1
|
Chuang SC, Yu SA, Hung PC, Chuang AEY, Liang JW, Rethi L, Chen CK, Fang HW, Nguyen HT, Lu HT. Transformative lactera-polypyrrole@carrageenan microparticles leveraging NIR for skin regeneration and stress relief. Int J Biol Macromol 2025; 316:144436. [PMID: 40403819 DOI: 10.1016/j.ijbiomac.2025.144436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/16/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
Effective wound healing remains a significant challenge in regenerative medicine, particularly in minimizing inflammation and promoting scarless recovery. This study introduces a bioengineered LAC-PPy@Car MF composite, designed to leverage near-infrared (NIR)-induced photothermal therapy alongside biotherapeutics to facilitate tissue regeneration. The composite integrates the photothermal properties of polypyrrole (PPy) with the anti-inflammatory and regenerative potential of Lactera (LAC) and Carrageenan (Car). Upon NIR activation, the composite generates localized mild-hyperthermia, reducing oxidative stress, enhancing Aryl Hydrocarbon Receptor (AhR) activity, and upregulating heat shock proteins (HSP). These effects synergistically create a bioactive environment conducive to cellular proliferation and tissue repair. Biochemical evaluations demonstrate that LAC-PPy@Car MF effectively reduces oxidative stress, stimulates fibroblast migration, and promotes the proliferation of skin cells. Immunofluorescence staining reveals significant activation of AhR and HSP in treated tissues, correlating with cellular proliferation and improved skin architecture. The NIR-triggered photothermal effect contributes to the therapeutic potential of the composite, ensuring precise and minimally invasive treatment for burn injuries. These findings position phototherapeutic LAC-PPy@Car MF as a promising candidate for advanced wound healing applications. Its dual functionality, combining photothermal therapy with bioactive healing properties, offers a transformative approach to regenerative medicine, paving the way for improved clinical outcomes in wound care.
Collapse
Affiliation(s)
- Sih-Chi Chuang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan; Doctoral Program of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Shih-An Yu
- Hsuan Chen Technology CO., LTD., New Taipei City 22055, Taiwan
| | - Pei-Chia Hung
- Hsuan Chen Technology CO., LTD., New Taipei City 22055, Taiwan
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan
| | - Jia-Wei Liang
- Hsuan Chen Technology CO., LTD., New Taipei City 22055, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Chih-Kuang Chen
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan, Taiwan.; School of Medicine, Chang Gung University, Taoyuan, Taiwan.; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsu-Wei Fang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Hsien-Tsung Lu
- Department of Orthopedics, Taipei Medical University Hospital, Taipei City 11031, Taiwan; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
2
|
Wang Y, Deng M, Wu Y, Zheng C, Zhang F, Guo C, Zhang B, Hu C, Kong Q, Wang Y. A multifunctional mitochondria-protective gene delivery platform promote intervertebral disc regeneration. Biomaterials 2025; 317:123067. [PMID: 39742837 DOI: 10.1016/j.biomaterials.2024.123067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/09/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
Intervertebral disc degeneration (IDD) is a deleterious condition driven by localized inflammation and the associated disruption of the normal homeostatic balance between anabolism and catabolism, contributing to progressive functional abnormalities within the nucleus pulposus (NP). Despite our prior evidence demonstrating that a miR-21 inhibitor can have regenerative effects that counteract the progression of IDD, its application for IDD treatment remains limited by the inadequacy of current local delivery systems. Here, an injectable tannic acid (TA)-loaded hydrogel gene delivery system was developed and used for the encapsulation of a multifunctional mitochondria-protecting gene nanocarrier (PHs). This engineered platform was designed for the sustained on-demand delivery of both miR-21 inhibitor and ss-31 (mitochondrial-targeted peptide) constructs to the NP. This prepared hydrogel could be implanted into the intervertebral disc using a minimally invasive approach whereupon it was able to rapidly release TA. Sustained PHs release was then achieved as appropriate through a mechanism mediated by the activity of MMP-2. Following the targeted uptake of PHs by degenerated NP cells, the subsequent release of encapsulated miR-21 inhibitor suppressed apoptotic cell death and modulated the metabolism of the extracellular matrix (ECM) by targeting the Spry1 gene. At the same time, ss-31 was able to target damaged mitochondria and alleviate inflammatory activity via the suppression of mitochondrial ROS-NLRP3-IL-1β/Caspase1 pathway activity. Synergistic ECM regeneration and anti-inflammatory effects were sufficient to provide therapeutic benefits in an in vivo model of IDD. Together, these results thus highlight this hydrogel-based gene delivery platform as a promising novel approach to the treatment of IDD.
Collapse
Affiliation(s)
- Yu Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mingyan Deng
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ye Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Zheng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Fanjun Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Chuan Guo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Qingquan Kong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Xie R, Fan D, Fang Y, Zhu T, Li H, Yin Y, Liu X, Ma Y, Chen F, Zeng W. Dissolving Microneedles Embedded with Photosensitizers for Targeted Eradication of Gram-Positive Bacteria in Multidrug-Resistant Biofilms in Diabetic Wound Infections. Adv Healthc Mater 2025; 14:e2405190. [PMID: 40207607 DOI: 10.1002/adhm.202405190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/10/2025] [Indexed: 04/11/2025]
Abstract
Chronic nonhealing wounds, common in diabetic patients, represent a major clinical challenge, causing significant morbidity and healthcare costs. Persistent bacterial biofilms are a critical obstacle to wound healing, necessitating their effective elimination to promote rapid recovery. In photodynamic antimicrobial therapy (PDAT), enhancing the interaction between the photosensitizer and bacterial biofilms is key to achieving efficient antimicrobial and antibiofilm effects. Here, a novel dissolvable microneedle patch containing a benzoxaborole (BOB)-functionalized photosensitizer is designed, TPI-BOB, for bacteria-specific targeting and localized PDAT of multidrug-resistant biofilm infections in diabetic wounds. TPI-BOB integrates a BOB moiety for selective bacterial binding and a pyridine-based cationic group to enhance electrostatic interactions, showing superior antimicrobial activity in Gram-positive bacteria, particularly MRSA. To further optimize therapeutic delivery and combat biofilm-associated infections, TPI-BOB is incorporated into dissolvable microneedles, which rapidly disintegrate upon application to wound sites. This microneedle system facilitates localized, efficient delivery of TPI-BOB to bacterial biofilms, where it triggers photodynamic action under white-light irradiation. This treatment eradicates the biofilm, initiating tissue repair that reduces inflammation, promotes collagen deposition, and stimulates angiogenesis, accelerating healing. This work presents a novel strategy combining PDAT with microneedle-mediated drug delivery, offering a promising approach for treating diabetic wounds and other biofilm-related infections.
Collapse
Affiliation(s)
- Ruyan Xie
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410078, P. R. China
| | - Duoyang Fan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410078, P. R. China
| | - Yanpeng Fang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410078, P. R. China
| | - Tianyu Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410078, P. R. China
| | - Haohan Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410078, P. R. China
| | - Ying Yin
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410078, P. R. China
| | - Xiaohui Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421200, P. R. China
| | - Yeshuo Ma
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
- Department of Geriatrics, The Third Xiangya Hospital, Central South University, Changsha, 410083, P. R. China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410078, P. R. China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410078, P. R. China
| |
Collapse
|
4
|
Ren M, Wang N, Pu L, Ouyang XK, Mao J. Metal-polyphenol nanoparticles-loaded carboxymethyl cellulose-based microneedle for promoting the healing of diabetic wounds. Int J Biol Macromol 2025; 316:144716. [PMID: 40441572 DOI: 10.1016/j.ijbiomac.2025.144716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/10/2025] [Accepted: 05/26/2025] [Indexed: 06/11/2025]
Abstract
Inflammation and infection are significant barriers to the healing of diabetic wounds. Infectious wounds are often associated with the formation of bacterial biofilms, which impede the penetration of conventional drugs. In this study, we developed a novel metal-polyphenol composite nanoparticle (EGCG-Cu2+ NPs) by combining epigallocatechin gallate (EGCG) with Cu2+ and incorporated these nanoparticles into microneedles (MNs) made from polyvinylpyrrolidone (PVP) and sodium carboxymethyl cellulose (CMCNa). The resulting EGCG-Cu2+ MNs exhibited remarkable anti-inflammatory and antibacterial properties, achieving over 95 % inhibition against S. aureus and P. aeruginosa. Moreover, they effectively scavenged reactive oxygen species (ROS), inhibited the M1 polarization of macrophages, and promoted their M2 polarization. In diabetic wound infection models, the EGCG-Cu2+ MNs enhanced collagen deposition and angiogenesis, resulting in over 92 % wound closure within 14 days. This study provides a significant theoretical basis for innovative treatment strategies for infectious diabetic wounds, highlighting its promising clinical application potential.
Collapse
Affiliation(s)
- Miaoyan Ren
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Nan Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Liuyan Pu
- Zhoushan Maternal and Child Care Hospital, Zhoushan, 316000, PR China
| | - Xiao-Kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Jingfei Mao
- Zhoushan Maternal and Child Care Hospital, Zhoushan, 316000, PR China.
| |
Collapse
|
5
|
Xu Z, Jin Y, Zhang C, HePeng Y, Yang S, Chen X, Qu K, Ning Q, Kourouma M, Li X, Liu R, Wu X. A methacrylated pullulan hydrogel incorporating phycocyanin-functionalized copper sulfide nanoparticles for photothermal antibacterial therapy and improved wound healing. Int J Biol Macromol 2025; 315:144446. [PMID: 40403791 DOI: 10.1016/j.ijbiomac.2025.144446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/08/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
Bacteria-associated wound infections impose a significant burden on patients and healthcare systems. Consequently, there is an urgent need to develop a novel multifunctional antibiotic-free dressing that can effectively prevent wound infections and promote healing. In this study, a multifunctional hydrogel (PulMA/CuS@PC) was synthesized by encapsulating phycocyanin-Functionalized copper sulfide nanoparticles (CuS@PC) in photo-crosslinkable methacrylated pullulan (PluMA), exhibiting photothermal antibacterial properties and enhanced wound healing capabilities. The PulMA/CuS@PC hydrogel exhibits excellent mechanical properties, favorable swelling ability, good biocompatibility, and effective photothermal antibacterial activity. The incorporation of CuS@PC NPs significantly enhances the hydrogel's photothermal antibacterial efficacy against Escherichia coli and Staphylococcus aureus. Furthermore, the PulMA/CuS@PC hydrogel demonstrated substantial wound healing capability in a mouse model of full-thickness skin infection. This was evidenced by a marked reduction in inflammatory response as well as notable improvements in both wound healing and collagen deposition. This study underscores the potential clinical application of the developed multifunctional PulMA/CuS@PC hydrogel as an innovative wound dressing designed to prevent infection while facilitating skin regeneration.
Collapse
Affiliation(s)
- Zhi Xu
- Huiqiao Medical Center, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 510515, China; Department of General Practice, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yile Jin
- Department of Thoracic Surgery, Hospital of Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chen Zhang
- Department of Thoracic Surgery, Hospital of Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yixiang HePeng
- Department of Thoracic Surgery, Hospital of Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Surui Yang
- Department of Thoracic Surgery, Hospital of Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xuyuan Chen
- Department of Thoracic Surgery, Hospital of Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Kailin Qu
- Department of Thoracic Surgery, Hospital of Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qi Ning
- Huiqiao Medical Center, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 510515, China; Department of General Practice, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Mory Kourouma
- Department of Thoracic Surgery, Hospital of Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiang Li
- Department of Emergency Medicine, Hospital of Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Ruiyuan Liu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.
| | - Xu Wu
- Department of Thoracic Surgery, Hospital of Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
6
|
Sun X, Li Y, Wang H, Meng Y, Dai X, Du L, Li L. Construction of pH-Sensitive Multifunctional Hydrogel with Synergistic Anti-Inflammatory Effect for Treatment of Diabetic Wounds. Pharmaceutics 2025; 17:644. [PMID: 40430935 PMCID: PMC12114684 DOI: 10.3390/pharmaceutics17050644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/05/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: A sustainable inflammatory response is a significant obstacle for diabetic wound care. In this study, the pH-sensitive multifunctional hydrogel ODex/BSA-Zn was fabricated via a Schiff base and coordination force for the first time. Methods: The hydrogel consisted of oxidized dextran (ODex), bovine serum albumin (BSA), and zinc ions (Zn2+) in the absence of an additional crosslinking agent. Results: The hydrogel showed excellent mechanical stability, fast self-healing ability, and significant anti-inflammatory effects, as demonstrated by the formation of dynamic covalent bonds between the aldehyde group (-CHO) of ODex and the amino group (-NH2) of BSA via the Schiff base reaction, as well as the metal-ion coordination reaction of Zn2+ with the imidazole ring of BSA. In a diabetic mouse full-thickness cutaneous defect wound model, the ODex/BSA-Zn hydrogel could effectively inhibit the inflammatory response and increase collagen deposition, thereby accelerating the transition of macrophage M1 to M2 and promoting wound closure. This study offers a promising therapeutic approach for managing long-term diabetic ulcers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lei Li
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| |
Collapse
|
7
|
Sun J, Song L, Zhou Y, Wu K, Li C, Han B, Chang J. Review: Advances in multifunctional hydrogels based on carbohydrate polymer and protein in the treatment of diabetic wounds. Int J Biol Macromol 2025; 309:142693. [PMID: 40169055 DOI: 10.1016/j.ijbiomac.2025.142693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/02/2025] [Accepted: 03/29/2025] [Indexed: 04/03/2025]
Abstract
Diabetic wounds healing is often severely slowed by hyperglycemia, elevated oxidative stress, bacterial infections, and persistent inflammation. This review focuses on the development of hydrogels derived from carbohydrate polymer and protein to facilitate diabetic wound healing. We discuss the primary sources of cellulose, chitosan, hyaluronic acid, sodium alginate, collagen, and gelatin along with their advantages in the preparation of hydrogels. Based on the microenvironment of diabetic wounds, i.e., hyperglycemia, increased oxidative stress, and persistent inflammation, the application of multifunctional hydrogels in promoting diabetic wounds, including stimulus responsiveness, injection self-healing, antibacterial, antioxidant, anti-inflammatory, and synergistic effects, is discussed. We address the main challenges and future perspectives of multifunctional hydrogels based on carbohydrate polymer and protein in the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Jishang Sun
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Leyang Song
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Yi Zhou
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Keying Wu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Cuiyao Li
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Baoqin Han
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China
| | - Jing Chang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China.
| |
Collapse
|
8
|
Yang J, des Rieux A, Malfanti A. Stimuli-Responsive Nanomedicines for the Treatment of Non-cancer Related Inflammatory Diseases. ACS NANO 2025; 19:15189-15219. [PMID: 40249331 PMCID: PMC12045021 DOI: 10.1021/acsnano.5c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
Nanomedicines offer a means to overcome the limitations associated with traditional drug dosage formulations by affording drug protection, enhanced drug bioavailability, and targeted drug delivery to affected sites. Inflamed tissues possess unique microenvironmental characteristics (including excessive reactive oxygen species, low pH levels, and hypoxia) that stimuli-responsive nanoparticles can employ as triggers to support on-demand delivery, enhanced accumulation, controlled release, and activation of anti-inflammatory drugs. Stimuli-responsive nanomedicines respond to physicochemical and pathological factors associated with diseased tissues to improve the specificity of drug delivery, overcome multidrug resistance, ensure accurate diagnosis and precision therapy, and control drug release to improve efficacy and safety. Current stimuli-responsive nanoparticles react to intracellular/microenvironmental stimuli such as pH, redox, hypoxia, or specific enzymes and exogenous stimuli such as temperature, magnetic fields, light, and ultrasound via bioresponsive moieties. This review summarizes the general strategies employed to produce stimuli-responsive nanoparticles tailored for inflammatory diseases and all recent advances, reports their applications in drug delivery, and illustrates the progress made toward clinical translation.
Collapse
Affiliation(s)
- Jingjing Yang
- UCLouvain,
Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
| | - Anne des Rieux
- UCLouvain,
Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
| | - Alessio Malfanti
- UCLouvain,
Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
9
|
Huang W, Guo Q, Wu H, Zheng Y, Xiang T, Zhou S. Engineered Exosomes Loaded in Intrinsic Immunomodulatory Hydrogels with Promoting Angiogenesis for Programmed Therapy of Diabetic Wounds. ACS NANO 2025; 19:14467-14483. [PMID: 40189846 DOI: 10.1021/acsnano.5c02896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Inducing rapid angiogenesis by delivering specific biological cues is critical for diabetic wound healing. Nevertheless, the angiogenesis is hindered by the inflammatory microenvironment, and the immune cells fail to orchestrate immune responses to wound healing. Herein, vascular endothelial growth factor (VEGF) plasmids-loaded macrophage exosomes (Exos) were fabricated and enfolded in injectable self-healing hydrogels for programmed therapy of diabetic wounds through sequentially intrinsically modulating the inflammatory microenvironment and promoting angiogenesis. The hydrogels, formed via dynamical Schiff base reactions using modified polysaccharides, intrinsically regulate the inflammatory microenvironment via broad-spectrum antioxidant activity and macrophage phenotype regulation, restoring tissue redox and immune homeostasis. Furthermore, the hydrogels can stabilize and release the engineered exosomes. By integration of generation and release of VEGF by plasmids-loaded macrophage Exos, VEGF secretion by M2 macrophages, and enhanced binding of VEGF to VEGF receptor 2 by high affinity of sulfated chitosan, the intrinsic immunomodulatory hydrogels effectively promote the angiogenesis and accelerate the diabetic wound healing process.
Collapse
Affiliation(s)
- Wei Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Qianru Guo
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Hongrong Wu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Yaxian Zheng
- Department of Pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu 610014, China
| | - Tao Xiang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
10
|
Zhu J, Chen Z, Dong B. Functional hydrogels for accelerated wound healing: advances in conductive hydrogels and self-powered electrical stimulation. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-32. [PMID: 40227875 DOI: 10.1080/09205063.2025.2486858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/24/2025] [Indexed: 04/16/2025]
Abstract
Compared to traditional dressings, hydrogel dressings not only protect the wound surface and prevent bacterial infection but also possess excellent moisturizing properties, which can provide an optimal moist environment for wound healing, and exhibit good biocompatibility, making them considered the best wound treatment materials. This review focuses on the research status and application progress of various functional hydrogel dressings, such as hemostatic, antimicrobial, anti-inflammatory, antioxidant, and conductive hydrogels. It proposes the combination of conductive hydrogels with flexible solar cells to form self-powered devices. Compared to traditional externally powered devices, this approach can reduce carbon footprints by utilizing clean energy, aligning with carbon neutrality policy requirements. Additionally, it eliminates the need for frequent battery replacement or power connections, effectively saving labor and operational costs. Self-powered devices can convert solar energy into electrical energy, which is conducted to the wound site through hydrogels, generating continuous electrical stimulation (ES). This electrical stimulation guides the directional migration of keratinocytes and fibroblasts toward the center of the wound; activates the MAPK/ERK signaling pathway to accelerate the cell cycle process, and upregulates the expression of vascular endothelial growth factor, thereby inducing endothelial cell proliferation and lumen formation. These multiple mechanisms work synergistically to promote wound healing. Finally, the review provides an outlook on the emergence and applications of multifunctional hydrogels and stimuli-responsive hydrogels, highlighting common challenges in the future development of hydrogels, such as weak mechanical strength and poor long-term stability, as well as feasible solutions to these issues.
Collapse
Affiliation(s)
- Junyi Zhu
- School of Materials Science and Engineering, Hubei University, Wuhan, China
| | - Zesheng Chen
- School of Materials Science and Engineering, Hubei University, Wuhan, China
- Department of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Binghai Dong
- School of Materials Science and Engineering, Hubei University, Wuhan, China
| |
Collapse
|
11
|
Wang H, Lu B, Zhou J, Lai J, Zheng X, Guo SZ, Zhang LM. Biobased Physicochemical Reversible Dual-Cross-Linked Hydrogel: Self-Healing, Antibacterial, Antioxidant, and Hemostatic Properties for Diabetic Wound Healing. Biomacromolecules 2025; 26:2637-2653. [PMID: 40127295 DOI: 10.1021/acs.biomac.5c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Skin wound healing remains challenging due to a lack of ideal wound dressings suitable for acute and chronic wounds. This study introduced a biocompatible hydrogel wound dressing, synthesized through a green chemistry approach, specifically designed to meet the dual needs of acute and chronic wound care. The innovative strategy utilized sustainable biomaterials, soy protein, and vanillin, to construct a physical-reversible chemical dual-cross-linked hydrogel exhibiting high mechanical strength, excellent adhesion, and toughness. Schiff base reversible covalent bonds enabled rapid self-healing within 10 s, significantly improving durability. In a rat liver hemorrhage model, the hydrogel rapidly sealed wounds, achieving effective hemostasis, indicating great potential for acute wound care. Furthermore, vanillin imparted the hydrogel with antimicrobial and antioxidant properties, effectively accelerating diabetic chronic wound healing. This safe and efficient advanced biobased hydrogel offers a novel perspective for wound treatment and holds significant promise for clinical applications.
Collapse
Affiliation(s)
- Hanzhang Wang
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Bin Lu
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Junyi Zhou
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jieying Lai
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xue Zheng
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Shuang-Zhuang Guo
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Li-Ming Zhang
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
12
|
Lin Y, Guo Q, Liu Q, Wang W, Lv A, Zhang L, Li L, Gao J, Huang F. An injectable responsive exosome-releasing hydrogel based on sodium alginate restores motor and bladder function by alleviating the injury microenvironment and facilitating distal nerve repair. Int J Biol Macromol 2025; 304:140819. [PMID: 39929458 DOI: 10.1016/j.ijbiomac.2025.140819] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025]
Abstract
In the early stage of spinal cord injury (SCI), excessive reactive oxygen species (ROS) accumulate at the injury site to establish a microenvironment favoring complex secondary injuries, including cavity formation, and impacting the distal lumbosacral spinal cord. Currently, no definitive clinical treatment is available for SCI. Here, we created an responsive and injectable hydrogel composite (GEL-EXO) by modifying and cross-linking biological macromolecules sodium alginate (SA) and gelatin in the form of embedded exosomes. This GEL-EXO composite integrated the bioactivity of exosomes with the gap-filling function of hydrogels. Our experiments demonstrated that the composite could simultaneously repair spinal cord tissues at the injury site and the distal lumbosacral region, thereby restoring motor function and reinitiating bladder function. This therapeutic strategy may promise a brand-new holistic intervention for SCI.
Collapse
Affiliation(s)
- Yabin Lin
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan Yantai 264003, Shandong, China
| | - Qixuan Guo
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan Yantai 264003, Shandong, China
| | - Qing Liu
- Department of Anatomy, School of Basic Medicine, Shandong University, Jinan, Shandong 250021, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Weikang Wang
- Department of Anatomy, School of Basic Medicine, Shandong University, Jinan, Shandong 250021, China; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Ang Lv
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan Yantai 264003, Shandong, China
| | - Luping Zhang
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan Yantai 264003, Shandong, China
| | - Liming Li
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, China.
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fei Huang
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan Yantai 264003, Shandong, China.
| |
Collapse
|
13
|
Li Y, Gu Y, Li J, Liu L, Zhang X, Bai Z, Zhang C, Gu T, Yang J. Advanced therapeutic strategy: A single-dose injection of a dual-loaded 6-mercaptopurine gelatin-based hydrogel for effective inhibition of tumor growth. Int J Biol Macromol 2025; 303:140528. [PMID: 39904445 DOI: 10.1016/j.ijbiomac.2025.140528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
The suboptimal aqueous solubility and pronounced systemic toxicity pose significant constraints on the clinical utility of 6-mercaptopurine (6-MP). This study presents an innovative approach using injectable sustained-release hydrogels for localized drug delivery. A gelatin-based anticancer hydrogel (Gel-MP@Gel@6-MP) was developed to deliver 6-MP through both physical encapsulation and chemical coupling via CS bonds, providing a multistage sustained release platform. In vitro experiments demonstrated that physically encapsuled drug achieved rapid release within 4 h, comparable to intravenous administration kinetics. Furthermore, in the presence of glutathione (GSH), nucleophilic attack triggered slow release of S-(6-purinyl) glutathione (PG) and a minor amount of 6-MP, with sustained release observed for up to 96 h. This suggests that, in contrast to conventional delivery methods, the proposed system not only facilitates an initial high-concentration drug release lasting hours, but also enables the sustained release of drug fragments over an extended period of several days, owing to the gradual cleavage of chemical bonds following one single injection. Ultimately, in vivo antitumor studies revealed superior tumor inhibition with Gel-MP@Gel@6-MP compared to free 6-MP. This dual drug loading strategy significantly prolongs drug action duration and obviates the necessity for repeated drug administrations, thereby revealing the diverse modes of drug administration.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Yiming Gu
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Jian Li
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Lijie Liu
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, China
| | - Xin Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Zhimin Bai
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Chen Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Tao Gu
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, Hebei 066000, China.
| | - Jingyue Yang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
14
|
Jiang J. Silver Nanoparticles Prepared Using Magnolia officinalis Are an Effective Antimicrobial Agent on Candida albicans, Escherichia coli, and Staphylococcus aureus. Probiotics Antimicrob Proteins 2025; 17:625-639. [PMID: 37843750 DOI: 10.1007/s12602-023-10179-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Silver nanoparticles (AgNPs) prepared by plants are simple, eco-friendly, and economical. In this study, Magnolia officinalis (MO) extract was applied to synthesize MO@AgNPs. Ultraviolet-visible (UV-vis) spectrum analysis indicated a peak at 440 nm. Most of the particles were spherical with sizes from 1 to approximately 60 nm based on transmission electron microscopy (TEM). X-ray diffraction (XRD) patterns showed a face-centered cubic crystal structure. The zeta value of MO@AgNPs was - 36.5 ± 0.6 mV, which was stable at 25 °C and 4 °C. Growth kinetic studies and the Kirby-Bauer diffusion method showed significant inhibitory activity on Candida albicans (ATCC 10231), Escherichia coli (ATCC BAA-2340), and Staphylococcus aureus (ATCC 25923); the minimum inhibitory concentrations (MIC) were 3, 9, and 9 μg/mL, and corresponding minimum bactericidal concentrations (MBC) were 5, 11, and 9 μg/mL, respectively. MO@AgNPs exhibited better antifungal activity compared to AgNPs prepared using sodium citrate. Further research revealed that MO@AgNPs increased the permeability of bacterial cell membranes. Moreover, the effect of MO@AgNPs on Candida albicans was significantly enhanced by blocking autophagy. The reactive oxygen species (ROS) induced by MO@AgNPs in Candida albicans was limited and may be related to its good antioxidant activity. Finally, MO@AgNPs have no significant cytotoxicity to the human liver LO2 cell line under 20 μg/mL.
Collapse
Affiliation(s)
- Jiacheng Jiang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
15
|
Liu Y, Yang X, Wu K, Feng J, Zhang X, Li A, Cheng C, Zhu YZ, Guo H, Wang X. Skin-Inspired and Self-Regulated Hydrophobic Hydrogel for Diabetic Wound Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414989. [PMID: 40059610 DOI: 10.1002/adma.202414989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/19/2025] [Indexed: 04/24/2025]
Abstract
Diabetic wounds are refractory and recurrent diseases that necessitate the development of multifunctional dressings. Inspired by the structure and function of the skin, we herein delicately design a novel swollen hydrophobic hydrogel (QL@MAB) composed of hydrophobic methyl acrylate (MA) and (3-acrylamidophenyl)boronic acid (AAPBA) network and co-loaded with antioxidant quercetin (Q) and antibiotic levofloxacin (L) for efficient diabetic wound therapy. The hydrophobic MA segments undergo phase separation to form a dense "epidermis", ensuring prolonged drug diffusion, long-term water retention, and high water content. Meanwhile, the AAPBA segments generate glucose-labile "sweat pores" via borate ester bonds with the polyphenol drug Q. Upon encountering the hyperglycemic wound microenvironment, the "sweat pores" are dilated due to the cleavage of the borate ester bonds and exposure of the diffusion channel, facilitating drug release for accelerated wound healing. In the infected diabetic rats, QL@MAB achieves rapid wound debridement and re-epithelization while promoting angiogenesis, hair follicle regeneration, and extracellular matrix remodeling. Taken together, this study not only represents a multipronged dressing for effective interventions of diabetic wounds but also contributes to the rational design of smart hydrogels tailored for biomedical applications.
Collapse
Affiliation(s)
- Yonghang Liu
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Xiaoxue Yang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Kefan Wu
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Jingyao Feng
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Xian Zhang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Ao Li
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yi Zhun Zhu
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Hui Guo
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Xiaolin Wang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| |
Collapse
|
16
|
Li H, Yu L, Li Z, Li S, Liu Y, Qu G, Chen K, Huang L, Li Z, Ren J, Wu X, Huang J. A Narrative Review of Bioactive Hydrogel Microspheres: Ingredients, Modifications, Fabrications, Biological Functions, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500426. [PMID: 40103506 DOI: 10.1002/smll.202500426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/02/2025] [Indexed: 03/20/2025]
Abstract
Hydrogel microspheres are important in regenerative medicine and tissue engineering, acting as cargos of cells, drugs, growth factors, bio-inks for 3D printing, and medical devices. The antimicrobial and anti-inflammatory characteristics of hydrogel microspheres are good for treating injured tissues. However, the biological properties of hydrogel microspheres should be modified for optimal treatment of various body parts with different physiological and biochemical environments. In addition, specific preparation methods are required to produce customized hydrogel microspheres with different shapes and sizes for various clinical applications. Herein, the advances in hydrogel microspheres for biomedical applications are reviewed. Synthesis methods for hydrogel precursor solutions, manufacturing methods, and strategies for enhancing the biological functions of these hydrogel microspheres are described. The involvement of bioactive hydrogel microspheres in tissue repair is also discussed. This review anticipates fostering more insights into the design, production, and application of hydrogel microspheres in biomedicine.
Collapse
Affiliation(s)
- Haohui Li
- Research Institute of General Surgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lili Yu
- Research Institute of General Surgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ze Li
- School of Medicine, Nanjing University, Nanjing, 210093, China
| | - Sicheng Li
- School of Medicine, Nanjing University, Nanjing, 210093, China
| | - Ye Liu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Guiwen Qu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Kang Chen
- Research Institute of General Surgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Luqiao Huang
- Research Institute of General Surgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zongan Li
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, NARI School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing, 210042, China
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jinjian Huang
- Research Institute of General Surgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Medicine, Nanjing University, Nanjing, 210093, China
- School of Medicine, Southeast University, Nanjing, 210009, China
| |
Collapse
|
17
|
Chen Y, Jiang W, Fu Y, Li M, Wang Y, Zhuge H, Wang T. Recent advances in the development of hydrogel dressings for the treatment of pressure ulcers/injuries. Am J Transl Res 2025; 17:1613-1629. [PMID: 40226030 PMCID: PMC11982876 DOI: 10.62347/yvqd6861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/13/2025] [Indexed: 04/15/2025]
Abstract
Pressure ulcers, also known as pressure injuries, are common conditions that result from chronic bedrest. These ulcers significantly affect quality of life and substantially burden individuals and society with health costs. The prevention and treatment of pressure ulcers is a primary concern for health care professionals. Dressings play a crucial role in the treatment of pressure ulcers. Hydrogels are innovative safe materials that show great promise for clinical applications. Recent research has demonstrated the potential of hydrogel dressings to promote the healing of pressure ulcers and chronic wounds. This review aims to summarize the mechanisms and effects of hydrogel dressings and to discuss considerations for their use in patients with pressure injuries under different circumstances. Hydrogel dressings, especially loaded with unique cargo, may represent promising new options for the treatment of pressure ulcers. However, additional clinical studies are urgently needed to validate the efficacy and accessibility of hydrogels in clinical practice.
Collapse
Affiliation(s)
- Ye Chen
- Department of Quality Management, Affiliated Jinling Hospital, Medical School of Nanjing UniversityNanjing 210002, Jiangsu, China
| | - Weifang Jiang
- Department of Emergency, Affiliated Jinling Hospital, Medical School of Nanjing UniversityNanjing 210002, Jiangsu, China
| | - Yuwen Fu
- Department of Emergency, Affiliated Jinling Hospital, Medical School of Nanjing UniversityNanjing 210002, Jiangsu, China
| | - Mengting Li
- Department of Emergency, Affiliated Jinling Hospital, Medical School of Nanjing UniversityNanjing 210002, Jiangsu, China
| | - Yan Wang
- Department of Liver Disease, Affiliated Jinling Hospital, Medical School of Nanjing UniversityNanjing 210002, Jiangsu, China
| | - Hengxian Zhuge
- Department of Liver Disease, Affiliated Jinling Hospital, Medical School of Nanjing UniversityNanjing 210002, Jiangsu, China
| | - Tanchun Wang
- Department of Liver Disease, Affiliated Jinling Hospital, Medical School of Nanjing UniversityNanjing 210002, Jiangsu, China
| |
Collapse
|
18
|
Chen Y, Yuan B, Yang Z, Yan S, Ren K, Pi Q, Liu Y, Yin J. Catalase-like Nanozyme-Hybrid Hydrogels Utilizing Endogenous ROS as an Oxygen Source To Synergically Regulate Oxidative Stress and Hypoxia for Enhanced Diabetic Wound Healing. Biomacromolecules 2025; 26:1672-1685. [PMID: 39995016 DOI: 10.1021/acs.biomac.4c01481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
High levels of reactive oxygen species (ROS) and hypoxia in diabetic wounds significantly hinder the healing process. In this work, a kind of catalase-like nanozyme-hybrid hydrogel was developed to explore the potential of harnessing endogenous excessive ROS as an oxygen source to synergistically regulate oxidative stress and hypoxia, thereby enhancing diabetic wound healing. The hydrogels exhibited rapid degradation and controlled release of ferrihydrite nanozymes in response to oxidative stress, which continuously catalyzed the decomposition of H2O2 to generate oxygen, effectively scavenging ROS and reducing the risk of local oxygen toxicity. The hydrogels relieved intracellular oxidative stress and the hypoxic microenvironment simultaneously in vitro. The hydrogel dressings effectively inhibited oxidative damage at wound sites, promoted epidermis formation and collagen deposition, and significantly accelerated wound healing in db/db mice. Therefore, the catalase-like nanozyme-hybrid hydrogels represent a promising strategy for diabetic wound dressings, addressing both oxidative stress and hypoxia to improve healing outcomes.
Collapse
Affiliation(s)
- Yehao Chen
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China
| | - Bo Yuan
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2 Road, Shanghai200025, P.R. China
| | - Zhixuan Yang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China
| | - Shifeng Yan
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China
| | - Kaixuan Ren
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China
| | - Qingmeng Pi
- Department of Plastic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 1630 East Road, Shanghai 200127, P. R. China
| | - Yan Liu
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2 Road, Shanghai200025, P.R. China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, P. R. China
| |
Collapse
|
19
|
Li J, Du C, Yang X, Yao Y, Qin D, Meng F, Yang S, Tan Y, Chen X, Jiang W, Liu Y. Instantaneous Self-Healing Chitosan Hydrogels with Enhanced Drug Leakage Resistance for Infected Stretchable Wounds Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409641. [PMID: 39935197 DOI: 10.1002/smll.202409641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/05/2025] [Indexed: 02/13/2025]
Abstract
Self-healing hydrogels are intelligent wound dressings to repair structural damage caused by limb movement, demonstrating advantages in stretchable wound management. Chitosan is widely used in the preparation of hydrogels due to the biocompatibility and biodegradability. However, the self-healing efficiency and mechanical strength of chitosan hydrogels are not ideal. To address the issues, three self-healing hydrogels: the single schiff base network hydrogels (OH), the double schiff-base bond network hydrogel (OHD), and borate ester bond/schiff base bond (OHPB) are designed. The self-healing time of OHPB is only 0.7 s measured by real-time electrochemical test, while the self-healing time of OH and OHD is 3.5 h and 1.5 h. Furthermore, OHPB hydrogel exhibits the desirable mechanical strength and tissue adhesion. Following the destruction-repair process, CIP and exosome loaded OHPB (ec⊂OHPB) hydrogel displays approximate 100% drug leakage resistance to achieve long-term antibacterial, cells migration promotion and M2 polarization. ec⊂OHPB hydrogel significantly accelerates infected stretchable wounds healing by relieving inflammation, facilitating angiogenesis and collagen deposition, promoting epidermal remodeling. Consequently, OHPB hydrogel with instantaneous self-healing property and enhanced drug leakage resistance performance makes it possible to broaden the application prospects of chitosan hydrogel dressings.
Collapse
Affiliation(s)
- Jiajia Li
- College of Marine Life Science, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Chen Du
- College of Marine Life Science, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Xiaoping Yang
- Qingdao Traditional Chinese Medicine Hospital, Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao, Shandong, 266000, China
- College of First Clinical Medical, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Yingxia Yao
- College of Marine Life Science, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Di Qin
- College of Marine Life Science, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Fanhu Meng
- College of Marine Life Science, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Shuangshuang Yang
- Shandong Qilu Cell Therapy Engineering Technology Co., Ltd, Jinan, Shandong, 250000, China
| | - Yi Tan
- Shandong Qilu Cell Therapy Engineering Technology Co., Ltd, Jinan, Shandong, 250000, China
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Wenqing Jiang
- Qingdao Traditional Chinese Medicine Hospital, Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao, Shandong, 266000, China
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao, Shandong, 266003, China
| |
Collapse
|
20
|
Wu Y, Zhu Y, Chen J, Song L, Wang C, Wu Y, Chen Y, Zheng J, Zhai Y, Zhou X, Liu Y, Du Y, Cui W. Boosting mRNA-Engineered Monocytes via Prodrug-Like Microspheres for Bone Microenvironment Multi-Phase Remodeling. Adv Healthc Mater 2025; 14:e2403212. [PMID: 39502012 DOI: 10.1002/adhm.202403212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/27/2024] [Indexed: 03/18/2025]
Abstract
Monocytes, as progenitors of macrophages and osteoclasts, play critical roles in various stages of bone repair, necessitating phase-specific regulatory mechanisms. Here, icariin (ICA) prodrug-like microspheres (ICA@GM) are developed, as lipid nanoparticle (LNP) transfection boosters, to construct mRNA-engineered monocytes for remodeling the bone microenvironment across multiple stages, including the acute inflammatory and repair phases. Initially, ICA@GM is prepared from ICA-conjugated gelatin methacryloyl via a microfluidics system. Then, monocyte-targeting IL-4 mRNA-LNPs are then prepared and integrated into injectable microspheres (mRNA-ICA@GM) via electrostatic and hydrogen bond interactions. After bone-defect injection, LNPs are controlled released from mRNA-ICA@GM within 3 days, rapidly transfecting monocytes for monocyte IL-4 mRNA-engineering, which effectively suppressed acute inflammatory responses via polarization programming and paracrine signaling. Afterwards, ICA is sustainably released as well via cleavable boronate esters across multiple stages, cooperatively boosting the mRNA-engineered monocytes to inhibit coenocytic fusion and osteoclastic function. Both in vitro and in vivo data indicated that mRNA-ICA@GM can not only reverse the inflammatory environment but also suppress monocyte-derived osteoclast formation to accelerate bone repair. In summary, mRNA-engineered monocytes and ICA prodrug-like microspheres are combined to achieve long-lasting multi-stage bone microenvironment regulation, offering a promising repair strategy.
Collapse
Affiliation(s)
- Yuansheng Wu
- Medical Center of Hip, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, 82 Qiming South Road, Luoyang, 471000, P. R. China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yingjie Zhu
- Medical Center of Hip, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, 82 Qiming South Road, Luoyang, 471000, P. R. China
| | - Jie Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Lili Song
- Microbiology Laboratory, Huangpu District Center for Disease Control and Prevention, 309 Xietu Road, Shanghai, 200023, P. R. China
| | - Chunping Wang
- Medical Center of Hip, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, 82 Qiming South Road, Luoyang, 471000, P. R. China
| | - Yanglin Wu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yanyang Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Jiancheng Zheng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yuankun Zhai
- School of Stomatology, Henan University, 85 Minglun Street, Kaifeng, 475000, P. R. China
| | - Xiang Zhou
- Traditional Chinese Medicine Hospital of Dianjiang, 502 Gongnong Road, Dianjiang, Chongqing, 408300, P. R. China
| | - Youwen Liu
- Medical Center of Hip, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, 82 Qiming South Road, Luoyang, 471000, P. R. China
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, 450046, P. R. China
| | - Yawei Du
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
21
|
Kheradmandi R, Zamani S, Farahani MK, Ehterami A, Salehi M. Harnessing Nature's Power: Plant and Polymeric-Based Antibacterials as Potential Therapeutics for Infectious Skin Wound Healing. Biopolymers 2025; 116:e70007. [PMID: 40033706 DOI: 10.1002/bip.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 03/05/2025]
Abstract
This comprehensive review explores the potential of plant- and biopolymeric-based antibacterials as innovative therapeutic agents for infectious skin wound healing. By researching the antibacterial properties of various plants, the review highlights their application in skin tissue engineering. Beyond reviewing antibacterial plant extracts, the article delves into the limitations these natural compounds face, such as hydrophilicity, drug release rates, cell attachment, and scaffold stability when integrated into tissue engineering constructs. The review also emphasizes the role of biopolymeric materials, hydrogel optimization, and crosslinkers to improve scaffold performance. This review provides a roadmap for future research by addressing critical factors in scaffold construction. In the end, it aims to guide the development of more effective wound dressings and tissue scaffolds, combining the natural power of plants with advanced biopolymeric materials for enhanced wound healing therapies.
Collapse
Affiliation(s)
- Rasoul Kheradmandi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Sepehr Zamani
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Arian Ehterami
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Majid Salehi
- Regenerative Medicine Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
22
|
Guo M, Liao Y, Bao Y, Sun W, Dong Y, Zhang L, Wu W, Li J, Cheng Q. Construction of GOx-loaded metal organic frameworks antibacterial composite hydrogels for skin wound healing. Int J Biol Macromol 2025; 295:139655. [PMID: 39793832 DOI: 10.1016/j.ijbiomac.2025.139655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Bacterial infections and inflammation severely impede wound healing. Here, we developed a zwitterionic hydrogel incorporating MOF/GOx for pH-responsive, controlled drug release. The multifunctional hydrogel embedded with MOF/GOx was successfully prepared through the Schiff base reaction between the copolymer poly[(2-methacryloyloxyethyl phosphorylcholine)-co-(4-formylphenyl methacrylate)] (PMF) and the branched polyethylenimine (PEI) modified by the zwitterionic monomer ((4-hydroxyphenyl)sulfonyl)(4-(trimethylammonio)butanoyl)amide (AB), which possessed excellent injectable and self-healing ability, a highly sensitive and reversible responsiveness to pH changes, and good biocompatibility. Moreover, the MOF/GOx-PP composite hydrogel under exposure to a slightly acidic environment would rupture, and the slowly released MOF/GOx triggered a cascade-catalyzed reaction that could inhibit and kill Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), and, simultaneously, mouse experiments indicated that the wound healing rate showed 93 % wound closure in 7 days compared to 67 % with controls. The multifunctional antibacterial hydrogel has immense potential as a dressing in the treatment of infected wounds.
Collapse
Affiliation(s)
- Mengyao Guo
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, PR China; School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Yuan Liao
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, PR China; School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Yu Bao
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Wenyuan Sun
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Yuke Dong
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Leitao Zhang
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Wenlan Wu
- School of Medicine, Henan University of Science & Technology, Luoyang 471023, PR China
| | - Junbo Li
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, PR China.
| | - Qiuli Cheng
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, PR China.
| |
Collapse
|
23
|
Zhou J, Sun Z, Wang X, Wang S, Jiang W, Tang D, Xia T, Xiao F. Low-temperature cold plasma promotes wound healing by inhibiting skin inflammation and improving skin microbiome. Front Bioeng Biotechnol 2025; 13:1511259. [PMID: 40051835 PMCID: PMC11882593 DOI: 10.3389/fbioe.2025.1511259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025] Open
Abstract
Wound healing includes four consecutive and overlapping stages of hemostasis, inflammation, proliferation, and remodeling. Factors such as aging, infection, and chronic diseases can lead to chronic wounds and delayed healing. Low-temperature cold plasma (LTCP) is an emerging physical therapy for wound healing, characterized by its safety, environmental friendliness, and ease of operation. This study utilized a self-developed LTCP device to investigate its biological effects and mechanisms on wound healing in adult and elderly mice. Histopathological studies found that LTCP significantly accelerated the healing rate of skin wounds in mice, with particularly pronounced effects in elderly mice. LTCP can markedly inhibit the expression of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) and senescence-associated secretory phenotype factors (MMP-3, MMP-9), while significantly increasing the expression of tissue repair-related factors, such as VEGF, bFGF, TGF-β, COL-I, and α-SMA. It also regulated the expression of genes related to cell proliferation and migration (Aqp5, Spint1), inflammation response (Nlrp3, Icam1), and angiogenesis (Ptx3, Thbs1), promoting cell proliferation and inhibit apoptosis. Furthermore, LTCP treatment reduced the relative abundance of harmful bacteria such as Delftia, Stenotrophomonas, Enterococcus, and Enterobacter in skin wounds, while increasing the relative abundance of beneficial bacteria such as Muribaculaceae, Acinetobacter, Lachnospiraceae NK4A136_group, and un_f__Lachnospiraceae, thereby improving the microbial community structure of skin wounds. These research findings are of significant implications for understanding the mechanism of skin wound healing, as well as for the treatment and clinical applications of skin wounds, especially aging skin.
Collapse
Affiliation(s)
- Jie Zhou
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
| | - Zengkun Sun
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
| | - Xiaoru Wang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
| | - Shouguo Wang
- Academy of Advanced Interdisciplinary Studies, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
| | - Wen Jiang
- Beijing Zhongsu Titanium Alloy Vacuum Plasma Technology Research Institute, Beijing, China
| | - Dongqi Tang
- Center for Gene and Immunotherapy, Multidisciplinary Innovation Center for Nephrology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tao Xia
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
| | - Fang Xiao
- Department of Gerontology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
24
|
Ahuja R, Singh M, Dutt Konar A. 12-Hydroxy-Lauric Acid Tethered Self-Assembled Heterochiral Diphenylalanine-Based Mechanoresponsive and Proteolytically Stable Hydrogel: A Dual Player for Handling Cancer and Bacterial Challenges. ACS APPLIED BIO MATERIALS 2025; 8:1108-1125. [PMID: 39835934 DOI: 10.1021/acsabm.4c01438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Deciphering the most promising strategy for the evolution of cancer patient management remains a multifaceted, challenging affair to date. Additionally, such approaches often lead to microbial infections as side effects, probably due to the compromised immunity of the patients undergoing such treatment. Distinctly, this work delineates a rational combinatorial strategy harnessing stereogenic harmony in the diphenylalanine fragment, tethering it to an amphiphile 12-hydroxy-lauric acid at the N-terminus (compounds I-III) such that a potential therapeutic could be extracted out from the series. Aligned to the goal, the cytotoxic properties and cell viability of the compounds were investigated using two distinct cell lines: MCF-7 (human breast cancer cell) and HEK 293 (human embryonic kidney). Our rigorous investigations revealed that compounds I-III exhibited substantial cytotoxic impact on the MCF7 cell line. But from a pool of three constructs, compound III (12-hydroxy-lauric acid -d-Phe-l-Phe-OH) showed better selectivity toward cancerous MCF7 over normal HEK 293 in comparison to others, backed by computational calculations. Henceforth, it was fished out from the series and used for its elaborate anticancer activities using cell reactive oxygen species generation, DNA fragmentation, and caspase-dependent gene expression employing extrinsic and intrinsic apoptotic factors as well as inflammatory biomarkers, namely, TNF-α and IL1-β. We anticipated that compound III, possessing mechanoresponsiveness and a nanofibrillar network, could be administered in patients with injections because of its shear-thinning properties. Moreover, the optimum partition coefficient of compound III might have allowed the scaffold to penetrate the cellular membranes and form a dilactate complex (compound VI) when exposed to the accumulated lactates/lactic acids, a common phenomenon observed within the hypoxic cancerous tumor cores, in accordance with the Warburg mechanism, thereby evading the cytotoxicity within normal cells. Besides, the supramolecular β-sheets of compound III manifest substantial antimicrobial efficacy against the common pathogens, two Gram-positive bacteria, S. aureus and B. subtilis, two Gram-negative bacteria, E. coli and P. aeruginosa, and a fungus, C. albicans, along with proteolytic stability and high mechanical strength at physiological pH. Overall, we speculate that the discovery of these multifunctional bioinspired materials holds future promise as preferential therapeutics for the remediation of immune-susceptible cancer patients, afflicted by microbial infections arising alone or as side effects of chemotherapeutic medications.
Collapse
Affiliation(s)
- Rishabh Ahuja
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal 462033, Madhya Pradesh, India
| | - Manju Singh
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal 462033, Madhya Pradesh, India
| | - Anita Dutt Konar
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal 462033, Madhya Pradesh, India
- School of Pharmaceutical Sciences, Rajiv Gandhi Technological University, Bhopal 462033, India
- University Grants Commission, New Delhi, New Delhi 110002, India
| |
Collapse
|
25
|
Zhang Z, Yang S, Mi F, Yang Y, Song Q, Gao Y, Wu C, Wen W. Nanoparticle-Reinforced Hydrogel with a Well-Defined Pore Structure for Sustainable Drug Release and Effective Wound Healing. ACS APPLIED BIO MATERIALS 2025; 8:1406-1417. [PMID: 39916309 PMCID: PMC11836925 DOI: 10.1021/acsabm.4c01659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/03/2025] [Accepted: 02/03/2025] [Indexed: 02/18/2025]
Abstract
Impaired chronic wounds are a common complication of diabetes. Inhibited angiogenesis and dysfunctional inflammation render diabetic wound healing a critical challenge. Herein, a sustainable therapeutic composite hydrogel is presented for diabetic wound healing, consisting of a cocktail formulation of anti-inflammatory and local anesthetic nanoparticles incorporated into a composite hydrogel. The surface-modified drug nanoparticles are loaded into the biocompatible hydrogels and cross-linked with a gel precursor to enhance the structure. The sustainable delivery system achieves more than 90% drug release, with a total therapy duration tunable from 4 to 72 h. Through the long-lasting anti-inflammatory and analgesic effects of the composite hydrogel, diabetic wounds are swiftly transitioned into the proliferation phase, augmenting the survival and migration of keratinocytes and facilitating neovascularization and collagen alignment in diabetic wounds. These effects significantly improve the wound healing rate and skin regeneration process, achieving a healing rate that is 17 times that of untreated wounds. This study demonstrates that the hydrogel platform loaded with cocktail drug nanoparticles is promising for the rapid healing of diabetic wounds.
Collapse
Affiliation(s)
- Ziyi Zhang
- Division
of Emerging Interdisciplinary Areas, The
Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 000000, China
- Thrust
of Advanced Materials, The Hong Kong University
of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
| | - Siyu Yang
- Department
of Physics, The Hong Kong University of
Science and Technology, Clear Water Bay,
Kowloon, Hong Kong 000000, China
| | - Feixue Mi
- Department
of Biomedical Engineering, Southern University
of Science and Technology, Shenzhen 518055, China
| | - Yicheng Yang
- Department
of Biomedical Engineering, Southern University
of Science and Technology, Shenzhen 518055, China
| | - Qi Song
- Shenzhen
Shineway Technology Corporation, Shenzhen 518048, China
| | - Yibo Gao
- Shenzhen
Shineway Technology Corporation, Shenzhen 518048, China
| | - Changfeng Wu
- Department
of Biomedical Engineering, Southern University
of Science and Technology, Shenzhen 518055, China
| | - Weijia Wen
- Division
of Emerging Interdisciplinary Areas, The
Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 000000, China
- Thrust
of Advanced Materials, The Hong Kong University
of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
- Department
of Physics, The Hong Kong University of
Science and Technology, Clear Water Bay,
Kowloon, Hong Kong 000000, China
| |
Collapse
|
26
|
Huang L, Li T, Geng W, Xie X, Wang P, Deng Y, Gao Y, Bai D, Tang T, Cheng C. Oxygen-Bonded Amorphous Transition Metal Dichalcogenides with pH-Responsive Reactive Oxygen Biocatalysis for Combined Antibacterial and Anti-inflammatory Therapies in Diabetic Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407046. [PMID: 39469735 DOI: 10.1002/smll.202407046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/15/2024] [Indexed: 10/30/2024]
Abstract
Diabetic wound healing is a formidable challenge, often complicated by biofilms, immune dysregulation, and hindered vascularization within the wound environments. The intricate interplay of these microenvironmental factors has been a significant oversight in the evolution of therapeutic strategies. Herein, the design of an efficient and versatile oxygen-bonded amorphous transition metal dichalcogenide biocatalyst (aRuS-Or) with pH-responsive reactive oxygen biocatalysis for combined antibacterial and anti-inflammatory therapies in promoting diabetic wound healing is reported. Leveraging the incorporation of Ru─O bonds, aRuS-Or exhibits optimized adsorption/desorption behavior of oxygen intermediates, thereby enhancing both the reactive oxygen species (ROS) generation activity in acidic conditions and ROS scavenging performance in neutral environments. Remarkably, aRuS-Or demonstrates exceptional bactericidal potency within infected milieus through biocatalytic ROS generation. Beyond its antimicrobial capability, post-eradication, aRuS-Or serves a dual role in mitigating oxidative stress in inflammatory wounds, providing robust cellular protection and fostering an M2-phenotype polarization of macrophages, which is pivotal for accelerating the wound repair process. The findings underscore the multifaceted efficacy of aRuS-Or, which harmoniously integrates high antibacterial action with anti-inflammatory and pro-angiogenic properties. This triad of functionalities positions aRuS-Or as a promising candidate for the comprehensive management of complex diabetic ulcers, addressing the unmet needs in the current therapeutics.
Collapse
Affiliation(s)
- Lingyi Huang
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Tiantian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Wei Geng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiaodong Xie
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Peiqi Wang
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuting Deng
- Department of Ultrasound, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Gao
- Department of Ultrasound, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Med-X Center for Materials, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ding Bai
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Tian Tang
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chong Cheng
- Department of Endodontics, Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
27
|
Gui Q, Ding N, Wu H, Liu J, Geng Y, Zhu J, Gao M, Du A, Yue B, Zhu L. Development of a pH-Responsive Antimicrobial and Potent Antioxidant Hydrogel for Accelerated Wound Healing: A Game Changer in Drug Delivery. Adv Biol (Weinh) 2025; 9:e2400358. [PMID: 39673457 DOI: 10.1002/adbi.202400358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/03/2024] [Indexed: 12/16/2024]
Abstract
Stimuli-responsive hydrogels have the capability to alter their state in response to changes in physiological signals within their application environment, providing distinct benefits in drug delivery applications. Here, the acidic pH typically found in acutely infected wounds can be effectively managed by incorporating a pH-responsive Ag+ loaded system within the hydrogel, thereby ensuring efficient drug use and preventing potential toxicity from the sudden release of silver ions. The antimicrobial composite hydrogel HAMA/GelMA-CA/Ag+ provides some tissue adhesion and accelerates wound healing. GelMA-CA is synthesized by modifying gelatin methacryloyl (GelMA) with caffeic acid (CA), while hyaluronic acid methacryloyl (HAMA) is introduced to prepare a double network hydrogel. Silver nitrate is then introduced to make it pH-responsive through the formation of coordination between the polyphenolic structure of caffeic acid and the silver ions. The composite hydrogel exhibited excellent antioxidant properties and strong antimicrobial activity against both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Furthermore, the composite hydrogel accelerated the promotion of wound healing in a rat model of S. aureus-infected wounds. In conclusion, the HAMA/GelMA-CA/Ag+ hydrogel is a promising bioactive material that can be used as a wound dressing to promote the healing of acutely infected wounds.
Collapse
Affiliation(s)
- Qixiang Gui
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Neng Ding
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
- Department of Burns and Plastic Surgery, the PLA 74th Group Army Hospital, Guangzhou, 510300, China
| | - Haimei Wu
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
- Faculty of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jinyue Liu
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Yingnan Geng
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Jie Zhu
- Department of Plastic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Mingyue Gao
- YanCheng NO.1 People's Hospital, Yancheng, 224006, China
| | - Antong Du
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Bingbing Yue
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lie Zhu
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| |
Collapse
|
28
|
Guo C, Jiao X, Du X, Zhang T, Peng B, Xu B. Application of Self-Healing Hydrogels in the Treatment of Intervertebral Disc Degeneration. J Biomed Mater Res B Appl Biomater 2025; 113:e35532. [PMID: 39842850 DOI: 10.1002/jbm.b.35532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/25/2024] [Accepted: 12/26/2024] [Indexed: 01/24/2025]
Abstract
Intervertebral disc degeneration (IDD) is one of the leading causes of chronic pain and disability, and traditional treatment methods often struggle to restore its complex biomechanical properties. This article explores the innovative application of self-healing hydrogels in the treatment of IDD, offering new hope for disc repair due to their exceptional self-repair capabilities and adaptability. As a key support structure in the human body, intervertebral discs are often damaged by trauma or degenerative changes. Self-healing hydrogels not only mimic the mechanical properties of natural intervertebral discs but also self-repair when damaged, thereby maintaining stable functionality. This article reviews the self-healing mechanisms and design strategies of self-healing hydrogels and, for the first time, outlines their potential in the treatment of IDD. Furthermore, the article looks forward to future developments in the field, including intelligent material design, multifunctional integration, encapsulation and release of bioactive molecules, and innovative combinations with tissue engineering and stem cell therapy, offering new perspectives and strategies for IDD treatment.
Collapse
Affiliation(s)
- Cunliang Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinyi Jiao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoxun Du
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | | | - Bing Peng
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | | |
Collapse
|
29
|
Li R, Li W, Teng Y, Li R, Kong S, Chen X, Luo H, Chen D, Guo Y, Qing Y, Leong HC, Guo B, Chen M, Pan Z, Zheng S, Deng Y, Cao Y, Zhou C, Zou X, Wang W. Ameliorating macrophage pyroptosis via ANXA1/NLRP3/Caspase-1/GSDMD pathway: Ac2-26/OGP-loaded intelligent hydrogel enhances bone healing in diabetic periodontitis. Biofabrication 2025; 17:025001. [PMID: 39773706 DOI: 10.1088/1758-5090/ada737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Craniofacial bone defect healing in periodontitis patients with diabetes background has long been difficult due to increased blood glucose levels which cause overproduction of reactive oxygen species (ROS) and a low pH environment. These conditions negatively affect the function of macrophages, worsen inflammation and oxidative stress, and ultimately, hinder osteoblasts' bone repair potential. In this study, we for the first time found that annexin A1 (ANXA1) expression in macrophages was reduced in a diabetic periodontitis (DP) environment, with the activation of the NLRP3/Caspase-1/GSDMD signaling pathway, and, eventually, increased macrophage pyroptosis. Next, we have developed a new GPPG intelligent hydrogel system which was ROS and pH responsive, and loaded with Ac2-26, an ANXA1 bioactive peptide, and osteogenic peptide OGP as well. We found that Ac2-26/OGP/GPPG can effectively reduce ROS, mitigates macrophage pyroptosis via the ANXA1/NLRP3/Caspase-1/GSDMD pathway and enhanced osteogenic differentiation. The effect of Ac2-26/OGP/GPPG in regulation of pyroptosis and bone defect repair was also further validated by animal experiments on periodontitis-induced tooth loss model in diabetic rats. To conclude, our study unveils the effect of ANXA1 on macrophage pyroptosis in periodontitis patients with diabetes, based on which we introduced a promising innovative hydrogel system for improvement of bone defects repair in DP patients via targeting macrophage pyroptosis and enhancing osteogenic potential.
Collapse
Affiliation(s)
- Ruoyu Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wenfeng Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yungshan Teng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Runze Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Siyi Kong
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xin Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Haotian Luo
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Danying Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yuqing Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yangqiao Qing
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hio Cheng Leong
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Bingyan Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Meihan Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zixin Pan
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shushuo Zheng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yihong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yang Cao
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Chen Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Weicai Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
30
|
Xue Z, Ning D, Jia K, Liu H, Xiang Y, Cao J, Chen J, Zhong Y, Wang X, Zhang Z. Mechanism study of Dual-Emission ratiometric fluorescent pH-Sensitive carbon quantum dots and its application on mornitoring enzymatic catalysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125048. [PMID: 39217959 DOI: 10.1016/j.saa.2024.125048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/10/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Carbon dots (CQD) have received significant attention as a novel ratiometric fluorescent pH nanoprobe, owing to their favorable optical properties and excellent biocompatibility. Despite their appealing features, the precise mechanism behind the pH-sensitive photoluminescence of CQDs remains to be fully understood. This study endeavors to unravel the mechanism underlying the pH-responsive ratiometric fluorescence in dual-emission CQDs, synthesized through a one-step hydrothermal method using o-phenylenediamine and oxalic acid as precursors. The resultant CQDs exhibit inherent dual-emission at wavelengths of 383 nm and 566 nm, with the ratiometric fluorescence response tailored by the ratio of precursors, providing a robust tool for pH sensing across a range of 2 to 6. Detailed characterizations, including chemical, morphological, and optical analyses, alongside theoretical insights from time-dependent density functional theory (TD-DFT), elucidate the mechanism underlying the pH-dependent luminescence, attributed to the electron cloud transmission between amide and adjacent carboxyl groups on the CQD surface. The superior performance of these CQDs in real-time pH monitoring is demonstrated through their application in glucose oxidase-catalyzed reactions, showcasing their potential as efficient, reliable nanoprobes for biomedical research and diagnostic applications.
Collapse
Affiliation(s)
- Zhiyu Xue
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - De Ning
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Kaihong Jia
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Hao Liu
- BOE Technology Group Co., Ltd, Beijing 100176, China
| | - Yong Xiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; Frontier Center of Energy Distribution and Integration, Tianfu Jiangxi Lab, Chengdu 641419, China
| | - Jinlong Cao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610017, China
| | - Junxian Chen
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610093, China
| | - Yeshuang Zhong
- Department of Physics, School of Biology and Engineering, Guizhou Medical University, Guizhou 550031, China
| | - Xinyu Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Zhen Zhang
- Trauma Medical Center, Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
31
|
Liu Y, Guo C, Wang Y, Kong QQ. Application of an Injectable Thermosensitive Hydrogel Drug Delivery System for Degenerated Intervertebral Disc Regeneration. Biomacromolecules 2025; 26:209-221. [PMID: 39670521 DOI: 10.1021/acs.biomac.4c00965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Intervertebral disc degeneration is characterized by a localized, chronic inflammatory response leading to a synthesis/catabolism imbalance within the nucleus pulposus (NP) and progressive functional impairment within the NP. Polyphenol molecules have been widely used in anti-inflammatory therapies in recent years; therefore, we designed an injectable, temperature-sensitive hydrogel PLGA-PEG-PLGA-based drug delivery system for local and sustained delivery of two drugs tannic acid (TA) and resveratrol (Res), with the hydrogel carrying TA directly and Res indirectly (carried directly by inflammation-responsive nanoparticles). The delivery system presents good injectability at room temperature and forms a gel in situ upon entering the intervertebral disc. The delivery system can rapidly release TA and sustain Res release. In vitro and in vivo experiments have shown that this hydrogel drug delivery system is effective in anti-inflammation of degenerated intervertebral discs and promotes the regeneration of extracellular matrix in the NP.
Collapse
Affiliation(s)
- Yuheng Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37, Guoxue Road, Chengdu 610041, China
| | - Chuan Guo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37, Guoxue Road, Chengdu 610041, China
| | - Yu Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37, Guoxue Road, Chengdu 610041, China
| | - Qing-Quan Kong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37, Guoxue Road, Chengdu 610041, China
| |
Collapse
|
32
|
Jeon MJ, Randhawa A, Kim H, Dutta SD, Ganguly K, Patil TV, Lee J, Acharya R, Park H, Seol Y, Lim KT. Electroconductive Nanocellulose, a Versatile Hydrogel Platform: From Preparation to Biomedical Engineering Applications. Adv Healthc Mater 2025; 14:e2403983. [PMID: 39668476 DOI: 10.1002/adhm.202403983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/18/2024] [Indexed: 12/14/2024]
Abstract
Nanocelluloses have garnered significant attention recently in the attempt to create sustainable, improved functional materials. Nanocellulose possesses wide varieties, including rod-shaped crystalline cellulose nanocrystals and elongated cellulose nanofibers, also known as microfibrillated cellulose. In recent times, nanocellulose has sparked research into a wide range of biomedical applications, which vary from developing 3D printed hydrogel to preparing structures with tunable characteristics. Owing to its multifunctional properties, different categories of nanocellulose, such as cellulose nanocrystals, cellulose nanofibers, and bacterial nanocellulose, as well as their unique properties are discussed here. Here, different methods of nanocellulose-based hydrogel preparation are covered, which include 3D printing and crosslinking methods. Subsequently, advanced nanocellulose-hydrogels addressing conductivity, shape memory, adhesion, and structural color are highlighted. Finally, the application of nanocellulose-based hydrogel in biomedical applications is explored here. In summary, numerous perspectives on novel approaches based on nanocellulose-based research are presented here.
Collapse
Affiliation(s)
- Myoung Joon Jeon
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hojin Kim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jieun Lee
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rumi Acharya
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyeonseo Park
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Youjin Seol
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
33
|
Jiang Y, Zhu C, Ma X, Fan D. Smart hydrogel-based trends in future tendon injury repair: A review. Int J Biol Macromol 2024; 282:137092. [PMID: 39489238 DOI: 10.1016/j.ijbiomac.2024.137092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Despite advances in tissue engineering for tendon repair, rapid functional repair is still challenging due to its specificity and is prone to complications such as postoperative infections and tendon adhesions. Smart responsive hydrogels provide new ideas for tendon therapy with their flexibly designed three-dimensional cross-linked polymer networks that respond to specific stimuli. In recent years, a variety of smart-responsive hydrogels have been developed for the treatment of tendon disorders, showing great research promise and ability to address complex challenges. This article provides a comprehensive review of recent advances in the field of smart-responsive hydrogels for the treatment of tendon disorders, with a special focus on their response properties to different physical, chemical and biological stimuli. The multiple functional properties of these innovative materials are discussed in depth, including excellent biocompatibility and biodegradability, excellent mechanical properties, biomimetic structural design, convenient injectability, and unique self-healing capabilities. These properties enable the smart-responsive hydrogels to demonstrate significant advantages in solving difficult problems in the treatment of tendon disorders, such as precise drug delivery, tendon adhesion prevention and postoperative infection control. In addition, the article looks at the future prospects of smart-responsive hydrogels and analyses the challenges they may face in achieving widespread application.
Collapse
Affiliation(s)
- Yingxue Jiang
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China
| | - Xiaoxuan Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China.
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
34
|
Naghib SM, Matini A, Amiri S, Ahmadi B, Mozafari MR. Exploring the potential of polysaccharides-based injectable self-healing hydrogels for wound healing applications: A review. Int J Biol Macromol 2024; 282:137209. [PMID: 39505164 DOI: 10.1016/j.ijbiomac.2024.137209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 09/14/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
In recent decades, significant advancements have been made in wound healing treatments, mainly due to the development of biopolymer-based hydrogels. These injectable self-healing hydrogels have attracted considerable interest because of their unique attributes, including reversible chemistry, injectability, and printability. Unlike traditional hydrogels, injectable polysaccharide-based self-healing hydrogels offer numerous benefits. They can be tailored to fit individual patients, significantly advancing personalized medicine. Upon injection, these hydrogels transform in situ into a substance that effectively covers the entire lesion in all three dimensions, reaching irregular and deep lesions. Injectable self-healing hydrogels also play a pivotal role in promoting tissue regeneration. Their diffusive and viscoelastic properties allow for the controlled delivery of cells or therapeutics in a spatiotemporal manner, provide mechanical support, and facilitate the local recruitment and modulation of host cells. Consequently, these hydrogels have revolutionized innovative approaches to tissue regeneration and are ideally suited for managing chronic wounds. This review paper presents a comprehensive classification of injectable self-healing hydrogels commonly used in chronic wound repair and provides a detailed analysis of the various applications of injectable self-healing hydrogels in treating chronic wounds, thereby illuminating this rapidly evolving field.
Collapse
Affiliation(s)
- Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| | - Amir Matini
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Saba Amiri
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Bahar Ahmadi
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
35
|
Chang L, Chen Y, Zhou M, Gao Y, Wang Y, Li W, Cui Z, Zhou C, He Y, Qin J. Photothermal enhanced antibacterial chitosan-based polydopamine composite hydrogel for hemostasis and burn wound repairing. Carbohydr Polym 2024; 345:122568. [PMID: 39227122 DOI: 10.1016/j.carbpol.2024.122568] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/13/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024]
Abstract
Bleeding and bacterial infection are common problems associated with wound treatment, while effective blood clotting and vessel regeneration promotion are the primary considerations to design the wound dressing materials. This research presents a chitosan-based hydrogel with grafted quaternary ammonium and polyphosphate (QCSP hydrogel) as the antibacterial hemostatic dressing to achieve burn wound treatment. The tissue adhesion of the hydrogel sealed the blood flow and the polyphosphate grafted to the chitosan promoted the activation of coagulation factor V to enhance the hemostasis. At the same time, the grafted quaternary ammonium enhanced the antibacterial ability of the biodegradable hydrogel wound dressing. In addition, the polydopamine as a photothermal agent was composited into the hydrogel to enhance the antibacterial and reactive oxygen scavenging performance. The in vivo hemostasis experiment proved the polyphosphate enhanced the coagulation property. Moreover, this photothermal property of the composite hydrogel enhanced the burn wound repairing rate combined with the NIR stimulus. As a result, this hydrogel could have potential application in clinic as dressing material for hemostasis and infection prone would repairing.
Collapse
Affiliation(s)
- Liming Chang
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Yanai Chen
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Min Zhou
- College of pharmaceutical Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Yuanwei Gao
- College of pharmaceutical Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Yong Wang
- Key Laboratory of Pathogenesis mechanism and control of inflammatory-autoimmune diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China
| | - Wenjuan Li
- Key Laboratory of Pathogenesis mechanism and control of inflammatory-autoimmune diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China
| | - Zhe Cui
- College of pharmaceutical Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Chengyan Zhou
- College of pharmaceutical Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Yingna He
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang City, Hebei Province 050200, China
| | - Jianglei Qin
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province 071002, China; Key Laboratory of Pathogenesis mechanism and control of inflammatory-autoimmune diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China.
| |
Collapse
|
36
|
Khattak S, Ullah I, Sohail M, Akbar MU, Rauf MA, Ullah S, Shen J, Xu H. Endogenous/exogenous stimuli‐responsive smart hydrogels for diabetic wound healing. AGGREGATE 2024. [DOI: 10.1002/agt2.688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
AbstractDiabetes significantly impairs the body's wound‐healing capabilities, leading to chronic, infection‐prone wounds. These wounds are characterized by hyperglycemia, inflammation, hypoxia, variable pH levels, increased matrix metalloproteinase activity, oxidative stress, and bacterial colonization. These complex conditions complicate effective wound management, prompting the development of advanced diabetic wound care strategies that exploit specific wound characteristics such as acidic pH, high glucose levels, and oxidative stress to trigger controlled drug release, thereby enhancing the therapeutic effects of the dressings. Among the solutions, hydrogels emerge as promising due to their stimuli‐responsive nature, making them highly effective for managing these wounds. The latest advancements in mono/multi‐stimuli‐responsive smart hydrogels showcase their superiority and potential as healthcare materials, as highlighted by relevant case studies. However, traditional wound dressings fall short of meeting the nuanced needs of these wounds, such as adjustable adhesion, easy removal, real‐time wound status monitoring, and dynamic drug release adjustment according to the wound's specific conditions. Responsive hydrogels represent a significant leap forward as advanced dressings proficient in sensing and responding to the wound environment, offering a more targeted approach to diabetic wound treatment. This review highlights recent advancements in smart hydrogels for wound dressing, monitoring, and drug delivery, emphasizing their role in improving diabetic wound healing. It addresses ongoing challenges and future directions, aiming to guide their clinical adoption.
Collapse
Affiliation(s)
- Saadullah Khattak
- The Fifth Affiliated Hospital of Wenzhou Medical University Lishui China
| | - Ihsan Ullah
- Zhejiang Engineering Research Center for Tissue Repair Materials Wenzhou Institute University of Chinese Academy of Sciences Wenzhou China
| | - Mohammad Sohail
- The Fifth Affiliated Hospital of Wenzhou Medical University Lishui China
| | - Muhammad Usman Akbar
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou China
| | - Mohd Ahmar Rauf
- Department of Internal Medicine, Heme Oncology Unit, University of Michigan Ann Arbor Michigan USA
| | - Salim Ullah
- The Fifth Affiliated Hospital of Wenzhou Medical University Lishui China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry Eye Hospital Wenzhou Medical University Wenzhou China
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou China
| | - Hong‐Tao Xu
- The Fifth Affiliated Hospital of Wenzhou Medical University Lishui China
| |
Collapse
|
37
|
Zhang L, Hu C, Zhao Y, Li S, Huang Q, Zhang L, Qu X, Lei B. Bioenergetic-active photoluminescent bioactive Nanodressing for proangiogenic MRSA infected wound repair and microenviroment monitoring. CHEMICAL ENGINEERING JOURNAL 2024; 499:156557. [DOI: 10.1016/j.cej.2024.156557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
38
|
Hua S, Zhang Y, Zhu Y, Fu X, Meng L, Zhao L, Kong L, Pan S, Che Y. Tunicate cellulose nanocrystals strengthened injectable stretchable hydrogel as multi-responsive enhanced antibacterial wound dressing for promoting diabetic wound healing. Carbohydr Polym 2024; 343:122426. [PMID: 39174115 DOI: 10.1016/j.carbpol.2024.122426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 08/24/2024]
Abstract
The intricate microenvironment of diabetic wounds characterized by hyperglycemia, intense oxidative stress, persistent bacterial infection and complex pH fluctuations hinders the healing process. Herein, an injectable multifunctional hydrogel (QPTx) was developed, which exhibited excellent mechanical performance and triple responsiveness to pH, temperature, and glucose due to dynamic covalent cross-linking involving dynamic Schiff base bonds and phenylboronate esters with phenylboronic-modified quaternized chitosan (QCS-PBA), polydopamine coated tunicate cellulose crystals (PDAn@TCNCs) and polyvinyl alcohol (PVA). Furthermore, the hydrogels can incorporate insulin (INS) drugs to adapt to the complex and variable wound environment in diabetic patients for on-demand drug release that promote diabetic wound healing. Based on various excellent properties of the colloidal materials, the hydrogels were evaluated for self-healing, rheological and mechanical properties, in vitro insulin response to pH/temperature/glucose release, antibacterial, antioxidant, tissue adhesion, coagulation, hemostasis in vivo and in vitro, and biocompatibility and biodegradability. By introducing PDAn@TCNCs particles, the hydrogel has photothermal antibacterial activity, enhanced adhesion and oxidation resistance. We further demonstrated that these hydrogel dressings significantly improved the healing process compared to commercial dressings (Tegaderm™) in full-layer skin defect models. All indicated that the glucose-responsive QPTx hydrogel platform has great potential for treating diabetic wounds.
Collapse
Affiliation(s)
- Shengming Hua
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Yujie Zhang
- Pathology Department, Weihai Municipal Hospital, Shandong University, Peace Rd.70, Weihai, Shandong Province 264200, PR China
| | - Yifei Zhu
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Xin Fu
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Lingtao Meng
- School of Mechanical, Electrical & Information Engineering, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Lihua Zhao
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Lingming Kong
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Shihui Pan
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China
| | - Yuju Che
- Marine College, Shandong University (Weihai), Wenhua West Rd., Weihai, Shandong Province 264209, PR China.
| |
Collapse
|
39
|
Yang H, Lv D, Qu S, Xu H, Li S, Wang Z, Cao X, Rong Y, Li X, Wu H, Chen Y, Zhu J, Tang B, Hu Z. A ROS-Responsive Lipid Nanoparticles Release Multifunctional Hydrogel Based on Microenvironment Regulation Promotes Infected Diabetic Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403219. [PMID: 39308241 DOI: 10.1002/advs.202403219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/04/2024] [Indexed: 11/22/2024]
Abstract
The continuous imbalance of the diabetic wound microenvironment is an important cause of chronic nonhealing, which manifests as a vicious cycle between excessive accumulation of reactive oxygen species (ROS) and abnormal healing. Regulating the microenvironment by suppressing wound inflammation, oxidative stress, and bacterial infection is a key challenge in treating diabetic wounds. In this study, ROS-responsive hydrogels are developed composed of silk fibroin methacrylated (SFMA), modified collagen type III (rCol3MA), and lipid nanoparticles (LNPs). The newly designed hydrogel system demonstrated stable physicochemical properties and excellent biocompatibility. Moreover, the release of antimicrobial peptide (AMP) and puerarin (PUE) demonstrated remarkable efficacy in eradicating bacteria, regulating inflammatory responses, and modulating vascular functions. This multifunctional hydrogel is a simple and efficient approach for the treatment of chronic diabetic infected wounds and holds tremendous potential for future clinical applications.
Collapse
Affiliation(s)
- Hao Yang
- Department of Burn and Wound Repair, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Dongming Lv
- Department of Burn and Wound Repair, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Shanqiang Qu
- Department of Neurosurgery, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Hailin Xu
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, 510091, China
| | - Shuting Li
- Department of Plastic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhiyong Wang
- Department of Joint Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Xiaoling Cao
- Department of Burn and Wound Repair, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yanchao Rong
- Department of Burn and Wound Repair, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaohui Li
- Department of Burn and Wound Repair, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Honglin Wu
- Department of Burn and Wound Repair, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yongfei Chen
- Department of Burn and Wound Repair, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiayuan Zhu
- Department of Burn and Wound Repair, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Bing Tang
- Department of Burn and Wound Repair, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhicheng Hu
- Department of Burn and Wound Repair, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
40
|
An R, Shi C, Tang Y, Cui Z, Li Y, Chen Z, Xiao M, Xu L. Chitosan/rutin multifunctional hydrogel with tunable adhesion, anti-inflammatory and antibacterial properties for skin wound healing. Carbohydr Polym 2024; 343:122492. [PMID: 39174142 DOI: 10.1016/j.carbpol.2024.122492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/24/2024]
Abstract
Effective wound care remains a significant challenge due to the need for infection prevention, inflammation reduction, and minimal tissue damage during dressing changes. To tackle these issues, we have developed a multifunctional hydrogel (CHI/CPBA/RU), composed of chitosan (CHI) modified with 4-carboxyphenylboronic acid (CPBA) and the natural flavonoid, rutin (RU). This design endows the hydrogel with body temperature-responsive adhesion and low temperature-triggered detachment, thus enabling painless removal during dressing changes. The CHI/CPBA/RU hydrogels exhibit excellent biocompatibility, maintaining over 97 % viability of L929 cells. They also demonstrate potent intracellular free radical scavenging activity, with scavenging ratios ranging from 53 % to 70 %. Additionally, these hydrogels show anti-inflammatory effects by inhibiting pro-inflammatory cytokines (TNF-α, IL-6, and iNOS) and increasing anti-inflammatory markers (Arg1 and CD206) in RAW 264.7 macrophages. Notably, they possess robust antimicrobial properties, inhibiting over 99.9 % of the growth of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus growth. In vivo testing on a murine full-thickness skin defect model shows that the hydrogel significantly accelerates wound healing by reducing inflammation, increasing collagen deposition, and promoting angiogenesis, achieving 98 % healing by day 10 compared to 78 % in the control group. These attributes make the polysaccharide-based hydrogel a promising material for advanced wound care.
Collapse
Affiliation(s)
- Ran An
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Chenyu Shi
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Yan Tang
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Zan Cui
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Yinping Li
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Zhiyong Chen
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Min Xiao
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Li Xu
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
41
|
Cui J, Tian Y, Zhang B, Zhang R, Li J, Chen L. Oligolysine-based hydrogel dressing with antibacterial, anti-inflammatory, and tissue-adhesion activities for infected wound treatment. Colloids Surf B Biointerfaces 2024; 243:114157. [PMID: 39141999 DOI: 10.1016/j.colsurfb.2024.114157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Fabricating injectable hydrogel with multiple functions and effective promotion of wound repair has a great prospect in treatment of bacterial infected wounds. Herein, a pH/reactive oxygen species (ROS) dual responsive injectable hydrogel (PVBDL-gel) was constructed, the PVBDL-gel was cross-linked by dynamic Schiff base bonds and borate ester bonds between poly(vanillin acrylate-co-3 acrylamide phenylboronic acid-co-N,N-dimethylacrylamide) (P(VA-co-AAPBA-co-DMA)), oligolysines and polyvinyl alcohol (PVA). The anti-inflammatory drug, dexamethasone sodium phosphate (DEX), was encapsulated in this hydrogel. The hydrogel exhibited excellent degradability, stable rheology and suitable tissue adhesion, more importantly, which showing pH/ROS responsive ability and controllable releasing of DEX. In vitro and in vivo experiment results showed that the PVBDL-gel with good biocompatibility and efficient anti-infection ability can effectively eradicate 99.9 % of pathogenic bacteria within 3 h and promote the repair and regeneration of bacterial infection wounds. This novel multifunctional injectable hydrogel has great application in the field of bacterial infection wound repair.
Collapse
Affiliation(s)
- Jiaming Cui
- Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Yongchang Tian
- Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Bingbing Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Rong Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Jiaxin Li
- Department of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Li Chen
- Department of Chemistry, Northeast Normal University, Changchun 130024, PR China.
| |
Collapse
|
42
|
Salavati M, Arabshomali A, Nouranian S, Shariat-Madar Z. Overview of Venous Thromboembolism and Emerging Therapeutic Technologies Based on Nanocarriers-Mediated Drug Delivery Systems. Molecules 2024; 29:4883. [PMID: 39459251 PMCID: PMC11510185 DOI: 10.3390/molecules29204883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/03/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Venous thromboembolism (VTE) is a serious health condition and represents an important cause of morbidity and, in some cases, mortality due to the lack of effective treatment options. According to the Centers for Disease Control and Prevention, 3 out of 10 people with VTE will have recurrence of a clotting event within ten years, presenting a significant unmet medical need. For some VTE patients, symptoms can last longer and have a higher than average risk of serious complications; in contrast, others may experience complications arising from insufficient therapies. People with VTE are initially treated with anticoagulants to prevent conditions such as stroke and to reduce the recurrence of VTE. However, thrombolytic therapy is used for people with pulmonary embolism (PE) experiencing low blood pressure or in severe cases of DVT. New drugs are under development, with the aim to ensure they are safe and effective, and may provide an additional option for the treatment of VTE. In this review, we summarize all ongoing trials evaluating anticoagulant interventions in VTE listed in clinicaltrials.gov, clarifying their underlying mechanisms and evaluating whether they prevent the progression of DVT to PE and recurrence of thrombosis. Moreover, this review summarizes the available evidence that supports the use of antiplatelet therapy for VTE. Since thrombolytic agents would cause off-target effects, targeted drug delivery platforms are used to develop various therapeutics for thrombotic diseases. We discuss the recent advances achieved with thrombus-targeting nanocarriers as well as the major challenges associated with the use of nanoparticle-based therapeutics.
Collapse
Affiliation(s)
- Masoud Salavati
- Department of Chemical Engineering, University of Mississippi, Oxford, MS 38677, USA; (M.S.); (S.N.)
| | - Arman Arabshomali
- Pharmacy Administration, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA;
| | - Sasan Nouranian
- Department of Chemical Engineering, University of Mississippi, Oxford, MS 38677, USA; (M.S.); (S.N.)
| | - Zia Shariat-Madar
- Division of Pharmacology, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| |
Collapse
|
43
|
Wang R, Xu S, Zhang M, Feng W, Wang C, Qiu X, Li J, Zhao W. Multifunctional chitosan-based hydrogels loaded with iridium nanoenzymes for skin wound repair. Carbohydr Polym 2024; 342:122325. [PMID: 39048214 DOI: 10.1016/j.carbpol.2024.122325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/16/2024] [Accepted: 05/25/2024] [Indexed: 07/27/2024]
Abstract
Hemostasis, infection, oxidative stress, and inflammation still severely impede the wound repair process. It is significant to develop multifunctional wound dressings that can function as needed in various stages of wound healing. In this study, iridium nanoparticles (IrNPs) with multi-enzyme mimetic activity were complexed with chitosan (CS) and fucoidan (FD) for the first time to make a multifunctional CS/FD/IrNPs hydrogel with excellent antioxidant effect. The hydrogel has excellent physicochemical properties. In particular, the incorporation of IrNPs imparts excellent antioxidant properties to the hydrogel, which could scavenge reactive oxygen species (ROS). In addition, the hydrogel shows excellent hemostatic and antibacterial properties. The CS/FD/IrNPs hydrogel performs fast and efficient hemostasis in 21 s. Moreover, the blood loss of the CS/FD/IrNPs hydrogel group was approximately 10% of that in the control group and the antibacterial rate of CS/FD/IrNPs hydrogel against E. coli and S. aureus was up to 95 %. In vivo results demonstrate that CS/FD/IrNPs hydrogel promotes wound healing by attenuating ROS levels, reducing oxidative damage, mitigating inflammation, and accelerating angiogenesis. To summarize, the CS/FD/IrNPs hydrogel system, with hemostatic, antibacterial, antioxidant, anti-inflammatory and pro-healing activities, can be a promising and effective strategy for the treatment of clinically difficult-to-heal wounds.
Collapse
Affiliation(s)
- Ruoying Wang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shixin Xu
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Miaomiao Zhang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wei Feng
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chengwei Wang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xuefeng Qiu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jierui Li
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wen Zhao
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
44
|
Wu X, Lu Y, Gao Y, Kang J, Dong A. A gold nanoparticle-based photothermal hydrogel assisted by an N-halamine polymer for bacteria-infected skin wound healing. NANOSCALE 2024; 16:18348-18355. [PMID: 39263836 DOI: 10.1039/d4nr02694b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Bacteria-infected wounds and antibiotic misuse have become a challenge in the treatment of clinical infections. Therefore, there is an urgent need to design non-antibiotic-dependent multifunctional wound dressings for the treatment of bacterially infected wounds. In this study, an injectable antibacterial hydrogel (pAMPS-Cl/AuNR@HA-DA) based on gold nanorods (AuNR) and N-halamine (pAMPS-Cl) with significant photothermal antibacterial properties was developed. The obtained pAMPS-Cl/AuNR@HA-DA hydrogel showed a sponge-like structure with excellent injectability, self-healing, tissue adhesion, and good hemocompatibility. In addition, the hydrogel exhibited excellent in vitro antibacterial capacity under near-infrared (NIR) laser irradiation through the synergistic action of photothermal therapy (PTT) and chemical release therapy. It also showed an excellent ability to eliminate bacterial infection and promote wound healing, indicating that the pAMPS-Cl/AuNR@HA-DA composite hydrogel could be a promising dressing for the treatment of skin wounds.
Collapse
Affiliation(s)
- Xiaojie Wu
- College of Chemistry and Chemical Engineering Inner Mongolia University, Hohhot 010021, People's Republic of China.
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yaning Lu
- College of Chemistry and Chemical Engineering Inner Mongolia University, Hohhot 010021, People's Republic of China.
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yangyang Gao
- Inner Mongolia Autonomous Region Urban and Rural Human Settlement Environment Development Promotion Center, Hohhot 010000, People's Republic of China
| | - Jing Kang
- College of Chemistry and Chemical Engineering Inner Mongolia University, Hohhot 010021, People's Republic of China.
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering Inner Mongolia University, Hohhot 010021, People's Republic of China.
- Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| |
Collapse
|
45
|
Gade L, Boyd BJ, Malmsten M, Heinz A. Stimuli-responsive drug delivery systems for inflammatory skin conditions. Acta Biomater 2024; 187:1-19. [PMID: 39209132 DOI: 10.1016/j.actbio.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/26/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Inflammatory skin conditions highly influence the quality of life of the patients suffering from these disorders. Symptoms include red, itchy and painful skin lesions, which are visible to the rest of the world, causing stigmatization and a significantly lower mental health of the patients. Treatment options are often unsatisfactory, as they suffer from either low patient adherence or the risk of severe side effects. Considering this, there is a need for new treatments, and notably of new ways of delivering the drugs. Stimuli-responsive drug delivery systems are able to deliver their drug cargo in response to a given stimulus and are, thus, promising for the treatment of inflammatory skin conditions. For example, the use of external stimuli such as ultraviolet light, near infrared radiation, or alteration of magnetic field enables drug release to be precisely controlled in space and time. On the other hand, internal stimuli induced by the pathological condition, including pH alteration in the skin or upregulation of reactive oxygen species or enzymes, can be utilized to create drug delivery systems that specifically target the diseased skin to achieve a better efficacy and safety. In the latter context, however, it is of key importance to match the trigger mechanism of the drug delivery system to the actual pathological features of the specific skin condition. Hence, the focus of this article is placed not only on reviewing stimuli-responsive drug delivery systems developed to treat specific inflammatory skin conditions, but also on critically evaluating their efficacy in the context of specific skin diseases. STATEMENT OF SIGNIFICANCE: Skin diseases affect one-third of the world's population, significantly lowering the quality of life of the patients, who deal with symptoms such as painful and itchy skin lesions, as well as stigmatization due to the visibility of their symptoms. Current treatments for inflammatory skin conditions are often hampered by low patient adherence or serious drug side effects. Therefore, more emphasis should be placed on developing innovative formulations that provide better efficacy and safety for patients. Stimuli-responsive drug delivery systems hold considerable promise in this regard, as they can deliver their cargo precisely where and when it is needed, reducing adverse effects and potentially offering better treatment outcomes.
Collapse
Affiliation(s)
- Luna Gade
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Ben J Boyd
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark; Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Martin Malmsten
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark; Department of Physical Chemistry 1, Lund University, Lund, Sweden
| | - Andrea Heinz
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark.
| |
Collapse
|
46
|
Yi H, Yu H, Wang L, Wang Y, Ouyang C, Keshta BE. Microneedle transdermal drug delivery as a candidate for the treatment of gouty arthritis: Material structure, design strategies and prospects. Acta Biomater 2024; 187:20-50. [PMID: 39182801 DOI: 10.1016/j.actbio.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Gouty arthritis (GA) is caused by monosodium urate (MSU) crystals deposition. GA is difficult to cure because of its complex disease mechanism and the tendency to reoccur. GA patients require long-term uric acid-lowering and anti-inflammatory treatments. In the past ten years, as a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles (MNs) administration has been continuously developed, which can realize various drug release modes to deal with various complex diseases. Compared with the traditional administration methods (oral and injection), MNs are more conducive to the long-term independent treatment of GA patients because of their safe, efficient and controllable drug delivery ability. In this review, the pathological mechanism of GA and common therapeutic drugs for GA are summarized. After that, MNs drug delivery mechanisms were summarized: dissolution release mechanism, swelling release mechanism and channel-assisted release mechanism. According to drug delivery patterns of MNs, the mechanisms and applications of rapid-release MNs, long-acting MNs, intelligent-release MNs and multiple-release MNs were reviewed. Additionally, existing problems and future trends of MNs in the treatment of GA were also discussed. STATEMENT OF SIGNIFICANCE: Gout is an arthritis caused by metabolic disease "hyperuricemia". Epidemiological studies show that the number of gouty patients is increasing rapidly worldwide. Due to the complex disease mechanism and recurrent nature of gout, gouty patients require long-term therapy. However, traditional drug delivery modes (oral and injectable) have poor adherence, low drug utilization, and lack of local localized targeting. They may lead to adverse effects such as rashes and gastrointestinal reactions. As a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles have been continuously developed, which can realize various drug release modes to deal with gouty arthritis. In this review, the material structure, design strategy and future outlook of microneedles for treating gouty arthritis will be reviewed.
Collapse
Affiliation(s)
- Hong Yi
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Yu Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Chenguang Ouyang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Basem E Keshta
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
47
|
Fu YJ, Wang RK, Ma CY, Wang LY, Long SY, Li K, Zhao X, Yang W. Injectable Oxygen-Carrying Microsphere Hydrogel for Dynamic Regulation of Redox Microenvironment of Wounds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403781. [PMID: 38850188 DOI: 10.1002/smll.202403781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/29/2024] [Indexed: 06/10/2024]
Abstract
The delayed healing of infected wounds can be attributed to the increased production of reactive oxygen species (ROS) and consequent damages to vascellum and tissue, resulting in a hypoxic wound environment that further exacerbates inflammation. Current clinical treatments including hyperbaric oxygen therapy and antibiotic treatment fail to provide sustained oxygenation and drug-free resistance to infection. To propose a dynamic oxygen regulation strategy, this study develops a composite hydrogel with ROS-scavenging system and oxygen-releasing microspheres in the wound dressing. The hydrogel itself reduces cellular damage by removing ROS derived from immune cells. Simultaneously, the sustained release of oxygen from microspheres improves cell survival and migration in hypoxic environments, promoting angiogenesis and collagen regeneration. The combination of ROS scavenging and oxygenation enables the wound dressing to achieve drug-free anti-infection through activating immune modulation, inhibiting the secretion of pro-inflammatory cytokines interleukin-6, and promoting tissue regeneration in both acute and infected wounds of rat skins. Thus, the composite hydrogel dressing proposed in this work shows great potential for dynamic redox regulation of infected wounds and accelerates wound healing without drugs.
Collapse
Affiliation(s)
- Ya-Jun Fu
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Rao-Kaijuan Wang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Cheng-Ye Ma
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Li-Ya Wang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital, Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Si-Yu Long
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Kai Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xing Zhao
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital, Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
48
|
Wang J, Jiang Y, Zhu C, Liu Z, Qi L, Ding H, Wang J, Huang Y, Li Y, Song Y, Feng G, Zhang L, Liu L. Mitochondria-engine with self-regulation to restore degenerated intervertebral disc cells via bioenergetic robust hydrogel design. Bioact Mater 2024; 40:1-18. [PMID: 38873262 PMCID: PMC11167444 DOI: 10.1016/j.bioactmat.2024.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024] Open
Abstract
Previous studies have confirmed that intervertebral disc degeneration (IDD) is closely associated with inflammation-induced reactive oxygen species (ROS) and resultant cell mitochondrial membrane potential (MMP) decline. Clearance of ROS in an inflammatory environment is essential for breaking the vicious cycle of MMP decline. Additionally, re-energizing the mitochondria damaged in the inflammatory milieu to restore their function, is equally important. Herein, we proposed an interesting concept of mitochondrion-engine equipped with coolant, which enables first to "cool-down" the inflammatory environment, next to restore the MMP, finally to allow cells to regain normal energy metabolism through materials design. As such, we developed a multi-functional composite composed of a reactive oxygen species (ROS)-responsive sodium alginate/gelatin hydrogel infused into a rigid 3D-printed thermoplastic polyurethane (TPU) scaffold. The TPU scaffold was coated with conductive polypyrrole (PPy) to electrophoretically deposit l-arginine, which could upregulate the Mammalian target of rapamycin (mTOR) pathway, thus increasing MMP and energy metabolism to stimulate extracellular matrix synthesis for IVD repair. While the ROS-responsive hydrogel acting as the "mito-engine coolant" could scavenge the excessive ROS to create a favorable environment for IVD cells recovery. Demonstrated by in vitro and in vivo evaluations, the mito-engine system markedly promoted the proliferation and collagen synthesis of nucleus pulposus cells while enhancing the mitochondrial respiration and MMP under oxidative stress. Radiological and histological assessments in vivo revealed the efficacy of this system in IVD repair. This unique bioinspired design integrated biomaterial science with mitochondrial biology, presents a promising paradigm for IDD treatment.
Collapse
Affiliation(s)
| | | | - Ce Zhu
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Zheng Liu
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Lin Qi
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Hong Ding
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Jing Wang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yong Huang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yubao Li
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yueming Song
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Ganjun Feng
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Li Zhang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Limin Liu
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
49
|
Kang S, Woo Y, Seo Y, Yoo D, Kwon D, Park H, Lee SD, Yoo HY, Lee T. A Descriptive Review on the Potential Use of Diatom Biosilica as a Powerful Functional Biomaterial: A Natural Drug Delivery System. Pharmaceutics 2024; 16:1171. [PMID: 39339207 PMCID: PMC11434644 DOI: 10.3390/pharmaceutics16091171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Although various chemically synthesized materials are essential in medicine, food, and agriculture, they can exert unexpected side effects on the environment and human health by releasing certain toxic chemicals. Therefore, eco-friendly and biocompatible biomaterials based on natural resources are being actively explored. Recently, biosilica derived from diatoms has attracted attention in various biomedical fields, including drug delivery systems (DDS), due to its uniform porous nano-pattern, hierarchical structure, and abundant silanol functional groups. Importantly, the structural characteristics of diatom biosilica improve the solubility of poorly soluble substances and enable sustained release of loaded drugs. Additionally, diatom biosilica predominantly comprises SiO2, has high biocompatibility, and can easily hybridize with other DDS platforms, including hydrogels and cationic DDS, owing to its strong negative charge and abundant silanol groups. This review explores the potential applications of various diatom biosilica-based DDS in various biomedical fields, with a particular focus on hybrid DDS utilizing them.
Collapse
Affiliation(s)
- Sunggu Kang
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Yeeun Woo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Yoseph Seo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Daehyeon Yoo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Daeryul Kwon
- Protist Research Division, Biological Resources Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), 137, Donam 2-gil, Sangju-si 37242, Gyeongsangbuk-do, Republic of Korea
| | - Hyunjun Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Sang Deuk Lee
- Protist Research Division, Biological Resources Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), 137, Donam 2-gil, Sangju-si 37242, Gyeongsangbuk-do, Republic of Korea
| | - Hah Young Yoo
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-gil, Jongno-gu, Seoul 03016, Republic of Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| |
Collapse
|
50
|
Lu Y, Cao Y, Guo X, Gao Y, Chen X, Zhang Z, Ge Z, Chu D. Notch-Targeted Therapeutic in Colorectal Cancer by Notch1 Attenuation Via Tumor Microenvironment-Responsive Cascade DNA Delivery. Adv Healthc Mater 2024; 13:e2400797. [PMID: 38726796 DOI: 10.1002/adhm.202400797] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Indexed: 06/04/2024]
Abstract
The Notch signaling is a key molecular pathway that regulates cell fate and development. Aberrant Notch signaling can lead to carcinogenesis and progression of malignant tumors. However, current therapies targeting Notch pathway lack specificity and induce high toxicity. In this report, a tumor microenvironment-responsive and injectable hydrogel is designed to load plasmid DNA complexes as a cascade gene delivery system to achieve precise Notch-targeted gene therapy of colorectal cancer (CRC). The hydrogels are prepared through cross-linking between phenylboric acid groups containing poly(oligo(ethylene glycol)methacrylate) (POEGMA) and epigallocatechin gallate (EGCG), used to load the complexes between plasmid DNA encoding short hairpin RNAs of Notch1 (shNotch1) and fluorinated polyamidoamine (PAMAM-F) (PAMAM-F/shNotch1). In response to low pH and H2O2 in tumor microenvironment, the hydrogel can be dissociated and release the complexes for precise delivery of shNotch1 into tumor cells and inhibit Notch1 activity to suppress malignant biological behaviors of CRC. In the subcutaneous tumor model of CRC, PAMAM-F/shNotch1-loaded hydrogels can accurately attenuate Notch1 activity and significantly inhibit tumor growth without affecting Notch signal in adjacent normal tissues. Therefore, this therapeutic system can precisely inhibit Notch1 signal in CRC with high responsiveness and low toxicity, providing a promising Notch-targeted gene therapeutic for human malignancy.
Collapse
Affiliation(s)
- Yan Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yufei Cao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xiaowen Guo
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yijie Gao
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xue Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zixi Zhang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhishen Ge
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Dake Chu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|