous disease with various morphological features, clinicopathological conditions and responses to different therapeutic options, which is responsible for high mortality and morbidity in women. The heterogeneity of BC necessitates new strategies for diagnosis and treatment, which is possible only by cautious harmonization of the advanced nanomaterials. Recent developments in vesicular nanocarrier therapy indicate a paradigm shift in breast cancer treatment by providing an integrated approach to address current issues. This review provides a detailed classification of various nanovesicles in the treatment of BC with a special emphasis on recent advances, challenges in translating nanomaterials and future potentials.
Collapse
Affiliation(s)
- Nalla Usha Kumari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, 500037, India
| | - Ekta Pardhi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, 500037, India
| | - Padakanti Sandeep Chary
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, 500037, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, 500037, India
| |
Collapse
|
10
|
Roostaee M, Derakhshani A, Mirhosseini H, Banaee Mofakham E, Fathi-Karkan S, Mirinejad S, Sargazi S, Barani M. Composition, preparation methods, and applications of nanoniosomes as codelivery systems: a review of emerging therapies with emphasis on cancer. NANOSCALE 2024; 16:2713-2746. [PMID: 38213285 DOI: 10.1039/d3nr03495j] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Nanoniosome-based drug codelivery systems have become popular therapeutic instruments, demonstrating tremendous promise in cancer therapy, infection treatment, and other therapeutic domains. An emerging form of vesicular nanocarriers, niosomes are self-assembling vesicles composed of nonionic surfactants, along with cholesterol or other amphiphilic molecules. This comprehensive review focuses on how nanosystems may aid in making anticancer and antibacterial pharmaceuticals more stable and soluble. As malleable nanodelivery instruments, the composition, types, preparation procedures, and variables affecting the structure and stability of niosomes are extensively investigated. In addition, the advantages of dual niosomes for combination therapy and the administration of multiple medications simultaneously are highlighted. Along with categorizing niosomal drug delivery systems, a comprehensive analysis of various preparation techniques, including thin-layer injection, ether injection, and microfluidization, is provided. Dual niosomes for cancer treatment are discussed in detail regarding the codelivery of two medications and the codelivery of a drug with organic, plant-based bioactive compounds or gene agents. In addition, niogelosomes and metallic niosomal carriers for targeted distribution are discussed. The review also investigates the simultaneous delivery of bioactive substances and gene agents, including siRNA, microRNA, shRNA, lncRNA, and DNA. Additional sections discuss the use of dual niosomes for cutaneous drug delivery and treating leishmanial infections, Pseudomonas aeruginosa, and Mycobacterium tuberculosis. The study concludes by delineating the challenges and potential routes for nanoniosome-based pharmaceutical codelivery systems, which will be useful for nanomedicine practitioners and researchers.
Collapse
Affiliation(s)
- Maryam Roostaee
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Atefeh Derakhshani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hadiseh Mirhosseini
- Department of Chemistry, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Elmira Banaee Mofakham
- Department of Nanotechnology and Advanced Materials Research, Materials & Energy Research Center, Karaj, Iran.
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran.
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 9414974877, Iran.
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran.
| |
Collapse
|
11
|
Liga S, Paul C, Moacă EA, Péter F. Niosomes: Composition, Formulation Techniques, and Recent Progress as Delivery Systems in Cancer Therapy. Pharmaceutics 2024; 16:223. [PMID: 38399277 PMCID: PMC10892933 DOI: 10.3390/pharmaceutics16020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Niosomes are vesicular nanocarriers, biodegradable, relatively non-toxic, stable, and inexpensive, that provide an alternative for lipid-solid carriers (e.g., liposomes). Niosomes may resolve issues related to the instability, fast degradation, bioavailability, and insolubility of different drugs or natural compounds. Niosomes can be very efficient potential systems for the specific delivery of anticancer, antioxidant, anti-inflammatory, antimicrobial, and antibacterial molecules. This review aims to present an overview of their composition, the most common formulation techniques, as well as of recent utilizations as delivery systems in cancer therapy.
Collapse
Affiliation(s)
- Sergio Liga
- Biocatalysis Group, Department of Applied Chemistry and Engineering of Organic and Natural Compounds, Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timișoara, Carol Telbisz 6, 300001 Timișoara, Romania; (S.L.); (F.P.)
| | - Cristina Paul
- Biocatalysis Group, Department of Applied Chemistry and Engineering of Organic and Natural Compounds, Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timișoara, Carol Telbisz 6, 300001 Timișoara, Romania; (S.L.); (F.P.)
| | - Elena-Alina Moacă
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, 2nd Eftimie Murgu Square, 300041 Timișoara, Romania;
| | - Francisc Péter
- Biocatalysis Group, Department of Applied Chemistry and Engineering of Organic and Natural Compounds, Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timișoara, Carol Telbisz 6, 300001 Timișoara, Romania; (S.L.); (F.P.)
- Research Institute for Renewable Energies, Politehnica University Timișoara, Gavril Muzicescu 138, 300501 Timișoara, Romania
| |
Collapse
|
12
|
Song J, Tang C, Wang Y, Ba J, Liu K, Gao J, Chang J, Kang J, Yin L. Multifunctional nanoparticles for enhanced sonodynamic-chemodynamic immunotherapy with glutathione depletion. Nanomedicine (Lond) 2024; 19:145-161. [PMID: 38270976 DOI: 10.2217/nnm-2023-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
Aim: This study aimed to develop a sonodynamic-chemodynamic nanoparticle functioning on glutathione depletion in tumor immunotherapy. Materials & methods: The liposome-encapsulated 2,2-azobis[2-(2-imidazolin-2-yl) propane] dihydrochloride (AIPH) and copper-cysteine nanoparticles, AIPH/Cu-Cys@Lipo, were synthesized with a one-pot method. 4T1 cells were injected into female BALB/c mice for modeling. Results: AIPH/Cu-Cys@Lipo was well synthesized. It generated alkyl radicals upon ultrasound stimulation. AIPH/Cu-Cys@Lipo promoted the generation of -OH via a Fenton-like reaction. Both in vitro and in vivo experiments verified that AIPH/Cu-Cys@Lipo significantly inhibited tumor development by decreasing mitochondrial membrane potential, activating CD4+ and CD8+ T cells and promoting the expression of IL-2 and TNF-α. Conclusion: AIPH/Cu-Cys@Lipo provides high-quality strategies for safe and effective tumor immunotherapy.
Collapse
Affiliation(s)
- Jianying Song
- School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Cong Tang
- School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yun Wang
- Xuzhou Central Hospital, Xuzhou, Jiangsu Province, 221009, China
| | - Junli Ba
- School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Kairui Liu
- School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Jinwei Gao
- School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Jin Chang
- School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Jun Kang
- School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Linling Yin
- Department of stomatology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200080, China
| |
Collapse
|
13
|
Sharifnia M, Eftekhari Z, Mortazavi P. Niosomal hesperidin attenuates the M1/M2-macrophage polarization-based hepatotoxicity followed chlorpyrifos -induced toxicities in mice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105724. [PMID: 38225079 DOI: 10.1016/j.pestbp.2023.105724] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/17/2024]
Abstract
Chlorpyrifos(CPF) is a well-known hepatotoxic agent that has side effects on several organs. On the contrary, hepatic macrophages are crucial in maintaining liver tissue integrity. The main objective of this study was to evaluate the effects and possible mechanisms of niosomal hesperidin (Nio + Hesp), a flavanone glycoside found in citrus fruits, on M1-M2 liver macrophage polarization and inflammatory cells in the brain, liver, and ovarian tissues. Forty C57 mice were divided into CPF(3 mg/kg), Sham(Dimethyl sulfoxide 40 μL/kg), CPF + Hesp(100 mg/kg), and CPF + Nio + Hesp (100 mg/kg) groups. The activity of sera superoxide dismutase (SOD) and malondialdehyde (MDA), brain, liver, and ovary tissues changes, and M1-M2 liver macrophage polarization were evaluated by examining the expression of CD163 and CD68 genes. Hepatic lesions consisting of sporadic foci of coagulation necrosis, inflammatory cell reaction, and regenerative fibrosis were seen following CPF injection, reflected by significant overexpression of CD163 and CD68 genes. In comparison, Nio + Hesp declined the amount of cell apoptosis in the liver and downregulated CD163 and CD68 gene expression. Both Nio + Hesp and Hesp alleviated CPF-induced hepatotoxicity, however, Nio + Hesp was superior to hesperidin in the downregulation of the CD163 and CD68 gene expression. Even though a significant difference between hesperidin and Nio + Hesp was observed in the number of Graafian follicles, corpus luteum, and peri-antral follicles, no substantial difference was observed in primary follicles. The ameliorative effects of Hesp and Nio + Hesp may be at least in part due to their antioxidant and anti-inflammatory properties. These findings showed that both M1- and M2-macrophages contributed to the development of hepatic lesions induced by CPF and provided information about macrophage activation, indicating the importance of analysis of macrophage phenotypes for hepatotoxicity based on M1/M2-polarization which can be downregulated by niosomal nesperidin.
Collapse
Affiliation(s)
- Mahsa Sharifnia
- Department of Pathobiology, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zohre Eftekhari
- Biotchnology Department, Pasteur Institute of Iran, Tehran, Iran.
| | - Pejman Mortazavi
- Department of Pathobiology, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
14
|
Morovati S, Mohammadi A, Masoudi R, Heidari AA, Asad Sangabi M. The power of mumps virus: Matrix protein activates apoptotic pathways in human colorectal cell lines. PLoS One 2023; 18:e0295819. [PMID: 38091318 PMCID: PMC10718445 DOI: 10.1371/journal.pone.0295819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
New therapeutic approaches can significantly impact the control of colorectal cancer (CRC), which is increasing worldwide. In this study, we investigated the potential of targeting viral proteins to combat cancer cells. Specifically, we examined the anticancer potential of the matrix (M) protein of the mumps virus Hoshino strain in SW480 CRC cell lines. To begin, we individually transfected SW480 cells with pcDNA3 plasmids containing the mumps virus M gene. We then investigated the percentage of cell death, caspase activity, and the expression levels of genes involved in apoptosis pathways. Following this, we performed bioinformatics analysis on the M protein to identify any similarities with Bcl-2 family members and their viral homologs. Our diagnostic methods showed that treatment with the mumps M protein induced apoptosis and upregulated the expression and activity of pro-apoptotic proteins in SW480 CRC cells compared to the control and vector groups. Based on our bioinformatics studies, we proposed that the BH3 motif in the M protein may trigger apoptosis in CRC cells by interacting with cellular Bax. Overall, our study showed for the first time that the mumps virus M protein could be considered as a targeted treatment for CRC by inducing apoptotic pathways.
Collapse
Affiliation(s)
- Solmaz Morovati
- Department of Pathobiology, Division of Biotechnology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ali Mohammadi
- Department of Pathobiology, Division of Virology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ramin Masoudi
- Department of Pathobiology, Division of Biotechnology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Amir Ali Heidari
- Department of Clinical Sciences, Division of Aquatic Animal Health and Diseases, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mehdi Asad Sangabi
- Department of Pathobiology, Division of Virology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
15
|
Ps SS, Guha A, Deepika B, Udayakumar S, Nag M, Lahiri D, Girigoswami A, Girigoswami K. Nanocargos designed with synthetic and natural polymers for ovarian cancer management. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3407-3415. [PMID: 37421430 DOI: 10.1007/s00210-023-02608-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
Ovarian cancer cells usually spread in the peritoneal region, and if chemotherapeutic drugs can be given in these regions with proximity, then the anticancer property of the chemotherapeutic drugs can enhance. However, chemotherapeutic drug administrations are hindered by local toxicity. In the drug delivery system, microparticles or nanoparticles are administered in a controlled manner. Microparticles stay in a close vicinity while nanoparticles are smaller and can move evenly in the peritoneum. Intravenous administration of the drug evenly distributes the medicine in the target places and if the composition of the drug has nanoparticles it will have more specificity and will have easy access to the cancer cells and tumors. Among the different types of nanoparticles, polymeric nanoparticles were proven as most efficient in drug delivery. Polymeric nanoparticles are seen to be combined with many other molecules like metals, non-metals, lipids, and proteins, which helps in the increase of cellular uptake. The efficiency of different types of polymeric nanoparticles used in delivering the load for management of ovarian cancer will be discussed in this mini-review.
Collapse
Affiliation(s)
- Sharon Sofini Ps
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Rajiv Gandhi Salai, Kelambakkam, Tamil Nadu, 603103, India
| | - Arina Guha
- Dept. of Biotechnology, University of Engineering & Management, Kolkata, 700160, West Bengal, India
| | - Balasubramanian Deepika
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Rajiv Gandhi Salai, Kelambakkam, Tamil Nadu, 603103, India
| | - Saranya Udayakumar
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Rajiv Gandhi Salai, Kelambakkam, Tamil Nadu, 603103, India
| | - Moupriya Nag
- Dept. of Biotechnology, University of Engineering & Management, Kolkata, 700160, West Bengal, India
| | - Dibyajit Lahiri
- Dept. of Biotechnology, University of Engineering & Management, Kolkata, 700160, West Bengal, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Rajiv Gandhi Salai, Kelambakkam, Tamil Nadu, 603103, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Rajiv Gandhi Salai, Kelambakkam, Tamil Nadu, 603103, India.
| |
Collapse
|
16
|
Dabbagh Moghaddam F, Dadgar D, Esmaeili Y, Babolmorad S, Ilkhani E, Rafiee M, Wang XD, Makvandi P. Microfluidic platforms in diagnostic of ovarian cancer. ENVIRONMENTAL RESEARCH 2023; 237:117084. [PMID: 37683792 DOI: 10.1016/j.envres.2023.117084] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/17/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
The most important reason for death from ovarian cancer is the late diagnosis of this disease. The standard treatment of ovarian cancer includes surgery and chemotherapy based on platinum, which is associated with side effects for the body. Due to the nonspecific nature of clinical symptoms, developing a platform for early detection of this disease is needed. In recent decades, the advancements of microfluidic devices and systems have provided several advantages for diagnosing ovarian cancer. Designing and manufacturing new platforms using specialized technologies can be a big step toward improving the prevention, diagnosis, and treatment of this group of diseases. Organ-on-a-chip microfluidic devices are increasingly used as a promising platform in cancer research, with a focus on specific biological aspects of the disease. This review focusing on ovarian cancer and microfluidic application technologies in its diagnosis. Additionally, it discusses microfluidic platforms and their potential future perspectives in advancing ovarian cancer diagnosis.
Collapse
Affiliation(s)
- Farnaz Dabbagh Moghaddam
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, 00133, Rome, Italy.
| | - Delara Dadgar
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Yasaman Esmaeili
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
| | - Shahrzad Babolmorad
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ehsan Ilkhani
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maedeh Rafiee
- Department of Veterinary Sciences University of Wyoming, 1174 Snowy Range Road Laramie, WY, 82070, USA
| | - Xiang-Dong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, 324000, Quzhou, Zhejiang, China.
| |
Collapse
|
17
|
Shen Y, Guo Q, Zhang T, Wang L, Chen S, Lan X, Li Q, Xiao H. Zwitterionic dendrimer self-assembled nanodrugs with high drug loading for enhanced anti-tumor ability. Colloids Surf B Biointerfaces 2023; 231:113574. [PMID: 37797468 DOI: 10.1016/j.colsurfb.2023.113574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Zwitterionic dendrimers have been used to construct many nanomedicines due to their ability to achieve controlled drug release, but their low drug loading content limits their application in nanodrug delivery. To solve this problem, the surface of second generation polypropylimine (G2 PPI) was modified with mercapturized paclitaxel (PTX-SH) and zwitterionic groups to prepare zwitterionic prodrug molecule (PPIMPC), and then zwitterionic dendrimer self-assembled nanodrugs (PPIMPC-DOX micelles) were prepared by incorporating doxorubicin (DOX) into the micelles. The DOX loading and paclitaxel (PTX) loading in PPIMPC-DOX micelles was 6.7% and 26.2%, respectively, and the total drug loading of PPIMPC-DOX was high to 32.9%. In addition, PPIMPC-DOX micelles showed enhanced cytotoxicity due to improved cell uptake of DOX. More importantly, the inhibition rate of tumor was much higher than free DOX. The zwitterionic property and high drug loading of PPIMPC-DOX micelles enhanced anti-tumor ability of chemotherapeutic drugs. The method of preparation of zwitterionic and high drug loading of nanodrugs shows good application prospects in the future.
Collapse
Affiliation(s)
- Yue Shen
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Quanling Guo
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Tiantian Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Longgang Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China.
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xifa Lan
- First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Qiurong Li
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Haiyan Xiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
18
|
Razavi MS, Ebrahimnejad P, Javar HA, Weppelmann TA, Akbari J, Amoli FA, Atyabi F, Dinarvand R. Development of dual-functional core-shell electrospun mats with controlled release of anti-inflammatory and anti-bacterial agents for the treatment of corneal alkali burn injuries. BIOMATERIALS ADVANCES 2023; 154:213648. [PMID: 37812983 DOI: 10.1016/j.bioadv.2023.213648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/19/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023]
Abstract
In this study, a novel dual-drug carrier for the co-administration of an anti-inflammatory and antibiotic agent consisting of core-shell nanofibers for the treatment of cornea alkali burns was designed. The core-shell nanofibers were prepared via coaxial electrospinning of curcumin-loaded silk fibroin as the core and vancomycin-loaded chitosan/polyvinyl alcohol (PVA) as the shell. Electron microscopy (SEM and TEM) images confirmed the preparation of smooth, bead-free, and continuous fibers that formed clear core-shell structures. For further studies, nanofiber mats were cross-linked by heat treatment to avoid rapid disintegration in water and improve both mechanical properties and drug release. The release profile of curcumin and vancomycin indicated an initial burst release, continued by the extended release of both drugs within 72 hours. Rabbit corneal cells demonstrated high rates of proliferation when evaluated using a cell metabolism assay. Finally, the therapeutic efficiency of core/shell nanofibers in healing cornea alkali burn was studied by microscopic and macroscopic observation, fluorescence staining, and hematoxylin-eosin assay on rabbit eyes. The anti-inflammatory activity of fabricated fibers was evaluated by enzyme-linked immunosorbent assay and Immunofluorescence analysis. In conclusion, using a robust array of in vitro and in vivo experiments this study demonstrated the ability of the dual-drug carriers to promote corneal re-epithelialization, minimize inflammation, and inhibit corneal neovascularization. Since these parameters are critical to the healing of corneal wounds from alkali burns, we suggest that this discovery represents a promising future therapeutic agent that warrants further study in humans.
Collapse
Affiliation(s)
- Malihe Sadat Razavi
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Hamid Akbari Javar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Thomas A Weppelmann
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States of America
| | - Jafar Akbari
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fahimeh Asadi Amoli
- Ophthalmic Pathology Department, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Leicester School of Pharmacy, Leicester Institute for Pharmaceutical Innovation, De Montfort University, Leicester, UK.
| |
Collapse
|
19
|
Gugleva V, Ahchiyska K, Georgieva D, Mihaylova R, Konstantinov S, Dimitrov E, Toncheva-Moncheva N, Rangelov S, Forys A, Trzebicka B, Momekova D. Development, Characterization and Pharmacological Evaluation of Cannabidiol-Loaded Long Circulating Niosomes. Pharmaceutics 2023; 15:2414. [PMID: 37896174 PMCID: PMC10609774 DOI: 10.3390/pharmaceutics15102414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Cannabidiol (CBD) is a promising drug candidate with pleiotropic pharmacological activity, whose low aqueous solubility and unfavorable pharmacokinetics have presented obstacles to its full clinical implementation. The rational design of nanocarriers, including niosomes for CBD encapsulation, can provide a plausible approach to overcoming these limitations. The present study is focused on exploring the feasibility of copolymer-modified niosomes as platforms for systemic delivery of CBD. To confer steric stabilization, the niosomal membranes were grafted with newly synthesized amphiphilic linear or star-shaped 3- and 4-arm star-shaped copolymers based on polyglycidol (PG) and poly(ε-caprolactone) (PCL) blocks. The niosomes were prepared by film hydration method and were characterized by DLS, cryo-TEM, encapsulation efficacy, and in vitro release. Free and formulated cannabidiol were further investigated for cytotoxicity and pro-apoptotic and anti-inflammatory activities in vitro in three human tumor cell lines. The optimal formulation, based on Tween 60:Span60:Chol (3.5:3.5:3 molar ration) modified with 2.5 mol% star-shaped 3-arm copolymer, is characterized by a size of 235 nm, high encapsulation of CBD (94%), and controlled release properties. Niosomal cannabidiol retained the antineoplastic activity of the free agent, but noteworthy superior apoptogenic and inflammatory biomarker-modulating effects were established at equieffective exposure vs. the free drug. Specific alterations in key signaling molecules, implicated in programmed cell death, cancer cell biology, and inflammation, were recorded with the niosomal formulations.
Collapse
Affiliation(s)
- Viliana Gugleva
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 84 Tsar Osvoboditel Str., 9000 Varna, Bulgaria;
| | - Katerina Ahchiyska
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (K.A.); (D.G.)
| | - Dilyana Georgieva
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (K.A.); (D.G.)
| | - Rositsa Mihaylova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (R.M.); (S.K.)
| | - Spiro Konstantinov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (R.M.); (S.K.)
| | - Erik Dimitrov
- Institute of Polymers, Bulgarian Academy of Sciences, bl.103 Akad. G. Bonchev Str., 1113 Sofia, Bulgaria; (E.D.); (N.T.-M.); (S.R.)
| | - Natalia Toncheva-Moncheva
- Institute of Polymers, Bulgarian Academy of Sciences, bl.103 Akad. G. Bonchev Str., 1113 Sofia, Bulgaria; (E.D.); (N.T.-M.); (S.R.)
| | - Stanislav Rangelov
- Institute of Polymers, Bulgarian Academy of Sciences, bl.103 Akad. G. Bonchev Str., 1113 Sofia, Bulgaria; (E.D.); (N.T.-M.); (S.R.)
| | - Aleksander Forys
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland; (A.F.); (B.T.)
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland; (A.F.); (B.T.)
| | - Denitsa Momekova
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (K.A.); (D.G.)
| |
Collapse
|
20
|
Zhao P, Sun T, Lyu C, Liang K, Du Y. Cell mediated ECM-degradation as an emerging tool for anti-fibrotic strategy. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:29. [PMID: 37653282 PMCID: PMC10471565 DOI: 10.1186/s13619-023-00172-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/10/2023] [Indexed: 09/02/2023]
Abstract
Investigation into the role of cells with respect to extracellular matrix (ECM) remodeling is still in its infancy. Particularly, ECM degradation is an indispensable process during the recovery from fibrosis. Cells with ECM degradation ability due to the secretion of various matrix metalloproteinases (MMPs) have emerged as novel contributors to the treatment of fibrotic diseases. In this review, we focus on the ECM degradation ability of cells associated with the repertoire of MMPs that facilitate the attenuation of fibrosis through the inhibition of ECM deposition. Besides, innovative approaches to engineering and characterizing cells with degradation ability, as well as elucidating the mechanism of the ECM degradation, are also illustrated. Studies conducted to date on the use of cell-based degradation for therapeutic purposes to combat fibrosis are summarized. Finally, we discuss the therapeutic potential of cells with high degradation ability, hoping to bridge the gap between benchside research and bedside applications in treating fibrotic diseases.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tian Sun
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Cheng Lyu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kaini Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
21
|
Rezaei N, Kazem Arki M, Miri-Lavasani Z, Solhi R, Khoramipour M, Rashedi H, Asadzadeh Aghdaei H, Hossein-Khannazer N, Mostafavi E, Vosough M. Co-delivery of Doxorubicin and Paclitaxel via Noisome Nanocarriers Attenuates Cancerous Phenotypes in Gastric Cancer Cells. Eur J Pharm Biopharm 2023:S0939-6411(23)00102-9. [PMID: 37105361 DOI: 10.1016/j.ejpb.2023.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Gastric cancer (GC) is known as a deadly malignancy all over the world, yet none of the current therapeutic regimens have achieved efficacy. this current study has aimed to optimize and reduce treatment doses and overcome multidrug resistance in GC by developing optimum niosomal formulation for the delivery of doxorubicin (DXR), paclitaxel (PTX), and their co-delivery. The particles' size, polydispersity index (PDI), and entrapment efficacy (EE%) were optimized using statistical techniques, i.e., Box-Behnken and Central Composite Design. In contrast to soluble drug formulations, the release rate of medicines from nanoparticles were higher in physiological and acidic pH. Niosomes were more stable at 4°C, compared to 25°C. The MTT assay revealed that the IC50 of drug-loaded niosomes was the lowest among all developed formulations. The apoptosis-related genes (CASPASE-3, CASPASE-8, and CASPASE-9) and tumor suppressor genes (BAX, BCL2) were evaluated in cancer cells before and after treatment. In comparison to control cells and cells treated with soluble forms of DXR and PTX, while the expression of BCL2 decreased, the expression of BAX, CASPASE-3, CASPASE-8, and CASPASE-9 was enhanced in cells treated with drug-loaded niosomes. Drug-loaded niosomes inhibited colony formation capacity and increased apoptosis in human AGS gastric cancer cells. Our results indicate that co-delivery of DXR and PTX-loaded niosomes may be an effective and innovative therapeutic approach to gastric cancer.
Collapse
Affiliation(s)
- Niloofar Rezaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mandana Kazem Arki
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohre Miri-Lavasani
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roya Solhi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahsa Khoramipour
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Rashedi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
22
|
Borzooee Moghadam N, Avatefi M, Karimi M, Mahmoudifard M. Graphene family in cancer therapy: recent progress in cancer gene/drug delivery applications. J Mater Chem B 2023; 11:2568-2613. [PMID: 36883982 DOI: 10.1039/d2tb01858f] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In the past few years, the development in the construction and architecture of graphene based nanocomplexes has dramatically accelerated the use of nano-graphene for therapeutic and diagnostic purposes, fostering a new area of nano-cancer therapy. To be specific, nano-graphene is increasingly used in cancer therapy, where diagnosis and treatment are coupled to deal with the clinical difficulties and challenges of this lethal disease. As a distinct family of nanomaterials, graphene derivatives exhibit outstanding structural, mechanical, electrical, optical, and thermal capabilities. Concurrently, they can transport a wide variety of synthetic agents, including medicines and biomolecules, such as nucleic acid sequences (DNA and RNA). Herewith, we first provide an overview of the most effective functionalizing agents for graphene derivatives and afterward discuss the significant improvements in the gene and drug delivery composites based on graphene.
Collapse
Affiliation(s)
- Negin Borzooee Moghadam
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Manizheh Avatefi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Mahnaz Karimi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Matin Mahmoudifard
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
23
|
Moghaddam FD, Heidari G, Zare EN, Djatoubai E, Paiva-Santos AC, Bertani FR, Wu A. Carbohydrate polymer-based nanocomposites for breast cancer treatment. Carbohydr Polym 2023; 304:120510. [PMID: 36641174 DOI: 10.1016/j.carbpol.2022.120510] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022]
Abstract
Breast cancer is known as the most common invasive malignancy in women with the highest mortality rate worldwide. This concerning disease may be presented in situ (relatively easier treatment) or be invasive, especially invasive ductal carcinoma which is highly worrisome nowadays. Among several strategies used in breast cancer treatment, nanotechnology-based targeted therapy is currently being investigated, as it depicts advanced technological features able of preventing drugs' side effects on normal cells while effectively acting on tumor cells. In this context, carbohydrate polymer-based nanocomposites have gained particular interest among the biomedical community for breast cancer therapy applications due to their advantage features, including abundance in nature, biocompatibility, straightforward fabrication methods, and good physicochemical properties. In this review, the physicochemical properties and biological activities of carbohydrate polymers and their derivate nanocomposites were discussed. Then, various methods for the fabrication of carbohydrate polymer-based nanocomposites as well as their application in breast cancer therapy and future perspectives were discussed.
Collapse
Affiliation(s)
- Farnaz Dabbagh Moghaddam
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, 00133, Rome, Italy
| | - Golnaz Heidari
- School of Chemistry, Damghan University, Damghan 36716-45667, Iran
| | | | - Essossimna Djatoubai
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MPFE), Xi'an Jiaotong University, 28 West Xianning Road, Xi'an 710049, PR China
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Francesca Romana Bertani
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, 00133, Rome, Italy
| | - Aimin Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang, 325027, China
| |
Collapse
|
24
|
Samadi A, Moammeri A, Pourmadadi M, Abbasi P, Hosseinpour Z, Farokh A, Shamsabadipour A, Heydari M, Mohammadi MR. Cell Encapsulation and 3D Bioprinting for Therapeutic Cell Transplantation. ACS Biomater Sci Eng 2023; 9:1862-1890. [PMID: 36877212 DOI: 10.1021/acsbiomaterials.2c01183] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The promise of cell therapy has been augmented by introducing biomaterials, where intricate scaffold shapes are fabricated to accommodate the cells within. In this review, we first discuss cell encapsulation and the promising potential of biomaterials to overcome challenges associated with cell therapy, particularly cellular function and longevity. More specifically, cell therapies in the context of autoimmune disorders, neurodegenerative diseases, and cancer are reviewed from the perspectives of preclinical findings as well as available clinical data. Next, techniques to fabricate cell-biomaterials constructs, focusing on emerging 3D bioprinting technologies, will be reviewed. 3D bioprinting is an advancing field that enables fabricating complex, interconnected, and consistent cell-based constructs capable of scaling up highly reproducible cell-biomaterials platforms with high precision. It is expected that 3D bioprinting devices will expand and become more precise, scalable, and appropriate for clinical manufacturing. Rather than one printer fits all, seeing more application-specific printer types, such as a bioprinter for bone tissue fabrication, which would be different from a bioprinter for skin tissue fabrication, is anticipated in the future.
Collapse
Affiliation(s)
- Amirmasoud Samadi
- Department of Chemical and Biomolecular Engineering, 6000 Interdisciplinary Science & Engineering Building (ISEB), Irvine, California 92617, United States
| | - Ali Moammeri
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Parisa Abbasi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Avenue, Tehran 1458889694, Iran
| | - Zeinab Hosseinpour
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol 4714871167, Mazandaran Province, Iran
| | - Arian Farokh
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Amin Shamsabadipour
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Maryam Heydari
- Department of Cell and Molecular Biology, Faculty of Biological Science, University of Kharazmi, Tehran 199389373, Iran
| | - M Rezaa Mohammadi
- Dale E. and Sarah Ann Fowler School of Engineering, Chapman University, Orange, California 92866, United States
| |
Collapse
|
25
|
Cisplatin-loaded nanoformulations for cancer therapy: A comprehensive review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Feng J, Liu Y, Pan X, Jin F, Wu L, Chen J, Wan B, Zhang X, Rodrigues LR, Zhang Y. Acid-Directed Electrostatic Self-Assembly Generates Charge-Reversible Bacteria for Enhanced Tumor Targeting and Low Tissue Trapping. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36411-36424. [PMID: 35917371 DOI: 10.1021/acsami.2c08684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Despite recent preclinical progress with oncolytic bacteria in cancer therapy, dose-limiting toxicity has been a long-standing challenge for clinical application. Genetic and chemical modifications for enhancing the bacterial tumor-targeting ability have been unable to establish a balance between increasing its specificity and effectiveness while decreasing side effects. Herein, we report a simple, highly efficient method for rapidly self-assembling a clinically used lipid on bacterium and for reducing its minimum effective dose and toxicity to normal organs. The resultant bacteria present the ability to reverse-charge between neutral and acidic solutions, thus enabling weak interactions with the negatively charged normal cells, hence increasing their biocompatibility with blood cells and with the immune system. Additionally, the lipid-coated bacteria exhibit a longer blood circulation lifetime and low tissue trapping compared with the wild-type strains. Thereby, the engineered bacteria show enhanced tumor specificity and effectiveness even at low doses. Multiple visualization techniques are used for vividly demonstrating the time course of bacterial circulation in the blood and normal organs after intravenous administration. We believe that these methods for biointerfacial lipid self-assembly and evaluation of bacterial systemic circulation possess vast potential in exquisitely fabricating engineered bacteria for cancer therapy in the future.
Collapse
Affiliation(s)
- Jing Feng
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, P. R. China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211100, P. R. China
| | - Yiting Liu
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, P. R. China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211100, P. R. China
| | - Xia Pan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, P. R. China
| | - Fa Jin
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, P. R. China
| | - Liangquan Wu
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, P. R. China
| | - Jianquan Chen
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, P. R. China
| | - Bing Wan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, P. R. China
| | - Xiuwei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, P. R. China
| | - Lígia R Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Yunlei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, P. R. China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211100, P. R. China
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, P. R. China
| |
Collapse
|
27
|
Luo X, Gao Q, Zhou T, Tang R, Zhao Y, Zhang Q, Wang N, Ye H, Chen X, Chen S, Tang W, Zhao D. FOXP4-AS1 Inhibits Papillary Thyroid Carcinoma Proliferation and Migration Through the AKT Signaling Pathway. Front Oncol 2022; 12:900836. [PMID: 35720005 PMCID: PMC9202991 DOI: 10.3389/fonc.2022.900836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 12/24/2022] Open
Abstract
Papillary thyroid carcinoma, also known as PTC, is one of the commonest malignancies in the endocrine system. Long non-coding RNAs (lncRNAs) in PTC could maintain proliferative signaling, induce therapeutic resistance, activate invasion and migration, and sustain stem cell-like characteristics. In this paper, results showed that lncRNA forkhead box P4 antisense RNA 1 (FOXP4-AS1) is downregulated in PTC tissues and cell lines. Patients in TCGA cohort with a higher FOXP4-AS1 expression showed a higher disease-free interval (DFI) rate, and the expression of FOXP4-AS1 is shown to be linked to the clinical stage, T stage, N stage, and extraglandular invasion condition of the TC patients. FOXP4-AS1 is localized in the cell cytoplasmic domain of PTC cells. Functionally, upregulated FOXP4-AS1 inhibited PTC cell proliferation, apoptosis, and migration, whereas it downregulated FOXP4-AS1-promoted progression of PTC. In vivo assay also confirmed the tumor inhibitory effect of FOXP4-AS1 in PTC growth. Mechanism analysis indicated that FOXP4-AS1 can play its functions by regulating the AKT signaling pathway, and AKT inhibitor treatment could attenuate the impact of FOXP4-AS1 on PTC progression. Furthermore, FOXP4-AS1 also negatively regulates the expression of its host gene FOXP4. Collectively, we showed that FOXP4-AS1 inhibited PTC progression although AKT signaling and FOXP4-AS1 plays a tumor-suppressor role in PTC tumorigenesis.
Collapse
Affiliation(s)
- Xue Luo
- Clinical Medical College, Guizhou Medical University, Guiyang, China.,Department of Thyroid Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qingjun Gao
- Department of Thyroid Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tian Zhou
- Department of Breast Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Rui Tang
- Department of Thyroid and Breast Surgery, Bijie City First People's Hospital, Bijie, China
| | - Yu Zhao
- Department of Thyroid and Breast Surgery, Qian Xi Nan People's Hospital, Xingyi, China
| | - Qifang Zhang
- Key Laboratory of Endemic and Ethnic Minority Diseases of the Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Nanpeng Wang
- Department of Thyroid Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hui Ye
- Department of Thyroid Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xinghong Chen
- Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Song Chen
- Department of Thyroid and Breast Surgery, Jinyang Hospital Affiliated to Guizhou Medical University, Guiyang, China
| | - Wenli Tang
- Department of Thyroid Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Daiwei Zhao
- Clinical Medical College, Guizhou Medical University, Guiyang, China.,Department of Thyroid Surgery, the Second People's Hospital of Guizhou Province, Guiyang, China
| |
Collapse
|
28
|
Dey AD, Bigham A, Esmaeili Y, Ashrafizadeh M, Moghaddam FD, Tan SC, Yousefiasl S, Sharma S, Maleki A, Rabiee N, Kumar AP, Thakur VK, Orive G, Sharifi E, Kumar A, Makvandi P. Dendrimers as nanoscale vectors: Unlocking the bars of cancer therapy. Semin Cancer Biol 2022; 86:396-419. [PMID: 35700939 DOI: 10.1016/j.semcancer.2022.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/06/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022]
Abstract
Chemotherapy is the first choice in the treatment of cancer and is always preferred to other approaches such as radiation and surgery, but it has never met the need of patients for a safe and effective drug. Therefore, new advances in cancer treatment are now needed to reduce the side effects and burdens associated with chemotherapy for cancer patients. Targeted treatment using nanotechnology are now being actively explored as they could effectively deliver therapeutic agents to tumor cells without affecting normal cells. Dendrimers are promising nanocarriers with distinct physiochemical properties that have received considerable attention in cancer therapy studies, which is partly due to the numerous functional groups on their surface. In this review, we discuss the progress of different types of dendrimers as delivery systems in cancer therapy, focusing on the challenges, opportunities, and functionalities of the polymeric molecules. The paper also reviews the various role of dendrimers in their entry into cells via endocytosis, as well as the molecular and inflammatory pathways in cancer. In addition, various dendrimers-based drug delivery (e.g., pH-responsive, enzyme-responsive, redox-responsive, thermo-responsive, etc.) and lipid-, amino acid-, polymer- and nanoparticle-based modifications for gene delivery, as well as co-delivery of drugs and genes in cancer therapy with dendrimers, are presented. Finally, biosafety concerns and issues hindering the transition of dendrimers from research to the clinic are discussed to shed light on their clinical applications.
Collapse
Affiliation(s)
- Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J.F. Kennedy 54-Mostra d'Oltremare pad. 20, 80125 Naples, Italy
| | - Yasaman Esmaeili
- Biosensor Research Center (BRC), School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Farnaz Dabbagh Moghaddam
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Satar Yousefiasl
- School of Dentistry, Hamadan University of Medical Sciences, 6517838736 Hamadan, Iran
| | - Saurav Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aziz Maleki
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran; Cancer Research Centre, Shahid Beheshti University of Medical Sciences, 1989934148 Tehran, Iran
| | - Navid Rabiee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea; School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India; Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran; Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples, 80125 Italy.
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Pontedera, 56025 Pisa, Italy.
| |
Collapse
|
29
|
Peng M, Zheng Z, Chen S, Fang L, Feng R, Zhang L, Tang Q, Liu X. Sensitization of Non-Small Cell Lung Cancer Cells to Gefitinib and Reversal of Epithelial-Mesenchymal Transition by Aloe-Emodin Via PI3K/Akt/TWIS1 Signal Blockage. Front Oncol 2022; 12:908031. [PMID: 35677158 PMCID: PMC9168594 DOI: 10.3389/fonc.2022.908031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Objective To explore the impacts of AE (aloe-emodin) in gefitinib-resistant NSCLC (non-small cell lung cancer) cells and the corresponding mechanism. Methods PC9 and PC9-GR cells were cultured and treated by gefitinib, AE, or the combination of the two drugs. Then, viability, apoptosis, migration and invasion of cells were investigated using CCK-8, TUNEL, wound healing assay, and transwell assay, respectively. Female BALB/c nude mice were employed for the establishment of xenograft tumor models to examine the role of AE in tumor growth. Results PC9-GR cells showed reduced apoptosis and enhanced cell viability, migration and invasion upon treatment by gefitinib, compared with PC9 cells. E-cahherin in PC9-GR cells was down-regulated, while Vimentin, Snail2 (or Slug) and Twist1 in PC9-GR cells were up-regulated, compared with PC9 cells. Meanwhile, treatment by a combination of gefitinib and AE significantly strengthened apoptosis of PC9-GR cells, while attenuated their migration and invasion, compared with the control group or treatment by gefitinib or AE alone. WB results showed that AE could reverse EMT and activation of PI3K/AKT signalling pathway in PC9-GR cells. In vivo experiments showed that tumor growth and EMT of PC9-GR cells were dramatically repressed after treatment by a combination of AE and gefitinib. Additionally, the use of SC97 (a PI3K/Akt pathway activator) could counteract the effects of AE in gefitinib-resistant PC9 cells. Conclusions AE could enhance the gefitinib sensitivity of PC9-GR cells and reverse EMT by blocking PI3K/Akt/TWIS1 signal pathway.
Collapse
Affiliation(s)
- Minghui Peng
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhuifeng Zheng
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China.,Department of Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, China
| | - Shaoyang Chen
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Le Fang
- Department of Oncology, Loudi Central Hospital, Loudi, China
| | - Rongxiu Feng
- Department of Radiation Oncology, Xiangtan Central Hospital, Changde, China
| | - Lijun Zhang
- Department of Oncology, Huaihua First People's Hospital, Changde, China
| | - Qingnan Tang
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xuewen Liu
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|