1
|
Cao X, Lv R, Wei Y. Cationic Carbon Dot Reinforced Highly Tensile, Tough, Dehydration Resistant Polyelectrolyte Hydrogels with Fluorescence for Flexible Sensing and Information Anti-Counterfeiting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501531. [PMID: 40405634 DOI: 10.1002/smll.202501531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 05/10/2025] [Indexed: 05/24/2025]
Abstract
With the rapid development of wearable devices, there is an increasing demand for multifunctional conductive soft materials. Nanocomposite hydrogels containing carbon nanofillers such as carbon dots (CDs) composite gels emerge as promising candidates. However, traditional CDs nanocomposite hydrogels face limitations in terms of mechanical strength, stability and elasticity. To overcome these critical challenges, in this work, a cationic carbon dots (CCDs)-reinforced polyelectrolyte hydrogel engineered through synergistic electrostatic assembly and salting-out strategies is developed. The polyacrylic acid/sodium hyaluronate/cationic carbon point glycerol-water binary solvent fluorescent organohydrogel (PAH-CG) is fabricated. The resulting organohydrogel PAH-CG successfully overcame the plasticizing effect of glycerol, resulting in a significant enhancement of mechanical properties, with a 149-fold increase in Young's modulus compared to the control hydrogel. Specifically, the PAH-CG hydrogel exhibited high tensile strain (1200%-2734%), tensile strength (234 kPa), and modulus (275 kPa), alongside excellent elasticity, fluorescence, and dehydration resistance. The improvement in mechanical properties leads to excellent performance in flexible sensor applications. Concurrently, glycerol incorporation not only amplifies fluorescence intensity but also improves dehydration resistance and moisture absorption. Applications for encrypted transmission of information and anti-counterfeiting have been developed based on these properties, making PAH-CG hydrogels a promising platform for advanced smart devices.
Collapse
Affiliation(s)
- Xuan Cao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 3rd Ring North East Road, Chaoyang District, Beijing, 100029, China
| | - Rulong Lv
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 3rd Ring North East Road, Chaoyang District, Beijing, 100029, China
| | - Yun Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 3rd Ring North East Road, Chaoyang District, Beijing, 100029, China
| |
Collapse
|
2
|
Tabish M, Malik I, Alshahrani AM, Afzal M. Detection of an oxidative stress metabolite associated with neurodegenerative diseases: effect of heteroatom doped antioxidant carbon dots. RSC Adv 2025; 15:8354-8366. [PMID: 40103990 PMCID: PMC11917211 DOI: 10.1039/d5ra00274e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/08/2025] [Indexed: 03/20/2025] Open
Abstract
Carbon dots (CDs) are neoteric forms of carbon nanostructures, and play a fundamental role in early diagnosis and controlling of neurological disorders (NDs). Aiming towards the detection of an oxidative stress metabolite, the present study provides an innovative strategy for developing heteroatom-doped carbon dots using tamarind as a sustainable carbon source and urea as a nitrogen dopant through a one-step hydrothermal process. This method offers a cost-effective and eco-friendly solution without compromising performance. The structural and functional properties of the synthesized CDs were characterized using advanced techniques, including fluorescence spectroscopy, UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Antioxidant assessments revealed remarkable free-radical scavenging activity (exceeding 80% efficiency) across three independent methodologies. Furthermore, the CDs demonstrated exceptional sensitivity and selectivity in detecting oxidative stress metabolites, particularly 3-nitrotyrosine, with detection efficiency influenced by environmental pH (4.8-8.7). Biocompatibility studies using fibroblast cells confirmed their non-toxic nature, supporting their potential for biomedical applications. Collectively, these findings highlight the promise of heteroatom-doped CDs as a novel platform for detecting oxidative stress metabolites associated with neurodegenerative diseases, bridging fundamental research with real-world diagnostic advancements.
Collapse
Affiliation(s)
- Mohammad Tabish
- Department of Pharmacology, College of Medicine, Shaqra University Shaqra 11961 Saudi Arabia
- King Salman Center for Disability Research Riyadh 11614 Saudi Arabia
| | - Iram Malik
- Department of Electrical Engineering, College of Engineering, Prince Sattam Bin Abdulaziz University Al-Kharj 11942 Saudi Arabia
- King Salman Center for Disability Research Riyadh 11614 Saudi Arabia
| | - Abdulrahman M Alshahrani
- Department of Internal Medicine (Neurology), College of Medicine, Shaqra University Shaqra 11961 Saudi Arabia
| | - Mohd Afzal
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| |
Collapse
|
3
|
Marvi PK, Das P, Jafari A, Hassan S, Savoji H, Srinivasan S, Rajabzadeh AR. Multifunctional Carbon Dots In Situ Confined Hydrogel for Optical Communication, Drug Delivery, pH Sensing, Nanozymatic Activity, and UV Shielding Applications. Adv Healthc Mater 2025; 14:e2403876. [PMID: 39757485 PMCID: PMC11874666 DOI: 10.1002/adhm.202403876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/29/2024] [Indexed: 01/07/2025]
Abstract
Inspired by the emerging potential of photoluminescent hydrogels, this work unlocks new avenues for advanced biosensing, bioimaging, and drug delivery applications. Carbon quantum dots (CDs) are deemed particularly promising among various optical dyes, for enhancing polymeric networks with superior physical and chemical properties. This study presents the synthesis of CDs derived from Prunella vulgaris, a natural plant resource, through a single-step hydrothermal process, followed by their uniform integration into hydrogel matrices via an in situ free radical graft polymerization. The resulting CD-integrated hydrogels exhibit multifunctionality in biomedical applications, featuring a diffusion-controlled drug release mechanism, permit concurrent delivery of photoluminescent CDs and therapeutic agents, enabling real-time monitoring over 32 h. In addition, these hydrogels function as a broad-range optical pH sensor (pH 3-11), provide robust ultraviolet (UV) shielding, and demonstrate nanozyme-like peroxidase activity. Critically, biocompatibility tests confirm their non-cytotoxicity toward fibroblast cells, establishing these hydrogels as promising candidates for diverse biomedical applications. These include advanced wound dressings that monitor the healing process and detect infection through pH sensing, and promote healing through the nanozymatic activity, all while maintaining a moist wound microenvironment. These hydrogels demonstrate exceptional suitability for advanced smart drug delivery, effective UV-blocking, and as innovative platforms for in vivo sensing and bioimaging.
Collapse
Affiliation(s)
- Parham Khoshbakht Marvi
- School of Biomedical EngineeringMcMaster University1280 Main Street West HamiltonHamiltonOntarioL8S 4L7Canada
| | - Poushali Das
- School of Biomedical EngineeringMcMaster University1280 Main Street West HamiltonHamiltonOntarioL8S 4L7Canada
| | - Arman Jafari
- Institute of Biomedical EngineeringDepartment of Pharmacology and PhysiologyFaculty of MedicineUniversity of MontrealMontrealQCH3T 1J4Canada
- Research CenterCentre Hospitalier Universitaire Sainte‐JustineMontrealQCH3T 1C5Canada
- Montreal TransMedTech InstituteMontrealQCH3T 1J4Canada
| | - Shiza Hassan
- School of Engineering Practice and TechnologyMcMaster University1280 Main Street West HamiltonHamiltonOntarioL8S 4L7Canada
| | - Houman Savoji
- Institute of Biomedical EngineeringDepartment of Pharmacology and PhysiologyFaculty of MedicineUniversity of MontrealMontrealQCH3T 1J4Canada
- Research CenterCentre Hospitalier Universitaire Sainte‐JustineMontrealQCH3T 1C5Canada
- Montreal TransMedTech InstituteMontrealQCH3T 1J4Canada
- Center for Applied Research On Polymers and Composites (CREPEC)MontrealQCH3A 0C3Canada
| | - Seshasai Srinivasan
- School of Biomedical EngineeringMcMaster University1280 Main Street West HamiltonHamiltonOntarioL8S 4L7Canada
- School of Engineering Practice and TechnologyMcMaster University1280 Main Street West HamiltonHamiltonOntarioL8S 4L7Canada
| | - Amin Reza Rajabzadeh
- School of Biomedical EngineeringMcMaster University1280 Main Street West HamiltonHamiltonOntarioL8S 4L7Canada
- School of Engineering Practice and TechnologyMcMaster University1280 Main Street West HamiltonHamiltonOntarioL8S 4L7Canada
| |
Collapse
|
4
|
El-Diehy MA, Farghal II, Amin MA, Ghobashy MM, Nowwar AI, Gayed HM. Radiation-assisted tailoring of swelling behavior and water retention of Na-CMC/PAAm hydrogels for enhancing Beta Vulgaris under drought stress. Sci Rep 2025; 15:1661. [PMID: 39794338 PMCID: PMC11724103 DOI: 10.1038/s41598-024-83832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025] Open
Abstract
This study investigates the negative impact of climate change on water resources, specifically water for agricultural irrigation. It describes how to optimize swelling, gel properties and long-term water retention capacities of Na-CMC/PAAm hydrogels for managing drought stress of Sugar beet plants through techniques such as changing the composition, synthetic conditions and chemical modification. Gamma radiation-induced free radical copolymerization was used to synthesize superabsorbent hydrogels using sodium carboxymethyl cellulose (Na-CMC) and acrylamide (AAm). The study also explored how varying Na-CMC/AAm ratio and radiation dose influence their swelling behaviour, gel fraction, and water retention. FTIR showed that CMC and PAAm components are part of the hydrogel structure. The equilibrium swelling reached a maximum value of ~ 500 g/g at a Na-CMC/AAm ratio of 60/40. High content of AAm reduced swelling because it caused increased hydrophobicity while high radiation doses up to 50 kGy increased crosslinking resulting in improved but limited swelling from 65 to 85 (g/g). After the second cycle, KOH modification reached maximum swelling capacity by introducing anionic carboxylate groups up to 415 (g/g). SEM images revealed uniform pores in an unmodified scaffold while larger cavities were formed upon modification facilitating Water absorption. Surprisingly, the improved hydrogels retained more water: about 75% even after 16 days as opposed to a 50% drop within five days in the case of unmodified ones. This hydrogel significantly enhanced shoot length by 18%, root length by 32%, fresh weight shoot by 15%, and dry weight shoot by 15% under severe drought conditions. As a result, yield increased by 22%, proteins went up by 19%, and carbohydrates rose by 13%. Leaf chlorophyll content increased with a corresponding decline in stress enzymes indicating decreased oxidative damage. This eco-friendly Na-CMC/PAAm-based hydrogel seems to have potential use for addressing water scarcity and agricultural challenges.
Collapse
Affiliation(s)
- Mahmoud A El-Diehy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Ibrahim I Farghal
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mohamed A Amin
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt.
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Abdelatti I Nowwar
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - H M Gayed
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
5
|
Teymourlouei AS, Naghib SM, Mozafari MR. Stimuli-responsive Graphene-polysaccharide Nanocomposites for Drug Delivery and Tissue Engineering. Curr Org Synth 2025; 22:211-233. [PMID: 39962959 DOI: 10.2174/0115701794298435240324175513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/19/2024] [Accepted: 03/08/2024] [Indexed: 05/10/2025]
Abstract
Natural polysaccharide-based nanoparticles are known for their non-toxic nature and diverse medical applications. Graphene oxide (GO) nanoparticles show potential in cancer treatment due to their ability to target medication delivery and influence ROS generation. These nanocomposites are versatile in gene transport, therapy, and photodynamic therapy, especially when surface-modified. Proper dispersion and functionalization of GO in polymer matrices are crucial, with examples like hyaluronic acid-functionalized GO offering versatile platforms for cancer drug administration. The potential of graphene oxide extends to cancer phototherapy, electronic nanowires, hydrogels, antibacterial nanocomposites, and environmental applications. When activated by polysaccharides, graphene-based nanocomposites exhibit anti-inflammatory and anticancer properties, making them valuable across various industries, including water treatment.
Collapse
Affiliation(s)
- Arman Seifallahi Teymourlouei
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC, 3168, Australia
| |
Collapse
|
6
|
Cho S, Kim H, Song D, Jung J, Park S, Jo H, Seo S, Han C, Park S, Kwon W, Han H. Insights into glucose-derived carbon dot synthesis via Maillard reaction: from reaction mechanism to biomedical applications. Sci Rep 2024; 14:31325. [PMID: 39733004 PMCID: PMC11682424 DOI: 10.1038/s41598-024-82767-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
Carbon dots (CDs) are versatile nanomaterials that are considered ideal for application in bioimaging, drug delivery, sensing, and optoelectronics owing to their excellent photoluminescence, biocompatibility, and chemical stability features. Nitrogen doping enhances the fluorescence of CDs, alters their electronic properties, and improves their functional versatility. N-doped CDs can be synthesized via solvothermal treatment of carbon sources with nitrogen-rich precursors; however, systematic investigations of their synthesis mechanisms have been rarely reported. In this study, we developed a method to synthesize N-doped CDs using the Maillard reaction with glucose and ethanolamine as precursors (namely, G-CDs). Comprehensive characterization of these G-CDs revealed the successful incorporation of nitrogen- and glucose-like functionalities. The optical properties and electronic band structures of G-CDs were analyzed using transient absorption and time-resolved photoluminescence spectroscopy. The prepared G-CDs demonstrated near-infrared photoluminescence, low cytotoxicity, glucose transporter-facilitated cellular uptake, and effective heat generation under an 808-nm laser. Particularly, the cellular uptake of G-CDs was reduced by up to 25% after preincubation with a Glut1 inhibitor. These features are suitable for in vitro biological imaging and photothermal therapy in prostate cancer cells. This paper highlights the potential of G-CDs in clinical applications owing to their multicolor emission, photothermal conversion functionality, and versatile surface structure.
Collapse
Affiliation(s)
- Soohyun Cho
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, South Korea
| | - Hyemin Kim
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05030, South Korea
| | - Dongwook Song
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jungchan Jung
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Sehyeon Park
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, South Korea
| | - Hyunda Jo
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, South Korea
| | - Sejeong Seo
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, South Korea
| | - Chaewon Han
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, South Korea
| | - Soye Park
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, South Korea
| | - Woosung Kwon
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, 04310, South Korea.
- Institute of Advanced Materials and Systems, Sookmyung Women's University, 100 Cheongpa- ro 47-gil, Yongsan-gu, Seoul, 04310, South Korea.
| | - Hyunho Han
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
7
|
Hong Y, Nie Z, Tian X, Sun J, Zhou Q, Liang W, Chen S, Huang J, Tan K, Dong L. Rare-earth-free up and down-conversion dual-emission carbon dots for Cu 2+ sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124920. [PMID: 39111030 DOI: 10.1016/j.saa.2024.124920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
In this work, up- and down-conversion dual-emission CDs without rare-earth (UD D-CDs) were synthesized using RhB and 1,4-Diaminoanthraquinone as precursors. The synthesized UD D-CDs exhibited dual emissions at 496 and 580 nm under 260 and 865 nm excitation, respectively. The fluorescence emission mechanism, including contributions from carbon nuclei, surface states, molecular states, and internal defect states, was discussed through the separation and purification of UD D-CDs. Based on the interaction between UD D-CDs and copper ions (Cu2+), a dual-mode ratio fluorescence probe was developed to detect and quantify Cu2+. The up-conversion ratio fluorescent probe shows a linear range of 0.0500-15.0 μM, with a detection limit as low as 2.76 nM. This method has been successfully applied to detecting Cu2+ in human serum and has potential applications in biochemical analysis and biological imaging. The successful preparation of up-conversion fluorescent carbon dots without rare earth elements and the ability to perform low-damage detection in high-background biological samples provide a new approach to constructing non-rare earth up-conversion probes.
Collapse
Affiliation(s)
- Yushuang Hong
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Zhengpei Nie
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xuelian Tian
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jingfang Sun
- School of the Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Qiuju Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Wenbin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shihong Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Jin Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China; School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bintuan, Shihezi University, Shihezi 832003, PR China.
| | - Kejun Tan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Lin Dong
- School of the Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| |
Collapse
|
8
|
Ahmed HB, Emam HE, Shaheen TI. Fluorescent antimicrobial hydrogel based on fluorophore N-doped carbon dots originated from cellulose nanocrystals. Sci Rep 2024; 14:29226. [PMID: 39587165 PMCID: PMC11589154 DOI: 10.1038/s41598-024-80222-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
The current study represents a unique fabrication strategy for preparation of fluorescent hydrogels via incorporation of fluorescent quantum dots (QDs) as fluorophore entities into chitosan as a gelling matrix. QDs identified as carbon quantum dots (CQDs) & nitrogen containing carbon quantum dots (NCQDs) were preliminary synthesized from cellulose nanocrystals (CNCs) and cationic cellulose nanocrystals (CCNCs), respectively. Cationic CNCs was prepared via chemical grafting with poly-di-allyl dimethyl ammonium chloride (CNCs-g-poly-DADMAC) through free chain polymerization reaction. Additionally, both of the prepared CQDs & NCQDs were impregnated in 3D interpenetrating network of chitosan for preparation of microbicide/florescent hydrogels (CQDs@Chs hydrogel & NCQDs@Chs hydrogel). The represented data revealed that, exploitation of cationic CNCs resulted in preparation of NCQDs with more controllable size and superior photoluminescence. Moreover, the increment in concentration of CNCs reflected in nucleation of enlarged QDs, at variance of CCNCs, whereas, increment of concentration resulted in significantly smaller-sized QDs. Size distribution of CQDs ingrained from 2% CNCs was estimated to be 8.2 nm, while, NCQDs ingrained from 2% CCNCs exhibited with size distribution of 3.8 nm. The prepared florescent CQDs@Chs hydrogel & NCQDs@Chs hydrogel showed excellent antimicrobial performance and the diameter of inhibition zone was estimated to be 31 mm, 26 mm & 22 mm against E. Coli, S. Aureus & C. Albicans with CQDs@Chs, respectively. Whereas, treatment of the as-mentioned microbial strains with NCQDs@Chs resulted in detection of inhibition zone diameter to be significantly higher as 34 mm, 28 mm & 25 mm for E. Coli, S. Aureus & C. Albicans, respectively. In a conclusion, cationic CNCs showed seniority in nucleation of QDs with significantly higher photoluminescence and microbicide activities.
Collapse
Affiliation(s)
- Hanan B Ahmed
- Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo, 11795, Egypt.
| | - Hossam E Emam
- Department of Pretreatment and Finishing of Cellulosic Based Textiles, Textile Research and Technology Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt.
| | - Tharwat I Shaheen
- Department of Pretreatment and Finishing of Cellulosic Based Textiles, Textile Research and Technology Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt.
| |
Collapse
|
9
|
Yao L, Zhu L, Chen C, Wang X, Zhang A, Gao S, Wu J, Qin L. A systematic review on polysaccharides from fermented Cordyceps sinensis: Advances in the preparation, structural characterization, bioactivities, structure-activity relationships. Int J Biol Macromol 2024; 282:137275. [PMID: 39510481 DOI: 10.1016/j.ijbiomac.2024.137275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Cordyceps sinensis (Berk.) Sacc. (Ophiocordyceps sinensis) is an edible and medicinal fungus used as a natural superior tonic. It is considered as scarce fungus with a high market demand. Therefore, as an alternative, fermentation technology has been proposed to produce artificial cordyceps (fermented C. sinensis) to address the shortage of cordyceps resources for industrialization and commercial utilization. Numerous studies have proved that polysaccharides are the important bioactive substances in the fermented C. sinensis, but the research data lack systematic review. In this review, current relevant research data regarding the preparation (including extraction, fractionation, and purification), structural characterization (including molecular weight, monosaccharide composition, glycosidic bond type, structural and conformational features), bioactivities, structure-activity relationships (SAR) and applications of polysaccharides from different sources of fermented C. sinensis last decade were analyzed and discussed. The findings highlight that the most commonly employed methods for preparing fermented Cordyceps sinensis polysaccharides (FCSPs) involve water extraction and alcohol precipitation, combing with sophisticated chromatographic techniques such as ion exchange and gel permeation chromatography. From these processes, 34 different polysaccharides were identified including 5 glucans and 7 heteropolysaccharides that were thoroughly characterized. FCSPs exhibited a broad spectrum of biological activities, ranging from antioxidant and renal protective effects to immunomodulatory, antitumor, and hypolipidemic properties. The structure-activity relationships (SAR) demonstrated that key factors, such as molecular weight, monosaccharide composition and glucosidic bond types, play critical roles in determining the bioactivity of FCSPs. Nevertheless, there remain unknown elements that continue to influence SAR, leaving room for further exploration. Furthermore, the limitation of existing studies and some new perspectives for future investigations on FCSPs were proposed.
Collapse
Affiliation(s)
- Lumeng Yao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Lili Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Changlun Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Xingxing Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Anna Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Siqi Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Jianjun Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China.
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China.
| |
Collapse
|
10
|
Han Y, Zhu L, Zhang H, Liu T. Mechanism of sucrose improving the mechanical characteristics of foams stabilized by soy protein isolate/gellan gum/guar gum ternary complex. Int J Biol Macromol 2024; 280:135845. [PMID: 39313058 DOI: 10.1016/j.ijbiomac.2024.135845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Sucrose shows the potential of stabilizing foam system. This study systematically evaluated the mechanism by which sucrose improved foaming properties and mechanical characteristics of foams stabilized by soy protein isolate/gellan gum/guar gum ternary complex. Results showed that sucrose could bond to the surface of ternary complex or self-aggregate within the continuous phase, resulting in the neutralization of charges (nearly zero) and an increase in particle size (up to 62.54 μm). The addition of 30 % sucrose reinforced foam system with an increased foamability (305.99 %) but a longer foaming time (10 min) during foaming process. Moreover, the mechanical characteristics, including hardness, elastic strength (Power-law constant) and solid characteristic (frequency exponent), were also significantly enhanced to 1.26 N, 354.7956 and 2.5873, respectively, which were 1.65, 1.94 and 1.11 times than those of foams without sucrose. The microscopic mechanism lied in the reduced water freedom degree caused by sucrose, which generated a compact structural network around bubbles for providing a stable and stiff structure to foams. These findings will provide clear theoretical guidance for regulating mechanical characteristics of aerated foods by using sucrose as structural building blocks.
Collapse
Affiliation(s)
- Yameng Han
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Tongtong Liu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; Binzhou Zhongyu Food Company Limited, Binzhou Zhongyu Academy of Agricultural Sciences, National Industry Technical Innovation Center for Wheat Processing, Binzhou 256603, Shandong, China; Bohai Advanced Technology Institute, Binzhou 256606, Shandong, China
| |
Collapse
|
11
|
Waheed Z, Ahmad F, Mushtaq B, Ahmad S, Habib SR, Rasheed A, Zafar MS, Sefat F, Saeinasab M, Azam F. Biowaste rice husk derived cellulosic hydrogel incorporating industrial cotton waste nonwoven for wound dressing. Int J Biol Macromol 2024; 281:136412. [PMID: 39383901 DOI: 10.1016/j.ijbiomac.2024.136412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/19/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Bio-wastes are organic materials achieved through biological sources. The rice crop produces a substantial amount of biowaste in the form of rice husk, which is rich in cellulose. In this research, cellulose was extracted from rice husk by alkalization and bleaching process. The rice husk extracted cellulose was further used to develop cellulose hydrogel by using the sol-gel technique. The nonwoven fabric of industrial cotton waste was developed in three different GSM (50, 100, and 150). The nonwoven fabric was incorporated in the cellulose hydrogel having three different concentrations (1 %, 2 %, and 3 %) to develop the hydrogel non-woven cotton fabric composite for sustainable wound dressing applications. Moreover, prepared rice husk extracted cellulose hydrogel loaded with AgNO3 (0.5 %, 1 %, and 1.5 %) for achieving antibacterial characteristics. The Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were employed to confirm the existence of cellulose hydrogel layers within the cotton nonwoven composite. The developed hydrogel S12 exhibited a maximum fluid absorbency of 1281.84 % with a tensile strength of 28.6 N and elongation of 40.96 %. The results show successful rice husk extracted cellulose hydrogel formation, exhibiting structural stability, excellent exudate absorbency and moisture management, antimicrobial efficacy, and sustainability.
Collapse
Affiliation(s)
- Zainab Waheed
- School of Engineering and Technology, National Textile University, Faisalabad, Pakistan
| | - Faheem Ahmad
- School of Engineering and Technology, National Textile University, Faisalabad, Pakistan
| | - Bushra Mushtaq
- School of Engineering and Technology, National Textile University, Faisalabad, Pakistan
| | - Sheraz Ahmad
- School of Engineering and Technology, National Textile University, Faisalabad, Pakistan.
| | - Syed Rashid Habib
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Abher Rasheed
- School of Engineering and Technology, National Textile University, Faisalabad, Pakistan
| | - Muhammad Sohail Zafar
- Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman, United Arab Emirates; School of Dentistry, University of Jordan, Amman, Jordan; Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad, Pakistan; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK; Interdisciplinary Research Centre in Polymer Science & Technology (Polymer IRC), University of Bradford, Bradford, UK
| | - Morvarid Saeinasab
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK; Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Farooq Azam
- School of Engineering and Technology, National Textile University, Faisalabad, Pakistan
| |
Collapse
|
12
|
Das P, Ganguly S, Marvi PK, Sherazee M, Tang X(S, Srinivasan S, Rajabzadeh AR. Carbon Dots Infused 3D Printed Cephalopod Mimetic Bactericidal and Antioxidant Hydrogel for Uniaxial Mechano-Fluorescent Tactile Sensor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409819. [PMID: 39394767 PMCID: PMC11602684 DOI: 10.1002/adma.202409819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/14/2024] [Indexed: 10/14/2024]
Abstract
Cephalopods use stretchy skin and dynamic color-tuning organs for visual communication and camouflage. Inspired by these natural mechanisms, a fluorescent biomaterial for deformation-induced illumination and optical communication is proposed. This is the first report of 3D printed soft biomaterials infused with carbon dots hydrothermally derived from chitosan and benzalkonium chloride. These biomaterials exhibit a comprehensive array of properties, including significant uniaxial stretching, near-instantaneous response to tactile stimuli and pH, UV resistance, antibacterial, antioxidant, noncytotoxicity, and highlighting their potential as mechano-optical materials for biomedical applications. The hydrogel's durability is evaluated by cyclic stretching, folding, rolling, and twisting tests to ensure its integrity and good signal-to-noise ratio. The diffusion mechanism is determined by water imbibition kinetics, network parameters, and time-dependent breathing. Overcoming the common limitations of short lifespans and complex manufacturing processes in existing soft hybrids, this work demonstrates a straightforward method to produce durable, energy-independent, mechano-optical hydrogel. Combined with investigations, molecular dynamic modeling is used to understand the interactions of hydrogel components.
Collapse
Affiliation(s)
- Poushali Das
- School of Biomedical EngineeringMcMaster University1280 Main Street WestHamiltonONL8S 4L8Canada
| | - Sayan Ganguly
- Department of Chemistry & Waterloo Institute for Nanotechnology (WIN)University of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Parham Khoshbakht Marvi
- School of Biomedical EngineeringMcMaster University1280 Main Street WestHamiltonONL8S 4L8Canada
| | - Masoomeh Sherazee
- School of Biomedical EngineeringMcMaster University1280 Main Street WestHamiltonONL8S 4L8Canada
| | - Xiaowu (Shirley) Tang
- Department of Chemistry & Waterloo Institute for Nanotechnology (WIN)University of Waterloo200 University Ave WestWaterlooOntarioN2L 3G1Canada
| | - Seshasai Srinivasan
- School of Biomedical EngineeringMcMaster University1280 Main Street WestHamiltonONL8S 4L8Canada
- W Booth School of Engineering Practice and TechnologyMcMaster University1280 Main Street WestHamiltonONL8S 4L7Canada
| | - Amin Reza Rajabzadeh
- School of Biomedical EngineeringMcMaster University1280 Main Street WestHamiltonONL8S 4L8Canada
- W Booth School of Engineering Practice and TechnologyMcMaster University1280 Main Street WestHamiltonONL8S 4L7Canada
| |
Collapse
|
13
|
Kumari S, Nehra M, Jain S, Kumar A, Dilbaghi N, Marrazza G, Chaudhary GR, Kumar S. Carbon dots for pathogen detection and imaging: recent breakthroughs and future trends. Mikrochim Acta 2024; 191:684. [PMID: 39432033 DOI: 10.1007/s00604-024-06762-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
As a class of carbon-based nanomaterials, carbon dots (CDs) have gained a lot of interest for a variety of applications. They offer distinctive optical, chemical, and structural characteristics along with favourable attributes such as low cost, availability of abundant functional groups, remarkable chemical inertness, high stability, exceptional biocompatibility, and ecofriendliness. This review discusses synthesis methods, structural characteristics, and surface modifications of CDs, specific for pathogen detection. Furthermore, it delves into the mechanisms that govern the interaction between pathogens and CDs. In addition, the study explores the use of CDs in a number of detection modalities, such as optical, electrochemical, and electrochemiluminescence, emphasising real-time pathogen monitoring. Moreover, both the challenges and opportunities related to the application of CDs-based detection and imaging methods are highlighted in field and clinical contexts.
Collapse
Affiliation(s)
- Sonam Kumari
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh, Chandigarh, 160014, India
| | - Monika Nehra
- Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, 160014, India
| | - Shikha Jain
- Department of Bio-Nanotechnology, College of Biotechnology, CCS Haryana Agricultural University (CCSHAU), Hisar, Haryana, 125004, India
| | - Aman Kumar
- Department of Physics, Punjab Engineering College (Deemed to Be University), Chandigarh, 160012, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Giovanna Marrazza
- Department of Chemistry" Ugo Schiff", University of Florence, Via Della Lastruccia 3, Florence, Sesto Fiorentino, 50019, Italy
| | - Ganga Ram Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University Chandigarh, Chandigarh, 160014, India
| | - Sandeep Kumar
- Department of Physics, Punjab Engineering College (Deemed to Be University), Chandigarh, 160012, India.
| |
Collapse
|
14
|
Kasif M, Alarifi A, Afzal M, Thirugnanasambandam A. N, S-codoped carbon dots for antioxidants and their nanovehicle potential as molecular cargoes. RSC Adv 2024; 14:32041-32052. [PMID: 39391617 PMCID: PMC11465998 DOI: 10.1039/d4ra05994h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024] Open
Abstract
This work demonstrates the facile one step hydrothermal synthesis of carbon dots doped with nitrogen and sulfur (SCDs). The carbon dots have various uses, including their use as molecular payloads for antioxidant and drug delivery purposes. The sizes of the CDs were determined using transmission electron microscopy (TEM), which revealed an average size of 4.2 nm. The successful sulfur doping was confirmed by Fourier-transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS), which identified typical functional groups and elemental composition. UV-vis and photoluminescence (PL) spectroscopy revealed a wide absorption peak at 280 nm and a pronounced blue emission at 440 nm. Colloidal stability was confirmed by dynamic light scattering (DLS) and zeta potential analysis. The antioxidant characteristics were evaluated through the use of electron paramagnetic resonance (EPR) spectroscopy, which confirmed a notable ability to scavenge radicals which revealed more than 80% radical scavenging capability. The SCDs also showed nontoxic behavior against living cells. The findings emphasize the potential of SCDs in the fields of bioimaging, drug delivery, and as potent antioxidant agents.
Collapse
Affiliation(s)
- Md Kasif
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati Guwahati 781039 India
| | - Abdullah Alarifi
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Mohd Afzal
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Arunkumar Thirugnanasambandam
- Centre for Sustainable Materials and Surface Metamorphosis, Chennai Institute of Technology Chennai Tamilnadu 600069 India
| |
Collapse
|
15
|
Jiang R, Zhai X, Liu Y, Chen J, Gui SY, Liu H. Assembly of polysaccharide-based polymer brush for supramolecular hydrogel dressing. Int J Biol Macromol 2024; 277:134105. [PMID: 39048002 DOI: 10.1016/j.ijbiomac.2024.134105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/19/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Extracted from Platycodon grandiflorum, platycodon grandiflorum polysaccharides (PGPs) with diverse biological functions have been extensively employed for modification and fabrication of hydrogels for biomedical applications, such as wound dressings. However, since the lack of effective structural design, the reported polysaccharide-based hydrogel dressings are still suffered from structural failures and limited bio-functionality. Herein, we demonstrate a facile and general strategy to fabricate a supramolecular hydrogel composed of PGP-based polymer brush as building blocks combined with a Ca2+-mediated self-assembly process. The specific polymer brush with high branch functionality was achieved with polyacrylamide arms evenly grown on the PGP (grafting efficiency as high as 80 %) with series of chemical modifications. With above structural merits, the resulting hydrogel with densely crosslinked polymer brush featured enhanced mechanical strength as well as self-healing, and shear-thinning behaviors. Further biocompatible investigation indicated the as-prepared hydrogels with admirable performances in self-adhesion (adhesive strength of 16.7-79.5 kPa), a pH-responsive swelling ratio as high as 44 at pH 5.4, and pH-responsive degradation. They also showed antioxidant capacity by scavenging DPPH activity of nearly 80 % in 20 min, hemocompatibility, cell viability and cell migration. Impressively, the PGP-based polymer brush hydrogel served as a wound dressing revealed significant acceleration on wound closure.
Collapse
Affiliation(s)
- Ruonan Jiang
- The College of Pharmacy, Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Xiaohu Zhai
- The College of Pharmacy, Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Yang Liu
- The College of Pharmacy, Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Anhui University of Chinese Medicine, Hefei 230012, PR China
| | - Juan Chen
- The College of Pharmacy, Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Anhui University of Chinese Medicine, Hefei 230012, PR China.
| | - Shuang-Ying Gui
- The College of Pharmacy, Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Anhui University of Chinese Medicine, Hefei 230012, PR China.
| | - Huanhuan Liu
- The College of Pharmacy, Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Anhui University of Chinese Medicine, Hefei 230012, PR China.
| |
Collapse
|
16
|
Hussain A, Alajmi MF, Ganguly S. Sustainable Doped Carbon Dots as Antioxidant and Nanocarrier for Therapeutic Cargos. J Fluoresc 2024:10.1007/s10895-024-03940-1. [PMID: 39320634 DOI: 10.1007/s10895-024-03940-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Aside from their fluorescence sensing capabilities, carbon dots doped with heteroatoms show tremendous promise as nanocarriers for medicinal compounds and as antioxidants. We present a method for producing carbon dots from chitosan and lemon extract (CLCDs) using a one-step hydrothermal coupling synthesis. The as-synthesized CLCDs exhibited remarkable colloidal stability, antioxidant behavior, cytocompatibility, and nanocarrier for drug molecules. The nanoparticles was analyzed using advanced techniques such as Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), fluorescence spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, and transmission electron microscopy (TEM) to determine the precise composition of their surface. In order to evaluate the drug transport properties of CLCDs, their surfaces were further modified with anticancer drug compounds. The drug release behavior was studied against physiologically simulated fluids and at different pH environments showing better delayed response in acidic condition. The plausible mechanistic pathways have been confirmed after fitting the results into Higuchi, Weibull and Korsmeyer-Peppas models. The goodness of fit was more than 95% for the Korsmeyer-Peppas model, with the release mechanism supported by anomalous transport. Moreover, the radical scavenging activity of CLCDs was also confirmed at low levels (1 mg/mL) which could be inferred > 85% efficacy against mostly employed testing agents (DPPH, ABTS, and hydroxyl radicals). Thus, the prepared CLCDs could be used as suitable nanovector in payload delivery with prominent antioxidant activity and low toxicity against living cell lines.
Collapse
Affiliation(s)
- Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia.
| | - Mohamed Fahad Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia
| | - S Ganguly
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
17
|
Ganguly S, Wulff D, Phan CM, Jones LW, Tang XS. Injectable and 3D Extrusion Printable Hydrophilic Silicone-Based Hydrogels for Controlled Ocular Delivery of Ophthalmic Drugs. ACS APPLIED BIO MATERIALS 2024; 7:6286-6296. [PMID: 39227342 DOI: 10.1021/acsabm.4c00901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
While silicone elastomers have found widespread use in the biomedical industry, 3D printing them has proven to be difficult due to the material's slow drying time, low viscosity, and hydrophobicity. Herein, we arrested the hydrophilic silicone (HS) macrochains into a semi-interpenetrating polymer network (semi-IPN) via an in situ photogelation-assisted 3D microextrusion printing technique. The flow behavior of the pregel solutions and the mechanical properties of the printed HS hydrogels were tested, showing a high elastic modulus (approximately 15 kPa), a low tan δ, high elasticity, and delayed network rupturing. The uniaxial compression tests demonstrated a nearly negligible permanent deformation, suggesting that the printed hybrid hydrogel maintained its elastic properties. Drug loading and diffusion in the microporous hydrogel are shown via the non-Fickian anomalous transport mechanism, leading to highly tunable loading/releasing profiles (approximately 20% cumulative release) depending on the HS concentration. The drug encapsulation exhibits exceptional stability, remaining intact without any degradation even after a storage period of 1 month. As far as we know, this is the first soft biomaterial based on HS that functions as an exceptional controlled drug delivery device.
Collapse
Affiliation(s)
- Sayan Ganguly
- Department of Chemistry, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1, Canada
- Centre for Eye and Vision Research Limited, 17W, Hong Kong Science Park, Hong Kong
| | - David Wulff
- Centre for Eye and Vision Research Limited, 17W, Hong Kong Science Park, Hong Kong
- School of Optometry and Vision Science, Faculty of Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Chau-Minh Phan
- Centre for Eye and Vision Research Limited, 17W, Hong Kong Science Park, Hong Kong
- School of Optometry and Vision Science, Faculty of Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Lyndon William Jones
- Centre for Eye and Vision Research Limited, 17W, Hong Kong Science Park, Hong Kong
- School of Optometry and Vision Science, Faculty of Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Xiaowu Shirley Tang
- Department of Chemistry, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
18
|
Alzahrani A. Fluorescent carbon dots in situ polymerized biodegradable semi-interpenetrating tough hydrogel films with antioxidant and antibacterial activity for applications in food industry. Food Chem 2024; 447:138905. [PMID: 38452541 DOI: 10.1016/j.foodchem.2024.138905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
A flexible, antioxidant, biodegradable, and UV-resistant polymeric nanocomposite hydrogel with heteroatom-doped carbon dots (CDs) has been fabricated using a simple one-step in situ free radical gelation process. The hydrogel formation and their physico-mehcanical characteristics have been assessed by rheology, uniaxial tensile and compression testing. The water uptake behaviour of the hydrogels is controlled by the CDs by manipulating their internal morphology and porosity. The porous nature of the hydrogels has been found from their scanning electron microscopic images which are also supported by their anomalous diffusion-based transport mechanism. The rheological signatures of the hydrogels show delayed network rupturing due to the secondary physical crosslinking alleviated by CDs. Moreover, CDs are directly influencing the permeabilites (oxygen and moisture) by lowering the values compared to their neat hydrogel films which are essential for a packing material. The biodegradability of the hydrogel films showed gradual weight loss (<75 %) within 3 weeks. The hydrogel films also have been qualified to be acted as antibacterial and antioxidant material. The shelf-life and non-leaching of CDs from gel matrices are also performed which shows its excellent capability to be used as a potential antibacterial, biodegradable, antioxidant alternative packaging material in food sectors.
Collapse
Affiliation(s)
- Abdulhakeem Alzahrani
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
19
|
Zhang W, Smith N, Zhou Y, McGee CM, Bartoli M, Fu S, Chen J, Domena JB, Joji A, Burr H, Lv G, Cilingir EK, Bedendo S, Claure ML, Tagliaferro A, Eliezer D, Veliz EA, Zhang F, Wang C, Leblanc RM. Carbon dots as dual inhibitors of tau and amyloid-beta aggregation for the treatment of Alzheimer's disease. Acta Biomater 2024; 183:341-355. [PMID: 38849023 PMCID: PMC11368047 DOI: 10.1016/j.actbio.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Alzheimer's disease (AD) is the most common form of senile dementia, presenting a significant challenge for the development of effective treatments. AD is characterized by extracellular amyloid plaques and intraneuronal neurofibrillary tangles. Therefore, targeting both hallmarks through inhibition of amyloid beta (Aβ) and tau aggregation presents a promising approach for drug development. Carbon dots (CD), with their high biocompatibility, minimal cytotoxicity, and blood-brain barrier (BBB) permeability, have emerged as promising drug nanocarriers. Congo red, an azo dye, has gathered significant attention for inhibiting amyloid-beta and tau aggregation. However, Congo red's inability to cross the BBB limits its potential to be used as a drug candidate for central nervous system (CNS) diseases. Furthermore, current studies only focus on using Congo red to target single disease hallmarks, without investigating dual inhibition capabilities. In this study, we synthesized Congo red-derived CD (CRCD) by using Congo red and citric acid as precursors, resulting in three variants, CRCD1, CRCD2 and CRCD3, based on different mass ratios of precursors. CRCD2 and CRCD3 exhibited sustained low cytotoxicity, and CRCD3 demonstrated the ability to traverse the BBB in a zebrafish model. Moreover, thioflavin T (ThT) aggregation assays and AFM imaging revealed CRCD as potent inhibitors against both tau and Aβ aggregation. Notably, CRCD1 emerged as the most robust inhibitor, displaying IC50 values of 0.2 ± 0.1 and 2.1 ± 0.5 µg/mL against tau and Aβ aggregation, respectively. Our findings underscore the dual inhibitory role of CRCD against tau and Aβ aggregation, showcasing effective BBB penetration and positioning CRCD as potential nanodrugs and nanocarriers for the CNS. Hence, CRCD-based compounds represent a promising candidate in the realm of multi-functional AD therapeutics, offering an innovative formulation component for future developments in this area. STATEMENT OF SIGNIFICANCE: This article reports Congo red-derived carbon dots (CRCD) as dual inhibitors of tau and amyloid-beta (Aβ) aggregation for the treatment of Alzheimer's disease (AD). The CRCD are biocompatible and show strong fluorescence, high stability, the ability to cross the blood-brain barrier, and the function of addressing two major pathological features of AD.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Nathan Smith
- Department of Biological Sciences, Rensselaer Polytechnic Institute, NY 12180, USA
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA; Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Caitlin M McGee
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Mattia Bartoli
- Department of Applied Science and Technology, Politecnico di Torino, Italy; Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Technologia (IIT), Via Livorno 60, 10144 Turin, Italy
| | - Shiwei Fu
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Jiuyan Chen
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Justin B Domena
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Annu Joji
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Hannah Burr
- Department of Biological Sciences, Rensselaer Polytechnic Institute, NY 12180, USA
| | - Guohua Lv
- Department of Biochemistry, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Emel K Cilingir
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Susanna Bedendo
- Department of Applied Science and Technology, Politecnico di Torino, Italy
| | - Matteo L Claure
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | | | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Eduardo A Veliz
- Department of Natural Sciences, Miami Dade Collage, Miami, FL 33132, USA
| | - Fuwu Zhang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Chunyu Wang
- Department of Biological Sciences, Rensselaer Polytechnic Institute, NY 12180, USA.
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
20
|
Sohn JS, Choi YE, Choi JS. Designing starch-based fenofibrate formulations using the melting method. Int J Biol Macromol 2024; 272:132903. [PMID: 38848840 DOI: 10.1016/j.ijbiomac.2024.132903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
Fenofibrate (FNF) is used to treat hyperlipidemia. However, FNF is a poorly water-soluble drug, and the dosage of commercial products is relatively high at 160 mg in a Lipidil® tablet. Therefore, this study aimed to develop an FNF-solid dispersion (SD) that solubilizes and stabilizes FNF. The melting method that uses the low melting point of FNF was employed. The dissolution percentage of FNF in the optimal formulation (SD2) increased by 1.2-, 1.3-, and 1.3-fold at 5 min compared to that of Lipidil® and increased by 2.0-, 2.1-, and 2.0-fold compared to the pure FNF in pH 1.2 media, distilled water, and pH 6.8 buffer, which included 0.025 M sodium lauryl sulfate, respectively. The SD2 formulation showed a dissolution percentage of nearly 100 % in all dissolution media after 60 min. The physicochemical properties of the SD2 formulation exhibited slight changes in the melting point and crystallinity of FNF. Moreover, the stability of the SD2 formulation was maintained for six months. In particular, it was challenging to secure stability when starch#1500 was excluded from the SD2 formulation. In conclusion, the dissolution percentage of FNF in the SD2 formulation was improved owing to the weak binding force between FNF and the excipients, stability was secured, and favorable results are expected in future animal experiments.
Collapse
Affiliation(s)
- Jeong Sun Sohn
- Division of Interdisciplinary Studies, Chosun University, Ph.D, Associate Professor, Gwangju 61452, Republic of Korea
| | - Ye Eun Choi
- School of Medicine, St. George's University, Student, West Indies, Grenada
| | - Jin-Seok Choi
- Department of Medical Management, Chodang University, Ph.D, Assistant Professor, 380 Muan-ro, Muan-eup, Muan-gun, Jeollanam-do 58530, Republic of Korea.
| |
Collapse
|
21
|
Xie S, Erfani A, Manouchehri S, Ramsey J, Aichele C. Aerosolization of poly(sulfobetaine) microparticles that encapsulate therapeutic antibodies. BIOMATERIALS ADVANCES 2024; 160:213839. [PMID: 38579521 DOI: 10.1016/j.bioadv.2024.213839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/04/2024] [Accepted: 03/23/2024] [Indexed: 04/07/2024]
Abstract
Pulmonary delivery of protein therapeutics poses significant challenges that have not been well addressed in the research literature or practice. In fact, there is currently only one commercial protein therapeutic that is delivered through aerosolization and inhalation. In this study, we propose a drug delivery strategy that enables a high-concentration dosage for the pulmonary delivery of antibodies as an aerosolizable solid powder with desired stability. We utilized zwitterionic polymers for their promising properties as drug delivery vehicles and synthesized swellable, biodegradable poly(sulfo-betaine) (pSB) microparticles. The microparticles were loaded with Immunoglobulin G (IgG) as a model antibody. We quantified the microparticle size and morphology, and the particles were found to have an average diameter of 1.6 μm, falling within the optimal range (~1-5 μm) for pulmonary drug delivery. In addition, we quantified the impact of the crosslinker to monomer ratio on particle morphology and drug loading capacity. The results showed that there is a trade-off between desired morphology and drug loading capacity as the crosslinker density increases. In addition, the particles were aerosolized, and our data indicated that the particles remained intact and retained their initial morphology and size after aerosolization. The combination of morphology, particle size, antibody loading capacity, low cytotoxicity, and ease of aerosolization support the potential use of these particles for pulmonary delivery of protein therapeutics.
Collapse
Affiliation(s)
- Songpei Xie
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Amir Erfani
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Saeed Manouchehri
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Joshua Ramsey
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Clint Aichele
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, United States of America.
| |
Collapse
|
22
|
Ghasemlou M, Pn N, Alexander K, Zavabeti A, Sherrell PC, Ivanova EP, Adhikari B, Naebe M, Bhargava SK. Fluorescent Nanocarbons: From Synthesis and Structure to Cancer Imaging and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312474. [PMID: 38252677 DOI: 10.1002/adma.202312474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Nanocarbons are emerging at the forefront of nanoscience, with diverse carbon nanoforms emerging over the past two decades. Early cancer diagnosis and therapy, driven by advanced chemistry techniques, play a pivotal role in mitigating mortality rates associated with cancer. Nanocarbons, with an attractive combination of well-defined architectures, biocompatibility, and nanoscale dimension, offer an incredibly versatile platform for cancer imaging and therapy. This paper aims to review the underlying principles regarding the controllable synthesis, fluorescence origins, cellular toxicity, and surface functionalization routes of several classes of nanocarbons: carbon nanodots, nanodiamonds, carbon nanoonions, and carbon nanohorns. This review also highlights recent breakthroughs regarding the green synthesis of different nanocarbons from renewable sources. It also presents a comprehensive and unified overview of the latest cancer-related applications of nanocarbons and how they can be designed to interface with biological systems and work as cancer diagnostics and therapeutic tools. The commercial status for large-scale manufacturing of nanocarbons is also presented. Finally, it proposes future research opportunities aimed at engendering modifiable and high-performance nanocarbons for emerging applications across medical industries. This work is envisioned as a cornerstone to guide interdisciplinary teams in crafting fluorescent nanocarbons with tailored attributes that can revolutionize cancer diagnostics and therapy.
Collapse
Affiliation(s)
- Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
- Center for Sustainable Products, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Navya Pn
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Katia Alexander
- School of Engineering, The Australian National University, Canberra, ACT, 2601, Australia
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Peter C Sherrell
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Elena P Ivanova
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
| | - Benu Adhikari
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Minoo Naebe
- Carbon Nexus, Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Suresh K Bhargava
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| |
Collapse
|
23
|
Gu X, Ma J, He J. Fabrication of Robust Carbon Dots Containing Coatings with UV-Shielding, Light Conversion, and Antifogging Multiple Functions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1461-1469. [PMID: 38176063 DOI: 10.1021/acs.langmuir.3c03179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Although a wide variety of single-function coatings have been successfully developed, the integration of multiple functions onto a single coating has remained an immense challenge in the field. Here, we report a simple room-temperature fabrication of robust coatings with UV-shielding, light conversion, and antifogging functionalities. The addition of glutaraldehyde (GA) molecular cross-linker and carbon dot (CD) nanocross-linker with light conversion function to poly(vinyl alcohol) (PVA) resulted in the formation of robust spatial structures of coatings. The fluorescence intensity tests demonstrated that the coatings had an excellent ability to absorb and convert ultraviolet light into blue-violet light. Both cold-warm and hot-vapor tests showed that the coatings had excellent antifogging performance. To our surprise, no creases were observed after coatings were immersed in water for 1 month, indicating that these are much stronger than those reported so far. The 8H pencil hardness and wear resistance attested to their excellent mechanical properties. The current preparation method can be operated at ambient temperature and is not restricted by the substrate type and shape. Therefore, it may also expand the possibilities for future applications of coatings for glass windows, optical microscopes, eyeglasses, agricultural greenhouses, and so on.
Collapse
Affiliation(s)
- Xiuxian Gu
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyue Ma
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Junhui He
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
24
|
Novo DC, Edgar KJ. Smart fluorescent polysaccharides: Recent developments and applications. Carbohydr Polym 2024; 324:121471. [PMID: 37985079 PMCID: PMC10661488 DOI: 10.1016/j.carbpol.2023.121471] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 11/22/2023]
Abstract
Polysaccharides are ubiquitous, generally benign in nature, and compatible with many tissues in biomedical situations, making them appealing candidates for new materials such as therapeutic agents and sensors. Fluorescent labeling can create the ability to sensitively monitor distribution and transport of polysaccharide-based materials, which can for example further illuminate drug-delivery mechanisms and therefore improve design of delivery systems. Herein, we review fluorophore selection and ways of appending polysaccharides, utility of the product fluorescent polysaccharides as new smart materials, and their stimulus-responsive nature, with focus on their biomedical applications as environment-sensitive biosensors, imaging, and as molecular rulers. Further, we discuss the advantages and disadvantages of these methods, and future prospects for creation and use of these self-reporting materials.
Collapse
Affiliation(s)
- Diana C Novo
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, VA 24061, United States; Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | - Kevin J Edgar
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, VA 24061, United States; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States; GlycoMIP, National Science Foundation Materials Innovation Platform, United States.
| |
Collapse
|
25
|
Kariminia S, Shamsipur M, Barati A. Fluorescent folic acid-chitosan/carbon dot for pH-responsive drug delivery and bioimaging. Int J Biol Macromol 2024; 254:127728. [PMID: 38287587 DOI: 10.1016/j.ijbiomac.2023.127728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 01/31/2024]
Abstract
Nowadays, one of the most important reasons of death in the world is cancer. With the development of nanotechnology, advanced methods for treatment of cancer have introduced. In this work, the fluorescent carbon dots (CDs) were prepared from chitosan as the second abundant polysaccharide present in the nature. The surface of CDs was modified with chitosan (CDs/CS) and then the amino groups of chitosan were conjugated with activated folic acid (CDs/CS-FA) for controlled delivery of doxorubicin (DOX) as anticancer drug against HeLa cancer cells. The DOX loading efficiency of fluorescent CDs/CS-FA was high and nearly 60 %. Due to pH sensitive swelling/deswelling of CS, the percentage of cumulative DOX release could reach 90 % at cancer tissue (pH of 5.0) and 52 % at normal tissue (pH of 7.4) within 30 h. The cytotoxicity study revealed that the synthesized CDs were highly compatible on HeLa cells with cell viability 97-88 %. Cellular imaging shows that the entry of CDs/CS-FA to HeLa cells causes a green fluorescence, while the CDs/CS without FA have a negligible fluorescence. These results are due to the important role of FA in cell internalization. Thus, the CDs/CS-FA nanocarrier is suitable candidate for controlled pH sensitive drug delivery and cellular imaging.
Collapse
Affiliation(s)
| | | | - Ali Barati
- Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
26
|
Handa M, Sanap SN, Bhatta RS, Patil GP, Ghose S, Singh DP, Shukla R. Combining donepezil and memantine via mannosylated PLGA nanoparticles for intranasal delivery: Characterization and preclinical studies. BIOMATERIALS ADVANCES 2023; 154:213663. [PMID: 37865027 DOI: 10.1016/j.bioadv.2023.213663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 10/23/2023]
Abstract
The current work is focused on developing mannose-coated PLGA nanoparticles for delivering Donepezil and Memantine in one dosage form. The formulated nanoparticles were prepared using a simple emulsification technique. The final coated NPs exhibited 179.4 nm size and - 33.1 mV zeta potential and spherical shape. The concentration of IN-administrated MEM and DPZ mannose coated NPs in brain was ~573 and 207 ng/mL respectively. This amount accounts for 3 times more in comparison to uncoated NPs administered via intranasal and peroral routes. The plasma concentration of coated NPs administered via the intranasal route was various times less in comparison to other groups. In the field of pharmacodynamics, the administration of coated NPs via the IN route has shown superior efficacy in comparison to other groups in various investigations involving neurobehavioral assessments, gene expression analyses and biochemical estimations. The findings indicate that the IN route may be a potential avenue for delivering therapeutic agents using nanoparticles to treat neurological illnesses. This approach shows promise as a viable alternative to traditional dose forms and administration methods.
Collapse
Affiliation(s)
- Mayank Handa
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Sachin Nashik Sanap
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Gajanan Pratap Patil
- Division of Biological Sciences, ICMR-National Institute of Occupational Health, Meghani Nagar, Ahmedabad, Gujarat 380016, India
| | - Suchetana Ghose
- Division of Biological Sciences, ICMR-National Institute of Occupational Health, Meghani Nagar, Ahmedabad, Gujarat 380016, India
| | - Dhirendra Pratap Singh
- Division of Biological Sciences, ICMR-National Institute of Occupational Health, Meghani Nagar, Ahmedabad, Gujarat 380016, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India.
| |
Collapse
|
27
|
Babu AK, Raja MKMM, Zehravi M, Mohammad BD, Anees MI, Prasad C, Yahya BA, Sultana R, Sharma R, Singh J, Khan KA, Siddiqui FA, Khan SL, Emran TB. An overview of polymer surface coated synthetic quantum dots as therapeutics and sensors applications. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 184:1-12. [PMID: 37652186 DOI: 10.1016/j.pbiomolbio.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/01/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Quantum dots (QDs) are a class of remarkable materials that have garnered significant attention since their initial discovery. It is noteworthy to mention that it took approximately a decade for these materials to be successfully implemented in practical applications. While QDs have demonstrated notable optical properties, it is important to note that these attributes alone have not rendered them a feasible substitute for traditional organic dyes. Furthermore, it is worth noting that the substance under investigation exhibited inherent toxicity and instability in its initial state, primarily due to the presence of a heavy metal core. In the initial stages of research, it was observed that the integration of nanocomposites had a positive impact on the properties of QDs. The discovery of these nanocomposites was motivated by the remarkable properties exhibited by biocomposites found in nature. Recent discoveries have shed light on the potential utilization of QDs as a viable strategy for drug delivery, offering a promising avenue to enhance the efficacy of current pharmaceuticals and pave the way for the creation of innovative therapeutic approaches. The primary objective of this review was to elucidate the distinctive characteristics that render QDs highly suitable for utilization as nanocarriers. In this study, we will delve into the multifaceted applications of QDs as sensing nanoprobes and their utilization in diverse drug delivery systems. The focus of our investigation was directed toward the utilization of QD/polymer composites in sensing applications, with particular emphasis on their potential as chemical sensors, biosensors, and physical sensors.
Collapse
Affiliation(s)
- Ancha Kishore Babu
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, KPJ Healthcare University College, 71800, Nilai, Malaysia
| | - M K Mohan Maruga Raja
- Parul Institute of Pharmacy & Research, Parul University, Vadodara, Gujarat, 391110, India
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Al-Kharj, 11942, Saudi Arabia
| | - Badrud Duza Mohammad
- Department of Pharmaceutical Chemistry, G R T Institute of Pharmaceutical Education and Research, GRT Mahalakshmi Nagar, Tiruttani 631209, Tamil Nadu, India
| | - Mohammed Imran Anees
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Aurangabad, Maharashtra, 431003, India
| | | | - Barrawaz Aateka Yahya
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Aurangabad, Maharashtra, 431003, India
| | - Rokeya Sultana
- Yenepoya Pharmacy College and Research Centre, Yenepoya (Deemed to Be University), Deralakatte, 575022, Mangalore, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Khalid Ali Khan
- Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Applied College, King Khalid University, P. O. Box 9004, Abha, 61413, Saudi Arabia
| | - Falak A Siddiqui
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, 413520, Maharashtra, India; Department of Pharmaceutical Chemistry, School of Pharmacy, Anurag University, Hyderabad, India
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, 413520, Maharashtra, India; Department of Pharmaceutical Chemistry, School of Pharmacy, Anurag University, Hyderabad, India.
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| |
Collapse
|
28
|
Chen L, Ye J, Gao C, Deng F, Liu W, Zhang Q. Design and fabrication of gelatin-based hydrogel loaded with modified amniotic extracellular matrix for enhanced wound healing. Heliyon 2023; 9:e20521. [PMID: 37790967 PMCID: PMC10543223 DOI: 10.1016/j.heliyon.2023.e20521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023] Open
Abstract
Trauma can damage the structural integrity of skin leading to its function being affected. There is an urgent clinical need for innovative therapeutic wound dressings. However, several challenges persist despite the current demands. The development and application of functional dressings offer a novel approach to address skin and subcutaneous soft tissue defects. Amniotic membrane as an ideal biological multifunctional material covering wound surface has been reported in clinic. However, current clinical applications of amniotic membrane still have limitations, such as thinness and mechanically weak. In this paper, we employed decellularized human amniotic membrane (dHAM) as a bioactive extracellular matrix (ECM) and modified it through methacrylate (MA) grafting for engineering purposes, resulting in the photosensitive dECMMA. Subsequently, we utilized a photosensitizer to achieve photopolymerization of dECMMA with GelMA hydrogel, successfully creating a novel composite hydrogel termed dECMMA/GelMA. This composite hydrogel not only inherits the favorable physicochemical properties of hydrogels but also maintains comparable levels of bioactivity to dHAM itself, supporting cell proliferation, migration, angiogenesis, and retaining significant anti-inflammatory capacity. Additionally, we evaluated the reparative effect of the designed dECMMA/GelMA composite hydrogel on rabbit wound defects. We demonstrated that the dECMMA/GelMA promoted wound healing and re-epithelization. These findings highlight the substantial benefits and therapeutic potential of the dECMMA/GelMA composite hydrogel as a practical solution for clinical applications in the treatment of soft tissue damage. Furthermore, this research provides a new strategy for designing and manufacturing bioactive dressings with exceptional clinical efficacy in the future.
Collapse
Affiliation(s)
- Lifa Chen
- The Department of Burn & Plastic Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, 368 Hanjiang Middle Road, Yangzhou, Jiangsu, 225009, PR China
| | - JueLan Ye
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Chong Gao
- The Department of Burn & Plastic Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, 368 Hanjiang Middle Road, Yangzhou, Jiangsu, 225009, PR China
| | - Fei Deng
- The Department of Burn & Plastic Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, 368 Hanjiang Middle Road, Yangzhou, Jiangsu, 225009, PR China
| | - Wei Liu
- The Affiliated Suqian First People's Hospital of Nanjing Medical University, 120 Suzhi Road, Suqian, Jiangsu, 223812, PR China
| | - Qiang Zhang
- The Department of Burn & Plastic Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, 368 Hanjiang Middle Road, Yangzhou, Jiangsu, 225009, PR China
| |
Collapse
|
29
|
John VL, Nayana AR, Keerthi TR, K A AK, Sasidharan BCP, T P V. Mulberry Leaves (Morus Rubra)-Derived Blue-Emissive Carbon Dots Fed to Silkworms to Produce Augmented Silk Applicable for the Ratiometric Detection of Dopamine. Macromol Biosci 2023; 23:e2300081. [PMID: 37097218 DOI: 10.1002/mabi.202300081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/13/2023] [Indexed: 04/26/2023]
Abstract
Silk fibers (SF) reeled from silkworms are constituted by natural proteins, and their characteristic structural features render them applicable as materials for textiles and packaging. Modification of SF with functional materials can facilitate their applications in additional areas. In this work, the preparation of functional SF embedded with carbon dots (CD) is reported through the direct feeding of a CD-modified diet to silkworms. Fluorescent and mechanically robust SF are obtained from silkworms (Bombyx mori) that are fed on CDs synthesized from the Morus rubra variant of mulberry leaves (MB-CDs). MB-CDs are introduced to silkworms from the third instar by spraying them on the silkworm feed, the mulberry leaves. MB-CDs are synthesized hydrothermally without adding surface passivating agents and are observed to have a quantum yield of 22%. With sizes of ≈4 nm, MB-CDs exhibited blue fluorescence, and they can be used as efficient fluorophores to detect Dopamine (DA) up to the limit of 4.39 nM. The nanostructures and physical characteristics of SF weren't altered when the SF are infused with MB-CDs. Also, a novel DA sensing application based on fluorescence with the MB-CD incorporated SF is demonstrated.
Collapse
Affiliation(s)
- Varsha Lisa John
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, 560029, India
| | - A R Nayana
- School of Biosciences, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686560, India
| | - T R Keerthi
- School of Biosciences, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686560, India
| | - Athira Krishnan K A
- Centre for Neuroscience, Cochin University of Science and Technology, Kochi, Kerala, 682022, India
| | - B C P Sasidharan
- Centre for Neuroscience, Cochin University of Science and Technology, Kochi, Kerala, 682022, India
| | - Vinod T P
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, 560029, India
| |
Collapse
|
30
|
Gandla K, Kumar KP, Rajasulochana P, Charde MS, Rana R, Singh LP, Haque MA, Bakshi V, Siddiqui FA, Khan SL, Ganguly S. Fluorescent-Nanoparticle-Impregnated Nanocomposite Polymeric Gels for Biosensing and Drug Delivery Applications. Gels 2023; 9:669. [PMID: 37623124 PMCID: PMC10453855 DOI: 10.3390/gels9080669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/05/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Nanocomposite polymeric gels infused with fluorescent nanoparticles have surfaced as a propitious category of substances for biomedical purposes owing to their exceptional characteristics. The aforementioned materials possess a blend of desirable characteristics, including biocompatibility, biodegradability, drug encapsulation, controlled release capabilities, and optical properties that are conducive to imaging and tracking. This paper presents a comprehensive analysis of the synthesis and characterization of fluorescent-nanoparticle-impregnated nanocomposite polymeric gels, as well as their biomedical applications, such as drug delivery, imaging, and tissue engineering. In this discourse, we deliberate upon the merits and obstacles linked to these substances, encompassing biocompatibility, drug encapsulation, optical characteristics, and scalability. The present study aims to provide an overall evaluation of the potential of fluorescent-nanoparticle-impregnated nanocomposite polymeric gels for biomedical applications. Additionally, emerging trends and future directions for research in this area are highlighted.
Collapse
Affiliation(s)
- Kumaraswamy Gandla
- Department of Pharmaceutical Analysis, Chaitanya (Deemed to be University), Hyderabad 500075, India
| | - K. Praveen Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Government of NCT of Delhi, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - P. Rajasulochana
- Department of Microbiology, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Kanchipuram 602105, India
| | - Manoj Shrawan Charde
- Department of Pharmaceutical Chemistry, Government College of Pharmacy, Karad 415124, India
| | - Ritesh Rana
- Department of Pharmaceutics, Himachal Institute of Pharmaceutical Education and Research (HIPER), Hamirpur 177033, India
| | - Laliteshwar Pratap Singh
- Department of Pharmaceutical Chemistry, Narayan Institute of Pharmacy, Gopal Narayan Singh University, Rohtas 821305, India
| | - M. Akiful Haque
- Department of Pharmaceutical Analysis, School of Pharmacy, Anurag University, Hyderabad 500088, India
| | - Vasudha Bakshi
- Department of Pharmaceutics, School of Pharmacy, Anurag University, Hyderabad 500088, India
| | - Falak A. Siddiqui
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, India
- Department of Pharmaceutical Chemistry, School of Pharmacy, Anurag University, Hyderabad 500088, India
| | - Sharuk L. Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, India
- Department of Pharmaceutical Chemistry, School of Pharmacy, Anurag University, Hyderabad 500088, India
| | - S. Ganguly
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Ramat Gan 5290002, Israel
| |
Collapse
|
31
|
Torres FG, Gonzales KN, Troncoso OP, Cañedo VS. Carbon Quantum Dots Based on Marine Polysaccharides: Types, Synthesis, and Applications. Mar Drugs 2023; 21:338. [PMID: 37367663 DOI: 10.3390/md21060338] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
The marine environment offers a vast array of resources, including plants, animals, and microorganisms, that can be utilized to extract polysaccharides such as alginate, carrageenan, chitin, chitosan, agarose, ulvan, porphyra, and many more. These polysaccharides found in marine environments can serve as carbon-rich precursors for synthesizing carbon quantum dots (CQDs). Marine polysaccharides have a distinct advantage over other CQD precursors because they contain multiple heteroatoms, including nitrogen (N), sulfur (S), and oxygen (O). The surface of CQDs can be naturally doped, reducing the need for excessive use of chemical reagents and promoting green methods. The present review highlights the processing methods used to synthesize CQDs from marine polysaccharide precursors. These can be classified according to their biological origin as being derived from algae, crustaceans, or fish. CQDs can be synthesized to exhibit exceptional optical properties, including high fluorescence emission, absorbance, quenching, and quantum yield. CQDs' structural, morphological, and optical properties can be adjusted by utilizing multi-heteroatom precursors. Moreover, owing to their biocompatibility and low toxicity, CQDs obtained from marine polysaccharides have potential applications in various fields, including biomedicine (e.g., drug delivery, bioimaging, and biosensing), photocatalysis, water quality monitoring, and the food industry. Using marine polysaccharides to produce carbon quantum dots (CQDs) enables the transformation of renewable sources into a cutting-edge technological product. This review can provide fundamental insights for the development of novel nanomaterials derived from natural marine sources.
Collapse
Affiliation(s)
- Fernando G Torres
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 15088, Peru
| | - Karen N Gonzales
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 15088, Peru
| | - Omar P Troncoso
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 15088, Peru
| | - Victoria S Cañedo
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 15088, Peru
| |
Collapse
|
32
|
Das TK, Ganguly S. Revolutionizing Food Safety with Quantum Dot-Polymer Nanocomposites: From Monitoring to Sensing Applications. Foods 2023; 12:foods12112195. [PMID: 37297441 DOI: 10.3390/foods12112195] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The present review article investigates the prospective utilisation of quantum dot-polymer nanocomposites in the context of ensuring food safety. The text pertains to the advancement of nanocomposites, encompassing their distinctive optical and electrical characteristics, and their prospective to transform the detection and perception of food safety risks. The article explores diverse methodologies for producing nanocomposites and underscores their potential utility in identifying impurities, microorganisms, and harmful substances in food. The article provides an overview of the challenges and limitations associated with the utilisation of nanocomposites in food safety applications, encompassing concerns regarding toxicity and the necessity for standardised protocols. The review article presents a comprehensive examination of the present research status in this area and underscores the potential of quantum dots-polymer nanocomposites in transforming food safety monitoring and sensing.
Collapse
Affiliation(s)
- Tushar Kanti Das
- Institute of Physics-Center for Science and Education, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
| | - Sayan Ganguly
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Ramat Gan 5290002, Israel
| |
Collapse
|
33
|
Mohan H, Fagan A, Giordani S. Carbon Nanomaterials (CNMs) in Cancer Therapy: A Database of CNM-Based Nanocarrier Systems. Pharmaceutics 2023; 15:pharmaceutics15051545. [PMID: 37242787 DOI: 10.3390/pharmaceutics15051545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Carbon nanomaterials (CNMs) are an incredibly versatile class of materials that can be used as scaffolds to construct anticancer nanocarrier systems. The ease of chemical functionalisation, biocompatibility, and intrinsic therapeutic capabilities of many of these nanoparticles can be leveraged to design effective anticancer systems. This article is the first comprehensive review of CNM-based nanocarrier systems that incorporate approved chemotherapy drugs, and many different types of CNMs and chemotherapy agents are discussed. Almost 200 examples of these nanocarrier systems have been analysed and compiled into a database. The entries are organised by anticancer drug type, and the composition, drug loading/release metrics, and experimental results from these systems have been compiled. Our analysis reveals graphene, and particularly graphene oxide (GO), as the most frequently employed CNM, with carbon nanotubes and carbon dots following in popularity. Moreover, the database encompasses various chemotherapeutic agents, with antimicrotubule agents being the most common payload due to their compatibility with CNM surfaces. The benefits of the identified systems are discussed, and the factors affecting their efficacy are detailed.
Collapse
Affiliation(s)
- Hugh Mohan
- School of Chemical Sciences, Dublin City University, Glasnevin, D09 NA55 Dublin, Ireland
| | - Andrew Fagan
- School of Chemical Sciences, Dublin City University, Glasnevin, D09 NA55 Dublin, Ireland
| | - Silvia Giordani
- School of Chemical Sciences, Dublin City University, Glasnevin, D09 NA55 Dublin, Ireland
| |
Collapse
|
34
|
Singh A, Ahirwar RC, Borgaonkar K, Gupta N, Ahsan M, Rathore J, Das P, Ganguly S, Rawat R. Synthesis of Transition-Metal-Doped Nanocatalysts with Antibacterial Capabilities Using a Complementary Green Method. Molecules 2023; 28:molecules28104182. [PMID: 37241922 DOI: 10.3390/molecules28104182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
A facile single-step wet chemical synthesis of a transition-metal-doped molybdate derivative was achieved via an Ocimum tenuiflorum extract-mediated green approach. The Synthesized nanomaterials of doped molybdate were characterized by optical and other spectroscopic techniques, which confirmed the size of nanocrystalline (~27.3 nm). The thermal stability of the nanomaterials confirmed through thermogravimetric analysis showed similarity with nanomaterials of Mn-ZnMoO4. Moreover, the nanoparticles displayed a non-toxic nature and showed antibactericidal activity. The impact of doping was reflected in band gap measurements; undoped ZnMoO4 showed relatively lower band gap in comparison to Mn-doped ZnMoO4. In the presence of light, ZnMoO4 nanomaterials a exhibited photocatalytic response to solochrome dark blue dye with a concentration of 50 ppm. OH- and O2*- radicals also destroyed the blue color of the dye within 2 min and showed potential antibactericidal activity towards both Gram-positive and Gram-negative bacteria, representing a unique application of the green-synthesized nanocatalyst.
Collapse
Affiliation(s)
- Anshul Singh
- Department of Chemistry, Baba Mastnath University, Rohtak 124021, India
| | | | | | - Neeta Gupta
- Department of Chemistry, Government E. Raghavendra Rao P.G. Science College, Bilaspur 495001, India
| | - Muhammad Ahsan
- Joint Doctoral School, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Jyoti Rathore
- Department of Chemistry, Government Engineer Vishwesarraiya Post Graduate College, Korba 495677, India
| | - P Das
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Ramat Gan 5290002, Israel
| | - S Ganguly
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Ramat Gan 5290002, Israel
| | - Reena Rawat
- Department of Chemical Sciences, Siddhachalam Laboratory, Raipur 493221, India
| |
Collapse
|
35
|
Wang Y, Lv T, Yin K, Feng N, Sun X, Zhou J, Li H. Carbon Dot-Based Hydrogels: Preparations, Properties, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207048. [PMID: 36709483 DOI: 10.1002/smll.202207048] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/31/2022] [Indexed: 06/18/2023]
Abstract
Hydrogels have extremely high moisture content, which makes it very soft and excellently biocompatible. They have become an important soft material and have a wide range of applications in various fields such as biomedicine, bionic smart material, and electrochemistry. Carbon dot (CD)-based hydrogels are based on carbon dots (CDs) and auxiliary substances, forming a gel material with comprehensive properties of individual components. CDs embedding in hydrogels could not only solve their aggregation-caused quenching (ACQ) effect, but also manipulate the properties of hydrogels and even bring some novel properties, achieving a win-win situation. In this review, the preparation methods, formation mechanism, and properties of CD-based hydrogels, and their applications in biomedicine, sensing, adsorption, energy storage, and catalysis -are summarized. Finally, a brief discussion on future research directions of CD-based hydrogels will be given.
Collapse
Affiliation(s)
- Yijie Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Tingjie Lv
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Keyang Yin
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Ning Feng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Xiaofeng Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Jin Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Hongguang Li
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
36
|
Kanungo S, Gupta N, Rawat R, Jain B, Solanki A, Panday A, Das P, Ganguly S. Doped Carbon Quantum Dots Reinforced Hydrogels for Sustained Delivery of Molecular Cargo. J Funct Biomater 2023; 14:jfb14030166. [PMID: 36976090 PMCID: PMC10057248 DOI: 10.3390/jfb14030166] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Hydrogels have emerged as important soft materials with numerous applications in fields including biomedicine, biomimetic smart materials, and electrochemistry. Because of their outstanding photo-physical properties and prolonged colloidal stability, the serendipitous findings of carbon quantum dots (CQDs) have introduced a new topic of investigation for materials scientists. CQDs confined polymeric hydrogel nanocomposites have emerged as novel materials with integrated properties of the individual constituents, resulting in vital uses in the realm of soft nanomaterials. Immobilizing CQDs within hydrogels has been shown to be a smart tactic for preventing the aggregation-caused quenching effect and also for manipulating the characteristics of hydrogels and introducing new properties. The combination of these two very different types of materials results in not only structural diversity but also significant improvements in many property aspects, leading to novel multifunctional materials. This review covers the synthesis of doped CQDs, different fabrication techniques for nanostructured materials made of CQDs and polymers, as well as their applications in sustained drug delivery. Finally, a brief overview of the present market and future perspectives are discussed.
Collapse
Affiliation(s)
- Shweta Kanungo
- Department of Engineering Science and Humanities, Indore Institute of Science and Technology, Indore 452001, Madhya Pradesh, India
| | - Neeta Gupta
- Department of Chemistry, Govt. E. Raghavendra Rao P. G. Science College, Bilaspur 495001, Chhattisgarh, India
| | - Reena Rawat
- Department of Chemistry, Echelon Institute of Technology, Faridabad 121101, Haryana, India
| | - Bhawana Jain
- Department of Chemistry, Govt. V.Y.T. PG. Autonomous College, Durg 491001, Chhattisgarh, India
| | - Aruna Solanki
- Department of Chemistry, JNS Govt PG College Shujalpur, Affiliated to Vikram University Ujjain (M.P.), Dist Shajapur 465333, Madhya Pradesh, India
| | - Ashutosh Panday
- Department of Physics, Dr. C.V. Raman University, Kota, Bilaspur 495113, Chhattisgarh, India
| | - P Das
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Ramat Gan 5290002, Israel
| | - S Ganguly
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Ramat Gan 5290002, Israel
| |
Collapse
|
37
|
Merino-Gómez M, Gil J, Perez RA, Godoy-Gallardo M. Polydopamine Incorporation Enhances Cell Differentiation and Antibacterial Properties of 3D-Printed Guanosine-Borate Hydrogels for Functional Tissue Regeneration. Int J Mol Sci 2023; 24:ijms24044224. [PMID: 36835636 PMCID: PMC9964593 DOI: 10.3390/ijms24044224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/22/2023] Open
Abstract
Tissue engineering focuses on the development of materials as biosubstitutes that can be used to regenerate, repair, or replace damaged tissues. Alongside this, 3D printing has emerged as a promising technique for producing implants tailored to specific defects, which in turn increased the demand for new inks and bioinks. Especially supramolecular hydrogels based on nucleosides such as guanosine have gained increasing attention due to their biocompatibility, good mechanical characteristics, tunable and reversible properties, and intrinsic self-healing capabilities. However, most existing formulations exhibit insufficient stability, biological activity, or printability. To address these limitations, we incorporated polydopamine (PDA) into guanosine-borate (GB) hydrogels and developed a PGB hydrogel with maximal PDA incorporation and good thixotropic and printability qualities. The resulting PGB hydrogels exhibited a well-defined nanofibrillar network, and we found that PDA incorporation increased the hydrogel's osteogenic activity while having no negative effect on mammalian cell survival or migration. In contrast, antimicrobial activity was observed against the Gram-positive bacteria Staphylococcus aureus and Staphylococcus epidermidis. Thus, our findings suggest that our PGB hydrogel represents a significantly improved candidate as a 3D-printed scaffold capable of sustaining living cells, which may be further functionalized by incorporating other bioactive molecules for enhanced tissue integration.
Collapse
Affiliation(s)
- Maria Merino-Gómez
- Bioengineering Institute of Technology (BIT), International University of Catalonia (UIC), Carrer de Josep Trueta, Sant Cugat del Vallès, 08195 Barcelona, Spain
| | - Javier Gil
- Bioengineering Institute of Technology (BIT), International University of Catalonia (UIC), Carrer de Josep Trueta, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Department of Dentistry, Faculty of Dentistry, International University of Catalonia (UIC), Carrer de Josep Trueta, Sant Cugat del Vallès, 08195 Barcelona, Spain
| | - Roman A. Perez
- Bioengineering Institute of Technology (BIT), International University of Catalonia (UIC), Carrer de Josep Trueta, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Correspondence: (R.A.P.); (M.G.-G.); Tel.: +34-935-042-000 (ext. 5826) (R.A.P. & M.G.-G.)
| | - Maria Godoy-Gallardo
- Bioengineering Institute of Technology (BIT), International University of Catalonia (UIC), Carrer de Josep Trueta, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Correspondence: (R.A.P.); (M.G.-G.); Tel.: +34-935-042-000 (ext. 5826) (R.A.P. & M.G.-G.)
| |
Collapse
|
38
|
Qiu Y, Wu L, Liu S, Yu W. Impact-Protective Bicontinuous Hydrogel/Ultrahigh-Molecular Weight Polyethylene Fabric Composite with Multiscale Energy Dissipation Structures for Soft Body Armor. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10053-10063. [PMID: 36774657 DOI: 10.1021/acsami.2c22993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Soft body armor greatly improves the comfort and security of the wearers. Although laminates based on high-performance fabrics have been adopted, it remains an enormous challenge to develop fabric laminates having flexibility, low bulge deformation, and ballistic protection capability simultaneously. Herein, we report a bullet-proof bicontinuous hydrogel (BH)/ultrahigh-molecular weight polyethylene fabric (UPF) composite. The presence of the BH significantly improves the impact resistance performance of the UPF, without compromising its flexibility. In specific, the multiscale energy dissipation structures composed of hydrogen bond associations in the chain scale, bicontinuous phase structures in the nanoscale, and fibers in the microscale are broken to dissipate energy. As a result, the impact energy of the bullet is greatly absorbed and the bulge height of the composites is significantly reduced in contrast to the neat UPF laminates. This study indicates that the flexible BH-UPF composites with multiscale energy dissipation structures have a promising application in soft body armor.
Collapse
Affiliation(s)
- Yan Qiu
- Advanced Rheology Institute, Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Liang Wu
- Advanced Rheology Institute, Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Sijun Liu
- Advanced Rheology Institute, Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wei Yu
- Advanced Rheology Institute, Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
39
|
Progression of Quantum Dots Confined Polymeric Systems for Sensorics. Polymers (Basel) 2023; 15:polym15020405. [PMID: 36679283 PMCID: PMC9863920 DOI: 10.3390/polym15020405] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
The substantial fluorescence (FL) capabilities, exceptional photophysical qualities, and long-term colloidal stability of quantum dots (QDs) have aroused a lot of interest in recent years. QDs have strong and wide optical absorption, good chemical stability, quick transfer characteristics, and facile customization. Adding polymeric materials to QDs improves their effectiveness. QDs/polymer hybrids have implications in sensors, photonics, transistors, pharmaceutical transport, and other domains. There are a great number of review articles available online discussing the creation of CDs and their many uses. There are certain review papers that can be found online that describe the creation of composites as well as their many different uses. For QDs/polymer hybrids, the emission spectra were nearly equal to those of QDs, indicating that the optical characteristics of QDs were substantially preserved. They performed well as biochemical and biophysical detectors/sensors for a variety of targets because of their FL quenching efficacy. This article concludes by discussing the difficulties that still need to be overcome as well as the outlook for the future of QDs/polymer hybrids.
Collapse
|
40
|
Das P, Ganguly S, Saravanan A, Margel S, Gedanken A, Srinivasan S, Rajabzadeh AR. Naturally Derived Carbon Dots In Situ Confined Self-Healing and Breathable Hydrogel Monolith for Anomalous Diffusion-Driven Phytomedicine Release. ACS APPLIED BIO MATERIALS 2022; 5:5617-5633. [PMID: 36480591 DOI: 10.1021/acsabm.2c00664] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fluorescent nanocarbons are well-proficient nanomaterials because of their optical properties and surface engineering. Herein, Apium graveolens-derived carbon dots (ACDs) have been synthesized by a one-step hydrothermal process without using any surplus vigorous chemicals or ligands. ACDs were captured via an in situ gelation reaction to form a semi-interpenetrating polymer network system showing mechanical robustness, fluorescent behavior, and natural adhesivity. ACDs-reinforced hydrogels were tested against robust uniaxial stress, repeated mechanical stretching, thixotropy, low creep, and fast strain recovery, confirming their elastomeric sustainability. Moreover, the room-temperature self-healing behavior was observed for the ACDs-reinforced hydrogels, with a healing efficacy of more than 45%. Water imbibition through hydrogel surfaces was digitally monitored via "breathing" and "accelerated breathing" behaviors. The phytomedicine release from the hydrogels was tuned by the ACDs' microstructure regulatory activity, resulting in better control of the diffusion rate compared to conventional chemical hydrogels. Finally, the phytomedicine-loaded hydrogels were found to be excellent bactericidal materials eradicating more than 85% of Gram-positive and -negative bacteria. The delayed network rupturing, superstretchability, fluorescent self-healing, controlled release, and antibacterial behavior could make this material an excellent alternative to soft biomaterials and soft robotics.
Collapse
Affiliation(s)
- Poushali Das
- School of Biomedical Engineering, McMaster University, 1280 Main Street, West Hamilton, OntarioL8S 4L8, Canada
| | - Sayan Ganguly
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan5290002, Israel
| | - Arumugam Saravanan
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan5290002, Israel
| | - Shlomo Margel
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan5290002, Israel
| | - Aharon Gedanken
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan5290002, Israel
| | - Seshasai Srinivasan
- School of Biomedical Engineering, McMaster University, 1280 Main Street, West Hamilton, OntarioL8S 4L8, Canada.,W Booth School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, OntarioL8S 4L7, Canada
| | - Amin Reza Rajabzadeh
- School of Biomedical Engineering, McMaster University, 1280 Main Street, West Hamilton, OntarioL8S 4L8, Canada.,W Booth School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, OntarioL8S 4L7, Canada
| |
Collapse
|
41
|
Wiśniewski M. The Consequences of Water Interactions with Nitrogen-Containing Carbonaceous Quantum Dots-The Mechanistic Studies. Int J Mol Sci 2022; 23:14292. [PMID: 36430767 PMCID: PMC9694419 DOI: 10.3390/ijms232214292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/20/2022] Open
Abstract
Despite the importance of quantum dots in a wide range of biological, chemical, and physical processes, the structure of the molecular layers surrounding their surface in solution remains unknown. Thus, knowledge about the interaction mechanism of Nitrogen enriched Carbonaceous Quantum Dots' (N-CQDs) surface with water-their natural environment-is highly desirable. A diffusive and Stern layer over the N-CQDs, characterized in situ, reveals the presence of anionic water clusters [OH(H2O)n]-. Their existence explains new observations: (i) the unexpectedly low adsorption enthalpy (ΔHads) in a pressure range below 0.1 p/ps, and ΔHads being as high as 190 kJ/mol at 0.11 p/ps; (ii) the presence of a "conductive window" isolating nature-at p/ps below 0.45-connected to the formation of smaller clusters and increasing conductivity above 0.45 p/ps, (iii) Stern layer stability; and (iv) superhydrophilic properties of the tested material. These observables are the consequences of H2O dissociative adsorption on N-containing basic centers. The additional direct application of surfaces formed by N-CQDs spraying is the possibility of creating antistatic, antifogging, bio-friendly coatings.
Collapse
Affiliation(s)
- Marek Wiśniewski
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| |
Collapse
|
42
|
Li X, Lu Y, Li J, Zhou S, Wang Y, Li L, Zhao F. Photoluminescent carbon dots (PCDs) from sour apple: a biocompatible nanomaterial for preventing UHMWPE wear-particle induced osteolysis via modulating Chemerin/ChemR23 and SIRT1 signaling pathway and its bioimaging application. J Nanobiotechnology 2022; 20:301. [PMID: 35761350 PMCID: PMC9235131 DOI: 10.1186/s12951-022-01498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/07/2022] [Indexed: 11/10/2022] Open
Abstract
Photoluminescent nanomaterials have been widely employed in several biological applications both in vitro and in vivo. For the first time, we report a novel application of sour apple-derived photoluminescent carbon dots (PCDs) for reducing ultra-high molecular weight polyethylene (UHMWPE) wear particle-induced osteolysis using mouse calvarial model. Generally, aseptic prosthetic loosening seems to be a significant postoperative problem for artificial joints replacement, which is mainly contributed by UHMWPE-induced osteolysis. Hence, inhibiting osteoclastic bone-resorption could minimize UHMWPE-induced osteolysis for implant loosening. Prior to osteolysis studies, the prepared sour apple-derived PCDs were employed for bioimaging application. As expected, the prepared PCDs effectively inhibited the UHMWPE particle-induced osteoclastogenesis in vitro. The PCDs treatment effectively inhibited the UHMWPE-induced osteoclast differentiation, F-actin ring pattern, and bone resorption in vitro. Also, the PCDs reduced the UHMWPE-induced ROS stress as well as the expression level of pro-inflammatory cytokines, including TNF-α, IL-1, IL-6, and IL-8. Further, the qPCR and western blot results hypothesized that PCDs inhibited the UHMWPE wear particle-induced osteolysis through suppressing chemerin/ChemR23 signaling and NFATc1 pathway, along with upregulation of SIRT1 expression. Overall, these findings suggest that the synthesized PCDs could be a potential therapeutic material for minimizing UHMWPE particle-induced periprosthetic osteolysis to avoid postoperative complications.
Collapse
Affiliation(s)
- Xiang Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Yang Lu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Jiarui Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Shengji Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Yuxin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Liangping Li
- Department of Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Fengchao Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
43
|
Ganguly S, Margel S. 3D printed magnetic polymer composite hydrogels for hyperthermia and magnetic field driven structural manipulation. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101574] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Xu J, Kim KO, Yoon KJ. Effect of Cross-Linker Length on the Absorption Characteristics of the Sodium Salt of Cross-Linked Polyaspartic Acid. Polymers (Basel) 2022; 14:polym14112244. [PMID: 35683915 PMCID: PMC9182766 DOI: 10.3390/polym14112244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/06/2022] [Accepted: 05/14/2022] [Indexed: 12/10/2022] Open
Abstract
For the development of biodegradable superabsorbent polymers, the effect of the cross-linking length on the absorption characteristics of the Na salt of polyaspartic acid (PAspNa) was demonstrated using different concentrations of diamine cross-linking agents bearing carbon chains of different lengths, viz., ethylenediamine, 1,6-hexamethylenediamine, 1,8-diaminooctane, 1,10-diaminodecane, and 1,12-diaminododecane were used as cross-linking agents. The absorption of PAspNa was measured in deionised water and in a 0.9% aqueous NaCl solution. Under the conditions tested, when the alkyl chain of PAspNa was too short or too long, the absorbency was low and the cross-linking length was optimum. The success of the cross-linking reaction was confirmed by FT-IR spectroscopy. The degree of cross-linking was estimated and the ideal concentration for maximum water absorption was determined by elemental analysis. The sample obtained by cross-linking 1,8-diaminooctane at a concentration of 0.11 g/g polysuccinimide (PSI) showed the highest absorption. The thermal properties of each material were determined by dynamic scanning calorimetry. Therefore, the length of the cross-linking agent was found to strongly influence water absorption.
Collapse
Affiliation(s)
- Junchao Xu
- Jiangsu New Vision Advanced Functional Fiber Innovation Center Co., Ltd., Suzhou 215000, China;
| | - Kyu Oh Kim
- Department of Fiber System Engineering, Dankook University, 152, Jookjeon-ro, Suji-gu, Yongin-si 16890, Korea;
| | - Kee Jong Yoon
- Department of Fiber System Engineering, Dankook University, 152, Jookjeon-ro, Suji-gu, Yongin-si 16890, Korea;
- Correspondence: ; Tel.: +82-31-8005-3561; Fax: +82-31-8005-3564
| |
Collapse
|
45
|
Zhang W, Kuang Z, Song P, Li W, Gui L, Tang C, Tao Y, Ge F, Zhu L. Synthesis of a Two-Dimensional Molybdenum Disulfide Nanosheet and Ultrasensitive Trapping of Staphylococcus Aureus for Enhanced Photothermal and Antibacterial Wound-Healing Therapy. NANOMATERIALS 2022; 12:nano12111865. [PMID: 35683721 PMCID: PMC9182539 DOI: 10.3390/nano12111865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/25/2022]
Abstract
Photothermal therapy has been widely used in the treatment of bacterial infections. However, the short photothermal effective radius of conventional nano-photothermal agents makes it difficult to achieve effective photothermal antibacterial activity. Therefore, improving composite targeting can significantly inhibit bacterial growth. We inhibited the growth of Staphylococcus aureus (S. aureus) by using an extremely low concentration of vancomycin (Van) and applied photothermal therapy with molybdenum disulfide (MoS2). This simple method used chitosan (CS) to synthesize fluorescein 5(6)-isothiocyanate (FITC)-labeled and Van-loaded MoS2-nanosheet hydrogels (MoS2-Van-FITC@CS). After modifying the surface, an extremely low concentration of Van could inhibit bacterial growth by trapping bacteria synergistically with the photothermal effects of MoS2, while FITC labeled bacteria and chitosan hydrogels promoted wound healing. The results showed that MoS2-Van-FITC@CS nanosheets had a thickness of approximately 30 nm, indicating the successful synthesis of the nanosheets. The vitro antibacterial results showed that MoS2-Van-FITC with near-infrared irradiation significantly inhibited S. aureus growth, reaching an inhibition rate of 94.5% at nanoparticle concentrations of up to 100 µg/mL. Furthermore, MoS2-Van-FITC@CS could exert a healing effect on wounds in mice. Our results demonstrate that MoS2-Van-FITC@CS is biocompatible and can be used as a wound-healing agent.
Collapse
Affiliation(s)
- Weiwei Zhang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; (W.Z.); (Z.K.); (P.S.); (W.L.); (C.T.)
| | - Zhao Kuang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; (W.Z.); (Z.K.); (P.S.); (W.L.); (C.T.)
| | - Ping Song
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; (W.Z.); (Z.K.); (P.S.); (W.L.); (C.T.)
| | - Wanzhen Li
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; (W.Z.); (Z.K.); (P.S.); (W.L.); (C.T.)
| | - Lin Gui
- Department of Microbiology and Immunology, Wannan Medical College, Wuhu 241002, China;
| | - Chuchu Tang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; (W.Z.); (Z.K.); (P.S.); (W.L.); (C.T.)
| | - Yugui Tao
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; (W.Z.); (Z.K.); (P.S.); (W.L.); (C.T.)
- Correspondence: (Y.T.); (F.G.); (L.Z.)
| | - Fei Ge
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; (W.Z.); (Z.K.); (P.S.); (W.L.); (C.T.)
- Correspondence: (Y.T.); (F.G.); (L.Z.)
| | - Longbao Zhu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; (W.Z.); (Z.K.); (P.S.); (W.L.); (C.T.)
- Correspondence: (Y.T.); (F.G.); (L.Z.)
| |
Collapse
|
46
|
Chen T, Zhang H, Zhao S. Stimulus-Responsiveness of Thermo-Sensitive Polymer Hybridized with N-Doped Carbon Quantum Dots and Its Applications in Solvent Recognition and Fe 3+ Ion Detection. Polymers (Basel) 2022; 14:polym14101970. [PMID: 35631853 PMCID: PMC9147206 DOI: 10.3390/polym14101970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
To fabricate N-CQDs hybrid thermo-sensitive polymer (poly-N-CQDs), N-doped carbon quantum dots (N-CQDs) with strong blue fluorescence and poly(N-isopropylacrylamide-co-acrylic acid) (poly(NIPAAm-co-AAc)) copolymer with thermo-sensitivity were synthesized, respectively. Subsequently, the coupling reaction between. the -COOH groups of poly(NIPAAm-co-AAc) and the -NH2 groups on the surface of the N-CQDs was carried out. The fluorescence spectra show that the coil-globule transition of the poly-N-CQDs coincided with intensity changes in the scattering peak at excitation wavelength with the temperature variations. The phase transition temperature and the fluorescent intensity of poly-N-CQDs can be regulated by modulating the composition and concentration of poly-N-CQDs as well as the temperature and pH of the local medium. The thermo-sensitivity and fluorescent properties of the poly-N-CQDs displayed good stability and reversibility. The fluorescence intensity and emission wavelengths of the poly-N-CQDs significantly changed in different solvents for solvent recognition. The poly-N-CQDs was employed as a fluorescent probe for Fe3+ detection ranging from 0.025 to 1 mM with a limit of detection (LOD) of 9.49 μM. The hybrid polymer materials have the potential to develop an N-CQDs-based thermo-sensitive device or sensor.
Collapse
|
47
|
Kocak FZ, Yar M, Rehman IU. Hydroxyapatite-Integrated, Heparin- and Glycerol-Functionalized Chitosan-Based Injectable Hydrogels with Improved Mechanical and Proangiogenic Performance. Int J Mol Sci 2022; 23:ijms23105370. [PMID: 35628172 PMCID: PMC9140455 DOI: 10.3390/ijms23105370] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
The investigation of natural bioactive injectable composites to induce angiogenesis during bone regeneration has been a part of recent minimally invasive regenerative medicine strategies. Our previous study involved the development of in situ-forming injectable composite hydrogels (Chitosan/Hydroxyapatite/Heparin) for bone regeneration. These hydrogels offered facile rheology, injectability, and gelation at 37 °C, as well as promising pro-angiogenic abilities. In the current study, these hydrogels were modified using glycerol as an additive and a pre-sterile production strategy to enhance their mechanical strength. These modifications allowed a further pH increment during neutralisation with maintained solution homogeneity. The synergetic effect of the pH increment and further hydrogen bonding due to the added glycerol improved the strength of the hydrogels substantially. SEM analyses showed highly cross-linked hydrogels (from high-pH solutions) with a hierarchical interlocking pore morphology. Hydrogel solutions showed more elastic flow properties and incipient gelation times decreased to just 2 to 3 min at 37 °C. Toluidine blue assay and SEM analyses showed that heparin formed a coating at the top layer of the hydrogels which contributed anionic bioactive surface features. The chick chorioallantoic membrane (CAM) assay confirmed significant enhancement of angiogenesis with chitosan-matrixed hydrogels comprising hydroxyapatite and small quantities of heparin (33 µg/mL) compared to basic chitosan hydrogels.
Collapse
Affiliation(s)
- Fatma Z. Kocak
- Engineering-Architecture Faculty, Metallurgy and Material Engineering, Nevsehir Haci Bektas Veli University, Nevsehir 50300, Turkey;
- Engineering Department, Lancaster University, Lancaster LA1 4YW, UK
| | - Muhammad Yar
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan;
| | - Ihtesham U. Rehman
- Engineering-Architecture Faculty, Metallurgy and Material Engineering, Nevsehir Haci Bektas Veli University, Nevsehir 50300, Turkey;
- Correspondence:
| |
Collapse
|
48
|
Polymerizable Skin Hydrogel for Full Thickness Wound Healing. Int J Mol Sci 2022; 23:ijms23094837. [PMID: 35563225 PMCID: PMC9100232 DOI: 10.3390/ijms23094837] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022] Open
Abstract
The skin is the largest organ in the human body, comprising the main barrier against the environment. When the skin loses its integrity, it is critical to replace it to prevent water loss and the proliferation of opportunistic infections. For more than 40 years, tissue-engineered skin grafts have been based on the in vitro culture of keratinocytes over different scaffolds, requiring between 3 to 4 weeks of tissue culture before being used clinically. In this study, we describe the development of a polymerizable skin hydrogel consisting of keratinocytes and fibroblast entrapped within a fibrin scaffold. We histologically characterized the construct and evaluated its use on an in vivo wound healing model of skin damage. Our results indicate that the proposed methodology can be used to effectively regenerate skin wounds, avoiding the secondary in vitro culture steps and thus, shortening the time needed until transplantation in comparison with other bilayer skin models. This is achievable due to the instant polymerization of the keratinocytes and fibroblast combination that allows a direct application on the wound. We suggest that the polymerizable skin hydrogel is an inexpensive, easy and rapid treatment that could be transferred into clinical practice in order to improve the treatment of skin wounds.
Collapse
|
49
|
Qi H, Li Q, Jing J, Jing T, Liu C, Qiu L, Sami R, Helal M, Ismail KA, Aljahani AH. Construction of N-CDs and Calcein-Based Ratiometric Fluorescent Sensor for Rapid Detection of Arginine and Acetaminophen. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:976. [PMID: 35335790 PMCID: PMC8953410 DOI: 10.3390/nano12060976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 11/21/2022]
Abstract
In our study, a unique ratiometric fluorescent sensor for the rapid detection of arginine (Arg) and acetaminophen (AP) was constructed by the integration of blue fluorescent N-CDs and yellowish-green fluorescent calcein. The N-CD/calcein ratiometric fluorescent sensor exhibited dual emission at 435 and 519 nm under the same excitation wavelength of 370 nm, and caused potential Förster resonance energy transfer (FRET) from N-CDs to calcein. When detecting Arg, the blue fluorescence from the N-CDs of the N-CD/calcein sensor was quenched by the interaction of N-CDs and Arg. Then, the fluorescence of our sensor was recovered with the addition of AP, possibly due to the stronger association between AP and Arg, leading to the dissociation of Arg from N-CDs. Meanwhile, we observed an obvious fluorescence change from blue to green, then back to blue, when Arg and AP were added, exhibiting the "on-off-on" pattern. Next, we determined the detection limits of the N-CD/calcein sensor to Arg and AP, which were as low as 0.08 μM and 0.02 μM, respectively. Furthermore, we discovered that the fluorescence changes of the N-CD/calcein sensor were only responsible for Arg and AP. These results suggested its high sensitivity and specificity for Arg and AP detection. In addition, we have successfully achieved its application in bovine serum samples, indicating its practicality. Lastly, the logic gate was generated by the N-CD/calcein sensor and presented its good reversibility. Overall, we have demonstrated that our N-CD/calcein sensor is a powerful sensor to detect Arg and AP and that it has potential applications in biological analysis and imaging.
Collapse
Affiliation(s)
- Haiyan Qi
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42, Wenhua Street, Qiqihar 161006, China; (Q.L.); (T.J.); (C.L.); (L.Q.)
| | - Qiuying Li
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42, Wenhua Street, Qiqihar 161006, China; (Q.L.); (T.J.); (C.L.); (L.Q.)
| | - Jing Jing
- School of Medicine and Health, Harbin Institute of Technology, No.92, West Dazhi Street, Harbin 150000, China
| | - Tao Jing
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42, Wenhua Street, Qiqihar 161006, China; (Q.L.); (T.J.); (C.L.); (L.Q.)
| | - Chuntong Liu
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42, Wenhua Street, Qiqihar 161006, China; (Q.L.); (T.J.); (C.L.); (L.Q.)
| | - Lixin Qiu
- College of Chemistry and Chemical Engineering, Qiqihar University, No. 42, Wenhua Street, Qiqihar 161006, China; (Q.L.); (T.J.); (C.L.); (L.Q.)
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mahmoud Helal
- Department of Mechanical Engineering, Faculty of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Khadiga Ahmed Ismail
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Amani H. Aljahani
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| |
Collapse
|
50
|
Krystyjan M, Khachatryan G, Khachatryan K, Krzan M, Ciesielski W, Żarska S, Szczepankowska J. Polysaccharides Composite Materials as Carbon Nanoparticles Carrier. Polymers (Basel) 2022; 14:948. [PMID: 35267771 PMCID: PMC8912318 DOI: 10.3390/polym14050948] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/10/2022] Open
Abstract
Nanotechnology is a dynamically developing field of science, due to the unique physical, chemical and biological properties of nanomaterials. Innovative structures using nanotechnology have found application in diverse fields: in agricultural and food industries, where they improve the quality and safety of food; in medical and biological sciences; cosmetology; and many other areas of our lives. In this article, a particular attention is focused on carbon nanomaterials, especially graphene, as well as carbon nanotubes and carbon quantum dots that have been successfully used in biotechnology, biomedicine and broadly defined environmental applications. Some properties of carbon nanomaterials prevent their direct use. One example is the difficulty in synthesizing graphene-based materials resulting from the tendency of graphene to aggregate. This results in a limitation of their use in certain fields. Therefore, in order to achieve a wider use and better availability of nanoparticles, they are introduced into matrices, most often polysaccharides with a high hydrophilicity. Such composites can compete with synthetic polymers. For this purpose, the carbon-based nanoparticles in polysaccharides matrices were characterized. The paper presents the progress of ground-breaking research in the field of designing innovative carbon-based nanomaterials, and applications of nanotechnology in diverse fields that are currently being developed is of high interest and shows great innovative potential.
Collapse
Affiliation(s)
- Magdalena Krystyjan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland;
| | - Gohar Khachatryan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland;
| | - Karen Khachatryan
- Faculty of Food Technology, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland;
| | - Marcel Krzan
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Krakow, Poland;
| | - Wojciech Ciesielski
- Institute of Chemistry, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland; (W.C.); (S.Ż.)
| | - Sandra Żarska
- Institute of Chemistry, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland; (W.C.); (S.Ż.)
| | - Joanna Szczepankowska
- Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland;
| |
Collapse
|