1
|
Kayani KF, Rahim MK, Mohammed SJ, Ahmed HR, Mustafa MS, Aziz SB. Recent Progress in Folic Acid Detection Based on Fluorescent Carbon Dots as Sensors: A Review. J Fluoresc 2025; 35:2481-2494. [PMID: 38625574 DOI: 10.1007/s10895-024-03728-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Folic acid (FA) is a water-soluble vitamin found in diverse natural sources and is crucial for preserving human health. The risk of health issues due to FA deficiency underscores the need for a straightforward and sensitive FA detection methodology. Carbon dots (CDs) have gained significant attention owing to their exceptional fluorescence performance, biocompatibility, and easy accessibility. Consequently, numerous research studies have concentrated on developing advanced CD fluorescent probes to enable swift and precise FA detection. Despite these efforts, there is still a requirement for a thorough overview of the efficient synthesis of CDs and their practical applications in FA detection to further promote the widespread use of CDs. This review paper focuses on the practical applications of CD sensors for FA detection. It begins with an in-depth introduction to FA and CDs. Following that, based on various synthetic approaches, the prepared CDs are classified into diverse detection methods, such as single sensing, visual detection, and electrochemical methods. Furthermore, persistent challenges and potential avenues are highlighted for future research to provide valuable insights into crafting effective CDs and detecting FA.
Collapse
Affiliation(s)
- Kawan F Kayani
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan Street,, Sulaymaniyah City, Kurdistan Region, 46002, Iraq.
- Department of Chemistry, College of Science, Charmo University, Chamchamal/Sulaimani, Kurdistan Region, 46023, Iraq.
- Department of Pharmacy, Kurdistan Technical Institute, Sulaymaniyah City, Iraq.
| | - Mohammed K Rahim
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan Street,, Sulaymaniyah City, Kurdistan Region, 46002, Iraq
| | - Sewara J Mohammed
- Anesthesia department, College of Health Sciences, Cihan University Sulaimaniya, Sulaimaniya, Kurdistan Region, 46001, Iraq
- Research and Development Center, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaymaniyah, 46001, Iraq
| | - Harez Rashid Ahmed
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan Street,, Sulaymaniyah City, Kurdistan Region, 46002, Iraq
- College of Science, Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, 46001, Iraq
| | - Muhammad S Mustafa
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan Street,, Sulaymaniyah City, Kurdistan Region, 46002, Iraq
| | - Shujahadeen B Aziz
- Research and Development Center, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaymaniyah, 46001, Iraq
| |
Collapse
|
2
|
Zhang X, Wang T, Fan X, Wang M, Duan Z, He F, Wang HH, Li Z. Development of a Modular miRNA-Responsive Biosensor for Organ-Specific Evaluation of Liver Injury. BIOSENSORS 2024; 14:450. [PMID: 39329825 PMCID: PMC11430419 DOI: 10.3390/bios14090450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/01/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
MicroRNAs (miRNAs) are increasingly being considered essential diagnostic biomarkers and therapeutic targets for multiple diseases. In recent years, researchers have emphasized the need to develop probes that can harness extracellular miRNAs as input signals for disease diagnostics. In this study, we introduce a novel miRNA-responsive biosensor (miR-RBS) designed to achieve highly sensitive and specific detection of miRNAs, with a particular focus on targeted organ-specific visualization. The miR-RBS employs a Y-structured triple-stranded DNA probe (Y-TSDP) that exhibits a fluorescence-quenched state under normal physiological conditions. The probe switches to an activated state with fluorescence signals in the presence of high miRNA concentrations, enabling rapid and accurate disease reporting. Moreover, the miR-RBS probe had a modular design, with a fluorescence-labeled strand equipped with a functional module that facilitates specific binding to organs that express high levels of the target receptors. This allowed the customization of miRNA detection and cell targeting using aptameric anchors. In a drug-induced liver injury model, the results demonstrate that the miR-RBS probe effectively visualized miR-122 levels, suggesting it has good potential for disease diagnosis and organ-specific imaging. Together, this innovative biosensor provides a versatile tool for the early detection and monitoring of diseases through miRNA-based biomarkers.
Collapse
Affiliation(s)
- Xinxin Zhang
- College of Biology, Hunan University, No. 27 Tianma Road, Yuelu District, Changsha 410082, China
| | - Tingting Wang
- College of Biology, Hunan University, No. 27 Tianma Road, Yuelu District, Changsha 410082, China
| | - Xiangqing Fan
- College of Biology, Hunan University, No. 27 Tianma Road, Yuelu District, Changsha 410082, China
| | - Meixia Wang
- College of Biology, Hunan University, No. 27 Tianma Road, Yuelu District, Changsha 410082, China
| | - Zhixi Duan
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Department of Trauma Center, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- FuRong Laboratory, Changsha 410078, China
| | - Fang He
- College of Biology, Hunan University, No. 27 Tianma Road, Yuelu District, Changsha 410082, China
| | - Hong-Hui Wang
- College of Biology, Hunan University, No. 27 Tianma Road, Yuelu District, Changsha 410082, China
| | - Zhihong Li
- Department of Trauma Center, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- FuRong Laboratory, Changsha 410078, China
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| |
Collapse
|
3
|
Paul P, Roy H, Bhattacharjee G, Baruah N, Kundu LM. Amine-Rich Carbon Dots Synthesized from Kappa-Carrageenan and l-Lysine as a Dual Probe for Detection of Folic Acid and Tumor-Targeted Delivery of Therapeutics. ACS APPLIED BIO MATERIALS 2024; 7:6034-6043. [PMID: 39180146 DOI: 10.1021/acsabm.4c00678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Strategically designed, heteroatom-rich surface functionalized blue fluorescent carbon dots (CDs) were synthesized for high-throughput detection of folic acid (vitamin B9). The highly stable CDs could particularly detect vitamin B9 in the presence of 35 analytes, even up to 40 nM of the vitamin. The versatile CDs were found to have a high affinity for folic acid in wastewater, folic acid tablets, and food samples enriched with folic acid. The hemocompatibility of the CDs was also studied by using a hemolysis assay, confirming the CDs to be nontoxic to human blood samples up to 400 μg/mL. The CDs were then covalently conjugated to biotin, which possesses receptors that are overexpressed in tumor cells. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide dye) assay and confocal bioimaging studies proved the biotin-modified CDs (CDBT) were remarkably nontoxic in healthy cell lines (HEK-293) and highly target-specific toward tumor cells (HeLa), including triple-negative breast cancer cells (MDA-MB-231). The cytotoxicity assay of 5-fluorouracil encapsulated CDs (CDBTFu) showed the IC50 value to be 81 μM in HeLa cells and 185 μM in MDA-MB-231 cells, respectively, and significantly higher in HEK-293 cells (over 300 μM), owing to high specificity toward tumor cells.
Collapse
Affiliation(s)
- Pallabi Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Hirakjyoti Roy
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Gourav Bhattacharjee
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Neeharika Baruah
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Lal Mohan Kundu
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
4
|
Silva-Neto HA, Barbeira PJS, Coltro WKT, Piccin E. 3D printing of electrochemical cell for voltammetric detection and photodegradation monitoring of folic acid in juice samples. Food Chem 2024; 444:138677. [PMID: 38359702 DOI: 10.1016/j.foodchem.2024.138677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/11/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
In this study, compact 3D-printed carbon black (CB) electrodes were manufactured for using in folic acid (FA) analysis in fruit samples. Before application in FA analysis, the electrode surfaces were characterized by high-resolution scanning electron microscopy and voltammetry using well-known redox probes. Square wave voltammetric study presented linear responses in the range between 10 and 200 µmol/L (R2 > 0.99), exhibited a suitable detection limit (LOD) of ∼ 5.1 µmol/L and acceptable performance in terms of reproducibility and anti-interference experiments. The analysis of FA in four different food samples using the proposed method agreed statistically with a comparative technique based on spectrophotometric measurements. Moreover, results from photostability experiments indicated that FA can be degraded after 5 and 20 min of UV exposure. These results successfully demonstrated the analytical feasibility of the 3D-printed electrodes as sensing material and for monitoring the photostability of FA in different fruit matrices.
Collapse
Affiliation(s)
- Habdias A Silva-Neto
- Departamento de Química, Universidade Federal de Minas Gerais, MG 31270-400, Brazil; Instituto de Química, Universidade Federal de Goiás, Goiânia, GO 74690-900, Brazil.
| | - Paulo J S Barbeira
- Departamento de Química, Universidade Federal de Minas Gerais, MG 31270-400, Brazil
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO 74690-900, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, SP 13084-971, Brazil
| | - Evandro Piccin
- Departamento de Química, Universidade Federal de Minas Gerais, MG 31270-400, Brazil; Departamento do Química, Universidade Federal de São Carlos, SP 13565-905, Brazil.
| |
Collapse
|
5
|
Mei X, Du Q, Li J, Dong C. Sensitive detections for three kinds of vitamin B in aqueous solution and on test paper by fluorescent dual-emission carbon dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124230. [PMID: 38581773 DOI: 10.1016/j.saa.2024.124230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024]
Abstract
Although a few of fluorescent probes based on carbon dots (CDs) for vitamin B (VB) determination have been emerged, none of them can realize the detection of different kinds of VB. In this paper, nitrogen, chlorine co-doped dual-emission CDs (N, Cl-CDs) with emissions at 404 nm and 595 nm have been easily synthesized. VB2, VB9 and VB12 can all induce obvious fluorescence turn-off response toward the N, Cl-CDs. Based on that, three types of VBs are quantitatively and sensitively evaluated in aqueous solution with wide concentration ranges of 14.9-135.0 μM, 34.7-89.8 μM and 29.8-79.8 μM, respectively. Importantly, visual semiquantitative detection of VBs on a test strip are also proposed. Moreover, the current N, Cl-CDs have been successfully applied to the detection of VBs in real samples. The N, Cl-CDs are sensitively multifunctional sensors for three kinds of VBs in aqueous solution and the visual semiquantitative detection by test paper assay is simple, portable and inexpensive.
Collapse
Affiliation(s)
- Xiping Mei
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Qian Du
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Junfen Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
6
|
Nakum R, Ghosh AK, Ranjan Jali B, Sahoo SK. Fluorescent ovalbumin-functionalized gold nanocluster as a highly sensitive and selective sensor for relay detection of salicylaldehyde, Hg(II) and folic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124143. [PMID: 38471309 DOI: 10.1016/j.saa.2024.124143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
A sensitive and selective relay-based scheme for the detection of salicylaldehyde, Hg2+, and folic acid (FA) has been demonstrated using fluorescent ovalbumin functionalized gold nanoclusters (OVA-AuNCs, λem = 655 nm) in this article. The OVA-AuNCs were conjugated to salicylaldehyde via an imine linkage to form Salic_OVA-AuNCs conjugate. The molecular docking study reveals that multiple functional groups and amino acid residues are involved in the interaction between salicylaldehyde and the OVA-AuNCs. The coupling of salicylaldehyde with OVA-AuNCs results in fluorescence quenching at 655 nm and concomitant formation of an emission band at 500 nm, which have leveraged to detect salicylaldehyde down to 2.02 µM. Following that, the Salic_OVA-AuNCs has been used for the detection of Hg2+ and FA. Several processes, such as internal charge transfer (ICT), photoinduced electron transfer (PET) and metallophilic interactions, are involved between the Salic_OVA-AuNCs nanoprobe and the analytes, which allowed to detect Hg2+ and FA down to 0.13 nM and 0.11 nM, respectively. The Salic_OVA-AuNCs nanoprobe has an additional naked-eye utility when applied to paper-strip sensing strategy for Hg2+ and FA detection.
Collapse
Affiliation(s)
- Rajanee Nakum
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat 395007, Gujarat, India
| | - Arup K Ghosh
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat 395007, Gujarat, India
| | - Bigyan Ranjan Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - Suban K Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat 395007, Gujarat, India.
| |
Collapse
|
7
|
Sathyan B, Banerjee G, Jagtap AA, Verma A, Cyriac J. Deep-Learning-Assisted Discriminative Detection of Vitamin B 12 and Vitamin B 9 by Fluorescent MoSe 2 Quantum Dots. ACS APPLIED BIO MATERIALS 2024; 7:1191-1203. [PMID: 38295366 DOI: 10.1021/acsabm.3c01072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
A facile and environmentally mindful approach for the synthesis of MoSe2 QDs was developed via the hydrothermal method from bulk MoSe2. In this, the exfoliation of MoSe2 was enhanced with the aid of an intercalation agent (KOH), which could reduce the exfoliation time and increase the exfoliation efficiency to form MoSe2 QDs. We found that MoSe2 QDs display blue emission that is suitable for different applications. This fluorescence property of MoSe2 QDs was harnessed to fabricate a dual-modal sensor for the detection of both vitamin B12 (VB12) and vitamin B9 (VB9), employing fluorescence quenching. We performed a detailed study on the fluorescence quenching mechanism of both analytes. The predominant quenching mechanism for VB12 is via Förster resonance energy transfer. In contrast, the recognition of VB9 primarily relies on the inner filter effect. We applied an emerging and captivating approach to pattern recognition, the deep-learning method, which enables machines to "learn" patterns through training, eliminating the need for explicit programming of recognition methods. This attribute endows deep-learning with immense potential in the realm of sensing data analysis. Here, analyzing the array-based sensing data, the deep-learning technique, "convolution neural networks", has achieved 93% accuracy in determining the contribution of VB12 and VB9.
Collapse
Affiliation(s)
- Bhasha Sathyan
- Department of Chemistry, Indian Institute of Space Science and Technology, Thiruvananthapuram, Kerala 695 547,India
| | - Gaurav Banerjee
- Department of Chemistry, Indian Institute of Space Science and Technology, Thiruvananthapuram, Kerala 695 547,India
| | - Ajinkya Ashok Jagtap
- Department of Chemistry, Indian Institute of Space Science and Technology, Thiruvananthapuram, Kerala 695 547,India
| | - Abhishek Verma
- Department of Chemistry, Indian Institute of Space Science and Technology, Thiruvananthapuram, Kerala 695 547,India
| | - Jobin Cyriac
- Department of Chemistry, Indian Institute of Space Science and Technology, Thiruvananthapuram, Kerala 695 547,India
| |
Collapse
|
8
|
Xu Z, Zhu M, Jiang W, Zhang T, Ma M, Shi F. A simple synthesis method of microsphere immunochromatographic test strip for time-resolved luminescence detection of folic acid. Food Chem 2023; 413:135599. [PMID: 36750007 DOI: 10.1016/j.foodchem.2023.135599] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/11/2022] [Accepted: 01/28/2023] [Indexed: 02/01/2023]
Abstract
Folic acid (FA) is an ingredient that must be added to infant milk powder to avoid potential defects. Rapid, sensitive and reliable detection methods are needed to determined FA addition levels. Thus, this study established a microsphere immunochromatographic test strip for time-resolved luminescence detection (TRLM-ICTS) based on carboxyl-functionalized time-resolved luminescent microspheres (Eu-TRLMs) prepared by a one-step method as fluorescent markers for the immediate quantitative detection of FA in milk powder. Eu-TRLMs prepared by the one-step method showed good dispersion, high stability and strong fluorescence intensity, which is improving the sensitivity of TRLM-ICTS. In the performance evaluation of TRLM-ICTS, the detection limit was 0.487 ng mL-1, the recovery rate was 97.3-105 %, and the actual sample detection results were in line with those of UPLC-MS/MS. TRLM-ICTS has the advantages of rapid, high sensitivity and strong specificity and could as a practical quantitative detection method for the detection of FA in milk powder.
Collapse
Affiliation(s)
- Zhihua Xu
- College of Life Science, Shihezi University, Shihezi 832003, China
| | - Mingsong Zhu
- College of Biological Science and Medical Engineering, Southeast University, Nanjing 214135, China
| | - Wenxuan Jiang
- College of Life Science, Shihezi University, Shihezi 832003, China
| | - Tieying Zhang
- College of Life Science, Shihezi University, Shihezi 832003, China
| | - Mingze Ma
- College of Life Science, Shihezi University, Shihezi 832003, China
| | - Feng Shi
- College of Life Science, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
9
|
Li W, Xingzhuo zhou, Yan W, Wang R, Yang Z, Hu Y, Liu Y, Jia Z, Li Y. Lysozyme-encapsulated gold nanoclusters for ultrasensitive detection of folic acid and in vivo imaging. Talanta 2022; 251:123789. [DOI: 10.1016/j.talanta.2022.123789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
|
10
|
Sakineh Esfandiari Baghbamidi. Surface Modification of Glassy Carbon Electrode Using Hematoxylin and MWCNTs/Fe3O4/TiO2 Nanocomposite; a Sensitive Electrochemical Technique for Detection of Methyldopa in the Presence of Folic Acid. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s1023193522060040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
A brief review on the recent achievements in electrochemical detection of folic acid. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01421-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Liu B, Wei S, Liu E, Zhang H, Lu P, Wang J, Sun G. Nitrogen-doped carbon dots as a fluorescent probe for folic acid detection and live cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120661. [PMID: 34896678 DOI: 10.1016/j.saa.2021.120661] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
The folic acid (FA) level in human body can be used as an indicator for body's normal physiological activities and offer insight into the growth and reproduction of the body's cells. But the abnormal level of FA can cause some diseases. Herein, we designed a simple and convenient approach to prepare fluorescent N-doped carbon dots (N-CDs) for the FA detection. These N-CDs have excellent hydrophilicity, high photostability, and outstanding biocompatibility, as well as excitation-independent emission behavior with typical excitation/emission peaks at 295 nm/412 nm. Upon the existence of FA, the fluorescence emission spectrum of N-CDs was significantly quenched through the synergy of static quenching mechanism and internal filtering effect (IFE). Under optimal conditions, the limit of detection was 28.0 nM (S/N = 3) within the FA concentration range of 0-200.0 μM. In addition, N-CDs were successfully employed to detect FA in real samples such as urine and fetal bovine serum (FBS), with a recovery rate of 99.6%-100.7% for quantitative addition. Furthermore, cell experiments confirmed the low toxicity and the cell imaging performance of these N-CDs, indicating that the obtained N-CDs could be served as a credible quantitative probe for FA analysis in the field of biosensing.
Collapse
Affiliation(s)
- Baoqiang Liu
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Shanshan Wei
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Enqi Liu
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Hongyuan Zhang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Pengju Lu
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Jiali Wang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Guoying Sun
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China.
| |
Collapse
|
13
|
Tajik S, Beitollahi H, Shahsavari S, Nejad FG. Simultaneous and selective electrochemical sensing of methotrexate and folic acid in biological fluids and pharmaceutical samples using Fe 3O 4/ppy/Pd nanocomposite modified screen printed graphite electrode. CHEMOSPHERE 2022; 291:132736. [PMID: 34728224 DOI: 10.1016/j.chemosphere.2021.132736] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/23/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
The purpose of this study was to fabricate an electrochemical sensor for the detection of methotrexate and folic acid based on a screen-printed graphite electrode (SPGE) modified with prepared iron oxide (Fe3O4)/polypyrrole (ppy)/Palladium (Pd) nanocomposite. Transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR) techniques were employed to characterize the Fe3O4/ppy/Pd nanocomposite. The produced modifier was used to induce a remarkable electrocatalytic impact relative to the oxidation of methotrexate, which caused the potential peak shift to a less positive amount (from 800 mV to about 500 mV) and improved the peak current (from 5.3 μA to about 16 μA). Methotrexate peak current was linearly dependent on its concentration from 0.03100.0 μM and the limit of detection (LOD) was estimated at 7.0 nM. The methotrexate and folic acid were co-detected by the proposed sensor. The experimental results indicated that the oxidation peaks of methotrexate and folic acid were separated about 200 mV in phosphate buffer solution (PBS) at pH 7.0. Fe3O4/ppy/Pd/SPGE was successfully able to detect methotrexate and folic acid in pharmaceutical and biological samples with excellent recovery.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Saeed Shahsavari
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fariba Garkani Nejad
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
14
|
Highly sensitive and label-free detection of DILI microRNA biomarker via target recycling and primer exchange reaction amplifications. Anal Chim Acta 2022; 1197:339521. [DOI: 10.1016/j.aca.2022.339521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
|
15
|
Kayani KF, Omer KM. A red luminescent europium metal organic framework (Eu-MOF) integrated with a paper strip using smartphone visual detection for determination of folic acid in pharmaceutical formulations. NEW J CHEM 2022. [DOI: 10.1039/d2nj00601d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Integration of smartphone with visual-based paper strip as a low-cost, fast, and reliable probe for semi-quantitative analysis of folic acid.
Collapse
Affiliation(s)
- Kawan F. Kayani
- Center for Biomedical Analysis, Department of Chemistry, College of Science, University of Sulaimani, Qliasan St, 46002, Slemani City, Kurdistan Region, Iraq
| | - Khalid M. Omer
- Center for Biomedical Analysis, Department of Chemistry, College of Science, University of Sulaimani, Qliasan St, 46002, Slemani City, Kurdistan Region, Iraq
| |
Collapse
|
16
|
Xiao D, Qi H, Teng Y, Pierre D, Kutoka PT, Liu D. Advances and Challenges of Fluorescent Nanomaterials for Synthesis and Biomedical Applications. NANOSCALE RESEARCH LETTERS 2021; 16:167. [PMID: 34837561 PMCID: PMC8626755 DOI: 10.1186/s11671-021-03613-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/28/2021] [Indexed: 05/18/2023]
Abstract
With the rapid development of nanotechnology, new types of fluorescent nanomaterials (FNMs) have been springing up in the past two decades. The nanometer scale endows FNMs with unique optical properties which play a critical role in their applications in bioimaging and fluorescence-dependent detections. However, since low selectivity as well as low photoluminescence efficiency of fluorescent nanomaterials hinders their applications in imaging and detection to some extent, scientists are still in search of synthesizing new FNMs with better properties. In this review, a variety of fluorescent nanoparticles are summarized including semiconductor quantum dots, carbon dots, carbon nanoparticles, carbon nanotubes, graphene-based nanomaterials, noble metal nanoparticles, silica nanoparticles, phosphors and organic frameworks. We highlight the recent advances of the latest developments in the synthesis of FNMs and their applications in the biomedical field in recent years. Furthermore, the main theories, methods, and limitations of the synthesis and applications of FNMs have been reviewed and discussed. In addition, challenges in synthesis and biomedical applications are systematically summarized as well. The future directions and perspectives of FNMs in clinical applications are also presented.
Collapse
Affiliation(s)
- Deli Xiao
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 210009, China
| | - Haixiang Qi
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Teng
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Dramou Pierre
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Dong Liu
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, School of Biological and Pharmaceutical Engineering, West Anhui University, West of Yunlu Bridge, Moon Island, Lu'an, 237012, Anhui, China.
| |
Collapse
|
17
|
Chen J, Zhang Q, Xu F, Li S. Bimetallic organic frame nanosheet fluorescent probe used for detecting tetracycline and folic acid. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
18
|
Yellow-emitting Au/Ag bimetallic nanoclusters with high photostability for detection of folic acid. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116695] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Fereja SL, Li P, Guo J, Fang Z, Zhang Z, Zhuang Z, Zhang X, Liu K, Chen W. Silver-enhanced fluorescence of bimetallic Au/Ag nanoclusters as ultrasensitive sensing probe for the detection of folic acid. Talanta 2021; 233:122469. [PMID: 34215104 DOI: 10.1016/j.talanta.2021.122469] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022]
Abstract
Folic acid (FA) is the natural form of water-soluble vitamins widely found in most plants and animal products and its deficiency leads to several human body abnormalities. The advancements of metal nanoclusters are highly increasing due to their molecule-like optical properties and attractive applications. Because of increasingly demand of noble metal nanoclusters as sensing templates, different synthesis methods have been developed for facile synthesis of noble metal nanoclusters. Herein, red-emitting fluorescent bovine serum albumin (BSA)-capped Au-Ag bimetallic NCs are facilely synthesized through green one-pot synthetic approach. The effect of silver on the fluorescence properties of Au NCs was investigated and it was found that introduction of silver can enhance the fluorescence intensity. The fluorescence intensity of the as-prepared Au-Ag nanoclusters gets quenched in the presence of folic acid in an aqueous medium and it was used as ultrasensitive sensing probe for FA detection. The developed Au-Ag NCs-based sensing probe shows linear response in the wide range of 0-100 μM and the detection limit is as low as 0.47 nM. Its applicability has also been confirmed successfully in real human serum, urine and FA tablet samples. Due to the high stability, sensitivity and selectivity, the developed bimetallic cluster sensing system is highly promising to be applied in the pharmaceutical and clinical laboratories.
Collapse
Affiliation(s)
- Shemsu Ligani Fereja
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China; University of Science and Technology of China, Hefei, 230026, China; Wolkite University, College of Natural and Computational Science, 07, Wolkite, Ethiopia
| | - Ping Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China; University of Science and Technology of China, Hefei, 230026, China
| | - Jinhan Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China; University of Science and Technology of China, Hefei, 230026, China
| | - Zhongying Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China; University of Science and Technology of China, Hefei, 230026, China
| | - Ziwei Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China; University of Science and Technology of China, Hefei, 230026, China
| | - Zhihua Zhuang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China; University of Science and Technology of China, Hefei, 230026, China
| | - Xiaohui Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China; University of Science and Technology of China, Hefei, 230026, China
| | - Kaifan Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China; University of Science and Technology of China, Hefei, 230026, China
| | - Wei Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China; University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
20
|
Ma Y, Fu S, Tan Y, Zhang A. Design and synthesis of highly fluorescent and stable fullerene nanoparticles as probes for folic acid detection and targeted cancer cell imaging. NANOTECHNOLOGY 2021; 32:195501. [PMID: 33482659 DOI: 10.1088/1361-6528/abdf02] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rational design and construction of fullerene derivatives play significant roles in the development of applications for sensing, marking and imaging in biomedical fields. In the present work, a novel type of C60 fluorescent nanoparticle (C60 FNP) was synthesized by a combination of thiol-ene chemistry and modification with folic acid (FA). The as-prepared C60 FNPs exhibited intense blue luminescence with a relatively high quantum yield of 26%, which is higher than that of any other reported fluorescent fullerene-based nanomaterial. Moreover, they revealed superior photobleaching resistance under constant UV lamp illumination for 5 h and excellent photostablity after 9 months of storage in water. Due to the mutual hydrogen bond interaction, the obtained C60 FNPs were capable of acting as a sensitive and specific probe for FA detection and quantification, with a liner range of 0 to 80 μM and a detection limit of 0.24 μM. Satisfactory recoveries (95.4%-105.2%) were obtained from a series of actual samples, further confirming the feasibility of this nanoprobe. Additionally, taking advantage of the FA moiety, the C60 FNPs had easy access to penetrate into cancer cells with higher expression levels of folate receptors, thereby achieving the function of targeted cellular imaging.
Collapse
Affiliation(s)
- Yihan Ma
- College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
| | - Sheng Fu
- College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
| | - Yixuan Tan
- College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
| | - Aiqing Zhang
- College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
| |
Collapse
|
21
|
Stefan M, Leostean C, Pana O, Suciu M, Popa A, Toloman D, Macavei S, Bele C, Tabaran F, Barbu-Tudoran L. Synthesis and characterization of Fe3O4–ZnS:Mn nanocomposites for biomedical applications. MATERIALS CHEMISTRY AND PHYSICS 2021; 264:124474. [DOI: 10.1016/j.matchemphys.2021.124474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
|
22
|
Roy S, Bobde Y, Ghosh B, Chakraborty C. Targeted Bioimaging of Cancer Cells Using Free Folic Acid-Sensitive Molybdenum Disulfide Quantum Dots through Fluorescence "Turn-Off". ACS APPLIED BIO MATERIALS 2021; 4:2839-2849. [PMID: 35014323 DOI: 10.1021/acsabm.1c00090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In the present study, a proficient way for targeted bioimaging of folate receptor (FR)-positive cancer cells using free folic acid (FA)- and MoS2 QD-based nanoprobes is discussed along with its advantages over the preparation of orthodox direct FA-nanoprobe bioconjugates for the imaging. The water-soluble MoS2 QDs of size 4-5 nm with cysteine functionalization are synthesized by a simplistic bottom-up hydrothermal method. The as-prepared MoS2 QDs exhibit the blue emission with the highest emission intensity at 444 nm upon excitation of 370 nm. The MoS2 QDs are too sensitive toward FA to produce an effective and stable nanofiber structure through supramolecular interaction, which demonstrates ∼97% quenching of fluorescence. Moreover, the high selectivity and sensitivity of MoS2 QDs toward FA make the MoS2 QD-based nanoprobe an appropriate candidate for FA-targeted "turn-off" imaging probes for in vivo study of FA-pretreated FR-overexpressed cancer cells. It is obvious from the confocal microscopy images that the FA-pretreated B16F10 cancer cells show higher population of dimmed fluorescence compared to untreated cancer cells and HEK-293 normal cells. The flow cytometry study quantitatively reveals the significant difference of the geometric mean of fluorescence between FA-pretreated and untreated B16F10 cancer cells. Hence, these MoS2 QD-based nanoprobes can be applied as potential nanoprobes for the prediagnosis of cancer through targeted bioimaging.
Collapse
Affiliation(s)
- Susmita Roy
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad 500078, India
| | - Yamini Bobde
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad 500078, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad 500078, India
| | - Chanchal Chakraborty
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad 500078, India
| |
Collapse
|
23
|
Jiang Y, Huang Y, Shi X, Lu Z, Ren J, Wang Z, Xu J, Fan Y, Wang L. Eu-MOF and its mixed-matrix membranes as a fluorescent sensor for quantitative ratiometric pH and folic acid detection, and visible fingerprint identifying. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00840d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The integration of 1 and polymer matrices leads to the fabrication of 1@polymer MMMs, which can be used in the detection of pH and folic acid. Powder samples of 1 also show potential for application in fingerprint identification.
Collapse
Affiliation(s)
- Yansong Jiang
- College of Chemistry, Jilin University, Changchun 130012, Jilin, China
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Yating Huang
- College of Chemistry, Jilin University, Changchun 130012, Jilin, China
| | - Xiangxiang Shi
- College of Chemistry, Jilin University, Changchun 130012, Jilin, China
| | - Zijing Lu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430072, Hubei, China
| | - Jiamo Ren
- College of Chemistry, Jilin University, Changchun 130012, Jilin, China
| | - Zimo Wang
- College of Chemistry, Jilin University, Changchun 130012, Jilin, China
| | - Jianing Xu
- College of Chemistry, Jilin University, Changchun 130012, Jilin, China
| | - Yong Fan
- College of Chemistry, Jilin University, Changchun 130012, Jilin, China
| | - Li Wang
- College of Chemistry, Jilin University, Changchun 130012, Jilin, China
| |
Collapse
|
24
|
Zhang YJ, Guo L, Yu YL, Wang JH. Photoacoustic-Based Miniature Device with Smartphone Readout for Point-of-Care Testing of Uric Acid. Anal Chem 2020; 92:15699-15704. [PMID: 33263986 DOI: 10.1021/acs.analchem.0c03470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Real-time and rapid detection of various biomarkers in body fluids has important significance for early disease diagnosis, efficient monitoring of treatment, and evaluation of prognosis. However, traditional detection methods not only require bulky and costly instruments but also are not suitable for the analysis of heterogeneous samples (e.g., serum and urine), limiting their applications in point-of-care testing (POCT). Herein, an integrated photoacoustic (PA) device with a smartphone as the acoustic signal readout has been constructed, greatly reducing the volume and cost of the instrument, and providing a potential miniature platform for POCT of clinical samples. By exploiting the electron transfer product of 3,3',5,5'-tetramethylbenzidine (TMB) (i.e., TMB++) as the PA probe and hemin-graphene oxide (H-GO) complex as the peroxidase, quantitative analysis of uric acid was successfully performed by using only 30 μL of a sample solution. Due to the favorable stability of artificial enzymes, reaction reagents could be effectively embedded in agar gel to make a portable "test strip". Therefore, operators just need to drop clinical samples on the "test strip" for PA analysis, which is user friendly without requiring complex sample preparation steps. In addition, since the acoustic change mainly comes from the PA effect, it has a lower background signal than UV-vis and fluorescence analysis, greatly improving the analytical performance. The simplicity, low cost, and broad adaptability make this miniature PA device attractive for on-site detection, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Ya-Jie Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Lan Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
25
|
Ye H, Song L, Zhang F, Li J, Su Z, Zhang Y. Highly Sensitive Electrochemical Detection of Folic Acid by Using a Hollow Carbon Nanospheres@molybdenum Disulfide Modified Electrode. ANAL SCI 2020; 37:575-580. [PMID: 33012758 DOI: 10.2116/analsci.20p297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
As a nutrient in body functions, folic acid (FA) plays a very important role for human health, and thus developing a highly sensitive method for its determination is of great significance. In the present work, carbon hollow nanospheres decorated with molybdenum disulfide nanosheets (CHN@MoS2) nanomaterials were produced through a simple method and adopted to modify a glassy carbon electrode for assembling a highly sensitive electrochemical sensor of FA. After characterizing the prepared nanomaterials using scanning-/transmission-electron microscopy and Raman spectra, as well as optimizing various testing conditions, including the pH value of the buffer solution, the accumulation time and amount of nanomaterials on electrode surface, and the electrochemical determination of FA was carried out using a CHN@MoS2 electrode. Owing to the coordinative advantages from CHN and MoS2, the results show that CHN@MoS2 exhibits excellent sensing responses for FA, and it has a wide linear range from 0.08 to 10.0 μM coupled with a low detection limit of 0.02 μM. Finally, the proposed method for FA detection was successfully applied in human urine analysis. The obtained results are satisfactory, revealing that the developed method based on CHN@MoS2 nanomaterials has important applications for FA determination.
Collapse
Affiliation(s)
- Huiming Ye
- Department of Clinical Laboratory, Women and Children's Hospital, School of Medicine, Xiamen University
| | - Liang Song
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences.,Department of Translational Medicine, Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences
| | - Fuhui Zhang
- Department of Clinical Laboratory, Women and Children's Hospital, School of Medicine, Xiamen University
| | - Juan Li
- Department of Clinical Laboratory, Women and Children's Hospital, School of Medicine, Xiamen University
| | - Zhiying Su
- Department of Obstetrics and gynecology, Women and Children's Hospital, School of Medicine, Xiamen University
| | - Yun Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences.,Department of Translational Medicine, Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences.,University of Chinese Academy of Sciences
| |
Collapse
|
26
|
Jing YF, Young DJ, Huang Q, Mi Y, Zhang SC, Hu FL. Amino group decorated coordination polymers for enhanced detection of folic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 238:118443. [PMID: 32403077 DOI: 10.1016/j.saa.2020.118443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
A series of fluorescent coordination polymers (CPs) {[Cd2(CH3-bpeb)2(BDC)2] CP1, (BDC)0.5/(NH2-BDC)0.5-CP1, (BDC)0.34/(NH2-BDC)0.66-CP1, (BDC)0.25/(NH2-BDC)0.75-CP1, (BDC)0.2/(NH2-BDC)0.8-CP1, (NH2-BDC)-CP1} were prepared from conjugated ligand 4,4'-((2-methyl-1,4-phenylene)bis(ethene-2,1-diyl))bipyridine (CH3-bpeb), terephthalic acid (BDC), aminoterephthalic acid (NH2-BDC) and CdSO4 under solvothermal conditions. The fluorescence of aqueous suspensions of these CPs was quenched by folic acid (FA) in a concentration dependent manner. The efficiency of quenching increasing with an increased proportion of NH2-BDC ligand in the CP with (NH2-BDC)-CP1 exhibiting a low detection limit of 1.7 × 10-7 M.
Collapse
Affiliation(s)
- Yan-Fang Jing
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China
| | - David James Young
- College of Engineering, IT and Environment, Charles Darwin University, Darwin, NT 0909, Australia
| | - Qin Huang
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China.
| | - Yan Mi
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China
| | - Shu-Cong Zhang
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China
| | - Fei-Long Hu
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China; Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China.
| |
Collapse
|
27
|
Yang B, Li X, Wang L, An J, Wang T, Zhang F, Ding B, Li Y. A water-stable MOF-AgClO4-abtz as fluorescent sensor for detection of folic acid based on inner filter effect. Talanta 2020; 217:121019. [DOI: 10.1016/j.talanta.2020.121019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
|
28
|
Mehmood S, Wang L, Yu H, Haq F, Fahad S, Bilal‐ul‐Amin, Alim Uddin M, Haroon M. Recent Progress on the Preparation of Cyclomatrix‐Polyphosphazene Based Micro/Nanospheres and Their Application for Drug Release. ChemistrySelect 2020. [DOI: 10.1002/slct.201904844] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sahid Mehmood
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Fazal Haq
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Shah Fahad
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Bilal‐ul‐Amin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Md Alim Uddin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Muhammad Haroon
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 P.R. China
| |
Collapse
|
29
|
Optical properties of folic acid in phosphate buffer solutions: the influence of pH and UV irradiation on the UV-VIS absorption spectra and photoluminescence. Sci Rep 2019; 9:14278. [PMID: 31582791 PMCID: PMC6776545 DOI: 10.1038/s41598-019-50721-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022] Open
Abstract
Using UV-VIS absorption spectroscopy, photoluminescence (PL) and photoluminescence excitation (PLE), the photodegradation reactions of folic acid (FA) in phosphate buffer (PB) solutions were studied. Regardless of the PB solution's pH, the UV-VIS spectra showed a gradual decrease in absorbance at 284 nm simultaneous with an increase in the absorbance of another band in the spectral range of 320-380 nm, which was downshifted under UV irradiation. The relative intensity of the FA PL band, situated in the spectral range 375-600 nm, was dependent on the pH of the PB solution. The FA PL intensity increased as increasing UV irradiation time up to 281 min. in PB solutions with pH values of 6.4 and 5.4. Under an emission wavelength of 500 nm, the position of the FA PLE spectrum changed as the PB solution pH varied from 7 to 5.4 and the irradiation time increased to 317 min. These changes were correlated with the formation of two photodegradation products, namely, pterine-6-carboxylic acid and p-amino-benzoyl-L-glutamic acid. According to UV-VIS spectroscopy and PL and PLE studies, the presence of various excipients in commercial pharmaceutical tablets does not affect the photodegradation of FA in PB solutions. Using IR spectroscopy, new evidences for the formation of the two photodegradation products of FA in PB solutions are shown.
Collapse
|
30
|
Peng Y, Dong W, Wan L, Quan X. Determination of folic acid via its quenching effect on the fluorescence of MoS2 quantum dots. Mikrochim Acta 2019; 186:605. [DOI: 10.1007/s00604-019-3705-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/21/2019] [Indexed: 01/01/2023]
|
31
|
Huang Z, Hu S, Xiong Y, Wei H, Xu H, Duan H, Lai W. Application and development of superparamagnetic nanoparticles in sample pretreatment and immunochromatographic assay. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.03.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Li X, Wu X, Zhang F, Zhao B, Li Y. Label-free detection of folic acid using a sensitive fluorescent probe based on ovalbumin stabilized copper nanoclusters. Talanta 2019; 195:372-380. [DOI: 10.1016/j.talanta.2018.11.067] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/18/2018] [Accepted: 11/21/2018] [Indexed: 11/30/2022]
|
33
|
Wang M, Fei X, Lv S, Sheng Y, Zou H, Song Y, Yan F, Zhu Q, Zheng K. Synthesis and characterization of a flexible fluorescent magnetic Fe 3O 4@SiO 2/CdTe-NH 2 nanoprobe. J Inorg Biochem 2018; 186:307-316. [PMID: 30015258 DOI: 10.1016/j.jinorgbio.2018.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 01/13/2023]
Abstract
In this study, we designed and synthesized two novel fluorescent magnetic nanoparticles. Fe3O4@SiO2-NH-GSH-CdTe (FSGC) (GSH = glutathione) nanoparticles were synthesized using amino-functionalized Fe3O4@SiO2 nanoparticles and GSH-stabilized CdTe quantum dots (CdTe QDs), while flexible Fe3O4@SiO2-NH-GSH-CdTe-NH-NH2 (FSGCN) nanoparticles were synthesized using the FSGC precursor and 1,6-hexamethylenediamine. These two kinds of nanoprobes exhibited excellent magnetic and fluorescent properties. By comparing the fluorescence quenching effect of folic acid (FA) on FSGC and FSGCN, we found that the quenching effect of FA on FSGC was acute and the process was too fast to determine the FA content. However, the quenching effect of FA on flexible FSGCN was mild and hence it could be used as a nanoprobe to determine FA concentration. At physiological pH, the fluorescence quenching effect of FA on the FSGCN nanoprobes was fitted according to the Stern-Volmer equation with a linear response in the concentration range of 0.14 to 4.20 μg mL-1 with a detection limit of 15.1 × 10-9 g mL-1 (S/N = 3) under optimized experimental conditions. The proposed flexible nanoprobe was successfully used to determine the content of FA in folic acid tablets. Recovery was found to be in the range of 92.7%-105.6% with a relative standard deviation of 1.12%-3.84%. Owing to their good stability, environment-friendly characteristics, high selectivity, and good optical properties and biocompatibility, these nanoprobes have potential for usage in practical applications.
Collapse
Affiliation(s)
- Min Wang
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China; Development and Molecular Pharmacology Laboratory of Active Polysaccharides, School of Life Science, Jilin University, Changchun 130012, People's Republic of China
| | - Xiaofang Fei
- Development and Molecular Pharmacology Laboratory of Active Polysaccharides, School of Life Science, Jilin University, Changchun 130012, People's Republic of China; Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Science, Jilin University, Changchun 130012, People's Republic of China; National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, People's Republic of China.
| | - Shaowu Lv
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Science, Jilin University, Changchun 130012, People's Republic of China
| | - Ye Sheng
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Haifeng Zou
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yanhua Song
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Fei Yan
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Qianlong Zhu
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Keyan Zheng
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China.
| |
Collapse
|
34
|
Facile one-pot synthesis of multifunctional polyphosphazene nanoparticles as multifunctional platform for tumor imaging. Anal Bioanal Chem 2018; 410:3723-3730. [PMID: 29725730 DOI: 10.1007/s00216-018-1035-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 10/17/2022]
Abstract
By integrating imaging and drug-delivery in a single system, fluorescent nano-multifunctional imaging platforms can offer simultaneous diagnosis and therapy to diseases like cancer. However, the synthesis of such system involves a tedious, time-consuming, and multi-step process. Herein we report a facile method based on simple ultrasonication to synthesize highly cross-linked, monodispersed fluorescent polyphosphazene nanoparticles from hexachlorocyclotriphosphazene (HCCP) and dichlorofluorescein (FD). Various functional groups (folic acid, PEG-NH2, and methylene blue) can be "fastened" in situ onto the poly(cyclotriphosphazene-co-dichlorofluorescein) (PCTPDF) nanoparticles to expand its application as nano-multifunctional platform. All the nanoparticles were characterized spectrophotometrically, and morphology was established by the images obtained from scanning electron microscope (SEM). The synthesized multifunctional nanoparticles exhibited low toxicity and penetrated through the cytomembranes of human colon cancer (HCT 116) cells. When applied to in vivo tumor imaging using biologically engineered mouse model, methylene blue functionalized (PCTPDF@MB) nanoparticles exhibited excellent photodynamic activity and imaging ability. Thus, PCTPDF nanoplatform based on multi-functional fluorescent nanoparticles might offer an efficient solution to new age theranostics. Apart from diagnostics application, PCTPDF, as a nanoplatform, could also be utilized to achieve more comprehensive application in modern analytic chemistry. Graphical Abstract The table of contents.
Collapse
|
35
|
Shen L, Li B, Qiao Y. Fe₃O₄ Nanoparticles in Targeted Drug/Gene Delivery Systems. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E324. [PMID: 29473914 PMCID: PMC5849021 DOI: 10.3390/ma11020324] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 01/04/2023]
Abstract
Fe₃O₄ nanoparticles (NPs), the most traditional magnetic nanoparticles, have received a great deal of attention in the biomedical field, especially for targeted drug/gene delivery systems, due to their outstanding magnetism, biocompatibility, lower toxicity, biodegradability, and other features. Naked Fe₃O₄ NPs are easy to aggregate and oxidize, and thus are often made with various coatings to realize superior properties for targeted drug/gene delivery. In this review, we first list the three commonly utilized synthesis methods of Fe₃O₄ NPs, and their advantages and disadvantages. In the second part, we describe coating materials that exhibit noticeable features that allow functionalization of Fe₃O₄ NPs and summarize their methods of drug targeting/gene delivery. Then our efforts will be devoted to the research status and progress of several different functionalized Fe₃O₄ NP delivery systems loaded with chemotherapeutic agents, and we present targeted gene transitive carriers in detail. In the following section, we illuminate the most effective treatment systems of the combined drug and gene therapy. Finally, we propose opportunities and challenges of the clinical transformation of Fe₃O₄ NPs targeting drug/gene delivery systems.
Collapse
Affiliation(s)
- Lazhen Shen
- School of Chemistry and Environmental Engineering, Institute of Applied Chemistry, Shanxi Datong University, Datong 037009, China.
| | - Bei Li
- School of Chemistry and Environmental Engineering, Institute of Applied Chemistry, Shanxi Datong University, Datong 037009, China.
| | - Yongsheng Qiao
- Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000, China.
| |
Collapse
|
36
|
Visual detection of melamine by using a ratiometric fluorescent probe consisting of a red emitting CdTe core and a green emitting CdTe shell coated with a molecularly imprinted polymer. Mikrochim Acta 2018; 185:135. [PMID: 29594750 DOI: 10.1007/s00604-017-2664-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/31/2017] [Indexed: 10/18/2022]
Abstract
A composite ratiometric fluorescent probe is described for visual detection of melamine (MEL) in milk samples. It is based on the use of red emitting and green emitting CdTe quantum dots, and a mesoporous molecularly imprinted polymer. The red emitting QDs are embedded in the silica microsphere to serve as a core, and the green emitting QDs are coated on the surface of the silica microsphere as a shell. A molecularly imprinted polymer (MIP) with specific recognition sites for MEL was placed on the shell. If MEL is bound by the MIP, the green fluorescence is quenched due to hydrogen bond interaction. The red emission, in contrast, remains unchanged. Quenching leads to a change in the color of fluorescence from red-green to purely red. This effect allows for visual and instrumental detection of MEL. The mesoporous structure of the MIP reduces the mass transfer resistance and enhances the accessibility of sites for MEL. Response is linear in the 50-1000 ng mL-1 MEL concentration range, and the limit of detection is 13 ng mL-1. The fluorescent probe was successfully applied to the analysis of MEL-spiked milk samples and gave recoveries between 94.1 and 98.7%, with 3.6-5.1% relative standard deviations. Graphical abstract Schematic of the preparation and detection of the composite probe. The probe was applied for the selective recognition and visual detection of melamine (MEL).
Collapse
|
37
|
Wang M, Zheng KY, Lv SW, Zou HF, Liu HS, Yan GL, Liu AD, Fei XF. Preparation and characterization of universal Fe3O4@SiO2/CdTe nanocomposites for rapid and facile detection and separation of membrane proteins. NEW J CHEM 2018. [DOI: 10.1039/c7nj04484d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The separation and enrichment of cell membrane proteins was achieved by the construction of bi-functional magnetic fluorescent nanoprobes.
Collapse
Affiliation(s)
- Min Wang
- Development and Molecular Pharmacology Laboratory of Active Polysaccharides
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Ke-yan Zheng
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Shao-wu Lv
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Hai-feng Zou
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Hong-sen Liu
- Development and Molecular Pharmacology Laboratory of Active Polysaccharides
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Gang-lin Yan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Ai-dong Liu
- Third Affiliated Hospital of Changchun University of Traditional Chinese Medicine
- Changchun 130033
- China
| | - Xiao-fang Fei
- Development and Molecular Pharmacology Laboratory of Active Polysaccharides
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
38
|
Alphandéry E, Abi Haidar D, Seksek O, Thoreau M, Trautmann A, Bercovici N, Gazeau F, Guyot F, Chebbi I. Nanoprobe Synthesized by Magnetotactic Bacteria, Detecting Fluorescence Variations under Dissociation of Rhodamine B from Magnetosomes following Temperature, pH Changes, or the Application of Radiation. ACS APPLIED MATERIALS & INTERFACES 2017; 9:36561-36572. [PMID: 29035036 DOI: 10.1021/acsami.7b09720] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We report a method of fabrication of fluorescent magnetosomes, designated as MCR400, in which 400 μM of rhodamine B are introduced in the growth medium of AMB-1 magnetotactic bacteria and fluorescent magnetosomes are then extracted from these bacteria. These fluorescent magnetosomes behave differently from most fluorescent nanoprobes, which often lead to fluorescence losses over time due to photobleaching. Indeed, when MCR400 are heated to 30-90 °C, brought to an acidic pH, or exposed to radiations, we observed that their fluorescence intensity increased. We attributed this behavior to the dissociation of rhodamine B from the magnetosomes. Interestingly, enhanced fluorescence was also observed in vitro when MCR400 were mixed with either primary macrophages or tumor cells (TC1-GFP or RG2-Cells) or in vivo when MCR400 were introduced in rat glioblastoma. We showed that MCR400 internalize in tumor and immune cells (macrophages) leading to enhanced fluorescence, suggesting that fluorescent magnetosomes could be used during cancer treatments such as magnetic hyperthermia to image cells of interest such as immune or tumor cells.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 CNRS, Sorbonne Universités, UPMC, University Paris 06, Muséum National d'Histoire Naturelle , 4 Place Jussieu, 75005 Paris, France
- Nanobacterie SARL , 36 Boulevard Flandrin, 75116 Paris, France
| | - Darine Abi Haidar
- CNRS UMR 8165, Imagerie et Modelisation en Neurobiologie, et Cancerologie, Paris-Saclay University , Campus d'Orsay, Bêt 440, 91405 Orsay, France
- Paris Diderot University , F-75013, Paris, France
| | - Olivier Seksek
- CNRS UMR 8165, Imagerie et Modelisation en Neurobiologie, et Cancerologie, Paris-Saclay University , Campus d'Orsay, Bêt 440, 91405 Orsay, France
| | | | | | | | - Florence Gazeau
- Laboratoire de Matière et Systèmes Complexes, MSC, Université Paris Diderot , Bâtiment Condorcet, Case 7056, 75205 Paris Cedex 13, France
| | - François Guyot
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 CNRS, Sorbonne Universités, UPMC, University Paris 06, Muséum National d'Histoire Naturelle , 4 Place Jussieu, 75005 Paris, France
| | - Imène Chebbi
- Nanobacterie SARL , 36 Boulevard Flandrin, 75116 Paris, France
| |
Collapse
|