1
|
Ji Y, Qin L, Han L, Wu J, Wang Y, Zhu Z, Sun T, Li Y. SERS detection of analgesics in serum based on Ag nanocubes for perioperative monitoring. Talanta 2025; 292:127979. [PMID: 40117871 DOI: 10.1016/j.talanta.2025.127979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
Prompt and personalized perioperative analgesia management relies on sensitive and convenient monitoring of analgesics. We report a strategy for sensitive and reproducible SERS detection of analgesics based on Ag nanocubes, which have abundant intragranular hot spots on sharp corners and interparticle hot spots between gaps. Both theoretical simulations and R6G detection experiments indicated that the enhancement factor of Ag nanocube SERS platform reach to 106 level. Quantitative and reproducible determination capabilities of this platform for six different analgesics with LOD as low as 500 pg mL-1 were verified. Pharmacokinetic experiment of fentanyl in rat serum samples by SERS detection within 4 h presented consistent results with the UHPLC-MS/MS method. Valid examples of SERS detection for single or multiple analgesics in clinical patients' serums further proved the feasibility of this platform for perioperative analgesic monitoring.
Collapse
Affiliation(s)
- Yinghe Ji
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang, 150081, PR China
| | - Lei Qin
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang, 150081, PR China
| | - Lin Han
- Ultra-Precision Optical & Electronic Instrument Engineering Center, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Jing Wu
- School of Physical Science and Technology, Nantong University, No. 9, Seyuan Road, Jiangsu, Nantong, 226019, PR China
| | - Yunpeng Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang, 150081, PR China
| | - Zhuo Zhu
- The Second Hospital of Jilin University, Jilin University, Changchun, 130041, PR China
| | - Tingting Sun
- Harbin Medical University Cancer Hospital, Heilongjiang, 150081, PR China.
| | - Yang Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang, 150081, PR China; Research Unit of Health Sciences and Technology (HST), Faculty of Medicine, University of Oulu, Finland; Department of Clinical Laboratory Diagnosis, Fourth Affiliated Hospital of Harbin Medical University, Harbin, PR China.
| |
Collapse
|
2
|
Zhang Q, Ma X, Zhang L, Wang H, Chen Y, Fu L, Zhou J, Xing Z, Xia J. Dual-function reusable SERS substrate based on Ag/Ag 3PO 4/MXene heterojunction: Efficient detection and photocatalytic degradation of organic pollutants. J Colloid Interface Sci 2025; 685:826-842. [PMID: 39864392 DOI: 10.1016/j.jcis.2025.01.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/18/2025] [Accepted: 01/19/2025] [Indexed: 01/28/2025]
Abstract
A flexible cotton-based Ag/Ag3PO4/MXene (APMX) ternary composite material was successfully synthesized, serving as a dual-function and reusable surface-enhanced Raman scattering (SERS) substrate for both sensitive detection and efficient organic dye degradation. The remarkable SERS properties of the composite can be attributed to the combined effects of electromagnetic enhancement by Ag nanoparticles (Ag NPs), charge transfer enhancement from Ag3PO4, and the chemical enhancement mechanisms associated with MXene. When employed for the detection of crystal violet (CV), the material exhibits outstanding sensitivity, achieving a limit of detection (LOD) as low as 3.82 × 10-11 M. Moreover, the synergistic effects between the localized surface plasmon resonance (LSPR) of Ag NPs and the high electrical conductivity of MXene significantly improve charge transfer on the Ag3PO4 surface, thereby enhancing photocatalytic efficiency. Under visible light irradiation, the composite achieves an 83.64 % degradation rate of CV within 90 min. By integrating the composite material onto cotton, its flexibility and practical applicability are enhanced, allowing for in-situ SERS detection and effective analysis on irregular surfaces. Additionally, the photocatalytic degradation function imparts a self-cleaning property, greatly improving its reusability and sustainability. As a high-performance, dual-function material, the APMX cotton shows great potential in environmental monitoring and pollution control by providing sensitive SERS detection and efficient wastewater pollutant degradation.
Collapse
Affiliation(s)
- Qian Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, China.
| | - Xiaoyan Ma
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Ling Zhang
- College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Huiting Wang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Yaxian Chen
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Longfei Fu
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Jie Zhou
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Zhiqiang Xing
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Jiarui Xia
- Institute of Health Sciences, China Medical University, Shenyang 110122, China.
| |
Collapse
|
3
|
Huang Q, Zhang D, Yu H, Ding Y, Xia Y. Seeing Is Believing: How Does the Surface of Silver Nanocubes Change during Their Growth in an Aqueous System. NANO LETTERS 2025; 25:7115-7120. [PMID: 40256923 PMCID: PMC12046588 DOI: 10.1021/acs.nanolett.5c01276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
The seed-mediated growth involving cetyltrimethylammonium chloride (CTAC), silver trifluoroacetate (CF3COOAg), ascorbic acid (H2Asc), and Ag seeds covered by poly(vinylpyrrolidone) (PVP) in aqueous medium is a robust route to Ag nanocubes with tunable sizes. However, mechanistic details such as changes to the surface remain elusive. Herein, we address this issue by leveraging the high sensitivity and water compatibility of surface-enhanced Raman scattering (SERS). Our results reveal that the addition of CTAC results in ligand exchange between PVP and chloride and the further introduction of CF3COOAg leads to the deposition of AgCl on Ag seeds. The H2Asc subsequently introduced increases the electron density on the surface of the seeds due to electron transfer, as manifested by rapid and pronounced enhancement of the SERS signals from AgCl and CTA+. The electrons from H2Asc also enable reduction to directly transform AgCl in contact with Ag into Ag atoms and enlarge the seeds into nanocubes.
Collapse
Affiliation(s)
- Qijia Huang
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Dong Zhang
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Hansong Yu
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yong Ding
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Younan Xia
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
4
|
Pacherrez Gallardo DP, Kawamura S, Shoji R, Yoshida L, Weng B. Thickness-Tunable PDMS-Based SERS Sensing Substrates. SENSORS (BASEL, SWITZERLAND) 2025; 25:2690. [PMID: 40363129 PMCID: PMC12074034 DOI: 10.3390/s25092690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 04/21/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025]
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy is an ultra-sensitive analytical method with the powerful signal-molecule detection capability. Coupling with the polydimethylsiloxane (PDMS) material, SERS can be enabled on a polymeric substrate for fast-developing bio-compatible sensing applications. However, due to PDMS's high viscosity, conventional PDMS-SERS substrates are typically thick and stiff, limiting their freedom for engineering flexible micro/nano functioning devices. To address this issue, we propose to adopt a low viscosity decamethylcyclopentasiloxane (D5) solvent as a diluent solution. Via controlling the mixture ratio of D5 and PDMS and the spin-coating speed for deposition, this method resulted in a film of a well-defined thickness from sub-millimeter down to a 100 nm scale. Furthermore, thanks to the unsaturated Si-H chemical bonds in the PDMS curing agent, the PDMS film could effectively reduce the Ag+ ions to Ag nanoparticles (NPs) directly bonding onto the substrate surface uniformly. Via adjusting the size and density of the AgNPs through reaction temperature and time, strong SERS was achieved and verified using R6G with the detection limit down to 0.1 ppm, attributed to the AgNPs' plasmonic enhancement effect.
Collapse
Affiliation(s)
| | - Shu Kawamura
- Department of Chemical Science and Engineering, National Institute of Technology, Tokyo College, Tokyo 193-0997, Japan; (S.K.); (R.S.)
| | - Ryo Shoji
- Department of Chemical Science and Engineering, National Institute of Technology, Tokyo College, Tokyo 193-0997, Japan; (S.K.); (R.S.)
| | - Lina Yoshida
- Department of Chemical Science and Engineering, National Institute of Technology, Tokyo College, Tokyo 193-0997, Japan; (S.K.); (R.S.)
| | - Binbin Weng
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA;
| |
Collapse
|
5
|
Wang T, Sun B, Wang W, Li Z, Qu J, Zhang Z. Controllable assembly of three-dimensional SERS substrate for highly sensitive detection of thiram residues in vegetables. Food Chem 2025; 469:142568. [PMID: 39724696 DOI: 10.1016/j.foodchem.2024.142568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
In this work, a series of three-dimensional (3D) SERS substrate were successfully fabricated by assembling silver nanoparticles (AgNPs) onto a porous gelatin sponge (GS) for highly sensitive thiram residues detection in vegetables. These 3D micro-nanostructures could induce the sufficient surface plasmon resonance (SPR) effect of noble metals on their surface and achieve high enrichment of pollutant molecules. As crystal violet (CV) was used as a probe molecule, the lowest CV solution could be detected at 10-9 M, and the enhancement factor (EF) was calculated to be 9.53 × 106. These Raman enhancement effect was completely in accordance with the Finite-Difference Time-Domain (FDTD) simulations calculation. More critically, these 3D SERS substrates showed high sensitivity in the actual detection of thiram residue in vegetables, and a detection limit of 0.062 mg/kg was successfully obtained. This construction strategy is expected to provide a fast and simple method for the detection of harmful pollutants in the agriculture and aquaculture fields.
Collapse
Affiliation(s)
- Tangchun Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Binbin Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Weijie Wang
- Technology Research and Development Center, Huada Chemical Group, Yantai 264001, China
| | - Zhengping Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jianbo Qu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zhiliang Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
6
|
Lin LL, Alvarez-Puebla R, Liz-Marzán LM, Trau M, Wang J, Fabris L, Wang X, Liu G, Xu S, Han XX, Yang L, Shen A, Yang S, Xu Y, Li C, Huang J, Liu SC, Huang JA, Srivastava I, Li M, Tian L, Nguyen LBT, Bi X, Cialla-May D, Matousek P, Stone N, Carney RP, Ji W, Song W, Chen Z, Phang IY, Henriksen-Lacey M, Chen H, Wu Z, Guo H, Ma H, Ustinov G, Luo S, Mosca S, Gardner B, Long YT, Popp J, Ren B, Nie S, Zhao B, Ling XY, Ye J. Surface-Enhanced Raman Spectroscopy for Biomedical Applications: Recent Advances and Future Challenges. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16287-16379. [PMID: 39991932 DOI: 10.1021/acsami.4c17502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The year 2024 marks the 50th anniversary of the discovery of surface-enhanced Raman spectroscopy (SERS). Over recent years, SERS has experienced rapid development and became a critical tool in biomedicine with its unparalleled sensitivity and molecular specificity. This review summarizes the advancements and challenges in SERS substrates, nanotags, instrumentation, and spectral analysis for biomedical applications. We highlight the key developments in colloidal and solid SERS substrates, with an emphasis on surface chemistry, hotspot design, and 3D hydrogel plasmonic architectures. Additionally, we introduce recent innovations in SERS nanotags, including those with interior gaps, orthogonal Raman reporters, and near-infrared-II-responsive properties, along with biomimetic coatings. Emerging technologies such as optical tweezers, plasmonic nanopores, and wearable sensors have expanded SERS capabilities for single-cell and single-molecule analysis. Advances in spectral analysis, including signal digitalization, denoising, and deep learning algorithms, have improved the quantification of complex biological data. Finally, this review discusses SERS biomedical applications in nucleic acid detection, protein characterization, metabolite analysis, single-cell monitoring, and in vivo deep Raman spectroscopy, emphasizing its potential for liquid biopsy, metabolic phenotyping, and extracellular vesicle diagnostics. The review concludes with a perspective on clinical translation of SERS, addressing commercialization potentials and the challenges in deep tissue in vivo sensing and imaging.
Collapse
Affiliation(s)
- Linley Li Lin
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Ramon Alvarez-Puebla
- Departamento de Química Física e Inorganica, Universitat Rovira i Virgili, Tarragona 43007, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona 08010, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Ikerbasque, Basque Foundation for Science, University of Santiago de nCompostela, Bilbao 48013, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
- Cinbio, University of Vigo, Vigo 36310, Spain
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jing Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350117, China
| | - Laura Fabris
- Department of Applied Science and Technology, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry and Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Aiguo Shen
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Shikuan Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yikai Xu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Chunchun Li
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Shao-Chuang Liu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jian-An Huang
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Research Unit of Disease Networks, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Biocenter Oulu, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
| | - Indrajit Srivastava
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas 79106, United States
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Lam Bang Thanh Nguyen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Xinyuan Bi
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Pavel Matousek
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Nicholas Stone
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Randy P Carney
- Department of Biomedical Engineering, University of California, Davis, California 95616, United States
| | - Wei Ji
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 145040, China
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zhou Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - In Yee Phang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Malou Henriksen-Lacey
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Haoran Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Zongyu Wu
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gennadii Ustinov
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Siheng Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sara Mosca
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
| | - Benjamin Gardner
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Juergen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xing Yi Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jian Ye
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| |
Collapse
|
7
|
Tadi SR, Shenoy AG, Bharadwaj A, C S S, Mukhopadhyay C, Sadani K, Nag P. Recent advances in the design of SERS substrates and sensing systems for (bio)sensing applications: Systems from single cell to single molecule detection. F1000Res 2025; 13:670. [PMID: 40255478 PMCID: PMC12009482 DOI: 10.12688/f1000research.149263.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 04/22/2025] Open
Abstract
The Raman effect originates from spontaneous inelastic scattering of photons by matter. These photons provide a characteristic fingerprint of this matter, and are extensively utilized for chemical and biological sensing. The inherently lower generation of these Raman scattered photons, do not hold potential for their direct use in sensing applications. Surface enhanced Raman spectroscopy (SERS) overcomes the low sensitivity associated with Raman spectroscopy and assists the sensing of diverse analytes, including ions, small molecules, inorganics, organics, radionucleotides, and cells. Plasmonic nanoparticles exhibit localized surface plasmon resonance (LSPR) and when they are closely spaced, they create hotspots where the electromagnetic field is significantly enhanced. This amplifies the Raman signal and may offer up to a 10 14-fold SERS signal enhancement. The development of SERS active substrates requires further consideration and optimization of several critical features such as surface periodicity, hotspot density, mitigation of sample or surface autofluorescence, tuning of surface hydrophilicities, use of specific (bio) recognition elements with suitable linkers and bioconjugation chemistries, and use of appropriate optics to obtain relevant sensing outcomes in terms of sensitivity, cross-sensitivity, limit of detection, signal-to-noise ratio (SNR), stability, shelf-life, and disposability. This article comprehensively reviews the recent advancements on the use of disposable materials such as commercial grades of paper, textiles, glasses, polymers, and some specific substrates such as blue-ray digital versatile discs (DVDs) for use as SERS-active substrates for point-of-use (POU) sensing applications. The advancements in these technologies have been reviewed and critiqued for analyte detection in resource-limited settings, highlighting the prospects of applications ranging from single-molecule to single-cell detection. We conclude by highlighting the prospects and possible avenues for developing viable field deployable sensors holding immense potential in environmental monitoring, food safety and biomedical diagnostics.
Collapse
Affiliation(s)
- Sai Ratnakar Tadi
- Department of Mechatronics, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ashwini G Shenoy
- Department of Mechatronics, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Anirudh Bharadwaj
- Department of Mechatronics, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sreelakshmi C S
- Microbiology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | | | - Kapil Sadani
- Instrumentation and Control Engineering, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pooja Nag
- Department of Mechatronics, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
8
|
Peng S, Zhang Z, Guo J, Ma T, Liu D. Rapid detection of thiram on apple surfaces using a flexible and sticky SERS substrate coupled with chemometric methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 328:125435. [PMID: 39571209 DOI: 10.1016/j.saa.2024.125435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/14/2024] [Accepted: 11/10/2024] [Indexed: 12/10/2024]
Abstract
In this paper, we developed a simple, rapid and sensitive method for detection of thiram on apple surfaces by surface enhance Raman spectroscopy (SERS) combined with chemometric methods. Ag NCs (Ag nanocubes) were firstly prepared by a sulfide-mediated polyol method. Then the flexible and adhesive Ag NCs@PDMS substrates were obtained by combining Ag NCs self-assembled films with PDMS films. Thiram residues on apple surfaces were transferred to the substrate using adhesion properties of Ag NCs@PDMS. And the SERS spectra were obtained by Raman microscopy and analyzed with chemometric methods. The results were analyzed by principal component analysis (PCA), for the limit of detection (LOD) of thriam on apple surfaces was 0.01 ppm. Principal component regression (PCR) and partial least squares regression (PLSR) were explored to develop quantitative models. Both models represented higher correlation coefficients (close to 1), but PLSR models exhibited better predictive performance, with the correlation coefficient was 0.99282 with a low root mean squared error of calibration (RMSEC = 0.438) and root mean squared error of validation (RMSECV = 0.597). The developed SERS method based on Ag NCs@PDMS substrate provide a simpler and more sensitive way to monitor thiram on apple surfaces.
Collapse
Affiliation(s)
- Sasa Peng
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an 710069, PR China
| | - Zhilong Zhang
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an 710069, PR China
| | - Jialin Guo
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an 710069, PR China
| | - Tianchen Ma
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an 710069, PR China
| | - Dongli Liu
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an 710069, PR China.
| |
Collapse
|
9
|
Shen Y, Ou Q, Yang YQ, Zhu WW, Zhao SS, Tan XC, Huang KJ, Yan J. Ag@CDS SERS substrate coupled with lineshape correction algorithm and BP neural network to detect thiram in beverages. Talanta 2025; 284:127233. [PMID: 39591862 DOI: 10.1016/j.talanta.2024.127233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
Surface enhanced Raman scattering (SERS) has been proved an effective analytical technique due to its high sensitivity, however, how to identify and extract useful information from raw SERS spectra is still a problem that needs to be resolved. In this work, a composite SERS substrate was prepared by encapsulating Ag nanoparticles within dialdehyde starch (Ag@CDS) to obtain dense "hot spot", and then a novel spectral preprocessing algorithm namely lineshape correction algorithm (LCA) was developed to separate the characteristic peaks of analytes from the original SERS spectra. Based on Ag@CDS and LCA, thiram residues in different beverages were quantitatively detected using back propagation (BP) neural network regression model. It was found that LCA provided an easy-to-use method for improving prediction ability of BP model. The Rp2 of BP model was improved from 0.2384, 0.3647 and 0.5581 to 0.9327, 0.9127 and 0.9251 for the quantitative detection of thiram residue in apple juice, grape juice and milk, respectively, while LCA was used for SERS spectra preprocessing. The optimal model can accurately detect thiram residue with a low limit of detection at 1.0 × 10-7 M, which is far below the maximum residue limit of thiram (2.9 × 10-5 M) regulated by the US Environmental Protection Agency. This study demonstrated that the proposed LCA can be used as a simple and valid spectra-preprocessing method in SERS quantitative detection.
Collapse
Affiliation(s)
- Yu Shen
- College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China; Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Nanning, 530006, China; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Product, Guangxi Minzu University, Nanning, 530006, China; Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning, 530006, China
| | - Qian Ou
- College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China; Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Nanning, 530006, China; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Product, Guangxi Minzu University, Nanning, 530006, China; Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning, 530006, China
| | - Ya-Qi Yang
- College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China; Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Nanning, 530006, China; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Product, Guangxi Minzu University, Nanning, 530006, China; Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning, 530006, China
| | - Wei-Wei Zhu
- Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China.
| | - Song-Song Zhao
- College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China; Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Nanning, 530006, China; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Product, Guangxi Minzu University, Nanning, 530006, China; Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning, 530006, China
| | - Xue-Cai Tan
- College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China; Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Nanning, 530006, China; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Product, Guangxi Minzu University, Nanning, 530006, China; Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning, 530006, China
| | - Ke-Jing Huang
- College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China; Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Nanning, 530006, China; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Product, Guangxi Minzu University, Nanning, 530006, China; Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning, 530006, China
| | - Jun Yan
- College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China; Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Nanning, 530006, China; Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Product, Guangxi Minzu University, Nanning, 530006, China; Laboratory of Optic-electric Chemo/Biosensing and Molecular Recognition, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Minzu University, Nanning, 530006, China.
| |
Collapse
|
10
|
Guo H, Li H, Xu M, Zhou J, Zhang D, Wang D, Sun W. Flexible Au@Ag/PDMS SERS imprinted membrane combined with molecular imprinting technology for selective detection of MC-LR. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125393. [PMID: 39531973 DOI: 10.1016/j.saa.2024.125393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/06/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
In this study, a core-shell structured bimetallic nano-cube, Au@Ag NCs, was prepared by seed-mediated growth procedure. The array structure of Au@Ag NCs was achieved at the interface through the autonomous assembly technique at the three-phase boundary. Employing polydimethylsiloxane (PDMS) as a flexible carrier, the array structure was effortlessly transferred to the PDMS membrane, bypassing the need for rigid substrates through a simple "pasting" method. This yielded a highly flexible and transparent SERS substrate with an array structure (Au@Ag NCs/PDMS membrane, AAP). In order to promote the selective detection property to the practical samples, molecularly imprinted polymers (MIPs) were coated on the surface of membrane to prepare the imprinted membrane (Au@Ag NCs/PDMS-MIMs, AAP-MIMs). It was demonstrated from the results that the AAP-MIMs exhibited high SERS sensitivity, stability, and uniformity. Furthermore, the flexible substrate possessed commendable mechanical strength, and facilitated the detection of analytes on irregular surfaces. In summary, this substrate held promising potential for practical on-site detection and analysis of specific target substances.
Collapse
Affiliation(s)
- Heng Guo
- Hainan Engineering Research Center of Tropical Ocean Advanced Opto-electrical Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Hainan Normal University, Haikou 571158, China; College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; Zhong Shan Institute of Changchun University of Science and Technology, Zhongshan, Guangdong 528437, China
| | - Hongji Li
- Hainan Engineering Research Center of Tropical Ocean Advanced Opto-electrical Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Hainan Normal University, Haikou 571158, China; College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China.
| | - Mengyang Xu
- Hainan Engineering Research Center of Tropical Ocean Advanced Opto-electrical Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Hainan Normal University, Haikou 571158, China; College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Juan Zhou
- Hainan Engineering Research Center of Tropical Ocean Advanced Opto-electrical Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Hainan Normal University, Haikou 571158, China; College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Dan Zhang
- Hainan Engineering Research Center of Tropical Ocean Advanced Opto-electrical Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Hainan Normal University, Haikou 571158, China; College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Dandan Wang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Wei Sun
- Hainan Engineering Research Center of Tropical Ocean Advanced Opto-electrical Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Hainan Normal University, Haikou 571158, China; College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China.
| |
Collapse
|
11
|
Kholafazad Kordasht H, Bahavarnia P, Bahavarnia F, Hasanzadeh M, Shadjou N. Exploring the frontiers of emerging sensing of silver nanoprisms: recent progress and challenges. RSC Adv 2025; 15:5105-5116. [PMID: 39963469 PMCID: PMC11831252 DOI: 10.1039/d4ra08469a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/30/2025] [Indexed: 02/20/2025] Open
Abstract
In recent years, the development and use of nanomaterials have transformed numerous aspects of biomedical science. Nanomaterials have played a pivotal role in advancing disease diagnosis and treatment across a wide range of applications. Within this scope, silver nanoprisms (AgNPrs) stand out due to their remarkable properties, such as extensive surface area, chemical robustness, and tunable electrical conductivity, making them excellent candidates for biomedical purposes. By tailoring these nanomaterials through functionalization or coating surface, their multifunctionality can be enhanced, unlocking new opportunities for their application in areas such as diagnosis, imaging, and therapeutic intervention. This review begins with an overview of AgNPrs' synthesis techniques and their unique physicochemical characteristics. Recent advancements in analytical methods utilizing AgNPrs, categorized by sensing mechanisms such as optical and electrochemical approaches, are highlighted in the context of diagnostics. Lastly, the challenges and future prospects of bringing AgNPr-based technologies to commercialization and integrating them into disease diagnostics and medical treatment are explored. The integration of AgNPrs in disease therapy holds promise for the development of advanced chemotherapy agents that effectively address the challenges of efficient cancer treatment looking ahead, the ongoing advancement of nanocarrier systems comprising AgNPrs-based molecules holds great promise for improving the quality of life for patients worldwide.
Collapse
Affiliation(s)
| | - Parinaz Bahavarnia
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | | | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Nasrin Shadjou
- Department of Nanotechnology, Faculty of Chemistry, Urmia University Urmia Iran
| |
Collapse
|
12
|
Guo Z, Zheng Y, Wang C, Jayan H, Yin L, El-Seedi HR, Gong Y, Zou X. Flexible label-free SERS substrate with alginate-chitosan@silver nanocube for in situ nondestructive detection of thiram on apples. Talanta 2025; 283:127168. [PMID: 39520922 DOI: 10.1016/j.talanta.2024.127168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The rapid in situ detection of pesticide residues in real samples based on surface-enhanced Raman spectroscopy (SERS) remains a challenge, necessitating an urgent need for a feasible solution that addresses issues such as sample complexity, reproducibility, and SERS substrate stability. This paper proposes a flexible SERS substrate, which consists of a composite gel made of sodium alginate-chitosan loaded with silver nanocubes (SA-CTS@AgNCs). The flexible nature of the SERS substrate enables the analysis of irregular surfaces of apples, dispensing with laborious pretreatment and promoting an effective contact with target molecules. By utilizing the SA-CTS@AgNCs substrate in conjunction with a portable Raman instrument, an exceptional sensitivity was achieved with a detection limit of 0.055 mg/L for thiram in apples. In addition, the stability, homogeneity, and batch-to-batch reproducibility of the substrates were evaluated. The experimental results showed that after 45 days of storage, the substrate still maintained more than 84.40 % SERS activity, demonstrating long-term stability. Within a single substrate, the point-to-point relative standard deviation (RSD) was only 4.2 %, while among different batches of substrates, the RSD was as low as 6.8 %, displaying better homogeneity and reproducibility. Hence, this flexible SERS substrate provides a reliable and convenient platform for rapid detection and on-site monitoring of food safety.
Collapse
Affiliation(s)
- Zhiming Guo
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Yuxia Zheng
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chen Wang
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Heera Jayan
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Limei Yin
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Hesham R El-Seedi
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China; Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Box 591, SE 751 24 Uppsala, Sweden
| | - Yunyun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Xiaobo Zou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
13
|
Freund L, Mossa J, Guo H. Development of a portable SERS tool to evaluate the effectiveness of washing methods to remove pesticide residue from fruit surface. Anal Chim Acta 2025; 1336:343476. [PMID: 39788654 DOI: 10.1016/j.aca.2024.343476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Pesticides are widely used in agriculture to control pests and enhance crop yields. However, post-harvest, there are growing concerns about the potential health risks posed by pesticide residues on produce surfaces. Analyzing these residues is challenging due to their typically low concentrations and the potential interference from the complex matrix of the produce's surface. The problem addressed in this study is the need for a sensitive, rapid, and on-site capable method to detect and quantify pesticide residues on agricultural products. RESULTS We developed a portable surface-enhanced Raman spectrometer (SERS)-based approach that offers a rapid 10-min turnaround, simplified protocol, on-site capability, and high sensitivity. Using the new analytical method, we evaluated pesticide residues on fruit surfaces after household or industrial postharvest washing, specifically the efficacy in removing the fungicide ferbam from peach surfaces. The limit of detection (LOD) for our method was determined to be 0.012 mg/kg, significantly lower than the U.S. Environmental Protection Agency's regulated limit of 7 mg/kg for ferbam on peaches. Our data shows that soaking in tap water for 1 min is the least effective method for removing ferbam, with insignificant difference from the control group. In contrast, soaking in a vinegar-water or NaHCO3-water solution for 5 min, as well as in a sodium hypochlorite solution (12 % available chlorine) for 1 or 5 min, proved to be the most effective methods. Extended soaking improved pesticide removal for tap water, vinegar, and NaHCO3, while in the chlorine groups, the effect was insignificant. SERS analysis revealed negligible penetration of ferbam into peach flesh and the inner surface of the skin. SIGNIFICANCE This study introduces an innovative method for measuring pesticide residues, significantly enhancing our understanding of pesticide removal and penetration. This new analytical approach is crucial for effectively detecting pesticides and mitigating their exposure through food sources.
Collapse
Affiliation(s)
- Lydia Freund
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Jacqueline Mossa
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Huiyuan Guo
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA; Materials Engineering and Science Program, State University of New York at Binghamton, Binghamton, NY, 13902, USA.
| |
Collapse
|
14
|
Yan X, Kanike C, Lu Q, Li Y, Wu H, Niestanak VD, Maeda N, Atta A, Unsworth LD, Zhang X. Streamlined Flow Synthesis of Plasmonic Nanoparticles and SERS Detection of Uremic Toxins with Trace-Level Liquid Volumes in a Microchamber. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63268-63283. [PMID: 39512135 DOI: 10.1021/acsami.4c13893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Rapid detection of uremic toxins is crucial due to their severe health risks, including oxidative stress, inflammation, neurotoxicity, cardiovascular complications, and progression of chronic kidney disease. Surface-enhanced Raman spectroscopy (SERS) may provide sensitive, fast, and clinical-grade real-time monitoring of these toxins, enabling effective management with timely dialysis treatments. This study introduces a 3D-printed microchamber that integrates the fabrication of plasmonic metal nanoparticles for the in-flow detection of biological toxins and pharmaceutical drugs using SERS, making it ideal for on-site diagnostics in clinical settings. The microchamber supports quantitative and highly reproducible detection with liquid volumes under 100 μL, which is crucial for trace-level biomarker detection and minimizing cross-contamination. It employs a tunable solvent exchange method for the in situ synthesis of silver nanoparticles (AgNPs) on flexible PDMS or rigid Si wafer substrates, avoiding costly nanofabrication techniques. Ultralow detection limits were achieved for two model compounds and three pharmaceutical drugs: 10-11 M for rhodamine 6G, 10-7 M for adenine, and 10-6 M for the pharmaceutical drugs. A total of 13 biological toxins, including three neurotransmitters, one neuromodulator, five amino acids, two polyamines, and two urea cycle metabolites, were detected with quantitative limits ranging from 10-3 to 10-6 M, all below permissible levels and aligning with physiological conditions. SERS detection within microchambers facilitates rapid on-site analysis, proving ideal for personalized health monitoring, point-of-care diagnostics, and environmental pollution assessment.
Collapse
Affiliation(s)
- Xiang Yan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
- Department of Civil and Environmental Engineering, School of Mining and Petroleum Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Chiranjeevi Kanike
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Qiuyun Lu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yanan Li
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongyan Wu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Vida Dehghan Niestanak
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta T6G 2G4, Canada
| | - Nobuo Maeda
- Department of Civil and Environmental Engineering, School of Mining and Petroleum Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Arnab Atta
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Larry D Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, University of Twente, Enschede 7522 NB, The Netherlands
| |
Collapse
|
15
|
Zhang Z, Li H, Huang L, Wang H, Niu H, Yang Z, Wang M. Rapid identification and quantitative analysis of malachite green in fish via SERS and 1D convolutional neural network. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124655. [PMID: 38885572 DOI: 10.1016/j.saa.2024.124655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Rapid and quantitative detection of malachite green (MG) in aquaculture products is very important for safety assurance in food supply. Here, we develop a point-of-care testing (POCT) platform that combines a flexible and transparent surface-enhanced Raman scattering (SERS) substrate with deep learning network for achieving rapid and quantitative detection of MG in fish. The flexible and transparent SERS substrate was prepared by depositing silver (Ag) film on the polydimethylsiloxane (PDMS) film using laser molecular beam epitaxy (LMBE) technique. The wrinkled Ag NPs@PDMS film exhibits high SERS activity, excellent reproducibility and good mechanical stability. Additionally, the fast in situ detection of MG residues onfishscales was achieved by using the wrinkled Ag NPs/PDMS film and a portable Raman spectrometer, with a minimum detectable concentration of 10-6 M. Subsequently, a one-dimensional convolutional neural network (1D CNN) model was constructed for rapid quantification of MG concentration. The results demonstrated that the 1D CNN quantitative analysis model possessed superior predictive performance, with a coefficient of determination (R2) of 0.9947 and a mean squared error (MSE) of 0.0104. The proposed POCT platform, integrating a transparent flexible SERS substrate, a portable Raman spectrometer and a 1D CNN model, provides an efficient strategy for rapid identification and quantitative analysis of MG in fish.
Collapse
Affiliation(s)
- Zhaoyi Zhang
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng 252000, PR China
| | - Hefu Li
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng 252000, PR China.
| | - Lili Huang
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng 252000, PR China
| | - Hongjun Wang
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng 252000, PR China
| | - Huijuan Niu
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng 252000, PR China
| | - Zhenshan Yang
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng 252000, PR China
| | - Minghong Wang
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng 252000, PR China.
| |
Collapse
|
16
|
Guglielmelli A, Mazzei R, Palermo G, Valente L, Tone CM, Giorno L, Strangi G, Poerio T. Development of a Photothermal Regenerative Plasmonic Platform as a Light-Controlled Interface. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59586-59596. [PMID: 39422145 DOI: 10.1021/acsami.4c13455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This study introduces a novel plasmonic nanocomposite platform, where gold nanoparticles (AuNPs) are synthesized in situ within a polydimethylsiloxane (PDMS) film. The innovative fabrication process leverages ethyl acetate swelling to achieve a uniform distribution of AuNPs, eliminating the need for additional reagents. The resulting nanocomposite film exhibits exceptional photothermal conversion capabilities, efficiently converting absorbed light into heat and rapidly reaching high temperatures. Furthermore, the platform is biofunctionalized with the phosphotriesterase enzyme, not only enabling the degradation of organophosphate pesticides but also showcasing the potential for multifunctional applications. The platform's ability to be regenerated after use underscores its sustainability for repeated applications.
Collapse
Affiliation(s)
- Alexa Guglielmelli
- Nanoscience Laboratory for Human Technologies (NLHT) Lab, Department of Physics, Institute of Nanotechnology (CNR-Nanotec), University of Calabria, 87036 Rende, Italy
| | - Rosalinda Mazzei
- Institute on Membrane Technology (ITM-CNR), National Research Council, 87036 Rende, Italy
| | - Giovanna Palermo
- Nanoscience Laboratory for Human Technologies (NLHT) Lab, Department of Physics, Institute of Nanotechnology (CNR-Nanotec), University of Calabria, 87036 Rende, Italy
| | - Liliana Valente
- NLHT Lab, Department of Physics, University of Calabria, 87036 Rende, Italy
| | - Caterina M Tone
- Department of Physics, Molecular Physics Group, University of Calabria, 87036 Rende, Italy
| | - Lidietta Giorno
- Institute on Membrane Technology (ITM-CNR), National Research Council, 87036 Rende, Italy
| | - Giuseppe Strangi
- Nanoscience Laboratory for Human Technologies (NLHT) Lab, Department of Physics, Institute of Nanotechnology (CNR-Nanotec), University of Calabria, 87036 Rende, Italy
- Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Teresa Poerio
- Institute on Membrane Technology (ITM-CNR), National Research Council, 87036 Rende, Italy
| |
Collapse
|
17
|
Peng S, Zhang Z, Xin M, Liu D. SERS-based Ag NCs@PDMS flexible substrate combined with chemometrics for rapid detection of foodborne pathogens on egg surface. Mikrochim Acta 2024; 191:612. [PMID: 39305299 DOI: 10.1007/s00604-024-06669-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024]
Abstract
An innovative method is introduced based on the combination of label-free surface-enhanced Raman scattering with advanced multivariate analysis. This technique allows both quantitative and qualitative assessment of Salmonella typhimurium and Escherichia coli on eggshells. Using silver nanocubes embedded in polydimethylsiloxane, we consistently achieved Raman spectra of bacteria. The stability of the Ag NCs@PDMS substrate is confirmed using rhodamine 6G over 30 days under standard conditions. Principal component analysis (PCA) effectively distinguishes between S. typhimurium and E. coli spectra. Partial least squares regression (PLS) models were developed for quantitative determination of bacteria on egg surfaces, yielding accurate results with minimal error. The S. typhimurium model achieves Rc2 = 0.9563 and RMSEC = 0.601 in calibration, and Rv2 = 0.9113 and RMSEV = 0.907 in validation. Similarly, the E. coli model achieves Rc2 = 0.9877 and RMSEC = 0.322 in calibration, and Rv2 = 0.9606 and RMSEV = 0.579 in validation. Recoveries validate PLS predictions by inoculating egg surfaces with varying bacterial amounts. Our study demonstrates the feasibility of SERS-PLS for quantitative determination of S. typhimurium and E. coli on eggshells, promising enhanced food safety protocols.
Collapse
Affiliation(s)
- Sasa Peng
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, 710069, People's Republic of China
| | - Zhilong Zhang
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, 710069, People's Republic of China
| | - Mingwei Xin
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, 710069, People's Republic of China
| | - Dongli Liu
- College of Food Science and Technology, Northwest University, 229 Taibai North Road, Xi'an, 710069, People's Republic of China.
| |
Collapse
|
18
|
Mi Y, Li X, Zeng X, Cai Y, Sun X, Yan Y, Jiang Y. Diagnosis of neuropsychiatric systemic lupus erythematosus by label-free serum microsphere-coupled SERS fingerprints with machine learning. Biosens Bioelectron 2024; 260:116414. [PMID: 38815463 DOI: 10.1016/j.bios.2024.116414] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/08/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a powerful optical technique for non-invasive and label-free bioanalysis of liquid biopsy, facilitating to diagnosis of potential diseases. Neuropsychiatric systemic lupus erythematosus (NPSLE) is one of the subgroups of systemic lupus erythematosus (SLE) with serious manifestations for a high mortality rate. Unfortunately, lack of well-established gold standards results in the clinical diagnosis of NPSLE being a challenge so far. Here we develop a novel Raman fingerprinting machine learning (ML-) assisted diagnostic method. The microsphere-coupled SERS (McSERS) substrates are employed to acquire Raman spectra for analysis via convolutional neural network (CNN). The McSERS substrates demonstrate better performance to distinguish the Raman spectra from serums between SLE and NPSLE, attributed to the boosted signal-to-noise ratio of Raman intensities due to the multiple optical regulation in microspheres and AuNPs. Eight statistically-significant (p-value <0.05) Raman shifts are identified, for the first time, as the characteristic spectral markers. The classification model established by CNN algorithm demonstrates 95.0% in accuracy, 95.9% in sensitivity, and 93.5% in specificity for NPSLE diagnosis. The present work paves a new way achieving clinical label-free serum diagnosis of rheumatic diseases by enhanced Raman fingerprints with machine learning.
Collapse
Affiliation(s)
- Yanlin Mi
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Xue Li
- Department of Rheumatology and Immunology, Peking University People's Hospital and Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, 100044, China
| | - Xingyue Zeng
- Department of Rheumatology and Immunology, Peking University People's Hospital and Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, 100044, China
| | - Yuyang Cai
- Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Peking University People's Hospital and Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, 100044, China.
| | - Yinzhou Yan
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, China; Key Laboratory of Trans-scale Laser Manufacturing Technology (Beijing University of Technology), Ministry of Education, Beijing, 100124, China; Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing, 100124, China.
| | - Yijian Jiang
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, China; Key Laboratory of Trans-scale Laser Manufacturing Technology (Beijing University of Technology), Ministry of Education, Beijing, 100124, China; Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
19
|
Gu Y, Fang P, Chen Y, Xie T, Yang G, Qu L. Multi-channel surface-enhanced Raman spectroscopy (SERS) platform for pollutant detection in water fabricated on polydimethylsiloxane. Mikrochim Acta 2024; 191:595. [PMID: 39269496 DOI: 10.1007/s00604-024-06681-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
A miniature multi-channel surface-enhanced Raman scattering (SERS) sensor based on polydimethylsiloxane (PDMS) is constructed to achieve rapid delivery of polluted water and specific identification of multiple components. Hg2+, organic pollutants, and sodium nitrite are successfully identified by the multi-channel SERS sensor using Cy5, cyclodextrin, and urea in the corresponding detection area. This multi-channel sensor exhibits excellent sensitivity and specificity, with detection limits of 3.2 × 10-10 M for Hg2+, 1.0 × 10-8 M for aniline, 6.9 × 10-9 M for diphenylamine, 9.1 × 10-8 M for PCB-77, and 7.5 × 10-9 M for pyrene, and 5.0 × 10-7 M for sodium nitrite. Compared with traditional analysis techniques, this method exhibited excellent recovery for the water pollutants ranging from 82.1 to 115.8%. The PDMS-based microchannel allows for simultaneous and rapid identification of multiple environmental pollutants, offering a portable detection method for emergency testing of environmental pollutants and routine determination of water pollutants.
Collapse
Affiliation(s)
- Yingqiu Gu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Puhao Fang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yu Chen
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Tianhua Xie
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Guohai Yang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Lulu Qu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
20
|
Chen M, Lai X, Su B, Jiang X, Xu J, Fu F, Lin Z, Dong Y. Rapid detection of tebuconazole based on hydrogel SERS chips. Talanta 2024; 277:126309. [PMID: 38795591 DOI: 10.1016/j.talanta.2024.126309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Tebuconazole is one of the most commonly used fungicides in agricultural production, that has the merits of highly effectiveness, broad spectrum and systemic function. Excessive tebuconazole may pose a great threat to human and animal health. Traditional detection techniques for tebuconazole usually have limitations such as expensive equipment, poor antibody stability, and time-consuming procedures. Herein, a sensitive sensor is developed for the rapid detection of tebuconazole based on hydrogel surface-enhanced Raman scattering (SERS) chips. Aggregated Ag nanoparticles (a-AgNPs) with tunable localized surface plasmon resonance (LSPR) wavelength are in-situ synthesized in polyvinyl alcohol (PVA) solution for preparing hydrogel SERS chips. Three hydrogel SERS chips are obtained to match the three commonly used laser wavelengths. On the basis, a match laser wavelength is selected according to the energy levels of tebuconazole and the Fermi level of a-AgNPs to gain a strong chemical enhancement. At the same time, the chip with a corresponding LSPR wavelength to the laser is applied to obtain a strong electromagnetic enhancement. Thus, highly sensitive SERS signal of tebuconazole is obtained. Furthermore, the obtained hydrogel SERS chips have good repeatability, outstanding reproducibility and strong anti-interference ability, and show outstanding reliability in practical applications. As a result, the SERS chips offer a reliable and convenient platform for the quick detection of tebuconazole in foods. The detection limit is as low as 1 ppb, and the recoveries is distributed in the range of 94.66-106.70 %. This work would promote greatly the application of SERS in small molecule detection.
Collapse
Affiliation(s)
- Mingming Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaojing Lai
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Bihang Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiancai Jiang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Jinhua Xu
- Fujian Inspection and Research Institute for Product Quality, National Center of Processed Foods Quality Supervision and Inspection, Fuzhou, 350002, China
| | - Fengfu Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| | - Zhenyu Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yongqing Dong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
21
|
Kanike C, Lu Q, Wu H, Unsworth LD, Atta A, Zhang X. Plasmonic Nanostructures Grown from Reacting Droplet-In-Microwell Array on Flexible Films for Quantitative Surface-Enhanced Raman Spectroscopy in Plant Wearable In Situ Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405576. [PMID: 39039736 DOI: 10.1002/adma.202405576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/20/2024] [Indexed: 07/24/2024]
Abstract
Plant wearable detection has garnered significant interest in advancing agricultural intelligence and promoting sustainable food production amidst the challenges of climate change. Accurately monitoring plant health and agrochemical residue levels necessitates qualities such as precision, affordability, simplicity, and noninvasiveness. Here, a novel attachable plasmonic film is introduced and designed for on-site detection of agrochemical residues utilizing surface-enhanced Raman spectroscopy (SERS). By functionalizing a thin polydimethylsiloxane film with silver nanoparticles via controlled droplet reactions in micro-well arrays, a plasmonic film is achieved that not only maintains optical transparency for precise analyte localization but also conforms closely to the plant surface, facilitating highly sensitive SERS measurements. The reliability of this film enables accurate identification and quantification of individual compounds and their mixtures, boasting an ultra-low detection limit ranging from 10-16 to 10-13 m, with mini mal relative standard deviation. To showcase its potential, on-field detection of pesticide residues on fruit surfaces is conducted using a handheld Raman spectrometer. This advancement in fabricating plasmonic nanostructures on flexible films holds promise for expanding SERS applications beyond plant monitoring, including personalized health monitoring, point-of-care diagnosis, wearable devices for human-machine interface, and on-site monitoring of environmental pollutants.
Collapse
Affiliation(s)
- Chiranjeevi Kanike
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Qiuyun Lu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Hongyan Wu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Larry D Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Arnab Atta
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, JM Burgers Center for Fluid Dynamics, Mesa+, Department of Science and Technology, University of Twente, Enschede, NB, 7522, The Netherlands
| |
Collapse
|
22
|
Molina A, Oliva J, Vazquez-Lepe M, Lopez-Medina M, Ojeda L, Rios-Jara D, Flores-Zuñiga H. Effect of NiAl alloy microparticles deposited in flexible SERS substrates on the limit of detection of rhodamine B molecules. NANOSCALE 2024; 16:16183-16194. [PMID: 39136150 DOI: 10.1039/d4nr02592j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Flexible-SERS (FSERS) substrates were fabricated by depositing Ni64Al36(NiAl)-alloy-microparticles and/or spherical Ag-NPs (sizes of 10-40 nm) on recycled plastics, which had an aluminum layer on their surface. First, FSERS substrates made of Al + Ag-NPs and an area of 1 cm2 were used to detect rhodamine B (RhB) molecules. The limit-of-detection (LOD) for RhB was 8.35 × 10-22 moles (∼503 molecules), and the enhancement factor (EF) was 3.11 × 1015. After adding NiAl-microparticles to the substrate, the LOD decreased to 8.35 × 10-24 moles (∼5 molecules) and the EF was increased to 2.05 × 1017. Such EF values were calculated with respect to substrates made only with Al + NiAl-alloy (without Ag-NPs), which did not show any Raman signal. Other FSERS substrates were made with graphene-layer + Ag-NPs or graphene-layer + NiAl-alloy + Ag-Nps, and the best LOD and EF values were 8.35 × 10-22 moles and 6.89 × 1015, respectively. Overall, combining the Ag-NPs and NiAl-alloy microparticles allowed for the zeptomole detection of RhB. This was possible due to the formation of Ag aggregates around the alloy microparticles, which enhanced the number of hotspots. If no alloy is present in the FSERS substrates, the detection of RhB is lowered. Overall, we presented a low-cost FSERS substrate that does not require expensive Au films or Au-NPs (as previously reported) to detect RhB at the zeptomole level.
Collapse
Affiliation(s)
- A Molina
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., 78216 San Luis Potosí, SLP, Mexico
| | - J Oliva
- Centro de Física Aplicada y Tecnología Avanzada Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, 76230 Querétaro, Mexico.
| | - M Vazquez-Lepe
- Departamento de Ingeniería de Proyectos, CUCEI-Universidad de Guadalajara, Jalisco, Mexico
| | - M Lopez-Medina
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., 78216 San Luis Potosí, SLP, Mexico
| | - L Ojeda
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., 78216 San Luis Potosí, SLP, Mexico
| | - D Rios-Jara
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., 78216 San Luis Potosí, SLP, Mexico
| | - H Flores-Zuñiga
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., 78216 San Luis Potosí, SLP, Mexico
| |
Collapse
|
23
|
Zhang Z, Liu C, Dong J, Zhu A, An C, Wang D, Mi X, Yue S, Tan X, Zhang Y. Self-Referenced Au Nanoparticles-Coated Glass Wafers for In Situ SERS Monitoring of Cell Secretion. ACS Sens 2024; 9:4154-4165. [PMID: 39101767 DOI: 10.1021/acssensors.4c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a powerful technique for discrimination of bimolecules in complex systems. However, its practical applications face challenges such as complicated manufacturing procedures and limited scalability of SERS substrates, as well as poor reproducibility during detection which compromises the reliability of SERS-based analysis. In this study, we developed a convenient method for simultaneous fabrication of massive SERS substrates with an internal standard to eliminate the substrate-to-substrate differences. We first synthesized Au@CN@Au nanoparticles (NPs) which contain embedded internal standard molecules with a single characteristic peak in the Raman-silent region, and then deposited the NPs on 6 mm glass wafers in a 96-well plate simply by centrifugation for 3 min. The one-time obtained 96 SERS substrates have excellent intrasubstrate uniformity and intersubstrate repeatability for SERS detection by using the internal standard (relative standard deviation = 10.47%), and were able to detect both charged and neutral molecules (crystal violet and triphenylphosphine) at a concentration of 10-9 M. Importantly, cells can be directly cultured on glass wafers in the 96-well plate, enabling real time monitoring of the secretes and metabolism change in response to external stimulation. We found that the release of nucleic acids, amino acids and lipids by MDA-MB-231 cells significantly increased under hypoxic conditions. Overall, our approach enables fast and large-scale production of Au@CN@Au NPs-coated glass wafers as SERS substrates, which are homogeneous and highly sensitive for monitoring trace changes of biomolecules.
Collapse
Affiliation(s)
- Zedong Zhang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Chang Liu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Jianguo Dong
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Aonan Zhu
- Key Laboratory of Advanced Energy Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chunyan An
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Dekun Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xue Mi
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Shijiing Yue
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiaoyue Tan
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuying Zhang
- School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
24
|
Fan Z, Ran Q, Li Y, Xu X, Zheng L, Liu X, Jia K. Surface segregation of rigid polyarylene ether amidoxime on polyurethane nanofiber into hierarchical membranes as substrate of flexible SERS nanosensor for sulfamethoxazole detection. Talanta 2024; 276:126166. [PMID: 38714011 DOI: 10.1016/j.talanta.2024.126166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 05/09/2024]
Abstract
Electrospun polymeric nanofibrous membranes are emerging as the promising substrates for preparation of flexible SERS nanosensors due to their intrinsic nanoscale surface roughness, easy scalability as well as rich surface reactivity. Although the nanofiber membranes prepared from high performance thermoplastics exhibit good mechanical stability, the SERS nanosensors based on these substrates normally have lower signal-to-noise ratio because of the interference from background Raman signals of aromatic moieties. Herein, we synthesized an optically transparent polyurethane (PU) and rigid polyarylene ether amidoxime (PEA), which were electrospun into core-shell nanofibers membranes with a "beads-on-web" morphology. Furthermore, the PU-PEA membranes were coated with ultra-thin silver layer and thermally annealed to prepare the flexible SERS nanosensor without any background noises. In addition, the Raman enhancement of SERS nanosensor can be readily improved by tuning of PU-PEA composition, silver thickness as well as thermal annealing temperature. Finally, the optimized SERS nanosensor enables label-free detection of sulfamethoxazole as low as 0.1 nM with a good reproducibility and detection performance in real water sample. Meanwhile, the optimized SERS nanosensor shows long term anti-biofouling capacity. Thanks to its facile fabrication, competitive analytical performance and resistance to biofouling, the current work basically open new way for design of flexible SERS nanosensors for biomedical applications.
Collapse
Affiliation(s)
- Zilin Fan
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Qimeng Ran
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Yuanyuan Li
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, China.
| | - Xiaoling Xu
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Li Zheng
- Institute of Life Science, eBond Pharmaceutical Technology Ltd., Chengdu, China
| | - Xiaobo Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, China; Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu, China
| | - Kun Jia
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, China; Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu, China.
| |
Collapse
|
25
|
Chen C, Liu J, Lu J, Wang Y, Zhai J, Zhao H, Lu N. In Situ Collection and SERS Detection of Nitrite in Exhalations on Facemasks Based on Wettability Differences. ACS Sens 2024; 9:3680-3688. [PMID: 38958469 DOI: 10.1021/acssensors.4c00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
As one of the common carriers of biological information, along with human urine specimens and blood, exhaled breath condensate (EBC) carries reliable and rich information about the body's metabolism to track human physiological normal/abnormal states and environmental exposures. What is more, EBC has gained extensive attention because of the convenient and nondestructive sampling. Facemasks, which act as a physical filter barrier between human exhaled breath and inhaled substances from the external environment, are safe, noninvasive, and economic devices for direct sampling of human exhaled breath and inhaled substances. Inspired by the ability of fog collection of Namib desert beetle, a strategy for in situ collecting and detecting EBC with surface-enhanced Raman scattering is illustrated. Based on the intrinsic and unique wettability differences between the squares and the surrounding area of the pattern on facemasks, the hydrophilic squares can capture exhaled droplets and spontaneously enrich the analytes and silver nanocubes (AgNCs), resulting in good repeatability in situ detection. Using R6G as the probe molecule, the minimal detectable concentration can reach as low as 10-16 M, and the relative standard deviation is less than 7%. This proves that this strategy can achieve high detection sensitivity and high detection repeatability. Meanwhile, this strategy is applicable for portable nitrite analysis in EBC and may provide an inspiration for monitoring other biomarkers in EBC.
Collapse
Affiliation(s)
- Chunning Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jiaqi Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jiaxin Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yalei Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jingtong Zhai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hongkun Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Nan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
26
|
Qian S, Zhao W, Guo R, Wang X, Dai H, Lang J, Kadasala NR, Jiang Y, Liu Y. Apt-Conjugated PDMS-ZnO/Ag-Based Multifunctional Integrated Superhydrophobic Biosensor with High SERS Activity and Photocatalytic Sterilization Performance. Int J Mol Sci 2024; 25:7675. [PMID: 39062920 PMCID: PMC11276906 DOI: 10.3390/ijms25147675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Sensitive detection and efficient inactivation of pathogenic bacteria are crucial for halting the spread and reproduction of foodborne pathogenic bacteria. Herein, a novel Apt-modified PDMS-ZnO/Ag multifunctional biosensor has been developed for high-sensitivity surface-enhanced Raman scattering (SERS) detection along with photocatalytic sterilization towards Salmonella typhimurium (S. typhimurium). The distribution of the electric field in PDMS-ZnO/Ag with different Ag sputtering times was analyzed using a finite-difference time-domain (FDTD) algorithm. Due to the combined effect of electromagnetic enhancement and chemical enhancement, PDMS-ZnO/Ag exhibited outstanding SERS sensitivity. The limit of detection (LOD) for 4-MBA on the optimal SERS substrate (PZA-40) could be as little as 10-9 M. After PZA-40 was modified with the aptamer, the LOD of the PZA-40-Apt biosensor for detecting S. typhimurium was only 10 cfu/mL. Additionally, the PZA-40-Apt biosensor could effectively inactivate S. typhimurium under visible light irradiation within 10 min, with a bacterial lethality rate (Lb) of up to 97%. In particular, the PZA-40-Apt biosensor could identify S. typhimurium in food samples in addition to having minimal cytotoxicity and powerful biocompatibility. This work provides a multifunctional nanoplatform with broad prospects for selective SERS detection and photocatalytic sterilization of pathogenic bacteria.
Collapse
Affiliation(s)
- Sihan Qian
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | - Wenshi Zhao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | - Rui Guo
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | - Xiaohan Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | - Huasong Dai
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | - Jihui Lang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | | | - Yuhong Jiang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| |
Collapse
|
27
|
Peng R, Zhang T, Wang S, Liu Z, Pan P, Xu X, Song Y, Liu X, Yan S, Wang J. Self-Assembly of Strain-Adaptable Surface-Enhanced Raman Scattering Substrate on Polydimethylsiloxane Nanowrinkles. Anal Chem 2024; 96:10620-10629. [PMID: 38888085 PMCID: PMC11223597 DOI: 10.1021/acs.analchem.4c01212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Flexible surface-enhanced Raman scattering (SERS) substrates adaptable to strains enable effective sampling from irregular surfaces, but the preparation of highly stable and sensitive flexible SERS substrates is still challenging. This paper reports a method to fabricate a high-performance strain-adaptable SERS substrate by self-assembly of Au nanoparticles (AuNPs) on polydimethylsiloxane (PDMS) nanowrinkles. Nanowrinkles are created on prestrained PDMS slabs by plasma-induced oxidation followed by the release of the prestrain, and self-assembled AuNPs are transferred onto the nanowrinkles to construct the high-performance SERS substrate. The results show that the nanowrinkled structure can improve the surface roughness and enhance the SERS signals by ∼4 times compared to that of the SERS substrate prepared on flat PDMS substrates. The proposed SERS substrate also shows good adaptability to dynamic bending up to ∼|0.4| 1/cm with excellent testing reproducibility. Phenolic pollutants, including aniline and catechol, were quantitatively tested by the SERS substrate. The self-assembled flexible SERS substrate proposed here provides a powerful tool for chemical analysis in the fields of environmental monitoring and food safety inspection.
Collapse
Affiliation(s)
- Ran Peng
- College
of Marine Engineering, Dalian Maritime University, Lingshui Road, Dalian 116026, China
| | - Tingting Zhang
- College
of Marine Engineering, Dalian Maritime University, Lingshui Road, Dalian 116026, China
| | - Shiyao Wang
- Department
of Information Science and Technology, Dalian
Maritime University, Dalian 116026, China
- Liaoning
Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian 116026, China
| | - Zhijian Liu
- College
of Marine Engineering, Dalian Maritime University, Lingshui Road, Dalian 116026, China
| | - Peng Pan
- Department
of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada
| | - Xiaotong Xu
- Key
Laboratory of Coastal Ecology and Environment of State Oceanic Administration, National Marine Environmental Monitoring Center, Linghe Road 42, Dalian 116023, China
| | - Yongxin Song
- College
of Marine Engineering, Dalian Maritime University, Lingshui Road, Dalian 116026, China
| | - Xinyu Liu
- Department
of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada
| | - Sheng Yan
- Institute
for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Junsheng Wang
- Department
of Information Science and Technology, Dalian
Maritime University, Dalian 116026, China
- Liaoning
Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
28
|
Zhang X, Li M, Meng G, Huang Z, Zhu S, Chen B. Ag Nanoparticles@Au Nanograting Array as a 3D Flexible and Effective Surface-Enhanced Raman Scattering Substrate. Anal Chem 2024; 96:6112-6121. [PMID: 38554137 DOI: 10.1021/acs.analchem.3c02710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
Surface-enhanced Raman scattering (SERS) is a powerful analytical technique for chemical identification, but it remains a great challenge to realize the large-scale and well-controlled fabrication of sensitive and repeatable SERS substrates. Here, we report a facile strategy to fabricate centimeter-sized periodic Au nanograting (Au-NG) decorated with well-arranged Ag nanoparticles (Ag-NPs) (denoted as Ag-NPs@Au-NG) as a three-dimensional (3D) flexible hybrid SERS substrate with high sensitivity and good reproducibility. The Au-NG patterns with periodic ridges and grooves are fabricated through nanoimprint lithography by employing a low-cost digital versatile disc (DVD) as a master mold, and the Ag-NPs are assembled by a well-controlled interface self-assembly method without any coupling agents. Multiple coupling electromagnetic field effects are created at the nanogaps between the Ag-NPs and Au-NG patterns, leading to high-density and uniform hot spots throughout the substrate. As a result, the Ag-NPs@Au-NG arrays demonstrate an ultrahigh SERS sensitivity as low as 10-13 M for rhodamine 6G with a high average enhancement factor (EF) of 1.85 × 108 and good signal reproducibility. For practical applications, toxic organic pollutants including crystal violet, thiram, and melamine have been successfully detected with high sensitivity at a low detection limit, showing a good perspective in the rapid detection of toxic organic pollutants.
Collapse
Affiliation(s)
- Xiang Zhang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Mingtao Li
- School of Mechanical and Resource Engineering, Wuzhou University, Wuzhou 543002, China
| | - Guowen Meng
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Zhulin Huang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Shuyi Zhu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Bin Chen
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
29
|
Atta S, Canning AJ, Vo-Dinh T. A simple low-cost flexible plasmonic patch based on spiky gold nanostars for ultra-sensitive SERS sensing. Analyst 2024; 149:2084-2096. [PMID: 38415724 DOI: 10.1039/d3an02246c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Recently, transparent and flexible surface-enhanced Raman scattering (SERS) substrates have received great interest for direct point-of-care detection of analytes on irregular nonplanar surfaces. In this study, we proposed a simple cost-effective strategy to develop a flexible SERS patch utilizing multibranched sharp spiked gold nanostars (GNS) decorated on a commercially available adhesive Scotch Tape for achieving ultra-high SERS sensitivity. The experimental SERS measurements were correlated with theoretical finite element modeling (FEM), which indicates that the GNS having a 2.5 nm branch tip diameter (GNS-4) exhibits the strongest SERS enhancement. Using rhodamine 6G (R6G) as a model analyte, the SERS performance of the flexible SERS patch exhibited a minimum detection limit of R6G as low as 1 pM. The enhancement factor of the SERS patch with GNS-4 was calculated as 6.2 × 108, which indicates that our flexible SERS substrate has the potential to achieve ultra-high sensitivity. The reproducibility was tested with 30 different spots showing a relative standard deviation (RSD) of SERS intensity of about 5.4%, indicating good reproducibility of the SERS platform. To illustrate the usefulness of the flexible SERS sensor patch, we investigated the detection of a carcinogenic compound crystal violet (CV) on fish scales, which is often used as an effective antifungal agent in the aquaculture industry. The results realized the trace detection of CV with the minimum detection limit as low as 1 pM. We believe that our transparent, and flexible SERS patch based on GNS-4 has potential as a versatile, low-cost platform for real-world SERS sensing applications on nonplanar surfaces.
Collapse
Affiliation(s)
- Supriya Atta
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Aidan J Canning
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Tuan Vo-Dinh
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Chemistry, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
30
|
Zhao SS, He ZH, Liu X, Shen Y, Tan XC, Wang Q, Yan J, Zhu WW. Dialdehyde starch-enclosed silver nanoparticles substrate with controlled-release "hotspots" for ultrasensitive SERS detection of thiabendazole. Food Chem 2024; 436:137706. [PMID: 37844511 DOI: 10.1016/j.foodchem.2023.137706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/28/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023]
Abstract
Pesticide residues have long been a major concern for food safety. In this study, a dialdehyde starch-encapsulated silver nanoparticles composite with controlled-release "hotspots" was developed as a surface-enhanced Raman scattering (SERS) substrate. At room temperature, most of the Ag NPs were encapsulated in dialdehyde starch, which is beneficial for improving stability, and when heated to the gelatinization point, Ag NPs are completely released and abundant hot spots are formed. We demonstrated sensitive detection of thiabendazole (TBZ) in or on the surface of an apple by means of two ways, i.e., detecting the analyte in solution after pretreatment and in-situ detecting the analyte by using a flexible paper-based substrate. The results showed that the detection limits of TBZ by the two ways were 0.052 ppm and 0.051 ppm respectively, and the recoveries of TBZ range from 96.80 % to 105.46 %. Overall, this SERS substrate shows great potential for pesticide residue detection in food.
Collapse
Affiliation(s)
- Song-Song Zhao
- College of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Chemistry and Engineering of Forest Products of State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning 530006, China
| | - Zhi-Hao He
- College of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Chemistry and Engineering of Forest Products of State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning 530006, China
| | - Xin Liu
- College of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Chemistry and Engineering of Forest Products of State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning 530006, China
| | - Yu Shen
- College of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Chemistry and Engineering of Forest Products of State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning 530006, China
| | - Xue-Cai Tan
- College of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Chemistry and Engineering of Forest Products of State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning 530006, China
| | - Qi Wang
- College of Material Science and Engineering, Kunming University of Science and Technology, Kunming 615000, China
| | - Jun Yan
- College of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Chemistry and Engineering of Forest Products of State Ethnic Affairs Commission, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Nanning 530006, China.
| | - Wei-Wei Zhu
- School of Materials and Environment, Guangxi Minzu University, Nanning 530006, China.
| |
Collapse
|
31
|
Menamparambath MM. In Situ Engineering of Conducting Polymer Nanocomposites at Liquid/Liquid Interfaces: A Perspective on Fundamentals to Technological Significance. ACS MATERIALS AU 2024; 4:115-128. [PMID: 38496041 PMCID: PMC10941287 DOI: 10.1021/acsmaterialsau.3c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 03/19/2024]
Abstract
The conducting polymers have continuously been hybridized with their counterparts to overcome the intrinsic functional limitations compared to the metallic or inorganic analogs. Remarkably, the liquid/liquid interface-assisted methods represent an efficient and facile route for developing fully tunable metamaterials for various applications. The spontaneous adsorption of nanostructures at a quasi-two-dimensional interface is energetically favorable due to the reduction in interfacial tension, interfacial area, and interfacial energy (Helmholtz free energy). This Perspective highlights the fundamentals of nanostructure adsorption leading to hierarchical architecture generation at the interface from an experimentalist's point of view. Thereafter, the essential applications of the conducting polymer/nanocomposites synthesized at the interface emphasize the capability of the interface to tune functional materials. This Perspective also summarizes the future challenges and the use of the known fundamental aspects in overcoming the functional limitations of polymer/nanomaterial composites and also provides some future research directions.
Collapse
Affiliation(s)
- Mini Mol Menamparambath
- Department of Chemistry, National Institute of Technology Calicut, Calicut-673601, Kerala, India
| |
Collapse
|
32
|
Wu H, Kanike C, Marcati A, Zhang X. Flexible Surface-Enhanced Raman Scattering Tape Based on Ag Nanostructured Substrate for On-Site Analyte Detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4218-4227. [PMID: 38354289 DOI: 10.1021/acs.langmuir.3c03340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Surface-enhanced Raman scattering (SERS) has emerged as a powerful surface analytical technique that amplifies Raman scattering signals of molecules adsorbed onto metal nanostructured surfaces. The droplet reaction method has recently been employed to fabricate large-scale microring patterns of silver (Ag) nanostructures on rigid substrates, which enables sensitive detection within the ring area. However, these rigid substrates present limitations for direct on-site detection of analyte residues on irregular sample surfaces. There is a need to develop soft and flexible SERS substrates that can intimately conform to arbitrary surfaces. In this study, we presented a SERS substrate using flexible and adhesive tape as the supporting material. This SERS tape was fabricated by repeatedly transferring presynthesized Ag nanostructures from a rigid substrate to the tape. For a model compound adenine, our SERS tape exhibited a good linear response from 5 × 10-4 M to 5 × 10-5 M with a low limit of detection (LOD) of 5 × 10-7 M and displayed a SERS enhancement factor (EF) of 3.2 × 105. The relative standard deviation (RSD) of SERS intensity achieved was as low as 1.93%, indicating its outstanding uniformity. The as-prepared SERS tape was used for in situ detection of pesticide residue on an apple surface and dye residue on human hair. Leveraging the large surface area of Ag nanostructure patterns from the droplet reaction, the developed SERS tape demonstrates excellent performance in terms of sensitivity and uniformity. The successful detection of analyte residues on arbitrary surfaces of apple and human hair highlights the potential of this flexible SERS tape for real-world applications across various industries for enhanced diagnostic accuracy.
Collapse
Affiliation(s)
- Hongyan Wu
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada
| | - Chiranjeevi Kanike
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada
| | - Alain Marcati
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, JM Burgers Center for Fluid Dynamics, Mesa+, Department of Science and Technology, University of Twente, Enschede 7522 NB, The Netherlands
| |
Collapse
|
33
|
Xu Y, Li Z, Liao Y, Wang J, Zhang T, Liu X, Zhang Y. Unveiling the Dual-Enhancing Mechanisms of Kinetically Controlled Silver Nanoparticles on Piezoelectric PVDF Nanofibers for Optimized SERS Performance. ACS Sens 2024; 9:849-859. [PMID: 38271684 DOI: 10.1021/acssensors.3c02208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Noble metal nanoparticle (NMP)-based composite substrates have garnered significant attention as a highly promising technique for surface-enhanced Raman scattering (SERS) in diverse scientific disciplines because their remarkable ability to amplify and functionalize Raman signals has positioned them as valuable tools for molecular detection. However, optimizing the size and distribution of NMPs has not received sufficient emphasis because of challenges associated with the precise control of deposition and the modulation of reducing rates during growth. In this research, we achieved the optimized size and spatial patterns of AgNWs on electrospun poly(vinylidene fluoride) (PVDF) nanofibers by utilizing a polydopamine (PDA) layer as a mild and controllable reduction mediator, by which the size and density of the AgNWs could be relatively precisely manipulated, achieving a dense distribution of effective "hot spots". On the other hand, harnessing the inherent piezoelectric properties of the electrospun PVDF nanofibers further boosted the LSPR effect during the SERS test, forming a flexible dual-enhancing composite SERS substrate with excellent sensitivity. In addition to addressing structural aspects, exploiting synergistic systems capable of transferring external energy or forces to enhance the SERS performances presents a compelling avenue to broaden the practical applications of SERS. The dual-enhanced substrate achieved an exceptional enhancement factor (EF) of 1.05 × 108 and a low detection limit (LOD) of 10-10 M during the SERS test. This study focuses on integrating NMPs with electrospun piezoelectric polymer nanofibers to develop a dual-enhancing SERS substrate with excellent sensitivity and practicality. The findings provide valuable insights into controllably depositing NMPs on electrospun polymer fibers and hold significant implications for the development of highly sensitive and practical SERS substrates across various applications.
Collapse
Affiliation(s)
- Ying Xu
- Fujian Key Laboratory of Functional Marine Sensing Materials, College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Zhiyu Li
- Fujian Key Laboratory of Functional Marine Sensing Materials, College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Yuanrong Liao
- Fujian Key Laboratory of Functional Marine Sensing Materials, College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Jun Wang
- Fujian Key Laboratory of Functional Marine Sensing Materials, College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Tong Zhang
- Fujian Key Laboratory of Functional Marine Sensing Materials, College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Xifu Liu
- Fujian Key Laboratory of Functional Marine Sensing Materials, College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Yang Zhang
- Fujian Key Laboratory of Functional Marine Sensing Materials, College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
34
|
Miranda B, Dello Iacono S, Rea I, Borbone F, De Stefano L. Effect of the molecular weight on the sensing mechanism in polyethylene glycol diacrylate/gold nanocomposite optical transducers. Heliyon 2024; 10:e25593. [PMID: 38356564 PMCID: PMC10864976 DOI: 10.1016/j.heliyon.2024.e25593] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
The combination of plasmonic nanoparticles and hydrogels results in nanocomposite materials with unprecedented properties that give rise to powerful platforms for optical biosensing. Herein, we propose a physicochemical characterization of plasmonic hydrogel nanocomposites made of polyethylene glycol diacrylate (PEGDA) hydrogels with increasing molecular weights (700-10000 Da) and gold nanoparticles (AuNPs, ∼60 nm). The swelling capability, mechanical properties, and thermal responses of the nanocomposites are analyzed and the combination with the resulting optical properties is elucidated. The different optomechanical properties of the proposed nanocomposites result in different transduction mechanisms, which can be exploited for several biosensing applications. A correlation between the polymer molecular weight, the effective refractive index of the material, and the optical response is found by combining experimental data and numerical simulations. In particular, the localized surface plasmon resonance (LSPR) position of the AuNPs was found to follow a parabolic profile as a function of the monomer molecular weight (MW), while its absorbance intensity was found as inversely proportional to the monomer MW. Low MW PEGDA nanocomposites were found to be responsive to refractive index variations for small molecule sensing. Differently, high MW PEGDA nanocomposites exhibited absorbance intensity increase/decrease as a function of the hydrophobicity/hydrophilicity of the targeted small molecule. The proposed optomechanical model paves the way to the design of innovative platforms for real-life applications, such as wearable sensing, point-of-care testing, and food monitoring via smart packaging devices.
Collapse
Affiliation(s)
- Bruno Miranda
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council, Via P. Castellino 111, Naples, 80131, Italy
| | - Stefania Dello Iacono
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council, P.le Enrico Fermi 1, 80055, Portici, Italy
| | - Ilaria Rea
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council, Via P. Castellino 111, Naples, 80131, Italy
| | - Fabio Borbone
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, Naples, 80126, Italy
| | - Luca De Stefano
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council, Via P. Castellino 111, Naples, 80131, Italy
| |
Collapse
|
35
|
Xue D, Dai X, Zhao J, Zhang J, Liu H, Liu K, Xu T, Gu C, Zhou X, Jiang T. Therapeutic drug monitoring mediated by the cooperative chemical and electromagnetic effects of Ti 3C 2T X modified with Ag nanocubes. Biosens Bioelectron 2024; 245:115844. [PMID: 38000309 DOI: 10.1016/j.bios.2023.115844] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/19/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
It is pivotal for the credible utilization of surface-enhanced Raman scattering (SERS) technique in clinical drug monitoring to exploit versatile substrates with dependable quantitative detection and robust recognition abilities. Herein, a commendable electromagnetic-chemical dual-enhancement SERS substrate dependent on Ti3C2TX and Ag nanocubes (Ag NCs) was fabricated for the precise quantification of ritonavir and ibrutinib in serum. Specifically, it was revealed that numerous electromagnetic "hotspots" emerged nearby the extremely tiny nanogaps among the intimately clustered Ag NCs, which also acted as optimal channels to facilitate effective photo-induced charge transfer (PICT) between the two-dimensional Ti3C2TX matrix and target molecules. The cooperation between electromagnetic and chemical effects yielded a satisfactory enhancement factor (EF) of 4.77 × 107 for the composite substrate. Benefiting from the remarkable sensitivity of the Ti3C2TX/Ag NCs composite substrate, the low limit of detection (LOD) at 10-6 mg/mL was successfully attained, along with exceptional recoveries of exceeding 90% for ritonavir and ibrutinib in serum. Considering its reliability and simplicity, our strategy holds immense promise for its utilization in efficient monitoring and identification of clinical blood drug concentration.
Collapse
Affiliation(s)
- Danni Xue
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, Zhejiang, PR China
| | - Xing Dai
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, Zhejiang, PR China
| | - Jialong Zhao
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, Zhejiang, PR China
| | - Jiayao Zhang
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, Zhejiang, PR China
| | - Huan Liu
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, Zhejiang, PR China
| | - Kui Liu
- Ningbo Institute of Oceanography, Ningbo, 315800, Zhejiang, PR China
| | - Tao Xu
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, Ningbo University, Ningbo, 315010, Zhejiang, PR China
| | - Chenjie Gu
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, Zhejiang, PR China; Ningbo Institute of Oceanography, Ningbo, 315800, Zhejiang, PR China
| | - Xingfei Zhou
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, Zhejiang, PR China.
| | - Tao Jiang
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, Zhejiang, PR China.
| |
Collapse
|
36
|
Chen S, Chen L, Zhang Y, Xu D, Hu C, Zhang L, Chen J. Silver nanosheets self-assembled on polystyrene microspheres to form "hot spots" with different nanogap distances for high sensitive SERS detection. Talanta 2024; 268:125370. [PMID: 37924804 DOI: 10.1016/j.talanta.2023.125370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
Herein, we reported a facile method to control the nanogap distance of silver (Ag) nanosheets to obtain high sensitive plasmonic Surface-enhanced Raman scattering (SERS) substrates. The sulfonated polystyrene (SPS) microspheres with different diameters were first fabricated using micro-emulsion synthesis, and then the SPS microspheres were coated with Ag nanosheets through chemical synthesis with citric acid/ascorbic acid to form Ag nanosheets@SPS (Ag@SPS) substrates with different nanogap distances. The results showed that the nanogap distance of Ag nanosheets self-assembled on SPS microspheres reduced from 80-150 nm to 28-68 nm when the diameter of SPS microspheres increased from 0.9 to 3.5 μm, and the enhancement factor (EF) increased from 105 to 107, the limit of detection of rhodamine 6G (R6G) for the Ag@SPS microspheres reduced from 10-10 to 10-13 mol/L. It confirmed that the Ag nanosheets coated on the surface of SPS microspheres could achieve ultra trace detection of analyte. Furthermore, the low concentration detection limit for melamine with the Ag@SPS microspheres substrate was about 10-8 mg/L, which is lower than the standard legislated by the European Union and the Food & Drug Administration. In addition, the SERS spectrum of 3-mercaptopropionic acid (3-MPA) could be also detected when its concentration was 10-8 mol/L. The prepared substrate offered a promising opportunity for SERS practical applications.
Collapse
Affiliation(s)
- Shaoyun Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, PR China
| | - Long Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, PR China
| | - Yu Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, PR China
| | - Dong Xu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, PR China
| | - Chenglong Hu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, PR China.
| | - Long Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, PR China.
| | - Jian Chen
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
37
|
Chen M, Su B, Wu H, Dai Y, Chen T, Fu F, Lin Z, Dong Y. Hydrogel SERS chip with strong localized surface plasmon resonance for sensitive and rapid detection of T-2 toxin. Talanta 2024; 268:125329. [PMID: 37879204 DOI: 10.1016/j.talanta.2023.125329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
T-2 toxin is one of the naturally dangerous food contaminants, which is harmful to people and animals. Because of its strong toxicity and wide distribution, it is vital to develop a rapid and effective method for the detection of T-2 toxin. Herein, an excellent hydrogel surface-enhanced Raman scattering (SERS) chip is constructed for developing a novel SERS sensor to detect T-2 toxin using a portable Raman spectrometer. The SERS chip is prepared by in-situ Ca2+-mediated assembly of silver nanoparticles (AgNPs) in PVA solution, followed by a physical crosslinking possess. The assembled AgNPs produces a strong localized surface plasmon resonance (LSPR) at around 532 nm, which enables the high activity of SERS chip under the irradiation of 532 nm laser. Additionally, the unique structure of hydrogel makes the obtained chip show excellent reliability and anti-interference ability in detection. As a result, the developed SERS sensor shows many obvious advantageous including free of complex sample pretreatment (only a simple extraction), fast response (5 min), low limit of detection (0.41 ppb), wide detection range (1-10000 ppb), good recoveries (90.26-101.81 %) and relative standard deviations (2.8-6.7 %). Therefore, this SERS sensor provides a promising choice for rapid scanning and sensitive detection of trace T-2 toxin in complex matrices.
Collapse
Affiliation(s)
- Mingming Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Bihang Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Huiying Wu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Yawen Dai
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Tianwen Chen
- Fujian College Association Instrumental Analysis Center of Fuzhou University, Fuzhou, China.
| | - Fengfu Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China.
| | - Zhenyu Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Yongqiang Dong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, China.
| |
Collapse
|
38
|
Wei S, Du W, Hao Z, Li N, Li Y, Wang M. Construction of dense film inside capillary wall and SERS application research. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123967. [PMID: 38309008 DOI: 10.1016/j.saa.2024.123967] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
The high-density particle distribution in capillary was a crucial factor for enhancing SERS properties and a difficult point in the preparation process. The direct high-temperature method was used to fuse the particles and form a uniform and dense particle distribution on the capillary's inner wall, providing a foundation for enhancing Raman signals. The prepared capillary SERS substrate strongly enhances the rhodamine 6G (R6G) signal, and the RSD values of several characteristic peaks of R6G are about 10 %, demonstrating high sensitivity, uniformity, and stability. Using capillary SERS substrate for detecting goat serum. Embedding precious metal particles into capillary SERS substrate can effectively encapsulate the tested liquid and avoid contamination, which improves the disadvantage of traditional substrates exposing the liquid to air. The prepared capillary SERS substrate could be used for field and biomedical sensitivity detection, providing a theoretical and experimental basis for developing the capillary SERS substrate.
Collapse
Affiliation(s)
- Shengnan Wei
- State Key Laboratory of Metastable Materials Science and Technology, Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Wei Du
- State Key Laboratory of Metastable Materials Science and Technology, Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Zongshuo Hao
- State Key Laboratory of Metastable Materials Science and Technology, Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Na Li
- State Key Laboratory of Metastable Materials Science and Technology, Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Yue Li
- State Key Laboratory of Metastable Materials Science and Technology, Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Mingli Wang
- State Key Laboratory of Metastable Materials Science and Technology, Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
39
|
Li K, Jiang H, Wang L, Wang R, Zhang X, Yang L, Jiang X, Song W, Zhao B. A flexible semiconductor SERS substrate by in situ growth of tightly aligned TiO 2 for in situ detection of antibiotic residues. Mikrochim Acta 2024; 191:113. [PMID: 38286863 DOI: 10.1007/s00604-024-06193-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/03/2024] [Indexed: 01/31/2024]
Abstract
Semiconductor materials have become a competitive candidate for surface-enhanced Raman scattering (SERS) substrate. However, powdered semiconductors are difficult to execute a fast in situ detection for trace analytes. Here, we developed a new flexible semiconductor SERS substrate by in situ densely growing anatase TiO2 nanoparticles on the surface of cotton fabric through a filtration-hydrothermal method, in which TiO2 exhibits excellent controllability in size and distribution by regulating the ratio of water to alcohol in synthesis and the number of filtration-hydrothermal repetitive cycle. Cotton fabric/TiO2 (Cot/TiO2) substrate exhibits a high SERS activity and excellent spectral repeatability. The developed substrate has an ultra-high stability that can withstand long-term preservation; it can even resist the corrosions of strong acid and alkali, as well as high temperature up to 100 °C and low temperature down to - 20 °C. The flexible substrate can be used to carry out a rapid in situ detection for quinolone antibiotic (enrofloxacin and enoxacin) residues on the fish body surface by using a simple swabbing method, with high quantitative detection potential (up to an order of magnitude of 10-7 M), and even for the simultaneous detection of both drug residues. The flexible substrate also exhibits an excellent recyclability up to 6 recycles in the actual SERS detection.
Collapse
Affiliation(s)
- Kaiwei Li
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
| | - Han Jiang
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
| | - Liying Wang
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
| | - Rui Wang
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
| | - Xuewei Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
| | - Libin Yang
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China.
- College of Chemistry and Chemical Engineering, Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar University, Qiqihar, 161006, China.
| | - Xin Jiang
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China.
- College of Chemistry and Chemical Engineering, Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar University, Qiqihar, 161006, China.
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, China.
| |
Collapse
|
40
|
Barveen NR, Chinnapaiyan S, Wang TJ, Huang CH. Photochemical decoration of gold nanoparticles on MoS 2 nanoflowers grafted onto the flexible carbon cloth as a recyclable SERS sensor for the detection of antibiotic residues on curved surfaces. CHEMOSPHERE 2024; 346:140677. [PMID: 37949183 DOI: 10.1016/j.chemosphere.2023.140677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS)-based flexible substrate has recently been demonstrated to be effective in detecting molecules on curved surfaces, however a suitable method for fabricating the flexible SERS substrate still remains a hurdle. In this paper, we fabricated a flexible SERS substrate by anchoring the plasmonic gold nanoparticles (Au-NPs) onto the hydrothermally grown flower-like molybdenum disulfide (MoS2) grafted onto carbon cloth (CC) via a facile photoreduction route. Benefitting from the abundant hotspots generation of the Au-NPs and photo-induced charge-transfer ability of MoS2, the constructed Au-NPs/MoS2/CC substrate exhibit a superior SERS sensing ability, excellent SERS enhancement factor, high flexibility and mechanical stability towards the nitrofurantoin (NFT) with an ultra-low detection limit of 10-11 M. As a trial for practical applications, the flexible substrate was used to detect NFT (10-4 M) in the curved surfaces of meat samples via swab technique. The ability of the flexible Au-NPs/MoS2/CC substrate to sustain the robust Raman signals of NFT even after recycling up to 4 cycles validated its reusability. The proposed flexible SERS substrate with reusable capability indicates its great potential in practical applications for the detection of target molecules on the curved surfaces.
Collapse
Affiliation(s)
- Nazar Riswana Barveen
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Sathishkumar Chinnapaiyan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Tzyy-Jiann Wang
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Chi-Hsien Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan; Biochemical Technology R&D Center, Ming Chi University of Technology, New Taipei City, 24301, Taiwan.
| |
Collapse
|
41
|
Sun M, Zhang H, Li H, Hao X, Wang C, Li L, Yang Z, Tian C. Ag microlabyrinth/nanoparticles coated large-area thin PDMS films as flexible and transparent SERS substrates for in situ detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123153. [PMID: 37473663 DOI: 10.1016/j.saa.2023.123153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
Flexible and transparent surface-enhanced Raman scattering (SERS) substrates haveattractedmuchattention as a fast, sensitive and in situ detection platform for practical applications. However, the large-area fabrication of flexible and transparent SERS substrates with high performance is still challenging. Here, a flexible and transparent SERS substrate based on large-area thin PDMS film decorated with Ag microlabyrinth/nanoparticles hierarchical structures (denoted as ALNHS@PDMS) is fabricated by using the floating-on-water method and magnetron sputtering technology. By optimizing the sputtering time, the ALNHS with multiple hot spots are uniformly distributed on the PDMS surface. Based on characterizing the rhodamine 6G (R6G) with a portable Raman spectrometer, the optimal ALNHS@PDMS film exhibits a high enhancement factor (5.2 × 106), excellent uniformity and reproducibility, as well as superior mechanical stability. In addition, thanks to the good sticky feature and bi-directional activation property of the thin ALNHS@PDMS film, the prepared flexible and transparent SERS substrate can achieve in situ detection of malachite green residues (10-6 M) on apple and tomato skins. This large-area, thin, mechanically robust, flexible and transparent ALNHS@PDMS film, integrated with a portable Raman spectrometer, shows great potential for point-of-care testing (POCT)in practical applications.
Collapse
Affiliation(s)
- Meng Sun
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng, 252000, China
| | - Houjia Zhang
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng, 252000, China
| | - Hefu Li
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng, 252000, China
| | - Xuehui Hao
- School of Materials Science and Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Changzheng Wang
- School of Materials Science and Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Lijun Li
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng, 252000, China
| | - Zhenshan Yang
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng, 252000, China
| | - Cunwei Tian
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
42
|
Peng R, Zhang T, Yan S, Song Y, Liu X, Wang J. Recent Development and Applications of Stretchable SERS Substrates. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2968. [PMID: 37999322 PMCID: PMC10675327 DOI: 10.3390/nano13222968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a cutting-edge technique for highly sensitive analysis of chemicals and molecules. Traditional SERS-active nanostructures are constructed on rigid substrates where the nanogaps providing hot-spots of Raman signals are fixed, and sample loading is unsatisfactory due to the unconformable attachment of substrates on irregular sample surfaces. A flexible SERS substrate enables conformable sample loading and, thus, highly sensitive Raman detection but still with limited detection capabilities. Stretchable SERS substrates with flexible sample loading structures and controllable hot-spot size provide a new strategy for improving the sample loading efficiency and SERS detection sensitivity. This review summarizes and discusses recent development and applications of the newly conceptual stretchable SERS substrates. A roadmap of the development of SERS substrates is reviewed, and fabrication techniques of stretchable SERS substrates are summarized, followed by an exhibition of the applications of these stretchable SERS substrates. Finally, challenges and perspectives of the stretchable SERS substrates are presented. This review provides an overview of the development of SERS substrates and sheds light on the design, fabrication, and application of stretchable SERS systems.
Collapse
Affiliation(s)
- Ran Peng
- College of Marine Engineering, Dalian Maritime University, Dalian 116026, China
| | - Tingting Zhang
- College of Marine Engineering, Dalian Maritime University, Dalian 116026, China
| | - Sheng Yan
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Yongxin Song
- College of Marine Engineering, Dalian Maritime University, Dalian 116026, China
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Junsheng Wang
- Department of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
43
|
Chen Y, Tang Y, Li P, Wang Y, Zhuang Y, Sun S, Wang D, Wei W. A core-molecule-shell Au@PATP@Ag nanorod for nicotine detection based on surface-enhanced Raman scattering technology. Anal Chim Acta 2023; 1278:341739. [PMID: 37709471 DOI: 10.1016/j.aca.2023.341739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/22/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
Nicotine is an addictive substance often found in tobacco and cigarette smoke and excessive exposure to it can cause various diseases. Herein, core-molecule-shell gold/4-aminothiophenol/silver nanorods (Au@PATP@Ag NRs) were prepared for quantitative detection of nicotine by using surface-enhanced Raman scattering (SERS) technology. The obtained Au@PATP@Ag NRs showed an outstanding SERS effect due to the plasticity of their morphology and the bimetallic synergistic effect between the excellent stability of Au and the highly enhanced effect of Ag. The Au@PATP@Ag NRs substrate exhibited an extremely high enhancement factor (EF) of 2.17 × 107. In addition, in-situ synthesized PATP was used as an internal standard to correct signal fluctuation and improve the reliability of quantitative nicotine detection. A wide linear dynamic range from 10-8 to 10-3 M was obtained and an ultra-low limit of detection (LOD) was about 3.12 × 10-9 M, which was superior to most of previously reported methods. This work has also been used for determining nicotine content in cigarettes and simulated environmental tobacco smoke by using a portable device. These results indicated that the developed SERS method had many potential applications in the quantitative determination of nicotine in real tobacco samples.
Collapse
Affiliation(s)
- Yuhui Chen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, PR China
| | - Yunfei Tang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, PR China
| | - Peng Li
- Beijing Life Science Academy, Yingcai South 1st Street, Changping District, Beijing, China
| | - Yong Wang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, PR China; Institute of Forensic Science and Technology of Nanjing Public Security Bureau, Nanjing, 210001, China
| | - Yurong Zhuang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, PR China
| | - Shihao Sun
- Beijing Life Science Academy, Yingcai South 1st Street, Changping District, Beijing, China
| | - Dingzhong Wang
- Beijing Life Science Academy, Yingcai South 1st Street, Changping District, Beijing, China
| | - Wei Wei
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, PR China.
| |
Collapse
|
44
|
Ma H, Zhang S, Yuan G, Liu Y, Cao X, Kong X, Wang Y. Surface-Enhanced Raman Spectroscopy (SERS) Activity of Gold Nanoparticles Prepared Using an Automated Loop Flow Reactor. APPLIED SPECTROSCOPY 2023; 77:1163-1172. [PMID: 37654053 DOI: 10.1177/00037028231196907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
This study used automatic control methods to prepare gold nanoparticles (AuNPs) as the substrate and rhodamine 6G molecule as the probe to investigate the enhancement effect, stability, and consistency of surface-enhanced Raman spectroscopy (SERS). The gold nanosols were prepared via automatic control using loop flow-reactor technology, and the synthesis of nanoparticles with different sizes was precisely controlled by optimizing the ratio of the solution required for the reaction between sodium citrate and chloroauric acid during the preparation process. The morphology, structure, and optical properties of the prepared AuNPs were investigated using field-emission scanning electron microscopy, transmission electron microscopy, and ultraviolet visible spectroscopy. Using the proposed method, AuNPs with average particle sizes of 72, 85, 93, and 103 nm were synthesized in a precisely controlled manner. The 93 nm particles exhibited good SERS activity for rhodamine 6G under 785 nm excitation with a detection limit of 2.5 × 10-10 M. The relative standard deviation of the SERS spectra synthesized multiple times was <3.5%, indicating their good sensitivity and reproducibility. The results showed that the AuNPs prepared by the automatic control of the loop-flow method have high sensitivity, stability, and reproducibility. Moreover, they exhibited notable potential for in situ measurement and quantitative analysis using SERS.
Collapse
Affiliation(s)
- Haikuan Ma
- College of Information Science and Engineering, Ocean University of China, Qingdao, China
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, China
- Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, Qingdao, China
- National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao, China
| | - Shuwei Zhang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, China
- Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, Qingdao, China
- National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao, China
| | - Guang Yuan
- College of Information Science and Engineering, Ocean University of China, Qingdao, China
| | - Yan Liu
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, China
- Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, Qingdao, China
- National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao, China
| | - Xuan Cao
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, China
- Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, Qingdao, China
- National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao, China
| | - Xiangfeng Kong
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, China
- Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, Qingdao, China
- National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao, China
| | - Yang Wang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, China
- Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, Qingdao, China
- National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao, China
| |
Collapse
|
45
|
Wang Y, Wang Z, Chen C, Liu J, Lu J, Lu N. Fabrication of Flexible Pyramid Array as SERS Substrate for Direct Sampling and Reproducible Detection. Anal Chem 2023; 95:14184-14191. [PMID: 37721016 DOI: 10.1021/acs.analchem.3c01455] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Rapid extraction and analysis of target molecules from irregular surfaces are in high demand in the field of on-site analysis. Herein, a flexible platform used for surface-enhanced Raman scattering (SERS) based on an ordered polymer pyramid structure with half-imbedded silver nanoparticles (AgNPs) was prepared to address this issue. The fabrication includes the following steps: (1) creating inverted pyramid arrays in silicon substrate, (2) preparing a layer of AgNPs on the surface of the inverted pyramids, and (3) obtaining a substrate with an ordered polymer pyramids array with half-imbedded AgNPs by the molding method. This flexible substrate is capable of rapid extraction via a simple and convenient "paste and peel off" method. In addition, the substrate exhibits great repeatability and good sensitivity thanks to the uniformity and larger surface area of the ordered pyramids. The density of "hot spots" (local electromagnetic field with high intensity) is increased on the structured surface. Semi-imbedding silver particles in the polymer pyramids makes "hot spots" robust on the substrate. In addition, the preprepared silicon template with the inverted pyramids can be reused, which greatly reduces the production cost. With this substrate, we successfully analyzed thiram molecules on the epidermis of apples, cucumbers, and oranges, and the detection limits are 2.4, 3, and 3 ng/cm2, respectively. These results demonstrate the great potential of the substrate for in situ analysis, which can provide reference for the design of ideal SERS substrates.
Collapse
Affiliation(s)
- Yalei Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Zhongshun Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Chunning Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Jiaqi Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Jiaxin Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Nan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
46
|
Seçkin S, Singh P, Jaiswal A, König TAF. Super-Radiant SERS Enhancement by Plasmonic Particle Gratings. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43124-43134. [PMID: 37665350 DOI: 10.1021/acsami.3c07532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Despite recent developments, surface-enhanced Raman spectroscopy (SERS) applications face challenges in achieving both high sensitivity and uniform Raman signals over a large area. Using the directional self-assembly of plasmonic nanoparticles in lattice structures, we show how one can increase the SERS signal 43-fold over randomly aligned gold nanoparticles without relying on the photoluminescence of Rhodamine 6G. For this study, we have chosen the lattice constant for an off-resonant case that matches the lattice resonance and super-radiant plasmon mode along the particle chain. Supported by electromagnetic simulations, we systematically analyze the radiative components of the plasmon modes by varying the particle size while keeping the lattice periodicity constant. We perform polarization-dependent SERS measurements and compare them with other standard SERS excitation wavelengths. Using the self-assembled plasmonic particle lattice, we have developed an effective SERS substrate that provides a significantly higher signal with 73% less surface coverage. This colloidal approach enables the cost-effective and scalable fabrication of highly sensitive, uniform, and polarization-dependent SERS substrates.
Collapse
Affiliation(s)
- Sezer Seçkin
- Leibniz-Institut für Polymerforschung e.V., Hohe Straße 6, Dresden 01069 ,Germany
| | - Prem Singh
- School of Biosciences and Bioengineering, Indian Institute of Technology - Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Amit Jaiswal
- School of Biosciences and Bioengineering, Indian Institute of Technology - Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Tobias A F König
- Leibniz-Institut für Polymerforschung e.V., Hohe Straße 6, Dresden 01069 ,Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Helmholtzstraße 18, Dresden01069 ,Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, Dresden01069 ,Germany
| |
Collapse
|
47
|
Zhang Y, Wang Y, Liu A, Liu S. Fabrication of flexible SERS substrate based on Au nanostars and PDMS for sensitive detection of Thiram residue in apple juice. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 297:122721. [PMID: 37054572 DOI: 10.1016/j.saa.2023.122721] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/08/2023] [Accepted: 04/06/2023] [Indexed: 05/14/2023]
Abstract
We developed a novel fabrication of flexible surface-enhanced Raman scattering (SERS) substrate to perform selective and sensitive determination of thiram residue in fruits and juices. Au nanostars (Au NSs) with multi-branching structure were self-assembled on aminated Polydimethylsiloxane (PDMS) slides by electrostatic interaction. By measuring the Thiram's characteristic peak intensity at 1371 cm-1, the SERS method could distinguish Thiram from other pesticide residues. A good linear relationship between the peak intensity at 1371 cm-1 and thiram's concentration was established at the range from 0.01 ppm to 100 ppm and the Limit of detection is 0.0048 ppm. We directly used this SERS substrate to detect Thiram in apple juice. By standard addition method, recoveries varied in the range of 97.05% to 106.00% and the RSD were from 3.26% to 9.35%. The SERS substrate exhibited a good sensitivity, stability and selectively for the detection of Thiram in food samples, which can be spread as a common method for the detection of pesticides in food samples.
Collapse
Affiliation(s)
- Yusheng Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device (CMD), Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yong Wang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device (CMD), Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China; Institute of Forensic Science and Technology of Nanjing Public Security Bureau, Nanjing 210012, PR China
| | - Anran Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device (CMD), Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device (CMD), Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| |
Collapse
|
48
|
Xie X, Jiang J, Ma J, Gu C, Jiang T, Zhang J. Quantitative detection of purine from food products with different water activities using needle-based surface-enhanced Raman scattering sensors. Food Chem 2023; 418:136011. [PMID: 37001358 DOI: 10.1016/j.foodchem.2023.136011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Typically, for accurate quantitative tests of molecules, considering the actual solute concentration in the environment with different water activities (Aws) is essential. Accordingly, for effective detection of food substances, this paper proposes a non-destructive pluggable sensor to capture and monitor four free purines based on surface-enhanced Raman scattering characteristics such as sensitivity, uniformity, repeatability, and stability. In particular, we investigate the impact of Aw on the evaluation of purine detection and its deviation corrections. Furthermore, the recoveries of purine from three food products, including fish (Aw: 0.99), ham (Aw: 0.91), and bacon (Aw: 0.73), are subsequently explored to validate the reliability of the proposed method. The results indicate that the proposed non-destructive pluggable sensor performs better when the Aw is considered. Therefore, this strategy for achieving more reliable quantitative detection by rectifying deviations based on the Aw can significantly help monitor food quality.
Collapse
Affiliation(s)
- Xiaojuan Xie
- College of Food and Pharmaceutical Sciences, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Jing Jiang
- College of Food and Pharmaceutical Sciences, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Jiali Ma
- College of Food and Pharmaceutical Sciences, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Chenjie Gu
- College of Food and Pharmaceutical Sciences, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Tao Jiang
- College of Food and Pharmaceutical Sciences, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China.
| | - Jinjie Zhang
- College of Food and Pharmaceutical Sciences, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China.
| |
Collapse
|
49
|
Li H, Geng W, Zheng Z, Haruna SA, Chen Q. Flexible SERS sensor using AuNTs-assembled PDMS film coupled chemometric algorithms for rapid detection of chloramphenicol in food. Food Chem 2023; 418:135998. [PMID: 36996651 DOI: 10.1016/j.foodchem.2023.135998] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 02/03/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023]
Abstract
The misuse of chloramphenicol (CAP) has led to the development of drug-resistant strains that pose significant threats to public health. Here, we propose a universal flexible surface-enhanced Raman spectroscopy (SERS) sensor utilizing gold nanotriangles (AuNTs) and polydimethylsiloxane (PDMS) film for rapid detection of CAP in food samples. Initially, AuNTs@PDMS with unique optical and plasmonic properties were used to collect spectra of CAP. Afterward, four chemometric algorithms were executed and compared. Accordingly, random frog-partial least squares (RF-PLS) exhibited optimum results with correlation coefficient of prediction (Rp = 0.9802) and the lowest root-mean-square error of prediction (RMSEP = 0.348 µg/mL). Furthermore, the sensor's efficacy to detect CAP in milk samples was confirmed, and the findings were compatible with the conventional HPLC approach (P > 0.05). Therefore, the proposed flexible SERS sensor could effectively be used to monitor milk quality and safety.
Collapse
Affiliation(s)
- Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wenhui Geng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zihan Zheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Suleiman A Haruna
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, PR China.
| |
Collapse
|
50
|
Lin HY, Chen WR, Lu LC, Chen HL, Chen YH, Pan M, Chen CC, Chen C, Yen TH, Wan D. Direct Thermal Growth of Gold Nanopearls on 3D Interweaved Hydrophobic Fibers as Ultrasensitive Portable SERS Substrates for Clinical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207404. [PMID: 36974592 DOI: 10.1002/smll.202207404] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS)-based biosensors have attracted much attention for their label-free detection, ultrahigh sensitivity, and unique molecular fingerprinting. In this study, a wafer-scale, ultrasensitive, highly uniform, paper-based, portable SERS detection platform featuring abundant and dense gold nanopearls with narrow gap distances, are prepared and deposited directly onto ultralow-surface-energy fluorosilane-modified cellulose fibers through simple thermal evaporation by delicately manipulating the atom diffusion behavior. The as-designed paper-based SERS substrate exhibits an extremely high Raman enhancement factor (3.9 × 1011 ), detectability at sub-femtomolar concentrations (single-molecule level) and great signal reproductivity (relative standard deviation: 3.97%), even when operated with a portable 785-nm Raman spectrometer. This system is used for fingerprinting identification of 12 diverse analytes, including clinical medicines (cefazolin, chloramphenicol, levetiracetam, nicotine), pesticides (thiram, paraquat, carbaryl, chlorpyrifos), environmental carcinogens (benzo[a]pyrene, benzo[g,h,i]perylene), and illegal drugs (methamphetamine, mephedrone). The lowest detection concentrations reach the sub-ppb level, highlighted by a low of 16.2 ppq for nicotine. This system appears suitable for clinical applications in, for example, i) therapeutic drug monitoring for individualized medication adjustment and ii) ultra-early diagnosis for pesticide intoxication. Accordingly, such scalable, portable and ultrasensitive fibrous SERS substrates open up new opportunities for practical on-site detection in biofluid analysis, point-of-care diagnostics and precision medicine.
Collapse
Affiliation(s)
- Hsin-Yao Lin
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30010, Taiwan
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 30010, Taiwan
- Division of Neurosurgery, Department of Surgery, MacKay Memorial Hospital, Taipei, 10449, Taiwan
| | - Wan-Ru Chen
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30010, Taiwan
| | - Li-Chia Lu
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30010, Taiwan
| | - Hsuen-Li Chen
- Department of Materials Science and Engineering and Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Hsuan Chen
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30010, Taiwan
| | - Michael Pan
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30010, Taiwan
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 30010, Taiwan
| | - Chi-Chia Chen
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30010, Taiwan
| | - Chihchen Chen
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 30010, Taiwan
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30010, Taiwan
| | - Tzung-Hai Yen
- College of Medicine, Chang Gung University, Taoyuan, 33378, Taiwan
- Department of Nephrology, Clinical Poison Center, Chang Gung Memorial Hospital, Taoyuan, 33378, Taiwan
| | - Dehui Wan
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30010, Taiwan
| |
Collapse
|