1
|
Yaseen K, Ejaz S, Imran M. Surface engineering of biomedical catheters using N-acetyl cysteine functionalized carboxymethyl chitosan nanosystems to combat biofouling and device-associated infections. Int J Biol Macromol 2025; 306:141516. [PMID: 40020837 DOI: 10.1016/j.ijbiomac.2025.141516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/09/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Functionalized anti-biofouling nanosystems were developed to engineer the surface of silicone catheters for mitigating the incidence of device-associated infections (DAIs). These infections are typically a consequence of microbial biofilms and antimicrobial resistance (AMR) which lead to increased hospitalization costs and mortality rates. Covalent coupling of N-acetyl cysteine (NAC) with O-carboxymethyl chitosan (O-CMC) was optimized to develop NAC-functionalized CMC nanosystems (NAC-CMC-NS). The coupling was confirmed by nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy and 4, 6-trinitrobenzene sulfonic acid (TNBS) assay indicating 80 ± 2 % functionalization efficacy. Subsequently, meropenem-loaded NAC-CMC NS exhibited an average particle size of 273 ± 4.2 nm with 0.4 ± 0.03 polydispersity index (PDI), a zeta potential of -9.15 ± 0.5 mV and encapsulation efficiency (EE) of 67 ± 3.2 %. These functionalized NS employing the dual strategy of contact-killing and meropenem-release, exhibited exceptional antimicrobial activity leading to the 76 ± 1.5 % and 60 ± 1 % inhibition of E. coli and P. aeruginosa biofilms, respectively. After the successful grafting of functionalized NS onto silicone catheters, the resulting substrate remarkably reduced the bacterial colonization, offering a promising solution for reducing DAIs like ventilator-associated pneumonia (VAP) and catheter-associated urinary tract infections (CAUTI). Moreover, the excellent hemocompatibility and low cytotoxicity of these nanovesicles highlight their potential applications for clinical use.
Collapse
Affiliation(s)
- Kinza Yaseen
- Department of Biosciences, Faculty of Health Sciences, COMSATS University Islamabad, Park Road, 45550 Islamabad, Pakistan
| | - Sadaf Ejaz
- Department of Biosciences, Faculty of Health Sciences, COMSATS University Islamabad, Park Road, 45550 Islamabad, Pakistan
| | - Muhammad Imran
- Department of Biosciences, Faculty of Health Sciences, COMSATS University Islamabad, Park Road, 45550 Islamabad, Pakistan.
| |
Collapse
|
2
|
Cui X, Gao Z, Han X, Yu Q, Cauduro VH, Flores EMM, Ashokkumar M, Qiu X, Cui J. Ultrasound-assisted preparation of shikonin-loaded emulsions for the treatment of bacterial infections. ULTRASONICS SONOCHEMISTRY 2025; 115:107302. [PMID: 40056870 PMCID: PMC11930738 DOI: 10.1016/j.ultsonch.2025.107302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/10/2025]
Abstract
Bacteria can encapsulate themselves in a self-generated matrix of hydrated extracellular polymeric substances such as polysaccharides, proteins, and nucleic acids, thereby forming bacterial biofilm infections. These biofilms are drug resistant and will diminish the efficacy of antimicrobial agents, rendering treatment of such infections challenging. Herein, an innovative strategy is proposed to synergistically degrade bacterial biofilms and eradicate the entrapped bacteria through integrating α-amylase (α-Amy), shikonin (SK) and epigallocatechin gallate (EGCG) within an emulsion. The natural protein α-Amy is deployed to enzymatically hydrolyze the polysaccharide of biofilms. Due to the amphipilic properties of α-Amy and the cross-linking capability of EGCG, the formed α-Amy/SK@EGCG emulsion possess high stability. SK was encapsulated within the emulsion through ultrasound-assisted assembly, targeting to treat bacterial infection after biofilm degradation. In vitro and in vivo experiments demonstrate that the polyphenol-protein stabilized emulsion loaded with antibacterial SK achieves profound penetration into the biofilms due to the extracellular polysaccharide hydrolysis mediated by α-Amy. As a result, the α-Amy/SK@EGCG emulsion can significantly alleviate inflammation symptoms and accelerate the healing process of biofilm-infected wounds. This study provides a promising therapeutic strategy for the development of novel materials aimed for the enhanced treatment of bacterial biofilm infections.
Collapse
Affiliation(s)
- Xiaomiao Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Zhiliang Gao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xinxin Han
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Qun Yu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Vitoria H Cauduro
- Department of Chemistry, Federal University of Santa Maria, Santa Maria 97105-900 RS, Brazil
| | - Erico M M Flores
- Department of Chemistry, Federal University of Santa Maria, Santa Maria 97105-900 RS, Brazil
| | | | - Xiaoyong Qiu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China; Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
3
|
Sompiyachoke K, Bravo J, Sikdar R, Abdullah J, Elias MH. A Novel Screening System to Characterize and Engineer Quorum Quenching Lactonases. Biotechnol Bioeng 2025; 122:922-935. [PMID: 39825575 PMCID: PMC11895409 DOI: 10.1002/bit.28928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 01/20/2025]
Abstract
N-acyl l-homoserine lactones are signaling molecules used by numerous bacteria in quorum sensing. Some bacteria encode lactonases, which can inactivate these signals. Lactonases were reported to inhibit quorum sensing-dependent phenotypes, including virulence and biofilm. As bacterial signaling is dependent on the type of molecule used, lactonases with high substrate specificity are desirable for selectively targeting species in communities. Lactonases characterized from nature show limited diversity in substrate preference, making their engineering appealing but complicated by the lack of convenient assays for evaluating lactonase activity. We present a medium-throughput lactonase screening system compatible with lysates that couples the ring opening of N-acyl l-homocysteine thiolactones with 5,5-dithio-bis-(2-nitrobenzoic acid) to generate a chromogenic signal. We show that this system is applicable to lactonases from diverse protein families and demonstrate its utility by screening mutant libraries of GcL lactonase from Parageobacillus caldoxylosilyticus. Kinetic characterization corroborated the screening results with thiolactonase and homoserine lactonase activity levels. This system identified GcL variants with altered specificity: up to 1900-fold lower activity for long-chain N-acyl l-homoserine lactone substrates and ~38-fold increase in preference for short-chain substrates. Overall, this new system substantially improves the evaluation of lactonase activity and will facilitate the identification and engineering of quorum quenching enzymes.
Collapse
Affiliation(s)
- Kitty Sompiyachoke
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Joseph Bravo
- Biotechnology InstituteUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Rakesh Sikdar
- Biotechnology InstituteUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Jowan Abdullah
- College of Biological SciencesUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Mikael H. Elias
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaSt. PaulMinnesotaUSA
- Biotechnology InstituteUniversity of MinnesotaSt. PaulMinnesotaUSA
| |
Collapse
|
4
|
Subramani T, Saravanan H, David H, Solanke J, Rajaramon S, Dandela R, Solomon AP. Bioorganic compounds in quorum sensing disruption: strategies, Mechanisms, and future prospects. Bioorg Chem 2025; 156:108192. [PMID: 39874908 DOI: 10.1016/j.bioorg.2025.108192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/04/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025]
Abstract
Recent research has shed light on the complex world of bacterial communication through quorum sensing. This sophisticated intercellular signalling mechanism, driven by auto-inducers, regulates crucial bacterial community behaviours such as biofilm formation, expression of virulence factors, and resistance mechanisms. The increasing threat of antibiotic resistance, coupled with quorum sensing mediated response, necessitates alternative strategies to combat bacterial infections. Quorum quenching has emerged as a promising approach, utilizing quorum quenching enzymes and quorum sensing inhibitors to disrupt quorum sensing signalling pathways, thus reducing virulence and biofilm formation. This review focuses on natural and synthetic bioorganic compounds that act as quorum-sensing inhibitors, providing insights into their mechanisms, structure-activity relationships, and potential as anti-virulence agents. The review also explores the communication languages of bacteria, including AHLs in gram-negative bacteria, oligopeptides in gram-positive bacteria, and LuxS, a universal microbial language. By highlighting recent advancements and prospects in bioorganic QSIs, this article underscores their crucial role in developing effective anti-virulence therapies and combating the growing threat of antimicrobial resistance.
Collapse
Affiliation(s)
- Tarunkarthick Subramani
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India
| | - Harish Saravanan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India
| | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India
| | - Jayshree Solanke
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Bhubaneswar, Odisha, India
| | - Shobana Rajaramon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India.
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Bhubaneswar, Odisha, India.
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India.
| |
Collapse
|
5
|
Silva CA, Moreira J, Fernandes M, Zille A, Cardoso VF, Nine MJ, Silva FS, Fernandes MM. Acylase-Based Coatings on Sandblasted Polydimethylsiloxane-Based Materials for Antimicrobial Applications. Polymers (Basel) 2025; 17:182. [PMID: 39861255 PMCID: PMC11768103 DOI: 10.3390/polym17020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Indwelling medical devices, such as urinary catheters, often experience bacterial colonization, forming biofilms that resist antibiotics and the host's immune defenses through quorum sensing (QS), a chemical communication system. This study explores the development of antimicrobial coatings by immobilizing acylase, a quorum-quenching enzyme, on sandblasted polydimethylsiloxane (PDMS) surfaces. PDMS, commonly used in medical devices, was sandblasted to increase its surface roughness, enhancing acylase attachment. FTIR analysis confirmed that acylase retained its three-dimensional structure upon immobilization, preserving its enzymatic activity. The antibacterial efficacy of the coatings was tested against Pseudomonas aeruginosa (P. aeruginosa) (a common biofilm-forming pathogen), Staphylococcus aureus (S. aureus), and Escherichia coli (E. coli). The results showed that sandblasted PDMS surfaces had improved bacterial adhesion due to increased focal adhesion points, but acylase-functionalized surfaces had significantly reduced bacterial attachment and biofilm formation. Notably, the coatings inhibited P. aeruginosa growth by 40% under static conditions, demonstrating the potential of acylase-functionalized PDMS for medical applications. This approach offers a promising strategy for creating antimicrobial surfaces that prevent biofilm-related infections in urinary catheters and other medical devices. The findings highlight the dual role of surface roughness in enhancing enzyme attachment while reducing bacterial adhesion through effective QS inhibition.
Collapse
Affiliation(s)
- Cláudia A. Silva
- Center for Micro-Electro Mechanical Systems (CMEMS), Campus Azurém, University of Minho, 4800-058 Guimarães, Portugal
- LABBELS-Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems, University of Minho, 4710-057 Braga, Portugal
| | - Joana Moreira
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus Gualtar, University of Minho, 4710-057 Braga, Portugal
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
- Centre of Chemistry, Campus Gualtar, University of Minho, 4710-053 Braga, Portugal
| | - Marta Fernandes
- 2C2T—Centre for Textile Science and Technology, Campus Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Andrea Zille
- 2C2T—Centre for Textile Science and Technology, Campus Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Vanessa F. Cardoso
- Center for Micro-Electro Mechanical Systems (CMEMS), Campus Azurém, University of Minho, 4800-058 Guimarães, Portugal
- LABBELS-Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems, University of Minho, 4710-057 Braga, Portugal
| | - Md Julker Nine
- Centre of Chemistry, Campus Gualtar, University of Minho, 4710-053 Braga, Portugal
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Filipe S. Silva
- Center for Micro-Electro Mechanical Systems (CMEMS), Campus Azurém, University of Minho, 4800-058 Guimarães, Portugal
- LABBELS-Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems, University of Minho, 4710-057 Braga, Portugal
| | - Margarida M. Fernandes
- Center for Micro-Electro Mechanical Systems (CMEMS), Campus Azurém, University of Minho, 4800-058 Guimarães, Portugal
- LABBELS-Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
6
|
Carvalho EO, Fernandes MM, Ivanova K, Rodriguez-Lejarraga P, Tzanov T, Ribeiro C, Lanceros-Mendez S. Multifunctional piezoelectric surfaces enhanced with layer-by-layer coating for improved osseointegration and antibacterial performance. Colloids Surf B Biointerfaces 2024; 243:114123. [PMID: 39079183 DOI: 10.1016/j.colsurfb.2024.114123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/17/2024]
Abstract
Implant failure is primarily caused by poor osseointegration and bacterial colonization, which demands readmissions and revision surgeries to correct it. A novel approach involves engineering multifunctional interfaces using piezoelectric polyvinylidene fluoride (PVDF) materials, which mimic bone tissue's electroactive properties to promote bone integration and provide antibacterial functionality when mechanically stimulated. In this study, PVDF films were coated with antibacterial essential oil nanoparticles and antibiofilm enzymes using a layer-by-layer (LBL) approach to ensure antibacterial properties even without mechanical stimulation. The experimental results confirmed the LBL build-up and demonstrated notable antibiofilm properties against Pseudomonas aeruginosa and Staphylococcus aureus while enhancing pre-osteoblast cell proliferation under mechanical dynamic conditions in a bioreactor that replicated the real-life environment of implants within the body. The findings highlight the potential of PVDF-coated surfaces to prevent biofilm formation and boost cell proliferation through the piezoelectric effect, paving the way for advanced implantable devices with improved osseointegration and antibacterial performance.
Collapse
Affiliation(s)
- E O Carvalho
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, 4710-057, Portugal; IB-S - Institute for Research and Innovation on Bio-Sustainability, University of Minho, Braga, 4710-057, Portugal.
| | - M M Fernandes
- LABBELS-Associate Laborator, Braga, Guimarães, Portugal; Centre for MicroElectroMechanics Systems (CMEMS), University of Minho, Guimarães 4710-057, Portugal
| | - K Ivanova
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - P Rodriguez-Lejarraga
- BCMaterials, Basque Center Centre for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
| | - T Tzanov
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - C Ribeiro
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, 4710-057, Portugal; IB-S - Institute for Research and Innovation on Bio-Sustainability, University of Minho, Braga, 4710-057, Portugal
| | - S Lanceros-Mendez
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, 4710-057, Portugal; BCMaterials, Basque Center Centre for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain; Ikerbasque, Basque Foundation for Science, Bilbao 48009, Spain.
| |
Collapse
|
7
|
So B, Kim J, Jo JK, So H. Recent developments in preventing catheter-related infections based on biofilms: A comprehensive review. BIOMICROFLUIDICS 2024; 18:051506. [PMID: 39397894 PMCID: PMC11470810 DOI: 10.1063/5.0195165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 09/09/2024] [Indexed: 10/15/2024]
Abstract
Urinary and vascular catheters are among the most commonly used medical devices. However, infections caused by biofilm formation on the surface of catheters are a major cause of healthcare-associated infections. Traditional methods, such as using antimicrobials to prevent such infections, generally have short-term effects, and treatment is challenging owing to the emergence of antimicrobial-resistant bacteria. This review aims to evaluate the limitations of conventional catheter-related infection prevention efficacy, such as currently used antimicrobials, and analyze the efficacy and limitations of potential alternatives to prevent catheter-related infections that have not yet been commercialized, classified by the transition stages of biofilm formation. We intend to provide profound insights into the ideal technologies for preventing catheter-associated tract infections and present perspectives on future directions in this field.
Collapse
Affiliation(s)
- Byeongchan So
- Department of Medical and Digital Engineering, Hanyang University, Seoul 04763, South Korea
| | - Jongwon Kim
- Department of Medical and Digital Engineering, Hanyang University, Seoul 04763, South Korea
| | - Jung Ki Jo
- Department of Urology, College of Medicine, Hanyang University, Seoul 04763, South Korea
| | - Hongyun So
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, South Korea
| |
Collapse
|
8
|
Puertas-Segura A, Ivanova K, Ivanova A, Ivanov I, Todorova K, Dimitrov P, Ciardelli G, Tzanov T. Mussel-Inspired Sonochemical Nanocomposite Coating on Catheters for Prevention of Urinary Infections. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34656-34668. [PMID: 38916599 PMCID: PMC11247429 DOI: 10.1021/acsami.4c05713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Catheter-associated urinary tract infections are the most common hospital-acquired infections and cause patient discomfort, increased morbidity, and prolonged stays, altogether posing a huge burden on healthcare services. Colonization occurs upon insertion, or later by ascending microbes from the rich periurethral flora, and is therefore virtually unavoidable by medical procedures. Importantly, the dwell time is a significant risk factor for bacteriuria because it gives biofilms time to develop and mature. This is why we engineer antibacterial and antibiofilm coating through ultrasound- and nanoparticle-assisted self-assembly on silicone surfaces and validate it thoroughly in vitro and in vivo. To this end, we combine bimetallic silver/gold nanoparticles, which exercise both biocidal and structural roles, with dopamine-modified gelatin in a facile and substrate-independent sonochemical coating process. The latter mussel-inspired bioadhesive potentiates the activity and durability of the coating while attenuating the intrinsic toxicity of silver. As a result, our approach effectively reduces biofilm formation in a hydrodynamic model of the human bladder and prevents bacteriuria in catheterized rabbits during a week of placement, outperforming conventional silicone catheters. These results substantiate the practical use of nanoparticle-biopolymer composites in combination with ultrasound for the antimicrobial functionalization of indwelling medical devices.
Collapse
Affiliation(s)
- Antonio Puertas-Segura
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Kristina Ivanova
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Aleksandra Ivanova
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Ivan Ivanov
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Katerina Todorova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Geo Milev, Sofia 1113, Bulgaria
| | - Petar Dimitrov
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Geo Milev, Sofia 1113, Bulgaria
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
| | - Tzanko Tzanov
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| |
Collapse
|
9
|
Wen H, Zhang Y, Mi Z, Zhang H, Sun C, Liu X, Fan X. Rational design of PspAlgL to improve its thermostability and anti-biofilm activity against Pseudomonas aeruginosa. Int J Biol Macromol 2024; 269:132084. [PMID: 38719003 DOI: 10.1016/j.ijbiomac.2024.132084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/11/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Pseudomonas aeruginosa biofilm enhances tolerance to antimicrobials and immune system defenses. Alginate is an important component of biofilm and a virulence factor of P. aeruginosa. The degradation of alginate by alginate lyases has come to serve as an adjunctive therapeutic strategy against P. aeruginosa biofilm, but poor stability of the enzyme limited this application. Thus, PspAlgL, an alginate lyase, can degrade acetylated alginate but has poor thermostability. The 3D structure of PspAlgL was predicted, and the thermostability of PspAlgL was rationally designed by GRAPE strategy, resulting in two variants with better stability. These variants, PspAlgLS270F/E311P and PspAlgLG291S/E311P, effectively degraded the alginate in biofilm. In addition, compared with PspAlgL, these variants were more efficient in inhibiting biofilm formation and degrading the established biofilm of P. aeruginosa PAO1, and they were also able to destroy the biofilm attached to catheters and to increase the sensitivity of P. aeruginosa to the antibiotic amikacin. This study provides one potential anti-biofilm agent for P. aeruginosa infection.
Collapse
Affiliation(s)
- Huamei Wen
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei 230032, Anhui, China
| | - Yanyu Zhang
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei 230032, Anhui, China
| | - Zhongwen Mi
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei 230032, Anhui, China
| | - Haichuan Zhang
- Stomatological Hospital and College, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chenyang Sun
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei 230032, Anhui, China
| | - Xiaolong Liu
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei 230032, Anhui, China.
| | - Xinjiong Fan
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd, Hefei 230032, Anhui, China.
| |
Collapse
|
10
|
Duan X, Xu Y, Zhang Z, Ma X, Wang C, Ma W, Jia F, Pan X, Liu Y, Zhao Y, Li Q, Liu Z, Yang Y. Piezoelectrically-activated antibacterial catheter for prevention of urinary tract infections in an on-demand manner. Mater Today Bio 2024; 26:101089. [PMID: 38779557 PMCID: PMC11109010 DOI: 10.1016/j.mtbio.2024.101089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/13/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Catheter-associated urinary tract infection (CAUTI) is a common clinical problem, especially during long-term catheterization, causing additional pain to patients. The development of novel antimicrobial coatings is needed to prolong the service life of catheters and reduce the incidence of CAUTIs. Herein, we designed an antimicrobial catheter coated with a piezoelectric zinc oxide nanoparticles (ZnO NPs)-incorporated polyvinylidene difluoride-hexafluoropropylene (ZnO-PVDF-HFP) membrane. ZnO-PVDF-HFP could be stably coated onto silicone catheters simply by a one-step solution film-forming method, very convenient for industrial production. In vitro, it was demonstrated that ZnO-PVDF-HFP coating could significantly inhibit bacterial growth and the formation of bacterial biofilm under ultrasound-mediated mechanical stimulation even after 4 weeks. Importantly, the on and off of antimicrobial activity as well as the strenth of antibacterial property could be controlled in an adaptive manner via ultrasound. In a rabbit model, the ZnO-PVDF-HFP-coated catheter significantly reduced the incidence CAUTIs compared with clinically-commonly used catheters under assistance of ultrasonication, and no side effect was detected. Collectively, the study provided a novel antibacterial catheter to prevent the occurrence of CAUTIs, whose antibacterial activity could be controlled in on-demand manner, adaptive to infection situation and promising in clinical application.
Collapse
Affiliation(s)
- Xiaofeng Duan
- Department of Urology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Yongde Xu
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhifa Zhang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xinbo Ma
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, No. 51, Fucheng Road, Haidian District, Beijing, 100048, China
| | - Cui Wang
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Wenjing Ma
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Fan Jia
- Department of Urology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Xiaoying Pan
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Yang Liu
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Yantao Zhao
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, No. 51, Fucheng Road, Haidian District, Beijing, 100048, China
| | - Qihong Li
- Department of Stomatology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100071, China
| | - Zhiqiang Liu
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Yong Yang
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| |
Collapse
|
11
|
Noori R, Bano N, Ahmad S, Mirza K, Mazumder JA, Perwez M, Raza K, Manzoor N, Sardar M. Microbial Biofilm Inhibition Using Magnetic Cross-Linked Polyphenol Oxidase Aggregates. ACS APPLIED BIO MATERIALS 2024; 7:3164-3178. [PMID: 38722774 DOI: 10.1021/acsabm.4c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Microbial biofilm accumulation poses a serious threat to the environment, presents significant challenges to different industries, and exhibits a large impact on public health. Since there has not been a conclusive answer found despite various efforts, the potential green and economical methods are being focused on, particularly the innovative approaches that employ biochemical agents. In the present study, we propose a bio-nanotechnological method using magnetic cross-linked polyphenol oxidase aggregates (PPO m-CLEA) for inhibition of microbial biofilm including multidrug resistant bacteria. Free PPO solution showed only 55-60% biofilm inhibition, whereas m-CLEA showed 70-75% inhibition, as confirmed through microscopic techniques. The carbohydrate and protein contents in biofilm extracellular polymeric substances (EPSs) were reduced significantly. The m-CLEA demonstrated reusability up to 5 cycles with consistent efficiency in biofilm inhibition. Computational work was also done where molecular docking of PPO with microbial proteins associated with biofilm formation was conducted, resulting in favorable binding scores and inter-residual interactions. Overall, both in vitro and in silico results suggest that PPO interferes with microbial cell attachment and EPS formation, thereby preventing biofilm colonization.
Collapse
Affiliation(s)
- Rubia Noori
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Nagmi Bano
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Shaban Ahmad
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Kainat Mirza
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | | | - Mohammad Perwez
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Nikhat Manzoor
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Meryam Sardar
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
12
|
Sompiyachoke K, Elias MH. Engineering quorum quenching acylases with improved kinetic and biochemical properties. Protein Sci 2024; 33:e4954. [PMID: 38520282 PMCID: PMC10960309 DOI: 10.1002/pro.4954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/03/2024] [Accepted: 02/21/2024] [Indexed: 03/25/2024]
Abstract
Many Gram-negative bacteria use N-acyl-L-homoserine lactone (AHL) signals to coordinate phenotypes such as biofilm formation and virulence factor production. Quorum-quenching enzymes, such as AHL acylases, chemically degrade these molecules which prevents signal reception by bacteria and inhibits undesirable biofilm-related traits. These capabilities make acylases appealing candidates for controlling microbes, yet candidates with high activity levels and substrate specificity and that are capable of being formulated into materials are needed. In this work, we undertook engineering efforts against two AHL acylases, PvdQ and MacQ, to generate these improved properties using the Protein One-Stop Shop Server. The engineering of acylases is complicated by low-throughput enzymatic assays. Alleviating this challenge, we report a time-course kinetic assay for AHL acylases that monitors the real-time production of homoserine lactone. Using the assay, we identified variants of PvdQ that were significantly stabilized, with melting point increases of up to 13.2°C, which translated into high resistance against organic solvents and increased compatibility with material coatings. While the MacQ mutants were unexpectedly destabilized, they had considerably improved kinetic properties, with >10-fold increases against N-butyryl-L-homoserine lactone and N-hexanoyl-L-homoserine lactone. Accordingly, these changes resulted in increased quenching abilities using a biosensor model and greater inhibition of virulence factor production of Pseudomonas aeruginosa PA14. While the crystal structure of one of the MacQ variants, M1, did not reveal obvious structural determinants explaining the observed changes in kinetics, it allowed for the capture of an acyl-enzyme intermediate that confirms a previously hypothesized catalytic mechanism of AHL acylases.
Collapse
Affiliation(s)
- Kitty Sompiyachoke
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Mikael H. Elias
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaSt. PaulMinnesotaUSA
- Biotechnology InstituteSt. PaulMinnesotaUSA
| |
Collapse
|
13
|
Hu C, He G, Yang Y, Wang N, Zhang Y, Su Y, Zhao F, Wu J, Wang L, Lin Y, Shao L. Nanomaterials Regulate Bacterial Quorum Sensing: Applications, Mechanisms, and Optimization Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306070. [PMID: 38350718 PMCID: PMC11022734 DOI: 10.1002/advs.202306070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/19/2024] [Indexed: 02/15/2024]
Abstract
Anti-virulence therapy that interferes with bacterial communication, known as "quorum sensing (QS)", is a promising strategy for circumventing bacterial resistance. Using nanomaterials to regulate bacterial QS in anti-virulence therapy has attracted much attention, which is mainly attributed to unique physicochemical properties and excellent designability of nanomaterials. However, bacterial QS is a dynamic and multistep process, and there are significant differences in the specific regulatory mechanisms and related influencing factors of nanomaterials in different steps of the QS process. An in-depth understanding of the specific regulatory mechanisms and related influencing factors of nanomaterials in each step can significantly optimize QS regulatory activity and enhance the development of novel nanomaterials with better comprehensive performance. Therefore, this review focuses on the mechanisms by which nanomaterials regulate bacterial QS in the signal supply (including signal synthesis, secretion, and accumulation) and signal transduction cascade (including signal perception and response) processes. Moreover, based on the two key influencing factors (i.e., the nanomaterial itself and the environment), optimization strategies to enhance the QS regulatory activity are comprehensively summarized. Collectively, applying nanomaterials to regulate bacterial QS is a promising strategy for anti-virulence therapy. This review provides reference and inspiration for further research on the anti-virulence application of nanomaterials.
Collapse
Affiliation(s)
- Chen Hu
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Guixin He
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Yujun Yang
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Ning Wang
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Yanli Zhang
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Yuan Su
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
- Stomatology CenterShunde HospitalSouthern Medical University (The First People's Hospital of Shunde)Foshan528399China
| | - Fujian Zhao
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Junrong Wu
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Linlin Wang
- Hainan General Hospital·Hainan Affiliated Hospital of Hainan medical UniversityHaikou570311China
| | - Yuqing Lin
- Shenzhen Luohu People's HospitalShenzhen518000China
| | - Longquan Shao
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| |
Collapse
|
14
|
Qu Y, Zou Y, Wang G, Zhang Y, Yu Q. Disruption of Communication: Recent Advances in Antibiofilm Materials with Anti-Quorum Sensing Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13353-13383. [PMID: 38462699 DOI: 10.1021/acsami.4c01428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Biofilm contamination presents a significant threat to public health, the food industry, and aquatic/marine-related applications. In recent decades, although various methods have emerged to combat biofilm contamination, the intricate and persistent nature of biofilms makes complete eradication challenging. Therefore, innovative alternative solutions are imperative for addressing biofilm formation. Instead of solely focusing on the eradication of mature biofilms, strategically advantageous measures involve the delay or prevention of biofilm formation on surfaces. Quorum sensing, a communication system enabling bacteria to coordinate their behavior based on population density, plays a pivotal role in biofilm formation for numerous microbial species. Materials possessing antibiofilm properties that target quorum sensing have gained considerable attention for their potential to prevent biofilm formation. This Review consolidates recent research progress on the utilization of materials with antiquorum sensing properties for combating biofilm formation. These materials can be categorized into three distinct types: (i) antibiofilm nanomaterials, (ii) antibiofilm surfaces, and (iii) antibiofilm hydrogels with antiquorum sensing capabilities. Finally, the Review concludes with a brief discussion of current challenges and outlines potential avenues for future research.
Collapse
Affiliation(s)
- Yangcui Qu
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, 272067, P. R. China
| | - Yi Zou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Guannan Wang
- School of Pharmacy, Shenyang Medical College, Shenyang, 110034, P. R. China
| | - Yanxia Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215006, P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
15
|
Duque-Sanchez L, Qu Y, Voelcker NH, Thissen H. Tackling catheter-associated urinary tract infections with next-generation antimicrobial technologies. J Biomed Mater Res A 2024; 112:312-335. [PMID: 37881094 DOI: 10.1002/jbm.a.37630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Urinary catheters and other medical devices associated with the urinary tract such as stents are major contributors to nosocomial urinary tract infections (UTIs) as they provide an access path for pathogens to enter the bladder. Considering that catheter-associated urinary tract infections (CAUTIs) account for approximately 75% of UTIs and that UTIs represent the most common type of healthcare-associated infections, novel anti-infective device technologies are urgently required. The rapid rise of antimicrobial resistance in the context of CAUTIs further highlights the importance of such preventative strategies. In this review, the risk factors for pathogen colonization in the urinary tract are dissected, taking into account the nature and mechanistics of this unique environment. Moreover, the most promising next-generation preventative strategies are critically assessed, focusing in particular on anti-infective surface coatings. Finally, emerging approaches in this field and their likely clinical impact are examined.
Collapse
Affiliation(s)
- Lina Duque-Sanchez
- Department of Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, Australia
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Yue Qu
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Nicolas H Voelcker
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
| | - Helmut Thissen
- Department of Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, Australia
| |
Collapse
|
16
|
Chadha J, Thakur N, Chhibber S, Harjai K. A comprehensive status update on modification of foley catheter to combat catheter-associated urinary tract infections and microbial biofilms. Crit Rev Microbiol 2024; 50:168-195. [PMID: 36651058 DOI: 10.1080/1040841x.2023.2167593] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/01/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023]
Abstract
Present-day healthcare employs several types of invasive devices, including urinary catheters, to improve medical wellness, the clinical outcome of disease, and the quality of patient life. Among urinary catheters, the Foley catheter is most commonly used in patients for bladder drainage and collection of urine. Although such devices are very useful for patients who cannot empty their bladder for various reasons, they also expose patients to catheter-associated urinary tract infections (CAUTIs). Catheter provides an ideal surface for bacterial colonization and biofilm formation, resulting in persistent bacterial infection and severe complications. Hence, rigorous efforts have been made to develop catheters that harbour antimicrobial and anti-fouling properties to resist colonization by bacterial pathogens. In this regard, catheter modification by surface functionalization, impregnation, blending, or coating with antibiotics, bioactive compounds, and nanoformulations have proved to be effective in controlling biofilm formation. This review attempts to illustrate the complications associated with indwelling Foley catheters, primarily focussing on challenges in fighting CAUTI, catheter colonization, and biofilm formation. In this review, we also collate scientific literature on catheter modification using antibiotics, plant bioactive components, bacteriophages, nanoparticles, and studies demonstrating their efficacy through in vitro and in vivo testing.
Collapse
Affiliation(s)
- Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Navdisha Thakur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
17
|
Kameswaran S, Gujjala S, Zhang S, Kondeti S, Mahalingam S, Bangeppagari M, Bellemkonda R. Quenching and quorum sensing in bacterial bio-films. Res Microbiol 2024; 175:104085. [PMID: 37268165 DOI: 10.1016/j.resmic.2023.104085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023]
Abstract
Quorum sensing (QS) is the ability of bacteria to monitor their population density and adjust gene expression accordingly. QS-regulated processes include host-microbe interactions, horizontal gene transfer, and multicellular behaviours (such as the growth and development of biofilm). The creation, transfer, and perception of bacterial chemicals known as autoinducers or QS signals are necessary for QS signalling (e.g. N-acylhomoserine lactones). Quorum quenching (QQ), another name for the disruption of QS signalling, comprises a wide range of events and mechanisms that are described and analysed in this study. In order to better comprehend the targets of the QQ phenomena that organisms have naturally developed and are currently being actively researched from practical perspectives, we first surveyed the diversity of QS-signals and QS-associated responses. Next, the mechanisms, molecular players, and targets related to QS interference are discussed, with a focus on natural QQ enzymes and compounds that function as QS inhibitors. To illustrate the processes and biological functions of QS inhibition in microbe-microbe and host-microbe interactions, a few QQ paradigms are described in detail. Finally, certain QQ techniques are offered as potential instruments in a variety of industries, including agriculture, medical, aquaculture, crop production, and anti-biofouling areas.
Collapse
Affiliation(s)
- Srinivasan Kameswaran
- Department of Botany, Vikrama Simhapuri University College, Kavali, Andhra Pradesh, India
| | - Sudhakara Gujjala
- Department of Biochemistry, Sri Krishnadevaray a University, Ananthapuram, Andhra Pradesh, India
| | - Shaoqing Zhang
- School of Chemistry and Civil Engineering, Shaoguan University, Shaoguan, 512005, PR China
| | - Suresh Kondeti
- Multi-Disciplinary Research Unit, Nizam's Institute of Medical Sciences, Hyderabad, 500082, India
| | - Sundararajan Mahalingam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Manjunatha Bangeppagari
- Department of Cell Biology & Molecular Genetics, Sri Devaraj Urs Academy of Higher Education and Research (Deemed to Be University), Tamaka, Kolar, 563103, Karnataka, India
| | - Ramesh Bellemkonda
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
18
|
Juszczuk-Kubiak E. Molecular Aspects of the Functioning of Pathogenic Bacteria Biofilm Based on Quorum Sensing (QS) Signal-Response System and Innovative Non-Antibiotic Strategies for Their Elimination. Int J Mol Sci 2024; 25:2655. [PMID: 38473900 DOI: 10.3390/ijms25052655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
One of the key mechanisms enabling bacterial cells to create biofilms and regulate crucial life functions in a global and highly synchronized way is a bacterial communication system called quorum sensing (QS). QS is a bacterial cell-to-cell communication process that depends on the bacterial population density and is mediated by small signalling molecules called autoinducers (AIs). In bacteria, QS controls the biofilm formation through the global regulation of gene expression involved in the extracellular polymeric matrix (EPS) synthesis, virulence factor production, stress tolerance and metabolic adaptation. Forming biofilm is one of the crucial mechanisms of bacterial antimicrobial resistance (AMR). A common feature of human pathogens is the ability to form biofilm, which poses a serious medical issue due to their high susceptibility to traditional antibiotics. Because QS is associated with virulence and biofilm formation, there is a belief that inhibition of QS activity called quorum quenching (QQ) may provide alternative therapeutic methods for treating microbial infections. This review summarises recent progress in biofilm research, focusing on the mechanisms by which biofilms, especially those formed by pathogenic bacteria, become resistant to antibiotic treatment. Subsequently, a potential alternative approach to QS inhibition highlighting innovative non-antibiotic strategies to control AMR and biofilm formation of pathogenic bacteria has been discussed.
Collapse
Affiliation(s)
- Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| |
Collapse
|
19
|
Perelshtein I, Shoshani S, Jacobi G, Natan M, Dudchenko N, Perkas N, Tkachev M, Bengalli R, Fiandra L, Mantecca P, Ivanova K, Tzanov T, Banin E, Gedanken A. Protecting the Antibacterial Coating of Urinal Catheters for Improving Safety. ACS APPLIED BIO MATERIALS 2024; 7:990-998. [PMID: 38226433 DOI: 10.1021/acsabm.3c00988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Catheter-associated urinary tract infections (CAUTI) are among the most common bacterial infections associated with prolonged hospitalization and increased healthcare expenditures. Despite recent advances in the prevention and treatment of these infections, there are still many challenges remaining, among them the creation of a durable catheter coating, which prevents bacterial biofilm formation. The current work reports on a method of protecting medical tubing endowed with antibiofilm properties. Silicone catheters coated sonochemically with ZnO nanoparticles (NPs) demonstrated excellent antibiofilm effects. Toward approval by the European Medicines Agency, it was realized that the ZnO coating would not withstand the regulatory requirements of avoiding dissolution for 14 days in artificial urine examination. Namely, after exposure to urine for 14 days, the coating amount was reduced by 90%. Additional coatings with either carbon or silica maintained antibiofilm activity against Staphylococcus aureus while resisting dissolution in artificial urine for 14 days (C- or SiO2-protected catheters exhibited only 29% reduction). HR-SEM images of the protected catheters indicate the presence of the ZnO coating as well as the protective layer. Antibiofilm activity of all catheters was evaluated both before and after exposure to artificial urine. It was shown that before artificial urine exposure, all coated catheters showed high antibiofilm properties compared to the uncoated control. Exposure of ZnO-coated catheters, without the protective layer, to artificial urine had a significant effect exhibited by the decrease in antibiofilm activity by almost 2 orders of magnitude, compared to unexposed catheters. Toxicity studies performed using a reconstructed human epidermis demonstrated the safety of the improved coating. Exposure of the epidermis to ZnO catheter extracts in artificial urine affects tissue viability compared with control samples, which was not observed in the case of ZnO NPs coating with SiO2 or C. We suggest that silica and carbon coatings confer some protection against zinc ions release, improving ZnO coating safety.
Collapse
Affiliation(s)
- Ilana Perelshtein
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Sivan Shoshani
- The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Gila Jacobi
- The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Michal Natan
- The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Nataliia Dudchenko
- Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Nina Perkas
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Maria Tkachev
- Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Rossella Bengalli
- Department of Earth and Environmental Sciences, Research Center POLARIS, University of Milano Bicocca, Milan 20126, Italy
| | - Luisa Fiandra
- Department of Earth and Environmental Sciences, Research Center POLARIS, University of Milano Bicocca, Milan 20126, Italy
| | - Paride Mantecca
- Department of Earth and Environmental Sciences, Research Center POLARIS, University of Milano Bicocca, Milan 20126, Italy
| | - Kristina Ivanova
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, 08222 Terrasa, Spain
| | - Tzanko Tzanov
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, 08222 Terrasa, Spain
| | - Ehud Banin
- The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Aharon Gedanken
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
20
|
Liu Y, Long S, Wang H, Wang Y. Biofilm therapy for chronic wounds. Int Wound J 2024; 21:e14667. [PMID: 38339793 PMCID: PMC10858329 DOI: 10.1111/iwj.14667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/24/2023] [Accepted: 12/29/2023] [Indexed: 02/12/2024] Open
Abstract
Chronic wounds have been a major factor of serious harm to global public health. At present, it is known that almost all chronic wounds contain biofilms, which seriously hinder the healing process. Removal of biofilms can effectively promote the healing of chronic wounds. As the study of wound biofilms deepens, many new treatment methods have emerged, thus bringing revolutionary means for the treatment of chronic wound biofilm. This review summarizes various methods for the treatment of chronic wound biofilm worldwide to provide a theoretical summary and practical basis for the selection of suitable wound biofilm treatment methods in clinical practice.
Collapse
Affiliation(s)
- Yang Liu
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of ChengduAffiliated Hospital of Southwest Jiaotong UniversityChengduChina
| | - Shengyong Long
- Department of TraumatologyTongren People's HospitalTongrenChina
| | - Hanfeng Wang
- Plastic Surgery DepartmentXi'an International Medical Center HospitalXi'anChina
| | - Yan Wang
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of ChengduAffiliated Hospital of Southwest Jiaotong UniversityChengduChina
- Medical Research Center, The Third People's Hospital of ChengduAffiliated Hospital of Southwest Jiaotong UniversityChengduChina
| |
Collapse
|
21
|
Marra D, Karapantsios T, Caserta S, Secchi E, Holynska M, Labarthe S, Polizzi B, Ortega S, Kostoglou M, Lasseur C, Karapanagiotis I, Lecuyer S, Bridier A, Noirot-Gros MF, Briandet R. Migration of surface-associated microbial communities in spaceflight habitats. Biofilm 2023; 5:100109. [PMID: 36909662 PMCID: PMC9999172 DOI: 10.1016/j.bioflm.2023.100109] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/05/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
Astronauts are spending longer periods locked up in ships or stations for scientific and exploration spatial missions. The International Space Station (ISS) has been inhabited continuously for more than 20 years and the duration of space stays by crews could lengthen with the objectives of human presence on the moon and Mars. If the environment of these space habitats is designed for the comfort of astronauts, it is also conducive to other forms of life such as embarked microorganisms. The latter, most often associated with surfaces in the form of biofilm, have been implicated in significant degradation of the functionality of pieces of equipment in space habitats. The most recent research suggests that microgravity could increase the persistence, resistance and virulence of pathogenic microorganisms detected in these communities, endangering the health of astronauts and potentially jeopardizing long-duration manned missions. In this review, we describe the mechanisms and dynamics of installation and propagation of these microbial communities associated with surfaces (spatial migration), as well as long-term processes of adaptation and evolution in these extreme environments (phenotypic and genetic migration), with special reference to human health. We also discuss the means of control envisaged to allow a lasting cohabitation between these vibrant microscopic passengers and the astronauts.
Collapse
Affiliation(s)
- Daniele Marra
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPi), University of Naples, Federico II, Piazzale Tecchio 80, 80125, Naples, Italy
- CEINGE, Advanced Biotechnologies, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Thodoris Karapantsios
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | - Sergio Caserta
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPi), University of Naples, Federico II, Piazzale Tecchio 80, 80125, Naples, Italy
- CEINGE, Advanced Biotechnologies, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Eleonora Secchi
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, 8093, Zurich, Switzerland
| | | | - Simon Labarthe
- University of Bordeaux, IMB, UMR 5251, CNRS, IMB, Memphis Team, INRIA, Talence, France
| | - Bastien Polizzi
- Laboratoire de Mathématiques de Besançon, Université Bourgogne Franche-Comté, CNRS UMR-6623, Besançon, France
| | | | - Margaritis Kostoglou
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | | | - Ioannis Karapanagiotis
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 541 24, Thessaloniki, Greece
| | | | - Arnaud Bridier
- Fougères Laboratory, Antibiotics, Biocides, Residues and Resistance Unit, ANSES, Fougères, France
| | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
22
|
Song Y, Wang R, Pan Y, Fang D, Tian Y, Zhou S. An integrated quorum quenching biocatalytic nanoplatform for synergistic chemo-photothermal eradication of P. aeruginosa biofilm infections. Acta Biomater 2023; 171:532-542. [PMID: 37734627 DOI: 10.1016/j.actbio.2023.09.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Decontamination of biofilm-associated infections presents a significant challenge due to the physical and chemical barrier created by the formation of extracellular matrices. This barrier restricts the access of antibiotics to the bacterial communities within the biofilm and provides protection to the persister cells, potentially leading to antibiotic resistance. In this study, we have developed an integrated quorum quenching biocatalytic nanoplatform for the synergistic chemo-photothermal eradication of P. aeruginosa biofilm infections. Ciprofloxacin (Cip), a model antibiotic, was absorbed onto PDA NPs through π-π stacking. Additionally, acylase (AC) was immobilized on PDA NPs through Schiff base reaction and Michael addition, resulting in the formation of the biocatalytic nanoplatform (PDA-Cip-AC NPs). This biocatalytic nanoplatform was able to enzymatically degrade AHL signaling molecules, thus achieving efficient quorum quenching activity to prevent biofilm formation. Furthermore, the NIR light-triggered on-demand Ciprofloxacin release further enhanced the eradication of P. aeruginosa biofilm infections with a synergy of local hyperthermia. We envision that this integrated quorum quenching nanoplatform provides a reliable tool for combating P. aeruginosa biofilm infections. STATEMENT OF SIGNIFICANCE: An integrated quorum quenching biocatalytic nanoplatform has been developed for the eradication of P. aeruginosa biofilm infections. Quorum-sensing signals play a crucial role in modulating bacterial cell-to-cell communication, biofilm formation, and secretion of virulence factors. This biocatalytic nanoplatform efficiently degrades AHL signaling molecules, thereby blocking cell-to-cell communication and preventing biofilm formation. Additionally, local hyperthermia and on-demand Ciprofloxacin release were achieved through NIR irradiation, working synergistically to eradicate P. aeruginosa biofilm infections.
Collapse
Affiliation(s)
- Yue Song
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, PR China
| | - Rui Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, PR China
| | - Yuanzhi Pan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, PR China
| | - Dan Fang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, PR China
| | - Yuan Tian
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, PR China; Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, PR China.
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, PR China.
| |
Collapse
|
23
|
Kim JS, Lim MC, Kim SM, Lee JY. Extracellular matrix-degrading enzymes as a biofilm control strategy for food-related microorganisms. Food Sci Biotechnol 2023; 32:1745-1761. [PMID: 37780595 PMCID: PMC10533455 DOI: 10.1007/s10068-023-01373-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 10/03/2023] Open
Abstract
Biofilm is one of the major problems in food industries and is difficult to be removed or prevented by conventional sanitizers. In this review, we discussed the extracellular matrix-degrading enzymes as a strategy to control biofilms of foodborne pathogenic and food-contaminating bacteria. The biofilms can be degraded by using the enzymes targeting proteins, polysaccharides, extracellular DNA, or lipids which mainly constitute the extracellular polymeric substances of biofilms. However, the efficacy of enzymes varies by the growth medium, bacterial species, strains, or counterpart microorganisms due to a high variation in the composition of extracellular polymeric substances. Several studies demonstrated that the combined treatment using conventional sanitizers or multiple enzymes can synergistically enhance the biofilm removal efficacies. In this review, the application of the immobilized enzymes on solid substrates is also discussed as a potential strategy to prevent biofilm formation on food contact surfaces.
Collapse
Affiliation(s)
- Joo-Sung Kim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, 34113 Republic of Korea
| | - Min-Cheol Lim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, 34113 Republic of Korea
| | - Se-Min Kim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
- Department of Food Science and Technology, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896 Republic of Korea
| | - Joo-Young Lee
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419 Republic of Korea
| |
Collapse
|
24
|
Choi V, Rohn JL, Stoodley P, Carugo D, Stride E. Drug delivery strategies for antibiofilm therapy. Nat Rev Microbiol 2023; 21:555-572. [PMID: 37258686 DOI: 10.1038/s41579-023-00905-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/02/2023]
Abstract
Although new antibiofilm agents have been developed to prevent and eliminate pathogenic biofilms, their widespread clinical use is hindered by poor biocompatibility and bioavailability, unspecific interactions and insufficient local concentrations. The development of innovative drug delivery strategies can facilitate penetration of antimicrobials through biofilms, promote drug dispersal and synergistic bactericidal effects, and provide novel paradigms for clinical application. In this Review, we discuss the potential benefits of such emerging techniques for improving the clinical efficacy of antibiofilm agents, as well as highlighting the existing limitations and future prospects for these therapies in the clinic.
Collapse
Affiliation(s)
- Victor Choi
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Jennifer L Rohn
- Department of Renal Medicine, Centre for Urological Biology, Division of Medicine, University College London, London, UK
| | - Paul Stoodley
- Departments of Microbial Infection and Immunity, Microbiology and Orthopaedics, The Ohio State University, Columbus, OH, USA
- Department of Mechanical Engineering, National Centre for Advanced Tribology at Southampton (nCATS) and National Biofilm Innovation Centre (NBIC), University of Southampton, Southampton, UK
| | - Dario Carugo
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Eleanor Stride
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK.
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
25
|
Sompiyachoke K, Elias MH. Engineering Quorum Quenching Acylases with Improved Kinetic and Biochemical Properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555929. [PMID: 37693529 PMCID: PMC10491313 DOI: 10.1101/2023.09.01.555929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Many Gram-negative bacteria respond to N-acyl-L-homoserine lactone (AHL) signals to coordinate phenotypes such as biofilm formation and virulence factor production. Quorum-quenching enzymes, such as acylases, chemically degrade AHL signals, prevent signal reception by bacteria, and inhibit undesirable traits related to biofilm. These capabilities make these enzymes appealing candidates for controlling microbes. Yet, enzyme candidates with high activity levels, high substrate specificity for specific interference, and that are capable of being formulated into materials are needed. In this work, we undertook engineering efforts against two AHL acylases, PvdQ and MacQ, to obtain improved acylase variants. The engineering of acylase is complicated by low-throughput enzymatic assays. To alleviate this challenge, we report a time-course kinetic assay for AHL acylase that tracks the real-time production of homoserine lactone. Using the protein one-stop shop server (PROSS), we identified variants of PvdQ that were significantly stabilized, with melting point increases of up to 13.2 °C, which translated into high resistance against organic solvents and increased compatibility with material coatings. We also generated mutants of MacQ with considerably improved kinetic properties, with >10-fold increases against N-butyryl-L-homoserine lactone and N-hexanoyl-L-homoserine lactone. In fact, the variants presented here exhibit unique combinations of stability and activity levels. Accordingly, these changes resulted in increased quenching abilities using a biosensor model and greater inhibition of virulence factor production of Pseudomonas aeruginosa PA14. While the crystal structure of one of the MacQ variants, M1, did not reveal obvious structural determinants explaining the observed changes in kinetics, it allowed for the capture of an acyl-enzyme intermediate that confirms a previously hypothesized catalytic mechanism of AHL acylases.
Collapse
Affiliation(s)
- Kitty Sompiyachoke
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics, St. Paul, MN, 55108, USA
| | - Mikael H. Elias
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics, St. Paul, MN, 55108, USA
- University of Minnesota, Biotechnology Institute, St. Paul, MN, 55108, USA
| |
Collapse
|
26
|
Maddela NR, Abiodun AS, Zhang S, Prasad R. Biofouling in Membrane Bioreactors-Mitigation and Current Status: a Review. Appl Biochem Biotechnol 2023; 195:5643-5668. [PMID: 36418712 DOI: 10.1007/s12010-022-04262-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/27/2022]
Abstract
Biological fouling as termed biofouling is caused by varied living organisms and is difficult to eliminate from the environment thus becoming a major issue during membrane bioreactors. Biofouling in membrane bioreactors (MBRs) is a crucial problem in increasing liquid pressure due to reduced pore diameter, clogging of the membrane pores, and alteration of the chemical composition of the water which greatly limits the growth of MBRs. Thus, membrane biofouling and/or microbial biofilms is a hot research topic to improve the market competitiveness of the MBR technology. Though several antibiofouling strategies (addition of bioflocculant or sponge into MBRs) came to light, biological approaches are sustainable and more practicable. Among the biological approaches, quorum sensing-based biofouling control (so-called quorum quenching) is an interesting and promising tool in combating biofouling issues in the MBRs. Several review articles have been published in the area of membrane biofouling and mitigation approaches. However, there is no single source of information about biofouling and/or biofilm formation in different environmental settings and respective problems, antibiofilm strategies and current status, quorum quenching, and its futurity. Thus, the objectives of the present review were to provide latest insights on mechanism of membrane biofouling, quorum sensing molecules, biofilm-associated problems in different environmental setting and antibiofilm strategies, special emphasis on quorum quenching, and its futurity in the biofilm/biofouling control. We believe that these insights greatly help in the better understanding of biofouling and aid in the development of sustainable antibiofouling strategies.
Collapse
Affiliation(s)
- Naga Raju Maddela
- Departmento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo, Ecuador
- Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Ecuador
| | - Aransiola Sesan Abiodun
- Bioresources Development Centre, National Biotechnology Development Agency (NABDA), Ogbomoso, Nigeria
| | - Shaoqing Zhang
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar, India.
| |
Collapse
|
27
|
Rajaramon S, Shanmugam K, Dandela R, Solomon AP. Emerging evidence-based innovative approaches to control catheter-associated urinary tract infection: a review. Front Cell Infect Microbiol 2023; 13:1134433. [PMID: 37560318 PMCID: PMC10407108 DOI: 10.3389/fcimb.2023.1134433] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/04/2023] [Indexed: 08/11/2023] Open
Abstract
Healthcare settings have dramatically advanced the latest medical devices, such as urinary catheters (UC) for infection, prevention, and control (IPC). The continuous or intermittent flow of a warm and conducive (urine) medium in the medical device, the urinary catheter, promotes the formation of biofilms and encrustations, thereby leading to the incidence of CAUTI. Additionally, the absence of an innate immune host response in and around the lumen of the catheter reduces microbial phagocytosis and drug action. Hence, the review comprehensively overviews the challenges posed by CAUTI and associated risks in patients' morbidity and mortality. Also, detailed, up-to-date information on the various strategies that blended/tailored the surface properties of UC to have anti-fouling, biocidal, and anti-adhesive properties to provide an outlook on how they can be better managed with futuristic solutions.
Collapse
Affiliation(s)
- Shobana Rajaramon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Karthi Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Bhubaneswar, Odisha, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
28
|
Ferreres G, Ivanova K, Torrent-Burgués J, Tzanov T. Multimodal silver-chitosan-acylase nanoparticles inhibit bacterial growth and biofilm formation by Gram-negative Pseudomonas aeruginosa bacterium. J Colloid Interface Sci 2023; 646:576-586. [PMID: 37210905 DOI: 10.1016/j.jcis.2023.04.184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/19/2023] [Accepted: 04/30/2023] [Indexed: 05/23/2023]
Abstract
Pseudomonas aeruginosa bacteria originate severe infections in hospitalized patients and those with chronic debilitating diseases leading to increased morbidity and mortality, longer hospitalization and huge financial burden to the healthcare system. The clinical relevance of P. aeruginosa infections is increased by the capability of this bacterium to grow in biofilms and develop multidrug resistant mechanisms that preclude conventional antibiotic treatments. Herein, we engineered novel multimodal nanocomposites that integrate in the same entity antimicrobial silver nanoparticles (NPs), the intrinsically antimicrobial, but biocompatible biopolymer chitosan, and the anti-infective quorum quenching enzyme acylase I. Acylase present in the NPs specifically degraded the signal molecules governing bacterial cell-to-cell communication and inhibited by ∼ 55 % P. aeruginosa biofilm formation, while the silver/chitosan template altered the integrity of bacterial membrane, leading to complete eradication of planktonic bacteria. The innovative combination of multiple bacteria targeting modalities resulted in 100-fold synergistic enhancement of the antimicrobial efficacy of the nanocomposite at lower and non-hazardous towards human skin cells concentrations, compared to the silver/chitosan NPs alone.
Collapse
Affiliation(s)
- Guillem Ferreres
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Kristina Ivanova
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Juan Torrent-Burgués
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain
| | - Tzanko Tzanov
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222, Spain.
| |
Collapse
|
29
|
Zhao A, Sun J, Liu Y. Understanding bacterial biofilms: From definition to treatment strategies. Front Cell Infect Microbiol 2023; 13:1137947. [PMID: 37091673 PMCID: PMC10117668 DOI: 10.3389/fcimb.2023.1137947] [Citation(s) in RCA: 139] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
Bacterial biofilms are complex microbial communities encased in extracellular polymeric substances. Their formation is a multi-step process. Biofilms are a significant problem in treating bacterial infections and are one of the main reasons for the persistence of infections. They can exhibit increased resistance to classical antibiotics and cause disease through device-related and non-device (tissue) -associated infections, posing a severe threat to global health issues. Therefore, early detection and search for new and alternative treatments are essential for treating and suppressing biofilm-associated infections. In this paper, we systematically reviewed the formation of bacterial biofilms, associated infections, detection methods, and potential treatment strategies, aiming to provide researchers with the latest progress in the detection and treatment of bacterial biofilms.
Collapse
Affiliation(s)
- Ailing Zhao
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Jiazheng Sun
- Department of Vasculocardiology, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yipin Liu
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
- *Correspondence: Yipin Liu,
| |
Collapse
|
30
|
Nanomaterials and Coatings for Managing Antibiotic-Resistant Biofilms. Antibiotics (Basel) 2023; 12:antibiotics12020310. [PMID: 36830221 PMCID: PMC9952333 DOI: 10.3390/antibiotics12020310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Biofilms are a global health concern responsible for 65 to 80% of the total number of acute and persistent nosocomial infections, which lead to prolonged hospitalization and a huge economic burden to the healthcare systems. Biofilms are organized assemblages of surface-bound cells, which are enclosed in a self-produced extracellular polymer matrix (EPM) of polysaccharides, nucleic acids, lipids, and proteins. The EPM holds the pathogens together and provides a functional environment, enabling adhesion to living and non-living surfaces, mechanical stability, next to enhanced tolerance to host immune responses and conventional antibiotics compared to free-floating cells. Furthermore, the close proximity of cells in biofilms facilitates the horizontal transfer of genes, which is responsible for the development of antibiotic resistance. Given the growing number and impact of resistant bacteria, there is an urgent need to design novel strategies in order to outsmart bacterial evolutionary mechanisms. Antibiotic-free approaches that attenuate virulence through interruption of quorum sensing, prevent adhesion via EPM degradation, or kill pathogens by novel mechanisms that are less likely to cause resistance have gained considerable attention in the war against biofilm infections. Thereby, nanoformulation offers significant advantages due to the enhanced antibacterial efficacy and better penetration into the biofilm compared to bulk therapeutics of the same composition. This review highlights the latest developments in the field of nanoformulated quorum-quenching actives, antiadhesives, and bactericides, and their use as colloid suspensions and coatings on medical devices to reduce the incidence of biofilm-related infections.
Collapse
|
31
|
Kaur KD, Habimana O. Death at the interface: Nanotechnology’s challenging frontier against microbial surface colonization. Front Chem 2022; 10:1003234. [PMID: 36311433 PMCID: PMC9613359 DOI: 10.3389/fchem.2022.1003234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
The emergence of antimicrobial-resistant bacterial strains has led to novel approaches for combating bacterial infections and surface contamination. More specifically, efforts in combining nanotechnology and biomimetics have led to the development of next-generation antimicrobial/antifouling nanomaterials. While nature-inspired nanoscale topographies are known for minimizing bacterial attachment through surface energy and physicochemical features, few studies have investigated the combined inhibitory effects of such features in combination with chemical alterations of these surfaces. Studies describing surface alterations, such as quaternary ammonium compounds (QACs), have also gained attention due to their broad spectrum of inhibitory activity against bacterial cells. Similarly, antimicrobial peptides (AMPs) have exhibited their capacity to reduce bacterial viability. To maximize the functionality of modified surfaces, the integration of patterned surfaces and functionalized exteriors, achieved through physical and chemical surface alterations, have recently been explored as viable alternatives. Nonetheless, these modifications are prone to challenges that can reduce their efficacy considerably in the long term. Their effectiveness against a wider array of microbial cells is still a subject of investigation. This review article will explore and discuss the emerging trends in biomimetics and other antimicrobials while raising possible concerns about their limitations and discussing future implications regarding their potential combined applications.
Collapse
Affiliation(s)
- Kiran Deep Kaur
- The School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Olivier Habimana
- Guangdong Technion Israel Institute of Technology (GTIIT), Shantou, Guangdong, China
- *Correspondence: Olivier Habimana,
| |
Collapse
|
32
|
Yoon Y, Kim HS, Yoon S, Yeon KM, Kim J. Precipitation-based microscale enzyme reactors coupled with porous and adhesive elastomer for effective bacterial decontamination and membrane antifouling on-demand. ENVIRONMENTAL RESEARCH 2022; 212:113407. [PMID: 35523281 DOI: 10.1016/j.envres.2022.113407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Bacterial contamination of water environments can cause various troubles in various areas. As one of potential solutions, we develop enzyme-immobilized elastomer, and demonstrate the uses of enzyme reactions on-demand for effective microbial decontamination and antifouling. Asymmetrically-structured elastomer is prepared by combining two polydimethylsiloxane (PDMS) layers with different degrees of crosslinking: highly-crosslinked and lightly-crosslinked PDMS layers. At the surface of highly-crosslinked PDMS layer, porous structure with average diameter of 842 nm is formed by dissolving pre-packed and entrapped latex beads. Lightly-crosslinked PDMS on the other side, due to its adhesive nature, enables iterative attachments on various materials under either dry or wet condition. Glucose oxidase (GOx) is immobilized by using the pores at the surface of highly-crosslinked PDMS matrix via a ship-in-a-bottle protocol of precipitation-based microscale enzyme reactor (p-MER), which consists of GOx adsorption, precipitation and chemical crosslinking (EAPC). As a result, crosslinked enzyme aggregates (CLEAs) of GOx not only are well entrapped within many pores of highly-crosslinked PDMS layer (ship-in-bottle) but also cover the external surface of matrix, both of which are well connected together. Highly-interconnected network of CLEAs themselves effectively prevents enzyme leaching, which shows the 25% residual activity of GOx under shaking at 200 rpm for 156 days after 48% initial drop of loosely-bound p-MER after 4 days. In presence of glucose, the underwater attachment of biocatalytic elastomer demonstrates the generation of hydrogen peroxide via p-MER-catalyzed glucose oxidation, exhibiting effective biocidal activities against both gram-positive S. aureus and gram-negative E. coli. Adhesion-induced GOx-catalyzed reaction also alleviates the biofouling of membrane, suggesting its extendibility to various engineering systems being suffered by biofouling. This study of biocatalytic elastomer has demonstrated its new opportunities for the facile and on-demand enzyme-catalyzed reactions in various environmental applications, such as bactericidal treatment, water treatment/purification, and pollutant degradation.
Collapse
Affiliation(s)
- YoungChul Yoon
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Han Sol Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seji Yoon
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Kyung-Min Yeon
- Engineering Center, Samsung C&T Corporation, Tower B, 26, Sangil-ro, 6- gil, Gangdong-gu, Seoul, Republic of Korea.
| | - Jungbae Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
33
|
Three lines of defense: A multifunctional coating with anti-adhesion, bacteria-killing and anti-quorum sensing properties for preventing biofilm formation of Pseudomonas aeruginosa. Acta Biomater 2022; 151:254-263. [PMID: 35961522 DOI: 10.1016/j.actbio.2022.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022]
Abstract
Surfaces of synthetic materials are highly susceptible to pathogenic bacteria colonization and further biofilm formation, leading to device failure in both biomedical and industrial applications. Complete elimination of the mature biofilms formed on the surfaces, however, remains a great challenge due to the complexity of chemical composition and physical structure. Therefore, prevention of biofilm formation becomes a preferred strategy for solving the biofilm-associated problems. Herein, a multifunctional coating showing three lines of defense to prevent biofilm formation of Pseudomonas aeruginosa is fabricated by a simple and versatile method. This coating is composed of multilayers of quaternized chitosan with bactericidal property and acylase with anti-quorum sensing property and a topmost layer of hyaluronic acid with anti-adhesion property. The substrate deposited with this coating could suppress initial adhesion of a majority of bacteria, and then kill the attached bacteria and interfere with their quorum sensing systems related to biofilm formation. The results of short-term antibacterial experiments show that our coating reduced 98 ± 2% of attached live bacteria. In long-term antibiofilm experiments, this "three lines of defense" design endows the coating with enhanced antibiofilm property against the biofilm formation for at least 3 days by reducing 98 ± 1% of bacterial proliferation and 71 ± 2% of biomass production. Benefiting from the natural building blocks with good biocompatibility and the versatile and environmentally friendly preparation method, this coating shows negligible cytotoxicity and broad applicability, providing great potential for a variety of biomedical applications. STATEMENT OF SIGNIFICANCE: Pathogenic biofilms formed on the surfaces of medical devices and materials pose an urgent problem, and it remains challenging to treat and eradicate the established biofilms. Herein, we developed an antibiofilm coating showing three lines of defense to prevent biofilm formation, which could be deposited on diverse substrates via a simple and versatile method. This coating was based on three natural materials with anti-adhesive, bactericidal, and anti-quorum sensing properties and showed different function in a self-adaptive way to target the sequential stages of biofilm formation by preventing initial bacterial adhesion, killing attached bacteria and interfering with their quorum sensing system to inhibit bacterial proliferation and biofilm maturation. This coating with improved antibiofilm performance might provide a simple and reliable solution to the problems associated with biofilm on surfaces.
Collapse
|
34
|
Nano-Formulation Endows Quorum Quenching Enzyme-Antibiotic Hybrids with Improved Antibacterial and Antibiofilm Activities against Pseudomonas aeruginosa. Int J Mol Sci 2022; 23:ijms23147632. [PMID: 35886980 PMCID: PMC9321661 DOI: 10.3390/ijms23147632] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 11/21/2022] Open
Abstract
The emergence of antibiotic resistant bacteria coupled with the shortage of efficient antibacterials is one of the most serious unresolved problems for modern medicine. In this study, the nano-hybridization of the clinically relevant antibiotic, gentamicin, with the bacterial pro-pathological cell-to-cell communication-quenching enzyme, acylase, is innovatively employed to increase its antimicrobial efficiency against Pseudomonas aeruginosa planktonic cells and biofilms. The sonochemically generated hybrid gentamicin/acylase nano-spheres (GeN_AC NSs) showed a 16-fold improved bactericidal activity when compared with the antibiotic in bulk form, due to the enhanced physical interaction and disruption of the P. aeruginosa cell membrane. The nano-hybrids attenuated 97 ± 1.8% of the quorum sensing-regulated virulence factors’ production and inhibited the bacterium biofilm formation in an eight-fold lower concentration than the stand-alone gentamicin NSs. The P. aeruginosa sensitivity to GeN_AC NSs was also confirmed in a real time assay monitoring the bacterial cells elimination, using a quartz crystal microbalance with dissipation. In protein-enriched conditions mimicking the in vivo application, these hybrid nano-antibacterials maintained their antibacterial and antibiofilm effectiveness at concentrations innocuous to human cells. Therefore, the novel GeN_AC NSs with complementary modes of action show potential for the treatment of P. aeruginosa biofilm infections at a reduced antibiotic dosage.
Collapse
|
35
|
Phascinating Phages. Microorganisms 2022; 10:microorganisms10071365. [PMID: 35889083 PMCID: PMC9320029 DOI: 10.3390/microorganisms10071365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/01/2023] Open
Abstract
Treatment of infections caused by bacteria has become more complex due to the increasing number of bacterial strains that are resistant to conventional antimicrobial therapy. A highly promising alternative appears to be bacteriophage (phage) therapy, in which natural predators of bacteria, bacteriophages, play a role. Although these viruses were first discovered in 1917, the development of phage therapy was impacted by the discovery of antibiotics, which spread more quickly and effectively in medical practice. Despite this, phage therapy has a long history in Eastern Europe; however, Western countries are currently striving to reintroduce phage therapy as a tool in the fight against diseases caused by drug-resistant bacteria. This review describes phage biology, bacterial and phage competition mechanisms, and the benefits and drawbacks of phage therapy. The results of various laboratory experiments, and clinical cases where phage therapy was administered, are described.
Collapse
|
36
|
Kaur H, Kaur A, Soni SK, Rishi P. Microbially-derived cocktail of carbohydrases as an anti-biofouling agents: a 'green approach'. BIOFOULING 2022; 38:455-481. [PMID: 35673761 DOI: 10.1080/08927014.2022.2085566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/12/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Enzymes, also known as biocatalysts, display vital properties like high substrate specificity, an eco-friendly nature, low energy inputs, and cost-effectiveness. Among their numerous known applications, enzymes that can target biofilms or their components are increasingly being investigated for their anti-biofouling action, particularly in healthcare, food manufacturing units and environmental applications. Enzymes can target biofilms at different levels like during the attachment of microorganisms, formation of exopolymeric substances (EPS), and their disruption thereafter. In this regard, a consortium of carbohydrases that can target heterogeneous polysaccharides present in the EPS matrix may provide an effective alternative to conventional chemical anti-biofouling methods. Further, for complete annihilation of biofilms, enzymes can be used alone or in conjunction with other antimicrobial agents. Enzymes hold the promise to replace the conventional methods with greener, more economical, and more efficient alternatives. The present article explores the potential and future perspectives of using carbohydrases as effective anti-biofilm agents.
Collapse
Affiliation(s)
- Harmanpreet Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Arashdeep Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | | | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
37
|
Benny AT, Rathinam P, Dev S, Mathew B, Radhakrishnan EK. Perillaldehyde mitigates virulence factors and biofilm formation of Pseudomonas aeruginosa clinical isolates, by acting on the quorum sensing mechanism in vitro. J Appl Microbiol 2022; 133:385-399. [PMID: 35384183 DOI: 10.1111/jam.15565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/17/2021] [Accepted: 03/07/2022] [Indexed: 12/01/2022]
Abstract
AIM The incidence of biofilm linked catheter-associated urinary tract infections (CAUTIs) are increasing worldwide and Pseudomonas aeruginosa is one of the major causes. Perillaldehyde (PLD): as a natural, widely used flavouring agent, has been reported to possess various pharmacological properties. We hypothesized that PLD can inhibit biofilm formation and virulence factor production by P. aeruginosa by hampering the quorum sensing (QS) system(s). METHODS AND RESULTS Minimum inhibitory concentration (MIC) of PLD was assessed for standard strain and two multi-drug resistant catheter isolates of P. aeruginosa utilizing the microdilution method. Microtiter plate assay, crystal violet staining and scanning electron microscopy were used to evaluate the biofilm inhibition property. CFU was utilized to assess the antifouling property of PLD. Detection of virulence factors (VFs) and expression analysis of virulence determinants were applied to investigate the anti-virulence activity. Gene expression and molecular docking studies were also executed to explore the QS inhibition and binding of PLD with QS receptors. In the present study, PLD has significantly inhibited biofilm formation and antivirulence activity at sub-MIC levels (2.5 mM and 3.5 mM) in all the tested strains. In addition, molecular docking studies revealed a significant affinity towards quorum sensing receptors. DISCUSSIONS Perillaldehyde (PLD), being a non-toxic food flavouring agent, significantly inhibited biofilm formation, and exhibited antifouling property. PLD exhibited significantly reduced levels of VFs (p<0.001) and their respective genetic determinants (p<0.001). Gene expression analysis and molecular docking studies confirmed the interactions of PLD to the QS receptors, indicating the plausible mechanism for the anti-virulence property. SIGNIFICANCE AND IMPACT OF STUDY This study identified the anti-virulence potential of PLD and provided mechanistic insights. Perillaldehyde can be a suitable, non-toxic candidate for countering biofilms and associated pathogens, contributing to the prevention of biofilm-associated nosocomial infections..
Collapse
Affiliation(s)
- Anjitha Theres Benny
- Department of Chemistry, School of Advanced Science, VIT, Vellore, Tamil Nadu-632014, India
| | - Prasanth Rathinam
- Medical Biotechnology Laboratory, Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences and Research Centre, , Thiruvalla, Kerala - 689101, India
| | - Sanal Dev
- Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Perinthalmanna, Kerala, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | | |
Collapse
|
38
|
Lamin A, Kaksonen AH, Cole IS, Chen XB. Quorum sensing inhibitors applications: a new prospect for mitigation of microbiologically influenced corrosion. Bioelectrochemistry 2022; 145:108050. [DOI: 10.1016/j.bioelechem.2022.108050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 12/21/2022]
|
39
|
Ivanova A, Ivanova K, Perelshtein I, Gedanken A, Todorova K, Milcheva R, Dimitrov P, Popova T, Tzanov T. Sonochemically engineered nano-enabled zinc oxide/amylase coatings prevent the occurrence of catheter-associated urinary tract infections. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112518. [PMID: 34857297 DOI: 10.1016/j.msec.2021.112518] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/20/2021] [Accepted: 10/22/2021] [Indexed: 10/20/2022]
Abstract
Catheter-associated urinary tract infections (CAUTIs), caused by biofilms, are the most frequent health-care associated infections. Novel antibiofilm coatings are needed to increase the urinary catheters' life-span, decrease the prevalence of CAUTIs and reduce the development of antimicrobial resistance. Herein, antibacterial zinc oxide nanoparticles (ZnO NPs) were decorated with a biofilm matrix-degrading enzyme amylase (AM) and simultaneously deposited onto silicone urinary catheters in a one-step sonochemical process. The obtained nano-enabled coatings inhibited the biofilm formation of Escherichia coli and Staphylococcus aureus by 80% and 60%, respectively, for up to 7 days in vitro in a model of catheterized bladder with recirculation of artificial urine due to the complementary mode of antibacterial and antibiofilm action provided by the NPs and the enzyme. Over this period, the coatings did not induce toxicity to mammalian cell lines. In vivo, the nano-engineered ZnO@AM coated catheters demonstrated lower incidence of bacteriuria and prevent the early onset of CAUTIs in a rabbit model, compared to the animals treated with pristine silicone devices. The nano-functionalization of catheters with hybrid ZnO@AM coatings appears as a promising strategy for prevention and control of CAUTIs in the clinic.
Collapse
Affiliation(s)
- Aleksandra Ivanova
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, 08222, Terrassa, Spain
| | - Kristina Ivanova
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, 08222, Terrassa, Spain
| | - Ilana Perelshtein
- The Department of Chemistry and Institute for Advanced Materials and Nanotechnology, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Aharon Gedanken
- The Department of Chemistry and Institute for Advanced Materials and Nanotechnology, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Katerina Todorova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Geo Milev, 1113 Sofia, Bulgaria
| | - Rositsa Milcheva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Geo Milev, 1113 Sofia, Bulgaria
| | - Petar Dimitrov
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Geo Milev, 1113 Sofia, Bulgaria
| | - Teodora Popova
- Faculty of Veterinary Medicine, University of Forestry, 10 Sveti Kliment Ohridski Ave, 1756 Sofia, Bulgaria
| | - Tzanko Tzanov
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, 08222, Terrassa, Spain.
| |
Collapse
|
40
|
Ivanova A, Ivanova K, Tzanov T. Simultaneous Ultrasound-Assisted Hybrid Polyzwitterion/Antimicrobial Peptide Nanoparticles Synthesis and Deposition on Silicone Urinary Catheters for Prevention of Biofilm-Associated Infections. NANOMATERIALS 2021; 11:nano11113143. [PMID: 34835911 PMCID: PMC8618290 DOI: 10.3390/nano11113143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 01/07/2023]
Abstract
Nosocomial infections caused by antibiotic-resistant bacteria are constantly growing healthcare threats, as they are the reason for the increased mortality, morbidity, and considerable financial burden due to the poor infection outcomes. Indwelling medical devices, such as urinary catheters, are frequently colonized by bacteria in the form of biofilms that cause dysfunction of the device and severe chronic infections. The current treatment strategies of such device-associated infections are impaired by the resistant pathogens but also by a risk of prompting the appearance of new antibiotic-resistant bacterial mechanisms. Herein, the one-step sonochemical synthesis of hybrid poly(sulfobetaine) methacrylate/Polymyxin B nanoparticles (pSBMA@PM NPs) coating was employed to engineer novel nanoenabled silicone catheters with improved antifouling, antibacterial, and antibiofilm efficiencies. The synergistic mode of action of nanohybridized zwitterionic polymer and antimicrobial peptide led to complete inhibition of the nonspecific protein adsorption and up to 97% reduction in Pseudomonas aeruginosa biofilm formation, in comparison with the pristine silicone. Additionally, the bactericidal activity in the hybrid coating reduced the free-floating and surface-attached bacterial growth by 8 logs, minimizing the probability for further P. aeruginosa spreading and host invasion. This coating was stable for up to 7 days under conditions simulating the real scenario of catheter usage and inhibited by 80% P. aeruginosa biofilms. For the same time of use, the pSBMA@PM NPs coating did not affect the metabolic activity and morphology of mammalian cells, demonstrating their capacity to control antibiotic-resistant biofilm-associated bacterial infections.
Collapse
Affiliation(s)
| | | | - Tzanko Tzanov
- Correspondence: ; Tel.: +34-93-739-85-70; Fax: +34-93-739-82-25
| |
Collapse
|
41
|
Domingues B, Pacheco M, Cruz JE, Carmagnola I, Teixeira‐Santos R, Laurenti M, Can F, Bohinc K, Moutinho F, Silva JM, Aroso IM, Lima E, Reis RL, Ciardelli G, Cauda V, Mergulhão FJ, Gálvez FS, Barros AA. Future Directions for Ureteral Stent Technology: From Bench to the Market. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Beatriz Domingues
- 3B's Research Group‐Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Avepark‐Parque Barco Guimarães 4805‐017 Portugal
- ICVS/3B's‐PT Government Associate Laboratory Braga/Guimarães 4805‐017 Portugal
| | - Margarida Pacheco
- 3B's Research Group‐Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Avepark‐Parque Barco Guimarães 4805‐017 Portugal
- ICVS/3B's‐PT Government Associate Laboratory Braga/Guimarães 4805‐017 Portugal
| | - Julia E. Cruz
- Endourology‐Endoscopy Department Minimally Invasive Surgery Centre Jesús Usón Cáceres 10071 Spain
| | - Irene Carmagnola
- Department of Mechanical and Aerospace Engineering Politecnico di Torino Turin 10129 Italy
- Polito BIOMedLAB Politecnico di Torino Turin 10129 Italy
| | - Rita Teixeira‐Santos
- LEPABE–Laboratory for Process Engineering Environment Biotechnology and Energy Faculty of Engineering University of Porto Porto 4200‐465 Portugal
| | - Marco Laurenti
- Department of Applied Science and Technology Politecnico di Torino Turin 10129 Italy
| | - Fusun Can
- Department of Medical Microbiology School of Medicine Koc University Istanbul 34450 Turkey
| | - Klemen Bohinc
- Faculty of Health Sciences University of Ljubljana Ljubljana 1000 Slovenia
| | - Fabíola Moutinho
- i3S‐Instituto de Investigação e Inovação em Saúde Universidade do Porto Porto 4200‐135 Portugal
- INEB‐Instituto de Engenharia Biomédica Universidade do Porto Porto 4200‐135 Portugal
| | - Joana M. Silva
- 3B's Research Group‐Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Avepark‐Parque Barco Guimarães 4805‐017 Portugal
- ICVS/3B's‐PT Government Associate Laboratory Braga/Guimarães 4805‐017 Portugal
| | - Ivo M. Aroso
- 3B's Research Group‐Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Avepark‐Parque Barco Guimarães 4805‐017 Portugal
- ICVS/3B's‐PT Government Associate Laboratory Braga/Guimarães 4805‐017 Portugal
| | - Estêvão Lima
- School of Health Sciences Life and Health Sciences Research Institute (ICVS) University of Minho Braga 4710‐057 Portugal
| | - Rui L. Reis
- 3B's Research Group‐Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Avepark‐Parque Barco Guimarães 4805‐017 Portugal
- ICVS/3B's‐PT Government Associate Laboratory Braga/Guimarães 4805‐017 Portugal
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering Politecnico di Torino Turin 10129 Italy
- Polito BIOMedLAB Politecnico di Torino Turin 10129 Italy
| | - Valentina Cauda
- Department of Applied Science and Technology Politecnico di Torino Turin 10129 Italy
| | - Filipe J. Mergulhão
- LEPABE–Laboratory for Process Engineering Environment Biotechnology and Energy Faculty of Engineering University of Porto Porto 4200‐465 Portugal
| | - Federico S. Gálvez
- Endourology‐Endoscopy Department Minimally Invasive Surgery Centre Jesús Usón Cáceres 10071 Spain
| | - Alexandre A. Barros
- 3B's Research Group‐Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Avepark‐Parque Barco Guimarães 4805‐017 Portugal
- ICVS/3B's‐PT Government Associate Laboratory Braga/Guimarães 4805‐017 Portugal
| |
Collapse
|
42
|
Opdensteinen P, Dietz SJ, Gengenbach BB, Buyel JF. Expression of Biofilm-Degrading Enzymes in Plants and Automated High-Throughput Activity Screening Using Experimental Bacillus subtilis Biofilms. Front Bioeng Biotechnol 2021; 9:708150. [PMID: 34621728 PMCID: PMC8490750 DOI: 10.3389/fbioe.2021.708150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
Biofilm-forming bacteria are sources of infections because they are often resistant to antibiotics and chemical removal. Recombinant biofilm-degrading enzymes have the potential to remove biofilms gently, but they can be toxic toward microbial hosts and are therefore difficult to produce in bacteria. Here, we investigated Nicotiana species for the production of such enzymes using the dispersin B-like enzyme Lysobacter gummosus glyco 2 (Lg2) as a model. We first optimized transient Lg2 expression in plant cell packs using different subcellular targeting methods. We found that expression levels were transferable to differentiated plants, facilitating the scale-up of production. Our process yielded 20 mg kg−1 Lg2 in extracts but 0.3 mg kg−1 after purification, limited by losses during depth filtration. Next, we established an experimental biofilm assay to screen enzymes for degrading activity using different Bacillus subtilis strains. We then tested complex and chemically defined growth media for reproducible biofilm formation before converting the assay to an automated high-throughput screening format. Finally, we quantified the biofilm-degrading activity of Lg2 in comparison with commercial enzymes against our experimental biofilms, indicating that crude extracts can be screened directly. This ability will allow us to combine high-throughput expression in plant cell packs with automated activity screening.
Collapse
Affiliation(s)
- P Opdensteinen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.,Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - S J Dietz
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - B B Gengenbach
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.,Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - J F Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.,Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
43
|
ISMN-loaded PLGA-PEG nanoparticles conjugated with anti- Staphylococcus aureus α-toxin inhibit Staphylococcus aureus biofilms in chronic rhinosinusitis. Future Med Chem 2021; 13:2033-2046. [PMID: 34612074 DOI: 10.4155/fmc-2021-0126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background: Staphylococcus aureus biofilms were linked to negative postsurgical outcomes of chronic rhinosinusitis (CRS). This study aims to develop a targeted nanoparticle and characterize its bactericidal effects. Methods: The authors prepared ISMN-loaded poly-lactide-co-glycolide acid (PLGA) and polyethylene glycol (PEG) nanoparticles conjugated with anti-S. aureus α-toxin (AA; ISMN-PLGA-PEG-AA), and determined its bactericidal and toxic effects. The antibiofilm propriety of ISMN-PLGA-PEG-AA was further investigated in a sheep CRS model. Results: ISMN-PLGA-PEG-AA had no toxic effect, while ISMN, ISMN-PLGA-PEG and ISMN-PLGA-PEG-AA had significantly anti-S. aureus effects. The blood concentrations and mRNA levels in sinus tissues of IL-4, IL-8 and IFN-γ in the sheep CRS model were significantly low. Conclusion: ISMN-PLGA-PEG-AA can effectively inhibit S. aureus biofilm, and is a promising drug for CRS treatment.
Collapse
|
44
|
Zou Y, Lu K, Lin Y, Wu Y, Wang Y, Li L, Huang C, Zhang Y, Brash JL, Chen H, Yu Q. Dual-Functional Surfaces Based on an Antifouling Polymer and a Natural Antibiofilm Molecule: Prevention of Biofilm Formation without Using Biocides. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45191-45200. [PMID: 34519474 DOI: 10.1021/acsami.1c10747] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pathogenic biofilms formed on the surfaces of implantable medical devices and materials pose an urgent global healthcare problem. Although conventional antibacterial surfaces based on bacteria-repelling or bacteria-killing strategies can delay biofilm formation to some extent, they usually fail in long-term applications, and it remains challenging to eradicate recalcitrant biofilms once they are established and mature. From the viewpoint of microbiology, a promising strategy may be to target the middle stage of biofilm formation including the main biological processes involved in biofilm development. In this work, a dual-functional antibiofilm surface is developed based on copolymer brushes of 2-hydroxyethyl methacrylate (HEMA) and 3-(acrylamido)phenylboronic acid (APBA), with quercetin (Qe, a natural antibiofilm molecule) incorporated via acid-responsive boronate ester bonds. Due to the antifouling properties of the hydrophilic poly(HEMA) component, the resulting surface is able to suppress bacterial adhesion and aggregation in the early stages of contact. A few bacteria are eventually able to break through the protection of the anti-adhesion layer leading to bacterial colonization. In response to the resulting decrease in the pH of the microenvironment, the surface could then release Qe to interfere with the microbiological processes related to biofilm formation. Compared to bactericidal and anti-adhesive surfaces, this dual-functional surface showed significantly improved antibiofilm performance to prevent biofilm formation involving both Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus for up to 3 days. In addition, both the copolymer and Qe are negligibly cytotoxic, thereby avoiding possible harmful effects on adjacent normal cells and the risk of bacterial resistance. This dual-functional design approach addresses the different stages of biofilm formation, and (in accordance with the growth process of the biofilm) allows sequential activation of the functions without compromising the viability of adjacent normal cells. A simple and reliable solution may thus be provided to the problems associated with biofilms on surfaces in various biomedical applications.
Collapse
Affiliation(s)
- Yi Zou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Kunyan Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yuancheng Lin
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yan Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yaran Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Luohuizi Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yanxia Zhang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou 215007, P. R. China
| | - John L Brash
- School of Biomedical Engineering and Department of Chemical Engineering, McMaster University, Hamilton L8S4L7, Canada
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
45
|
Ruhal R, Kataria R. Biofilm patterns in gram-positive and gram-negative bacteria. Microbiol Res 2021; 251:126829. [PMID: 34332222 DOI: 10.1016/j.micres.2021.126829] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 12/11/2022]
Abstract
The Gram-positive and Gram-negative bacteria are attributable to matrix-enclosed aggregates known as biofilms. Biofilms are root cause of industrial biofouling and characterized by antimicrobial resistance during infections. Many biofilm studies examine specific Gram type cultures, whereas nearly all biofilm communities in nature comprise both Gram-negative and Gram-positive bacteria. Thus, a greater understanding of the conserved themes in biofilm formation is required for common therapeutics. We tried to focus on common components which exist at each stage of biofilm development and regulation. The Lipopolysaccharides (LPS) and cell wall glyco-polymers of Gram-negative and Gram-positive bacteria seem to play similar roles during initial adhesion. The inhibition of the polymerization of amyloid-like proteins might impact the biofilms of both Gram-type bacteria. Enzymatic degradation of matrix components by glycoside hydrolase and DNase (nuclease) may disrupt both Gram-type biofilms. An additional common feature is the presence of membrane vesicles, and the potential of these vesicles requires further investigation. Genetic regulation by c-di-GMP is prominent in Gram-negative bacteria. However, quorum sensing (QS) may play a common regulation during biofilms dispersal. These studies are significant not only for common therapeutic against mixed biofilms, but for better understanding of bacterial interactions within natural or host infection environment as well.
Collapse
Affiliation(s)
- Rohit Ruhal
- Regional Centre for Biotechnology, Faridabad, India.
| | - Rashmi Kataria
- Department of Biotechnology, Delhi Technological University, Delhi, India
| |
Collapse
|
46
|
Perwez M, Mazumder JA, Noori R, Sardar M. Magnetic combi CLEA for inhibition of bacterial biofilm: A green approach. Int J Biol Macromol 2021; 186:780-787. [PMID: 34280443 DOI: 10.1016/j.ijbiomac.2021.07.091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/05/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
In the present study different enzymes (α- amylase, trypsin, cellulase, horse-radish peroxidase and pectinex ultra clear) were studied for bacterial biofilm inhibition and Pectinex ultra clear showed best inhibition. So, m-combi-CLEA of Pectinex ultra clear was developed by cross linked enzyme aggregate (CLEA) formation on APTES (3-aminopropyltriethoxysilane) modified iron oxide nanoparticles. Different parameters were optimized and it was observed that 0.4 mg/ml of protein (containing 25 U/mg cellulase activity), 0.5 mg/ml BSA and 10 mM glutaraldehyde when incubated for 3 h gives 100% enzyme activity using ethanol as the precipitant. The CLEA formed were thermally more stable as compared to free enzyme. m-combi-CLEA of Pectinex ultra clear shows 75-78% biofilm inhibition of E. coli and S. aureus. Furthermore, m-combi-CLEA can be reused till 4 cycles with same efficiency. The carbohydrate contents of E. coli biofilm decreased from 64.629 μg to 6.23 μg and for S. aureus biofilm, it decreased from 58.46 μg to 5.52 μg when treated with m-combi CLEA in comparison to untreated biofilms. FTIR, darkfield illumination Fluorescence Microscopy, and Scanning Electron Microscopy was further used for characterization.
Collapse
Affiliation(s)
- Mohammad Perwez
- Department of Biosciences, Jamia Millia Islamia, New Delhi-25, India
| | | | - Rubia Noori
- Department of Biosciences, Jamia Millia Islamia, New Delhi-25, India
| | - Meryam Sardar
- Department of Biosciences, Jamia Millia Islamia, New Delhi-25, India.
| |
Collapse
|
47
|
Rathinam P, Murari BM, Viswanathan P. Biofilm inhibition and antifouling evaluation of sol-gel coated silicone implants with prolonged release of eugenol against Pseudomonas aeruginosa. BIOFOULING 2021; 37:521-537. [PMID: 34139901 DOI: 10.1080/08927014.2021.1933960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 02/08/2023]
Abstract
The incidence of biofilm-linked catheter-associated urinary tract infections (CAUTIs) is increasing across the world. However, there is no clinical evidence to support the modifications of biomaterials, such as antimicrobial agent-coated catheters, that are known to reduce the risk of bacterial colonization and resistance development. The present study developed and tested silicone segments coated with an antivirulence agent, eugenol. The parameters for sol-gel preparation and coating were tailored to achieve a prolonged release of eugenol (for >35 days) at predefined antivirulence doses from dip-coated thin films. The eugenol-coated segments could prevent biofilm formation by Pseudomonas aeruginosa PAO1 as well as bacterial adhesion. Significant repression in the expression of virulence and biofilm-associated genes were recorded, confirming the antivirulence and biofilm inhibition properties of silicone segments coated with eugenol. The drug release profiles, efficacy analysis, neutrophil-response studies, and in vitro toxicity profiling further supported the contention that the activity of the eugenol-coated sections was effective and safe.
Collapse
Affiliation(s)
- Prasanth Rathinam
- Medical Biotechnology Laboratory, Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences and Research Centre, Thiruvalla, Kerala, India
- Renal Research Lab, Centre for Bio-Medical Research, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Bhasker Mohan Murari
- Sol-Gel-Biosensor Lab, Centre for Bio-Medical Research, School of Electronics Engineering, Vellore Institute of Technology, Vellore, India
| | - Pragasam Viswanathan
- Renal Research Lab, Centre for Bio-Medical Research, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
48
|
Lahiri D, Nag M, Banerjee R, Mukherjee D, Garai S, Sarkar T, Dey A, Sheikh HI, Pathak SK, Edinur HA, Pati S, Ray RR. Amylases: Biofilm Inducer or Biofilm Inhibitor? Front Cell Infect Microbiol 2021; 11:660048. [PMID: 33987107 PMCID: PMC8112260 DOI: 10.3389/fcimb.2021.660048] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/12/2021] [Indexed: 12/30/2022] Open
Abstract
Biofilm is a syntrophic association of sessile groups of microbial cells that adhere to biotic and abiotic surfaces with the help of pili and extracellular polymeric substances (EPS). EPSs also prevent penetration of antimicrobials/antibiotics into the sessile groups of cells. Hence, methods and agents to avoid or remove biofilms are urgently needed. Enzymes play important roles in the removal of biofilm in natural environments and may be promising agents for this purpose. As the major component of the EPS is polysaccharide, amylase has inhibited EPS by preventing the adherence of the microbial cells, thus making amylase a suitable antimicrobial agent. On the other hand, salivary amylase binds to amylase-binding protein of plaque-forming Streptococci and initiates the formation of biofilm. This review investigates the contradictory actions and microbe-associated genes of amylases, with emphasis on their structural and functional characteristics.
Collapse
Affiliation(s)
- Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Ritwik Banerjee
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Dipro Mukherjee
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Sayantani Garai
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Tanmay Sarkar
- Department of Food Technology and Bio-Chemical Engineering, Jadavpur University, Kolkata, India.,Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Ankita Dey
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| | - Hassan I Sheikh
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Sushil Kumar Pathak
- Department of Bioscience and Bioinformatics, Khallikote University, Berhampur, India
| | | | - Siddhartha Pati
- Centre of Excellence, Khallikote University, Berhampur, India.,Research Division, Association for Biodiversity Conservation and Research (ABC), Balasore, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| |
Collapse
|
49
|
Huang DN, Wang J, Jia F, Fang Y, Gao Q, Gao YF, Li HY, Ren KF, Ji J. Nitric oxide pretreatment enhances ofloxacin susceptibility of biofilm concomitant with exopolysaccharide depletion. COLLOID AND INTERFACE SCIENCE COMMUNICATIONS 2021; 41:100371. [DOI: 10.1016/j.colcom.2021.100371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
|
50
|
|