1
|
Zhao Q, Wu T, Tang C, Li J, Wu M, Wu J, Wang Z, Zhu Y, Xu H, Li X. Biomimetic nanocrystals co-deliver paclitaxel and small-molecule LF3 for ferroptosis-combined chemotherapy for gastric cancer. Colloids Surf B Biointerfaces 2025; 251:114586. [PMID: 40010081 DOI: 10.1016/j.colsurfb.2025.114586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 02/28/2025]
Abstract
Combination chemotherapy is considered more effective than monotherapy in enhancing clinical outcomes. Ferroptosis, a unique form of regulated cell death, has been demonstrated to inhibit tumor growth and progression. Consequently, combining ferroptosis with chemotherapy represents a promising and innovative approach to antitumor therapy. In this study, we developed a novel TMTP1-modified biomimetic nanocrystal (TRNC@P + L) for the co-delivery of PTX and LF3, aiming to achieve ferroptosis-combined chemotherapy in gastric cancer. TRNC@P + L, which incorporates a tumor-homing peptide-modified red blood cell membrane, demonstrated efficient tumor targeting, prolonged circulation, enhanced drug bioavailability, and reduced non-specific toxicities of free PTX and LF3. By utilizing the synergistic effects of PTX and LF3, TRNC@P + L combination therapy significantly inhibited tumor growth, as demonstrated by both in vitro and in vivo studies. Mechanistically, TRNC@P + L triggers ferroptosis in tumor cells by downregulating GPX4 expression, the promotion of ROS accumulation, and the enhancement of lipid peroxidation. These processes synergistically enhance the anticancer efficacy of PTX.
Collapse
Affiliation(s)
- Qianqian Zhao
- Department of Geriatric Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China
| | - Ting Wu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China
| | - Chunming Tang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China
| | - Jie Li
- Department of Geriatric Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Min Wu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China
| | - Jie Wu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China
| | - Zhiji Wang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China
| | - Yinxin Zhu
- Institute of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China.
| | - Huae Xu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 210029, China.
| | - Xiaolin Li
- Department of Geriatric Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
2
|
Li X, Ma W, Xu Z, Zhang N, Sharma S, Ramachandran T, Karthikeyan A, Thatoi DN, Ismail AI. Injectable anticancer biodegradable hydrogel-based nanocomposites: Synergistic pH-responsive paclitaxel/β-cyclodextrin nanocomplex delivery in polyvinyl alcohol hydrogel for targeted pancreatic ductal adenocarcinoma treatment. Int J Pharm 2025; 677:125514. [PMID: 40221063 DOI: 10.1016/j.ijpharm.2025.125514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/06/2025] [Accepted: 03/22/2025] [Indexed: 04/14/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a cancer that is highly aggressive and has a challenging tumor microenvironment, which restricts the efficacy of conventional medical treatments. This investigation aims to formulate a localized anticancer hydrogel that incorporates a Paclitaxel/β-cyclodextrin (β-CD) nanocomplex composed of polyvinyl alcohol (PVA). Enhancements in drug delivery, therapeutic efficacy, adverse effects, and the mitigation of multidrug resistance are the objectives of PDAC treatment. In silico analyses were performed to examine the interaction between paclitaxel (PTX) and β-CD, which revealed favorable binding and pH-dependent release characteristics. Via FTIR and XRD analyses, the PTX/β-CD inclusion complex was verified. A hydrogel based on PVA was subsequently formed by incorporating this complex. The hydrogel's physicochemical and structural characteristics were examined using SEM, FTIR, XRD, and rheological methods.. Hydrogel's physical characteristics were evaluated through biodegradation and water absorption experiments. The cytotoxic and anti-metastatic potential of the hydrogel nanocomposite was quantified by conducting MTT assays and invasion and migration assays to assess its anticancer efficacy. The estimated adsorption energy (Eads) of PTX within β-CD to form the PTX/β-CD complex was -1.133 × 10-3 kJ/mol. In the Monte Carlo (MC) method, van der Waals forces and electrostatic interactions were considered based on group-based interactions with a cutoff radius of 12.5 Å. The interaction energy of B and PVA on PTX/β-CD was -319.150 kJ/mol. The binding energy (Ebinding = Einteraction) for B/PVA/PTX/β-CD was found to be -60.977 at pH 3.4 and -69.312 at pH 7.4. In acidic conditions, the Paclitaxel/β-CD nanocomplex exhibited efficient drug release and strong binding interactions. Biodegradation (80 % weight loss within 28 days) and water absorption (up to 500 % of its dried weight) were both exceptional characteristics of the PVA hydrogel. According to anticancer assays, the nanocomposite exhibited substantial cytotoxic effects, which included the inhibition of cancer cell migration and invasion. Paclitaxel's solubility and biological activity were significantly improved by the injectable hydrogel, which confirmed its potential as a sophisticated local drug delivery system. CONCLUSIONS: For the localized treatment of PDAC, the PVA-based injectable hydrogel that has been developed, which includes a Paclitaxel/β-CD nanocomplex, is a promising approach. Its targeted delivery, enhanced solubility, and potent anticancer characteristics offer a valuable method for enhancing therapeutic outcomes while reducing systemic side effects and multidrug resistance.
Collapse
Affiliation(s)
- Xiuxiu Li
- Department of Gastroenterology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, No.3, Xinghualing District, Taiyuan, Shanxi 030001, China.
| | - Weiyu Ma
- Department of Gastroenterology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, No.3, Xinghualing District, Taiyuan, Shanxi 030001, China.
| | - Zhou Xu
- Department of Gastroenterology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, No.3, Xinghualing District, Taiyuan, Shanxi 030001, China.
| | - Ninggang Zhang
- Department of Gastroenterology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, No.3, Xinghualing District, Taiyuan, Shanxi 030001, China.
| | - Shubham Sharma
- Department of Technical Sciences, Western Caspian University, Baku, Azerbaijan; Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401 Punjab, India; Jadara University Research Center, Jadara University, Jordan.
| | - T Ramachandran
- Department of Mechanical Engineering, School of Engineering and Technology, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - A Karthikeyan
- Department of Mechanical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| | - Dhirendra Nath Thatoi
- Department of Mechanical Engineering, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751030, India.
| | - A I Ismail
- Mechanical Engineering Department, College of Engineering and Architecture, UMM Alqura University, Saudi Arabia.
| |
Collapse
|
3
|
Adibifar A, Salimi M, Rostamkhani N, Karami Z, Agh-Atabay AH, Rostamizadeh K. Folic acid-conjugated bovine serum albumin-coated selenium-ZIF-8 core/shell nanoparticles for dual target-specific drug delivery in breast cancer. Drug Deliv Transl Res 2025; 15:1786-1799. [PMID: 39317912 DOI: 10.1007/s13346-024-01714-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Methotrexate (MTX), a frequently used chemotherapeutic agent, has limited water solubility, leading to rapid clearance even in local injections. In the present study, we developed folic acid-conjugated BSA-stabilized selenium-ZIF-8 core/shell nanoparticles for targeted delivery of MTX to combat breast cancer. FT-IR, XRD, SEM, TEM, and elemental mapping analysis confirmed the successful formation of FA-BSA@MTX@Se@ZIF-8. The developed nano-DDS had a mean diameter, polydispersity index, and zeta potential of 254.8 nm, 0.17, and - 16.5 mV, respectively. The release behavior of MTX from the nanocarriers was pH-dependent, where the cumulative release percentage at pH 5.4 was higher than at pH 7.4. BSA significantly improved the blood compatibility of nanoparticles so that after modifying their surface with BSA, the percentage of hemolysis decreased from 12.67 to 5.12%. The loading of methotrexate in BSA@Se@ZIF-8 nanoparticles reduced its IC50 on 4T1 cells from 40.29 µg/mL to 16.54 µg/mL, and by conjugating folic acid on the surface, this value even decreased to 12.27 µg/mL. In vivo evaluation of the inhibitory effect in tumor-bearing mice showed that FA-BSA@MTX@Se@ZIF-8 caused a 2.8-fold reduction in tumor volume compared to the free MTX, which is due to the anticancer effect of selenium nanoparticles, the pH sensitivity of ZIF-8, and the presence of folic acid on the surface as a targeting agent. More importantly, histological studies and animal body weight monitoring confirmed that developed nano-DDS does not have significant organ toxicity. Taking together, the incorporation of chemotherapeutics in folic acid-conjugated BSA-stabilized selenium-ZIF-8 nanoparticles may hold a significant impact in the field of future tumor management.
Collapse
Affiliation(s)
- Arghavan Adibifar
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Biomaterial, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Maryam Salimi
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Biomaterial, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Neda Rostamkhani
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Biomaterial, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zahra Karami
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
| | | | - Kobra Rostamizadeh
- Department of Pharmaceutical Biomaterial, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Psychiatry and Behavioral Sciences, Department of Pharmacology, School of Medicine, University of Washington, Seattle, WA, 98104, USA.
| |
Collapse
|
4
|
Qi Q, Zhang Z, Wang D. GSH-responsive paclitaxel prodrug used in chemotherapy in combination with photodynamic therapy. Bioorg Chem 2025; 157:108289. [PMID: 40007348 DOI: 10.1016/j.bioorg.2025.108289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/05/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025]
Abstract
The lack of targeting and poor solubility of anti-tumor drugs are two major limitations to the outcome of tumor therapy. To address the inherent drawbacks, we designed a novel prodrug of paclitaxel (PTX), HP-PTX. This HP-PTX prodrug contains a PEGylated heptamethylene cyanine dye (PEG-IR808-1) that was conjugated to PTX via a redox-sensitive disulfide bond. The moiety of IR808-1 acts as a tumor-targeting ligand, enabling HP-PTX not only to target tumor cells, but also to localize to mitochondria and generate ROS under 808 nm laser irradiation to wound cellular mitochondria thus exerting cytotoxic effect. Meanwhile, in vitro cellular uptake assays showed that HP-PTX possesses MCF-7 cell tumor targeting specificity which was attributed to the preferential uptake of heptamethine cyanine dye mediated by the overexpressed organic anion-transporting polypeptides (OATP) on MCF-7 cell membrane. Near-infrared in vivo imaging showed that incorporation of polyethylene glycol effectively prolonged prodrug's half-life in vivo. In addition, in vivo experiments showed that with combinational therapy strategy HP-PTX was able to kill cancer cells with high efficiency (69.52 %) without notable toxic side effects compared to PTX. These results are evidence of the potential of the tumor-targeting prodrug HP-PTX for the treatment of breast cancer.
Collapse
Affiliation(s)
- Qianqian Qi
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhanyu Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
5
|
Chen W, Huang J, Guo Y, Wang X, Lin Z, Wei R, Chen J, Wu X. Nanocrystals for Intravenous Drug Delivery: Composition Development, Preparation Methods and Applications in Oncology. AAPS PharmSciTech 2025; 26:66. [PMID: 39979757 DOI: 10.1208/s12249-025-03064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025] Open
Abstract
Intravenous routes of drug delivery are widely used in clinical practice due to the advantages of fast onset of action and avoidance of first-pass effect. Still, it is difficult to develop poorly water-soluble drugs for intravenous administration. In recent years, the application of nanocrystal technology has become more and more widespread, mainly involving reducing the particle size to the nanoparticle size range and improving its physicochemical properties to enhance the bioavailability of drugs. Intravenous nanocrystals (INCs) can show unique advantages in the vasculature, with their high drug loading capacity, low toxicity, and overcoming low solubility, which makes them a new solution in tumor therapy. In addition, INCs are mainly suspended in aqueous/oil phase media, which makes them easy to inject. Therefore, INCs may serve as a novel strategy to address poor water solubility, low bioavailability, and associated toxicity. This review contains the compositional development of INCs, and preparation methods, and provides some insights into their application in oncology.
Collapse
Affiliation(s)
- Wanjiao Chen
- Fujian University of Traditional Chinesemedicine, No. 1 Qiuyang Road, Fuzhou, 350122, China
| | - Jingyi Huang
- Fujian University of Traditional Chinesemedicine, No. 1 Qiuyang Road, Fuzhou, 350122, China
| | - Yankun Guo
- Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou District, Shanghai, 200080, China
| | - Xinyv Wang
- Shanghai Wei Er Lab, Shanghai, 201707, China
| | - Zhizhe Lin
- Shanghai Wei Er Lab, Shanghai, 201707, China
| | - Ruting Wei
- Fujian University of Traditional Chinesemedicine, No. 1 Qiuyang Road, Fuzhou, 350122, China
| | - Jianming Chen
- Fujian University of Traditional Chinesemedicine, No. 1 Qiuyang Road, Fuzhou, 350122, China.
- Shanghai Wei Er Lab, Shanghai, 201707, China.
| | - Xin Wu
- Fujian University of Traditional Chinesemedicine, No. 1 Qiuyang Road, Fuzhou, 350122, China.
- Shanghai Wei Er Lab, Shanghai, 201707, China.
| |
Collapse
|
6
|
Qiao JX, Guo DY, Tian H, Wang ZP, Fan QQ, Tian Y, Sun J, Zhang XF, Zou JB, Cheng JX, Luan F, Zhai BT. Research progress of paclitaxel nanodrug delivery system in the treatment of triple-negative breast cancer. Mater Today Bio 2024; 29:101358. [PMID: 39677523 PMCID: PMC11638641 DOI: 10.1016/j.mtbio.2024.101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/27/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, characterized by the loss or low expression of estrogen receptor (ER), human epidermal growth factor receptor 2 (HER2) and progesterone receptor (PR). Due to the lack of clear therapeutic targets, paclitaxel (PTX) is often used as a first-line standard chemotherapy drug for the treatment of high-risk and locally advanced TNBC. PTX is a diterpenoid alkaloid extracted and purified from Taxus plants, functioning as an anticancer agent by inducing and promoting tubulin polymerization, inhibiting spindle formation in cancer cells, and preventing mitosis. However, its clinical application is limited by low solubility and high toxicity. Nanodrug delivery system (NDDS) is one of the feasible methods to improve the water solubility of PTX and reduce side effects. In this review, we summarize the latest advancements in PTX-targeted NDDS, as well as its combination with other codelivery therapies for TNBC treatment. NDDS includes passive targeting, active targeting, stimuli-responsive, codelivery, and multimode strategies. These systems have good prospects in improving the bioavailability of PTX, enhancing tumor targeting, reducing toxicity, controlling drug release, and reverse tumor multidrug resistance (MDR). This review provides valuable insights into the clinical development and application of PTX-targeted NDDS in the treatment of TNBC.
Collapse
Affiliation(s)
- Jia-xin Qiao
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Dong-yan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Huan Tian
- Department of Pharmacy, National Old Pharmacist Inheritance Studio, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, China
| | - Zhan-peng Wang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Qiang-qiang Fan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Yuan Tian
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jing Sun
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Xiao-fei Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jun-bo Zou
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jiang-xue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Fei Luan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Bing-tao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| |
Collapse
|
7
|
Lhaglham P, Jiramonai L, Jia Y, Huang B, Huang Y, Gao X, Zhang J, Liang XJ, Zhu M. Drug nanocrystals: Surface engineering and its applications in targeted delivery. iScience 2024; 27:111185. [PMID: 39555405 PMCID: PMC11564948 DOI: 10.1016/j.isci.2024.111185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Drug nanocrystals have received significant attention in drug development due to their enhanced dissolution rate and improved water solubility, making them effective in overcoming issues related to drug hydrophobicity, thereby improving drug bioavailability and treatment effectiveness. Recent advances in preparation techniques have facilitated research on drug surface properties, leading to valuable surface engineering strategies. Surface modification can stabilize drug nanocrystals, making them suitable for versatile drug delivery platforms. Functionalized ligands further enhance the potential for targeted delivery, enabling precision medicine. This review focuses on the surface engineering of drug nanocrystals, discussing various preparation methods, surface ligand design strategies, and their applications in targeted drug delivery, especially for cancer treatments. Finally, challenges and future directions are also discussed to promote the development of drug nanocrystals. The surface engineering of drug nanocrystals promises new opportunities for treating complex and chronic diseases while broadening the application of drug delivery systems.
Collapse
Affiliation(s)
- Phattalapol Lhaglham
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Sri-ayudhya Road, Bangkok 10400, Thailand
| | - Luksika Jiramonai
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaru Jia
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Baoying Huang
- MHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xueyun Gao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengliang Zhu
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Mohammadi Zonouz A, Taghavi S, Nekooei S, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Synthesis of targeted doxorubicin-loaded gold nanorod -mesoporous manganese dioxide core-shell nanostructure for ferroptosis, chemo-photothermal therapy in vitro and in vivo. Int J Pharm 2024; 665:124725. [PMID: 39293581 DOI: 10.1016/j.ijpharm.2024.124725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/14/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
In the current study, a core-shell inorganic nanostructure comprising a gold nanorod core and -mesoporous manganese dioxide shell was synthesized. Then, the mesoporous manganese dioxide shell was loaded with doxorubicin (DOX) and then coated with pluronic F127 and pluronic F127-folic acid conjugate (1.5:1 wt ratio of pluronic F127: pluronic F127-folic acid conjugate) to prepare targeted final platform. In this design, mesoporous manganese dioxide acted as a reservoir for DOX loading, anti-hypoxia, and MRI contrast agent, while the gold nanorod core acted as a photothermal and CT scan imaging agent. DOX was encapsulated in the mesoporous manganese dioxide shell with a loading capacity and loading efficiency of 19.8 % ± 0.2 and 99.0 % ± 0.9, respectively. The in vitro release experiment showed the impact of glutathione (GSH), mildly acidic pH, and laser irradiating toward accelerated stimuli-responsive DOX release. The ·OH production of the prepared platform was verified by methylene blue (MB) decomposition reaction. Furthermore, thermal imaging exhibited the ability of the prepared platform to convert the NIR irradiation to heat. In vitro cytotoxicity tests on the folate receptor-positive 4 T1 cell line revealed the remarkable cytotoxicity of the targeted formulation compared to the nontargeted formulation (statistically significant). The MTT experiment demonstrated that exposure to laser 808 irradiation enhanced cytotoxicity of the targeted formulation (p < 0.0001). The production of ROS in 4 T1 cells following treatment with the targeted formulation was demonstrated by the dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay. Furthermore, in vivo investigations by implementing subcutaneous 4 T1 tumorized female BABL/c mice indicated that the prepared platform was an effective system in suppressing tumor growth by combining chemotherapy with PTT (photothermal therapy). Additionally, simultanous PTT and anti-hypoxic activity of this system showed potent tumor growth suppression impact. The percent of tumor size reduction in mice treated with FA-F127-DOX@Au-MnO2 + 808 nm laser compared to the control group was 99.7 %. The results of the biodistribution investigation showed tumor accumulation and modified pharmacokinetics of the targeted system. Lastly, 6 and 24 h post-intravenous injection, CT-scan and MR imagings capability of the prepared platform was verified in preclinical stage. The prepared multipurpose system introduces great opportunity to provide multiple treatment strategy along with multimodal imaging capability in a single platform for breast cancer treatment.
Collapse
Affiliation(s)
- Aidin Mohammadi Zonouz
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Taghavi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sirous Nekooei
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medicinal Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Geng F, Fan X, Liu Y, Lu W, Wei G. Recent advances in nanocrystal-based technologies applied for ocular drug delivery. Expert Opin Drug Deliv 2024; 21:211-227. [PMID: 38271023 DOI: 10.1080/17425247.2024.2311119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/24/2024] [Indexed: 01/27/2024]
Abstract
INTRODUCTION The intricate physiological barriers of the eye and the limited volume of eye drops impede efficient delivery of poorly water-soluble drugs. In the last decade, nanocrystals have emerged as versatile drug delivery systems in various administration routes from bench to bedside. The unique superiorities of nanocrystals, mainly embodied in high drug-loading capacity, good mucosal adhesion and penetration, and greatly improved drug solubility, reveal a promising prospect for ocular delivery of poorly water-soluble drugs. AREAS COVERED This article focuses on the ophthalmic nanocrystal technologies and products that are in the literature, clinical trials, and even on the market. The recent research progress in the preparation, ocular application, and absorption of nanocrystals are highlighted, and the pros and cons of nanocrystals in overcoming the physiological barriers of the eye are also summarized. EXPERT OPINION Nanocrystals have demonstrated success as glucocorticoid eye drops in the treatment of anterior segment diseases. However, the thermodynamic stability of nanocrystals remains the major challenge in product development. New technologies for efficiently optimizing stabilizers and sterilization processes are still expected. Strategies to confer more diverse functions via surface modification are also worth exploration to improve the potential of nanocrystals in delivering poorly water-soluble drugs to posterior segment of the eye.
Collapse
Affiliation(s)
- Feiyang Geng
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Xingyan Fan
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Yu Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Weiyue Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
- The Institutes of Integrative Medicine of Fudan University, Shanghai, China
| | - Gang Wei
- Key Laboratory of Smart Drug Delivery, Ministry of Education; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
- The Institutes of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Engineering Research Center of ImmunoTherapeutics, Shanghai, China
| |
Collapse
|
10
|
Yang Y, Jiang Q, Zhang F. Nanocrystals for Deep-Tissue In Vivo Luminescence Imaging in the Near-Infrared Region. Chem Rev 2024; 124:554-628. [PMID: 37991799 DOI: 10.1021/acs.chemrev.3c00506] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In vivo imaging technologies have emerged as a powerful tool for both fundamental research and clinical practice. In particular, luminescence imaging in the tissue-transparent near-infrared (NIR, 700-1700 nm) region offers tremendous potential for visualizing biological architectures and pathophysiological events in living subjects with deep tissue penetration and high imaging contrast owing to the reduced light-tissue interactions of absorption, scattering, and autofluorescence. The distinctive quantum effects of nanocrystals have been harnessed to achieve exceptional photophysical properties, establishing them as a promising category of luminescent probes. In this comprehensive review, the interactions between light and biological tissues, as well as the advantages of NIR light for in vivo luminescence imaging, are initially elaborated. Subsequently, we focus on achieving deep tissue penetration and improved imaging contrast by optimizing the performance of nanocrystal fluorophores. The ingenious design strategies of NIR nanocrystal probes are discussed, along with their respective biomedical applications in versatile in vivo luminescence imaging modalities. Finally, thought-provoking reflections on the challenges and prospects for future clinical translation of nanocrystal-based in vivo luminescence imaging in the NIR region are wisely provided.
Collapse
Affiliation(s)
- Yang Yang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Qunying Jiang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Fan Zhang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
11
|
Khajeei A, Masoomzadeh S, Gholikhani T, Javadzadeh Y. The Effect of PEGylation on Drugs' Pharmacokinetic Parameters; from Absorption to Excretion. Curr Drug Deliv 2024; 21:978-992. [PMID: 37345248 DOI: 10.2174/1567201820666230621124953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 06/23/2023]
Abstract
Until the drugs enter humans life, they may face problems in transportation, drug delivery, and metabolism. These problems can cause reducing drug's therapeutic effect and even increase its side effects. Together, these cases can reduce the patient's compliance with the treatment and complicate the treatment process. Much work has been done to solve or at least reduce these problems. For example, using different forms of a single drug molecule (like Citalopram and Escitalopram); slight changes in the drug's molecule like Meperidine and α-Prodine, and using carriers (like Tigerase®). PEGylation is a recently presented method that can use for many targets. Poly Ethylene Glycol or PEG is a polymer that can attach to drugs by using different methods and resulting sustained release, controlled metabolism, targeted delivery, and other cases. Although they will not necessarily lead to an increase in the effect of the drug, they will lead to the improvement of the treatment process in certain ways. In this article, the team of authors has tried to collect and carefully review the best cases based on the PEGylation of drugs that can help the readers of this article.
Collapse
Affiliation(s)
- Ali Khajeei
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Salar Masoomzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tooba Gholikhani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Sun L, Liu H, Ye Y, Lei Y, Islam R, Tan S, Tong R, Miao YB, Cai L. Smart nanoparticles for cancer therapy. Signal Transduct Target Ther 2023; 8:418. [PMID: 37919282 PMCID: PMC10622502 DOI: 10.1038/s41392-023-01642-x] [Citation(s) in RCA: 225] [Impact Index Per Article: 112.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/24/2023] [Accepted: 09/05/2023] [Indexed: 11/04/2023] Open
Abstract
Smart nanoparticles, which can respond to biological cues or be guided by them, are emerging as a promising drug delivery platform for precise cancer treatment. The field of oncology, nanotechnology, and biomedicine has witnessed rapid progress, leading to innovative developments in smart nanoparticles for safer and more effective cancer therapy. In this review, we will highlight recent advancements in smart nanoparticles, including polymeric nanoparticles, dendrimers, micelles, liposomes, protein nanoparticles, cell membrane nanoparticles, mesoporous silica nanoparticles, gold nanoparticles, iron oxide nanoparticles, quantum dots, carbon nanotubes, black phosphorus, MOF nanoparticles, and others. We will focus on their classification, structures, synthesis, and intelligent features. These smart nanoparticles possess the ability to respond to various external and internal stimuli, such as enzymes, pH, temperature, optics, and magnetism, making them intelligent systems. Additionally, this review will explore the latest studies on tumor targeting by functionalizing the surfaces of smart nanoparticles with tumor-specific ligands like antibodies, peptides, transferrin, and folic acid. We will also summarize different types of drug delivery options, including small molecules, peptides, proteins, nucleic acids, and even living cells, for their potential use in cancer therapy. While the potential of smart nanoparticles is promising, we will also acknowledge the challenges and clinical prospects associated with their use. Finally, we will propose a blueprint that involves the use of artificial intelligence-powered nanoparticles in cancer treatment applications. By harnessing the potential of smart nanoparticles, this review aims to usher in a new era of precise and personalized cancer therapy, providing patients with individualized treatment options.
Collapse
Affiliation(s)
- Leming Sun
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hongmei Liu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yanqi Ye
- Sorrento Therapeutics Inc., 4955 Directors Place, San Diego, CA, 92121, USA
| | - Yang Lei
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Rehmat Islam
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Sumin Tan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Lulu Cai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
13
|
Xiang T, Liu Y, Xu S, Zhong W, Sha Z, Zhang J, Chen L, Li Y, Li W, Yan Z, Chen Z, Xu L. Construction of a novel amphiphilic peptide paclitaxel rod micelle: Demonstrating that the nano-delivery system shape can affect the cellular uptake efficiency of paclitaxel and improve the therapeutic efficacy for breast cancer. BIOMATERIALS ADVANCES 2023; 155:213673. [PMID: 39491929 DOI: 10.1016/j.bioadv.2023.213673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2024]
Abstract
Recent studies have shown that the morphology of nano-delivery systems has become a key factor affecting their anti-tumor effects. Although it has been demonstrated that rod-like nanoparticles are more easily absorbed by tumor cells, the application of rod-like nanoparticles is still limited by the lack of safe vector in vivo. In this study, a biocompatible amphiphilic peptide (IIQQQQ, I2Q4), was designed to form rod-like micelles. The key forces of the self-assembly mechanism were investigated. Driven by hydrogen bonds, the hydrophilic segment of the peptide formed a β-sheet structure, and the molecules accumulated and extended along the side chain direction to form a rod-like structure. Using paclitaxel (PTX) as the model drug, a PTX rod-like nano-drug delivery system, PTX@I2Q4, was constructed. PTX exists in a randomly coiled state in the hydrophobic cavity formed by the peptide. Compared to PTX and spherical PTX albumin nanoparticles, PTX@I2Q4 showed higher entry efficiency and better antitumor effects in vivo and in vitro. This was mainly because PTX@I2Q4 not only allowed more efficient entry into cells via macro-pinocytosis, but also significantly prolonged the t1/2 of PTX. The results confirmed the feasibility of regulating the morphology of nanoparticles to improve the efficacy of PTX and provide a reference for further research on the influence of the morphology of the nano-drug delivery system on the efficacy of antitumor effects.
Collapse
Affiliation(s)
- Tangyong Xiang
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210023, PR China
| | - Yu Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210023, PR China
| | - Shan Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210023, PR China
| | - Weixi Zhong
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210023, PR China
| | - Zhengzhou Sha
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210023, PR China
| | - Jian Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210023, PR China
| | - Linwei Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210023, PR China
| | - Yarong Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210023, PR China
| | - Weidong Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210023, PR China
| | - Zheng Yan
- Jiangyin Hospital of Traditional Chinese Medicine, Jiangsu, Jiangyin, 214400, PR China.
| | - Zhipeng Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210023, PR China.
| | - Liu Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210023, PR China.
| |
Collapse
|
14
|
Wang J, Zhang T, Li X, Wu W, Xu H, Xu XM, Zhang T. DNA Nanobarrel-Based Drug Delivery for Paclitaxel and Doxorubicin. Chembiochem 2023; 24:e202300424. [PMID: 37470220 DOI: 10.1002/cbic.202300424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/21/2023]
Abstract
Co-delivery of anticancer drugs and target agents by endogenous materials is an inevitable approach towards targeted and synergistic therapy. Employing DNA base pair complementarities, DNA nanotechnology exploits a unique nanostructuring method and has demonstrated its capacity for nanoscale positioning and templated assembly. Moreover, the water solubility, biocompatibility, and modifiability render DNA structure suitable candidate for drug delivery applications. We here report single-stranded DNA tail conjugated antitumor drug paclitaxel (PTX), and the co-delivery of PTX, doxorubicin and targeting agent mucin 1 (MUC-1) aptamer on a DNA nanobarrel carrier. We investigated the effect of tail lengths on drug release efficiencies and dual drug codelivery-enabled cytotoxicity. Owing to the rapidly developing field of structural DNA nanotechnology, functional DNA-based drug delivery is promising to achieve clinical therapeutic applications.
Collapse
Affiliation(s)
- Jiaoyang Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Tianyu Zhang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Xueqiao Li
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Wenna Wu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Hui Xu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Xin-Ming Xu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Tao Zhang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| |
Collapse
|
15
|
Liu WS, Wu LL, Chen CM, Zheng H, Gao J, Lu ZM, Li M. Lipid-hybrid cell-derived biomimetic functional materials: A state-of-the-art multifunctional weapon against tumors. Mater Today Bio 2023; 22:100751. [PMID: 37636983 PMCID: PMC10448342 DOI: 10.1016/j.mtbio.2023.100751] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Tumors are among the leading causes of death worldwide. Cell-derived biomimetic functional materials have shown great promise in the treatment of tumors. These materials are derived from cell membranes, extracellular vesicles and bacterial outer membrane vesicles and may evade immune recognition, improve drug targeting and activate antitumor immunity. However, their use is limited owing to their low drug-loading capacity and complex preparation methods. Liposomes are artificial bionic membranes that have high drug-loading capacity and can be prepared and modified easily. Although they can overcome the disadvantages of cell-derived biomimetic functional materials, they lack natural active targeting ability. Lipids can be hybridized with cell membranes, extracellular vesicles or bacterial outer membrane vesicles to form lipid-hybrid cell-derived biomimetic functional materials. These materials negate the disadvantages of both liposomes and cell-derived components and represent a promising delivery platform in the treatment of tumors. This review focuses on the design strategies, applications and mechanisms of action of lipid-hybrid cell-derived biomimetic functional materials and summarizes the prospects of their further development and the challenges associated with it.
Collapse
Affiliation(s)
- Wen-Shang Liu
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, 200011, China
| | - Li-Li Wu
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Cui-Min Chen
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Hao Zheng
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Zheng-Mao Lu
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Meng Li
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, 200011, China
| |
Collapse
|
16
|
Sui F, Fang Z, Li L, Wan X, Zhang Y, Cai X. pH-triggered "PEG" sheddable and folic acid-targeted nanoparticles for docetaxel delivery in breast cancer treatment. Int J Pharm 2023; 644:123293. [PMID: 37541534 DOI: 10.1016/j.ijpharm.2023.123293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/13/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
Multifunctional nanoparticles have attracted significant attentions for oncology and cancer treatment. In fact, they could address critical point for tumour treatment by creating a stimuli-responsive targeted drug delivery system that can exist stably in the systemic circulation, efficiently penetrate the tumour tissue, and then accumulate in tumour cells in large quantities. A novel stepwise pH-responsive multifunctional nanoparticles (FPDPCNPs/DTX) for targeted delivery of the antitumour drug docetaxel (DTX) is prepared by coating a tumour acidity-sensitive "sheddable" FA modified β-carboxylic amide functionalized PEG layer (folic acid-polyethylene glycol-2,3-dimethylmaleic anhydride, FA-PEG-DA) on the cationic drug-loaded core (poly(β-amino ester-cholesterol, PAE-Chol) through electrostatic interaction in this study. The charge shielding behaviour of the FPDPCNPs/DTX was confirmed by zeta potential assay. The surface charges of the nanoparticles can change from positive to negative after PEG coating. The IC50 values of FPDPCNPs/DTX was 3.04 times higher than that of PEG "unsheddable" nanoparticles in cytotoxicity experiments. The results of in vivo experiment further showed that FPDPCNPs/DTX had enhanced tumour targeting effect, the tumour inhibition rate of FPDPCNPs/DTX was as high as 81.99%, which was 1.51 times that of free DTX. Under a micro acidic environment and folate receptor (FR)-mediated targeting, FPDPCNPs/DTX contributed to more uptake of DTX by MCF-7 cells. In summary, FPDPCNPs/DTX as a multifunctional nano-drug delivery system provides a promising strategy for efficiently delivering antitumour drugs.
Collapse
Affiliation(s)
- Fangqian Sui
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Zengjun Fang
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lingjun Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Xinhuan Wan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Yongqing Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Xiaoqing Cai
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China.
| |
Collapse
|
17
|
Solanki R, Jangid AK, Jadav M, Kulhari H, Patel S. Folate Functionalized and Evodiamine-Loaded Pluronic Nanomicelles for Augmented Cervical Cancer Cell Killing. Macromol Biosci 2023; 23:e2300077. [PMID: 37163974 DOI: 10.1002/mabi.202300077] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/03/2023] [Indexed: 05/12/2023]
Abstract
Evodiamine (Evo) is a natural, biologically active plant alkaloid with wide range of pharmacological activities. In the present study Evo-loaded folate-conjugated Pluronic F108 nano-micelles (ENM) is synthesized to enhance the therapeutic efficacy of Evo against cervical cancer. ENM are synthesized, physicochemically characterized and in vitro anticancer activity is performed. The study demonstrates that ENM have nanoscale size (50.33 ± 3.09 nm), monodispersity of 0.122 ± 0.072, with high drug encapsulation efficiency (71.30 ± 3.76%) and controlled drug release at the tumor microenvironment. ENM showed dose-dependent and time-dependent cytotoxicity against HeLa human cervical cancer cells. The results of in vitro anticancer studies demonstrated that ENM have significant anticancer effects and greatly induce apoptosis as compared to pure Evo. The cellular uptake study suggests that increased anticancer activity of ENM is due to the improved intracellular delivery of Evo through overexpressed folate receptors. Overall, the designed ENM can be a potential targeted delivery system for hydrophobic anticancer bioactive compound like Evo.
Collapse
Affiliation(s)
- Raghu Solanki
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Ashok Kumar Jangid
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, 382030, India
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul, 04620, South Korea
| | - Mahima Jadav
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Sunita Patel
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| |
Collapse
|
18
|
Yenurkar D, Nayak M, Mukherjee S. Recent advances of nanocrystals in cancer theranostics. NANOSCALE ADVANCES 2023; 5:4018-4040. [PMID: 37560418 PMCID: PMC10408581 DOI: 10.1039/d3na00397c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023]
Abstract
Emerging cancer cases across the globe and treating them with conventional therapies with multiple limitations have been challenging for decades. Novel drug delivery systems and alternative theranostics are required for efficient detection and treatment. Nanocrystals (NCs) have been established as a significant cancer diagnosis and therapeutic tool due to their ability to deliver poorly water-soluble drugs with sustained release, low toxicity, and flexibility in the route of administration, long-term sustainable drug release, and noncomplicated excretion. This review summarizes several therapies of NCs, including anticancer, immunotherapy, radiotherapy, biotheranostics, targeted therapy, photothermal, and photodynamic. Further, different imaging and diagnostics using NCs are mentioned, including imaging, diagnosis through magnetic resonance imaging (MRI), computed tomography (CT), biosensing, and luminescence. In addition, the limitations and potential solutions of NCs in the field of cancer theranostics are discussed. Preclinical and clinical data depicting the importance of NCs in the spotlight of cancer, its current status, future aspects, and challenges are covered in detail.
Collapse
Affiliation(s)
- Devyani Yenurkar
- School of Biomedical Engineering, Indian Institute of Technology, BHU Varanasi-221005 UP India
| | - Malay Nayak
- School of Biomedical Engineering, Indian Institute of Technology, BHU Varanasi-221005 UP India
| | - Sudip Mukherjee
- School of Biomedical Engineering, Indian Institute of Technology, BHU Varanasi-221005 UP India
| |
Collapse
|
19
|
Xia Q, Shen J, Ding H, Liu S, Li F, Li F, Feng N. Intravenous nanocrystals: fabrication, solidification, in vivo fate, and applications for cancer therapy. Expert Opin Drug Deliv 2023; 20:1467-1488. [PMID: 37814582 DOI: 10.1080/17425247.2023.2268512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
INTRODUCTION Intravenous nanocrystals (INCs) have shown intrinsic advantages in antitumor applications, particularly their properties of high drug loading, low toxicity, and controllable size. Therefore, it has a very bright application prospect as a drug delivery system. AREAS COVERED The ideal formulation design principles, fabrication, solidification, in vivo fate of INCs, the applications in drug delivery system (DDS) and the novel applications are covered in this review. EXPERT OPINION It is vital to select a suitable formulation and fabrication method to produce a stable and sterile INCs. Besides, the type of stabilizers and physical characteristics can also influence the in vivo fate of INCs, which is worthy of further studying. Based on wide researches about applications of INCs in cancer, biomimetic INCs are concerned increasingly for its favorable compatibility. The output of these studies suggested that INCs-based drug delivery could be a novel strategy for addressing the delivery of the drug that faces solubility, bioavailability, and toxicity problems.
Collapse
Affiliation(s)
- Qing Xia
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaqi Shen
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huining Ding
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Siyi Liu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Li
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai, China
| | - Fengqian Li
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai, China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
20
|
Marques SM, Kumar L. Factors affecting the preparation of nanocrystals: characterization, surface modifications and toxicity aspects. Expert Opin Drug Deliv 2023; 20:871-894. [PMID: 37222381 DOI: 10.1080/17425247.2023.2218084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/22/2023] [Indexed: 05/25/2023]
Abstract
INTRODUCTION The fabrication of well-defined nanocrystals in size and form is the focus of much investigation. In this work, we have critically reviewed several recent instances from the literature that shows how the production procedure affects the physicochemical properties of the nanocrystals. AREAS COVERED Scopus, MedLine, PubMed, Web of Science, and Google Scholar were searched for peer-review articles published in the past few years using different key words. Authors chose relevant publications from their files for this review. This review focuses on the range of techniques available for producing nanocrystals. We draw attention to several recent instances demonstrating the impact of various process and formulation variables that affect the nanocrystals' physicochemical properties. Moreover, various developments in the characterization techniques explored for nanocrystals concerning their size, morphology, etc. have been discussed. Last but not least, recent applications, the effect of surface modifications, and the toxicological traits of nanocrystals have also been reviewed. EXPERT OPINION The selection of an appropriate production method for the formation of nanocrystals, together with a deep understanding of the relationship between the drug's physicochemical properties, unique features of the various formulation alternatives, and anticipated in-vivo performance, would significantly reduce the risk of failure during human clinical trials that are inadequate.
Collapse
Affiliation(s)
- Shirleen Miriam Marques
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| |
Collapse
|
21
|
Chen JW, Shen Y, Yu QS, Gan ZH. Paclitaxel Prodrug Nanomedicine for Potential CT-imaging Guided Breast Cancer Therapy. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2958-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
22
|
Huang D, Gui J, Chen X, Yu R, Gong T, Zhang Z, Fu Y. Chondroitin Sulfate-Derived Paclitaxel Nanocrystal via π-π Stacking with Enhanced Stability and Tumor Targetability. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51776-51789. [PMID: 36350778 DOI: 10.1021/acsami.2c15881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nanocrystals with high drug loading have become a viable strategy for solubilizing drugs with poor aqueous solubility. It remains challenging, however, to synthesize nanocrystals with sufficient stability and targeting potential. Here, we report a novel nanocrystal platform synthesized using paclitaxel (PTX) and Fmoc-8-amino-3,6-dioxaoctanoic acid (Fmoc-AEEA)-conjugated chondroitin sulfate (CS) (CS-Fmoc) via π-π stacking to afford a stable formulation with CD44 targetability (PTX NC@CS-Fmoc). The PTX NC@CS-Fmoc exhibited rodlike shapes with an average hydrodynamic size of 173.6 ± 0.7 nm (PDI = 0.11 ± 0.04) and a drug loading of up to 31.3 ± 0.6%. Next, PTX NC@CS-Fmoc was subjected to lyophilization in the absence of cryoprotectants for long-term storage, and after redispersion, PTX NC@CS-Fmoc displayed an average hydrodynamic size of 205.3 ± 2.9 nm (PDI = 0.15 ± 0.01). In murine Panc02 cells, PTX NC@CS-Fmoc showed higher internalization efficiency than that of PTX nanocrystals without CS modification (PTX NC@F127) (P < 0.05) or that of CS-Fmoc micelles (P < 0.05). Moreover, PTX NC@CS-Fmoc appeared to accumulate in both lysosomes and Golgi apparatus, while CS-Fmoc micelles accumulated specifically in the Golgi apparatus. In the orthotopic Panc02 tumor-bearing mice model, PTX NC@CS-Fmoc showed higher tumor-specific accumulation than CS-Fmoc micelles, which also demonstrated comparable tumor growth inhibition as to Nab-PTX. Overall, the CS-Fmoc-derived nanocrystals represent a neat and viable formulation strategy for targeted chemotherapy with great potential for translational studies.
Collapse
Affiliation(s)
- Dandan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, China
| | - Jiajia Gui
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, China
| | - Xue Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, China
| | - Ruilian Yu
- Department of Oncology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu610072, China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, China
| |
Collapse
|
23
|
An Overview on Taxol Production Technology and Its Applications as Anticancer Agent. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0063-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
24
|
Xiang H, Xu S, Li J, Li Y, Xue X, Liu Y, Li J, Miao X. Functional drug nanocrystals for cancer-target delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
25
|
Qin J, Zhang J, Fan G, Wang X, Zhang Y, Wang L, Zhang Y, Guo Q, Zhou J, Zhang W, Ma J. Cold Atmospheric Plasma Activates Selective Photothermal Therapy of Cancer. Molecules 2022; 27:molecules27185941. [PMID: 36144674 PMCID: PMC9502787 DOI: 10.3390/molecules27185941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Due to the body’s systemic distribution of photothermal agents (PTAs), and to the imprecise exposure of lasers, photothermal therapy (PTT) is challenging to use in treating tumor sites selectively. Striving for PTT with high selectivity and precise treatment is nevertheless important, in order to raise the survival rate of cancer patients and lower the likelihood of adverse effects on other body sections. Here, we studied cold atmospheric plasma (CAP) as a supplementary procedure to enhance selectivity of PTT for cancer, using the classical photothermic agent’s gold nanostars (AuNSs). In in vitro experiments, CAP decreases the effective power of PTT: the combination of PTT with CAP at lower power has similar cytotoxicity to that using higher power irradiation alone. In in vivo experiments, combination therapy can achieve rapid tumor suppression in the early stages of treatment and reduce side effects to surrounding normal tissues, compared to applying PTT alone. This research provides a strategy for the use of selective PTT for cancer, and promotes the clinical transformation of CAP.
Collapse
Affiliation(s)
- Jiamin Qin
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Jingqi Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Guojuan Fan
- Department of Skin, Weifang Hospital of Traditional Chinese Medicine, Weifang 261000, China
| | - Xiaoxia Wang
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Yuzhong Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Ling Wang
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Yapei Zhang
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Qingfa Guo
- College of Chemical Engineering and Environmental Chemistry, Weifang University, Weifang 261061, China
- Correspondence: (Q.G.); (J.Z.); (W.Z.); (J.M.)
| | - Jin Zhou
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
- Correspondence: (Q.G.); (J.Z.); (W.Z.); (J.M.)
| | - Weifen Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
- Correspondence: (Q.G.); (J.Z.); (W.Z.); (J.M.)
| | - Jinlong Ma
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
- Correspondence: (Q.G.); (J.Z.); (W.Z.); (J.M.)
| |
Collapse
|
26
|
Lv Y, Wu W, Corpstein CD, Li T, Lu Y. Biological and Intracellular Fates of Drug Nanocrystals through Different Delivery Routes: Recent Development Enabled by Bioimaging and PK Modeling. Adv Drug Deliv Rev 2022; 188:114466. [PMID: 35905948 DOI: 10.1016/j.addr.2022.114466] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/07/2022] [Accepted: 07/22/2022] [Indexed: 12/25/2022]
Abstract
Nanocrystals have contributed to exciting improvements in the delivery of poorly water-soluble drugs. The biological and intracellular fates of nanocrystals are currently under debate. Due to the remarkable commercial success in enhancing oral bioavailability, nanocrystals have originally been regarded as a simple formulation approach to enhance dissolution. However, the latest findings from novel bioimaging tools lead to an expanded view. Intact nanocrystals may offer long-term durability in the body and offer drug delivery capabilities like those of other nano-carriers. This review renews the understanding of the biological fates of nanocrystals administered via oral, intravenous, and parenteral (e.g., dermal, ocular, and pulmonary) routes. The intracellular pathways and dissolution kinetics of nanocrystals are explored. Additionally, the future trends for in vitro and in vivo quantification of nanocrystals, as well as factors impacting the biological and intracellular fates of nanocrystals are discussed. In conclusion, nanocrystals present a promising and underexplored therapeutic opportunity with immense potential.
Collapse
Affiliation(s)
- Yongjiu Lv
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Clairissa D Corpstein
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Tonglei Li
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Fudan Zhangjiang Institute, Shanghai 201203, China.
| |
Collapse
|
27
|
Jabeen N, Sohail M, Shah SA, Mahmood A, Khan S, Kashif MUR, Khaliq T. Silymarin nanocrystals-laden chondroitin sulphate-based thermoreversible hydrogels; A promising approach for bioavailability enhancement. Int J Biol Macromol 2022; 218:456-472. [PMID: 35872320 DOI: 10.1016/j.ijbiomac.2022.07.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 11/25/2022]
Abstract
Hydrogels has gained tremendous interest as a controlled release drug delivery. However, currently it is a big challenge to attain high drug-loading as well as stable and sustained release of hydrophobic drugs. The poor aqueous solubility and low bioavailability of many drugs have driven the need for research in new formulations. This manuscript hypothesized that incorporation of nanocrystals of hydrophobic drug, such as silymarin into thermoreversible hydrogel could be a solution to these problems. Herein, we prepared nanocrystals of silymarin by antisolvent precipitation technique and characterized for morphology, particle size, polydispersity index (PDI) and zeta potential. Moreover, physical cross-linking of hydrogel formulations based on chondroitin sulphate (CS), kappa-Carrageenan (κ-Cr) and Pluronic® F127 was confirmed by Fourier transformed infrared spectroscopy (FT-IR). The hydrogel gelation time and temperature of optimized hydrogel was 14 ± 3.2 s and 34 ± 0.6 °C, respectively. The release data revealed controlled release of silymarin up to 48 h and in-vivo pharmacokinetic profiling was done in rabbits and further analyzed by high-performance liquid chromatography (HPLC). It is believed that the nanocrystals loaded thermoreversible injectable hydrogel system fabricated in this study provides high drug loading as well as controlled and stable release of hydrophobic drug for extended period.
Collapse
Affiliation(s)
- Nazish Jabeen
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan.
| | - Syed Ahmed Shah
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan; Faculty of Pharmacy, Superior University, Lahore, Punjab-Pakistan
| | - Arshad Mahmood
- Collage of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Lower Dir, KPK, Pakistan
| | | | - Touba Khaliq
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| |
Collapse
|
28
|
Foglizzo V, Marchiò S. Nanoparticles as Physically- and Biochemically-Tuned Drug Formulations for Cancers Therapy. Cancers (Basel) 2022; 14:cancers14102473. [PMID: 35626078 PMCID: PMC9139219 DOI: 10.3390/cancers14102473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Conventional antitumor drugs have limitations, including poor water solubility and lack of targeting capability, with consequent non-specific distribution, systemic toxicity, and low therapeutic index. Nanotechnology promises to overcome these drawbacks by exploiting the physical properties of diverse nanocarriers that can be linked to moieties with binding selectivity for cancer cells. The use of nanoparticles as therapeutic formulations allows a targeted delivery and a slow, controlled release of the drug(s), making them tunable modules for applications in precision medicine. In addition, nanoparticles are also being developed as cancer vaccines, offering an opportunity to increase both cellular and humoral immunity, thus providing a new weapon to beat cancer. Abstract Malignant tumors originate from a combination of genetic alterations, which induce activation of oncogenes and inactivation of oncosuppressor genes, ultimately resulting in uncontrolled growth and neoplastic transformation. Chemotherapy prevents the abnormal proliferation of cancer cells, but it also affects the entire cellular network in the human body with heavy side effects. For this reason, the ultimate aim of cancer therapy remains to selectively kill cancer cells while sparing their normal counterparts. Nanoparticle formulations have the potential to achieve this aim by providing optimized drug delivery to a pathological site with minimal accumulation in healthy tissues. In this review, we will first describe the characteristics of recently developed nanoparticles and how their physical properties and targeting functionalization are exploited depending on their therapeutic payload, route of delivery, and tumor type. Second, we will analyze how nanoparticles can overcome multidrug resistance based on their ability to combine different therapies and targeting moieties within a single formulation. Finally, we will discuss how the implementation of these strategies has led to the generation of nanoparticle-based cancer vaccines as cutting-edge instruments for cancer immunotherapy.
Collapse
Affiliation(s)
- Valentina Foglizzo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Serena Marchiò
- Department of Oncology, University of Torino, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
- Correspondence: ; Tel.: +39-01199333239
| |
Collapse
|
29
|
Luo Z, Lu L, Xu W, Meng N, Wu S, Zhou J, Xu Q, Xie C, Liu Y, Lu W. In vivo self-assembled drug nanocrystals for metastatic breast cancer all-stage targeted therapy. J Control Release 2022; 346:32-42. [PMID: 35378211 DOI: 10.1016/j.jconrel.2022.03.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/11/2022] [Accepted: 03/29/2022] [Indexed: 12/22/2022]
Abstract
Chemotherapy is still the mainstay treatment for metastatic triple-negative breast cancers (TNBC) currently in clinical practice. The unmet needs of chemotherapy for metastatic TNBC are mainly from the insufficient drug delivery and unavailable targeting strategy that thwart the whole progression of metastatic TNBC. The in vivo ligands-mediated active targeting efficiency is usually affected by protein corona. While, the protein corona-bridged natural targeting, in turn, provides a new way for specific drug delivery. Herein, we develop a novel metastatic progression-oriented in vivo self-assembled Cabazitaxel nanocrystals (CNC) delivery system (PC/CNC) through the CNC automatically absorbing functional plasma proteins (transferrin, apolipoprotein A-IV and apolipoprotein E) in vivo, aiming to achieve the simultaneously targeted delivery to primary tumors, circulating tumor cells and metastatic lesions. With the unique advantages of superhigh drug-loading and protein corona empowered active targeting properties to tumor cells, HUVECs, active-platelets and blood-brain barrier/blood-tumor barrier, the PC/CNC exhibits a significantly improved therapeutic effect in metastatic TNBC therapy compared with free drug and CNC-loaded liposomes.
Collapse
Affiliation(s)
- Zimiao Luo
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, Institutes of Integrative Medicine of Fudan University, Shanghai 200041, China
| | - Weixia Xu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Nana Meng
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Sunyi Wu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Jianfen Zhou
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Qianzhu Xu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Department of Integrative Medicine, Huashan Hospital, Institutes of Integrative Medicine of Fudan University, Shanghai 200041, China
| | - Cao Xie
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yu Liu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Department of Integrative Medicine, Huashan Hospital, Institutes of Integrative Medicine of Fudan University, Shanghai 200041, China; Minhang Branch, Zhongshan Hospital and Institute of Fudan-Minghang Academic Health System, Minghang Hospital, Fudan University, Shanghai 201199, China; Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Center for Druggability of Cardiovascular non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| |
Collapse
|
30
|
Moammeri A, Abbaspour K, Zafarian A, Jamshidifar E, Motasadizadeh H, Dabbagh Moghaddam F, Salehi Z, Makvandi P, Dinarvand R. pH-Responsive, Adorned Nanoniosomes for Codelivery of Cisplatin and Epirubicin: Synergistic Treatment of Breast Cancer. ACS APPLIED BIO MATERIALS 2022; 5:675-690. [PMID: 35129960 PMCID: PMC8864616 DOI: 10.1021/acsabm.1c01107] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/23/2022] [Indexed: 02/09/2023]
Abstract
Combination chemotherapy has become a treatment modality for breast cancer. However, serious side effects and high cytotoxicity associated with this combination therapy make it a high-risk method for breast cancer treatment. This study evaluated the anticancer effect of decorated niosomal nanocarriers loaded with cisplatin (CIS) and epirubicin (EPI) in vitro (on SKBR3 and 4T1 breast cancer cells) and in vivo on BALB/c mice. For this purpose, polyethylene glycol (PEG) and folic acid (FA) were employed to prepare a functionalized niosomal system to improve endocytosis. FA-PEGylated niosomes exhibited desired encapsulation efficiencies of ∼91.2 and 71.9% for CIS and EPI, respectively. Moreover, cellular assays disclosed that a CIS and EPI-loaded niosome (NCE) and FA-PEGylated niosomal CIS and EPI (FPNCE) enhanced the apoptosis rate and cell migration in SKBR3 and 4T1 cells compared to CIS, EPI, and their combination (CIS+EPI). For FPNCE and NCE groups, the expression levels of Bax, Caspase3, Caspase9, and Mfn1 genes increased, whereas the expression of Bcl2, Drp1, MMP-2, and MMP-9 genes was downregulated. Histopathology results showed a reduction in the mitosis index, invasion, and pleomorphism in BALB/c inbred mice with NCE and FPNCE treatment. In this paper, for the first time, we report a niosomal nanocarrier functionalized with PEG and FA for codelivery of CIS and EPI to treat breast cancer. The results demonstrated that the codelivery of CIS and EPI through FA-PEGylated niosomes holds great potential for breast cancer treatment.
Collapse
Affiliation(s)
- Ali Moammeri
- School
of Chemical Engineering, College of Engineering, University of Tehran, Tehran 111554563, Iran
| | - Koorosh Abbaspour
- School
of Chemical Engineering, College of Engineering, University of Tehran, Tehran 111554563, Iran
| | - Alireza Zafarian
- Faculty
of Medicine, Isfahan University of Medical
Sciences, Isfahan 8174673461, Iran
| | - Elham Jamshidifar
- Department
of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 141556451, Iran
| | - Hamidreza Motasadizadeh
- Department
of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 141556451, Iran
- Nanotechnology
Research Center, Faculty of Pharmacy, Tehran
University of Medical Sciences, Tehran 1316943551, Iran
| | - Farnaz Dabbagh Moghaddam
- Department
of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Zeinab Salehi
- School
of Chemical Engineering, College of Engineering, University of Tehran, Tehran 111554563, Iran
| | - Pooyan Makvandi
- Istituto
Italiano di Tecnologia, Center for Materials Interfaces, Pontedera, Pisa 56025, Italy
| | - Rassoul Dinarvand
- Department
of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 141556451, Iran
- Nanotechnology
Research Center, Faculty of Pharmacy, Tehran
University of Medical Sciences, Tehran 1316943551, Iran
| |
Collapse
|
31
|
Paclitaxel Drug Delivery Systems: Focus on Nanocrystals' Surface Modifications. Polymers (Basel) 2022; 14:polym14040658. [PMID: 35215570 PMCID: PMC8875890 DOI: 10.3390/polym14040658] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 12/13/2022] Open
Abstract
Paclitaxel (PTX) is a chemotherapeutic agent that belongs to the taxane family and which was approved to treat various kinds of cancers including breast cancer, ovarian cancer, advanced non-small-cell lung cancer, and acquired immunodeficiency syndrome (AIDS)-related Kaposi’s sarcoma. Several delivery systems for PTX have been developed to enhance its solubility and pharmacological properties involving liposomes, nanoparticles, microparticles, micelles, cosolvent methods, and the complexation with cyclodextrins and other materials that are summarized in this article. Specifically, this review discusses deeply the developed paclitaxel nanocrystal formulations. As PTX is a hydrophobic drug with inferior water solubility properties, which are improved a lot by nanocrystal formulation. Based on that, many studies employed nano-crystallization techniques not only to improve the oral delivery of PTX, but IV, intraperitoneal (IP), and local and intertumoral delivery systems were also developed. Additionally, superior and interesting properties of PTX NCs were achieved by performing additional modifications to the NCs, such as stabilization with surfactants and coating with polymers. This review summarizes these delivery systems by shedding light on their route of administration, the methods used in the preparation and modifications, the in vitro or in vivo models used, and the advantages obtained based on the developed formulations.
Collapse
|
32
|
Shen W, Ge S, Liu X, Yu Q, Jiang X, Wu Q, Tian Y, Gao Y, Liu Y, Wu C. Folate-functionalized SMMC-7721 liver cancer cell membrane-cloaked paclitaxel nanocrystals for targeted chemotherapy of hepatoma. Drug Deliv 2021; 29:31-42. [PMID: 34962215 PMCID: PMC8725828 DOI: 10.1080/10717544.2021.2015481] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In this study, we prepared a folic acid-functionalized SMMC-7721 liver cancer cell membrane (CM)-encapsulated paclitaxel nanocrystals system (FCPN) for hepatoma treatment. Transmission electron microscopy (TEM) characterization showed that FCPN was irregular spherical shapes with a particle size larger than 200 nm and a coated thickness of approximately 20 nm. In an in vitro release experiment, FCPN indicated a slowly release effect of paclitaxel (PTX). Cell experiments demonstrated that FCPN was taken up by SMMC-7721 cells and significantly inhibited the proliferation of SMMC-7721 cells, which illustrated that FCPN had good targeting ability compared with PN and CPN. According to the results of in vivo animal experiments, FCPN significantly inhibited tumor growth. Tissue distribution experiments proved that FCPN could accumulate significantly in tumor tissues, which further explained why FCPN had good targeting ability. These results clearly suggested that folate-functionalized homotypic CM bionic nanosystems might represent a very valuable method for liver cancer treatment in the future.
Collapse
Affiliation(s)
- Wenwen Shen
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| | - Shuke Ge
- Department of Emergency Management, Liaoning Provincial Center for Disease Control and Prevention, Shenyang, China
| | - Xiaoyao Liu
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| | - Qi Yu
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| | - Xue Jiang
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| | - Qian Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| | - YuChen Tian
- Department of Medical Oncology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yu Gao
- Department of Medical Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Ying Liu
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| | - Chao Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
33
|
Ren B, Cai ZC, Zhao XJ, Li LS, Zhao MX. Evaluation of the Biological Activity of Folic Acid-Modified Paclitaxel-Loaded Gold Nanoparticles. Int J Nanomedicine 2021; 16:7023-7033. [PMID: 34703225 PMCID: PMC8526948 DOI: 10.2147/ijn.s322856] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Gold nanoparticles (AuNPs) with good physical and biological properties are often used in medicine, diagnostics, food, and similar industries. This paper explored an AuNPs drug delivery system that had good target selectivity for folate-receptor overexpressing cells to induce apoptosis. Methods A novel drug delivery system, Au@MPA-PEG-FA-PTX, was developed carrying paclitaxel (PTX) on folic acid (FA) and polyethylene glycol (PEG)-modified AuNPs. The nanomaterial was characterized by transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), and ultraviolet-visible spectroscopy (UV-Vis). Also, the biological activity of the AuNPs drug delivery system was examined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in HL-7702, Hela, SMMC-7721, and HCT-116 cells. Furthermore, apoptotic activity using annexin V-FITC, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) levels was estimated by flow cytometry and fluorescence microscopy. Results Au@MPA-PEG-FA-PTX exhibited a distinct core-shell structure with a controllable size of 28±1 nm. Also, the AuNPs maintained good dispersion and spherical shape uniformity before and after modification. The MTT assay revealed good antitumor activity of the Au@MPA-PEG-FA-PTX against the Hela, SMMC-7721, and HCT-116 cells, while Au@MPA-PEG-FA-PTX produced better pharmacological effects than PTX in isolation. Further mechanistic investigation revealed that effective internalization of AuNPs by folate-receptor overexpressing cancer cells induced cell apoptosis through excessive production of intracellular ROS. Conclusion The AuNPs drug delivery system showed good target selectivity for folate-receptor overexpressing cancer cells to induce target cell-specific apoptosis. These AuNPs may have great potential as theranostic agents such as in cancer.
Collapse
Affiliation(s)
- Bin Ren
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Jinming Campus, Kaifeng, Henan, 475004, People's Republic of China.,School of Mathematics and Statistics, Henan University, Jinming Campus, Kaifeng, 475004, People's Republic of China
| | - Zhong-Chao Cai
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Jinming Campus, Kaifeng, Henan, 475004, People's Republic of China
| | - Xue-Jie Zhao
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Jinming Campus, Kaifeng, Henan, 475004, People's Republic of China
| | - Lin-Song Li
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Jinming Campus, Kaifeng, Henan, 475004, People's Republic of China
| | - Mei-Xia Zhao
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Jinming Campus, Kaifeng, Henan, 475004, People's Republic of China
| |
Collapse
|