1
|
Chen W, Liu P. Dendritic polymer prodrug-based unimolecular micelles for pH-responsive co-delivery of doxorubicin and camptothecin with synergistic controlled drug release effect. Colloids Surf B Biointerfaces 2024; 238:113906. [PMID: 38615388 DOI: 10.1016/j.colsurfb.2024.113906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/07/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
Combination chemotherapy has been recognized as a more powerful strategy for tumor treatment rather than the single chemotherapy. However, the interactive mechanism of the two hydrophobic chemotherapeutic drugs has not been explored by now. Aiming for a better synergistic effect, such interactive mechanism was investigated in the present work, by designing CPT@DOX-DPUTEA-PEG nanomedicine with encapsulated camptothecin (CPT) and conjugated doxorubicin (DOX). The synergistic controlled drug release effect was found for the two drugs loaded on the different sites of the dendritic polyurethane core. Synergism was achieved on the HepG2 cells with a combination index (CI) of 0.58 in the in vitro cellular experiments. The results demonstrated the promising application of the unimolecular micelles-based nanomedicine with independently loading of two hydrophobic chemotherapeutic drugs.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810016, China
| | - Peng Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
2
|
Wang X, Zhang M, Li Y, Cong H, Yu B, Shen Y. Research Status of Dendrimer Micelles in Tumor Therapy for Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304006. [PMID: 37635114 DOI: 10.1002/smll.202304006] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/16/2023] [Indexed: 08/29/2023]
Abstract
Dendrimers are a family of polymers with highly branched structure, well-defined composition, and extensive functional groups, which have attracted great attention in biomedical applications. Micelles formed by dendrimers are ideal nanocarriers for delivering anticancer agents due to the explicit study of their characteristics of particle size, charge, and biological properties such as toxicity, blood circulation time, biodistribution, and cellular internalization. Here, the classification, preparation, and structure of dendrimer micelles are reviewed, and the specific functional groups modified on the surface of dendrimers for tumor active targeting, stimuli-responsive drug release, reduced toxicity, and prolonged blood circulation time are discussed. In addition, their applications are summarized as various platforms for biomedical applications related to cancer therapy including drug delivery, gene transfection, nano-contrast for imaging, and combined therapy. Other applications such as tissue engineering and biosensor are also involved. Finally, the possible challenges and perspectives of dendrimer micelles for their further applications are discussed.
Collapse
Affiliation(s)
- Xijie Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Min Zhang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yanan Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of, Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
3
|
Liu W, Li X, Wang T, Xiong F, Sun C, Yao X, Huang W. Platinum Drug-Incorporating Polymeric Nanosystems for Precise Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208241. [PMID: 36843317 DOI: 10.1002/smll.202208241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Indexed: 05/25/2023]
Abstract
Platinum (Pt) drugs are widely used in clinic for cancer therapy, but their therapeutic outcomes are significantly compromised by severe side effects and acquired drug resistance. With the emerging immunotherapy and imaging-guided cancer therapy, precise delivery and release of Pt drugs have drawn great attention these days. The targeting delivery of Pt drugs can greatly increase the accumulation at tumor sites, which ultimately enhances antitumor efficacy. Further, with the combination of Pt drugs and other theranostic agents into one nanosystem, it not only possesses excellent synergistic efficacy but also achieves real-time monitoring. In this review, after the introduction of Pt drugs and their characteristics, the recent progress of polymeric nanosystems for efficient delivery of Pt drugs is summarized with an emphasis on multi-modal synergistic therapy and imaging-guided Pt-based cancer treatment. In the end, the conclusions and future perspectives of Pt-encapsulated nanosystems are given.
Collapse
Affiliation(s)
- Wei Liu
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xin Li
- School of Pharmaceutical Science, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Ting Wang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Fei Xiong
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Changrui Sun
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xikuang Yao
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Wei Huang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|
4
|
Braatz D, Cherri M, Tully M, Dimde M, Ma G, Mohammadifar E, Reisbeck F, Ahmadi V, Schirner M, Haag R. Chemical Approaches to Synthetic Drug Delivery Systems for Systemic Applications. Angew Chem Int Ed Engl 2022; 61:e202203942. [PMID: 35575255 PMCID: PMC10091760 DOI: 10.1002/anie.202203942] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 11/10/2022]
Abstract
Poor water solubility and low bioavailability of active pharmaceutical ingredients (APIs) are major causes of friction in the pharmaceutical industry and represent a formidable hurdle for pharmaceutical drug development. Drug delivery remains the major challenge for the application of new small-molecule drugs as well as biopharmaceuticals. The three challenges for synthetic delivery systems are: (i) controlling drug distribution and clearance in the blood; (ii) solubilizing poorly water-soluble agents, and (iii) selectively targeting specific tissues. Although several polymer-based systems have addressed the first two demands and have been translated into clinical practice, no targeted synthetic drug delivery system has reached the market. This Review is designed to provide a background on the challenges and requirements for the design and translation of new polymer-based delivery systems. This report will focus on chemical approaches to drug delivery for systemic applications.
Collapse
Affiliation(s)
- Daniel Braatz
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Mariam Cherri
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Michael Tully
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Mathias Dimde
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Guoxin Ma
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Ehsan Mohammadifar
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Felix Reisbeck
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Vahid Ahmadi
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Michael Schirner
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Rainer Haag
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| |
Collapse
|
5
|
Akib AA, Shakil R, Rumon MMH, Roy CK, Chowdhury EH, Chowdhury AN. Natural and Synthetic Micelles for Delivery of Small Molecule Drugs, Imaging Agents and Nucleic Acids. Curr Pharm Des 2022; 28:1389-1405. [PMID: 35524674 DOI: 10.2174/1381612828666220506135301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/02/2022] [Indexed: 11/22/2022]
Abstract
The poor solubility, lack of targetability, quick renal clearance, and degradability of many therapeutic and imaging agents strongly limit their applications inside the human body. Amphiphilic copolymers having self-assembling properties can form core-shell structures called micelles, a promising nanocarrier for hydrophobic drugs, plasmid DNA, oligonucleotides, small interfering RNAs (siRNAs) and imaging agents. Fabrication of micelles loaded with different pharmaceutical agents provides numerous advantages including therapeutic efficacy, diagnostic sensitivity, and controlled release to the desired tissues. Moreover, due to their smaller particle size (10-100 nm) and modified surfaces with different functional groups (such as ligands) help them to accumulate easily in the target location, enhancing cellular uptake and reducing unwanted side effects. Furthermore, the release of the encapsulated agents may also be triggered from stimuli-sensitive micelles at different physiological conditions or by an external stimulus. In this review article, we discuss the recent advancement in formulating and targeting different natural and synthetic micelles including block copolymer micelles, cationic micelles, and dendrimers-, polysaccharide- and protein-based micelles for the delivery of different therapeutic and diagnostic agents. Finally, their applications, outcomes, and future perspectives have been summarized.
Collapse
Affiliation(s)
- Anwarul Azim Akib
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| | - Ragib Shakil
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| | - Md Mahamudul Hasan Rumon
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| | - Chanchal Kumar Roy
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| | - Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Malaysia
| | - Al-Nakib Chowdhury
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| |
Collapse
|
6
|
Li J, Liu P. Facile synthesis of hyperbranched polymer prodrug as unimolecular micelles for overcoming multidrug resistance. Polym Chem 2022. [DOI: 10.1039/d1py01670a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unimolecular micelles have attracted more interests as drug delivery systems (DDSs) owing to their superior stability. Here, hyperbranched polymer prodrug (HBPP) was designed with high drug content of 57.6% as...
Collapse
|
7
|
Chen W, Liu P. Facile synthesis of PEGylated dendritic polyurethane as unimolecular micelles for ultrasound-triggered localized drug delivery. Polym Chem 2022. [DOI: 10.1039/d1py01489g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PEGylated dendritic polyurethane was designed via a facile one-pot method as unimolecular micelles for ultrasound-triggered localized drug delivery.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810016, China
| | - Peng Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
8
|
Fluorescent turn-on carbon dot-cored pseudo unimolecular prodrug micelles for tumor-specific dual-triggered drug delivery. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Zhao Y, Zhao T, Cao Y, Sun J, Zhou Q, Chen H, Guo S, Wang Y, Zhen Y, Liang XJ, Zhang S. Temperature-Sensitive Lipid-Coated Carbon Nanotubes for Synergistic Photothermal Therapy and Gene Therapy. ACS NANO 2021; 15:6517-6529. [PMID: 33749240 DOI: 10.1021/acsnano.0c08790] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The combination of photothermal therapy (PTT) and gene therapy (GT) shows great potential to achieve synergistic anti-tumor activity. However, the lack of a controlled release of genes from carriers remains a severe hindrance. Herein, peptide lipid (PL) and sucrose laurate (SL) were used to coat single-walled carbon nanotubes (SCNTs) and multi-walled carbon nanotubes (MCNTs) to form bifunctional delivery systems (denoted SCNT-PS and MCNT-PS, respectively) with excellent temperature-sensitivity and photothermal performance. CNT/siRNA suppressed tumor growth by silencing survivin expression while exhibiting photothermal effects under near-infrared (NIR) light. SCNT-PS/siRNA showed very high anti-tumor activity, resulting in the complete inhibition of some tumors. It was highly efficient for systemic delivery to tumor sites and to facilitate siRNA release owing to the phase transition of the temperature-sensitive lipids, due to PL and SL coating. Thus, SCNT-PS/siRNA is a promising anti-tumor nanocarrier for combined PTT and GT.
Collapse
Affiliation(s)
- Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Tianyi Zhao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yingnan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Jiao Sun
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Quan Zhou
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Huiying Chen
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education and State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yifeng Wang
- CAS Center for Excellence in Nanoscience, Chinese Academy of Sciences Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Yuhong Zhen
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xing-Jie Liang
- CAS Center for Excellence in Nanoscience, Chinese Academy of Sciences Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
10
|
Synthesis, Preparation and Evaluation of Doxorubicin-Loaded Chitosan Oligosaccharide/Indomethacin Nanoparticles. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Kadina YA, Razuvaeva EV, Streltsov DR, Sedush NG, Shtykova EV, Kulebyakina AI, Puchkov AA, Volkov DS, Nazarov AA, Chvalun SN. Poly(Ethylene Glycol)- b-Poly(D,L-Lactide) Nanoparticles as Potential Carriers for Anticancer Drug Oxaliplatin. Molecules 2021; 26:molecules26030602. [PMID: 33498932 PMCID: PMC7865450 DOI: 10.3390/molecules26030602] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
Nanoparticles based on biocompatible methoxy poly(ethylene glycol)-b-poly(D,L-lactide) (mPEG113-b-P(D,L)LAn) copolymers as potential vehicles for the anticancer agent oxaliplatin were prepared by a nanoprecipitation technique. It was demonstrated that an increase in the hydrophobic PLA block length from 62 to 173 monomer units leads to an increase of the size of nanoparticles from 32 to 56 nm. Small-angle X-ray scattering studies confirmed the “core-corona” structure of mPEG113-b-P(D,L)LAn nanoparticles and oxaliplatin loading. It was suggested that hydrophilic oxaliplatin is adsorbed on the core-corona interface of the nanoparticles during the nanoprecipitation process. The oxaliplatin loading content decreased from 3.8 to 1.5% wt./wt. (with initial loading of 5% wt./wt.) with increasing PLA block length. Thus, the highest loading content of the anticancer drug oxaliplatin with its encapsulation efficiency of 76% in mPEG113-b-P(D,L)LAn nanoparticles can be achieved for block copolymer with short hydrophobic block.
Collapse
Affiliation(s)
- Yulia A. Kadina
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (Y.A.K.); (D.R.S.); (N.G.S.); (A.I.K.); (A.A.P.); (S.N.C.)
| | - Ekaterina V. Razuvaeva
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (Y.A.K.); (D.R.S.); (N.G.S.); (A.I.K.); (A.A.P.); (S.N.C.)
- Correspondence:
| | - Dmitry R. Streltsov
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (Y.A.K.); (D.R.S.); (N.G.S.); (A.I.K.); (A.A.P.); (S.N.C.)
| | - Nikita G. Sedush
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (Y.A.K.); (D.R.S.); (N.G.S.); (A.I.K.); (A.A.P.); (S.N.C.)
| | - Eleonora V. Shtykova
- Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia;
| | - Alevtina I. Kulebyakina
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (Y.A.K.); (D.R.S.); (N.G.S.); (A.I.K.); (A.A.P.); (S.N.C.)
| | - Alexander A. Puchkov
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (Y.A.K.); (D.R.S.); (N.G.S.); (A.I.K.); (A.A.P.); (S.N.C.)
| | - Dmitry S. Volkov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (D.S.V.); (A.A.N.)
| | - Alexey A. Nazarov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (D.S.V.); (A.A.N.)
| | - Sergei N. Chvalun
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (Y.A.K.); (D.R.S.); (N.G.S.); (A.I.K.); (A.A.P.); (S.N.C.)
- Enikolopov Institute of Synthetic Polymeric Materials Russian Academy of Sciences, 117393 Moscow, Russia
| |
Collapse
|
12
|
Qi J, Xiong Y, Cheng K, Huang Q, Cao J, He F, Mei L, Liu G, Deng W. Heterobifunctional PEG-grafted black phosphorus quantum dots: "Three-in-One" nano-platforms for mitochondria-targeted photothermal cancer therapy. Asian J Pharm Sci 2020; 16:222-235. [PMID: 33995616 PMCID: PMC8105514 DOI: 10.1016/j.ajps.2020.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/11/2020] [Accepted: 09/02/2020] [Indexed: 11/15/2022] Open
Abstract
Black phosphorus (BP) nano-materials, especially BP quantum dots (BPQDs), performs outstanding photothermal antitumor effects, excellent biocompatibility and biodegradability. However, there are several challenges to overcome before offering real benefits, such as poor stability, poor dispersibility as well as difficulty in tailoring other functions. Here, a "three-in-one" mitochondria-targeted BP nano-platform, called as BPQD-PEG-TPP, was designed. In this nano-platform, BPQDs were covalently grafted with a heterobifunctional PEG, in which one end was an aryl diazo group capable of reacting with BPQDs to form a covalent bond and the other end was a mitochondria-targeted triphenylphosphine (TPP) group. In addition to its excellent near-infrared photothermal properties, BPQD-PEG-TPP had much enhanced stability and dispersibility under physiological conditions, efficient mitochondria targeting and promoted ROS production through a photothermal effect. Both in vitro and in vivo experiments demonstrated that BPQD-PEG-TPP performed much superior photothermal cytotoxicity than BPQDs and BPQD-PEG as the mitochondria targeted PTT. Thus this "three-in-one" nanoplatform fabricated through polymer grafting, with excellent stability, dispersibility and negligible side effects, might be a promising strategy for mitochondria-targeted photothermal cancer therapy.
Collapse
Affiliation(s)
- Junyang Qi
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yue Xiong
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Ke Cheng
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Qi Huang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jingxiu Cao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Fumei He
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Lin Mei
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.,School of Material Science and Engineering and Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Gan Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento CA 95817, USA
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
13
|
Charbgoo F, Soltani F, Alibolandi M, Taghdisi SM, Abnous K, Ramezani P, Ramezani M. Ladder-like targeted and gated doxorubicin delivery using bivalent aptamer in vitro and in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111618. [PMID: 33321660 DOI: 10.1016/j.msec.2020.111618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
Regarding side effects of commonly used chemotherapeutic drugs on normal tissues, researchers introduced smart delivery and on-demand release systems. Herein, we applied a bivalent aptamer composed of ATP and AS1411 aptamers for separate targeting and gating of mesoporous silica nanoparticles in a ladder like structure with one bifunctional molecule. First part of the apatmer, AS1411, direct the delivery system to the desired site while the second part, ATP aptamer, opens the pores and release the drug just after penetrance to the cytoplasm ensuring delivery of DOX into the tumor cells. This approach faced the previous challenge of coincident targeting and gating with one aptamer. Our results demonstrated that the proposed nano-system remarkably accumulated in cancer tissue and released the drug in a sustained pattern in cancer cells. It was notably effective for inducing apoptosis in cancer cells and tumor growth inhibition without any significant side effect on normal cells and organs. Moreover, Si-cs-DOX-AAapt improved the mice survival time compared with free doxorubicin and there was no significant change in weight of mice administered with the targeted formulation. This report may open new insight for providing smart delivery systems for successful cancer treatment by introducing separate gating and targeting property by a bivalent aptamer to increase the control over drug release.
Collapse
Affiliation(s)
- Fahimeh Charbgoo
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Fatemeh Soltani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Li Z, Ye L, Liu J, Lian D, Li X. Sorafenib-Loaded Nanoparticles Based on Biodegradable Dendritic Polymers for Enhanced Therapy of Hepatocellular Carcinoma. Int J Nanomedicine 2020; 15:1469-1480. [PMID: 32184599 PMCID: PMC7062400 DOI: 10.2147/ijn.s237335] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/21/2020] [Indexed: 12/29/2022] Open
Abstract
PURPOSE In spite of its enhanced efficacy and reduced side effects in clinical hepatocellular carcinoma (HCC) therapy, the therapeutic efficacy of antitumor angiogenesis inhibitor sorafenib (SFB) is still restricted due to short in vivo half-life and drug resistance. Here, a novel SFB-loaded dendritic polymeric nanoparticle (NP-TPGS-SFB) was developed for enhanced therapy of HCC. METHODS NP-TPGS-SFB was fabricated by encapsulating SFB with biodegradable dendritic polymers poly(amidoamine)-poly(γ-benzyl-L-Glutamate)-b-D-α-tocopheryl polyethylene glycol 1000 succinate (PAM-PBLG-b-TPGS). RESULTS NP-TPGS-SFB exhibited excellent stability and achieved acid-responsive release of SFB. It also exhibited much higher cellular uptake efficiency in HepG2 human liver cells than PEG-conjugated NP (NP-PEG-SFB). Furthermore, MTT assay confirmed that NP-TPGS-SFB induced higher cytotoxicity than NP-PEG-SFB and free SFB, respectively. Lastly, NP-TPGS-SFB significantly inhibited tumor growth in mice bearing HepG2 xenografts, with negligible side effects. CONCLUSION Our result suggests that NP-TPGS-SFB may be a novel approach for enhanced therapy of HCC with promising potential.
Collapse
Affiliation(s)
- Zihuang Li
- Department of Radiation Oncology, The Second Clinical Medical College of Jinan University, Shenzhen Municipal People’s Hospital, Shenzhen518020, People’s Republic of China
| | - Ling Ye
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou510632, People’s Republic of China
| | - Jingwen Liu
- Department of Radiation Oncology, The Second Clinical Medical College of Jinan University, Shenzhen Municipal People’s Hospital, Shenzhen518020, People’s Republic of China
| | - Daizheng Lian
- Department of Radiation Oncology, The Second Clinical Medical College of Jinan University, Shenzhen Municipal People’s Hospital, Shenzhen518020, People’s Republic of China
| | - Xianming Li
- Department of Radiation Oncology, The Second Clinical Medical College of Jinan University, Shenzhen Municipal People’s Hospital, Shenzhen518020, People’s Republic of China
| |
Collapse
|
15
|
Matha K, Lollo G, Taurino G, Respaud R, Marigo I, Shariati M, Bussolati O, Vermeulen A, Remaut K, Benoit JP. Bioinspired hyaluronic acid and polyarginine nanoparticles for DACHPt delivery. Eur J Pharm Biopharm 2020; 150:1-13. [PMID: 32113915 DOI: 10.1016/j.ejpb.2020.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/30/2020] [Accepted: 02/21/2020] [Indexed: 12/15/2022]
Abstract
This work here presented provides insights over a novel biodegradable polymeric nanosystem made of hyaluronic acid and polyarginine for diaminocyclohexane-platinum (DACHPt) encapsulation. Using mild conditions based on ionic gelation technique, monodispersed blank and DACHPt-loaded nanoparticles (NP) with a size of around 200 nm and negative ζ potential (-35 mV) were obtained. The freeze-drying process was optimized to improve the stability and shelf-life of the developed nanoparticles. After reconstitution, nanoparticles maintained their size showing an association efficiency of around 70% and a high drug loading (8%). In vitro cytotoxicity studies revealed that DACHPt-loaded nanoparticles had a superior anticancer activity compared with oxaliplatin solution. The IC50 was reduced by a factor of two in HT-29 cells (IC50 39 µM vs 74 µM, respectively), and resulted almost 1.3 fold lower in B6KPC3 cells (18 µM vs 23 µM respectively). Whereas toxic effects of both drug and DACHPt-loaded nanoparticles were comparable in the A549 cell line (IC50 11 µM vs 12 µM). DACHPt-loaded nanoparticles were also able to modulate immunogenic cell death (ICD) in vitro. After incubation with B6KPC3 cells, an increase in HMGB1 (high-mobility group box 1) production associated with ATP release occurred. Then, in vivo pharmacokinetic studies were performed after intravenous injection (IV) of DACHPt-loaded nanoparticles and oxaliplatin solution in healthy mice (35.9 µg of platinum equivalent/mouse). An AUC six times higher (24 h * mg/L) than the value obtained following the administration of oxaliplatin solution (3.76 h * mg/L) was found. Cmax was almost five times higher than the control (11.4 mg/L for NP vs 2.48 mg/L). Moreover, the reduction in volume of distribution and clearance clearly indicated a more limited tissue distribution. A simulated repeated IV regimen was performed in silico and showed no accumulation of platinum from the nanoparticles. Overall, the proposed approach discloses a novel nano-oncological treatment based on platinum derivative with improved antitumor activity in vitro and in vivo stability as compared to the free drug.
Collapse
Affiliation(s)
- Kevin Matha
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021, Angers, France; CHU Angers, Département Pharmacie, 4 rue Larrey, 49933 Angers cedex 9, France
| | - Giovanna Lollo
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France
| | - Giuseppe Taurino
- Department of Biomedical, Biotechnological, and Translational Sciences, University of Parma, 43100 Parma, Italy
| | - Renaud Respaud
- Centre d'Étude des Pathologies Respiratoires-CEPR, Institut National de la Santé et de la Recherche Médicale-INSERM, Unité Mixte de Recherche UMR 1100, Labex Mabimprove, 37000 Tours, France; Centre Hospitalier Régional Universitaire-CHRU de Tours, Hôpital Trousseau, Service de Pharmacie, 37170 Chambray-les-Tours, France
| | - Ilaria Marigo
- Istituto Oncologico Veneto, IOV-IRCCS, 35128 Padova, Italy
| | - Molood Shariati
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Ovidio Bussolati
- Department of Biomedical, Biotechnological, and Translational Sciences, University of Parma, 43100 Parma, Italy
| | - An Vermeulen
- Laboratory of Medical Biochemistry and Clinical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Katrien Remaut
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Jean-Pierre Benoit
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021, Angers, France; CHU Angers, Département Pharmacie, 4 rue Larrey, 49933 Angers cedex 9, France.
| |
Collapse
|
16
|
Self-assembled multifunctional nanotheranostics loading GEM for targeted lung cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110786. [PMID: 32409023 DOI: 10.1016/j.msec.2020.110786] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/12/2020] [Accepted: 02/28/2020] [Indexed: 12/20/2022]
Abstract
The aim of this study was to prepare a promising drug carrier for treatment of lung cancer. The self-assembly nanoparticles of SDP-GEM/PEI-PEG-anti-EGFR with chemotherapeutic drug of gemcitabine (GEM), Magnetic resonance imaging (MRI) guided- imaging and targeting of anti- Epidermal Growth Factor Receptor (anti-EGFR) were designed. The imaging capacity, targeting feasibility and anti-tumor function were evaluated respectively. SDP-GEM/PEI-PEG-anti-EGFR exhibited contrast enhancement under T2 Weight Image (T2WI) and a liner relationship was found between the concentration and relaxation rate of R2 and R2* in vitro. With the targeting of anti-EGFR, the endocytosis of nanoparticles increased significantly, which effectively killed lung cancer cells in vitro, and importantly it can be accurately delivered to tumor site within 3 h in vivo. Prolonged lifetime and smaller tumor volume demonstrated that SDP-GEM/PEI-PEG-anti-EGFR efficiently inhibited tumor growth in vivo. Therefore, SDP-GEM/PEI-PEG-anti-EGFR was an effective and safe drug carrier, which had a great potential application in MRI-guided lung cancer therapy.
Collapse
|
17
|
Calcium-doped mesoporous silica nanoparticles as a lysosomolytic nanocarrier for amine-free loading and cytosolic delivery of siRNA. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.08.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Liu M, Sun X, Liao Z, Li Y, Qi X, Qian Y, Fenniri H, Zhao P, Shen J. Zinc oxide end-capped Fe 3O 4@mSiO 2 core-shell nanocarriers as targeted and responsive drug delivery system for chemo-/ions synergistic therapeutics. Drug Deliv 2019; 26:732-743. [PMID: 31340678 PMCID: PMC6713220 DOI: 10.1080/10717544.2019.1642419] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 10/31/2022] Open
Abstract
Multifunctional core-shell nanocarriers based on zinc oxide (ZnO)-gated magnetic mesoporous silica nanoparticles (MMSN) were prepared for cancer treatment through magnetic targeting and pH-triggered controlled drug release. Under an external magnetic field, the MMSN could actively deliver chemotherapeutic agent, daunomycin (DNM), to the targeted sites. At neutral aqueous, the functionalized MMSN could stably accommodate the DNM molecules since the mesopores were capped by the ZnO gatekeepers. In contrast, at the acid intercellular environment, the gatekeepers would be removed to control the release of drugs due to the dissolution of ZnO. Meanwhile, ZnO quantum dots not only rapidly dissolve in an acidic condition of cancer cells but also enhance the anti-cancer effect of Zn2+. An in vitro controlled release proliferation indicated that the acid sensitive ZnO gatekeepers showed well response by the 'on-off' switch of the pores. Cellular experiments against cervical cancer cell (HeLa cells) further showed that functionalized MMSN significantly suppressed cancer cells growth through synergistic effects between the chemotherapy and Zn2+ ions with monitoring the treatment process. These results suggested that the ZnO-gated MMSN platform is a promising approach to serve as a pH-sensitive system for chemotherapies delivery and Zn2+ controlled release for further application in the treatment of various cancers by synergistic effects.
Collapse
Affiliation(s)
- Minchao Liu
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiangyu Sun
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhihui Liao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yahui Li
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Xiaoliang Qi
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yuna Qian
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Hicham Fenniri
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Ping Zhao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianliang Shen
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| |
Collapse
|
19
|
Madeira do O J, Foralosso R, Yilmaz G, Mastrotto F, King PJS, Xerri RM, He Y, van der Walle CF, Fernandez-Trillo F, Laughton CA, Styliari I, Stolnik S, Mantovani G. Poly(triazolyl methacrylate) glycopolymers as potential targeted unimolecular nanocarriers. NANOSCALE 2019; 11:21155-21166. [PMID: 31663091 DOI: 10.1039/c9nr05836b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Synthetic glycopolymers are increasingly investigated as multivalent ligands for a range of biological and biomedical applications. This study indicates that glycopolymers with a fine-tuned balance between hydrophilic sugar pendant units and relatively hydrophobic polymer backbones can act as single-chain targeted nanocarriers for low molecular weight hydrophobic molecules. Non-covalent complexes formed from poly(triazolyl methacrylate) glycopolymers and low molecular weight hydrophobic guest molecules were characterised through a range of analytical techniques - DLS, SLS, TDA, fluorescence spectroscopy, surface tension analysis - and molecular dynamics (MD) modelling simulations provided further information on the macromolecular characteristics of these single chain complexes. Finally, we show that these nanocarriers can be utilised to deliver a hydrophobic guest molecule, Nile red, to both soluble and surface-immobilised concanavalin A (Con A) and peanut agglutinin (PNA) model lectins with high specificity, showing the potential of non-covalent complexation with specific glycopolymers in targeted guest-molecule delivery.
Collapse
Affiliation(s)
- J Madeira do O
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK.
| | - R Foralosso
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK.
| | - G Yilmaz
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK.
| | - F Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - P J S King
- Malvern Panalytical Ltd, Malvern, WR14 1XZ, UK
| | - R M Xerri
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK.
| | - Y He
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK.
| | | | | | - C A Laughton
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK.
| | - I Styliari
- University of Hertfordshire, Hatfield, Hertfordshire, UK.
| | - S Stolnik
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK.
| | - G Mantovani
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK.
| |
Collapse
|
20
|
Liu G, Gao N, Zhou Y, Nie J, Cheng W, Luo M, Mei L, Zeng X, Deng W. Polydopamine-Based "Four-in-One" Versatile Nanoplatforms for Targeted Dual Chemo and Photothermal Synergistic Cancer Therapy. Pharmaceutics 2019; 11:E507. [PMID: 31581532 PMCID: PMC6835447 DOI: 10.3390/pharmaceutics11100507] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/11/2019] [Accepted: 09/26/2019] [Indexed: 12/27/2022] Open
Abstract
Abstract: The development of versatile nanoscale drug delivery systems that integrate with multiple therapeutic agents or methods and improve the efficacy of cancer therapy is urgently required. To satisfy this demand, polydopamine (PDA)-modified polymeric nanoplatforms were constructed for the dual loading of chemotherapeutic drugs. The hydrophobic anticancer drug docetaxel (DTX) was loaded into the polymeric nanoparticles (NPs) which were fabricated from the star-shaped copolymer CA-PLGA. Then DTX-loaded NPs were coated with PDA, followed by conjugation of polyelethyl glycol (PEG)-modified targeting ligand aptamer AS1411(Apt) and adsorption of the hydrophilic anticancer drug doxorubicin (DOX). This "four-in-one" nanoplatform, referred to as DTX/NPs@PDA/DOX-PEG-Apt, demonstrated high near-infrared photothermal conversion efficiency and exhibited pH and thermo-responsive drug release behavior. Furthermore, it was able to specifically target MCF-7 human breast carcinoma cells and provide synergistic chemo-photothermal therapy to further improve the anticancer effect both in vitro and in vivo, providing a novel promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Gan Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| | - Nansha Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| | - Yun Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| | - Junpeng Nie
- Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Wei Cheng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
- Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Miaomiao Luo
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| | - Lin Mei
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
- Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
- Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
21
|
Zhou X, Ling K, Liu M, Zhang X, Ding J, Dong Y, Liang Z, Li J, Zhang J. Targeted Delivery of Cisplatin-Derived Nanoprecursors via a Biomimetic Yeast Microcapsule for Tumor Therapy by the Oral Route. Theranostics 2019; 9:6568-6586. [PMID: 31588236 PMCID: PMC6771252 DOI: 10.7150/thno.35353] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/20/2019] [Indexed: 02/07/2023] Open
Abstract
Targeted therapy via the patient-friendly oral route remains the holy grail of chemotherapy for cancer. Herein we report a yeast-derived platform for targeted oral delivery of cisplatin (CDDP) that is one of the most effective drugs for chemotherapy of various types of cancers. Methods: The optimal conditions were first established to fabricate yeast microcapsules (YCs) with desirable loading capability. Then, CDDP-derived precursor nanoparticles (PreCDDP) were prepared and packaged into YC to produce orally deliverable PreCDDP/YC. The physiochemical properties, in vitro drug release profiles, in vitro antitumor activity, oral targeting capability, in vivo pharmacokinetics, and in vivo efficacy of the YC-based biomimetic delivery system were examined. Results: YCs obtained under the optimized condition showed desirable loading efficiency for quantum dots that were used as a model nanocargo. In vitro experiments demonstrated rapid endocytosis and prolonged retention of YC in macrophages. By electrostatic force-mediated self-deposition, PreCDDP was efficiently loaded into YC. PreCDDP/YC showed potent cytotoxicity in different tumor cells, indicating that PreCDDP loaded in YC maintained its antitumor activity after intracellular release. As compared to CDDP and PreCDDP, orally administered PreCDDP/YC displayed significantly higher bioavailability. Post oral delivery, YC could accumulate in A549 human lung carcinoma xenografts in mice, achieving by monocyte/macrophage-mediated translocation via the lymphatic system. Through this targeting effect, orally administered PreCDDP/YC showed desirable efficacy in A549 xenograft-bearing mice, which was comparable to that of free CDDP administered by intravenous injection. Orally administered free CDDP, however, did not afford antitumor effects. Furthermore, oral treatment with PreCDDP/YC displayed better safety than free CDDP administered via the oral or intravenous route. Conclusions: This biomimetic approach can serve as an effective strategy to develop targeted oral chemotherapies based on CDDP or its derivatives.
Collapse
Affiliation(s)
- Xing Zhou
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Kaijian Ling
- Department of Obstetrics and Gynaecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Mengyu Liu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Xiangjun Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Jun Ding
- Department of Ultrasound, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yan Dong
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Zhiqing Liang
- Department of Obstetrics and Gynaecology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jianjun Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
22
|
Gao YE, Bai S, Ma X, Zhang X, Hou M, Shi X, Huang X, Chen J, Wen F, Xue P, Kang Y, Xu Z. Codelivery of doxorubicin and camptothecin by dual-responsive unimolecular micelle-based β-cyclodextrin for enhanced chemotherapy. Colloids Surf B Biointerfaces 2019; 183:110428. [PMID: 31415956 DOI: 10.1016/j.colsurfb.2019.110428] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/02/2019] [Accepted: 08/05/2019] [Indexed: 01/05/2023]
Abstract
Tumor microenvironment (TME)-induced drug delivery technology is a promising strategy for improving low drug accumulation efficiency, short blood circulation and weak therapeutic effect. In this work, a dual-responsive (reduction- and pH-responsive) polyprodrug nanoreactor based on β-cyclodextrin (β-CD) was constructed for combinational chemotherapy. Specifically, the dual-responsive star polymeric prodrug was synthesized by atom transfer radical polymerization (ATRP) based on a starburst initiator of β-CD-Br. The obtained polyprodrug contained a hydrophilic chain of poly-(ethylene glycol) methyl ether methacrylate (POEGMA) and a hydrophobic part of camptothecin (CPT) prodrug and poly[2-(diisopropylamino)ethyl methacrylate] (PDPA), denoted as β-CD-PDPA-POEGMA-PCPT (CCDO for short). The obtained CCDO could form stable unimolecular micelles, which could be efficiently internalized by cancer cells. To enhance the curative effect, the anticancer agent doxorubicin (DOX) could be encapsulated into the hydrophobic cavity of the CCDO by hydrophobic-hydrophobic interaction. In vitro drug release studies showed that the obtained CCDO/DOX micelles controlled the release of active CPT and DOX occurring in a reductive environment and at low pH. In vitro cytotoxicity results suggested that the anticancer efficacy of dual-responsive CCDO/DOX micelles was superior to that of CCDO micelles. In addition, in vivo results verified good blood compatibility of the unimolecular micelles. This integrated dual-responsive drug delivery system may solve the low drug loading and poor controlled release problems found in traditional polymer-based drug carriers, providing an innovative and promising route for cancer therapy.
Collapse
Affiliation(s)
- Yong-E Gao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, PR China
| | - Shuang Bai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, PR China
| | - Xiaoqian Ma
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, PR China
| | - Xiaoli Zhang
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, PR China
| | - Meili Hou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, PR China
| | - Xiaoxiao Shi
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, PR China
| | - Xiaohua Huang
- Guangan Changming Research Institute for Advanced Industrial Technology, Guangan 638500, PR China
| | - Jiucun Chen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, PR China
| | - Feiqiu Wen
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, PR China.
| | - Peng Xue
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, PR China
| | - Yuejun Kang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, PR China
| | - Zhigang Xu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, PR China; Guangan Changming Research Institute for Advanced Industrial Technology, Guangan 638500, PR China.
| |
Collapse
|
23
|
Zhang M, Zhang W, Tang G, Wang H, Wu M, Yu W, Zhou Z, Mou Y, Liu X. Targeted Codelivery of Docetaxel and Atg7 siRNA for Autophagy Inhibition and Pancreatic Cancer Treatment. ACS APPLIED BIO MATERIALS 2019; 2:1168-1176. [PMID: 35021365 DOI: 10.1021/acsabm.8b00764] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Miaozun Zhang
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315041, China
| | - Wei Zhang
- Department of Gastroenterology, Ningbo No.2 Hospital, Ningbo 315010, China
| | - Guping Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Hebin Wang
- College of Life Sciences, Tarim University, Alar 843300, China
| | - Min Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Weiming Yu
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315041, China
| | - Zhenfeng Zhou
- Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Hangzhou 310014, China
| | - Yiping Mou
- Department of General Surgery, Zhejiang Provincial People’s Hospital, Hangzhou 310014, China
| | - Xingang Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| |
Collapse
|
24
|
Ma W, Wang N, Lu Y, Lu Z, Tang X, Li S. Synthesis of magnetic biomass carbon-based Bi2O3 photocatalyst and mechanism insight by a facile microwave and deposition method. NEW J CHEM 2019. [DOI: 10.1039/c8nj04973d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The as-synthesised Fe3O4@Bi2O3/C significantly inhibited the recombination of electron–hole pairs and improved the tetracycline degradation efficiency.
Collapse
Affiliation(s)
- Wei Ma
- School of Chemistry and Environmental Engineering, Pingdingshan University
- Pingdingshan 467099
- P. R. China
| | - Na Wang
- School of Chemistry and Environmental Engineering, Pingdingshan University
- Pingdingshan 467099
- P. R. China
| | - Yao Lu
- School of Chemistry and Environmental Engineering, Pingdingshan University
- Pingdingshan 467099
- P. R. China
- College of Chemistry and Molecular Engineering, Zhengzhou University
- Zhengzhou 450000
| | - Ziyang Lu
- School of the Environment and Safety Engineering, Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Xu Tang
- Institute for Advanced Materials, School of Materials Science, Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Songtian Li
- School of Chemistry and Environmental Engineering, Pingdingshan University
- Pingdingshan 467099
- P. R. China
| |
Collapse
|
25
|
An Intelligent Nanoscale Insulin Delivery System. Molecules 2018; 23:molecules23112945. [PMID: 30423891 PMCID: PMC6278487 DOI: 10.3390/molecules23112945] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 01/31/2023] Open
Abstract
Insulin injection relies on strict blood glucose monitoring. However, existing techniques and algorithms for blood glucose monitoring cannot be completed in a timely way. In this study, we have developed a new intelligent glucose-sensitive insulin delivery system to stabilize blood glucose levels in the body. This system does not require real-time detection of blood glucose. First, we successfully synthesized a nanoscale material called PAM-PAspPBA-b-PEG by using chemical methods. We then conducted TEM, DLS, and 1H-NMR analyses to characterize the physicochemical properties, such as size, molecular composition, and configuration of the nanomaterial. We verified the glucose responsibility of the insulin loading nanoscale material in vitro and evaluated its safety and effect on mice in vivo. Results showed that insulin-loaded PAM-PAspPBA-b-PEG is glucose-sensitive, safer and more effective than regular insulin injection. This study provides a basis for future development of smart insulin delivery systems.
Collapse
|
26
|
Ordanini S, Cellesi F. Complex Polymeric Architectures Self-Assembling in Unimolecular Micelles: Preparation, Characterization and Drug Nanoencapsulation. Pharmaceutics 2018; 10:E209. [PMID: 30388744 PMCID: PMC6321574 DOI: 10.3390/pharmaceutics10040209] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/19/2018] [Accepted: 10/27/2018] [Indexed: 02/04/2023] Open
Abstract
Unimolecular polymeric micelles are a class of single-molecule amphiphilic core-shell polymeric architectures, where the hydrophobic core is well stabilized by the hydrophilic shell, avoiding intermolecular core-core interactions. Multi-arm copolymers with a dendritic core, as well as hyperbranched and comb-like polymers, can form unimolecular micelles easily. In this review, examples of polymers able to form detectable unimolecular micelles will be presented, summarizing the analytical techniques used to characterize the unimolecular micelles and discriminate them from other supramolecular aggregates, such as multi-micelle aggregates. Unimolecular micelles are suitable for the nanoencapsulation of guest molecules. Compared to traditional supramolecular micelles, unimolecular micelles do not disassemble under dilution and are stable to environmental modifications. Recent examples of their application as drug delivery systems, endowed with increased stability and transport properties, will be discussed.
Collapse
Affiliation(s)
- Stefania Ordanini
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy.
| | - Francesco Cellesi
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy.
| |
Collapse
|
27
|
Wang Y, Chen X, He D, Zhou Y, Qin L. Surface-Modified Nanoerythrocyte Loading DOX for Targeted Liver Cancer Chemotherapy. Mol Pharm 2018; 15:5728-5740. [DOI: 10.1021/acs.molpharmaceut.8b00881] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yuemin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Xiaomei Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Dahua He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Yi Zhou
- The College of Pharmaceutics Science, Guangzhou Medical University, Guangzhou, Guangdong 510436, China
| | - Linghao Qin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
28
|
Tang X, Chen L, Li A, Cai S, Zhang Y, Liu X, Jiang Z, Liu X, Liang Y, Ma D. Anti-GPC3 antibody-modified sorafenib-loaded nanoparticles significantly inhibited HepG2 hepatocellular carcinoma. Drug Deliv 2018; 25:1484-1494. [PMID: 29916268 PMCID: PMC6058710 DOI: 10.1080/10717544.2018.1477859] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sorafenib (SFB) has improved the treatment of hepatocellular carcinoma (HCC) and has fewer severe side effects than other agents used for that purpose. However, due to a lack of tumor-specific targeting, the concentration of the drug in tumor tissue cannot be permanently maintained at a level that inhibits tumor growth. To overcome this problem, we developed a novel SFB-loaded polymer nanoparticle (NP). The NP (a TPGS-b-PCL copolymer that was synthesized from ε-caprolactone and d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) via ring-opening polymerization) contains Pluronic P123 and SFB, and its surface is modified with anti-GPC3 antibody to produce the polymer nanoparticle (NP-SFB-Ab). The Ab-conjugated NPs had higher cellular uptake by HepG2 cells than did non-antibody-conjugated SPD-containing nanoparticles (NP-SFB). The NP-SFB-Ab also displayed better stability characteristics, released higher levels of SFB into cell culture medium, and was more cytotoxic to tumor cells than was non-targeted NP-SFB and free SFB. The NP-SFB-Ab downregulated expression of the anti-apoptosis molecule MCL-1, which led to polymerization of Bax and Bak in mitochondrial cytosol. The NP-SFB-AB also promoted the mitochondrial release of cytochrome C, resulting in cellular apoptosis. Moreover, the NP-SFB-Ab significantly inhibited the growth of HepG2 xenograft tumors in nude mice without producing obvious side effects. These findings suggest that NP-SFB-Ab is a promising new method for achieving targeted therapy of HCC.
Collapse
Affiliation(s)
- Xiaolong Tang
- a Medical College , Anhui University of Science and Technology , Huainan , China
| | - Longzhou Chen
- b Department of Galactophore , Huai'an Maternity and Child Healthcare Hospital Affiliated to Yangzhou University Medical Academy , Huaian , China
| | - Amin Li
- a Medical College , Anhui University of Science and Technology , Huainan , China
| | - Shiyu Cai
- a Medical College , Anhui University of Science and Technology , Huainan , China
| | - Yinci Zhang
- a Medical College , Anhui University of Science and Technology , Huainan , China
| | - Xueke Liu
- a Medical College , Anhui University of Science and Technology , Huainan , China
| | - Zhenyou Jiang
- c Department of Microbiology and Immunology , Jinan University , Guangzhou , China
| | - Xinkuang Liu
- a Medical College , Anhui University of Science and Technology , Huainan , China
| | - Yong Liang
- d Huai'an Hospital Affiliated of Xuzhou Medical College and Huai'an Second Hospital , Huai'an , China
| | - Dong Ma
- e Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes , Jinan University , Guangzhou , China
| |
Collapse
|
29
|
Enhanced delivery of sorafenib with anti-GPC3 antibody-conjugated TPGS-b-PCL/Pluronic P123 polymeric nanoparticles for targeted therapy of hepatocellular carcinoma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:395-403. [DOI: 10.1016/j.msec.2018.05.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 04/01/2018] [Accepted: 05/02/2018] [Indexed: 11/18/2022]
|
30
|
Chen G, Wang Y, Xie R, Gong S. A review on core-shell structured unimolecular nanoparticles for biomedical applications. Adv Drug Deliv Rev 2018; 130:58-72. [PMID: 30009887 PMCID: PMC6149214 DOI: 10.1016/j.addr.2018.07.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/23/2018] [Accepted: 07/09/2018] [Indexed: 12/12/2022]
Abstract
Polymeric unimolecular nanoparticles (NPs) exhibiting a core-shell structure and formed by a single multi-arm molecule containing only covalent bonds have attracted increasing attention for numerous biomedical applications. This unique single-molecular architecture provides the unimolecular NP with superior stability both in vitro and in vivo, a high drug loading capacity, as well as versatile surface chemistry, thereby making it a desirable nanoplatform for therapeutic and diagnostic applications. In this review, we surveyed the architecture of various types of polymeric unimolecular NPs, including water-dispersible unimolecular micelles and water-soluble unimolecular NPs used for the delivery of hydrophobic and hydrophilic agents, respectively, as well as their diverse biomedical applications. Future opportunities and challenges of unimolecular NPs were also briefly discussed.
Collapse
Affiliation(s)
- Guojun Chen
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Yuyuan Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Ruosen Xie
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Shaoqin Gong
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53715, USA.
| |
Collapse
|
31
|
Tsai HI, Jiang L, Zeng X, Chen H, Li Z, Cheng W, Zhang J, Pan J, Wan D, Gao L, Xie Z, Huang L, Mei L, Liu G. DACHPt-Loaded Nanoparticles Self-assembled from Biodegradable Dendritic Copolymer Polyglutamic Acid- b-D-α-Tocopheryl Polyethylene Glycol 1000 Succinate for Multidrug Resistant Lung Cancer Therapy. Front Pharmacol 2018; 9:119. [PMID: 29515445 PMCID: PMC5826327 DOI: 10.3389/fphar.2018.00119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/01/2018] [Indexed: 12/17/2022] Open
Abstract
The clinical applications of platinum-based antitumor agents are still largely limited by severe side effects as well as multidrug resistance (MDR). To solve these problems, we developed an 1,2-diaminocyclohexane-platinum(II) (DACHPt)-loaded nanoparticle (NP-TPGS-Pt) by self-assembly of poly(amidoamine)-polyglutamic acid-b-D-α-tocopheryl polyethylene glycol 1000 succinate (PAM-PGlu-b-TPGS) and DACHPt. NP-TPGS-Pt showed robust stability and pH-responsive DACHPt release profile in vitro similar to the PEG-containing nanoparticle (NP-PEG-Pt). Meanwhile, in contrast with NP-PEG-Pt, NP-TPGS-Pt exhibited efficient nanoparticle-based cellular uptake by the Pt-resistant A549/DDP human lung cancer cells and caused much more cytotoxicity than free Oxaliplatin and NP-PEG-Pt. Finally, this NP-TPGS-Pt was proved to perform outstanding inhibition of Pt-resistant tumor growth, much superior than free Oxaliplatin and NP-PEG-Pt. Thus, this NP-TPGS-Pt provides a novel powerful nanomedicine platform for combatting multidrug resistant cancer.
Collapse
Affiliation(s)
- Hsiang-I Tsai
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Lijuan Jiang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Zihuang Li
- Department of Radiation Oncology, Second Clinical Medicine College of Jinan University, Shenzhen Municipal People's Hospital, Shenzhen, China
| | - Wei Cheng
- Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Jinxie Zhang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jie Pan
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, China
| | - Dong Wan
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, China
| | - Li Gao
- Department of Urology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Zhenhua Xie
- Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Laiqiang Huang
- School of Life Sciences, Tsinghua University, Beijing, China
- Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Lin Mei
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Gan Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Peng Y, Nie J, Cheng W, Liu G, Zhu D, Zhang L, Liang C, Mei L, Huang L, Zeng X. A multifunctional nanoplatform for cancer chemo-photothermal synergistic therapy and overcoming multidrug resistance. Biomater Sci 2018; 6:1084-1098. [DOI: 10.1039/c7bm01206c] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A multifunctional nanoplatform could overcome multidrug resistance and showed cancer chemo-photothermal synergistic therapy with the near-infrared irradiation.
Collapse
|
33
|
Shi X, Hou M, Bai S, Ma X, Gao YE, Xiao B, Xue P, Kang Y, Xu Z, Li CM. Acid-Activatable Theranostic Unimolecular Micelles Composed of Amphiphilic Star-like Polymeric Prodrug with High Drug Loading for Enhanced Cancer Therapy. Mol Pharm 2017; 14:4032-4041. [PMID: 28980818 DOI: 10.1021/acs.molpharmaceut.7b00704] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Stimuli-responsive nanomedicine with theranostic functionalities with reduced side-effects has attracted growing attention, although there are some major obstacles to overcome before clinical applications. Herein, we present an acid-activatable theranostic unimolecular micelles based on amphiphilic star-like polymeric prodrug to systematically address typical existing issues. This smart polymeric prodrug has a preferable size of about 35 nm and strong micellar stability in aqueous solution, which is beneficial to long-term blood circulation and efficient extravasation from tumoral vessels. Remarkably, the polymeric prodrug has a high drug loading rate up to 53.1 wt%, which induces considerably higher cytotoxicity against tumor cells (HeLa cells and MCF-7 cells) than normal cells (HUVEC cells) suggesting a spontaneous tumor-specific targeting capability. Moreover, the polymeric prodrug can serve as a fluorescent nanoprobe activated by the acidic microenvironment in tumor cells, which can be used as a promising platform for tumor diagnosis. The superior antitumor effect in this in vitro study demonstrates the potential of this prodrug as a promising platform for drug delivery and cancer therapy.
Collapse
Affiliation(s)
- Xiaoxiao Shi
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University , Chongqing 400715, P. R. China.,Chongqing Engineering Research Centre for Micro-Nano Biomedical Materials and Devices , Chongqing 400715, P.R. China
| | - Meili Hou
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University , Chongqing 400715, P. R. China.,Chongqing Engineering Research Centre for Micro-Nano Biomedical Materials and Devices , Chongqing 400715, P.R. China
| | - Shuang Bai
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University , Chongqing 400715, P. R. China.,Chongqing Engineering Research Centre for Micro-Nano Biomedical Materials and Devices , Chongqing 400715, P.R. China
| | - Xiaoqian Ma
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University , Chongqing 400715, P. R. China.,Chongqing Engineering Research Centre for Micro-Nano Biomedical Materials and Devices , Chongqing 400715, P.R. China
| | - Yong-E Gao
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University , Chongqing 400715, P. R. China.,Chongqing Engineering Research Centre for Micro-Nano Biomedical Materials and Devices , Chongqing 400715, P.R. China
| | - Bo Xiao
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University , Chongqing 400715, P. R. China.,Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30302, United States
| | - Peng Xue
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University , Chongqing 400715, P. R. China.,Chongqing Engineering Research Centre for Micro-Nano Biomedical Materials and Devices , Chongqing 400715, P.R. China
| | - Yuejun Kang
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University , Chongqing 400715, P. R. China.,Chongqing Engineering Research Centre for Micro-Nano Biomedical Materials and Devices , Chongqing 400715, P.R. China
| | - Zhigang Xu
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University , Chongqing 400715, P. R. China.,Chongqing Engineering Research Centre for Micro-Nano Biomedical Materials and Devices , Chongqing 400715, P.R. China
| | - Chang Ming Li
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University , Chongqing 400715, P. R. China.,Chongqing Engineering Research Centre for Micro-Nano Biomedical Materials and Devices , Chongqing 400715, P.R. China
| |
Collapse
|
34
|
Iocozzia J, Lin Z. A Clean and Simple Route to Soft, Biocompatible Nanocapsules via UV-Cross-Linkable Azido-Hyperbranched Polyglycerol. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- James Iocozzia
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhiqun Lin
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
35
|
Cheng W, Nie J, Xu L, Liang C, Peng Y, Liu G, Wang T, Mei L, Huang L, Zeng X. pH-Sensitive Delivery Vehicle Based on Folic Acid-Conjugated Polydopamine-Modified Mesoporous Silica Nanoparticles for Targeted Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:18462-18473. [PMID: 28497681 DOI: 10.1021/acsami.7b02457] [Citation(s) in RCA: 313] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In this study, we introduced a targeting polymer poly(ethylene glycol)-folic acid (PEG-FA) on the surface of polydopamine (PDA)-modified mesoporous silica nanoparticles (MSNs) to develop the novel nanoparticles (NPs) MSNs@PDA-PEG-FA, which were employed as a drug delivery system loaded with doxorubicin (DOX) as a model drug for cervical cancer therapy. The chemical structure and properties of these NPs were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, N2 adsorption/desorption, dynamic light scattering-autosizer, thermogravimetric analysis, and Fourier transform infrared spectroscopy. The pH-sensitive PDA coating served as a gatekeeper. The in vitro drug release experiments showed pH-dependent and sustained drug release profiles that could enhance the therapeutic anticancer effect and minimize potential damage to normal cells due to the acidic microenvironment of the tumor. These MSNs@PDA-PEG-FA achieved significantly high targeting efficiency, which was demonstrated by the in vitro cellular uptake and cellular targeting assay. Compared with that of free DOX and DOX-loaded NPs without the folic targeting ligand, the FA-targeted NPs exhibited higher antitumor efficacy in vivo, implying that they are a highly promising potential carrier for cancer treatments.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
- The Shenzhen Key Lab of Gene and Antibody Therapy, The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
| | - Junpeng Nie
- The Shenzhen Key Lab of Gene and Antibody Therapy, The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
| | - Lv Xu
- The Shenzhen Key Lab of Gene and Antibody Therapy, The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
| | - Chaoyu Liang
- Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
- The Shenzhen Key Lab of Gene and Antibody Therapy, The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
| | - Yunmei Peng
- The Shenzhen Key Lab of Gene and Antibody Therapy, The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
| | - Gan Liu
- The Shenzhen Key Lab of Gene and Antibody Therapy, The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
| | - Teng Wang
- Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
- The Shenzhen Key Lab of Gene and Antibody Therapy, The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
| | - Lin Mei
- The Shenzhen Key Lab of Gene and Antibody Therapy, The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
| | - Laiqiang Huang
- Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
- The Shenzhen Key Lab of Gene and Antibody Therapy, The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
| | - Xiaowei Zeng
- Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
- The Shenzhen Key Lab of Gene and Antibody Therapy, The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
| |
Collapse
|
36
|
Zhang P, Zhang Z, Jiang X, Rui L, Gao Y, Zhang W. Unimolecular micelles from POSS-based star-shaped block copolymers for photodynamic therapy. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.04.063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Shi X, Ma X, Hou M, Gao YE, Bai S, Xiao B, Xue P, Kang Y, Xu Z, Li CM. pH-Responsive unimolecular micelles based on amphiphilic star-like copolymers with high drug loading for effective drug delivery and cellular imaging. J Mater Chem B 2017; 5:6847-6859. [DOI: 10.1039/c7tb01477e] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A theranostic nanoplatform based on pH-responsive amphiphilic star-like copolymers for theranostic and NIR imaging applications.
Collapse
|