1
|
Baruah A, Newar R, Das S, Kalita N, Nath M, Ghosh P, Chinnam S, Sarma H, Narayan M. Biomedical applications of graphene-based nanomaterials: recent progress, challenges, and prospects in highly sensitive biosensors. DISCOVER NANO 2024; 19:103. [PMID: 38884869 PMCID: PMC11183028 DOI: 10.1186/s11671-024-04032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024]
Abstract
Graphene-based nanomaterials (graphene, graphene oxide, reduced graphene oxide, graphene quantum dots, graphene-based nanocomposites, etc.) are emerging as an extremely important class of nanomaterials primarily because of their unique and advantageous physical, chemical, biological, and optoelectronic aspects. These features have resulted in uses across diverse areas of scientific research. Among all other applications, they are found to be particularly useful in designing highly sensitive biosensors. Numerous studies have established their efficacy in sensing pathogens and other biomolecules allowing for the rapid diagnosis of various diseases. Considering the growing importance and popularity of graphene-based materials for biosensing applications, this review aims to provide the readers with a summary of the recent progress in the concerned domain and highlights the challenges associated with the synthesis and application of these multifunctional materials.
Collapse
Affiliation(s)
- Arabinda Baruah
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Rachita Newar
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Saikat Das
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Nitul Kalita
- Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Masood Nath
- University of Technology and Applied Sciences, Muscat, Oman
| | - Priya Ghosh
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Sampath Chinnam
- Department of Chemistry, M.S. Ramaiah Institute of Technology (Autonomous Institution, Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka, 560054, India
| | - Hemen Sarma
- Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar (BTR), Assam, 783370, India.
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, UTEP, 500 W. University Ave, El Paso, TX, 79968, USA.
| |
Collapse
|
2
|
Hui Y, Yan Z, Yang H, Xu X, Yuan WE, Qian Y. Graphene Family Nanomaterials for Stem Cell Neurogenic Differentiation and Peripheral Nerve Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:4741-4759. [PMID: 36102324 DOI: 10.1021/acsabm.2c00663] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Stem cells play a critical role in peripheral nerve regeneration. Nerve scaffolds fabricated by specific materials can help induce the neurogenic differentiation of stem cells. Therefore, it is a potential strategy to enhance therapeutic efficiency. Graphene family nanomaterials are widely applied in repairing peripheral nerves. However, the mechanism underlying the pro-regeneration effects remains elusive. In this review, we first discuss the properties of graphene family nanomaterials, including monolayer and multilayer graphene, few-layer graphene, graphene oxide, reduced graphene oxide, and graphene quantum dots. We also introduce their applications in regulating stem cell differentiation. Then, we review the potential mechanisms of the neurogenic differentiation of stem cells facilitated by the materials. Finally, we discuss the existing challenges in this field to advance the development of nerve biomaterials.
Collapse
Affiliation(s)
- Yuxuan Hui
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, China
| | - Zhiwen Yan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, China
| | - Hao Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, China
| | - Xingxing Xu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, China
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 201306, China
| |
Collapse
|
3
|
Aparicio-Collado JL, García-San-Martín N, Molina-Mateo J, Torregrosa Cabanilles C, Donderis Quiles V, Serrano-Aroca A, Sabater I Serra R. Electroactive calcium-alginate/polycaprolactone/reduced graphene oxide nanohybrid hydrogels for skeletal muscle tissue engineering. Colloids Surf B Biointerfaces 2022; 214:112455. [PMID: 35305322 DOI: 10.1016/j.colsurfb.2022.112455] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 12/20/2022]
Abstract
Graphene derivatives such as reduced graphene oxide (rGO) are used as components of novel biomaterials for their unique electrical properties. Electrical conductivity is a crucial factor for muscle cells, which are electrically active. This study reports the development of a new type of semi-interpenetrated polymer network based on two biodegradable FDA-approved biomaterials, sodium alginate (SA) and polycaprolactone (PCL), with Ca2+ ions as SA crosslinker. Several drawbacks such as the low cell adhesion of SA and weak structural stability can be improved with the incorporation of PCL. Furthermore, this study demonstrates how this semi-IPN can be engineered with rGO nanosheets (0.5% and 2% wt/wt rGO nanosheets) to produce electroactive nanohybrid composite biomaterials. The study focuses on the microstructure and the enhancement of physical and biological properties of these advanced materials, including water sorption, surface wettability, thermal behavior and thermal degradation, mechanical properties, electrical conductivity, cell adhesion and myogenic differentiation. The results suggest the formation of a complex nano-network with different interactions between the components: bonds between SA chains induced by Ca2+ ions (egg-box model), links between rGO nanosheets and SA chains as well as between rGO nanosheets themselves through Ca2+ ions, and strong hydrogen bonding between rGO nanosheets and SA chains. The incorporation of rGO significantly increases the electrical conductivity of the nanohybrid hydrogels, with values in the range of muscle tissue. In vitro cultures with C2C12 murine myoblasts revealed that the conductive nanohybrid hydrogels are not cytotoxic and can greatly enhance myoblast adhesion and myogenic differentiation. These results indicate that these novel electroactive nanohybrid hydrogels have great potential for biomedical applications related to the regeneration of electroactive tissues, particularly in skeletal muscle tissue engineering.
Collapse
Affiliation(s)
- J L Aparicio-Collado
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Spain
| | - N García-San-Martín
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Spain
| | - J Molina-Mateo
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Spain
| | | | - V Donderis Quiles
- Department of Electrical Engineering, Universitat Politècnica de València, Spain
| | - A Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.
| | - R Sabater I Serra
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Spain; Department of Electrical Engineering, Universitat Politècnica de València, Spain; Biomedical Research Networking Centre in Bioingenieering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
| |
Collapse
|
4
|
Ławkowska K, Pokrywczyńska M, Koper K, Kluth LA, Drewa T, Adamowicz J. Application of Graphene in Tissue Engineering of the Nervous System. Int J Mol Sci 2021; 23:33. [PMID: 35008456 PMCID: PMC8745025 DOI: 10.3390/ijms23010033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Graphene is the thinnest two-dimensional (2D), only one carbon atom thick, but one of the strongest biomaterials. Due to its unique structure, it has many unique properties used in tissue engineering of the nervous system, such as high strength, flexibility, adequate softness, electrical conductivity, antibacterial effect, and the ability to penetrate the blood-brain barrier (BBB). Graphene is also characterized by the possibility of modifications that allow for even wider application and adaptation to cell cultures of specific cells and tissues, both in vitro and in vivo. Moreover, by using the patient's own cells for cell culture, it will be possible to produce tissues and organs that can be re-transplanted without transplant rejection, the negative effects of taking immunosuppressive drugs, and waiting for an appropriate organ donor.
Collapse
Affiliation(s)
- Karolina Ławkowska
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.P.); (T.D.); (J.A.)
| | - Marta Pokrywczyńska
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.P.); (T.D.); (J.A.)
| | - Krzysztof Koper
- Department of Clinical Oncology and Nursing, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland;
| | - Luis Alex Kluth
- Department of Urology, University Medical Center Frankfurt a.M., 60590 Frankfurt am Main, Germany;
| | - Tomasz Drewa
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.P.); (T.D.); (J.A.)
| | - Jan Adamowicz
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.P.); (T.D.); (J.A.)
| |
Collapse
|
5
|
Bellet P, Gasparotto M, Pressi S, Fortunato A, Scapin G, Mba M, Menna E, Filippini F. Graphene-Based Scaffolds for Regenerative Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:404. [PMID: 33562559 PMCID: PMC7914745 DOI: 10.3390/nano11020404] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
Abstract
Leading-edge regenerative medicine can take advantage of improved knowledge of key roles played, both in stem cell fate determination and in cell growth/differentiation, by mechano-transduction and other physicochemical stimuli from the tissue environment. This prompted advanced nanomaterials research to provide tissue engineers with next-generation scaffolds consisting of smart nanocomposites and/or hydrogels with nanofillers, where balanced combinations of specific matrices and nanomaterials can mediate and finely tune such stimuli and cues. In this review, we focus on graphene-based nanomaterials as, in addition to modulating nanotopography, elastic modulus and viscoelastic features of the scaffold, they can also regulate its conductivity. This feature is crucial to the determination and differentiation of some cell lineages and is of special interest to neural regenerative medicine. Hereafter we depict relevant properties of such nanofillers, illustrate how problems related to their eventual cytotoxicity are solved via enhanced synthesis, purification and derivatization protocols, and finally provide examples of successful applications in regenerative medicine on a number of tissues.
Collapse
Affiliation(s)
- Pietro Bellet
- Department of Biology, University of Padua, 35131 Padua, Italy; (P.B.); (M.G.)
| | - Matteo Gasparotto
- Department of Biology, University of Padua, 35131 Padua, Italy; (P.B.); (M.G.)
| | - Samuel Pressi
- Department of Chemical Sciences, University of Padua & INSTM, 35131 Padua, Italy; (S.P.); (A.F.)
| | - Anna Fortunato
- Department of Chemical Sciences, University of Padua & INSTM, 35131 Padua, Italy; (S.P.); (A.F.)
| | - Giorgia Scapin
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Miriam Mba
- Department of Chemical Sciences, University of Padua & INSTM, 35131 Padua, Italy; (S.P.); (A.F.)
| | - Enzo Menna
- Department of Chemical Sciences, University of Padua & INSTM, 35131 Padua, Italy; (S.P.); (A.F.)
| | - Francesco Filippini
- Department of Biology, University of Padua, 35131 Padua, Italy; (P.B.); (M.G.)
| |
Collapse
|
6
|
Chopra V, Thomas J, Sharma A, Panwar V, Kaushik S, Sharma S, Porwal K, Kulkarni C, Rajput S, Singh H, Jagavelu K, Chattopadhyay N, Ghosh D. Synthesis and Evaluation of a Zinc Eluting rGO/Hydroxyapatite Nanocomposite Optimized for Bone Augmentation. ACS Biomater Sci Eng 2020; 6:6710-6725. [DOI: 10.1021/acsbiomaterials.0c00370] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Vianni Chopra
- Institute of Nanoscience and Technology, Habitat Centre, Sector 64, Phase 10., Mohali 160062, Punjab, India
| | - Jijo Thomas
- Institute of Nanoscience and Technology, Habitat Centre, Sector 64, Phase 10., Mohali 160062, Punjab, India
| | - Anjana Sharma
- Institute of Nanoscience and Technology, Habitat Centre, Sector 64, Phase 10., Mohali 160062, Punjab, India
| | - Vineeta Panwar
- Institute of Nanoscience and Technology, Habitat Centre, Sector 64, Phase 10., Mohali 160062, Punjab, India
| | - Swati Kaushik
- Institute of Nanoscience and Technology, Habitat Centre, Sector 64, Phase 10., Mohali 160062, Punjab, India
| | - Shivani Sharma
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Researchs, Lucknow 226031, U.P., India
| | - Konica Porwal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Researchs, Lucknow 226031, U.P., India
| | - Chirag Kulkarni
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Researchs, Lucknow 226031, U.P., India
| | - Swati Rajput
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Researchs, Lucknow 226031, U.P., India
| | - Himalaya Singh
- Pharmacology Division, CSIR- Central Drug Research Institute Council of Scientific and Industrial Research, Lucknow 226031, U.P., India
| | - Kumaravelu Jagavelu
- Pharmacology Division, CSIR- Central Drug Research Institute Council of Scientific and Industrial Research, Lucknow 226031, U.P., India
| | - Naibedya Chattopadhyay
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Researchs, Lucknow 226031, U.P., India
| | - Deepa Ghosh
- Institute of Nanoscience and Technology, Habitat Centre, Sector 64, Phase 10., Mohali 160062, Punjab, India
| |
Collapse
|
7
|
Du Z, Wang C, Zhang R, Wang X, Li X. Applications of Graphene and Its Derivatives in Bone Repair: Advantages for Promoting Bone Formation and Providing Real-Time Detection, Challenges and Future Prospects. Int J Nanomedicine 2020; 15:7523-7551. [PMID: 33116486 PMCID: PMC7547809 DOI: 10.2147/ijn.s271917] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022] Open
Abstract
During continuous innovation in the preparation, characterization and application of various bone repair materials for several decades, nanomaterials have exhibited many unique advantages. As a kind of representative two-dimensional nanomaterials, graphene and its derivatives (GDs) such as graphene oxide and reduced graphene oxide have shown promising potential for the application in bone repair based on their excellent mechanical properties, electrical conductivity, large specific surface area (SSA) and atomic structure stability. Herein, we reviewed the updated application of them in bone repair in order to present, as comprehensively, as possible, their specific advantages, challenges and current solutions. Firstly, how their advantages have been utilized in bone repair materials with improved bone formation ability was discussed. Especially, the effects of further functionalization or modification were emphasized. Then, the signaling pathways involved in GDs-induced osteogenic differentiation of stem cells and immunomodulatory mechanism of GDs-induced bone regeneration were discussed. On the other hand, their applications as contrast agents in the field of bone repair were summarized. In addition, we also reviewed the progress and related principles of the effects of GDs parameters on cytotoxicity and residues. At last, the future research was prospected.
Collapse
Affiliation(s)
- Zhipo Du
- Department of Orthopedics, The Fourth Central Hospital of Baoding City, Baoding072350, Hebei Province, People’s Republic of China
| | - Cunyang Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing100083, People’s Republic of China
| | - Ruihong Zhang
- Department of Research and Teaching, The Fourth Central Hospital of Baoding City, Baoding072350, Hebei Province, People’s Republic of China
| | - Xiumei Wang
- Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing100084, People’s Republic of China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing100083, People’s Republic of China
| |
Collapse
|
8
|
Sadasivam R, Packirisamy G. Facile architecture of highly effective nanofibrous membrane adsorbent via electrospun followed by hydrothermal carbonization for potential application in dye removal from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11905-11918. [PMID: 31981031 DOI: 10.1007/s11356-019-07555-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Rapid removal of toxic dye pollutants in water by conventional materials is ineffective and expensive that warrants the necessity for the architecture of hybrid nanofibrous membrane through layer by layer deposition using electrospinning method. In order to achieve this, here we demonstrated the electrospun fabrication of graphene/ferrocene intercalated polyacrylonitrile nanofibrous (GFPN) membrane through hydrothermal carbonization (HTC) method and studied its potential adsorption properties for the removal of environmental pollutants. An aqueous dispersion of graphene/ferrocene (1 mg/mL) stabilized by the polymeric backbone was prepared by the solvent homogenization method and electrospun to yield nanofibrous membrane and further characterized by several analytical and spectroscopic techniques. Raman and XPS investigations corroborated the intercalation of graphene/Fe decorated onto the nanofibrous network. Adsorption experiments found that the GFPN membrane achieved more than 90% removal of anionic Congo red (CR) dye within 30 min in the aqueous phase irrespective of the concentration and takes some additional time for attaining the equilibrium. The longevity and stability of the membrane was studied by conducting successive adsorption-desorption cycles for the regeneration of its adsorption properties. The de-coloration mechanism was comprehensively investigated through the mathematical approaches using the kinetic and intraparticle diffusion studies and confirmed with the experimental findings through IR and XPS spectroscopic techniques. In a nutshell, this work focuses on the fabrication of hybrid nanofibrous membrane and studied its adsorption properties through varying concentrations of dye (20 to 150 mg/L). Moreover, this work extensively explored the mechanism associated with the adsorption process and specifically emphasize the existence of combined phenomena during the process, i.e., anion-cation interactions, hydrogen bonding, and successive stages of intraparticle diffusion through the comparative elucidation of both theoretical and experimental approaches.
Collapse
Affiliation(s)
- Rajkumar Sadasivam
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Roorkee, Uttarakhand, 247667, India
| | - Gopinath Packirisamy
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Roorkee, Uttarakhand, 247667, India.
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
9
|
Huang R, Chen X, Dong Y, Zhang X, Wei Y, Yang Z, Li W, Guo Y, Liu J, Yang Z, Wang H, Jin L. MXene Composite Nanofibers for Cell Culture and Tissue Engineering. ACS APPLIED BIO MATERIALS 2020; 3:2125-2131. [PMID: 35025264 DOI: 10.1021/acsabm.0c00007] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rongkang Huang
- Department of Colorectal Surgery, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, China
- Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Xing Chen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yuqing Dong
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yingqi Wei
- Department of Colorectal Surgery, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, China
- Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Zifeng Yang
- Department of Colorectal Surgery, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, China
- Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Wenjie Li
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, P. R. China
| | - Yuanxi Guo
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, P. R. China
| | - Jin Liu
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, P. R. China
| | - Zhe Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Hui Wang
- Department of Colorectal Surgery, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, China
- Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Lin Jin
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, P. R. China
| |
Collapse
|
10
|
Zhou K, Yu P, Shi X, Ling T, Zeng W, Chen A, Yang W, Zhou Z. Hierarchically Porous Hydroxyapatite Hybrid Scaffold Incorporated with Reduced Graphene Oxide for Rapid Bone Ingrowth and Repair. ACS NANO 2019; 13:9595-9606. [PMID: 31381856 DOI: 10.1021/acsnano.9b04723] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hydroxyapatite (HA), the traditional bone tissue replacement material was widely used in the clinical treatment of bone defects because of its excellent biocompatibility. However, the processing difficulty and poor osteoinductive ability greatly limit the application of HA. Although many strategies have been reported to improve the machinability and osteointegration ability, the performance including mechanical strength, porosity, cell adhesion, etc. of material still can not meet the requirements. In this work, a soft template method was developed and a porous scaffold with hierarchical pore structure, nano surface morphology, suitable porosity and pore size, and good biomechanical strength was successfully prepared. The hierarchical pore structure is beneficial for cell adhesion, fluid transfer, and cell ingrowth. Moreover, the loaded reduced graphene oxide (rGO) can improve the adhesion and promote the proliferation and spontaneous osteogenic differentiation bone marrow mesenchymal stem cells. The scaffold is then crushed, degraded and wrapped by the newly formed bone and the newly formed bone gradually replaces the scaffold. The degradation rate of the scaffold well matches the rate of the new bone formation. The hierarchical porous HA/rGO composite scaffolds can greatly accelerate the bone ingrowth in the scaffold and bone repair in critical bone defects, thus providing a clinical potential candidate for large segment bone tissue engineering.
Collapse
Affiliation(s)
- Kai Zhou
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Peng Yu
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China
| | - Xiaojun Shi
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Tingxian Ling
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Weinan Zeng
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Anjing Chen
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China
| | - Zongke Zhou
- Department of Orthopaedics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
11
|
Fallahi A, Mandla S, Kerr-Phillip T, Seo J, Rodrigues RO, Jodat YA, Samanipour R, Hussain MA, Lee CK, Bae H, Khademhosseini A, Travas-Sejdic J, Shin SR. Flexible and Stretchable PEDOT-Embedded Hybrid Substrates for Bioengineering and Sensory Applications. CHEMNANOMAT : CHEMISTRY OF NANOMATERIALS FOR ENERGY, BIOLOGY AND MORE 2019; 5:729-737. [PMID: 33859923 PMCID: PMC8045745 DOI: 10.1002/cnma.201900146] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 05/27/2023]
Abstract
Herein, we introduce a flexible, biocompatible, robust and conductive electrospun fiber mat as a substrate for flexible and stretchable electronic devices for various biomedical applications. To impart the electrospun fiber mats with electrical conductivity, poly(3,4-ethylenedioxythiophene) (PEDOT), a conductive polymer, was interpenetrated into nitrile butadiene rubber (NBR) and poly(ethylene glycol) dimethacrylate (PEGDM) crosslinked electrospun fiber mats. The mats were fabricated with tunable fiber orientation, random and aligned, and displayed elastomeric mechanical properties and high conductivity. In addition, bending the mats caused a reversible change in their resistance. The cytotoxicity studies confirmed that the elastomeric and conductive electrospun fiber mats support cardiac cell growth, and thus are adaptable to a wide range of applications, including tissue engineering, implantable sensors and wearable bioelectronics.
Collapse
Affiliation(s)
- Afsoon Fallahi
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA, Office: (617) 768-8320,
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Serena Mandla
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA, Office: (617) 768-8320,
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- S. Mandla, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Thomas Kerr-Phillip
- Dr. T. Kerr-Phillip, Prof. J. Travas-Sejdic, Polymer Electronics Research Centre (PERC), School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, New Zealand
- Dr. T. Kerr-Phillip, Prof. J. Travas-Sejdic, The MacDiarmid Institute for Advanced Materials and Nanotechnology New Zealand
| | - Jungmok Seo
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA, Office: (617) 768-8320,
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Prof. J. Seo, Centre for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, 14 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Raquel O Rodrigues
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA, Office: (617) 768-8320,
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- R. O. Rodrigues, Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Yasamin A Jodat
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA, Office: (617) 768-8320,
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Y. A. Jodat, Department of Mechanical Engineering, Stevens Institute of Technology, New Jersey, USA
| | - Roya Samanipour
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA, Office: (617) 768-8320,
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Dr. R. Samanipour, School of Engineering, University of British Columbia, Okanagan, BC, Canada
| | - Mohammad Asif Hussain
- Prof. M. A. Hussain, Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia
| | - Chang Kee Lee
- Dr. C. K. Lee, Korea Packaging Center, Korea Institute of Industrial Technology, Bucheon, Republic of Korea
| | - Hojae Bae
- Prof. H. Bae, Prof. A. Khademhosseini, KU Convergence Science and Technology Institute, Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ali Khademhosseini
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA, Office: (617) 768-8320,
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Prof. H. Bae, Prof. A. Khademhosseini, KU Convergence Science and Technology Institute, Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
- Prof. A. Khademhosseini, Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Prof. A. Khademhosseini, Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Prof. A. Khademhosseini, California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, CA 90095, USA
- Prof. A. Khademhosseini, Centre for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Jadranka Travas-Sejdic
- Dr. T. Kerr-Phillip, Prof. J. Travas-Sejdic, Polymer Electronics Research Centre (PERC), School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, New Zealand
- Dr. T. Kerr-Phillip, Prof. J. Travas-Sejdic, The MacDiarmid Institute for Advanced Materials and Nanotechnology New Zealand
| | - Su Ryon Shin
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA, Office: (617) 768-8320,
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
12
|
Sun J, Shakya S, Gong M, Liu G, Wu S, Xiang Z. Combined Application of Graphene‐Family Materials and Silk Fibroin in Biomedicine. ChemistrySelect 2019. [DOI: 10.1002/slct.201804034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiachen Sun
- Department of OrthopedicsWest China HospitalSichuan University Chengdu 610041 P. R. China
| | - Sujan Shakya
- Department of OrthopedicsWest China HospitalSichuan University Chengdu 610041 P. R. China
| | - Min Gong
- Department of OrthopedicsWest China HospitalSichuan University Chengdu 610041 P. R. China
| | - Guoming Liu
- Department of OrthopedicsWest China HospitalSichuan University Chengdu 610041 P. R. China
| | - Shuang Wu
- Department of OrthopedicsWest China HospitalSichuan University Chengdu 610041 P. R. China
| | - Zhou Xiang
- Department of OrthopedicsWest China HospitalSichuan University Chengdu 610041 P. R. China
- Division of Stem Cell and Tissue EngineeringState Key Laboratory of BiotherapyWest China HospitalSichuan University Chengdu 610041 P. R. China
| |
Collapse
|
13
|
Stone H, Lin S, Mequanint K. Preparation and characterization of electrospun rGO-poly(ester amide) conductive scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:324-332. [DOI: 10.1016/j.msec.2018.12.122] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/13/2018] [Accepted: 12/27/2018] [Indexed: 12/28/2022]
|
14
|
Abbasian M, Massoumi B, Mohammad-Rezaei R, Samadian H, Jaymand M. Scaffolding polymeric biomaterials: Are naturally occurring biological macromolecules more appropriate for tissue engineering? Int J Biol Macromol 2019; 134:673-694. [PMID: 31054302 DOI: 10.1016/j.ijbiomac.2019.04.197] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/15/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022]
Abstract
Nowadays, tissue and organ failures resulted from injury, aging accounts, diseases or other type of damages is one of the most important health problems with an increasing incidence worldwide. Current treatments have limitations including, low graft efficiency, shortage of donor organs, as well as immunological problems. In this context, tissue engineering (TE) was introduced as a novel and versatile approach for restoring tissue/organ function using living cells, scaffold and bioactive (macro-)molecules. Among these, scaffold as a three-dimensional (3D) support material, provide physical and chemical cues for seeding cells and has an essential role in cell missions. Among the wide verity of scaffolding materials, natural or synthetic biopolymers are the most commonly biomaterials mainly due to their unique physicochemical and biological features. In this context, naturally occurring biological macromolecules are particular of interest owing to their low immunogenicity, excellent biocompatibility and cytocompatibility, as well as antigenicity that qualified them as popular choices for scaffolding applications. In this review, we highlighted the potentials of natural and synthetic polymers as scaffolding materials. The properties, advantages, and disadvantages of both polymer types as well as the current status, challenges, and recent progresses regarding the application of them as scaffolding biomaterials are also discussed.
Collapse
Affiliation(s)
- Mojtaba Abbasian
- Department of Chemistry, Payame Noor University, P.O. Box: 19395-3697, Tehran, Iran
| | - Bakhshali Massoumi
- Department of Chemistry, Payame Noor University, P.O. Box: 19395-3697, Tehran, Iran
| | - Rahim Mohammad-Rezaei
- Analytical Chemistry Research Laboratory, Faculty of Sciences, Azarbaijan Shahid Madani University, P.O. Box: 53714-161, Tabriz, Iran
| | - Hadi Samadian
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
15
|
Wu Y, Peng Y, Bohra H, Zou J, Ranjan VD, Zhang Y, Zhang Q, Wang M. Photoconductive Micro/Nanoscale Interfaces of a Semiconducting Polymer for Wireless Stimulation of Neuron-Like Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:4833-4841. [PMID: 30624894 DOI: 10.1021/acsami.8b19631] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We report multiscale structured fibers and patterned films based on a semiconducting polymer, poly(3-hexylthiophene) (P3HT), as photoconductive biointerfaces to promote neuronal stimulation upon light irradiation. The micro/nanoscale structures of P3HT used for neuronal interfacing and stimulation include nanofibers with an average diameter of 100 nm, microfibers with an average diameter of about 1 μm, and lithographically patterned stripes with width of 3, 25, and 50 μm, respectively. The photoconductive effect of P3HT upon light irradiation provides electrical stimulation for neuronal differentiation and directed growth. Our results demonstrate that neurons on P3HT nanofibers showed a significantly higher total number of branches, while neurons grown on P3HT microfibers had longer and thinner neurites. Such a combination strategy of topographical and photoconductive stimulation can be applied to further enhance neuronal differentiation and directed growth. These photoconductive polymeric micro/nanostructures demonstrated their great potential for neural engineering and development of novel neural regenerative devices.
Collapse
Affiliation(s)
- Yingjie Wu
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| | - Yanfen Peng
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| | - Hassan Bohra
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| | - Jianping Zou
- School of Electrical and Electronic Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Vivek Damodar Ranjan
- School of Mechanical & Aerospace Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Yilei Zhang
- School of Mechanical & Aerospace Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Qing Zhang
- School of Electrical and Electronic Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Mingfeng Wang
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| |
Collapse
|
16
|
|
17
|
Neurogenic Differentiation of Human Dental Pulp Stem Cells on Graphene-Polycaprolactone Hybrid Nanofibers. NANOMATERIALS 2018; 8:nano8070554. [PMID: 30037100 PMCID: PMC6071115 DOI: 10.3390/nano8070554] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/15/2018] [Accepted: 07/16/2018] [Indexed: 01/09/2023]
Abstract
Stem cells derived from dental tissues—dental stem cells—are favored due to their easy acquisition. Among them, dental pulp stem cells (DPSCs) extracted from the dental pulp have many advantages, such as high proliferation and a highly purified population. Although their ability for neurogenic differentiation has been highlighted and neurogenic differentiation using electrospun nanofibers (NFs) has been performed, graphene-incorporated NFs have never been applied for DPSC neurogenic differentiation. Here, reduced graphene oxide (RGO)-polycaprolactone (PCL) hybrid electrospun NFs were developed and applied for enhanced neurogenesis of DPSCs. First, RGO-PCL NFs were fabricated by electrospinning with incorporation of RGO and alignments, and their chemical and morphological characteristics were evaluated. Furthermore, in vitro NF properties, such as influence on the cellular alignments and cell viability of DPSCs, were also analyzed. The influences of NFs on DPSCs neurogenesis were also analyzed. The results confirmed that an appropriate concentration of RGO promoted better DPSC neurogenesis. Furthermore, the use of random NFs facilitated contiguous junctions of differentiated cells, whereas the use of aligned NFs facilitated an aligned junction of differentiated cells along the direction of NF alignments. Our findings showed that RGO-PCL NFs can be a useful tool for DPSC neurogenesis, which will help regeneration in neurodegenerative and neurodefective diseases.
Collapse
|
18
|
Jin L, Hu B, Li Z, Li J, Gao Y, Wang Z, Hao J. Synergistic Effects of Electrical Stimulation and Aligned Nanofibrous Microenvironment on Growth Behavior of Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:18543-18550. [PMID: 29768013 DOI: 10.1021/acsami.8b04136] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Incontrollable cellular growth behavior is a significant issue, which severely affects the functional tissue formation and cellular protein expression. Development of natural extracellular matrix (ECM) like biomaterials to present microenvironment cues for regulation of cell responses can effectively overcome this problem. The external simulation and topological characteristics as typical guiding cues are capable of providing diverse influences on cellular growth. Herein, we fabricated two-dimensional aligned conductive nanofibers (2D-ACNFs) by an electrospinning process and surface polymerization, and the obtained 2D-ACNFs provided the effects of both alignment and electrical stimulation (ES) on cellular response of human mesenchymal cells (hMSCs). The results of cellular responses implied that the obtained 2D-ACNFs could offer a synergistic effect of both ES and aligned nanopattern on hMSC growth behavior. The effects could not only promote hMSCs to contact each other and maintain cellular activity but also provide positive promotion to regulate cellular proliferation. Thus, we believe that the obtained 2D-ACNFs will have a broad application in the biomedical field, such as cell culture with ES, directional induction for cell growth, and damaged tissue repair, etc.
Collapse
Affiliation(s)
- Lin Jin
- Henan Provincial People's Hospital , Zhengzhou University People's Hospital , Number 7 Weiwu Road , Zhengzhou 450003 , P. R. China
- Henan Key Laboratory of Rare Earth Functional Materials , Zhoukou 466001 , P. R. China
| | - Bin Hu
- Henan Key Laboratory of Rare Earth Functional Materials , Zhoukou 466001 , P. R. China
| | - Zhanrong Li
- Henan Provincial People's Hospital , Zhengzhou University People's Hospital , Number 7 Weiwu Road , Zhengzhou 450003 , P. R. China
| | - Jingguo Li
- Henan Provincial People's Hospital , Zhengzhou University People's Hospital , Number 7 Weiwu Road , Zhengzhou 450003 , P. R. China
| | - Yanzheng Gao
- Henan Provincial People's Hospital , Zhengzhou University People's Hospital , Number 7 Weiwu Road , Zhengzhou 450003 , P. R. China
| | - Zhenling Wang
- Henan Key Laboratory of Rare Earth Functional Materials , Zhoukou 466001 , P. R. China
| | - Jianhua Hao
- Department of Applied Physics , The Hong Kong Polytechnic University , Hong Kong , P. R. China
| |
Collapse
|
19
|
Thangavel P, Kannan R, Ramachandran B, Moorthy G, Suguna L, Muthuvijayan V. Development of reduced graphene oxide (rGO)-isabgol nanocomposite dressings for enhanced vascularization and accelerated wound healing in normal and diabetic rats. J Colloid Interface Sci 2018; 517:251-264. [PMID: 29428812 DOI: 10.1016/j.jcis.2018.01.110] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 01/24/2023]
Abstract
Treatment of chronic non-healing wounds in diabetes is still a major clinical challenge. Here, we have developed reduced graphene oxide (rGO) loaded isabgol nanocomposite scaffolds (Isab + rGO) to treat normal and diabetic wounds. rGO was synthesized by rapid reduction of graphene oxide (GO) under focused solar radiation. Then, rGO was uniformly dispersed into isabgol solution to prepare Isab + rGO nanocomposite scaffolds. These scaffolds were characterized using various physiochemical techniques. Isab + rGO nanocomposite scaffolds showed suitable cell viability, proliferation, and attachment. In vivo experiments were performed using Wistar rats to study the wound healing efficacy of these scaffolds in normal and diabetic rats. Results revealed that rGO stimulated collagen synthesis, collagen crosslinking, wound contraction, and reduced the wound re-epithelialization time significantly compared to control. Histology and immunohistochemistry analyses showed that Isab + rGO scaffold treatment enhanced angiogenesis, collagen synthesis, and deposition in treated wounds. Isab + rGO scaffold treatment also played a major role in shortening the inflammation phase and recruiting macrophages to enhance the early phase of wound healing. Overall, this investigation showed that Isab + rGO scaffold dressing could significantly accelerate the healing of normal and diabetic wounds.
Collapse
Affiliation(s)
- Ponrasu Thangavel
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ramya Kannan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India; Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Balaji Ramachandran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ganeshkumar Moorthy
- The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Karem, P.O.Box 12065, Jerusalem 9112102, Israel
| | - Lonchin Suguna
- Department of Biochemistry and Biotechnology, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India
| | - Vignesh Muthuvijayan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
20
|
Wu S, Wang J, Zou L, Jin L, Wang Z, Li Y. A three-dimensional hydroxyapatite/polyacrylonitrile composite scaffold designed for bone tissue engineering. RSC Adv 2018; 8:1730-1736. [PMID: 35542578 PMCID: PMC9077050 DOI: 10.1039/c7ra12449j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/26/2017] [Indexed: 11/21/2022] Open
Abstract
In recent years, various composite scaffolds based on hydroxyapatite have been developed for bone tissue engineering. However, the poor cell survival micro-environment is still the major problem limiting their practical applications in bone repairing and regeneration. In this study, we fabricated a class of fluffy and porous three-dimensional composite fibrous scaffolds consisting of hydroxyapatite and polyacrylonitrile by employing an improved electrospinning technique combined with a bio-mineralization process. The fluffy structure of the hydroxyapatite/polyacrylonitrile composite scaffold ensured the cells would enter the interior of the scaffold and achieve a three-dimensional cell culture. Bone marrow mesenchymal stem cells were seeded into the scaffolds and cultured for 21 days in vitro to evaluate the response of cellular morphology and biochemical activities. The results indicated that the bone marrow mesenchymal stem cells showed higher degrees of growth, osteogenic differentiation and mineralization than those cultured on the two-dimensional hydroxyapatite/polyacrylonitrile composite membranes. The obtained results strongly supported the fact that the novel three-dimensional fluffy hydroxyapatite/polyacrylonitrile composite scaffold had potential application in the field of bone tissue engineering. A fluffy and porous (3D) HA composite fibrous scaffold was fabricated by employing an improved electrospinning technique combined with a bio-mineralization process.![]()
Collapse
Affiliation(s)
- Shuyi Wu
- Department of Prosthodontics
- Guanghua School of Stomatology
- Hospital of Stomatology
- Sun Yat-sen University
- Guangdong Provincial Key Laboratory of Stomatology
| | - Jieda Wang
- Department of Prosthodontics
- Guanghua School of Stomatology
- Hospital of Stomatology
- Sun Yat-sen University
- Guangdong Provincial Key Laboratory of Stomatology
| | - Leiyan Zou
- Department of Prosthodontics
- Guanghua School of Stomatology
- Hospital of Stomatology
- Sun Yat-sen University
- Guangdong Provincial Key Laboratory of Stomatology
| | - Lin Jin
- Henan Key Laboratory of Rare Earth Functional Materials
- Zhoukou Normal University
- P. R. China
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan
- Zhoukou Normal University
| | - Zhenling Wang
- Henan Key Laboratory of Rare Earth Functional Materials
- Zhoukou Normal University
- P. R. China
| | - Yan Li
- Department of Prosthodontics
- Guanghua School of Stomatology
- Hospital of Stomatology
- Sun Yat-sen University
- Guangdong Provincial Key Laboratory of Stomatology
| |
Collapse
|
21
|
Graphene-based nanomaterials for drug and/or gene delivery, bioimaging, and tissue engineering. Drug Discov Today 2017; 22:1302-1317. [DOI: 10.1016/j.drudis.2017.04.002] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/01/2017] [Accepted: 04/12/2017] [Indexed: 01/19/2023]
|
22
|
Xiao L, Xu L, Yang Y, Zhang S, Huang Y, Bielawski CW, Geng J. Core-Shell Structured Polyamide 66 Nanofibers with Enhanced Flame Retardancy. ACS OMEGA 2017; 2:2665-2671. [PMID: 31457608 PMCID: PMC6640935 DOI: 10.1021/acsomega.7b00397] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/02/2017] [Indexed: 06/01/2023]
Abstract
We report the preparation of polymer nanofibers with enhanced flame retardancy by coaxial electrospinning polyamide 66 (PA 66) and nanoscale graphene hybridized with red phosphorus (NG-RP). Transmission electron microscopy and energy-dispersive X-ray spectroscopy revealed that the nanofibers contained a NG-RP-based core surrounded by a PA 66 shell. The flame-retardant characteristics of the nanofibers were investigated by thermal gravimetric analysis, micro combustion calorimetry, and a series of vertical flame tests. The encapsulation of the NG-RP not only enhanced the flame-retardant characteristics of the nanofibers, but also improved their mechanical properties while maintaining the color and luster of the polymer, making the resultant nanofibers appropriate for use in a wide range of applications.
Collapse
Affiliation(s)
- Linhong Xiao
- Technical
Institute of Physics and Chemistry, Chinese
Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing 100190, China
| | - Linli Xu
- Technical
Institute of Physics and Chemistry, Chinese
Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing 100190, China
| | - Yuying Yang
- Key
Laboratory of Carbon Fiber and Functional Polymers, Beijing University of Chemical Technology, 15 North Third Ring Road, Chaoyang District, Beijing 100029, China
| | - Sheng Zhang
- Key
Laboratory of Carbon Fiber and Functional Polymers, Beijing University of Chemical Technology, 15 North Third Ring Road, Chaoyang District, Beijing 100029, China
| | - Yong Huang
- Technical
Institute of Physics and Chemistry, Chinese
Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing 100190, China
| | - Christopher W. Bielawski
- Center for Multidimensional Carbon
Materials (CMCM), Department of Chemistry, Ulsan
National Institute of Science and Technology (UNIST),
and Department of Energy
Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan National Institute of Science and Technology
(UNIST), 50 UNIST-gil, Ulsan 44919, Republic
of Korea
| | - Jianxin Geng
- Technical
Institute of Physics and Chemistry, Chinese
Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing 100190, China
| |
Collapse
|
23
|
Jin L, Xu Q, Kuddannaya S, Li C, Zhang Y, Wang Z. Fabrication and Characterization of Three-Dimensional (3D) Core-Shell Structure Nanofibers Designed for 3D Dynamic Cell Culture. ACS APPLIED MATERIALS & INTERFACES 2017; 9:17718-17726. [PMID: 28485136 DOI: 10.1021/acsami.7b02126] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Three-dimensional elastic nanofibers (3D eNFs) can offer a suitable 3D dynamic microenvironment and sufficient flexibility to regulate cellular behavior and functional protein expression. In this study, we report a novel approach to prepare 3D nanofibers with excellent mechanical properties by solution-assisted electrospinning technology and in situ polymerization. The obtained 3D eNFs demonstrated excellent biocompatible properties to meet cell culture requirements under a dynamic environment in vitro. Moreover, these 3D eNFs also promoted human bone marrow mesenchymal stem cells (hMSCs) adhesion and collagen expression under biomechanical stimulation. The results demonstrated that this dynamic cell culture system could positively impact cellular collagen but has no significant effect on the proliferation of hMSCs grown in the 3D eNFs. This work may give rise to a new approach for constructing a 3D cell culture for tissue engineering.
Collapse
Affiliation(s)
- Lin Jin
- The Key Laboratory of Rare Earth Functional Materials and Applications, Zhoukou Normal University , Zhoukou 466001, P. R. China
- School of Mechanical & Aerospace Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
| | - Qinwei Xu
- School of Mechanical & Aerospace Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
| | - Shreyas Kuddannaya
- School of Mechanical & Aerospace Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
| | - Cheng Li
- School of Mechanical & Aerospace Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
| | - Yilei Zhang
- School of Mechanical & Aerospace Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798 Singapore
| | - Zhenling Wang
- The Key Laboratory of Rare Earth Functional Materials and Applications, Zhoukou Normal University , Zhoukou 466001, P. R. China
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan , Zhoukou 466001, P. R. China
| |
Collapse
|
24
|
Holt BD, Arnold AM, Sydlik SA. Peptide-functionalized reduced graphene oxide as a bioactive mechanically robust tissue regeneration scaffold. POLYM INT 2017. [DOI: 10.1002/pi.5375] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Brian D Holt
- Department of Chemistry; Carnegie Mellon University; Pittsburgh USA
| | - Anne M Arnold
- Department of Chemistry; Carnegie Mellon University; Pittsburgh USA
| | - Stefanie A Sydlik
- Department of Chemistry; Carnegie Mellon University; Pittsburgh USA
- Department of Biomedical Engineering; Carnegie Mellon University; Pittsburgh USA
| |
Collapse
|
25
|
Mahmoudi N, Eslahi N, Mehdipour A, Mohammadi M, Akbari M, Samadikuchaksaraei A, Simchi A. Temporary skin grafts based on hybrid graphene oxide-natural biopolymer nanofibers as effective wound healing substitutes: pre-clinical and pathological studies in animal models. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:73. [PMID: 28361280 DOI: 10.1007/s10856-017-5874-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 02/28/2017] [Indexed: 06/07/2023]
Abstract
In recent years, temporary skin grafts (TSG) based on natural biopolymers modified with carbon nanostructures have received considerable attention for wound healing. Developments are required to improve physico-mechanical properties of these materials to match to natural skins. Additionally, in-deep pre-clinical examinations are necessary to ensure biological performance and toxicity effect in vivo. In the present work, we show superior acute-wound healing effect of graphene oxide nanosheets embedded in ultrafine biopolymer fibers (60 nm) on adult male rats. Nano-fibrous chitosan-based skin grafts crosslinked by Genepin with physico-mechanical properties close to natural skins were prepared by electrospinning of highly concentrated chitosan- polyvinylpyrrolidone solutions containing graphene oxide (GO) nanosheets. No surfactants and organic solvents were utilized to ensure high biocompatibility of the fibrous structure. In vitro evaluations by human skin fibroblast cells including live and dead assay and MTT results show that GO promote cell viability of porous nanofibrous membrane while providing enhanced bactericidal capacity. In vivo studies on rat's skin determine accelerated healing effect, i.e. a large open wound (1.5 × 1.5 cm2) is fully regenerated after 14-day of post operation while healing is observed for sterile gauze sponge (as the control). Pathological studies support thick dermis formation and complete epithelialization in the presence of 1.5 wt% GO nanosheets. Over 99% wound healing occurs after 21 days for the injury covered with TSG containing 1.5 wt% GO while this would takes weeks for the control. Therefore, the developed materials have a high potential to be used as TSG as pre-clinical testing has shown.
Collapse
Affiliation(s)
- N Mahmoudi
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box11155-9161, Azadi Avenue, Tehran, 14588, Iran
| | - N Eslahi
- Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - A Mehdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - M Mohammadi
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box11155-9161, Azadi Avenue, Tehran, 14588, Iran
| | - M Akbari
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
| | - A Samadikuchaksaraei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - A Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box11155-9161, Azadi Avenue, Tehran, 14588, Iran.
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P. O. Box 11365-9466, Azadi Avenue, Tehran, 14588, Iran.
| |
Collapse
|
26
|
Cheng C, Li S, Thomas A, Kotov NA, Haag R. Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications. Chem Rev 2017; 117:1826-1914. [PMID: 28075573 DOI: 10.1021/acs.chemrev.6b00520] [Citation(s) in RCA: 277] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Functional graphene nanomaterials (FGNs) are fast emerging materials with extremely unique physical and chemical properties and physiological ability to interfere and/or interact with bioorganisms; as a result, FGNs present manifold possibilities for diverse biological applications. Beyond their use in drug/gene delivery, phototherapy, and bioimaging, recent studies have revealed that FGNs can significantly promote interfacial biointeractions, in particular, with proteins, mammalian cells/stem cells, and microbials. FGNs can adsorb and concentrate nutrition factors including proteins from physiological media. This accelerates the formation of extracellular matrix, which eventually promotes cell colonization by providing a more beneficial microenvironment for cell adhesion and growth. Furthermore, FGNs can also interact with cocultured cells by physical or chemical stimulation, which significantly mediate their cellular signaling and biological performance. In this review, we elucidate FGNs-bioorganism interactions and summarize recent advancements on designing FGN-based two-dimensional and three-dimensional architectures as multifunctional biological platforms. We have also discussed the representative biological applications regarding these FGN-based bioactive architectures. Furthermore, the future perspectives and emerging challenges will also be highlighted. Due to the lack of comprehensive reviews in this emerging field, this review may catch great interest and inspire many new opportunities across a broad range of disciplines.
Collapse
Affiliation(s)
- Chong Cheng
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Shuang Li
- Department of Chemistry, Functional Materials, Technische Universität Berlin , Hardenbergstraße 40, 10623 Berlin, Germany
| | - Arne Thomas
- Department of Chemistry, Functional Materials, Technische Universität Berlin , Hardenbergstraße 40, 10623 Berlin, Germany
| | - Nicholas A Kotov
- Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
27
|
Mahmoudi N, Simchi A. On the biological performance of graphene oxide-modified chitosan/polyvinyl pyrrolidone nanocomposite membranes: In vitro and in vivo effects of graphene oxide. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:121-131. [DOI: 10.1016/j.msec.2016.08.063] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/02/2016] [Accepted: 08/24/2016] [Indexed: 12/23/2022]
|
28
|
Shin SR, Zihlmann C, Akbari M, Assawes P, Cheung L, Zhang K, Manoharan V, Zhang YS, Yüksekkaya M, Wan KT, Nikkhah M, Dokmeci MR, Tang X(S, Khademhosseini A. Reduced Graphene Oxide-GelMA Hybrid Hydrogels as Scaffolds for Cardiac Tissue Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3677-89. [PMID: 27254107 PMCID: PMC5201005 DOI: 10.1002/smll.201600178] [Citation(s) in RCA: 310] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/10/2016] [Indexed: 05/20/2023]
Abstract
Biomaterials currently used in cardiac tissue engineering have certain limitations, such as lack of electrical conductivity and appropriate mechanical properties, which are two parameters playing a key role in regulating cardiac cell behavior. Here, the myocardial tissue constructs are engineered based on reduced graphene oxide (rGO)-incorporated gelatin methacryloyl (GelMA) hybrid hydrogels. The incorporation of rGO into the GelMA matrix significantly enhances the electrical conductivity and mechanical properties of the material. Moreover, cells cultured on composite rGO-GelMA scaffolds exhibit better biological activities such as cell viability, proliferation, and maturation compared to ones cultured on GelMA hydrogels. Cardiomyocytes show stronger contractility and faster spontaneous beating rate on rGO-GelMA hydrogel sheets compared to those on pristine GelMA hydrogels, as well as GO-GelMA hydrogel sheets with similar mechanical property and particle concentration. Our strategy of integrating rGO within a biocompatible hydrogel is expected to be broadly applicable for future biomaterial designs to improve tissue engineering outcomes. The engineered cardiac tissue constructs using rGO incorporated hybrid hydrogels can potentially provide high-fidelity tissue models for drug studies and the investigations of cardiac tissue development and/or disease processes in vitro.
Collapse
Affiliation(s)
- Su Ryon Shin
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02139, USA
| | - Claudio Zihlmann
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mohsen Akbari
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 2C5, Canada
| | - Pribpandao Assawes
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Louis Cheung
- Department of Chemistry & Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. West, Waterloo, Ontario, N2L 3G1, Canada
| | - Kaizhen Zhang
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - Vijayan Manoharan
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yu Shrike Zhang
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mehmet Yüksekkaya
- Faculty of Engineering, Biomedical Engineering Department, Baskent University, Ankara, Turkey
| | - Kai-tak Wan
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85251, USA
| | - Mehmet R. Dokmeci
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02139, USA
| | - Xiaowu (Shirley) Tang
- Department of Chemistry & Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. West, Waterloo, Ontario, N2L 3G1, Canada
- CORRESPONDING AUTHOR. Biomaterials Innovation Research Center, Brigham and Women’s Hospital, Harvard Medical School. Cambridge, MA, USA. 02139. (A. Khademhosseini), Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada. (Xiaowu (Shirley) Tang)
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02139, USA
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul 143-701, Republic of Korea
- CORRESPONDING AUTHOR. Biomaterials Innovation Research Center, Brigham and Women’s Hospital, Harvard Medical School. Cambridge, MA, USA. 02139. (A. Khademhosseini), Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada. (Xiaowu (Shirley) Tang)
| |
Collapse
|