1
|
Hu Y, Fang Z, Yao B, Ye Z, Peng X. Ferrocene Derivatives for Photothermal Applications. CHEMSUSCHEM 2024; 17:e202400829. [PMID: 38884174 DOI: 10.1002/cssc.202400829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/18/2024]
Abstract
Ferrocene (Fc) and Fc derivatives have gained popularity in recent years due to their unique structure and characteristics. Among Fc's diverse performances, photothermal conversion, as a primary source of energy conversion, has sparked substantial study attention. This Review summaries Fc and Fc derivatives with photothermal characteristics, as well as their applications developed recently. First, methods for the synthesis of Fc-based materials are systematically discussed. Then, the photothermal conversion mechanism based on nonradiative relaxation is summarized. Furthermore, the most recent advances in Fc-based materials in photothermal applications are described, including photothermal degradation, photothermal antibacterial, photothermal therapies, photothermal catalysis, solar-driven water production, and photothermal CO2 separation. Finally, a summary and insights on the photothermal application of Fc-based materials are provided. This paper seeks to provide researchers with a better knowledge of photothermal behavior while also highlighting the potential of Fc and its derivatives in photothermal fields.
Collapse
Affiliation(s)
- Yue Hu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Zhou Fang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Bing Yao
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Zhizhen Ye
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Xinsheng Peng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| |
Collapse
|
2
|
Zhang W, Hu Y, Feng P, Li Z, Zhang H, Zhang B, Xu D, Qi J, Wang H, Xu L, Li Z, Xia M, Li J, Chai R, Tian L. Structural Color Colloidal Photonic Crystals for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403173. [PMID: 39083316 PMCID: PMC11423208 DOI: 10.1002/advs.202403173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/10/2024] [Indexed: 09/26/2024]
Abstract
Photonic crystals are a new class of optical microstructure materials characterized by a dielectric constant that varies periodically with space and features a photonic bandgap. Inspired by natural photonic crystals such as butterfly scales, a series of artificial photonic crystals are developed for use in integrated photonic platforms, biosensing, communication, and other fields. Among them, colloidal photonic crystals (CPCs) have gained widespread attention due to their excellent optical properties and advantages, such as ease of preparation and functionalization. This work reviews the classification and self-assembly principles of CPCs, details some of the latest biomedical applications of large-area, high-quality CPCs prepared using advanced self-assembly methods, summarizes the existing challenges in CPC construction and application, and anticipates future development directions and optimization strategy. With further advancements, CPCs are expected to play a more critical role in biosensors, drug delivery, cell research, and other fields, bringing significant benefits to biomedical research and clinical practice.
Collapse
Affiliation(s)
- Wenhui Zhang
- School of Design and Arts, Beijing Institute of Technology, Beijing, 100081, China
| | - Yangnan Hu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Pan Feng
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Zhe Li
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Hui Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Bin Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Dongyu Xu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jieyu Qi
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Huan Wang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Xia
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Jilai Li
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace Clinical College, Beijing, 100049, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China
| | - Lei Tian
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| |
Collapse
|
3
|
Yu X, Xu C, Sun J, Xu H, Huang H, Gan Z, George A, Ouyang S, Liu F. Recent developments in two-dimensional molybdenum disulfide-based multimodal cancer theranostics. J Nanobiotechnology 2024; 22:515. [PMID: 39198894 PMCID: PMC11351052 DOI: 10.1186/s12951-024-02785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
Recent advancements in cancer research have led to the generation of innovative nanomaterials for improved diagnostic and therapeutic strategies. Despite the proven potential of two-dimensional (2D) molybdenum disulfide (MoS2) as a versatile platform in biomedical applications, few review articles have focused on MoS2-based platforms for cancer theranostics. This review aims to fill this gap by providing a comprehensive overview of the latest developments in 2D MoS2 cancer theranostics and emerging strategies in this field. This review highlights the potential applications of 2D MoS2 in single-model imaging and therapy, including fluorescence imaging, photoacoustic imaging, photothermal therapy, and catalytic therapy. This review further classifies the potential of 2D MoS2 in multimodal imaging for diagnostic and synergistic theranostic platforms. In particular, this review underscores the progress of 2D MoS2 as an integrated drug delivery system, covering a broad spectrum of therapeutic strategies from chemotherapy and gene therapy to immunotherapy and photodynamic therapy. Finally, this review discusses the current challenges and future perspectives in meeting the diverse demands of advanced cancer diagnostic and theranostic applications.
Collapse
Affiliation(s)
- Xinbo Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Chen Xu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jingxu Sun
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
| | - Hainan Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Hanwei Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ziyang Gan
- Institute of Physical Chemistry, Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Antony George
- Institute of Physical Chemistry, Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| | - Sihui Ouyang
- College of Materials Science and Engineering, Chongqing University, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044, China.
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang, 110001, China.
- Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
4
|
Song H, Cheng Z, Qin R, Chen Z, Wang T, Wang Y, Jiang H, Du Y, Wu F. Iron/Molybdenum Sulfide Nanozyme Cocatalytic Fenton Reaction for Photothermal/Chemodynamic Efficient Wound Healing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14346-14354. [PMID: 38953474 DOI: 10.1021/acs.langmuir.4c00922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The issue of bacterial infectious diseases remains a significant concern worldwide, particularly due to the misuse of antibiotics, which has caused the emergence of antibiotic-resistant strains. Fortunately, the rapid development of nanomaterials has propelled significant progress in antimicrobial therapy, offering promising solutions. Among them, the utilization of nanoenzyme-based chemodynamic therapy (CDT) has become a highly hopeful approach to combating bacterial infectious diseases. Nevertheless, the application of CDT appears to be facing certain constraints for its low efficiency in the Fenton reaction at the infected site. In this study, we have successfully synthesized a versatile nanozyme, which was a composite of molybdenum sulfide (MoS2) and iron sulfide (FeS2), through the hydrothermal method. The results showed that iron/molybdenum sulfide nanozymes (Fe/Mo SNZs) with desirable peroxidase (POD) mimic activity can generate cytotoxic reactive oxygen species (ROS) by successfully triggering the Fenton reaction. The presence of MoS2 significantly accelerates the conversion of Fe2+/Fe3+ through a cocatalytic reaction that involves the participation of redox pairs of Mo4+/Mo6+, thereby enhancing the efficiency of CDT. Additionally, based on the excellent photothermal performance of Fe/Mo SNZs, a near-infrared (NIR) laser was used to induce localized temperature elevation for photothermal therapy (PTT) and enhance the POD-like nanoenzymatic activity. Notably, both in vitro and in vivo results demonstrated that Fe/Mo SNZs with good broad-spectrum antibacterial properties can help eradicate Gram-negative bacteria like Escherichia coli and Gram-positive bacteria like Staphylococcus aureus. The most exciting thing is that the synergistic PTT/CDT exhibited astonishing antibacterial ability and can achieve complete elimination of bacteria, which promoted wound healing after infection. Overall, this study presents a synergistic PTT/CDT strategy to address antibiotic resistance, providing avenues and directions for enhancing the efficacy of wound healing treatments and offering promising prospects for further clinical use in the near future.
Collapse
Affiliation(s)
- Huiping Song
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Zheng Cheng
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing ,Jiangsu 210029, China
| | - Ran Qin
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing ,Jiangsu 210029, China
| | - Ziyu Chen
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Tianxiao Wang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yuli Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing ,Jiangsu 210029, China
| | - Huijun Jiang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing ,Jiangsu 210029, China
| | - Fan Wu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
5
|
Limb J, Gaudin LF, Bentley CL. Structure-dependent CO 2 reduction on molybdenite (MoS 2) electrocatalysts. Chem Commun (Camb) 2024; 60:4781-4784. [PMID: 38600827 DOI: 10.1039/d4cc00496e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Scanning electrochemical cell microscopy (SECCM) is employed to directly identify the structure-dependent electrochemical CO2 reduction reaction (eCO2RR) activity of molybdenite (MoS2) electrocatalysts in an aqueous imidazolium-based aprotic ionic liquid electrolyte. Nanoscale defects, where the edge plane (EP) is exposed, are directly targeted, revealing heightened overall activity (eCO2RR + the competing hydrogen evolution reaction, HER) over the relatively inactive basal plane (BP). In addition, certain types of defects (e.g., step edges) only exhibit heightened activity under a CO2 atmosphere (i.e., compared to N2), indirectly confirming higher selectivity at these surface sites. Overall, this work will guide the bottom-up design of earth-abundant electrocatalysts for use in large-scale CO2 electrolysis.
Collapse
Affiliation(s)
- Jake Limb
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.
| | - Lachlan F Gaudin
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.
| | - Cameron L Bentley
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
6
|
Ghosh S, Lai JY. An insight into the dual role of MoS2-based nanocarriers in anticancer drug delivery and therapy. Acta Biomater 2024; 179:36-60. [PMID: 38552760 DOI: 10.1016/j.actbio.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
Over the years, nanomaterials have been exploited as drug delivery systems and therapeutic agents in cancer treatment. Special emphasis has been placed on structure and shape-mediated drug loading and release. Functional materials, including molybdenum disulfide (MoS2), have shown promising results because of their tunable structure and unmatched physicochemical properties. Specifically, easy surface functionalization and high drug adsorption ability make them ideal candidates. Although the large surface area of nanosheets/nanoflakes may result in high drug loading, the encapsulation efficiency is better for MoS2 nanoflower structures. Due to its high targeting abilities, the loading of chemotherapeutic drugs onto MoS2 may minimize nonspecific cellular death and undesired side effects. Furthermore, due to their strong light-absorption ability, MoS2 nanostructures have been widely exploited as photothermal and photodynamic therapeutic agents. The unexplored dimensions of cancer therapy, including chemodynamic (Fenton-like reaction) and piezo-catalytic (ultrasound-mediated reactive oxygen generation), have been recently unlocked, in which the catalytic properties of MoS2 are utilized to generate toxic free radicals to eliminate cancer. Intriguingly, combining these therapeutic modalities often results in high therapeutic efficacy at low doses and minimizes side effects. With a plethora of recent studies, a thorough analysis of current findings is crucial. Therefore, this review discusses the major advances in this field of research. A brief commentary on the limitations/future outlook/ethical issues of the clinical translation of MoS2-mediated cancer treatments is also deliberated. Overall, in our observations, the MoS2-based nanoformulations hold great potential for future cancer therapy applications. STATEMENT OF SIGNIFICANCE: Development of nanomedicines based on MoS2 has opened new avenues in cancer treatment. The MoS2 with different morphologies (nanosheet/nanoflower/QDs) has shown promising results in controlled and targeted drug delivery, leading to minimized side effects and increased therapeutic efficacy. While existing reviews have primarily focused on the optical/thermal properties utilized in photodynamic/photothermal therapy, the outstanding catalytic properties of MoS2 utilized in cancer therapies (chemodynamic/piezo-catalytic) are often overlooked. This review critically highlights and praises/criticizes individual articles reporting the MoS2-based nanoplatforms for cancer therapy applications. Additionally, MoS2-based combined therapies for synergistic effects are discussed. Furthermore, a brief commentary on the future prospects for clinical translations is also deliberated, which is appealing to various research communities engaged in cancer theranostics and biomedical sciences research.
Collapse
Affiliation(s)
- Sandip Ghosh
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Jui-Yang Lai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan; Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan; Center for Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|
7
|
Rathinam Thiruppathi Venkadajapathy V, Sivaperumal S. Tailoring functional two-dimensional nanohybrids: A comprehensive approach for enhancing photocatalytic remediation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116221. [PMID: 38547728 DOI: 10.1016/j.ecoenv.2024.116221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/07/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024]
Abstract
Photocatalysis is gaining prominence as a viable alternative to conventional biohazard treatment technologies. Two-dimensional (2D) nanomaterials have become crucial for fabricating novel photocatalysts due to their nanosheet architectures, large surface areas, and remarkable physicochemical properties. Furthermore, a variety of applications are possible with 2D nanomaterials, either in combination with other functional nanoparticles or by utilizing their inherent properties. Henceforth, the review commences its exploration into the synthesis of these materials, delving into their inherent properties and assessing their biocompatibility. Subsequently, an overview of mechanisms involved in the photocatalytic degradation of pollutants and the processes related to antimicrobial action is presented. As an integral part of our review, we conduct a systematic analysis of existing challenges and various types of 2D nanohybrid materials tailored for applications in the photocatalytic degradation of contaminants and the inactivation of pathogens through photocatalysis. This investigation will aid to contribute to the formulation of decision-making criteria and design principles for the next generation of 2D nanohybrid materials. Additionally, it is crucial to emphasize that further research is imperative for advancing our understanding of 2D nanohybrid materials.
Collapse
|
8
|
Raghunathan M, Kapoor A, Mohammad A, Kumar P, Singh R, Tripathi SC, Muzammil K, Pal DB. Advances in two-dimensional transition metal dichalcogenides-based sensors for environmental, food, and biomedical analysis: A review. LUMINESCENCE 2024; 39:e4703. [PMID: 38433325 DOI: 10.1002/bio.4703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/10/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Transition metal dichalcogenides (TMDCs) are versatile two-dimensional (2D) nanomaterials used in biosensing applications due to their excellent physical and chemical properties. Due to biomaterial target properties, biosensors' most significant challenge is improving their sensitivity and stability. In environmental analysis, TMDCs have demonstrated exceptional pollutant detection and removal capabilities. Their high surface area, tunable electronic properties, and chemical reactivity make them ideal for sensors and adsorbents targeting various contaminants, including heavy metals, organic pollutants, and emerging contaminants. Furthermore, their unique electronic and optical properties enable sensitive detection techniques, enhancing our ability to monitor and mitigate environmental pollution. In the food analysis, TMDCs-based nanomaterials have shown remarkable potential in ensuring food safety and quality. These nanomaterials exhibit high specificity and sensitivity for detecting contaminants, pathogens, and adulterants in various food matrices. Their integration into sensor platforms enables rapid and on-site analysis, reducing the reliance on centralized laboratories and facilitating timely interventions in the food supply chain. In biomedical studies, TMDCs-based nanomaterials have demonstrated significant strides in diagnostic and therapeutic applications. Their biocompatibility, surface functionalization versatility, and photothermal properties have paved the way for novel disease detection, drug delivery, and targeted therapy approaches. Moreover, TMDCs-based nanomaterials have shown promise in imaging modalities, providing enhanced contrast and resolution for various medical imaging techniques. This article provides a comprehensive overview of 2D TMDCs-based biosensors, emphasizing the growing demand for advanced sensing technologies in environmental, food, and biomedical analysis.
Collapse
Affiliation(s)
- Muthukumar Raghunathan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Ashish Kapoor
- Department of Chemical Engineering, Harcourt Butler Technical University, Kanpur, Uttar Pradesh, India
| | - Akbar Mohammad
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - Praveen Kumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Rajeev Singh
- Department of Chemical Environmental Science, Jamia Millia Islamia, New Delhi, India
| | - Subhash C Tripathi
- Institute of Applied Sciences & Humanities, Department of Chemistry, GLA University, Mathura, Uttar Pradesh, India
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, Saudi Arabia
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Harcourt Butler Technical University, Kanpur, Uttar Pradesh, India
| |
Collapse
|
9
|
Silva FALS, Chang HP, Incorvia JAC, Oliveira MJ, Sarmento B, Santos SG, Magalhães FD, Pinto AM. 2D Nanomaterials and Their Drug Conjugates for Phototherapy and Magnetic Hyperthermia Therapy of Cancer and Infections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306137. [PMID: 37963826 DOI: 10.1002/smll.202306137] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/26/2023] [Indexed: 11/16/2023]
Abstract
Photothermal therapy (PTT) and magnetic hyperthermia therapy (MHT) using 2D nanomaterials (2DnMat) have recently emerged as promising alternative treatments for cancer and bacterial infections, both important global health challenges. The present review intends to provide not only a comprehensive overview, but also an integrative approach of the state-of-the-art knowledge on 2DnMat for PTT and MHT of cancer and infections. High surface area, high extinction coefficient in near-infra-red (NIR) region, responsiveness to external stimuli like magnetic fields, and the endless possibilities of surface functionalization, make 2DnMat ideal platforms for PTT and MHT. Most of these materials are biocompatible with mammalian cells, presenting some cytotoxicity against bacteria. However, each material must be comprehensively characterized physiochemically and biologically, since small variations can have significant biological impact. Highly efficient and selective in vitro and in vivo PTTs for the treatment of cancer and infections are reported, using a wide range of 2DnMat concentrations and incubation times. MHT is described to be more effective against bacterial infections than against cancer therapy. Despite the promising results attained, some challenges remain, such as improving 2DnMat conjugation with drugs, understanding their in vivo biodegradation, and refining the evaluation criteria to measure PTT or MHT effects.
Collapse
Affiliation(s)
- Filipa A L S Silva
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| | - Hui-Ping Chang
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jean Anne C Incorvia
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Maria J Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- IUCS - CESPU, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| | - Susana G Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| | - Fernão D Magalhães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
| | - Artur M Pinto
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| |
Collapse
|
10
|
Bharti S, Tripathi SK, Singh K. Recent progress in MoS 2 nanostructures for biomedical applications: Experimental and computational approach. Anal Biochem 2024; 685:115404. [PMID: 37993043 DOI: 10.1016/j.ab.2023.115404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
In the category of 2D materials, MoS2 a transition metal dichalcogenide, is a novel and intriguing class of materials with interesting physicochemical properties, explored in applications ranging from cutting-edge optoelectronic to the frontiers of biomedical and biotechnology. MoS2 nanostructures an alternative to heavy toxic metals exhibit biocompatibility, low toxicity and high stability, and high binding affinity to biomolecules. MoS2 nanostructures provide a lot of opportunities for the advancement of novel biosensing, nanodrug delivery system, electrochemical detection, bioimaging, and photothermal therapy. Much efforts have been made in recent years to improve their physiochemical properties by developing a better synthesis approach, surface functionalization, and biocompatibility for their safe use in the advancement of biomedical applications. The understanding of parameters involved during the development of nanostructures for their safe utilization in biomedical applications has been discussed. Computational studies are included in this article to understand better the properties of MoS2 and the mechanism involved in their interaction with biomolecules. As a result, we anticipate that this combined experimental and computational studies of MoS2 will inspire the development of nanostructures with smart drug delivery systems, and add value to the understanding of two-dimensional smart nano-carriers.
Collapse
Affiliation(s)
- Shivani Bharti
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - S K Tripathi
- Department of Physics, Panjab University, Chandigarh, 160014, India
| | - Kedar Singh
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
11
|
An Efficient, Short Stimulus PANC-1 Cancer Cell Ablation and Electrothermal Therapy Driven by Hydrophobic Interactions. Pharmaceutics 2022; 15:pharmaceutics15010106. [PMID: 36678734 PMCID: PMC9867450 DOI: 10.3390/pharmaceutics15010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
Promising results in clinical studies have been demonstrated by the utilization of electrothermal agents (ETAs) in cancer therapy. However, a difficulty arises from the balance between facilitating the degradation of ETAs, and at the same time, increasing the electrothermal performance/stability required for highly efficient treatment. In this study, we controlled the thermal signature of the MoS2 by harnessing MoS2 nanostructures with M13 phage (MNM) via the structural assembling (hydrophobic interaction) phenomena and developed a combined PANC-1 cancer cell-MNM alternating current (AC)-stimulus framework for cancer cell ablation and electrothermal therapy. A percentage decrease in the cell viability of ~23% was achieved, as well as a degradation time of 2 weeks; a stimulus length of 100 μs was also achieved. Molecular dynamics (MD) simulations revealed the assembling kinetics in integrated M13 phage-cancer cell protein systems and the structural origin of the hydrophobic interaction-enabled increase in thermal conduction. This study not only introduced an 'ideal' agent that avoided the limitations of ETAs but also provided a proof-of-concept application of MoS2-based materials in efficacious cancer therapy.
Collapse
|
12
|
Yuan Q, Huang LZ, Wang PL, Mai T, Ma MG. Cellulose nanofiber/molybdenum disulfide aerogels for ultrahigh photothermal effect. J Colloid Interface Sci 2022; 624:70-78. [PMID: 35660912 DOI: 10.1016/j.jcis.2022.05.102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 11/24/2022]
Abstract
The photothermal materials have a broad range of applications in crude oil spills treatment, desalination, and photothermal therapy. However, the rational construction of aerogels with exceptional photothermal performance is highly desired yet still challenging. Herein, a class of stable aerogels comprised of molybdenum disulfide (MoS2) nanoflowers and cellulose nanofibers (CNFs) was fabricated, affording extraordinary light-to-heat energy conversion capability. Benefiting from the intercalated porous structure, the resultant cellulose nanofibers/molybdenum disulfide (CNF/MoS2) aerogels deliver an ultrahigh temperature output up to 260.4 °C with near infrared (NIR) laser power densities of 0.8 W cm-2. Remarkably, when NIR laser power density increased to 1.0 W cm-2, the aerogels began to burn, achieving the superhigh surface temperature of ∼ 690 °C. The combustion process of CNF/MoS2 composite aerogels was evaluated in detail. Therefore, this work provides experiment evidence and theoretical basis for the rational applications of photothermal materials at high temperature in future.
Collapse
Affiliation(s)
- Qi Yuan
- Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, Research Center of Biomass Clean Utilization, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Ling-Zhi Huang
- Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, Research Center of Biomass Clean Utilization, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Pei-Lin Wang
- Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, Research Center of Biomass Clean Utilization, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Tian Mai
- Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, Research Center of Biomass Clean Utilization, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Ming-Guo Ma
- Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, Research Center of Biomass Clean Utilization, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, P.R. China.
| |
Collapse
|
13
|
Zhao J, Zhang Y, Zhang J, Wu H, Li J, Zhao Y, Zhang L, Zou D, Li Z, Wang S. Synthetic and Biodegradable Molybdenum(IV) Diselenide Triggers the Cascade Photo- and Immunotherapy of Tumor. Adv Healthc Mater 2022; 11:e2200524. [PMID: 35611682 DOI: 10.1002/adhm.202200524] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/08/2022] [Indexed: 11/12/2022]
Abstract
In this study, a polyvinylpyrrolidone (PVP)-decorated MoSe2 (MoSe2 -PVP) nanoparticle with excellent photothermal transforming ability and chlorin E6 (Ce6) loading capacity is designed for combined tumor photothermal therapy (PTT), tumor photodynamic therapy (PDT), and immunotherapy. The light-to-heat conversion efficiency under irradiation with an 808 nm near-infrared laser is as high as 59.28%. The MoSe2 -PVP NPs could function as an artificial catalase and catalyze the decomposition of H2 O2 . Their catalytic activity and thermal durability are higher than the native catalase, which relieve the tumor hypoxia status and sensitize the tumor PDT. The data show that the synthetic MoSe2 -PVP is biodegradable, owing to the oxidation of the Mo4+ to Mo6+ . Moreover, its degradation products could increase the proportion of mature dendritic cells and CD8+ thymus (T) cells and promote the infiltration of active CD8+ T cells in tumors. The immune checkpoint inhibitor, programmed cell death protein 1 monoclonal antibody is combined with MoSe2 -PVP and it is found that its degradation product could efficiently change the immune microenvironment of the tumor.
Collapse
Affiliation(s)
- Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Military Medical University, No. 168 Changhai Road, Shanghai, 200433, P. R. China
| | - Yao Zhang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin Er Road, Shanghai, 200025, P. R. China
| | - Jing Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, P. R. China
| | - Hang Wu
- Department of Gastroenterology, Changhai Hospital, Naval Military Medical University, No. 168 Changhai Road, Shanghai, 200433, P. R. China
| | - Jinfeng Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, P. R. China
| | - Yizhou Zhao
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin Er Road, Shanghai, 200025, P. R. China
| | - Liying Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, P. R. China
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin Er Road, Shanghai, 200025, P. R. China
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Naval Military Medical University, No. 168 Changhai Road, Shanghai, 200433, P. R. China
| | - Shige Wang
- Department of Gastroenterology, Changhai Hospital, Naval Military Medical University, No. 168 Changhai Road, Shanghai, 200433, P. R. China
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, P. R. China
- Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, P. R. China
| |
Collapse
|
14
|
Sun TC, Yan BY, Ning XC, Hui C, Xu L, Ding YN, Yang XL, Ramakrishna S, Long YZ, Zhang J. Cool and hot chitosan/platelet-derived growth factor nanofibers for outdoors burns. Int J Biol Macromol 2022; 218:409-419. [PMID: 35878665 DOI: 10.1016/j.ijbiomac.2022.07.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 11/15/2022]
Abstract
Burns and scalds are thermal injuries caused by a large amount of heat accumulation in local tissues. The first cooling emergency is a key step. However, it is hard that in outdoors to find clean water to cool the scald tissue sites. Moreover, most dressings are concentrated on the treatment process today, neglecting the emergency treatment of temperature reduction. In this study, we imported refrigeration in the electrospinning process while using dirty water, rainwater and even urine of outdoors, so that the cooled sterile fibers were directly deposited on the burn and scald wounds, and the cooling emergency was achieved through the dual cooling mechanism. Since this fiber which is made up of cheap fish gelatin contains CuS adopting the green method, it can generate heat and effectively kill bacteria under the irradiation of an illumination lamp at the front end of a spinning device. As a result of the direct deposition, there is an excellent fit between the fibrous membrane and the skin, which reduces the air gap to achieve a better and quick cooling and heating effects. On the same Chitosan/Platelet-derived Growth Factor fiber membrane, this method of cooling first and heating second can shorten the recovery time from 30 days to 21 days. Thus, this treatment strategy has a great potential application prospect in the field of outdoor burn treatment.
Collapse
Affiliation(s)
- Tian-Cai Sun
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, PR China
| | - Bing-Yu Yan
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, PR China
| | - Xu-Chao Ning
- Medical College, Qingdao University, Qingdao 266071, PR China
| | - Chao Hui
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, PR China
| | - Lei Xu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, PR China
| | - Yi-Ning Ding
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, PR China
| | - Xing-Long Yang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, PR China
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, PR China.
| | - Jun Zhang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
15
|
PEGylated palladium doped ceria oxide nanoparticles (Pd-dop-CeO2-PEG NPs) for inhibition of bacterial pathogens and human lung cancer cell proliferation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
|
17
|
|
18
|
Murugan C, Sundararajan V, Mohideen SS, Sundaramurthy A. Controlled decoration of nanoceria on the surface of MoS 2nanoflowers to improve the biodegradability and biocompatibility in Drosophila melanogastermodel. NANOTECHNOLOGY 2022; 33:205703. [PMID: 35090149 DOI: 10.1088/1361-6528/ac4fe4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
In recent years, nanozymes based on two-dimensional (2D) nanomaterials have been receiving great interest for cancer photothermal therapy. 2D materials decorated with nanoparticles (NPs) on their surface are advantageous over conventional NPs and 2D material based systems because of their ability to synergistically improve the unique properties of both NPs and 2D materials. In this work, we report a nanozyme based on flower-like MoS2nanoflakes (NFs) by decorating their flower petals with NCeO2using polyethylenimine (PEI) as a linker molecule. A detailed investigation on toxicity, biocompatibility and degradation behavior of fabricated nanozymes in wild-typeDrosophila melanogastermodel revealed that there were no significant effects on the larval size, morphology, larval length, breadth and no time delay in changing larvae to the third instar stage at 7-10 d for MoS2NFs before and after NCeO2decoration. The muscle contraction and locomotion behavior of third instar larvae exhibited high distance coverage for NCeO2decorated MoS2NFs when compared to bare MoS2NFs and control groups. Notably, the MoS2and NCeO2-PEI-MoS2NFs treated groups at 100μg ml-1covered a distance of 38.2 mm (19.4% increase when compared with control) and 49.88 mm (no change when compared with control), respectively. High-resolution transmission electron microscopy investigations on the new born fly gut showed that the NCeO2decoration improved the degradation rate of MoS2NFs. Hence, nanozymes reported here have huge potential in various fields ranging from biosensing, cancer therapy and theranostics to tissue engineering and the treatment of Alzheimer's disease and retinal therapy.
Collapse
Affiliation(s)
- Chandran Murugan
- Biomaterials Research Laboratory, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, India
| | - Vignesh Sundararajan
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, India
| | - Sahabudeen Sheik Mohideen
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, India
| | - Anandhakumar Sundaramurthy
- Biomaterials Research Laboratory, SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, India
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, India
| |
Collapse
|
19
|
Sharma P, Singh MK, Mehata MS. Sunlight-driven MoS2 nanosheets mediated degradation of dye (crystal violet) for wastewater treatment. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131651] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Sindhu AS, Shinde NB, Harish S, Navaneethan M, Eswaran SK. Recoverable and reusable visible-light photocatalytic performance of CVD grown atomically thin MoS 2 films. CHEMOSPHERE 2022; 287:132347. [PMID: 34582929 DOI: 10.1016/j.chemosphere.2021.132347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 05/14/2023]
Abstract
The decomposition of water pollutants including industrial dyes and chemicals via photocatalytic decontamination is one of the major investigated problems in recent years. Two-dimensional molybdenum disulfide (MoS2) layers have shown great promise as an efficient visible-light photocatalyst owing to its numerous active sites and large surface area. In this study, atomically thin MoS2 films of different thicknesses from monolayer to five-layer and ten layers were fabricated on sapphire substrates using chemical vapor deposition (CVD). We demonstrate that these MoS2 thin films can be used as a photocatalyst to degrade Methylene Blue (MB) dye and can be recovered completely with utmost structural and chemical stability. Under visible-light irradiation, the MB absorption peak completely disappears with ∼95.6% of degradation after 120 min. We also demonstrate the reusability of the MoS2 thin films without significantly losing the photocatalytic activity even after 5-cycles of degradation studies. The chemical and structural stability of the MoS2 films after 5-cycles of degradation studies were affirmed using various spectroscopic studies. Our findings suggest that the MB degradation efficiency increases from 19.01% to 98.46% with an increase in pH from 4 to 14. Our approach may facilitate a further design of other transition metal dichalcogenides-based recoverable photocatalysts for industrial applications.
Collapse
Affiliation(s)
- Abhishek Singh Sindhu
- 2D Materials and Devices Laboratory (2DML), Sir C. V. Raman Research Park, Department of Physics and Nanotechnology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, 603203, Chennai, India
| | - Nitin Babu Shinde
- 2D Materials and Devices Laboratory (2DML), Sir C. V. Raman Research Park, Department of Physics and Nanotechnology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, 603203, Chennai, India
| | - S Harish
- Functional Materials and Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, 603203, Chennai, India
| | - M Navaneethan
- Functional Materials and Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, 603203, Chennai, India; Nanotechnology Research Centre (NRC), SRM Institute of Science and Technology (SRMIST), Kattankulathur, 603203, Chennai, India
| | - Senthil Kumar Eswaran
- 2D Materials and Devices Laboratory (2DML), Sir C. V. Raman Research Park, Department of Physics and Nanotechnology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, 603203, Chennai, India; Nanotechnology Research Centre (NRC), SRM Institute of Science and Technology (SRMIST), Kattankulathur, 603203, Chennai, India.
| |
Collapse
|
21
|
Wang J, Sui L, Huang J, Miao L, Nie Y, Wang K, Yang Z, Huang Q, Gong X, Nan Y, Ai K. MoS 2-based nanocomposites for cancer diagnosis and therapy. Bioact Mater 2021; 6:4209-4242. [PMID: 33997503 PMCID: PMC8102209 DOI: 10.1016/j.bioactmat.2021.04.021] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 12/24/2022] Open
Abstract
Molybdenum is a trace dietary element necessary for the survival of humans. Some molybdenum-bearing enzymes are involved in key metabolic activities in the human body (such as xanthine oxidase, aldehyde oxidase and sulfite oxidase). Many molybdenum-based compounds have been widely used in biomedical research. Especially, MoS2-nanomaterials have attracted more attention in cancer diagnosis and treatment recently because of their unique physical and chemical properties. MoS2 can adsorb various biomolecules and drug molecules via covalent or non-covalent interactions because it is easy to modify and possess a high specific surface area, improving its tumor targeting and colloidal stability, as well as accuracy and sensitivity for detecting specific biomarkers. At the same time, in the near-infrared (NIR) window, MoS2 has excellent optical absorption and prominent photothermal conversion efficiency, which can achieve NIR-based phototherapy and NIR-responsive controlled drug-release. Significantly, the modified MoS2-nanocomposite can specifically respond to the tumor microenvironment, leading to drug accumulation in the tumor site increased, reducing its side effects on non-cancerous tissues, and improved therapeutic effect. In this review, we introduced the latest developments of MoS2-nanocomposites in cancer diagnosis and therapy, mainly focusing on biosensors, bioimaging, chemotherapy, phototherapy, microwave hyperthermia, and combination therapy. Furthermore, we also discuss the current challenges and prospects of MoS2-nanocomposites in cancer treatment.
Collapse
Affiliation(s)
- Jianling Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Lihua Sui
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Jia Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Lu Miao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yubing Nie
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Kuansong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Zhichun Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Qiong Huang
- Department of Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xue Gong
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Yayun Nan
- Geriatric Medical Center, Ningxia People's Hospital, Yinchuan, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| |
Collapse
|
22
|
Panchal SS, Vasava DV. Fabricating approaches for synthesis of miktoarm star-shaped polymers having tailored biodegradability. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1981319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Siddhi S. Panchal
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| | - Dilip V. Vasava
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
23
|
Kasinathan K, Marimuthu K, Murugesan B, Samayanan S, Cai Y, Rathinam C. Facile synthesis of highly biologically active chitosan functionalized 2D WS2 nanocomposite anchored with palladium nanoparticles for antibacterial and anticancer activity: In-vitro biomedical evaluation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Li X, Kong L, Hu W, Zhang C, Pich A, Shi X, Wang X, Xing L. Safe and efficient 2D molybdenum disulfide platform for cooperative imaging-guided photothermal-selective chemotherapy: A preclinical study. J Adv Res 2021; 37:255-266. [PMID: 35499043 PMCID: PMC9039738 DOI: 10.1016/j.jare.2021.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/21/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Safe and efficient platform of TOS married MoS2 is synthesized by judicious designed for multimode theranostics of ovarian carcinoma. A photothermal conversion efficiency of 65.3% of the platform is higher than that of other materials reported elsewhere. Highly efficient photothermal ablation under safe irradiation and significantly improved selective chemotherapy for tumor. Synergistic therapy, suppressed recurrence, and negligible side effects enable the prominent survival rate of 100% over 91 days for the tumor-bearing mice. A promising candidate for precise nanomedicines in clinical translation.
Introduction The striking imbalance between the ever-increasing amount of nanomedicines and low clinical translation of products has become the focus of intense debate. For clinical translation, the critical issue is to select the appropriate agents and combination regimen for targeted diseases, not to prepare increasingly complex nanoplatforms. Objectives A safe and efficient platform, α-tocopheryl succinate (α-TOS) married 2D molybdenum disulfide, was devised by a facile method and applied for cooperative imaging-guided photothermal-selective chemotherapy of ovarian carcinoma. Methods A novel platform of PEGylated α-TOS and folic acid (FA) conjugated 2D MoS2 nanoflakes was fabricated for the cooperative multimode computed tomography (CT)/photoacoustic (PA)/thermal imaging-guided photothermal-selective chemotherapy of ovarian carcinoma. Results The photothermal efficiency (65.3%) of the platform under safe near-infrared irradiation is much higher than that of other photothermal materials reported elsewhere. Moreover, the covalently linked α-TOS renders platform with selective chemotherapy for cancer cells. Remarkably, with these excellent properties, the platform can be used to completely eliminate the solid tumor by safe photothermal therapy, and then kill the residual cancer cells by selective chemotherapy to prevent tumor recurrence. More significantly, barely side effects occur in the whole treatment process. The excellent efficacy and safety benefits in vivo lead to the prominent survival rate of 100% over 91 days. Conclusion The safe and efficient platform might be a candidate of clinical nanomedicines for multimode theranostics. This study demonstrates an innovative thought in precise nanomedicine regarding the design of next generation of cancer theranostic protocol for potential clinical practice.
Collapse
Affiliation(s)
- Xin Li
- Department of Gynecology and Obstetrics, XinHua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China
- DWI-Leibniz-Institute for Interactive Materials e.V., 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Lingdan Kong
- Laboratory of Nanoscale Biosensing and Bioimaging, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Wei Hu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Changchang Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Andrij Pich
- DWI-Leibniz-Institute for Interactive Materials e.V., 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials, Maastricht University, 6167 RD Geleen, the Netherlands
| | - Xiangyang Shi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal
- Corresponding authors.
| | - Xipeng Wang
- Department of Gynecology and Obstetrics, XinHua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China
- Corresponding authors.
| | - Lingxi Xing
- Department of Gynecology and Obstetrics, XinHua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China
- Corresponding authors.
| |
Collapse
|
25
|
Wang X, Zhong X, Li J, Liu Z, Cheng L. Inorganic nanomaterials with rapid clearance for biomedical applications. Chem Soc Rev 2021; 50:8669-8742. [PMID: 34156040 DOI: 10.1039/d0cs00461h] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Inorganic nanomaterials that have inherently exceptional physicochemical properties (e.g., catalytic, optical, thermal, electrical, or magnetic performance) that can provide desirable functionality (e.g., drug delivery, diagnostics, imaging, or therapy) have considerable potential for application in the field of biomedicine. However, toxicity can be caused by the long-term, non-specific accumulation of these inorganic nanomaterials in healthy tissues, preventing their large-scale clinical utilization. Over the past several decades, the emergence of biodegradable and clearable inorganic nanomaterials has offered the potential to prevent such long-term toxicity. In addition, a comprehensive understanding of the design of such nanomaterials and their metabolic pathways within the body is essential for enabling the expansion of theranostic applications for various diseases and advancing clinical trials. Thus, it is of critical importance to develop biodegradable and clearable inorganic nanomaterials for biomedical applications. This review systematically summarizes the recent progress of biodegradable and clearable inorganic nanomaterials, particularly for application in cancer theranostics and other disease therapies. The future prospects and opportunities in this rapidly growing biomedical field are also discussed. We believe that this timely and comprehensive review will stimulate and guide additional in-depth studies in the area of inorganic nanomedicine, as rapid in vivo clearance and degradation is likely to be a prerequisite for the future clinical translation of inorganic nanomaterials with unique properties and functionality.
Collapse
Affiliation(s)
- Xianwen Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, China.
| | | | | | | | | |
Collapse
|
26
|
Wang X, Cheng S, Wang X, Wei L, Kong Q, Ye M, Luo X, Xu J, Zhang C, Xian Y. pH-Sensitive Dye-Based Nanobioplatform for Colorimetric Detection of Heterogeneous Circulating Tumor Cells. ACS Sens 2021; 6:1925-1932. [PMID: 33881313 DOI: 10.1021/acssensors.1c00314] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The efficient capture and sensitive detection of circulating tumor cells (CTCs) play a vital role in cancer diagnosis and prognosis. However, CTCs in the peripheral blood are very rare and heterogeneous, which make them difficult to isolate and detect. Herein, a novel colorimetric nanobioplatform was successfully developed for the highly efficient capture and highly sensitive detection of heterogeneous CTCs, which consisted of two parts: the multivalent aptamer-modified gold nanoparticles as the capture unit and two kinds of aptamer-functionalized pH-sensitive allochroic dyes (thymolphthalein and curcumin) @ molybdenum disulfide nanoflakes (MoS2 NFs) acting as the visual simultaneous detection of heterogeneous CTCs. Using MCF-7 and HeLa cells as the CTC models, the capture unit can effectively isolate the CTCs due to the multivalent probe with improved affinity. The two allochroic dyes can display obvious color changes under alkaline conditions (pH 12.5) in the presence of MCF-7 and HeLa cells, which provided a rapid and sensitive strategy for visualizing simultaneous detection of heterogeneous CTCs as low as 5 cells mL-1. This nanoplatform possessed a high sensitivity toward CTC detection owing to high dye loading capacity of MoS2 NFs and allochroic dyes with excellent pH sensitivity. It can successfully distinguish and quantitatively detect the targeted heterogeneous CTCs from numerous interfering cells in diluted whole blood. It can also be used to detect CTCs from lysed blood samples from cancer patients, indicating promising application for cancer diagnosis.
Collapse
Affiliation(s)
- Xiuli Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Shasha Cheng
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xinjun Wang
- Shanghai Zhangjiang Institute of Medical Innovation, Shanghai 201204, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Liran Wei
- Shanghai Zhangjiang Institute of Medical Innovation, Shanghai 201204, China
| | - Qianqian Kong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Mingqiang Ye
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xianzhu Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Jiao Xu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Cuiling Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yuezhong Xian
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
27
|
Wang Y, Meng HM, Li Z. Near-infrared inorganic nanomaterial-based nanosystems for photothermal therapy. NANOSCALE 2021; 13:8751-8772. [PMID: 33973616 DOI: 10.1039/d1nr00323b] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The development of robust materials for treating diseases through non-invasive photothermal therapy (PTT) has attracted increasing attention in recent years. Among various types of nanomaterials, inorganic nanomaterials with strong absorption in the near-infrared (NIR) window can be employed as high-efficiency photothermal agents to treat cancer and bacterial infections. In addition, inorganic nanomaterials can be easily combined with other drugs or chemical reagents to construct multifunctional nanomaterials to cascade stimulation responses, enhance therapeutic effects, and perform precise medical treatments. In this review, focusing on the latest developments of inorganic nanomaterials in photothermal therapy, we firstly introduced the light-to-heat conversion mechanism of inorganic nanomaterials. Secondly, we summarized the application of common inorganic nanomaterials, such as metallic nanoparticles, transition metal oxide nanoparticles and two dimensional (2D) nanosheets. In addition, the strategy of developing multifunctional nano-platforms with excellent biocompatibility as well as good targeted capability was also expounded. Finally, challenges and new perspectives for designing effective inorganic nanomaterial-based nanosystems for photothermal assisted therapy were also discussed.
Collapse
Affiliation(s)
- Yufei Wang
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Hong-Min Meng
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Zhaohui Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|
28
|
Yang S, Li D, Chen L, Zhou X, Fu L, You Y, You Z, Kang L, Li M, He C. Coupling metal organic frameworks with molybdenum disulfide nanoflakes for targeted cancer theranostics. Biomater Sci 2021; 9:3306-3318. [PMID: 33459315 DOI: 10.1039/d0bm02012e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The superior properties of metal organic frameworks (MOF) can provide great opportunities for merging functional nanoparticles to construct smart and versatile cancer theranostic agents. In this study, on the basis of non-mesoporous nanoparticles (molybdenum disulfide, MoS2), the structure of the MOF shell layer with an adjustable structure can be constructed through the natural coordination interaction between polydopamine (PDA) and iron ion, and the tumor cell target ligand was modified on the surface of the nanocomposite after loading the anticancer drug doxorubicin hydrochloride (DOX) to form a multifunctional cancer theranostics nanoplatform (DOX@MoS2-PMA). Benefiting from the excellent properties of MoS2 and MOF, the favorable photothermal properties and pH/near-infrared (NIR) laser-triggered DOX release behavior of composite nanoparticles were demonstrated. Its well-defined nanostructure, adequate colloidal stability, and satisfactory biocompatibility were further evidenced. Furthermore, the selective tumor cell targeting ability of DOX@MoS2-PMA can improve the cellular uptake efficacy and the photothermal-chemotherapy combination therapy can significantly enhance the killing effect on cancer cells both in vitro and in vivo. In addition, fluorescence imaging results show that nanoparticles can efficiently accumulate inside tumors. The photoacoustic (PA) and magnetic resonance (MR) imaging capabilities derived from different components of nanoparticles can perform better imaging effects. To the best of our knowledge, this is the first attempt to merge the performance of MoS2 with MOF for PA/MR dual-modality imaging-guided photothermal-chemotherapy combination therapy. Our work presented herein proves that MOF can be combined with non-mesoporous nanoparticles and exhibits excellent performance, thus opening a new avenue for endowing non-mesoporous nanoparticles with an efficient drug loading capacity and practical applications of MOFs in nanomedicine.
Collapse
Affiliation(s)
- Shuguang Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201301, China
| | - Liang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Xiaojun Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Liwen Fu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Yanling You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Zhengwei You
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Li Kang
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Maoquan Li
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
29
|
Cao Z, Lu G, Gao H, Xue Z, Luo K, Wang K, Cheng J, Guan Q, Liu C, Luo M. Preparation and Laser Marking Properties of Poly(propylene)/Molybdenum Sulfide Composite Materials. ACS OMEGA 2021; 6:9129-9140. [PMID: 33842782 PMCID: PMC8028170 DOI: 10.1021/acsomega.1c00255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/18/2021] [Indexed: 05/07/2023]
Abstract
In this study, using molybdenum sulfide (MoS2) as laser-sensitive particles and poly(propylene) (PP) as the matrix resin, laser-markable PP/MoS2 composite materials with different MoS2 contents ranging from 0.005 to 0.2% were prepared by melt-blending. A comprehensive analysis of the laser marking performance of PP/MoS2 composites was carried out by controlling the content of laser additives, laser current intensity, and the scanning speed of laser marking. The color difference test shows that the best laser marking performance of the composite can be obtained at the MoS2 content of 0.02 wt %. The surface morphology of the PP/MoS2 composite material was observed after laser marking using a metallographic microscope, an optical microscope, and a scanning electron microscope (SEM). During the laser marking process, the laser energy was absorbed and converted into heat energy to cause high-temperature melting, pyrolysis, and carbonization of PP on the surface of the PP/MoS2 composite material. The black marking from carbonized materials was formed in contrast to the white matrix. Using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and Raman spectroscopy, the composite materials before and after laser marking were tested and characterized. The PP/MoS2 composite material was pyrolyzed to form amorphous carbonized materials. The effect of the laser-sensitive MoS2 additive on the mechanical properties of composite materials was investigated. The results show that the PP/MoS2 composite has the best laser marking property when the MoS2 loading content is 0.02 wt %, the laser marking current intensity is 11 A, and the laser marking speed is 800 mm/s, leading to a clear and high-contrast marking pattern.
Collapse
Affiliation(s)
- Zheng Cao
- Key
Laboratory of High Performance Fibers & Products, Ministry of
Education, Donghua University, Shanghai 201620, P. R. China
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
- Changzhou
University Huaide College, Changzhou 213016, P. R. China
- National
Experimental Demonstration Center for Materials Science and Engineering
(Changzhou University), Changzhou 213164, P. R. China
- ;
| | - Guangwei Lu
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Hongxin Gao
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Zhiyu Xue
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Keming Luo
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Kailun Wang
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Junfeng Cheng
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Qingbao Guan
- Key
Laboratory of High Performance Fibers & Products, Ministry of
Education, Donghua University, Shanghai 201620, P. R. China
| | - Chunlin Liu
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
- Changzhou
University Huaide College, Changzhou 213016, P. R. China
- National
Experimental Demonstration Center for Materials Science and Engineering
(Changzhou University), Changzhou 213164, P. R. China
| | - Ming Luo
- School
of Materials Engineering, Changshu Institute
of Technology, Changshu, Jiangsu 215500, P. R. China
| |
Collapse
|
30
|
Shi J, Li J, Wang Y, Cheng J, Zhang CY. Recent advances in MoS 2-based photothermal therapy for cancer and infectious disease treatment. J Mater Chem B 2021; 8:5793-5807. [PMID: 32597915 DOI: 10.1039/d0tb01018a] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Photothermal therapy (PTT) is a treatment combining laser irradiation and a photothermal transduction agent (PTA) to generate hyperthermia, which is used to efficiently and effectively treat cancer and prevent bacteria-induced infectious diseases. MoS2, an increasingly used two-dimensional transition metal dichalcogenide, which shows high absorbance in the near infrared (NIR) laser region, has been extensively utilized as a novel PTA in biomedical applications. The use of MoS2 as an advanced photoabsorbing agent has introduced a more efficient cancer therapy and improved antibacterial efficacy. In this review, we firstly summarize the recent advances in the MoS2-based platform for PTT in cancer and bacteria-induced infectious diseases treatments. We then discuss that the combination of MoS2-based PTT and other biomedical methods along with multimodality imaging, such as chemotherapy, photodynamic therapy (PDT) and immunotherapy, might be a promising strategy for cancer treatment. Furthermore, a new concept is proposed wherein MoS2-based PTT and combined therapies based on this could be more effective for the treatment of various bacteria-induced infectious diseases. Finally, research progress, challenges, and perspectives for the future development of this MoS2-based platform in cancer and bacteria-induced infectious disease treatments are discussed and concluded. Collectively, we think that MoS2-based PTT with high therapeutic efficacy and minimal side-effects could be potentially applied in clinical settings to improve cancer and infectious disease treatments.
Collapse
Affiliation(s)
- Jinping Shi
- Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China.
| | | | | | | | | |
Collapse
|
31
|
Shreya AB, Pandey A, Nikam AN, Patil PO, Sonawane R, Deshmukh PK, Mutalik S. One- pot development of spray dried cationic proliposomal dry powder insufflation: Optimization, characterization and bio-interactions. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
32
|
Yuan Y, Guo RT, Hong LF, Ji XY, Li ZS, Lin ZD, Pan WG. Recent advances and perspectives of MoS2-based materials for photocatalytic dyes degradation: A review. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125836] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
33
|
Bohloli A, Asli MD, Moniri E, Gh AB. Modification of WS2 nanosheets with beta-cyclodextrone and N-isopropylacrylamide polymers for tamoxifen adsorption and investigation of in vitro drug release. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-020-04376-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Kurapati R, Martìn C, Palermo V, Nishina Y, Bianco A. Biodegradation of graphene materials catalyzed by human eosinophil peroxidase. Faraday Discuss 2021; 227:189-203. [DOI: 10.1039/c9fd00094a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The enzymatic activity of eosinophil peroxidase secreted by human immune cells leads to degradation of different sources of graphene oxide.
Collapse
Affiliation(s)
| | - Cristina Martìn
- CNRS
- Immunology
- Immunopathology and Therapeutic Chemistry
- UPR 3572
- ISIS
| | - Vincenzo Palermo
- Industrial and Materials Science
- Chalmers University of Technology
- 41258 Göteborg
- Sweden
- Istituto per la Sintesi Organica e la Fotoreattività
| | - Yuta Nishina
- Graduate School of Natural Science and Technology
- Okayama University
- Okayama
- Japan
- Research Core for Interdisciplinary Sciences (RCIS)
| | - Alberto Bianco
- CNRS
- Immunology
- Immunopathology and Therapeutic Chemistry
- UPR 3572
- ISIS
| |
Collapse
|
35
|
Rohaizad N, Mayorga-Martinez CC, Fojtů M, Latiff NM, Pumera M. Two-dimensional materials in biomedical, biosensing and sensing applications. Chem Soc Rev 2020; 50:619-657. [PMID: 33206730 DOI: 10.1039/d0cs00150c] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two-dimensional (2D) materials are at the forefront of materials research. Here we overview their applications beyond graphene, such as transition metal dichalcogenides, monoelemental Xenes (including phosphorene and bismuthene), carbon nitrides, boron nitrides along with transition metal carbides and nitrides (MXenes). We discuss their usage in various biomedical and environmental monitoring applications, from biosensors to therapeutic treatment agents, their toxicity and their utility in chemical sensing. We highlight how a specific chemical, physical and optical property of 2D materials can influence the performance of bio/sensing, improve drug delivery and photo/thermal therapy as well as affect their toxicity. Such properties are determined by crystal phases electrical conductivity, degree of exfoliation, surface functionalization, strong photoluminescence, strong optical absorption in the near-infrared range and high photothermal conversion efficiency. This review conveys the great future of all the families of 2D materials, especially with the expanding 2D materials' landscape as new materials emerge such as germanene and silicene.
Collapse
Affiliation(s)
- Nasuha Rohaizad
- NTU Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore
| | | | | | | | | |
Collapse
|
36
|
Gong X, Hou C, Zhang Q, Li Y, Wang H. Thermochromic Hydrogel-Functionalized Textiles for Synchronous Visual Monitoring of On-Demand In Vitro Drug Release. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51225-51235. [PMID: 33164509 DOI: 10.1021/acsami.0c14665] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In vitro drug release systems have recently received tremendous attention because they allow noninvasive, convenient, and prolonged administration of pharmacological agents. On-demand epidermal drug release systems can improve treatment efficiency, prevent multidrug resistance, and minimize drug toxicity to healthy cells. In addition, real-time monitoring of drug content is also essential for guiding the determination of drug dosage and replacing drug carriers in time. Therefore, it is important to integrate the above properties in one ideal epidermal patch. Herein, photonic crystals (PCs) based on Fe3O4@C nanoparticles were introduced into drug-loaded poly(N-isopropylacrylamide-co-acrylic acid) (P(NIPAM-AAc)) hydrogel-functionalized textiles. Drug loading and release depended on the expansion and contraction of the hydrogels. The lower critical solution temperature (LCST) of the hydrogels was adjusted to 40 °C, which is higher than the skin temperature, by varying the content of hydrophilic comonomer acrylic acid (AAc) to store the drug at room temperature, and on-demand release was achieved by mild thermal stimulation. Moreover, the lattice spacing (d) of PCs varied with the expansion and contraction of the hydrogels, which can cause the color of P(NIPAM-AAc) hydrogel-functionalized textiles to change. These synchronous thermoresponsive chromic drug uptake and release behaviors provided an effective method for visual and real-time monitoring of drug content. Furthermore, in view of the poor mechanical properties of hydrogel wound dressings, textile matrices were composited to prevent holistic breaking during the stretching process. Biological experiments proved that the drug-loaded P(NIPAM-AAc) hydrogel-functionalized textiles had good antibacterial properties and wound-healing effects.
Collapse
Affiliation(s)
- Xinbo Gong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201600, China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201600, China
| | - Qinghong Zhang
- Engineering Research Center of Advanced Glasses Manufacturing Technology, College of Materials Science and Engineering, Donghua University, Shanghai 201600, China
| | - Yaogang Li
- Engineering Research Center of Advanced Glasses Manufacturing Technology, College of Materials Science and Engineering, Donghua University, Shanghai 201600, China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201600, China
| |
Collapse
|
37
|
Xu Z, Lu J, Zheng X, Chen B, Luo Y, Tahir MN, Huang B, Xia X, Pan X. A critical review on the applications and potential risks of emerging MoS 2 nanomaterials. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123057. [PMID: 32521321 DOI: 10.1016/j.jhazmat.2020.123057] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Molybdenum disulfide (MoS2) nanomaterials have been widely used in various fields such as energy store and transformation, environment protection, and biomedicine due to their unique physicochemical properties. Unfortunately, such large-scale production and use of MoS2 nanomaterials would inevitably release into the environmental system and then potentially increase the risks of wildlife/ecosystem and human beings as well. In this review, we first introduce the physicochemichemical properties, synthetic methods and environmental behaviors of MoS2 nanomaterials and their typical functionalized materials, then summarize their environmental and biomedical applications, next assess their potential health risks, covering in vivo and in vitro studies, along with the underlying toxicological mechanisms, and last point out some special phenomena about the balance between applications and potential risks. This review aims to provide guidance for harm predication induced by MoS2 nanomaterials and to suggest prevention measures based on the recent research progress of MoS2' applications and exerting toxicological data.
Collapse
Affiliation(s)
- Zhixiang Xu
- Faulty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China; Faculty of Life Science & Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jichang Lu
- Faulty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xianyao Zheng
- Faulty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bo Chen
- Faulty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongming Luo
- Faulty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Muhammad Nauman Tahir
- Faulty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bin Huang
- Faulty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xueshan Xia
- Faculty of Life Science & Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuejun Pan
- Faulty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
38
|
Sehrawat P, Julien CM, Islam SS. WS 2 Quantum Dots on e-Textile as a Wearable UV Photodetector: How Well Reduced Graphene Oxide Can Serve as a Carrier Transport Medium? ACS APPLIED MATERIALS & INTERFACES 2020; 12:39730-39744. [PMID: 32809799 DOI: 10.1021/acsami.0c08028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We document the fabrication and investigations of a novel photodetector based on a WS2 quantum dots and reduced graphene oxide (RGO) (WS2-QDs/RGO) heterostructure. The proposed photodetector is simple, scalable, cost-effective, and flexible and works in an ambient environment. An enhanced photodetection efficiency is observed due to the superior electronic properties of WS2-QDs and excellent electrical as well as thermal properties of the carrier transportation medium, RGO. For device fabrication, GO and WS2-QDs were separately synthesized via different chemistry followed by decorating WS2-QDs on RGO coated cotton textile. Characterization studies confirm the transformation of exfoliated WS2-2D flakes into WS2-0D quantum dots and graphene oxide (GO) to RGO. The optimized photodetection performance of WS2-QDs/RGO demonstrates its photoresponsivity of 5.22 mA W-1 at 1.4 mW mm-2 power density of a 405 nm illumination source. Other sensor parameters such as photosensitivity (∼20.2%), resolution (∼0.031 mW mm-2 μA-1), response time (1.57 s), recovery time (1.83 s), and specific detectivity (∼1.6 × 106 jones) are found for WS2-QDs/RGO sensor, and a few of these parameters are comparable and even superior to some of the devices as reported. Photosensing mechanism is explained in terms of charge transfer caused by appropriate band alignment across the interface between WS2-QDs and RGO, where dimensionality and quantum confinement of nanostructures synergistically enhance the overall performance of the heterostructure. The device flexibility is examined through bending, stretching, and twisting experiments and successfully demonstrated its potentiality. Sensor performance even after being soaked in water and subsequent drying shows the possibility of reuse. The attributes of flexibility, high sensitivity and responsivity, superior resolution, and cost-effectiveness of our novel flexible photodetector indicate its promising potential for flexible and wearable optical detectors operating in UV band. Although negative photoconductance of the WS2-QDs/RGO sensor is a major cause for not allowing the sensor to show its best performance, a trade-off is made with improved device design to qualify the expectations of being a competitive device, and this has been demonstrated with experimental facts.
Collapse
Affiliation(s)
- Poonam Sehrawat
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - C M Julien
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS-UMR 7590, 4 place Jussieu, 75252 Paris, France
| | - S S Islam
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| |
Collapse
|
39
|
Ma B, Martín C, Kurapati R, Bianco A. Degradation-by-design: how chemical functionalization enhances the biodegradability and safety of 2D materials. Chem Soc Rev 2020; 49:6224-6247. [PMID: 32724940 DOI: 10.1039/c9cs00822e] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A large number of graphene and other 2D materials are currently used for the development of new technologies, increasingly entering different industrial sectors. Interrogating the impact of such 2D materials on health and environment is crucial for both modulating their potential toxicity in living organisms and eliminating them from the environment. In this context, understanding if 2D materials are bio-persistent is mandatory. In this review we describe the importance of biodegradability and decomposition of 2D materials. We initially cover the biodegradation of graphene family materials, followed by other emerging classes of 2D materials including transition metal dichalcogenides and oxides, Xenes, Mxenes and other non-metallic 2D materials. We explain the role of defects and functional groups, introduced onto the surface of the materials during their preparation, and the consequences of chemical functionalization on biodegradability. In strong relation to the chemistry on 2D materials, we describe the concept of "degradation-by-design" that we contributed to develop, and which concerns the covalent modification with appropriate molecules to enhance the biodegradability of 2D materials. Finally, we cover the importance of designing new biodegradable 2D conjugates and devices for biomedical applications as drug delivery carriers, in bioelectronics, and tissue engineering. We would like to highlight that the biodegradation of 2D materials mainly depends on the type of material, the chemical functionalization, the aqueous dispersibility and the redox potentials of the different oxidative environments. Biodegradation is one of the necessary conditions for the safe application of 2D materials. Therefore, we hope that this review will help to better understand their biodegradation processes, and will stimulate the chemists to explore new chemical strategies to design safer products, composites and devices containing 2D materials.
Collapse
Affiliation(s)
- Baojin Ma
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000 Strasbourg, France.
| | | | | | | |
Collapse
|
40
|
Affiliation(s)
- Huijing Xiang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
41
|
Samantaray PK, Indrakumar S, Chatterjee K, Agarwal V, Bose S. 'Template-free' hierarchical MoS 2 foam as a sustainable 'green' scavenger of heavy metals and bacteria in point of use water purification. NANOSCALE ADVANCES 2020; 2:2824-2834. [PMID: 36132388 PMCID: PMC9419618 DOI: 10.1039/c9na00747d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/05/2020] [Indexed: 05/13/2023]
Abstract
Molybdenum disulfide (MoS2), with its unique optical and electrical properties, has been explored for a variety of applications in the recent past. Still, its capabilities in point-of-use heavy metal ion removal remain to be explored. Herein, for the first time using a facile approach, we fabricated three-dimensional (3D) MoS2 foam from exfoliated single to few-layered MoS2 sheets for the selective exclusion of heavy metals and stringent bactericidal response. This foam was able to exclude 99.9% of Pb(ii) and 98.7% of As(iii) instantaneously and reduced more than 98% of bacteria E. coli. Moreover, the foam exhibits selective toxicity towards bacterial cells while showing no observable toxicity towards mammalian cells. The foam can be recycled and reused for at least five cycles under accelerated conditions and thus can be used for a promising non-cytotoxic, facile, and environmentally benign process for inline water remediation to remove heavy metal ions from the feed and as a potential antibacterial agent.
Collapse
Affiliation(s)
- Paresh Kumar Samantaray
- Centre for BioSystems Science and Engineering, Indian Institute of Science Bangalore India
- Department of Materials Engineering, Indian Institute of Science Bangalore India
| | - Sushma Indrakumar
- Department of Materials Engineering, Indian Institute of Science Bangalore India
| | - Kaushik Chatterjee
- Centre for BioSystems Science and Engineering, Indian Institute of Science Bangalore India
- Department of Materials Engineering, Indian Institute of Science Bangalore India
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education Bangalore India
| | - Vipul Agarwal
- Department of Materials Engineering, Indian Institute of Science Bangalore India
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales Sydney NSW 2052 Australia
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science Bangalore India
| |
Collapse
|
42
|
Multimodal theranostics augmented by transmembrane polymer-sealed nano-enzymatic porous MoS 2 nanoflowers. Int J Pharm 2020; 586:119606. [PMID: 32634458 DOI: 10.1016/j.ijpharm.2020.119606] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022]
Abstract
Developing an all-in-one multimodal theranostic platform that can synergistically integrate sensitive photoacoustic (PA) imaging, enhanced photothermal therapy (PTT) and photodynamic therapy (PDT) as well as the nano-enzyme activated chemodynamic therapy (CDT) presents a great challenge for the current nanomedicine design. Herein, a simple hydrothermal method was used to prepare porous molybdenum disulfide (MoS2) nanoflowers. These nanoflowers were assembled by three dimensional (3D)-stacked MoS2 nanosheets with plentiful pores and large surfaces, which thus exhibited enhanced photothermal conversion via light trapping and peroxidase (POD)-like activity via active defects exposure. Consequently, this 3D-MoS2 nanostructure could be well-sealed by polyethylene glycol-polyethylenimine polymer modified with nucleolar translocation signal sequence of the LIM Kinase 2 protein (LNP) via strong electrostatic interaction, which not only benefited to stably deliver anticancer drug doxorubicin (DOX) into the tumor cells for pH/NIR-responsive chemotherapy, but also provided strong photoacoustic, photothermal performances and stimulated generation of reactive oxygen species (ROS) for imaging-guided PTT/PDT/CDT combined therapy. This work promised a simple all-in-one multimodal theranostic platform to augment the potential antitumoral therapeutic outcomes.
Collapse
|
43
|
Raja IS, Kang MS, Kim KS, Jung YJ, Han DW. Two-Dimensional Theranostic Nanomaterials in Cancer Treatment: State of the Art and Perspectives. Cancers (Basel) 2020; 12:E1657. [PMID: 32580528 PMCID: PMC7352353 DOI: 10.3390/cancers12061657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
As the combination of therapies enhances the performance of biocompatible materials in cancer treatment, theranostic therapies are attracting increasing attention rather than individual approaches. In this review, we describe a variety of two-dimensional (2D) theranostic nanomaterials and their efficacy in ablating tumors. Though many literature reports are available to demonstrate the potential application of 2D nanomaterials, we have reviewed here cancer-treating therapies based on such multifunctional nanomaterials abstracting the content from literature works which explain both the in vitro and in vivo level of applications. In addition, we have included a discussion about the future direction of 2D nanomaterials in the field of theranostic cancer treatment.
Collapse
Affiliation(s)
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea;
| | - Ki Su Kim
- Department of Organic Materials Science and Engineering, College of Engineering, Pusan National University, Busan 46241, Korea
| | - Yu Jin Jung
- Research Centre for Advanced Specialty Chemicals, Division of Specialty and Bio-based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Korea
| | - Dong-Wook Han
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Korea;
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea;
| |
Collapse
|
44
|
Wang X, Wang X, Cheng S, Ye M, Zhang C, Xian Y. Near-Infrared Light-Switched MoS 2 Nanoflakes@Gelatin Bioplatform for Capture, Detection, and Nondestructive Release of Circulating Tumor Cells. Anal Chem 2020; 92:3111-3117. [PMID: 31968939 DOI: 10.1021/acs.analchem.9b04724] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The integrative bioplatform for capture, detection and release of circulating tumor cells (CTCs) is of great significance in clinical diagnosis and biomedical research. To fulfill this demand, we introduced a near-infrared (NIR) light-switched bioplatform for efficient isolation and downstream analysis of CTCs. The platform was created by first modifying the PEG-MoS2 nanoflakes (NFs)@gelatin nanocomposite on the ITO surface, and then introducing the MUC1 aptamer as a specific recognition element via coupling reaction between aptamer and gelatin to achieve the specific capture for CTCs. Subsequently, the captured cells are released under a NIR light irradiation (808 nm) by using MoS2 NFs as the NIR-regulated control element. Significantly, this platform could capture and release of CTCs with an excellent capture/release efficiency of 89.5% and 92.5%, respectively. Furthermore, the electrochemical bioplatform exhibited a wide linear range for the detection of CTCs from 50 to 1 × 106 cells mL-1 with a detection limit of 15 cells mL-1. After 5 days of reculture, the released cells still maintain good cell shape and proliferation capacity. Moreover, the bioplatfrom is a simple, versatile, and universal system for the recognition, capture, release, and detection of different types of CTCs. Therefore, this bioplatform shows potential applications on the early diagnosis of cancers.
Collapse
Affiliation(s)
- Xiuli Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200241 , China
| | - Xinjun Wang
- Shanghai Zhangjiang Institute of Medical Innovation , Shanghai 201204 , China
| | - Shasha Cheng
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200241 , China
| | - Mingqiang Ye
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200241 , China
| | - Cuiling Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200241 , China
| | - Yuezhong Xian
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200241 , China
| |
Collapse
|
45
|
Fernandes N, Rodrigues CF, Moreira AF, Correia IJ. Overview of the application of inorganic nanomaterials in cancer photothermal therapy. Biomater Sci 2020; 8:2990-3020. [DOI: 10.1039/d0bm00222d] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Cancer photothermal therapy (PTT) has captured the attention of researchers worldwide due to its localized and trigger-activated therapeutic effect.
Collapse
Affiliation(s)
- Natanael Fernandes
- CICS-UBI – Health Sciences Research Centre
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - Carolina F. Rodrigues
- CICS-UBI – Health Sciences Research Centre
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - André F. Moreira
- CICS-UBI – Health Sciences Research Centre
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - Ilídio J. Correia
- CICS-UBI – Health Sciences Research Centre
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
- CIEPQF—Departamento de Engenharia Química
| |
Collapse
|
46
|
Zhou H, Ge J, Miao Q, Zhu R, Wen L, Zeng J, Gao M. Biodegradable Inorganic Nanoparticles for Cancer Theranostics: Insights into the Degradation Behavior. Bioconjug Chem 2019; 31:315-331. [PMID: 31765561 DOI: 10.1021/acs.bioconjchem.9b00699] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inorganic nanoparticles as a versatile nanoplatform have been broadly applied in the diagnosis and treatment of cancers due to their inherent superior physicochemical properties (including magnetic, thermal, optical, and catalytic performance) and excellent functions (e.g., imaging, targeted delivery, and controlled release of drugs) through surface functional modification or ingredient dopant. However, in practical biological applications, inorganic nanomaterials are relatively difficult to degrade and excrete, which induces a long residence time in living organisms and thus may cause adverse effects, such as inflammation and tissue cysts. Therefore, the development of biodegradable inorganic nanomaterials is of great significance for their biomedical application. This Review will focus on the recent advances of degradable inorganic nanoparticles for cancer theranostics with highlight on the degradation mechanism, aiming to offer an in-depth understanding of degradation behavior and related biomedical applications. Finally, key challenges and guidelines will be discussed to explore biodegradable inorganic nanomaterials with minimized toxicity issues, facilitating their potential clinical translation in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Hui Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Qingqing Miao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Ran Zhu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Ling Wen
- Department of Radiology , The First Affiliated Hospital of Soochow University , Suzhou 215006 , China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) , Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Suzhou 215123 , China.,Institute of Chemistry, Chinese Academy of Sciences/School of Chemistry and Chemical Engineering , University of Chinese Academy of Sciences , Beijing 100190 , China
| |
Collapse
|
47
|
Zhang A, Jung K, Li A, Liu J, Boyer C. Recent advances in stimuli-responsive polymer systems for remotely controlled drug release. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.101164] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Zeng D, Wang L, Tian L, Zhao S, Zhang X, Li H. Synergistic photothermal/photodynamic suppression of prostatic carcinoma by targeted biodegradable MnO 2 nanosheets. Drug Deliv 2019; 26:661-672. [PMID: 31257941 PMCID: PMC6610525 DOI: 10.1080/10717544.2019.1631409] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/09/2019] [Accepted: 06/09/2019] [Indexed: 12/12/2022] Open
Abstract
The biodegradability and clearance of metal-based nanomaterials have been questioned worldwide, which have greatly limited their clinical translation. Herein, ultrathin manganese dioxide (MnO2) nanosheets with broad near-infrared (NIR) absorption and pH-dependent degradation properties were prepared. After being modified with polyethylene glycol-cyclic arginine-glycineaspartic acid tripeptide (PEG-cRGD), the MnO2 nanosheets were then used as photothermal agent and nanocarrier to encapsulate chlorin e6 (Ce6) for targeted photothermal (PTT) and photodynamic (PDT) of cancer. As expected, the MnO2-PEG-cRGD nanosheets show high Ce6 loading capacity (351 mg/g), superb photothermal conversion performance (37.2%) and excellent colloidal stability. These nanosheets also exhibit pH-dependent and NIR-induced Ce6 release. Furthermore, the MnO2 nanosheets can be degraded by reacting with hydrogen peroxide in the acidic microenvironment, which are able to elevate the oxygen concentration in situ and thus reverses the tumor hypoxia. Thanks to these favorable properties and the cRGD-mediated tumor-targeted ability, the fabricated MnO2-PEG-cRGD/Ce6 nanocomposites can be effectively up taken by alpha-v beta-3 (αvβ3) integrin over-expressed prostatic carcinoma PC3 cells and achieve favorable therapeutic outcomes under a single 660 nm NIR laser, which is also verified by in vitro studies. The biodegradable MnO2-PEG-cRGD/Ce6 nanosheets developed in this work can be a promising nanoplatform for synergetic PTT/PDT cancer therapy.
Collapse
Affiliation(s)
- Dewang Zeng
- Department of Nephrology, Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou, China
| | - Lei Wang
- Guizhou Population and Family Planning Science Research and Technology Guidance Institute, Guiyang, China
| | - Lu Tian
- Department of Nephrology, Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou, China
| | - Shili Zhao
- Department of Nephrology, Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou, China
| | - Xianfeng Zhang
- Department of Gastroenterology, Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou, China
| | - Hongyan Li
- Department of Nephrology, Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou, China
| |
Collapse
|
49
|
Chen Y, Khan AR, Yu D, Zhai Y, Ji J, Shi Y, Zhai G. Pluronic F127-functionalized molybdenum oxide nanosheets with pH-dependent degradability for chemo-photothermal cancer therapy. J Colloid Interface Sci 2019; 553:567-580. [DOI: 10.1016/j.jcis.2019.06.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/09/2023]
|
50
|
Wang K, Liu X, Zhuang J, Liu Y, Xu M, Xie D, Chen J, Zhang X, Wei Y, Zhang Y. Small fluorescent albumin nanoparticles for targeted photothermal therapy via albumin-Binding protein pathways. Colloids Surf B Biointerfaces 2019; 181:696-704. [DOI: 10.1016/j.colsurfb.2019.06.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 11/25/2022]
|