1
|
Xu F, Dong Q, Zhang S, Wu Q, An C, Li X, Chen X, Chen Y, Zhang X, Li J, Dong Z. Polydopamine-coated montmorillonite micro/nanoparticles enhanced pectin-based sprayable multifunctional liquid mulching films: Wind erosion resistance, water retention, and temperature increase/heat preservation properties. Int J Biol Macromol 2025; 298:139976. [PMID: 39826734 DOI: 10.1016/j.ijbiomac.2025.139976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/03/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Natural biopolymer-based liquid mulching films (LMF) have received widespread attention, whereas the fragile structure and limited functionality have severely restricted their application. Herein, polydopamine-coated montmorillonite micro/nanoparticles enhanced pectin-based sprayable multifunctional liquid mulching films (P-MMT@PDA LMF) were prepared. Dopamine has abundant active sites, and its self-polymerization onto the surface of MMT improves the compatibility of MMT with pectin chains, facilitates the homogeneous dispersion of MMT@PDA in pectin polymers, and makes them more tightly entangled through hydrogen bonding. Therefore, P-MMT@PDA LMF exhibits better mechanical properties (improved by 64.94 N) and wind erosion resistance (wind speed 30 m/s, >60 min). Moreover, MMT@PDA micro/nanoparticles can fill the voids of pectin chains, thus increasing the densification and complexity of the network structure in LMF, enabling better water retention (improved by 14.67 %) and heat preservation (increased by 3.14 °C). Meanwhile, the photothermal effect of PDA endows P-MMT@PDA LMF with a warming effect (increased by 2.84 °C). Hence, this LMF promote wheat growth and demonstrate good biodegradability. These results suggest that the application of P-MMT@PDA LMF is an effective strategy in the environments of drought and cold, which is expected to provide a green solution for sustainable agricultural development and environmental protection in the future.
Collapse
Affiliation(s)
- Fangzhou Xu
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Qianyu Dong
- College of Architecture and Urban Planning, Tongji University, Shanghai 200092, PR China
| | - Shikai Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Qicong Wu
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Co-Innovation Center for Soil-Water and Forest-Grass Ecological Conservation in Yellow River Basin of Shandong Higher Education Institutions, Tai'an, Shandong 271018, PR China
| | - Chunchun An
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Co-Innovation Center for Soil-Water and Forest-Grass Ecological Conservation in Yellow River Basin of Shandong Higher Education Institutions, Tai'an, Shandong 271018, PR China
| | - Xiaoqian Li
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Co-Innovation Center for Soil-Water and Forest-Grass Ecological Conservation in Yellow River Basin of Shandong Higher Education Institutions, Tai'an, Shandong 271018, PR China
| | - Xinchuang Chen
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Yang Chen
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xincheng Zhang
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jinrong Li
- Institute of Water Resources for Pastoral Area of the Ministry of Water Resources of China, Hohhot 010010, PR China
| | - Zhi Dong
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Co-Innovation Center for Soil-Water and Forest-Grass Ecological Conservation in Yellow River Basin of Shandong Higher Education Institutions, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
2
|
Zhong J, McClements DJ, He K, Zhang Z, Zhang R, Qiu C, Long J, Zhou X, Zhao J, Jin Z, Chen L. Innovative applications of bio-inspired technology in bio-based food packaging. Crit Rev Food Sci Nutr 2025:1-14. [PMID: 39812520 DOI: 10.1080/10408398.2025.2450524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Traditionally, food packaging was used to extend the shelf life of food or to monitor its condition. Inspired by many biological structures found in nature, bio-inspired functional materials for bio-based food packaging have been shown to have significantly improved capabilities over traditional bio-based food packaging materials in various aspects and to attract consumers through novel freshness preservation features. This review synthesizes recent advances in bio-inspired bio-based food packaging materials that mimic the structure of natural organisms with specific functionalities, with examples of specific biomimetics in different enhancement areas. In general, bio-based materials have certain disadvantages compared to polymer materials, so there is an urgent need for improvement and enhancement in many areas. Biomimicry further inspires the realization of enhancing some basic functions of bio-based materials for packaging (hydrophobicity, mechanical strength, antimicrobial properties, optical properties) and endowing bio-based materials with more new responsiveness and other functions. What is more interesting is that the inspiration of bionics is taken from nature, and such a perspective can also promote further progress and innovation of bio-based food packaging materials.
Collapse
Affiliation(s)
- Jiaqi Zhong
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | - Kuang He
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zipei Zhang
- Food Science Program, University of Missouri, Columbia, MO, USA
| | - Ruojie Zhang
- Food Science Program, University of Missouri, Columbia, MO, USA
| | - Chao Qiu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jie Long
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xing Zhou
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianwei Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Feng Y, Lin J, Chen X, Chai H, Tian L, Zhang J, Sun Q, Yang Y, Li Y. Hybrid chiral nanocellulose-cyanidin composite with pH and humidity response for visual inspection and real-time tracking of shrimp quality and freshness. Food Chem 2024; 446:138885. [PMID: 38447387 DOI: 10.1016/j.foodchem.2024.138885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/31/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024]
Abstract
Biobased multi-stimulation materials have received considerable attention for intelligent packaging and anti-counterfeiting applications. Cellulose nanocrystals (CNCs) and cyanidins are good material candidates for monitoring food freshness as they are eco-friendly natural substances. This work incorporated cyanidin with a CNC-hosting substrate to develop a simple, environment-friendly colorimetric device to visualize food freshness. Across the pH range of 2-13, the indicator exhibited noticeable color changes ranging from red to gray and eventually to orange. The CNC-cyanidin (CC) film exhibited a dramatic color change from blue to dark red and high sensitivity at a relative humidity of 30 %-100 %. In corresponding to the total volatile elemental nitrogen (TVB-N) level of shrimp, the indicator showed distinguishable colors at different stages of shrimp. The findings imply that the samples have substantial potential for use as an intelligent indicator for tracking shrimp freshness.
Collapse
Affiliation(s)
- Yingxuan Feng
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China
| | - Jian Lin
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China
| | - Xinjie Chen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China
| | - Hao Chai
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China
| | - Linping Tian
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China
| | - Jiayi Zhang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China
| | - Qingfeng Sun
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China.
| | - Yushan Yang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China.
| | - Yingying Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China.
| |
Collapse
|
4
|
Wang F, Hu Z, Ouyang S, Wang S, Liu Y, Li M, Wu Y, Li Z, Qian J, Wu Z, Zhao Z, Wang L, Jia C, Ma S. Application progress of nanocellulose in food packaging: A review. Int J Biol Macromol 2024; 268:131936. [PMID: 38692533 DOI: 10.1016/j.ijbiomac.2024.131936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
With the increasing environmental and ecological problems caused by petroleum-based packaging materials, the focus has gradually shifted to natural resources for the preparation of functional food packaging materials. In addition to biodegradable properties, nanocellulose (NC) mechanical properties, and rich surface chemistry are also fascinating and desired to be one of the most probable green packaging materials. In this review, we firstly introduce the recent progress of novel applications of NC in food packaging, including intelligent packaging, nano(bio)sensors, and nano-paper; secondly, we focus on the modification techniques of NC to summarize the properties (antimicrobial, mechanical, hydrophobic, antioxidant, and so on) that are required for food packaging, to expand the new synthetic methods and application areas. After presenting all the latest advances related to material design and sustainable applications, an overview summarizing the safety of NC is presented to promote a continuous and healthy movement of NC toward the field of truly sustainable packaging.
Collapse
Affiliation(s)
- Feijie Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Zihan Hu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Shiqiang Ouyang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Suyang Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Yichi Liu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Mengdi Li
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Yiting Wu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhihua Li
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Jing Qian
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhen Wu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhicheng Zhao
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Liqiang Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China.
| | - Chao Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Shufeng Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Tang Z, Lin X, Yu M, Yang J, Li S, Mondal AK, Wu H. A review of cellulose-based catechol-containing functional materials for advanced applications. Int J Biol Macromol 2024; 266:131243. [PMID: 38554917 DOI: 10.1016/j.ijbiomac.2024.131243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
With the increment in global energy consumption and severe environmental pollution, it is urgently needed to explore green and sustainable materials. Inspired by nature, catechol groups in mussel adhesion proteins have been successively understood and utilized as novel biomimetic materials. In parallel, cellulose presents a wide class of functional materials rating from macro-scale to nano-scale components. The cross-over among both research fields alters the introduction of impressive materials with potential engineering properties, where catechol-containing materials supply a general stage for the functionalization of cellulose or cellulose derivatives. In this review, the role of catechol groups in the modification of cellulose and cellulose derivatives is discussed. A broad variety of advanced applications of cellulose-based catechol-containing materials, including adhesives, hydrogels, aerogels, membranes, textiles, pulp and papermaking, composites, are presented. Furthermore, some critical remaining challenges and opportunities are studied to mount the way toward the rational purpose and applications of cellulose-based catechol-containing materials.
Collapse
Affiliation(s)
- Zuwu Tang
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Xinxing Lin
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Meiqiong Yu
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China; College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China
| | - Jinbei Yang
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Shiqian Li
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Ajoy Kanti Mondal
- Institute of National Analytical Research and Service, Bangladesh Council of Scientific and Industrial Research, Dhanmondi, Dhaka 1205, Bangladesh.
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China.
| |
Collapse
|
6
|
Zhang L, Zhang J, Ma H, Wei Z, Liu G, Zhang H, Liu Y. Removal of Nanoplastics from Copollutant Systems Using Seaweed Cellulose Nanofibers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38605444 DOI: 10.1021/acs.jafc.4c00832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Nanoplastic pollution poses a significant global concern for public health due to the potential toxicity it induces in the human body through food and water intake. Consequently, the urgent task of removing nanoplastics, especially from water resources, is paramount for enhancing food safety, and developing eco-friendly materials capable of efficiently removing nanoplastics is crucial. In this context, we propose the use of biodegradable anionic seaweed cellulose nanofibers (TEMPO-mediated seaweed cellulose nanofibers, TCNFs) and cationic seaweed cellulose nanofibers (quaternized seaweed cellulose nanofibers, QCNFs) for nanoplastic removal in both single- and copollutant systems. In our experiments under simulated practical conditions, we revealed that TCNFs and QCNFs achieved an average removal efficiency of 98.71% against nanoplastic particles. Moreover, TCNFs and QCNFs exhibited higher adsorption capacities compared to those of existing materials, potentially offering a cost-effective advantage. Toxicity assessments conducted with mammalian cells further confirmed the biosafety of TCNFs and QCNFs. This study contributes to the scientific and theoretical understanding of using edible seaweed as well as offers promising solutions for food safety control in an efficient, cost-effective, and eco-friendly manner.
Collapse
Affiliation(s)
- Lan Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Jing Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Haorui Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Zhiliang Wei
- Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2105, United States
| | - Guanxu Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Haoyang Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- Department of Agrotechnology & Food Sciences, Wageningen University and Research, Wageningen 6708 PB, Netherlands
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
7
|
Xia L, Tan C, Ren W, Liu X, Zhang X, Wu J, Zhang X, Guo F, Yu Y, Yang R. Robust, biodegradable and flame-retardant nanocomposite films based on TEMPO-oxidized cellulose nanofibers and hydroxyapatite nanowires. Carbohydr Polym 2024; 324:121495. [PMID: 37985047 DOI: 10.1016/j.carbpol.2023.121495] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/29/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Flammability is a fatal drawback for sustainable packaging materials made from cellulose and its derivatives. Incorporating inorganic nanomaterials is a viable approach to improve the fire-resistant property. However, due to the aggregation of inorganic fillers and weak interactions between components, incorporating inorganic nanomaterials always had an adverse impact on the mechanical properties and optical transparency of cellulose-based nanocomposites. Herein, we presented a robust, biodegradable, and flame-retardant nanocomposite film composed of TEMPO-oxidized cellulose nanofibers (TOCNFs) and inorganic hydroxyapatite nanowires (HNWs). Both TOCNFs and HNWs possessed one-dimensional microstructure and could form unique organic-inorganic networks microstructure. The organic-inorganic networks interact through physical intertwinement and multiple chemical bonds, endowing nanocomposite film with outstanding mechanical properties. This nanocomposite film showed a tensile strength of 223.68 MPa and Young's modulus of 9.18 GPa, which were superior to most reported cellulose-based nanocomposite. Furthermore, this nanocomposite film demonstrated exceptional thermal stability and flame-retardant feature attributed to the inorganic framework formed by HNWs. This nanocomposite film also possessed a high optical transmittance even when HNWs content reached 30 % and could be decomposed quickly in soil. By employing organic-inorganic interpenetrating network structure design and multiple bonding interaction, cellulose-based nanocomposites can overcome inherent limitations and attain desirable comprehensive properties.
Collapse
Affiliation(s)
- Linmin Xia
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350002, China
| | - Chenshu Tan
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350002, China
| | - Wenting Ren
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350002, China
| | - Xiaohong Liu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| | - Xiangyu Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| | - Jianyu Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350002, China
| | - Xuexia Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350002, China
| | - Fei Guo
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350002, China
| | - Yan Yu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350002, China.
| | - Rilong Yang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350002, China.
| |
Collapse
|
8
|
Jali S, Mohan TP, Mwangi FM, Kanny K. A Review on Barrier Properties of Cellulose/Clay Nanocomposite Polymers for Packaging Applications. Polymers (Basel) 2023; 16:51. [PMID: 38201717 PMCID: PMC10780723 DOI: 10.3390/polym16010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Packaging materials are used to protect consumer goods, such as food, drinks, cosmetics, healthcare items, and more, from harmful gases and physical and chemical damage during storage, distribution, and handling. Synthetic plastics are commonly used because they exhibit sufficient characteristics for packaging requirements, but their end lives result in environmental pollution, the depletion of landfill space, rising sea pollution, and more. These exist because of their poor biodegradability, limited recyclability, etc. There has been an increasing demand for replacing these polymers with bio-based biodegradable materials for a sustainable environment. Cellulosic nanomaterials have been proposed as a potential substitute in the preparation of packaging films. Nevertheless, their application is limited due to their poor properties, such as their barrier, thermal, and mechanical properties, to name a few. The barrier properties of materials play a pivotal role in extending and determining the shelf lives of packaged foods. Nanofillers have been used to enhance the barrier properties. This article reviews the literature on the barrier properties of cellulose/clay nanocomposite polymers. Cellulose extraction stages such as pretreatment, bleaching, and nanoparticle isolation are outlined, followed by cellulose modification methods. Finally, a brief discussion on nanofillers is provided, followed by an extensive literature review on the barrier properties of cellulose/clay nanocomposite polymers. Although similar reviews have been presented, the use of modification processes applied to cellulose, clay, and final nanocomposites to enhance the barrier properties has not been reviewed. Therefore, this article focuses on this scope.
Collapse
Affiliation(s)
- Sandile Jali
- Composite Research Group (CRG), Durban University of Technology, Durban 4000, South Africa; (S.J.); (F.M.M.); (K.K.)
| | - Turup Pandurangan Mohan
- Composite Research Group (CRG), Durban University of Technology, Durban 4000, South Africa; (S.J.); (F.M.M.); (K.K.)
| | - Festus Maina Mwangi
- Composite Research Group (CRG), Durban University of Technology, Durban 4000, South Africa; (S.J.); (F.M.M.); (K.K.)
- Department of Mechanical Engineering, Durban University of Technology, Durban 4000, South Africa
| | - Krishnan Kanny
- Composite Research Group (CRG), Durban University of Technology, Durban 4000, South Africa; (S.J.); (F.M.M.); (K.K.)
| |
Collapse
|
9
|
Espíndola SP, Norder B, Jansen KMB, Zlopasa J, Picken SJ. Affine Deformation and Self-Assembly Alignment in Hydrogel Nanocomposites. Macromolecules 2023; 56:9839-9852. [PMID: 38105930 PMCID: PMC10720479 DOI: 10.1021/acs.macromol.3c01638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023]
Abstract
Tailoring the order in hierarchical structures is a key goal of bioinspired nanocomposite design. Recently, nacre-like materials have been developed by solvent evaporation methods that are scalable and attain advanced functionalities. However, understanding the alignment mechanisms of 2D fillers, nanosheets, or platelets remains challenging. This work explores possible pathways for nanocomposite ordering via orientation distribution functions. We demonstrate how the immobilization of 2D materials via (pseudo)network formation is crucial to alignment based on evaporation. We show a modified affine deformation model that describes such evaporative methods. In this, a gel network develops enough yield stress and uniformly deforms as drying proceeds, along with the immobilized particles, causing an in-plane orientation. Herein, we tested the dominance of this approach by using a thermo-reversible gel for rapid montmorillonite (MMT) particle fixation. We researched gelatin/MMT as a model system to investigate the effects of high loadings, orientational order, and aspect ratio. The nacre-like nanocomposites showed a semiconstant order parameter (⟨P2⟩ ∼ 0.7) over increasing nanofiller content up to 64 vol % filler. This remarkable alignment resulted in continuously improved mechanical and water vapor barrier properties over unusually large filler fractions. Some variations in stiffness and diffusion properties were observed, possibly correlated to the applied drying conditions of the hybrid hydrogels. The affine deformation strategy holds promise for developing next-generation advanced materials with tailored properties even at (very) high filler loadings. Furthermore, a gelling approach offers the advantages of simplicity and versatility in the formulation of the components, which is useful for large-scale fabrication methods.
Collapse
Affiliation(s)
- Suellen Pereira Espíndola
- Department
of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The
Netherlands
| | - Ben Norder
- Department
of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The
Netherlands
| | - Kaspar M. B. Jansen
- Department
of Sustainable Design Engineering, Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628 CE Delft, The
Netherlands
| | - Jure Zlopasa
- Department
of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Stephen J. Picken
- Department
of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The
Netherlands
| |
Collapse
|
10
|
Si L, Wu Y, Xiao H, Xing W, Song R, Li Y, Wang S, Liang X, Yu W, Song J, Shen S. A superstable, flexible, and scalable nanofluidic ion regulation composite membrane. Sci Bull (Beijing) 2023; 68:2344-2353. [PMID: 37684133 DOI: 10.1016/j.scib.2023.08.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/25/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
Two-dimensional layered membranes with high and stable ion transport properties have various applications in nanofluidic devices; however, their construction remains a considerable challenge. Herein, we develop a superstable aramid nanofiber/graphite composite membrane with numerous one-dimensional and two-dimensional nano-confined interspaces for ultrafast ion transport. The fabricated flexible and scalable membrane exhibits high tensile strength (∼115.3 MPa) even after immersion in water for 90 days. Further, the aramid nanofiber/graphite conductor features the surface-charge-governed ion transport behavior. The ionic conductivity of the membrane at a low potassium chloride concentration of 10-4 mol/L can be enhanced by 16 times that of the bulk counterpart. More importantly, its structure and ionic conductivity remain unchanged even after immersion in different harsh solutions (e.g., acid, base, and ethanol) for over 30 days. Molecular dynamics simulations reveal that the superstability of the membrane is attributable to the robust interchain interactions within the aramid nanofibers and the strong interfacial interactions between the aramid nanofibers and graphite nanosheets. This study highlights the superior structural stability of the proposed flexible and scalable aramid nanofiber/graphite composite membrane, which could be employed in advanced nanofluidic devices for application under extreme working environments.
Collapse
Affiliation(s)
- Lianmeng Si
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yihan Wu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hong Xiao
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wensi Xing
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Rui Song
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yiju Li
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Sha Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Xu Liang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wenshan Yu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jianwei Song
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shengping Shen
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
11
|
Benselfelt T, Kummer N, Nordenström M, Fall AB, Nyström G, Wågberg L. The Colloidal Properties of Nanocellulose. CHEMSUSCHEM 2023; 16:e202201955. [PMID: 36650954 DOI: 10.1002/cssc.202201955] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Nanocelluloses are anisotropic nanoparticles of semicrystalline assemblies of glucan polymers. They have great potential as renewable building blocks in the materials platform of a more sustainable society. As a result, the research on nanocellulose has grown exponentially over the last decades. To fully utilize the properties of nanocelluloses, a fundamental understanding of their colloidal behavior is necessary. As elongated particles with dimensions in a critical nanosize range, their colloidal properties are complex, with several behaviors not covered by classical theories. In this comprehensive Review, we describe the most prominent colloidal behaviors of nanocellulose by combining experimental data and theoretical descriptions. We discuss the preparation and characterization of nanocellulose dispersions, how they form networks at low concentrations, how classical theories cannot describe their behavior, and how they interact with other colloids. We then show examples of how scientists can use this fundamental knowledge to control the assembly of nanocellulose into new materials with exceptional properties. We hope aspiring and established researchers will use this Review as a guide.
Collapse
Affiliation(s)
- Tobias Benselfelt
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Nico Kummer
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, 8092, Zürich, Switzerland
| | - Malin Nordenström
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | | | - Gustav Nyström
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, 8092, Zürich, Switzerland
| | - Lars Wågberg
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
- Wallenberg Wood Science Center, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| |
Collapse
|
12
|
Etale A, Onyianta AJ, Turner SR, Eichhorn SJ. Cellulose: A Review of Water Interactions, Applications in Composites, and Water Treatment. Chem Rev 2023; 123:2016-2048. [PMID: 36622272 PMCID: PMC9999429 DOI: 10.1021/acs.chemrev.2c00477] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cellulose is known to interact well with water, but is insoluble in it. Many polysaccharides such as cellulose are known to have significant hydrogen bond networks joining the molecular chains, and yet they are recalcitrant to aqueous solvents. This review charts the interaction of cellulose with water but with emphasis on the formation of both natural and synthetic fiber composites. Covering studies concerning the interaction of water with wood, the biosynthesis of cellulose in the cell wall, to its dispersion in aqueous suspensions and ultimately in water filtration and fiber-based composite materials this review explores water-cellulose interactions and how they can be exploited for synthetic and natural composites. The suggestion that cellulose is amphiphilic is critically reviewed, with relevance to its processing. Building on this, progress made in using various charged and modified forms of nanocellulose to stabilize oil-water emulsions is addressed. The role of water in the aqueous formation of chiral nematic liquid crystals, and subsequently when dried into composite films is covered. The review will also address the use of cellulose as an aid to water filtration as one area where interactions can be used effectively to prosper human life.
Collapse
Affiliation(s)
- Anita Etale
- Bristol Composites Institute, School of Civil, Aerospace and Mechanical Engineering, University of Bristol, University Walk, BristolBS8 1TR, United Kingdom
| | - Amaka J Onyianta
- Bristol Composites Institute, School of Civil, Aerospace and Mechanical Engineering, University of Bristol, University Walk, BristolBS8 1TR, United Kingdom
| | - Simon R Turner
- School of Biological Science, University of Manchester, Oxford Road, ManchesterM13 9PT, U.K
| | - Stephen J Eichhorn
- Bristol Composites Institute, School of Civil, Aerospace and Mechanical Engineering, University of Bristol, University Walk, BristolBS8 1TR, United Kingdom
| |
Collapse
|
13
|
Nacre-inspired biodegradable nanocellulose/MXene/AgNPs films with high strength and superior gas barrier properties. Carbohydr Polym 2023; 299:120204. [PMID: 36876815 DOI: 10.1016/j.carbpol.2022.120204] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Super strength and high barrier properties are the bottleneck of the application of cellulose film materials. Herein, it is reported a flexible gas barrier film with nacre-like layered structure, in which 1D TEMPO-oxidized nanocellulose (TNF) and 2D MXene self-assembled to form an interwoven stack structure with 0D AgNPs filling the void space. The strong interaction and dense structure endowed TNF/MX/AgNPs film with mechanical properties far superior to PE films and acid-base stability. Importantly, the film presented ultra-low oxygen permeability confirmed by molecular dynamics simulations and better barrier properties to volatile organic gases than PE films. It is here considered the tortuous path diffusion mechanism of the composite film responsible for the enhanced gas barrier performance. The TNF/MX/AgNPs film also possessed antibacterial properties, biocompatibility and degradability (completely degraded after 150 days in soil). Collectively, the TNF/MX/AgNPs film brings innovative insights into the design and fabrication of high-performance materials.
Collapse
|
14
|
Sun Y, Li Y, Chen B, Wang M, Zhang Y, Chen K, Du Q, Wang Y, Pi X. Methylene Blue Removed from Aqueous Solution by Encapsulation of Bentonite Aerogel Beads with Cobalt Alginate. ACS OMEGA 2022; 7:41246-41255. [PMID: 36406510 PMCID: PMC9670690 DOI: 10.1021/acsomega.2c04904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
It can be difficult to remove dark methylene blue (MB) from water effectively. The use of sodium alginate and bentonite (Ben) as the matrix produced a displacement reaction that occurred in cobalt chloride, which allowed Ben to be successfully encapsulated in cobalt alginate (CA). Finally, a vacuum freeze-drying method was used to prepare a low-cost composite of CA/Ben aerogel for adsorbing MB in aqueous solutions. In addition to scanning electron microscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy, the composites were also characterized and analyzed. Different adsorption experiments were conducted in order to determine the effects of dosage, pH, adsorption time, and temperature on the adsorption performance of the adsorbent. According to the results of the experiment, the adsorption capacity of CA/Ben aerogel was 258.92 mg·g-1, and the pseudo-first-order kinetic model and Freundlich isotherm model can fully explain the adsorption process of MB on this aerogel. The composite material reported in this paper is easily recycled, and the removal rate reaches 65% after four times of recycling. Moreover, compared with other adsorbents, the composite material of the invention is highly environmentally friendly and has a simple preparation process. A large-scale application of this technology is the removal of dyes from water on a large scale.
Collapse
Affiliation(s)
- Yaohui Sun
- College
of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao266071, China
| | - Yanhui Li
- College
of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao266071, China
- State
Key Laboratory of Bio-fibers and Eco-textiles, College of Mechanical
and Electrical Engineering, Qingdao University, Qingdao266071, China
| | - Bing Chen
- College
of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao266071, China
| | - Mingzhen Wang
- College
of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao266071, China
| | - Yang Zhang
- College
of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao266071, China
| | - Kewei Chen
- College
of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao266071, China
| | - Qiuju Du
- State
Key Laboratory of Bio-fibers and Eco-textiles, College of Mechanical
and Electrical Engineering, Qingdao University, Qingdao266071, China
| | - Yuqi Wang
- College
of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao266071, China
| | - Xinxin Pi
- College
of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao266071, China
| |
Collapse
|
15
|
Wang J, Wang H. Tolerant chitosan/carboxymethyl cellulose@calcium composite films on nylon fabric for high-flux water/oil separation. Carbohydr Polym 2022; 294:119832. [PMID: 35868777 DOI: 10.1016/j.carbpol.2022.119832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 07/02/2022] [Indexed: 11/15/2022]
Abstract
Nacre as a natural organic-inorganic composite has outstanding mechanical toughness and oil repellency. Enlightened by nacre, we present here a novel strategy to fabricate superhydrophilic/underwater superoleophobic hybrid films on nylon fabric (NF). The hybrid films were constructed via facile and green layer-by-layer (LbL) assembly of calcium ion (Ca2+), chitosan (CS), and carboxymethyl cellulose (CMC) combined with biomimetic mineralization in CO2 atmosphere. The resulting NF exhibits excellent superoleophobicity underwater, anti-oil-fouling ability, and stability. Under the drive of gravity, the deposited fabric can selectively remove pure and corrosive water from various oil-containing water with preferable separation efficiencies, great water flux (>6903 L·m-2·h-1), favorable oil penetration pressure (1.47 kPa), and outstanding recyclability. Especially, the NF can still sustain high underwater oleophobicity after repeatedly separating oil/corrosive water for 80 times. The green preparation process, eco-friendly and durable coating, and good separation performance allow the as-fabricated NF to be applied in oily wastewater treatment.
Collapse
Affiliation(s)
- Jintao Wang
- School of Chemistry and Chemical Engineering, Ankang Research Centre of New Nano-materials Science and Technology, Ankang University, Ankang 725000, PR China.
| | - Hongfei Wang
- Suzhou Wuwei Environmental Technology Co., Ltd., Suzhou 215100, PR China
| |
Collapse
|
16
|
Liu J, Huang H, Zhou D. Surface modification of cellulose nanofibers by oxidative polymerization of tannic acid/ethanediamine and their polyvinylalcohol composites. J Appl Polym Sci 2022. [DOI: 10.1002/app.53049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jin Liu
- College of Material Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Donghua University Shanghai China
| | - Hong Huang
- College of Biological, Chemical Sciences and Engineering Jiaxing University Jiaxing China
| | - Danling Zhou
- College of Health and Social Care Shanghai Urban Construction Vocational College Shanghai China
| |
Collapse
|
17
|
Du F, Alghamdi S, Yang J, Huston D, Tan T. Interfacial Mechanical Behavior in Nacre of Red Abalone and Other Shells: A Review. ACS Biomater Sci Eng 2022. [PMID: 35959691 DOI: 10.1021/acsbiomaterials.2c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interfaces between nacreous tablets are crucial to the outstanding mechanical properties of nacre in natural shells. Excellent research has been conducted to probe the effect of interfaces on strength and toughness of nacre, providing critical guidelines for the design of human-made laminated composites. This article reviews recent studies on interfacial mechanical behavior of nacre in red abalone and other shells, including experimental methods, analytical and numerical modeling. The discussions focus on the mechanical properties of dry and hydrated nacreous microstructures. The review concludes with discussions on representative studies of nacre-like composites with interfaces tuned using multiple approaches, and provides an outlook on improving the performance of composites with better interfacial controls.
Collapse
Affiliation(s)
- Fen Du
- Department of Mechanical Engineering, Vermont Technical College, Randolph Center, Vermont 05061, United States.,Department of Mechanical Engineering, Beijing Institute of Technology, Zhuhai 519082, China
| | - Saleh Alghamdi
- Department of Civil Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Jie Yang
- Department of Physics, University of Vermont, Burlington, Vermont 05405, United States
| | - Dryver Huston
- Department of Mechanical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Ting Tan
- Department of Civil Engineering, Sun Yat-Sen University, Zhuhai 519082, China.,Department of Civil and Environment Engineering, University of Vermont, Burlington, Vermont 05405, United States
| |
Collapse
|
18
|
Xiao Z, Zhao Q, Niu Y, Zhao D. Adhesion advances: from nanomaterials to biomimetic adhesion and applications. SOFT MATTER 2022; 18:3447-3464. [PMID: 35470362 DOI: 10.1039/d2sm00265e] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The field of adhesion has revealed a significant impact on numerous applications such as wound healing, drug delivery, electrically conductive adhesive, dental adhesive, and wood industry. Nanotechnology has continued to be the primary means to achieve adhesion. Among them, biological systems based on the unique structure of the nano-levels have developed excellent adhesion capabilities after billions of years of evolution and natural selection. Therefore, the research on bionic adhesion inspired by biological systems has gradually emerged. This review firstly focuses on the mechanism of adhesion, and secondly reports the effects of different nanomaterials on adhesion properties. Then based on the structure of mussels, geckos, tree frogs, octopuses, and other organisms, the research progress of biomimetic nanotechnology to achieve adhesion is summarized. Finally, the applications, challenges, and future directions of nanotechnology in new adhesive materials are provided.
Collapse
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
- School of Agriculture and Biology, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Qixuan Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| | - Di Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
19
|
Large-area transparent biocomposite films based on nanocellulose and nanochitin via horizontal centrifugal casting. Carbohydr Polym 2022; 281:119051. [DOI: 10.1016/j.carbpol.2021.119051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022]
|
20
|
Silva RD, Carvalho LT, Moraes RM, Medeiros SDF, Lacerda TM. Biomimetic Biomaterials Based on Polysaccharides: Recent Progress and Future Perspectives. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rodrigo Duarte Silva
- Nanotechnology National Laboratory for Agriculture (LNNA) Embrapa Instrumentation Rua XV de Novembro 1452 São Carlos SP 13560‐970 Brazil
| | - Layde Teixeira Carvalho
- Department of Chemical Engineering Engineering School of Lorena University of São Paulo (EEL‐USP) Lorena SP 12602‐810 Brazil
| | - Rodolfo Minto Moraes
- Department of Material Engineering Engineering School of Lorena University of São Paulo, (EEL‐USP) Lorena SP 12602‐810 Brazil
| | - Simone de Fátima Medeiros
- Department of Chemical Engineering Engineering School of Lorena University of São Paulo (EEL‐USP) Lorena SP 12602‐810 Brazil
| | - Talita Martins Lacerda
- Department of Biotechnology Engineering School of Lorena University of São Paulo (EEL‐USP) Lorena SP 12602‐810 Brazil
| |
Collapse
|
21
|
Li L, Maddalena L, Nishiyama Y, Carosio F, Ogawa Y, Berglund LA. Recyclable nanocomposites of well-dispersed 2D layered silicates in cellulose nanofibril (CNF) matrix. Carbohydr Polym 2022; 279:119004. [PMID: 34980351 DOI: 10.1016/j.carbpol.2021.119004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/01/2021] [Accepted: 12/07/2021] [Indexed: 11/15/2022]
Abstract
Nanocomposites based on components from nature, which can be recycled are of great interest in new materials for sustainable development. The range of properties of nacre-inspired hybrids of 1D cellulose and 2D clay platelets are investigated in nanocomposites with improved nanoparticle dispersion in the starting hydrocolloid mixture. Films with a wide range of compositions are prepared by capillary force assisted physical assembly (vacuum-assisted filtration) of TEMPO-oxidized cellulose nanofibers (TOCN) reinforced by exfoliated nanoclays of three different aspect ratios: saponite, montmorillonite and mica. X-ray diffraction and transmission electron micrographs show almost monolayer dispersion of saponite and montmorillonite and high orientation parallel to the film surface. Films exhibit ultimate strength up to 573 MPa. Young's modulus exceeds 38 GPa even at high MTM contents (40-80 vol%). Optical transmittance, UV-shielding, thermal shielding and fire-retardant properties are measured, found to be very good and are sensitive to the 2D nanoplatelet dispersion.
Collapse
Affiliation(s)
- Lengwan Li
- Department of Fiber and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Lorenza Maddalena
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Alessandria Campus, Viale Teresa Michel 5, 15121 Alessandria, Italy
| | | | - Federico Carosio
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Alessandria Campus, Viale Teresa Michel 5, 15121 Alessandria, Italy
| | - Yu Ogawa
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Lars A Berglund
- Department of Fiber and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.
| |
Collapse
|
22
|
Wang M, Li Y, Cui M, Li M, Xu W, Li L, Sun Y, Chen B, Chen K, Zhang Y. Barium alginate as a skeleton coating graphene oxide and bentonite-derived composites: Excellent adsorbent based on predictive design for the enhanced adsorption of methylene blue. J Colloid Interface Sci 2022; 611:629-643. [PMID: 34973658 DOI: 10.1016/j.jcis.2021.12.115] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/08/2021] [Accepted: 12/18/2021] [Indexed: 12/27/2022]
Abstract
The phenomenon that calcium alginate does not exhibit high adsorption capacity as a carrier material has not been reasonably explained or solved. In this paper, a new viewpoint that the orbital energy level of metal ions and the binding degree of the α-l-guluronate and β-d-mannuronate units affect the adsorption performance of the composite was innovatively proposed. Taking barium alginate (BA) as an example, the possibility of replacing calcium alginate is discussed. Barium alginate/graphene oxide (BA/GO) membranes and three-dimensional (3D) barium alginate-bentonite-graphene oxide derived (3D-BA) hydrogels were prepared by vacuum freeze-drying to remove methylene blue. The structure and morphology of the prepared adsorbents were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, thermogravimetry and Fourier transform infrared spectroscopy. The effects of adsorbent dosage, doping ratio, temperature, contact time, pH value and initial dye concentration on the adsorption performance of BA composites were investigated. The adsorption capacities of the BA/GO and 3D-BA materials were 1011.3 and 710.3 mg/g, respectively. The BA/GO membrane exhibited stable filtration performance against high concentrations of dyes. Benefiting from the strong interaction between bentonite, sodium alginate and Ba2+, the 3D-BA hydrogel showed higher thermal stability and better adsorption efficiency than other materials. The Elovich kinetic model and Sips equation can appropriately describe the adsorption process. The results show that barium alginate is a better carrier material than calcium alginate.
Collapse
Affiliation(s)
- Mingzhen Wang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yanhui Li
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Mingfei Cui
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Meixiu Li
- Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Wenshuo Xu
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Liubo Li
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yaohui Sun
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Bing Chen
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Kewei Chen
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yang Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
23
|
Wu Y, Liang Y, Mei C, Cai L, Nadda A, Le QV, Peng Y, Lam SS, Sonne C, Xia C. Advanced nanocellulose-based gas barrier materials: Present status and prospects. CHEMOSPHERE 2022; 286:131891. [PMID: 34416587 DOI: 10.1016/j.chemosphere.2021.131891] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Nanocellulose based gas barrier materials have become an increasingly important subject, since it is a widespread environmentally friendly natural polymer. Previous studies have shown that super-high gas barrier can be achieved with pure and hierarchical nanocellulose films fabricated through simple suspension or layer-by-layer technique either by itself or incorporating with other polymers or nanoparticles. Improved gas barrier properties were observed for nanocellulose-reinforced composites, where nanocellulose partially impermeable nanoparticles decreased gas permeability effectively. However, for nanocellulose-based materials, the higher gas barrier performance is jeopardized by water absorption and shape deformation under high humidity conditions which is a challenge for maintaining properties in material applications. Thus, numerous investigations have been done to solve the problem of water absorption in nanocellulose-based materials. In this literature review, gas barrier properties of pure, layer-by-layer and composite nanocellulose films are investigated. The possible theoretical gas barrier mechanisms are described, and the prospects for nanocellulose-based materials are discussed.
Collapse
Affiliation(s)
- Yingji Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China
| | - Yunyi Liang
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China
| | - Changtong Mei
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Liping Cai
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Ashok Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India
| | - Quyet Van Le
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, 145, Anam-ro Seongbuk-gu, Seoul, 02841, South Korea
| | - Yucheng Peng
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Su Shiung Lam
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Christian Sonne
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark.
| | - Changlei Xia
- Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing, 100102, China.
| |
Collapse
|
24
|
Liu F, Liu X, Chen F, Fu Q. Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101472] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Mechanical properties of cellulose nanofibril papers and their bionanocomposites: A review. Carbohydr Polym 2021; 273:118507. [PMID: 34560938 DOI: 10.1016/j.carbpol.2021.118507] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/14/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022]
Abstract
Cellulose nanofibril (CNF) paper has various applications due to its unique advantages. Herein, we present the intrinsic mechanical properties of CNF papers, along with the preparation and properties of nanoparticle-reinforced CNF composite papers. The literature on CNF papers reveals a strong correlation between the intrafibrillar network structure and the resulting mechanical properties. This correlation is found to hold for all primary factors affecting mechanical properties, indicating that the performance of CNF materials depends directly on and can be tailored by controlling the intrafibrillar network of the system. The parameters that influence the mechanical properties of CNF papers were critically reviewed. Moreover, the effect on the mechanical properties by adding nanofillers to CNF papers to produce multifunctional composite products was discussed. We concluded this article with future perspectives and possible developments in CNFs and their bionanocomposite papers.
Collapse
|
26
|
Zhang Z, Lu T, Yang D, Lu S, Cai R, Tan W. A High-Wet-Strength Biofilm for Readable and Highly Sensitive Humidity Sensors. NANO LETTERS 2021; 21:9030-9037. [PMID: 34699244 DOI: 10.1021/acs.nanolett.1c02452] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Low-cost and flexible biofilm humidity sensors with good wet strength are crucial for humidity detection. However, it remains a great challenge to integrate good reversibility, rapid humidity response, and robust humid mechanical strength in one sensor. In this respect, we report a facile method to prepare a sustainable biofilm (named MC film) from sisal cellulose microcrystals (MSF-g-COOH) and citric acid (CA). After cross-linking with CA, the MC film exhibits excellent wet strength and rapid humidity response. More importantly, MC film can be used over a wide temperature range with excellent durability and reversibility for humidity detection. A highly sensitive humidity sensor fabricated from the MC film exhibits high reversibility and excellent water resistance and can be applied in humidity and personalized breath health monitoring. Our work fills the gap between biomaterial design and high-performance sensing devices.
Collapse
Affiliation(s)
- Zuocai Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Tianyun Lu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Dan Yang
- RMIT University, Melbourne, Victoria 3000, Australia
| | - Shaorong Lu
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Ren Cai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
27
|
Water-resistant nanopaper with tunable water barrier and mechanical properties from assembled complexes of oppositely charged cellulosic nanomaterials. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
Uniform and porous nacre-like cellulose nanofibrils/nanoclay composite membrane as separator for highly safe and advanced Li-ion battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119622] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Huang J, Wróblewska AA, Steinkoenig J, Maes S, Du Prez FE. Assembling Lipoic Acid and Nanoclay into Nacre-Mimetic Nanocomposites. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00281] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jing Huang
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
- Department of Polymer Materials and Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Aleksandra Alicja Wróblewska
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
| | - Jan Steinkoenig
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
| | - Stephan Maes
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
| | - Filip E. Du Prez
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
| |
Collapse
|
30
|
Jiang H, Jiang L, Zhang P, Zhang X, Ma N, Wei H. Force-Induced Self-Assembly of Supramolecular Modified Mica Nanosheets for Ductile and Heat-Resistant Mica Papers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5131-5138. [PMID: 33882231 DOI: 10.1021/acs.langmuir.1c00001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mica is a naturally abundant layered silicate mineral that has higher strength than other layered silicate minerals, but its inherent brittleness limits its application in some fields. In this work, mica was ultrasonically exfoliated into a single-layered nanomaterial after thermal activation, acidification, sodium replacement, and cetyltrimethylammonium bromide (CTAB) intercalation and then modified with ureido-pyrimidinone (UPy)-based PEG chains. Vacuum-assisted self-assembly was used to construct supramolecularly modified single-layered mica into bulk materials, in which the mica nanosheets were stacked into mica paper. The reversible quadruple hydrogen-bonded UPy moieties provided a high binding constant and significantly improved the strength and toughness of the obtained mica paper. These force-induced assembled mica papers showed significantly improved tensile strength and toughness compared with pure mica paper and simultaneously maintained the heat resistance of the mica materials, which may be good candidates for the substrates of flexible sensors working at higher temperatures.
Collapse
Affiliation(s)
- Hongkun Jiang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Lei Jiang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Peng Zhang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Xinyue Zhang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Ning Ma
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Hao Wei
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|
31
|
Chen FF, Dai ZH, Feng YN, Xiong ZC, Zhu YJ, Yu Y. Customized Cellulose Fiber Paper Enabled by an In Situ Growth of Ultralong Hydroxyapatite Nanowires. ACS NANO 2021; 15:5355-5365. [PMID: 33631928 DOI: 10.1021/acsnano.0c10903] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cellulose fiber (CF) paper is a low-cost, sustainable, and flexible substrate, which has gained increasing interest recently. Before practical usage, the functionalization of the pristine CF paper is indispensable to meet requirements of specific applications. Different from conventional surface modification or physical mixing methods, we report in situ growth of ultralong hydroxyapatite nanowires (HAPNWs) with lengths larger than 10 μm on the CF paper. HAPNWs are radially aligned on the surface of CFs, creating a micro/nanoscale hierarchical structure. By means of the excellent ion exchange ability of HAP and the hierarchical structure, the functions of the CF paper can be easily customized. As a proof-of-concept, we demonstrate two kinds of functional CF paper: (1) the photoluminescent CF paper by doping Eu3+ and Tb3+ ions into the crystal lattice of HAPNWs and (2) the superhydrophobic CF paper by coating poly(dimethylsiloxane) on the HAPNW hierarchical structure, which can be applied for self-cleaning and oil/water separation. It is expected that an in situ growth of ultralong HAPNWs will provide an instructive guideline for designing a CF paper with specific functions.
Collapse
Affiliation(s)
- Fei-Fei Chen
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Zi-Hao Dai
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Ya-Nan Feng
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Zhi-Chao Xiong
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yan Yu
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
32
|
Samyn P. Polydopamine and Cellulose: Two Biomaterials with Excellent Compatibility and Applicability. POLYM REV 2021. [DOI: 10.1080/15583724.2021.1896545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pieter Samyn
- Institute for Materials Research, Applied and Analytical Chemistry, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
33
|
Xu D, Wang S, Berglund LA, Zhou Q. Surface Charges Control the Structure and Properties of Layered Nanocomposite of Cellulose Nanofibrils and Clay Platelets. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4463-4472. [PMID: 33428385 PMCID: PMC7880528 DOI: 10.1021/acsami.0c18594] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
The interfacial bonding and structure at the nanoscale in the polymer-clay nanocomposites are essential for obtaining desirable material and structure properties. Layered nanocomposite films of cellulose nanofibrils (CNFs)/montmorillonite (MTM) were prepared from the water suspensions of either CNFs bearing quaternary ammonium cations (Q-CNF) or CNFs bearing carboxylate groups (TO-CNF) with MTM nanoplatelets carrying net surface negative charges by using vacuum filtration followed by compressive drying. The effect of the ionic interaction between cationic or anionic charged CNFs and MTM nanoplatelets on the structure, mechanical properties, and flame retardant performance of the TO-CNF/MTM and Q-CNF/MTM nanocomposite films were studied and compared. The MTM nanoplatelets were well dispersed in the network of TO-CNFs in the form of nanoscale tactoids with the MTM content in the range of 5-70 wt %, while an intercalated structure was observed in the Q-CNF/MTM nanocomposites. The resulting TO-CNF/MTM nanocomposite films had a better flame retardant performance as compared to the Q-CNF/MTM films with the same MTM content. In addition, the effective modulus of MTM for the TO-CNF/MTM nanocomposites was as high as 129.9 GPa, 3.5 times higher than that for Q-CNF/MTM (37.1 GPa). On the other hand, the Q-CNF/MTM nanocomposites showed a synergistic enhancement in the modulus and tensile strength together with strain-to-failure and demonstrated a much better toughness as compared to the TO-CNF/MTM nanocomposites.
Collapse
Affiliation(s)
- Dingfeng Xu
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm SE-106 91, Sweden
| | - Shennan Wang
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm SE-106 91, Sweden
| | - Lars A. Berglund
- Wallenberg
Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Qi Zhou
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm SE-106 91, Sweden
- Wallenberg
Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| |
Collapse
|
34
|
Barhoum A, Jeevanandam J, Rastogi A, Samyn P, Boluk Y, Dufresne A, Danquah MK, Bechelany M. Plant celluloses, hemicelluloses, lignins, and volatile oils for the synthesis of nanoparticles and nanostructured materials. NANOSCALE 2020; 12:22845-22890. [PMID: 33185217 DOI: 10.1039/d0nr04795c] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A huge variety of plants are harvested worldwide and their different constituents can be converted into a broad range of bionanomaterials. In parallel, much research effort in materials science and engineering is focused on the formation of nanoparticles and nanostructured materials originating from agricultural residues. Cellulose (40-50%), hemicellulose (20-40%), and lignin (20-30%) represent major plant ingredients and many techniques have been described that separate the main plant components for the synthesis of nanocelluloses, nano-hemicelluloses, and nanolignins with divergent and controllable properties. The minor components, such as essential oils, could also be used to produce non-toxic metal and metal oxide nanoparticles with high bioavailability, biocompatibility, and/or bioactivity. This review describes the chemical structure, the physical and chemical properties of plant cell constituents, different techniques for the synthesis of nanocelluloses, nanohemicelluloses, and nanolignins from various lignocellulose sources and agricultural residues, and the extraction of volatile oils from plants as well as their use in metal and metal oxide nanoparticle production and emulsion preparation. Furthermore, details about the formation of activated carbon nanomaterials by thermal treatment of lignocellulose materials, a few examples of mineral extraction from agriculture waste for nanoparticle fabrication, and the emerging applications of plant-based nanomaterials in different fields, such as biotechnology and medicine, environment protection, environmental remediation, or energy production and storage, are also included. This review also briefly discusses the recent developments and challenges of obtaining nanomaterials from plant residues, and the issues surrounding toxicity and regulation.
Collapse
Affiliation(s)
- Ahmed Barhoum
- Chemistry Department, Faculty of Science, Helwan University, 11795 Cairo, Egypt.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Exfoliation and gelation in laponite–carboxymethyl cellulose complexes and its application in sustained drug release. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-019-03019-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Alimohammadzadeh R, Medina L, Deiana L, Berglund LA, Córdova A. Mild and Versatile Functionalization of Nacre-Mimetic Cellulose Nanofibrils/Clay Nanocomposites by Organocatalytic Surface Engineering. ACS OMEGA 2020; 5:19363-19370. [PMID: 32803029 PMCID: PMC7424572 DOI: 10.1021/acsomega.0c00978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Development of surface-engineering strategies, which are facile, versatile, and mild, are highly desirable in tailor-made functionalization of high-performance bioinspired nanocomposites. We herein disclose for the first time a general organocatalytic strategy for the functionalization and hydrophobization of nacre-mimetic nanocomposites, which includes vide supra key aspects of surface engineering. The merging of metal-free catalysis and the design of nacre-mimetic nanocomposite materials were demonstrated by the organocatalytic surface engineering of cellulose nanofibrils/clay nanocomposites providing the corresponding bioinspired nanocomposites with good mechanical properties, hydrophobicity, and useful thia-, amino, and olefinic functionalities.
Collapse
Affiliation(s)
| | - Lilian Medina
- Department
of Fiber and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Luca Deiana
- Department
of Natural Sciences, Mid Sweden University, SE-851 70 Sundsvall, Sweden
| | - Lars A. Berglund
- Department
of Fiber and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Armando Córdova
- Department
of Natural Sciences, Mid Sweden University, SE-851 70 Sundsvall, Sweden
| |
Collapse
|
37
|
|
38
|
Sung K, Nakagawa S, Kim C, Yoshie N. Fabrication of nacre-like polymer/clay nanocomposites with water-resistant and self-adhesion properties. J Colloid Interface Sci 2020; 564:113-123. [DOI: 10.1016/j.jcis.2019.12.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 11/29/2022]
|
39
|
Lisuzzo L, Wicklein B, Lo Dico G, Lazzara G, Del Real G, Aranda P, Ruiz-Hitzky E. Functional biohybrid materials based on halloysite, sepiolite and cellulose nanofibers for health applications. Dalton Trans 2019; 49:3830-3840. [PMID: 31834335 DOI: 10.1039/c9dt03804c] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biohybrid materials were prepared by co-assembling the three following components: nanotubular halloysite, microfibrous sepiolite, and cellulose nanofibers dispersed in water, in order to exploit the most salient features of each individual component and to render homogeneous, flexible, yet strong films. Indeed, the incorporation of halloysite improves the mechanical performance of the resulting hybrid nanopapers and the assembly of the three components modifies the surface features concerning wetting properties compared to pristine materials, so that the main characteristics of the resulting materials become tunable with regard to certain properties. Owing to their hierarchical porosity together with their diverse surface characteristics, these hybrids can be used in diverse biomedical/pharmaceutical applications. Herein, for instance, loading with two model drugs, salicylic acid and ibuprofen, allows controlled and sustained release as deduced from antimicrobial assays, opening a versatile path for developing other related organic-inorganic materials of potential interest in diverse application fields.
Collapse
Affiliation(s)
- Lorenzo Lisuzzo
- Department of Physics and Chemistry, University of Palermo, Viale delle Scienze, pad. 17, Palermo 90128, Italy
| | | | | | | | | | | | | |
Collapse
|
40
|
Darder M, Karan A, Real GD, DeCoster MA. Cellulose-based biomaterials integrated with copper-cystine hybrid structures as catalysts for nitric oxide generation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110369. [PMID: 31923961 DOI: 10.1016/j.msec.2019.110369] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/03/2019] [Accepted: 10/24/2019] [Indexed: 11/19/2022]
Abstract
Bionanocomposite materials were developed from the assembly of polymer-coated copper-cystine high-aspect ratio structures (CuHARS) and cellulose fibers. The coating of the metal-organic materials with polyallylamine hydrochloride (PAH) allows their covalent linkage to TEMPO-oxidized cellulose by means of EDC/NHS. The resulting materials can be processed as films or macroporous foams by solvent casting and lyophilization, respectively. The films show good mechanical behavior with Young's moduli around 1.5 GPa as well as resistance in water, while the obtained foams show an open network of interconnected macropores with average diameters around 130 μm, depending on the concentration of the initial suspension, and compression modulus values around 450 kPa, similar to other reported freeze-dried nanocellulose-based aerogels. Based on these characteristics, the cellulose/PAH-CuHARS composites are promising for potential biomedical applications as implants or wound dressing materials. They have proved to be effective in the decomposition of low molecular weight S-nitrosothiols (RSNOs), similar to those existing in blood, releasing nitric oxide (NO). This effect is attributed to the presence of copper in the crystalline structure of the CuHARS building unit, which can be gradually released in the presence of redox species like ascorbic acid, typically found in blood. The resulting biomaterials can offer the interesting properties associated with NO, like antimicrobial activity as preliminary tests showed here with Escherichia coli and Staphylococcus epidermidis. In the presence of physiological concentration of RSNOs the amount of generated NO (around 360 nM) is not enough to show bactericidal effect on the studied bacteria, but it could provide other properties inherent to NO even at low concentration in the nM range like anti-inflammatory and anti-thrombotic effects. The cytotoxic effect recorded of the films on rat brain endothelial cells (BMVECs) is least significant and proves them to be friendly enough for further biological studies.
Collapse
Affiliation(s)
- Margarita Darder
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, 28049, Madrid, Spain.
| | - Anik Karan
- Cellular Neuroscience Laboratory, Biomedical Engineering, College of Engineering and Science, Louisiana Tech University, 71270, Louisiana, USA
| | - Gustavo Del Real
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña Km 7,5, 28040, Madrid, Spain
| | - Mark A DeCoster
- Cellular Neuroscience Laboratory, Biomedical Engineering, College of Engineering and Science, Louisiana Tech University, 71270, Louisiana, USA; Cellular Neuroscience Laboratory, Institute for Micromanufacturing, College of Engineering and Science, Louisiana Tech University, 71270, Louisiana, USA
| |
Collapse
|
41
|
Alves L, Ferraz E, Gamelas J. Composites of nanofibrillated cellulose with clay minerals: A review. Adv Colloid Interface Sci 2019; 272:101994. [PMID: 31394436 DOI: 10.1016/j.cis.2019.101994] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/21/2019] [Accepted: 07/22/2019] [Indexed: 11/27/2022]
Abstract
Biopolymers-based composites are, in general, environmentally friendly materials, which can be obtained from renewable sources. Some of them can also present promising properties to be used in food packaging and electronic devices, being thus logical substitutes to petroleum-based polymers, specifically plastics. Cellulose nanofibrils (CNF) obtained by chemical/enzymatic pre-treatments followed by a mechanical treatment appear as a new suitable biomaterial. However, CNF are still quite expensive materials, due to the required chemicals/equipment/energy involved, and additionally, they present some limitations such as high hydrophilicity/high water vapour permeability. The combination of CNF with clay minerals, such as montmorillonite or kaolinite, as widely available geo-resources, represents an excellent way to reduce the amount of CNF used, enabling the production of valuable materials and reducing costs; and, at the same time it is possible to improve the characteristics of the formed materials, such as mechanical, gas barrier and fire retardancy properties, if appropriate conditions of preparation are used. Nevertheless, to obtain hybrid CNF/clay composites with superior properties it is necessary to ensure a good dispersion of the inorganic material in the CNF suspension and a good compatibility among the inorganic and organic components. To fulfil this goal, several strategies can be considered, including physical treatments of the suspensions, CNF and clay surface chemical modifications, and the use of a coupling agent. In this review article, the state-of-the-art on a new emerging generation of composites (films, foams or coatings) based on nanofibrillated cellulose and nanoclay, with focus on strategies for their preparation and most relevant achievements is critically reviewed, bearing in mind their potential application as substitutes for common plastics. A third component has been eventually added to these organic-inorganic hybrids, e.g., chitosan, carboxymethylcellulose, borate or epoxy resin, to enhance specific characteristics of the material. Some general background on the production of different types of CNF and their main properties is previously provided.
Collapse
|
42
|
Wang C, Ge X, Jiang Y. Synergistic effect of graphene oxide/montmorillonite-sodium carboxymethycellulose ternary mimic-nacre nanocomposites prepared via a facile evaporation and hot- pressing technique. Carbohydr Polym 2019; 222:115026. [DOI: 10.1016/j.carbpol.2019.115026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/23/2019] [Accepted: 06/24/2019] [Indexed: 02/08/2023]
|
43
|
Macroporous bacterial cellulose grafted by oligopeptides induces biomimetic mineralization via interfacial wettability. Colloids Surf B Biointerfaces 2019; 183:110457. [PMID: 31476688 DOI: 10.1016/j.colsurfb.2019.110457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/29/2019] [Accepted: 08/24/2019] [Indexed: 11/20/2022]
Abstract
Bacterial cellulose (BC) has a role in tissue repair and regenerative medicine, which has already attracted tremendous interest from researchers, especially those working in the field of hybrid materials. Herein, we designed BC-based macroporous functional materials by dialdehyde bacterial cellulose (DBC) cross-linking with oligopeptides under mild reactive conditions. The interfacial properties of the surface modified BC were examined by biomimetic mineralization. The results showed that a macroporous structure was achieved by using oligopeptides as chemical cross-linking agents with an interconnected macroporosity ranging from 20 μm to 80 μm. Their mechanical properties were barely altered compared to the pristine BC. Their enhanced surface charges stemmed from the carboxyl groups of the oligopeptides engaging in reactions with amine and aldehyde groups. The oligopeptides cross-linked DBC showed a faster initial induction towards minerals via interfacial wettability resulting in promotion of mineralization, the hybrid materials had excellent biocompatibility relative to the pristine BC. These findings are vital to the development of other biopolymers with essential macroporous structures as well as improved interfacial wettability, which enables their possible uses in tissue repair and regenerative medicine.
Collapse
|
44
|
Bioinspired approach to enhance mechanical properties of starch based nacre-mimetic nanocomposite. Carbohydr Polym 2019; 221:113-119. [PMID: 31227149 DOI: 10.1016/j.carbpol.2019.05.090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 11/20/2022]
Abstract
In this work, a facile biomimetic method was proposed to enhance the interfacial adhesion between layered clay and polymer matrix inspired by strong adhesion of mussel adhesive proteins. Montmorillonite (MMT) was coated with a thin layer of polydopamine (PDA) through self-polymerization of dopamine (DA) and subsequently assembled with corn starch (CS) to generate CS/MMT-DA nanocomposite. FTIR, XPS, SEM and XRD results demonstrated that PDA coating benefited not only the intercalation and dispersion of the modified MMT (MMT-DA) in the polymer matrix but also the strong interfacial adhesion between filler and matrix. The tensile strength of CS/MMT-DA nanocomposites was largely enhanced by increasing the amount of DA or polymerization time. This work can largely expand the application of MMT and provide a new idea for preparing high performance starch nanocomposites.
Collapse
|
45
|
Woo JY, Oh JH, Jo S, Han CS. Nacre-Mimetic Graphene Oxide/Cross-Linking Agent Composite Films with Superior Mechanical Properties. ACS NANO 2019; 13:4522-4529. [PMID: 30896924 DOI: 10.1021/acsnano.9b00158] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We report a graphene oxide/cross-linking agent (GO/CA) composite inspired by the nacre structure. Based on the "brick-and-mortar" concept of nacre, graphene oxide and a cross-linking agent are covalently conjugated in the form of nacre. The mechanical characteristics of the nacre-mimetic GO/CA composite film can be controlled by adjusting the preparation method, degree of cross-linking, and cross-linking times. As a result, the cross-linking strategy can drastically enhance the tensile strength [142.9 ± 6.4 MPa (∼2.3-fold)], modulus [4.7 ± 0.36 GPa (∼15.7-fold)], and hardness [917.4 ± 85.7 MPa (∼9.0-fold)], which are superior to those of pristine materials. The cross-linking agent-based chemical bonding method for mechanically improved integration is mainly attributed to the formation of strong cross-linked networks between the GO-based 2D interfaces and CA. The facile fabrication process provides many opportunities to design advanced, robust, and integrated nacre-like GO/CA composites, which can be applied to future aerospace utilizations, electronic protectors, robotic elements, and permeable membranes.
Collapse
|
46
|
Medina L, Nishiyama Y, Daicho K, Saito T, Yan M, Berglund LA. Nanostructure and Properties of Nacre-Inspired Clay/Cellulose Nanocomposites—Synchrotron X-ray Scattering Analysis. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00333] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Lilian Medina
- Department of Fiber and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | | | - Kazuho Daicho
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tsuguyuki Saito
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Max Yan
- School of Engineering Sciences, KTH Royal Institute of Technology, 16440 Kista, Sweden
| | - Lars A. Berglund
- Department of Fiber and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| |
Collapse
|
47
|
Lossada F, Guo J, Jiao D, Groeer S, Bourgeat-Lami E, Montarnal D, Walther A. Vitrimer Chemistry Meets Cellulose Nanofibrils: Bioinspired Nanopapers with High Water Resistance and Strong Adhesion. Biomacromolecules 2018; 20:1045-1055. [DOI: 10.1021/acs.biomac.8b01659] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Francisco Lossada
- Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
| | - Jiaqi Guo
- Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
| | - Dejin Jiao
- Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
| | - Saskia Groeer
- Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
| | - Elodie Bourgeat-Lami
- Univ Lyon. Université Claude Bernard Lyon 1, CPE Lyon,
CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes, 43 Bvd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Damien Montarnal
- Univ Lyon. Université Claude Bernard Lyon 1, CPE Lyon,
CNRS, UMR 5265, Chemistry, Catalysis, Polymers and Processes, 43 Bvd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Andreas Walther
- Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg 79110, Germany
- Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg 79104, Germany
| |
Collapse
|
48
|
Niu X, Liu Y, Fang G, Huang C, Rojas OJ, Pan H. Highly Transparent, Strong, and Flexible Films with Modified Cellulose Nanofiber Bearing UV Shielding Property. Biomacromolecules 2018; 19:4565-4575. [PMID: 30412387 DOI: 10.1021/acs.biomac.8b01252] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This work investigates multifunctional composite films synthesized with cellulose nanofibers (CNFs) and poly(vinyl alcohol) (PVA). First, TEMPO-oxidized CNFs were modified in the heterogeneous phase with benzophenone, diisocyanate, and epoxidized soybean oil via esterification reactions. A thorough characterization was carried out via elemental analysis as well as FT-IR and X-ray photoelectron spectroscopies and solid-state NMR. Following, the surface-modified CNFs were combined with PVA to endow composite films with UV-absorbing capabilities while increasing their thermomechanical strength and maintaining a high light transmittance. Compared to neat PVF films, the tensile strength, Young modulus, and elongation of the films underwent dramatic increases upon addition of the reinforcing phase (maximum values of ∼96 MPa, ∼ 714 MPa, and ∼350%, respectively). A high UV blocking performance, especially in the UVB region, was observed for the introduced multifunctional PVA films at CNF loadings below 5 wt %. The trade-off between modified nanofibril function as interfacial reinforcement and aggregation leads to an optimum loading. The results indicate promising applications, for example, in active packaging.
Collapse
Affiliation(s)
- Xun Niu
- College of Chemical Engineering , Nanjing Forestry University , 159# Longpan Road , Nanjing 210037 , PR China
| | - Yating Liu
- College of Chemical Engineering , Nanjing Forestry University , 159# Longpan Road , Nanjing 210037 , PR China
| | - Guigan Fang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources , Nanjing Forestry University , 159# Longpan Road , Nanjing 210037 , PR China.,Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry , Nanjing 210042 , PR China
| | - Chaobo Huang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources , Nanjing Forestry University , 159# Longpan Road , Nanjing 210037 , PR China.,College of Chemical Engineering , Nanjing Forestry University , 159# Longpan Road , Nanjing 210037 , PR China
| | - Orlando J Rojas
- Biobased Colloids and Materials group (BiCMat), Department of Bioproducts and Biosystems, School of Chemical Engineering , Aalto University , FI-00076 , Espoo , Finland
| | - Hui Pan
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources , Nanjing Forestry University , 159# Longpan Road , Nanjing 210037 , PR China.,College of Chemical Engineering , Nanjing Forestry University , 159# Longpan Road , Nanjing 210037 , PR China
| |
Collapse
|
49
|
Thomas B, Raj MC, B AK, H RM, Joy J, Moores A, Drisko GL, Sanchez C. Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications. Chem Rev 2018; 118:11575-11625. [PMID: 30403346 DOI: 10.1021/acs.chemrev.7b00627] [Citation(s) in RCA: 634] [Impact Index Per Article: 90.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
With increasing environmental and ecological concerns due to the use of petroleum-based chemicals and products, the synthesis of fine chemicals and functional materials from natural resources is of great public value. Nanocellulose may prove to be one of the most promising green materials of modern times due to its intrinsic properties, renewability, and abundance. In this review, we present nanocellulose-based materials from sourcing, synthesis, and surface modification of nanocellulose, to materials formation and applications. Nanocellulose can be sourced from biomass, plants, or bacteria, relying on fairly simple, scalable, and efficient isolation techniques. Mechanical, chemical, and enzymatic treatments, or a combination of these, can be used to extract nanocellulose from natural sources. The properties of nanocellulose are dependent on the source, the isolation technique, and potential subsequent surface transformations. Nanocellulose surface modification techniques are typically used to introduce either charged or hydrophobic moieties, and include amidation, esterification, etherification, silylation, polymerization, urethanization, sulfonation, and phosphorylation. Nanocellulose has excellent strength, high Young's modulus, biocompatibility, and tunable self-assembly, thixotropic, and photonic properties, which are essential for the applications of this material. Nanocellulose participates in the fabrication of a large range of nanomaterials and nanocomposites, including those based on polymers, metals, metal oxides, and carbon. In particular, nanocellulose complements organic-based materials, where it imparts its mechanical properties to the composite. Nanocellulose is a promising material whenever material strength, flexibility, and/or specific nanostructuration are required. Applications include functional paper, optoelectronics, and antibacterial coatings, packaging, mechanically reinforced polymer composites, tissue scaffolds, drug delivery, biosensors, energy storage, catalysis, environmental remediation, and electrochemically controlled separation. Phosphorylated nanocellulose is a particularly interesting material, spanning a surprising set of applications in various dimensions including bone scaffolds, adsorbents, and flame retardants and as a support for the heterogenization of homogeneous catalysts.
Collapse
Affiliation(s)
- Bejoy Thomas
- Department of Chemistry , Newman College, Thodupuzha , 685 585 Thodupuzha , Kerala , India
| | - Midhun C Raj
- Department of Chemistry , Newman College, Thodupuzha , 685 585 Thodupuzha , Kerala , India
| | - Athira K B
- Department of Chemistry , Newman College, Thodupuzha , 685 585 Thodupuzha , Kerala , India
| | - Rubiyah M H
- Department of Chemistry , Newman College, Thodupuzha , 685 585 Thodupuzha , Kerala , India
| | - Jithin Joy
- Department of Chemistry , Newman College, Thodupuzha , 685 585 Thodupuzha , Kerala , India.,International and Interuniversity Centre for Nanoscience and Nanotechnology (IIUCNN), Mahatma Gandhi University , 686 560 Kottayam , Kerala , India
| | - Audrey Moores
- Centre in Green Chemistry and Catalysis, Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A 0B8 , Canada
| | - Glenna L Drisko
- CNRS, ICMCB, Université de Bordeaux, UMR 5026 , F-33600 Pessac , France
| | - Clément Sanchez
- UPMC Université Paris 06, CNRS, UMR 7574 Laboratoire Chimie de la Matière Condensée de Paris, Collège de France , 11 place, Marcelin Berthelot , F-75005 , Paris , France
| |
Collapse
|
50
|
George J, Ishida H. A review on the very high nanofiller-content nanocomposites: Their preparation methods and properties with high aspect ratio fillers. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.07.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|